
Towards a Better Understanding of
Agent-based Airport Terminal Op-
erations Using Surrogate Modeling

Master of Science Thesis

Benjamin C.D. De Bosscher





Towards a Better Understanding
of Agent-based Airport Terminal

Operations Using Surrogate
Modeling

Master of Science Thesis
by

Benjamin C.D. De Bosscher
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Monday January 9, 2023 at 2:00 PM.

Student number: 4429885

Thesis committee: Dr. B.F. Lopes Dos Santos TU Delft, Chair

Dr. O.A. Sharpans’kykh TU Delft, Supervisor

Dr.ir. E. van Kampen TU Delft, Examiner

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Acknowledgments

This thesis was the final challenge on my way to obtain a Master of Science in Aerospace Engineering at the
Delft University of Technology. It marks the end of my time as a student and leads to future endeavors, what-
ever they may be. While I feel it is time for the next steps, I deeply cherish the experiences and opportunities
of the past seven and a half years. Some highlights include my exchange to the Nanyang Technological Uni-
versity in Singapore, an Internship at TUI, the intermediate year at the Rotterdam School of Management,
but above all, the valuable skills and further ambitions I gained during my journey in Delft. It has shaped me
into the person I am today, for which I am most grateful.

Close support is one of the key ingredients to make a thesis successful, so therefore a sincere thank you to
Dr. Alexei Sharpans’kykh, my supervisor. Despite inconceivable circumstances, he was always there to guide
me into the right direction, to be critical of my work, and to provide constructive feedback. He has taken the
quality of the research to a substantially higher level. Not only did this enhance the learning process, but it
also created a pleasant and open working environment. His guidance is much appreciated; I wish him all the
best and lots of strength. Furthermore, I also want to express my gratitude to senior researcher Seyed Sahand
Mohammadi Ziabari, who co-supervised me along the way. I enjoyed our fruitful meetings, which helped
me a lot. I wish him every success in his further career. Finally, it is always nice to be surrounded by fellow
students who are going through the same thing. Therefore, many thanks to former and current members of
the AATOM research group, in particular Benyamin, Didier, Klemens, Adin, Antonio, Misha, and Matthijs.

Besides academic support, it would not have been possible without family. On the one hand, I acknowl-
edge my parents, to whom this work is dedicated. They facilitated the practical arrangements and encouraged
me to realize my ambitions. I am eternally grateful for their devotion. On the other hand, there are also my
brothers. The physical distance between us may not always be small, but I admire their aura of optimism and
fortitude. I wholeheartedly treasure the moments we spend together. Lastly, my father has been the most
loyal proofreader. He has always helped me with linguistics, despite these kinds of technical subjects are not
really among his interests. I appreciate his assistance.

Over the years, and especially during this thesis, I was fortunate to be surrounded by the best people. They
endured the — perhaps exaggerated — complaining about how tough everything was, but more importantly,
they were always there for me. In particular, I want to thank my girlfriend, roommates, and friends for being
the anchors in my life. I am looking forward to what the future might bring to us.

Benjamin C.D. De Bosscher
Gavere–Asper, December 2022

The image on the front page is taken from Meyer [69].

iii





Table of Contents

List of Figures vii

List of Tables ix

List of Abbreviations xi

List of Symbols xiii

Introduction xvii

I Scientific Paper 1

II Literature Study 29

1 Introduction 31

2 Modeling Airport Terminal Operations 33
2.1 The Characteristics of an Airport Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 A Brief Overview of Existing Models and Related Work . . . . . . . . . . . . . . . . . . . . . . 35
2.3 The AATOM Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Agent-based Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.2 Model Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.3 Input and Output Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Surrogate Modeling 47
3.1 An Introduction to Surrogate Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Initial Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Adaptive Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Methods Used in Surrogate Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.1 Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.2 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.3 Radial Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.4 Support-vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.5 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.6 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.7 Comparison Between the Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Hyperparameter Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6 Selected Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 System Understanding 69
4.1 Model-agnostic Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Sensitivity Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.2 Dependency Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.3 Feature Relevancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1.4 Local Interpretable Model-agnostic Explanations . . . . . . . . . . . . . . . . . . . . . 74
4.1.5 Shapley Additive Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Model-specific Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.1 Analysis of Regression Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.2 RuleFit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

v



vi Table of Contents

5 Research Proposal 83
5.1 Objective and Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Relevance of the Project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Planning of the Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

III Supporting Work 89

A Preparing AATOM for Surrogate Modeling 91
A.1 Testing the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2 Bug Fixes and Implemented Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B Obtaining Stable Simulation Responses 97
B.1 Calculating the Coefficient of Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.2 Removing Erroneous Simulation Runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

C Insights into the Sampled Data Points 103
C.1 Distribution of the Data Points in the Feature Space . . . . . . . . . . . . . . . . . . . . . . . 103

C.1.1 One-dimensional Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
C.1.2 Two-dimensional Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

C.2 Summary Statistics of the Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
C.3 Reaching the Stopping Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

D Tuning the Meta-models’ Hyperparameters 113
D.1 Considered Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
D.2 Results of the Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

E Annex to the Description of the Agent-based Model 121

F Annex to the Results 125
F.1 Surrogate Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
F.2 Analysis of the Total Expenditure on Discretionary Activities . . . . . . . . . . . . . . . . . . . 126
F.3 Analysis of the Saturation at Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography 131



List of Figures

2.1 High-level visualization of a typical international airport. . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Flowchart of outbound passengers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Map of the Rotterdam The Hague Airport departure hall. . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 The three components of agent-based modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5 Functional areas in AATOM and their mutual relations. . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6 Modeled terminal layout of RTHA in AATOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.7 Architectural layout of agents in AATOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 High-level framework of a typical surrogate modeling process. . . . . . . . . . . . . . . . . . . . . 48
3.2 Categorization of the most common sampling approaches for the DOE. . . . . . . . . . . . . . . 49
3.3 Visualization of the three sampling approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Difference between exploration and exploitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Comparison between different space-filling methods to generate an initial sample. . . . . . . . . 51
3.6 A simple one-dimensional example of GP regression. . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.7 Main principle of support-vector regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8 The principle behind regression trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.9 The principle behind ensembles of regression trees. . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.10 Architectural structure of artificial neural networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.11 Hyperparameter tuning with a K-fold cross-validation approach. . . . . . . . . . . . . . . . . . . . 65
3.12 Overview of the selected methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 The three approaches to plotting dependencies, applied on an example of bicycle rental. . . . . 72
4.2 Example of local insights by LIME, applied to data from a study on diabetes. . . . . . . . . . . . . 75
4.3 Example of the possibilities with SHAP, applied to data from a study on diabetes. . . . . . . . . . 77
4.4 Abstracting decision rules from regression trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Planning of the entire thesis project, extracted in week 7 of 2022. . . . . . . . . . . . . . . . . . . . 86

A.1 Modeled layout of RTHA that was originally available in the latest AATOM version. . . . . . . . . 92
A.2 Frequently occurring issues in AATOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.3 An agent being stuck at the security checkpoint’s walk-through metal detector. . . . . . . . . . . 93
A.4 Modified layout of RTHA that avoids the obstruction of queues. . . . . . . . . . . . . . . . . . . . 94

B.1 The distributions of three responses when running simulations with the same input parameters. 97
B.2 The coefficient of variation against the number of simulation runs. . . . . . . . . . . . . . . . . . 98
B.3 The effect of the number of passengers in the system on the coefficient of variation. . . . . . . . 99

C.1 One-dimensional training sample distributions of four input parameters. . . . . . . . . . . . . . 104
C.2 One-dimensional validation sample distributions of two input parameters. . . . . . . . . . . . . 105
C.3 One-dimensional test sample distributions of two input parameters. . . . . . . . . . . . . . . . . 105
C.4 Two-dimensional distributions of the initial sample. . . . . . . . . . . . . . . . . . . . . . . . . . . 105
C.5 Two-dimensional distributions of the adaptive sample. . . . . . . . . . . . . . . . . . . . . . . . . 106
C.6 Closer examination of the sample patterns between the number of passengers on flight 2 and 6. 107
C.7 Two-dimensional distributions of the validation sample. . . . . . . . . . . . . . . . . . . . . . . . . 108
C.8 Two-dimensional distributions of the test sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
C.9 Standardized box plots of the responses obtained from the training sample. . . . . . . . . . . . . 109
C.10 Out-of-sample performance of Gaussian process regression over an increasing sample size. . . . 111
C.11 Out-of-sample performance of different meta-models over an increasing sample size. . . . . . . 111
C.12 Comparison between different validation metrics for the average time to reach the gate. . . . . . 112

vii



viii List of Figures

D.1 Tuning the Matérn kernel function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
D.2 Convergence plots of the hyperparameter tuning process towards the global optimum. . . . . . 118

E.1 Architectural layout of agents in AATOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

F.1 Predicted versus actual response values of the best performing surrogate models. . . . . . . . . . 125
F.2 Marginal effect of flights 1 and 4 on the total expenditure. . . . . . . . . . . . . . . . . . . . . . . . 126
F.3 Bee swarm summary plot of the total expenditure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
F.4 Marginal effect of the security check strategy on the total expenditure. . . . . . . . . . . . . . . . 127
F.5 Bee swarm summary plot of the throughput at security. . . . . . . . . . . . . . . . . . . . . . . . . 127
F.6 One-dimensional partial dependence plot of the throughput at security. . . . . . . . . . . . . . . 127
F.7 Marginal effect of the security check strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
F.8 Bee swarm summary plot of the average waiting time at security. . . . . . . . . . . . . . . . . . . . 128
F.9 Bee swarm summary plot of the number of missed flights. . . . . . . . . . . . . . . . . . . . . . . . 129



List of Tables

2.1 Main dimensions to categorize airport terminal models. . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2 Relevant input parameters to define simulations in AATOM. . . . . . . . . . . . . . . . . . . . . . 45
2.3 Relevant output parameters from the simulations in AATOM. . . . . . . . . . . . . . . . . . . . . . 45

3.1 Advantages and disadvantages of the considered initial sampling methods. . . . . . . . . . . . . 51
3.2 Qualitative comparison of the considered acquisition functions. . . . . . . . . . . . . . . . . . . . 54
3.3 Advantages and disadvantages of the considered hyperparameter tuning methods. . . . . . . . . 64

A.1 Summary of the identified issues in AATOM and their corresponding solutions. . . . . . . . . . . 96

B.1 Response distribution of the number of missed flights for moderate crowds in the terminal. . . . 100

C.1 Summary statistics of the responses calculated from the training sample. . . . . . . . . . . . . . . 108
C.2 Correlation matrix of the responses obtained from the training sample. . . . . . . . . . . . . . . . 110

D.1 Overview of the surrogate model hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
D.2 Selected surrogate model hyperparameter values per response. . . . . . . . . . . . . . . . . . . . 120

E.1 A typical flight schedule at RTHA in the fall of 2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
E.2 Presumed check-in staffing strategies at RTHA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
E.3 Presumed security checkpoint staffing strategies at RTHA. . . . . . . . . . . . . . . . . . . . . . . . 123

ix





List of Abbreviations

AATOM Agent-based airport terminal operations model.

ABM Agent-based modeling.

ALE Accumulated local effects.

BO Bayesian optimization.

CI Check-in.

CI Confidence interval.

COVID-19 Coronavirus disease 2019.

CV Cross-validation.

DOE Design of experiments.

EIGF Expected improvement for global fit.

ETD Explosive trace detector.

GB Gradient boosting regression.

GP Gaussian Process.

GUI Graphical user interface.

IATA International Air Transport Association.

ICAO International Civil Aviation Organization.

ICE Individual conditional expectation.

KPI Key performance indicator.

LASSO Least absolute shrinkage and selection operator.

LHS Latin hypercube sampling.

LIME Local interpretable model-agnostic explanations.

LR Linear regression.

MAE Mean absolute error.

MAPE Mean absolute percentage error.

MARS Multivariate adaptive regression splines.

MEPE Maximizing expected prediction error.

MIPT Monte Carlo-intersite-proj-th.

MSE Mean squared error.

N/A Not applicable.

NN Neural networks.

OAT One-at-a-time.

OLS Ordinary least squares.

PDP Partial dependence plot.

QBC Query-by-committee.

xi



xii List of Abbreviations

RBF Radial basis functions.

ReLU Rectified linear unit.

RF Random forests.

RMSE Root-mean-square error.

RTHA Rotterdam The Hague Airport.

SA Sensitivity analysis.

SC Security check.

SD Standard deviation.

SHAP Shapley additive explanations.

SVM Support-vector machines.

SVR Support-vector regression.

UTC Coordinated universal time.

WP Work package.

WTMD Walk-through metal detector.

XAI Explainable artificial intelligence.



List of Symbols

B Basis function.

C Tolerance hyperparameter in support-vector regression.

D Parameter space.

D Dimension.

G Set of transparent models.

H 2 H-statistic to examine feature interactions.

I Indicator function.

M Number of basis functions.

R2 Coefficient of determination.

S Sobol sensitivity index.

S Feature subset.

# Number.

% Percentage.

∆ Difference operator.

Ω Model complexity.

Φ Activation function.

α Regularization hyperparameter.

α Balancing factor.

β Standardized regression coefficient.

x∗ Sampled input vector closest to a point in the domain.

x Input vector.

σ̂2 Variance of the surrogate.

f̂ Surrogate function.

ᵀ Transpose.

λ Regularization hyperparameter.

E Expected value.

N Set of natural numbers.

R Set of real numbers.

C Committee of surrogate models.

AF Acquistition function.

PD Partial dependence.

arg max Argument of the maximum.

arg min Argument of the minimum.

µ Base term in support-vector machines.

xiii



xiv List of Symbols

ν Smoothness hyperparameter of the Matérn kernel.

f Average sample response.

ϕ Shapley value.

πx Proximity to a point x in the domain.

σ2
i Variance of a particular regression coefficient i .

AvgQueueTimeC I Average time in queue at the check-in counters.

AvgQueueTimeSC Average time in queue at the security checkpoint.

AvgTimeToGate Average time to reach the gate.

CIstrategy Check-in strategy.

CTGstrategy Call-to-gate strategy.

Gatet Departure gate of the flight on time slot t .

IQR Interquartile range.

MaxPaxInQueueC I Maximum queue size at the check-in counters.

MaxPaxInQueueSC Maximum queue size at the security checkpoint.

NumMissedFlights Number of missed flights.

PaxCompletedC I Throughput at the check-in counters.

PaxCompletedSC Throughput at the security checkpoint.

Paxt Number of passengers of the flight on time slot t .

Q1 Lower quartile.

Q3 Upper quartile.

SCstrategy Security check strategy.

TotalExpenditure Total expenditure during non-aeronautical activities.

min Minutes.

ε Accepted error hyperparameter in support-vector regression.

ξ Local explanation.

ξ Slack variable.

cv Coefficient of variation.

e Euler’s number.

e Error.

f Target function.

g Transparent model.

h Hyperparameter of a machine learning model.

i , j ,k Index.

k Covariance function.

k Number of decision rules from a tree ensemble.

l Length scale hyperparameter.

m Mean function.

m Sample size.

n Number of dimensions.

p p-value.



List of Symbols xv

p Marginal probability density function.

r Decision rule.

s Seconds.

s Sample standard deviation.

s Subset of feature values.

t Size of committee.

t Time slot number.

w Regression coefficients.

z Standard score.

| · | Absolute value.

| · | Cardinality of a set.

|| · || Euclidean norm.

e Euro.





Introduction

Airport terminals are complex sociotechnical systems, where cognitive, social, technical, and organizational
factors play a major role [51, 68]. Scholars have shown great interest in modeling their operations, because
they are subject to stochasticity and non-trivial complexity inherent in natural human behavior [74]. How-
ever, existing models suffer from heavy computational requirements and reveal their emergent properties
only after running several simulations. These are typical challenges of agent-based modeling, the principle
according to which current models are usually built [60, 74]. To address this limitation, a worthy alternative is
the consideration of surrogate modeling, also known as meta-modeling. A surrogate mimics model responses
through so-called black-box approximation functions [11]. The benefit is that, once a meta-model is trained,
it can approximate the output at a fraction of the computational effort that would otherwise be required.
Moreover, it facilitates the analysis of the underlying system [28]. The purpose of our research is therefore
to accurately abstract and explain the dynamics of airport terminal operations by means of computationally
efficient and interpretable surrogate models, based on an existing agent-based simulation model.

To achieve the objective, we introduce a two-stage methodology to analyze such systems in a more ef-
ficient way. The first stage involves the development of faithful surrogate models, whereafter the second
stage applies techniques from the emerging field of explainable artificial intelligence to these abstractions.
The novelty of our methodology lies thus in the amalgamation, rather than in the respective research fields
themselves. Indeed, we have explored their common ground to take advantage of synergies. A successful
application reveals the properties of the focal system, which in the case of a sociotechnical system mainly
concerns emergent phenomena. Apart from the scientific contributions, the outcome of this study is par-
ticularly relevant for airport and airline managers. It leads to detailed insights into terminal processes, and
provides them with efficient and effective decision-making tools. This enables them to act agile and adapt
quickly to changing conditions, thereby maximizing service against available resources.

This report documents all materials of the thesis; it is organized as follows. Part I contains the scien-
tific paper — the research’s end product. The objective is explored in relation to existing work, followed by
a description of the proposed methodology and evidence of its effectiveness by means of two case studies.
Notwithstanding, this was not possible without a prior literature review, which is presented in Part II. Fi-
nally, Part III relates to supplementary work: it consists of six appendices to support the scientific paper. The
first four cover, respectively, the preparation of the investigated agent-based model, the stabilization of its
responses, a precursory impression into sampled data sets, and the optimization of meta-model hyperpa-
rameters. The last two are annexes to two sections of the paper, namely the description of the agent-based
model and the results.

xvii





I
Scientific Paper

1





Towards a Better Understanding of Agent-based Airport Terminal
Operations Using Surrogate Modeling

B.C.D. De Bosscher∗

Delft University of Technology, Delft, The Netherlands

Abstract
Airport terminals are complex sociotechnical systems, in which humans interact with diverse technical sys-
tems. A natural way to represent them is through agent-based modeling. However, this method has two
drawbacks: it entails a heavy computational burden and the emergent properties are often difficult to an-
alyze. The purpose of our research is therefore to accurately abstract and explain the dynamics of airport
terminal operations by means of computationally efficient and interpretable surrogate models, based on an
existing agent-based simulation model. We propose a methodology consisting of two stages. Stage I in-
volves the development of faithful surrogates. A sample is collected according to an active learning strategy,
upon which Gaussian process regression, higher-order polynomials, gradient boosting, and random forests
are fitted. Stage II then applies state-of-the-art techniques from the emerging field of explainable artificial
intelligence to these models. Both model-agnostic and model-specific methods are considered, and their
results are synthesized in order to explain the emergent properties. We prove the efficacy of this approach
by conducting two case studies on AATOM, an existing Agent-based Airport Terminal Operations Model.
The first case study examines the total expenditure on discretionary activities, such as shopping and dining.
A combination of poor staffing strategies and high occupancy rates on certain flights was found to disrupt
the terminal journey of passengers on subsequent flights. As a result of these knock-on phenomena, less free
time is left for discretionary activities, which has a negative effect on the total expenditure. The second case
study examines the throughput of security checkpoints. While throughput increases with passenger num-
bers, a clear point was observed where the checkpoint reaches its maximum capacity. This leads to longer
queues and therefore higher waiting times. It even goes so far as to put passengers at risk of missing their
flight, especially with poor staffing strategies. Altogether, we clearly observed the preservation of emergent
phenomena in surrogate models, and conclude that their combination with interpretable machine learning
is an effective way to explain the dynamics of complex sociotechnical systems.

Keywords: Agent-based Modeling, Surrogate Modeling, Interpretable Machine Learning, Airport Terminal

1 Introduction
In recent decades, the aviation sector has benefited from stable growth in air traffic demand. While long-
term prospects have long been taken for granted, abrupt events such as a financial crisis or the outbreak of
a disease have shown the vulnerability of this supposition [12]. Furthermore, a growing number of people are
also becoming concerned about the environmental impact [22]. It proves that airlines should operate more agile
and lean: they must react quickly to such events and adapt to the new status quo. Airports, in turn, are the
infrastructural epicenter of the system, so their operations are directly affected by changes in passenger numbers.
This demonstrates the need for reliable models of terminal operations. Such models would be useful to prevent
chaotic events, like in the aftermath of the COVID-19 pandemic at European airports [e.g., 54, 68].

The modeling of airport terminal operations has been previously explored by numerous scholars. Pao-
Yen Wu and Mengersen [53] summarized these efforts in a meta-study, wherein was concluded that agent-
based simulation models are most commonly used for operational planning and design purposes. Indeed, such
models are preeminent for high levels of detail without compromising the complexity and emergent properties
of sociotechnical systems like an airport terminal [48]. Notwithstanding, their computational requirements are
often substantial, which might become a limiting factor as the scale of the simulation increases. To address this
limitation, a worthy alternative is the consideration of surrogate modeling, also known as meta-modeling. A
surrogate mimics model responses through so-called black-box approximation functions [6]. Fundamentally, the
principle is subject to a dichotomy between savings in computational requirements and fidelity to the original
model [17]. It is presumed to be viable as long as the reduction in computation time justifies the associated
lower level of accuracy [58].

∗MSc Student, Air Transport and Operations, Faculty of Aerospace Engineering, Delft University of Technology

1



However, there are additional arguments. Namely, another disadvantage of agent-based modeling is that the
emergent properties are only revealed a posteriori [41]. One is thus required to run several simulations to obtain
some tangible information. As a result, it is rather challenging to thoroughly analyze the dynamics of a system
based solely on its agent-based model. Surrogates allow for a wider range of interpretation possibilities, making
them useful in this case too [17]. Traditional examples of such practices are the analysis of regression coefficients
or the evaluation of feature sensitivities [e.g., 34, 8]. Yet, a promising direction is the rapidly emerging field
of explainable artificial intelligence (XAI). Its aim is to interpret and explain the reasoning behind machine
learning algorithms [4]. Hence, there is an overlap with the purposes of meta-modeling and so it makes sense
to exploit the synergies between the two disciplines. Applying the methods of XAI to surrogates will identify
which rules, variables and characteristics of airport terminal operations are most decisive, ultimately leading to
a better understanding of emergence in the system.

To our knowledge, existing literature on the common ground between surrogate modeling and interpretable
machine learning is rather scarce. We therefore contribute by demonstrating the further potential of meta-
modeling in this direction, and in particular its application to agent-based airport terminal operations models.
The ability to detect and elucidate emergent properties is of paramount importance to realize these ambitions.
As such, the objective of the research can be summarized as to accurately abstract and explain the dynamics
of airport terminal operations by means of computationally efficient and interpretable surrogate models, based
on an existing agent-based simulation model. Apart from the scientific contributions, the outcome is mainly
relevant for airport and airline managers. It leads to detailed insights into terminal processes, and provides
them with efficient and effective decision-making tools. This enables them to act agile and adapt quickly to
changing conditions, thereby maximizing service against available resources.

We intend to achieve the objective by proposing the following two-stage methodology. The starting point is
AATOM, which is the abbreviation for agent-based airport terminal operations model. It was recently designed
and calibrated by Janssen et al. [33], and has been further developed ever since. AATOM is known for its
high-fidelity to the actual terminal system, although it suffers from large computational requirements. Hence,
the first stage of our methodology relates to the creation of surrogate models. This includes generating a data
set, training black-box functions, and validation. The process is not necessarily linear, as data collection can
be combined with training surrogates — commonly known as active learning or adaptive sampling [8]. Once
they reach a satisfactory level of accuracy, the second stage then uses them for the interpretation of the agent-
based model. Both traditional and more advanced techniques from the field of XAI are considered. Several
approaches are thus explored, although it is not the intention to implement as many as possible. Instead, we
select those that ultimately yield the best insights into AATOM. The end product is therefore a concise synthesis
of a multitude of results from different interpretation methods. If done right, the emergent properties of the
sociotechnical system should come to light, demonstrating the relevance of this methodology. Altogether, its
novelty is not situated in the individual components, but rather in their consolidation where we take advantage
of the synergies.

The paper is organized as follows. It starts with compiling the theoretical background in section 2. This
is done by reviewing three research dimensions, namely the modeling of airport terminal operations, surrogate
modeling, and interpretable machine learning. After that, section 3 further elaborates on the methodology
based on its two stages. The AATOM simulator is described next in section 4: the main principles behind
the model are illustrated, along with the specific settings for the simulations. Examples include the terminal
layout, airport strategies, airline time slots, and so on. Section 5 continues by presenting the results. First,
the performance of the meta-models is examined, after which two examples show the strengths of synthesizing
different interpretation methods. In particular, we analyze: 1) the discretionary spending behavior of passengers,
and 2) how the throughput at security is affected by different scenarios in the airport terminal. Finally, the
results and their implications are further discussed in section 6 and a conclusion is drawn up in section 7, along
with recommendations for future work.

2 Theoretical Background
Three research fields are related to our research. This section provides the necessary groundwork by reviewing
the state-of-the-art of each of these fields. Respectively, that is the modeling of airport terminal operations,
surrogate modeling, and interpretable machine learning. We also discuss existing examples of their specific
combination.

2.1 Modeling Airport Terminal Operations
Airport terminals are central to passenger handling. It is the place where departure, arrival, and transfer flows
congregate, each of which has its own characteristics and goals [10]. In particular, we focus on the departure
flow of passengers. Typical activities include the check-in, security check, border control for international

2



destinations, and possibly some non-aeronautical activities such as shopping or dining [37]. Scholars have
shown great interest in modeling these processes as they are subject to stochasticity and non-trivial complexity
inherent in natural human behavior.

Tosic [69] is one of the earliest available review studies, yet it has not lost its relevance. The author identifies
several ingredients of modeling airport terminal operations, the most pertinent of which are the following.
First of all, the demand of air traffic is usually forecast with traditional statistics. This is important for
planning purposes and thus forms the basis for rigorous decision-making. The more recent literature has further
subdivided it into problems with strategic, tactical and operational horizons [e.g., 29, 46]. Secondly, one can
also consider specific physical locations; examples are single check-in counters or border control. They are often
modeled using queuing theory, where performance is measured by quality of service. The results can then be
directly benchmarked against the International Air Transport Association expectations [28]. The models are
either stochastic or deterministic, the former being closer to reality at the cost of greater complexity. Thirdly,
terminal operations may be viewed from the perspective of the process itself, like security screening at the
checkpoint. That allows to optimize it as a whole rather than the components individually. Processes are
generally modeled in two ways: analytically or through simulation. Analytical approaches are quick, exact
and not overly complicated. However, this affects their fidelity to the real world [47]. A simulation-based
approach is therefore preferable if the system entails a certain degree of complexity. Lastly, the entire terminal
building can be taken into account at once. In the end, individual processes influence one another and as such
contribute to the overall emergent properties. Most examples in the literature are simulation-based, which
makes sense as analytical approaches often fail to capture much of the complexity associated with the dynamics
of sociotechnical systems. Depending on the level of detail, one can still distinguish between microscopic,
mesoscopic and macroscopic models, although the former is rather the standard when considering operational
flows [47].

Alternatively, the more recent meta-study of Pao-Yen Wu and Mengersen [53] differentiate existing airport
terminal models according to their use case. They identified four purposes: capacity estimation, operational
planning, security risk evaluation, and performance measurement. This becomes particularly interesting in
combination with Tosic [69], as it reveals appropriate methods to realize our research ambitions. Notably, most
models to represent the operations of an entire departure flow seem to be agent-based. That is a microscopic
bottom-up approach capable of simulating the behavior of individual passengers, along with the interactions
between them and the environment [53]. It became particularly relevant as computing power increased over
the years, giving researchers the opportunity to create simulation models that are meticulously close to real-
ity [45]. Hence, agent-based modeling is indeed very suitable if one requires detailed information about terminal
processes, which is crucial for understanding emergent properties.

In line with the above observations and suggestions, Janssen et al. [33] have recently developed such an
agent-based architecture and a simulator for airport terminal operations. We use this model to prove our
methodology, so section 4 further elaborates on its working principle and usage. Nevertheless, it is rather
known for its heavy computational requirements, making surrogate modeling a viable alternative.

2.2 Surrogate Modeling
Despite currently available technology, advances to understand complex systems in detail are often hampered
by computational limitations. This has encouraged the development of surrogate modeling, which aims to fit
black-box functions between the input and output of an expensive model in an attempt to accurately mimic
its behavior [17, 6]. The concept is not new and knows several applications in engineering: Forrester et al. [17]
mentions structural analysis, computational fluid dynamics, geostatistics, etc. More recently, it is also finding its
way to emulate agent-based simulation models, as demonstrated in the meta-study by Pietzsch et al. [56]. The
benefit is that, once a meta-model is trained, it can approximate the output at a fraction of the computational
effort that would otherwise be required. Moreover, it facilitates the analysis of the underlying system. An
example is Elshawi et al. [14], where they managed to gain detailed insights into relationships between several
variables to assess people’s risk of hypertension based on local and global surrogates.

Meta-modeling starts with a design of experiments (DOE), the purpose of which is the creation of a training
sample [17]. One typically strives to maximize the amount of statistical information in the data against the
number of observations. After all, the original model of the complex system usually has large computational
requirements. Several strategies exist for the DOE, although literature generally distinguishes between one-shot,
space-filling, and adaptive approaches [42, 21]. The latter in particular has been receiving a lot of academic
attention lately, despite it being rather complicated. We describe the strategy as a process where an algorithm
iteratively samples in regions from which a surrogate model benefits the most. Hence, it is also known as ’active
learning’ because an emulator is trained simultaneously [42]. The notion is that with the same or even a smaller
sample size, adaptive approaches should outperform the other two because data points are selected in such a
way as to maximize the accuracy of the meta-models.

3



The second degree of freedom is the architectural choice of the surrogate. In the early days, this was limited
to mostly linear models. They are however still widely used, mainly because of their simplicity [72]. Later on,
Gaussian processes and radial basis functions made their entrance as they proved to be more accurate, albeit
at higher computational costs [72, 73]. Nowadays, research into the possibilities of machine learning is thriving.
Its application to surrogate modeling has not been overlooked with support-vector machines, decision trees,
ensembles, and neural networks as the most recent additions to the field [1, 58].

In line with the latest trends, we particularly focus on the possibilities of an adaptive DOE. Furthermore,
multiple meta-model architectures are explored, with accuracy and interpretability as principal key drivers for
the ultimate selection. To enhance the compatibility between these two drivers, techniques from the field of
interpretable machine learning are also being looked at.

2.3 Interpretable Machine Learning
The traditional approach to explain the behavior of a model has been to conduct a sensitivity analysis (SA) [70].
It allows to investigate the effect of input parameters on the output. While its usefulness remains undisputed,
further research in this area has been flourishing of late. This is fueled by the European Union’s adaption
of the General Data Protection Regulation, which requires transparency and a profound understanding of the
rationale behind machine learning implementations [39, 51]. Seemingly simple questions, whether the outcome
is trustworthy or not, or how the algorithms arrive at their solutions, are actually quite challenging to answer.
The literature calls it explainable artificial intelligence (XAI), which even goes so far as questioning whether
accuracy or explainability should be optimized [61].

The motivation for developing surrogates to understand a complex system is twofold. On the one hand, more
extensive analyses can be performed as they are much faster than the original model. On the other hand, they
also consist of internal functional relationships between input and output parameters, which may reveal emergent
properties. Methods belonging to the former are commonly referred to as agnostic [50]. The SA is one of them,
although state-of-the-art examples are dependency plots [19], examining the relevance of features [16], local
interpretable model-agnostic explanations [60], and Shapley additive explanations [44]. Alternatively, methods
belonging to the latter are associated with a particular architecture. That is, they are model-specific [50]. A well-
known example is the interpretation of regression coefficients, for which widely accepted statistical significance
tests are available to evaluate whether and which parameters truly influence a response [4]. Another possibility
is to extract decision rules from tree-based ensembles, such as RuleFit [20]. This enables an IF-THEN type
of reasoning and yields insights that are quite unique. Clearly, there are myriads of options which show that
research into XAI is still emerging. For those new to the field, we refer to Barredo Arrieta et al. [4] for relevant
definitions and taxonomies, while practical illustrations are found in Belle and Papantonis [5], Elshawi et al. [14],
and Molnar [49].

Both traditional and more sophisticated interpretation methods have their strengths and weaknesses. There
is no one-size-fits-all and the best approach often depends on the problem itself. Consequently, we investigate
several alternatives to obtain the most relevant information from the surrogates about complex dynamics and
emergence in airport terminals. The ultimate purpose is a concise synthesis with interesting additions from
different perspectives.

2.4 Surrogate Modeling for the Interpretation of Agent-based Models
Research on the employment of meta-modeling for understanding agent-based models is rather scarce. An
example is the work of Janssen et al. [34], in which linear regression was applied as one of the methods to
examine causality between features and responses. In addition to causal graphs and Sobol sensitivity indices,
regression weights proved useful in elucidating the strength and direction of relationships. Nevertheless, the
authors emphasize that emergent properties are best observed when insights from different angles are combined.
This also helps against spurious interpretations, as causalities may be inferred that do not exist in reality.

Another example are De Leeuw et al. [11], who implemented random forests and artificial neural networks to
derive feature importances. The results clearly show which input parameters their surrogates are most reliant
on. These are usually solid indicators of the drivers behind a response, although further conclusions are difficult
to draw. Hence, it is a valuable addition to the overall analysis, but solely the importances will not reveal any
dynamics nor emergence in agent-based models.

Lastly, ten Broeke et al. [66] proposed to split the feature space first. They use a classification algorithm
to distinguish different types of model behavior from one another. Only thereafter, support-vector regression is
deployed to mimic responses in each of the distinct regions. This enables them to differentiate between parts of
the domain, which in turn leads to a more in-depth analysis. Specifically, sensitivity indices are calculated from
the classification and regression algorithms. These results then provide insight into how an agent-based model is
affected from a qualitative and quantitative perspective, respectively. The authors state that their methodology
is especially powerful for responses with different behavioral modes, such as the density of a population that

4



is either dying out or surviving. While they do indeed attain a better understanding of the heterogeneity and
its drivers, it remains rather difficult to reach concrete conclusions about changing dynamics. This requires an
approach that is allowed to be less discrete in its reasoning.

Despite the latest developments, it is clear that the full potential of surrogate modeling and XAI has not
yet been exploited in the interpretation of agent-based models. We fill the gap by proposing a two-stage
methodology in the next section. First, surrogate models are created, to which various techniques from the field
of interpretable machine learning are then applied. This paves the way for detecting and visualizing emergent
properties of complex systems behind agent-based models.

3 Methodology
As relevant dimensions of the research have been touched upon in the theoretical background, current section
continues with the methodology. A high-level overview is depicted in Figure 1. The first step is to define and
prepare the agent-based model of interest. This model is typically highly detailed and close to reality, but
computationally intensive. Consequently, there are two reasons that make surrogate modeling an attractive
alternative. On the one hand, it gives access to much faster models. On the other hand, they enable us
to better understand the underlying system — recall that agent-based models reveal the emergent properties
only a posteriori, thereby requiring numerous simulation runs [41]. These two reasons are reflected in stage I
and stage II of the methodology. The former consists of sampling, fitting surrogate models, and validation.
The latter is concerned with agnostic and specific analyses, after which their outcome is validated through
triangulation. Finally, the results of the second stage are synthesized in order to interpret and understand the
complex dynamics and emergence of the focal agent-based model. The purpose is not to make the analysis as
elaborate as possible, but rather to select the results that ultimately lead to the best insight.

We now go into further detail per methodological step. That includes the theory, a selection of the most
appropriate methods, and verification. The theory per individual method is only briefly discussed, as the scope
of this research is mainly about their synergies. For more in-depth information, we refer the reader to the
references in the tables comparing advantages and disadvantages of the respective methods. Furthermore, note
that the numbers of each step in Figure 1 correspond to those of the following subsections, respectively.

STAGE I: SURROGATE MODELING STAGE II: MODEL INTERPRETATION

(2) Sampling from the agent-based model

(3) Training & optimizing surrogate models

(4) Validation

(5) Agnostic analysis
 

• Sensitivity
• Dependency plots 
• Feature relevancy 
• LIME 
• SHAP 

(6) Specific analysis 

• Regression weights 
• RuleFit (1) Defining &

preparing the
agent-based

model of interest

(8) Synthesizing
results to reveal
& understand

emergent
properties

(7) Validation through triangulation

Figure 1: High-level overview of the two-stage methodology.

3.1 Defining and Preparing Agent-based Models
Before diving into the possibilities of surrogate modeling, one must first have access to an agent-based model
of the system under investigation. Our general presumption is that the model has been verified and validated,
although it is strongly recommended to conduct some additional tests to see whether this is actually the case.
Namely, surrogates cannot be expected to yield excellent performance if their training data is of poor quality.
Hailpern and Santhanam [24] provide an overview of common practices for software testing and verification.
More details can be found in Appendix A of the Supporting Work, which explains the procedure we have
followed to ensure that our agent-based model functions as desired.

Next to that, sociotechnical systems are characterized by high degrees of stochasticity; a natural consequence
of the human behavior to which they are subject. This results in variable model responses. Even if the input
settings are exactly the same, output parameters will differ in another simulation run. It is usually considered
beneficial and makes agent-based modeling a powerful paradigm to analyze such systems. Notwithstanding,
surrogate models are different as they are generally deterministic in nature. In other words, they associate one
input vector with one specific output vector, making it difficult for them to incorporate stochasticity. There is

5



thus a need to stabilize responses of agent-based models before their data can be used to train surrogates. In
accordance with the law of large numbers, a straightforward approach to achieve this is by averaging the results
over many simulation runs without changing the input parameters [13]. The coefficient of variation can then
be evaluated to determine exactly how many simulations are needed — a common approach to describe the
statistical dispersion of a particular outcome [15]. We further elaborate on the concrete steps in Appendix B of
the Supporting Work, together with the removal of outliers. Once the responses are deemed sufficiently stable,
one can proceeded to stage I, starting with sampling from the agent-based model.

3.2 Sampling from Agent-based Models
The surrogate modeling process commences with the creation of a training data set. This is often referred to
as the design of experiments (DOE), which aims to extract as much statistical information as possible from the
focal agent-based model [17]. While several sampling strategies exist, it follows from the theoretical background
in section 2 that adaptive designs are state-of-the-art. We therefore focus in particular on such approaches.
Once an initial sample is available, the general procedure is to iteratively evaluate a meta-model and select a
new point to sample until some stopping criterion is reached [42]. There are still a few degrees of freedom, so
Algorithm 1 presents an overview of the proposed strategy, of which we now discuss the consecutive steps.

Algorithm 1 Proposed adaptive sampling strategy.
1: Use the Hammersley sequence to generate an initial set of feature values ◃ Size = 10 × dimensionality
2: Sample the corresponding responses from the agent-based model
3: while the stopping criterion is not reached do ◃ Based on meta-model accuracy
4: Train a Gaussian process regression model
5: Identify the next data point to sample based on the EIGF acquisition function
6: Sample the responses corresponding to the selected data point from the agent-based model
7: Add the data point to the training set
8: end while

Since active learning requires the prediction uncertainty of a surrogate, one must first train the model
to evaluate its output. This in turn can only be done if an initial sample is available. In the literature,
scholars often use one of the following four sampling methods: Latin hypercube sampling, orthogonal arrays,
Hammersley sequences, and uniform designs [72]. They all have pros and cons, though we find the Hammersley
sequence best suited to serve especially the exploration purpose of an initial sample. Wong et al. [77] describe
the technical details, but in essence it is based on a mathematical formulation to generate sequences with low
discrepancy while maintaining a uniform distribution in high-dimensional spaces. That also makes the method
space-filling and computationally efficient, albeit only quasirandom and rather poor at covering the boundaries
of the domain [65, 77]. Regarding the size of the initial sample, Loeppky et al. [43] recommend 10 times the
number of input features if a Gaussian process regression model is used as surrogate [42]. This turned out to
be the case in the while loop of the active learning algorithm.

The surveys of Liu et al. [42] and Fuhg et al. [21] are excellent starting points to design such a while
loop. Fundamentally, it consists of two key ingredients: 1) a way to obtain the uncertainty of a meta-model,
and 2) an acquisition function to translate the uncertainty into a specific data point that is most interesting
to sample next. Liu et al. [42] distinguish four strategies for the first ingredient. One can use either the
variance, disagreement between a committee of surrogates, cross-validation prediction error, or derivatives.
The former is by far the most effective and efficient way to infer about surrogate model uncertainty over an
entire domain — especially the combination with Gaussian process regression is powerful, as it naturally yields
the prediction variance [42, 3]. For the second ingredient, Fuhg et al. [21] rigorously reviewed 14 promising
acquisition functions. Various drivers were evaluated and based on their assessment, we chose the expected
improvement for global fit (EIGF), developed by Lam [40]. Namely, it yields a reliable and solid performance
for meta-modeling purposes, without increasing the theoretical complexity or computational requirements too
much. Mathematically, the EIGF acquisition functions is expressed as

for f in D ∈ Rn, xnext = arg max
x∈D

[
α

(
σ̂2(x)

)
+ (1 − α)

(
f̂(x) − f(x∗)

)2
]

(1)

where f denotes the target, f̂ the surrogate approximation, D the feature space, n its dimensionality, σ̂2 the
variance of the surrogate, x the input vector, and x∗ the nearest already sampled data point. We later added
a balancing factor α to control the trade-off between exploration and exploitation during the sampling process.
The closer to one, the more preference to exploration, and vice versa. This may change throughout the loop,
e.g., to allow for a decaying strategy that gradually shifts the emphasis from exploration to exploitation.

The while loop of the active learning algorithm continues until a stopping criterion is reached. That is a
predefined condition which determines when the sample ought to be sufficiently informative. Usually it is based

6



on computational or time constraints, though one can also look at the attained meta-model accuracy [42, 21].
We opt for the latter because the computational budget for current research allows this. More specifically, the
active learning algorithm continues until accuracy no longer improves by increasing the sample size.

In addition to a training set, it is also desirable to have independent validation and test sets for the hyperpa-
rameter optimization and model assessment, respectively. Common approaches include splitting the training set
beforehand or pursuing a cross-validation strategy [25]. However, this is not straightforward when the sample
is gathered adaptively, as the benefits of active learning could be jeopardized. We therefore prefer to create
two additional data sets. They are both randomly sampled from the agent-based model, but only those input
parameter combinations that were not selected during the adaptive sampling process. This continues until the
size of each equals about 20% of the entire sample; a typical proportion for validation and test sets [25, 23].

Finally, the implementation of the DOE must be verified. Explanatory testing is used to eliminate most of
the bugs, although unit and integration tests are also necessary to ensure that the software behaves as expected
at a deeper level [24]. After this, one can proceed with training and optimizing surrogate models.

3.3 Training and Optimizing Surrogate Models
When a data sample is available, the next step of stage I is to train and optimize surrogates. In essence, we aim
to find an appropriate function f̂ so that the prediction error e is as small as possible compared to the actual
outcome of the focal agent-based model, denoted by f . This is mathematically described as

f(x) = f̂(x) + e (2)

where x denotes an n-dimensional input vector [36]. Put differently, the purpose is to accurately mimic the
response behavior of the original function f by fitting a machine learning algorithm on the sample [17].

A follow-up question is then what modeling method is most suitable to replicate the relationship between
features and outcome. Various alternatives have been tried out over the years, a comparison of which is provided
in Table 1. We summarized the principal advantages and disadvantages of common architectures. Expressions
that linearly combine mathematical terms are referred to as linear models; specific examples are linear regression,
polynomials, and multivariate adaptive regression splines [6, 79, 18]. They are widely popular, mainly because of
their simplicity and interpretability [72]. Secondly, there are Gaussian processes and radial basis functions [57, 6].
Both use Euclidean distances to known observations, although the former builds surrogates as a stochastic
process and the latter as a weighted sum of basis functions [63, 6]. They became prevalent surrogate models as
scholars reported high accuracies, especially for non-linear relationships [72, 73]. Finally, more powerful machine
learning algorithms are gradually gaining the upper hand, with support-vector machines, decision trees, and
neural networks as the latest additions to the field [1, 58]. While there is some academic debate about the

Table 1: Comparison between common architectures for surrogate modeling.

Architecture Advantages Disadvantages Ref.

Linear models
Simple, interpretable, can be ex-
tended to a higher-order polyno-
mial or spline

Bounded to their functional form,
less suitable for complicated prob-
lems

[72, 58, 73]

Gaussian processes
Yields the uncertainty of the pre-
diction, high accuracy, integrated
hyperparameter tuning

Computationally intensive, ill-
conditioned covariance matrix,
complicated mathematics

[58, 73, 79]

Radial basis functions
Captures non-linear relationships
without having a too complicated
construction

Difficult to interpret, basis func-
tions and hyperparameters need to
be defined, ill-conditioning

[58, 73, 17]

Support-vector machines
Flexible, robust, low risk of over-
fitting, performs well with small
samples

Difficult to interpret, complex hy-
perparameters, computationally
intensive

[6, 79, 25]

Decision trees

Powerful, handles different data
types without much preprocess-
ing, performs especially well in
boosted/bagged ensembles

Deteriorating interpretability
when used in an ensemble, prone
to overfitting, responses are not
smooth

[1, 23, 25]

Neural networks

Powerful, completely customiz-
able, captures complex relation-
ships and interactions in a high-
dimensional environment

Prone to overfitting, computation-
ally intensive, difficult to inter-
pret, complex hyperparameters,
requires a lot of data

[23, 25, 79]

7



accuracy of support-vector machines (e.g., a superior, comparable and inferior performance is mentioned by
Wang and Shan [72], Bhosekar and Ierapetritou [6], Williams and Cremaschi [75], respectively), the dominance of
tree ensembles and neural networks is not questioned [25]. The latter, however, suffers from severe constructional
complexity, and also requires a large data sample and a substantial computational budget [23, 25].

Now that the salient characteristics of common architectures are clear, we move on to selecting appropriate
alternatives in order to achieve the research objective. First and foremost, recall from section 3.2 that a Gaussian
process regression model is central to the adaptive sampling strategy. It is therefore automatically part of our
selection. Secondly, the highest accuracy is presumably attained by tree ensembles, making random forests
and gradient boosting also promising candidates. Finally, we include polynomials because they are reasonably
interpretable without losing the ability to capture curvilinear patterns [1]. The other methods are not taken
into account; they are either too inaccurate, too complicated, or too difficult to interpret.

Next, the selected architectures should also be optimized, as the performance of machine learning algorithms
can be severely affected by the choice of hyperparameters. Notwithstanding, finding the optimal combination
is often a difficult and, above all, computationally demanding task [27]. Popular tuning methods are therefore
a grid search, random search, Bayesian optimization, and evolutionary metaheuristics [2, 78, 80]. We prefer
Bayesian optimization as it is an efficient algorithm with high chances of finding a combination close to the
global optimum. Moreover, it does not require in-depth knowledge of promising candidates. Two drawbacks are
its complexity and difficulty to multi-thread, although these are easily outweighed by the benefits [78, 80]. For
an introduction to Bayesian optimization, we refer the reader to Shahriari et al. [64], but in essence it works
as follows. An auxiliary model is fitted onto a prediction error metric of the surrogate, then the parameter
combination is selected that leads to the smallest error, after which this combination is evaluated on the actual
surrogate. The auxiliary model is updated with the new information and the process continues sequentially
until a predefined number of iterations is arrived at [2, 78].

Lastly, the training and optimizing step must also be verified. This depends on exactly how it was imple-
mented, but one typically employs existing packages, such as Python’s scikit-learn [55] or scikit-optimize [26].
These packages are generally tested before being released, so there is no need to do this again. However, one
should still perform integration tests to ensure that interfaces are properly embedded in the software [24]. Once
everything is verified, the surrogate models can be validated to see how closely they resemble the behavior of
the original agent-based model.

3.4 Surrogate Model Validation
Validation is important as it gives an idea about the generalization power of meta-models. Namely, it shows to
what extent they remain close to the agent-based model under investigation. The out-of-sample performance is
usually measured by evaluating validation metrics on an independent test set [23].

Undoubtedly, one of the most popular metrics is the coefficient of determination (R2). It indicates the
proportion of variation in a response of the agent-based model that is explained by input parameters in the
surrogate [9, 15]. The R2 is a very useful and informative metric, but it does not directly measure the pre-
diction error. For that, one can resort to the root-mean-square error (RMSE), which yields the expected error
of a surrogate [17]. Alternatively, there is also the mean absolute error (MAE). The RMSE and MAE are
closely related, although an essential distinction is that the former squares the discrepancies between actual
and predicted responses and takes the root of their average, instead of using the absolute value. This makes
the RMSE naturally more sensitive to outliers [9]. Both the RMSE and MAE are expressed on the same scale
as the evaluated output parameter. While this can be convenient, the performance of surrogate models for
different responses cannot be compared when they are expressed differently. The mean absolute percentage
error (MAPE) resolves the issue by calculating the prediction error relatively. One drawback, however, is that
the indicator tends to exaggerate the error for responses close to zero [9].

All mentioned key performance indicators have their pros and cons. For that reason, we do not select just
one metric for the overall validation, but rather compute all four. This provides a better insight into the bigger
picture and ensures a stronger interpretation of the results. If the surrogates prove to be sufficiently faithful, one
can proceed to the second stage of the methodology: model interpretation. It consists of two types of analyses,
which could be done in parallel. We first discuss the agnostic options and then the specific ones.

3.5 Model-agnostic Analysis
When the concept of meta-modeling was introduced, we argued that it can play an important role in under-
standing an underlying system. Surrogates are not only much faster, but they also have internal functional
relationships between the input and output parameters, unlike agent-based models [17, 41]. As a result, they
enable: 1) more extensive analyses, and 2) explicit insight into their rationale. Interpretation methods that
relate to the former are referred to as model-agnostic [50]. They are independent from machine learning algo-
rithms and can therefore be applied to essentially any model. Only the effect of input parameters on the output

8



Table 2: Comparison between model-agnostic interpretation methods.

Method Advantages Disadvantages Ref.

Sensitivity analysis

Simple and evident, gives solid indi-
cations, several implementations ex-
ist with different levels of sophistica-
tion (local and global)

Interactions are not always consid-
ered, can be computationally inten-
sive, questions about the variance as
a proxy for variability

[7, 62, 70]

Dependency plots

Intuitive and easily understood, no
ambiguity, heterogeneity can be de-
tected, straightforward implementa-
tion

Features are analyzed separately
when in fact they may be correlated,
difficult to consider more than two
dimensions at the same time

[49, 14, 19]

Feature relevancy
Easily understood, incorporates fea-
ture interactions, provides one com-
prehensive overview

Perturbations can lead to unstable
results, relevancy may be divided
among correlated features

[49, 16]

LIME

Fully customizable, easily under-
stood, straightforward implementa-
tion, yields an actual model rather
than just insights

Unstable results: there may be large
local differences, no theoretical basis
for why this should work, many de-
grees of freedom

[49, 59]

SHAP

Based on valid theoretical argu-
ments, provides a comprehensive
overview, local and global interpre-
tations are consistent

Computationally intensive, approxi-
mations are necessary, rather com-
plicated, not evident to interpret the
results correctly

[49, 5, 44]

is analyzed, thereby completely disregarding an algorithm’s internal working principle [4]. This makes agnostic
approaches flexible and gives them a large user base. Table 2 compares salient characteristics of the five most
common methods [5, 49, 7]. We now briefly discuss them in more detail.

First and foremost, there is the sensitivity analysis (SA), the general purpose of which is to examine how
model responses behave with respect to changes in their input parameters. Put differently, it attributes response
variability to the respective features. Both local and global approaches exist, such as a one-at-a-time SA or
variance-based Sobol sensitivity indices [7, 62]. While a SA shows to what extent the output of a machine
learning model is affected by changing features, it says nothing about the actual form of the relationship.
Such information can be obtained by analyzing the dependency of an outcome on its input parameters [5].
Typical examples are partial dependence plots by Friedman [19] and the closely related individual conditional
expectation curves [14, 5]. These graphs visualize how responses behave as a function of a feature: for instance,
whether the nature of a relation is (non-)monotonic, (non-)linear, and so on [49]. Thirdly, the outcome of a
surrogate is expressed as a function of input variables, so one may wonder which ones are more determinative
than others. In this sense, examining the relevancy of features is a useful approach to understanding them.
Fisher et al. [16] proposed to calculate their importances based on perturbations. The more a meta-model relies
on a certain parameter, the greater its importance, and vice versa [14, 50]. Next, there is LIME, which is short
for local interpretable model-agnostic explanations. It originated from the research by Ribeiro et al. [60] and is
currently one of the more popular approaches in the field of XAI. The core idea is to explain the reasoning behind
black-box algorithms by means of fitting an auxiliary model that is locally faithful [5]. Logically, this model
must be transparent and easy to interpret, such as linear regression or decision trees [49, 60]. The explanations
at a particular point in the domain are then presumed to be in accordance with the local behavior of the machine
learning algorithm. Finally, we discuss SHAP, which next to LIME is one of the more recent additions to XAI
research. It stands for Shapley additive explanations and is considered an eminent interpretation technique [5].
Based on cooperative game theory, Shapley values are calculated to estimate the individual contribution of
features to the prediction of a machine learning model. SHAP thus shows exactly how a response is affected by
which input parameters and can be applied at both a local and global level [5, 44, 49].

While the aforementioned agnostic interpretation methods do provide useful insights into the relationships
between features and responses, the rationale behind a surrogate model’s outcome remains unclear [14]. For
that, one should rather look at the internal reasoning, often referred to as model-specific analysis.

3.6 Model-specific Analysis
Unlike model-agnostic, model-specific approaches explain the behavior of machine learning algorithms based
on their internal properties [14, 50]. Functional relationships between input and output parameters are used
to interpret how responses come about. Consequently, the application of these methods is strongly limited to
algorithms that provide access to such information. This is an evident drawback, but it should be borne in

9



Table 3: Comparison between model-specific interpretation methods.

Method Advantages Disadvantages Ref.

Regression weights
Well-accepted and mature, does not
require many calculations, transpar-
ent, accessible

Mediocre performance of the under-
lying model, multicollinearity can
lead to fallacious conclusions

[7, 49, 4]

RuleFit

Combined strengths of linear regres-
sion and tree ensembles: powerful
without compromising transparency,
flexible, yields a model

Overlapping decision rules deterio-
rate the explanatory power, often re-
sults in mediocre performance as it
remains a linear model

[49, 20]

mind that agnostic approaches do not explicitly reveal the rationale behind an outcome [14]. They do explain
how responses are affected, albeit on the basis of intermediate steps where proxies are the rule rather than
the exception. For direct interpretations, one should resort to model-specific approaches. Given our selected
architectures in section 3.3, there are two methods that are deemed feasible: the analysis of polynomial regression
weights and RuleFit for the tree-based ensembles. We now briefly elaborate on them, alongside a summary of
salient characteristics in Table 3.

Linear regression, in addition to simplicity and accessibility, is often praised for its transparency. Indeed,
one can easily understand how results are obtained and the linear structure enables decomposition, enhancing
the overall interpretability [4, 49]. The analysis is based on its coefficients: these can be interpreted as the effect
on the response of one unit change of the corresponding feature [49]. Regression weights are in that sense global
measures of sensitivity. However, it is crucial to understand that the coefficients have dimensions, and therefore
an order of magnitude. This can be solved by standardization, which eliminates the scaling issues [7]. Secondly,
tree-based machine learning algorithms are among the popular alternatives, mainly because of their impressive
performance [23]. Notwithstanding, this comes at the expense of interpretability. They are usually so complex
that users can no longer understand their reasoning. Friedman and Popescu [20] therefore suggested RuleFit to
analyze decision rules. In essence, rules are extracted from the ensemble and then a regularized linear regression
model is fitted with both the decision rules and direct feature effects [49]. The parameter value of a decision rule
equals one if the condition is met, and zero otherwise. The further interpretation is similar to ordinary linear
models, namely regression coefficients are analyzed, revealing the impact and direction of the corresponding
influences on a response [49].

Finally, both the agnostic and specific methods must again be verified. Since one typically uses existing
packages that have already been tested, the same applies as for the training and optimization step in section 3.3.
There is thus no need to retest them, although the integration itself still needs to be verified [24]. As soon as
the external interfaces are properly incorporated, validation can be performed by triangulating the results of
different interpretation methods. We are especially interested in consistencies and inconsistencies.

3.7 Triangulating Interpretation Methods
The second stage of the methodology concludes with validation, which aims to enhance the credibility of the
overall model interpretation. Its main question is whether the results are in line with expectations and if not,
how anomalies can be explained. However, unlike the surrogate model validation in section 3.4, quantitative
performance indicators are not suitable for such an assessment. Numerous insights from distinct methods are
involved, so triangulation would be a better approach. Scholars describe it as a means of validation where
the combination of different data sources, investigators, theories, etc. leads to research findings that are more
reliable and therefore more credible [52, 67]. It is based on the presumption that conclusions become stronger
when a similar outcome is obtained from different perspectives [52].

In our case, one should qualitatively evaluate consistencies and inconsistencies between the results of con-
sidered meta-model interpretation techniques. Some specific examples could be: 1) comparing global sensitivity
indices, feature importances, and regression weights, 2) assessing whether local methods such as LIME or a
one-at-a-time SA match global patterns in dependency plots, 3) examining the extent to which decision rules
are visible in SHAP, and so on. Especially SHAP is very helpful in our opinion, as it can provide one compre-
hensive overview of exactly how a response is impacted. This enables a rather straightforward juxtaposition
with the other approaches. Note, however, that aforementioned examples are not carved in stone. It depends
on the selected interpretation methods, along with the ultimate intentions of a research. We only emphasize
the importance of carrying out some form of triangulation in order to validate the results. After the validation
of stage II, one step of the methodology remains, namely the concluding synthesis.

10



3.8 Synthesizing Results to Understand Emergent Properties
The final step is to reveal and understand emergent properties of the focal agent-based model by synthesizing
insights from stage II. In practice, this step is often combined with the previous one from section 3.7, although
there is a crucial difference. That is, the purpose of triangulation is to assess consistencies and inconsistencies
between the interpretation results, while a synthesis is to explain emergence in the system under investigation.
Consequently, the latter yields a concise summary of perspectives from relevant model-agnostic and model-
specific methods.

Nonetheless, different perspectives are usually necessary to detect such phenomena. This is one of the reasons
why the AbACaD methodology proposed by Janssen et al. [34] was rather successful; the authors combined
causal graphs with regression weights and sensitivity indices, as discussed in section 2.4. Such an approach
enables one to read between the lines and use synergies to deeply understand what is actually going on in the
agent-based model. A specific example with our selected interpretation methods could be as follows. First,
several points in the feature space are examined with a local approach, such as LIME or a one-at-a-time SA.
This gives an initial impression of how a response is affected and indicates whether there are mutual differences
within the domain. Global key drivers are evaluated next, like feature importances or sensitivity indices, to
observe general trends. Both the local and global results can then be juxtaposed with patterns in one and two-
dimensional dependency plots, showing the effects of changing input parameters and how they are influenced by
interdependencies. Once again, the above is just an example of one way to synthesize. In practice, it depends
on the selected interpretation methods and the phenomena under investigation.

If done properly, it should elucidate the emergent properties of the focal system, thereby achieving the
objective of the research. Two-stages were indeed necessary to: 1) create faithful surrogate models, and 2) use
them for the employment of interpretation methods to understand and explain the dynamics of underlying
system. With that, we continue with a description of AATOM in the next section; the agent-based model we
use as a case study to prove that the methodology is efficacious.

4 Description of the Agent-based Model
To demonstrate the applicability of our two-stage methodology, we aim to detect and explain emergent phe-
nomena in a complex sociotechnical system. It follows from the theoretical background in section 2 that a
passenger terminal is the epitome of such a system: cognitive, social, technical, and organizational factors play a
major role. With this in mind, Janssen et al. [33] recently developed an agent-based airport terminal operations
model (AATOM) — existing alternatives were not accurate enough, too generic, too difficult to use, or the
source code was not openly available. AATOM is designed with an object-oriented philosophy, allowing users to
easily model the associated passenger flows. This makes it a very versatile tool, as it can be completely adapted
to any set of requirements. One of its main features is that it contains prebuilt components, such as check-in
desks or a security checkpoint [33]. Consequently, the layout of an entire terminal can be built with just a few
lines of code. Since its introduction, the model has shown its capabilities in various studies. Some recent exam-
ples are Janssen et al. [32] on the relationship between checkpoint security and efficiency, Janssen et al. [31] on
the management of airport security risks, and Mekic et al. [48] with an analysis on non-aeronautical activities
and their impact on terminal operations. We focus in particular on the latter, as this is currently the most
advanced version to simulate the operations of an entire terminal.

An agent-based model is known to consist of an environment, agents, and interactions between them [74].
These three components of AATOM are now briefly discussed in respective order. First of all, the environment
contains all elements of an airport terminal. That includes various functional areas with physical objects, but
also more abstract items such as flights [30]. The former is depicted in Figure 2, which resembles the terminal
layout of Rotterdam The Hague Airport (RTHA). We specifically opted for RTHA due to the availability of data
and associated insights from a previous study (see [35]). The layout was also available in the latest version by
Mekic et al. [48], although some changes have been implemented as addressed in Appendix A of the Supporting
Work. Regarding the flights, we consider a typical morning rush hour at RTHA. The schedule is summarized
by Table E.1 in Appendix E. Secondly, cognitive agents are the key players in an environment. Three types
can be defined in AATOM: passengers, operators, and orchestrators [30]. The former are trivial, operators are
generally the employees in the terminal (e.g., security officers, check-in staff, cashiers, etc.), and orchestrators
help with coordination and monitoring (e.g., employees who open or close check-in counters based on an airport’s
strategy). Agents have certain goals on which they act and interact accordingly. Behind their reasoning is a
three-layered hierarchical architecture, allowing AATOM to realistically model human behavior. The structure
is visualized by Figure E.1 in Appendix E. In essence, they operate as follows: observations are perceived and
interpreted, allowing agents to reason so that their activities can be set. This eventually leads to the actuation
of specific actions. The final component of AATOM is that agents can interact with the environment as well
as with each other. The model reflects these two types of interaction in many different ways [30]. For example,
check-in employees managing flights or security officers using sensors at the checkpoint are concrete cases of

11



A A

B

C

D

E FG

12345678

9
10

11

H

H

H
H

H

H

H

I

J

Figure 2: Terminal layout of RTHA represented in the model. Passengers arrive through entrances (A) in the public
area (B). Those who have not checked-in online can do so at the counters (C) via designated queues (I). Thereafter, all
passengers continue via queues (J) to the security checkpoint (D) to access the restricted area. This area is split up into
a departure hall (E) and an arrival hall (F). The arrival hall is not further developed as our research focuses on solely
the outbound passenger flow. The departure hall has gates 1 to 6 for flights with destinations in the Schengen area and
gates 7 to 11 for flights outside the Schengen area (the numbers on the map correspond to the gate numbers). To access
the latter gates, passengers should go through border control to have their passports checked (G). Along the journey,
passengers are free to make use of the facility areas for non-aeronautical activities (H) [33].

interaction between agents and the environment. On the other hand, border control agents checking passports or
an X-ray operator instructing another security officer to further examine some suspicious baggage are examples
of agent-to-agent interaction. For more detailed information, the reader is referred to Janssen et al. [30] and
Janssen et al. [33] as the key principles behind the architecture of AATOM have now been touched upon.

Finally, relevant input and output parameters are discussed. Knowing that AATOM was created as a versa-
tile tool, we emphasize the fact that essentially everything can be customized and adapted to the requirements of
a user. Nevertheless, several calibrated presets are available to restrain complexity. Mekic et al. [48, pp. 20–21]
made a comprehensive overview, though two examples are the distribution of the time required for checking-in
at airport counters and the distribution of passengers arriving at the terminal. We use the defaults for most of
these settings. The remaining features that are considered variables for our case study are listed in Table 4. The
call-to-gate strategy is bounded between 15 and 60 minutes before departure, while more information about
flights, check-in strategies and security checkpoint strategies is provided by Tables E.1–E.3 in Appendix E,
respectively. Furthermore, similar to the input, the output parameters are presented in Table 5. AATOM
allows a user to define and extract any indicator, so again a selection has to be made. We believe that the listed

Table 4: Considered input parameters of AATOM. A remark regarding the number of passengers is that Paxt is defined
for every available time slot t. In other words, if RTHA has 7 available time slots during the simulated time frame, the
model requires 10 input parameters (i.e., 7 parameters to define the number of passengers and 3 strategy parameters).

Input parameter Unit Explanation

Paxt [#]
An integer indicating how many passengers are traveling on the flight on time
slot t. It is strictly positive, bounded by the maximum capacity of an aircraft.
If the occupancy rate is below 50%, it becomes 0 because the flight is canceled.

CTGstrategy [s]
A positive real number that determines the time when passengers are called
to their gate prior to the departure time. It represents the airport’s call-to-
gate (CTG) strategy [48].

CIstrategy [-]
An integer that determines the number of open check-in counters over time. It
represents the airport’s check-in (CI) strategy. An orchestrator agent couples
the number with a predefined strategy [48].

SCstrategy [-]
An integer that determines the number of open lanes at the security checkpoint
over time. It represents the airport’s security check (SC) strategy. An orches-
trator agent couples the number with a predefined strategy [48].

12



metrics yield a solid indication of the airport’s passenger handling performance, hence no other indicators are
defined and these will form the basis of the analysis.

Now that all important aspects of AATOM have been described, the next section continues with applying
our proposed methodology on the focal model. It includes the outcome of both stage I and stage II, with the
ultimate purpose of explaining interesting dynamics and emergent properties of terminal activities related to
the entire departure flow in RTHA.

Table 5: Relevant key performance indicators of AATOM.

Output parameter Unit Explanation

AvgQueueTimeCI [s] Indicates the average time that passengers wait in a queue until they can be
served at an available check-in (CI) counter.

AvgQueueTimeSC [s] Indicates the average time that passengers wait in a queue until they can be
served at a security checkpoint (SC) lane.

MaxPaxInQueueCI [#] Indicates the maximum queue size at check-in during the simulated time frame.

MaxPaxInQueueSC [#] Indicates the maximum queue size at security during the simulated time frame.

AvgTimeToGate [s] Indicates the average time it takes passengers to get to their gate. It is counted
from the moment they arrive at the airport.

PaxCompletedCI [#] Indicates the total number of passengers that have completed the check-in (CI)
activity at the airport counters (i.e., the throughput at check-in).

PaxCompletedSC [#] Indicates the total number of passengers that have completed the security
check (SC) activity at the checkpoint (i.e., the throughput at security).

NumMissedFlights [#] Indicates the total number of passengers who could not reach their gate at the
time of departure.

TotalExpenditure [e] Indicates the amount of money that all passengers together have spent during
their non-aeronautical activities [48].

5 Results
This section showcases how the methodology can be deployed in practice. We apply it to the AATOM implemen-
tation of Mekic et al. [48] and start with evaluating the surrogates’ performance; a critical step to ensure they
generalize sufficiently well before being used for further analysis. Subsequently, the departure flow in RTHA is
examined on the basis of two specific case studies. First, the total expenditure of passengers on discretionary
activities in the terminal is analyzed, and then the saturation of throughput at security. Both cases are largely
determined by emergence in airport terminals, so studying them will prove that our methodology is an effective
way to explain such phenomena in complex sociotechnical systems — the objective of this research.

5.1 Surrogate Model Performance
Before assessing fidelity, one must first collect data and tune the surrogate model architectures. The former is
elaborated upon in Appendix C of the Supporting Work. We visualize the distribution of selected data points,
analyze summary statistics of the responses, and show how the stopping criterion of the active learning scheme
is reached. It turns out that the training sample is sufficiently informative with 300 data points in total. This
automatically leads to validation and test sets with both 100 additional observations, so that the proportion of
each equals 20% of the entire sample. Secondly, hyperparameter tuning is discussed in Appendix D. There is
an overview of considered model parameters and their search space, along with the results of the optimization.
Convergence plots show that the algorithms can be deemed optimal after 50 initial trials and 200 subsequent
Bayesian iterations. With that, the next step is to evaluate the surrogates’ out-of-sample performance.

We perform validation in Table 6. Per output parameter of AATOM, the metrics are calculated for Gaus-
sian process regression (GP), polynomial regression (LR), random forests (RF), and gradient boosting regres-
sion (GB) — the four selected meta-model architectures. The R2 and MAPE are dimensionless, but the RMSE
and MAE are expressed in the same unit as the corresponding response, given in Table 5. Finally, the surrogate
model that yields the best performance for each response is indicated by an asterisk.

The first thing that immediately stands out is the disappointing generalization power of random forests.
Their performance is clearly inferior to the other architectures, often with quite a large discrepancy. The initial
hypothesis was that overfitting posed the issue, although their accuracy no longer improves near the stopping

13



Table 6: Validation of the surrogate model performance.

PaxCompletedSC AvgTimeToGate PaxCompletedCI

Metric GP LR RF GB∗ GP LR∗ RF GB GP LR RF GB∗

R2 0.90 0.90 0.79 0.93 0.91 0.92 0.55 0.89 0.93 0.94 0.86 0.98
RMSE 17.52 17.62 25.75 14.94 64.32 61.34 143.80 72.14 7.55 7.40 11.17 4.14
MAE 12.59 12.86 20.29 11.51 48.11 46.19 113.45 58.27 5.02 5.66 8.11 3.30
MAPE 0.02 0.02 0.03 0.02 0.04 0.04 0.09 0.05 0.01 0.02 0.02 0.01

AvgQueueTimeSC NumMissedFlights TotalExpenditure

GP LR∗ RF GB GP LR∗ RF GB GP LR∗ RF GB

R2 0.90 0.92 0.57 0.86 0.70 0.80 0.53 0.43 0.97 0.98 0.94 0.97
RMSE 68.63 63.46 142.90 80.69 9.28 7.51 11.58 12.85 52.05 42.44 69.23 52.25
MAE 52.50 49.54 118.74 64.33 7.09 4.42 6.94 6.60 40.34 33.76 55.61 42.00
MAPE 0.08 0.08 0.18 0.10 N/A† N/A† N/A† N/A† 0.03 0.03 0.04 0.03

AvgQueueTimeCI MaxPaxInQueueSC MaxPaxInQueueCI

GP LR∗ RF GB GP LR∗ RF GB GP LR∗ RF GB

R2 0.91 0.95 0.87 0.95 0.91 0.92 0.65 0.91 0.90 0.95 0.78 0.92
RMSE 19.46 14.13 23.73 15.13 9.15 8.69 17.99 9.06 0.58 0.43 0.86 0.51
MAE 13.79 9.78 16.16 10.25 6.60 6.69 14.59 7.24 0.43 0.29 0.66 0.39
MAPE 0.05 0.04 0.06 0.04 0.07 0.06 0.14 0.07 0.04 0.02 0.05 0.03
∗Best performing surrogate model architecture for the associated response
†Mathematically undefined because of division by zero

criterion of the active learning algorithm, nor did regularization help (see Appendix C and D, respectively). This
is in stark contrast to LR, GP and GB, whose performance is actually rather impressive. While the validation
metrics of these three architectures are generally comparable, regularized polynomials seem to mimic AATOM
most accurately. Namely, they have been selected 7 out of 9 times, with only the throughput at check-in
and security being better estimated by gradient boosting. This may be somewhat surprising, but a plausible
explanation could be that the associated responses behave similarly according to the format of higher-order
polynomials. Their combination then naturally produces superior results. For instance, the average queuing
time at security is resembled with an expected error of about 1 minute and the total expenditure with an
error of about 40 euros. Only the number of missed flights appears to be more challenging: the coefficient of
determination decreases to 0.80. Yet, even that is still acceptable, because it is the response most influenced by
higher-order knock-on effects and less directly by the features themselves. Consequently, it becomes inherently
more difficult to predict (see also the conclusions of De Leeuw et al. [11], which are consistent with our results).
Furthermore, note the relative difference between the RMSE and MAE — the number of missed flights has the
highest of all, indicating the presence of outliers. This is confirmed by plotting the predicted against observed
values, as Figure F.1 clearly shows in Appendix F. In spite of that, LR convincingly remains the best performing
architecture for the response, while the tree-based ensembles are inadequate. Altogether, LR, GP and GB seem
to mimic the output parameters of AATOM rather well, despite the fact that RTHA is a complex sociotechnical
system. However, there is evidently "no free lunch", as multiple architectures must be considered and carefully
optimized per individual parameter to achieve a high accuracy [76].

As there is now evidence that each response can be closely resembled by at least one surrogate, we continue
with analyzing the total expenditure of passengers on discretionary activities. A precursory remark is that both
case studies solely deploy a response’s best performing meta-model for agnostic analysis.

5.2 Analysis of the Total Expenditure on Discretionary Activities
The first case study examines the spending behavior of passengers on non-aeronautical activities. In fact, this
was the main topic of the analysis by Mekic et al. [48], though we go more in-depth to demonstrate the strengths
of synthesizing interpretation techniques applied to surrogate models. The total expenditure represents the
amount of money all passengers together spent on activities such as shopping, dining, etc., during the simulated
time frame. These events are of course not mandatory to catch a flight and hence not a priority, so passengers
will only consider them if they have enough time. Readily, it shows that the expenditure is an ideal starting point
to analyze emergence; the indicator is affected by various interdependent phenomena in the airport terminal.

We commence the analysis in Figure 3 by exploring the sensitivity of features. First, two one-at-a-time
assessments are performed in Figure 3a and 3b, which depict tornado diagrams of local sensitivities. An

14



850 900 950 1000
Total expenditure [ ]

CTGstrategy
pax3
pax6
pax4
pax1
pax5
pax2
pax7

-10%
+10%

(a) Local sensitivity uncrowded terminal.

950 1000 1050 1100 1150 1200
Total expenditure [ ]

CTGstrategy
pax2
pax5
pax3
pax6
pax7
pax4
pax1

-10%
+10%

(b) Local sensitivity crowded terminal.

CIstra
tegy

SCstra
tegy

CTGstra
tegy

pax1
pax2

pax3
pax4

pax5
pax6

pax7
0.0

0.2

0.4

0.6

0.8

To
ta

l-o
rd

er
 se

ns
iti

vi
ty

 in
de

x 
[-]

(c) Total-order global sensitivity.

Figure 3: Sensitivity analysis of the total expenditure.

uncrowded scenario is compared against a crowded one, both assuming poor airport staffing strategies (check-in
and security check strategy 1) and an early call-to-gate (48 minutes before departure). The crowd is controlled by
adopting a load factor of about 65% and 85% on all flights, respectively. Poor staffing strategies in combination
with an early call-to-gate does not provide the ideal condition for discretionary activities — passengers have
less spare time in the terminal. Nevertheless, the baseline values of the tornado diagrams suggest that busier
scenarios lead to more spending. This makes sense, as larger crowds are naturally expected to have a higher
expenditure. Both diagrams associate the greatest sensitivity to the call-to-gate strategy, though note that it
has a negative direction. In other words, the sooner passengers are called to the gate, the less they spend along
their journey and vice versa. While this is not surprising, a more striking difference is the influence of certain
flights’ load factor. They are all harmonious for the uncrowded terminal, but not when it gets busier. For
flights 2 and 5 in particular, the total expenditure decreases as more passengers travel on those flights. This is
rather counter-intuitive, so we resort to other methods to explain the negative effect and why it depends on the
scenario. We conclude the sensitivity analysis by plotting total-order Sobol indices in Figure 3c. They attribute
the variance of a response to the features in proportion to their contribution, so total expenditure appears to
be most sensitive to the call-to-gate strategy. The global impression thus corresponds to the local impressions,
although it is more pronounced.

In Figure 4, the analysis continues with partial dependence plots, which visualize the marginal effect of
a feature on the total expenditure. On the left, Figure 4a shows the effect of the call-to-gate strategy. As
expected, the curve has a downward slope, indicating a lower spending for higher strategies. More interestingly,
however, is that the gradient increases the sooner passengers are called to their gate. This suggests that the
total expenditure is less sensitive to the feature in the lower part of its domain. To illustrate with a specific
example, changing the call-to-gate strategy from 20 to 30 minutes will reduce the spending less than changing
it from 50 to 60 minutes. Secondly, Figure 4b and 4c depict the marginal effects of the number of passengers
on flight 6 and 2, respectively. Both plots are consistent with the previous one-at-a-time sensitivity analysis.
For flight 6, it holds that larger occupancy rates yield more expenditure in the terminal; the partial dependence
rises almost linearly and there is a solid homogeneity among the individual conditional expectation curves. The
same cannot be said of flight 2, where spending first rises, then levels off, and eventually falls back slightly.
This indeed indicates that at some point, adding passengers may have a negative effect on the ability to engage
in non-aeronautical activities. Note, however, the increased heterogeneity near the upper bound of the feature
space. It does not seem to be case for all scenarios in the terminal. For example, if all the other flights have very
few passengers, then it is probably the other way around. Nonetheless, some flights clearly hinder a number of
passengers from enjoying leisure activities during their journey.

20 30 40 50 60
Call-to-gate strategy [min]

800

1000

1200

1400

1600

1800

Pa
rti

al
 d

ep
en

de
nc

e 
[

]

Average

(a) Marginal effect of the call-to-gate.

80 100 120 140
Number of pax on flight 6 [#]

800

1000

1200

1400

1600

1800

Pa
rti

al
 d

ep
en

de
nc

e 
[

]

Average

(b) Marginal effect of flight 6.

80 100 120 140
Number of pax on flight 2 [#]

800

1000

1200

1400

1600

1800

Pa
rti

al
 d

ep
en

de
nc

e 
[

]

Average

(c) Marginal effect of flight 2.

Figure 4: One-dimensional partial dependence and individual conditional expectation plots of the total expenditure.

15



To understand exactly why this happens to some and not all of them, we revisit the simulated schedule
in Table E.1 in Appendix E. Certain flights, such as the second and sixth, are assigned to the same check-in
counters, although that in itself is nothing unusual. Yet, it is remarkable that flight 2 and 5, which mostly
affect expenditure in the negative direction according to Figure 3b, are both first in line. This could indicate
the presence of emergent knock-on phenomena where passengers of one flight hinder those of another, but only
if the terminal is sufficiently crowded. In turn, waiting times at check-in and security increase, ultimately
leading to fewer opportunities for discretionary activities. That would be a logical explanation for the observed
pattern in the partial dependence plot of flight 2, and also why it is not the case for others like flight 6. The
third flight goes against this logic, although note the lower capacity on its successor — the knock-on effect is
therefore presumably less powerful. To prove whether our reasoning is actually true, we further examine the
partial dependence in Figure 5, but now from a two-dimensional perspective.

The marginal effect of the two flights that introduce the highest knock-on phenomena is depicted in Figure 5a.
One can see that the total expenditure indeed levels off and may even decrease the more passengers they
accommodate. The curvature in the contour plot increases near the top right corner, so the average effect
becomes stronger at higher load factors on both flights; they seem to amplify one another. Also, the impact
of the second flight is larger than the fifth, but that makes sense since it is earlier in the schedule. It has thus
more passengers behind to impede at check-in and security. As a matter of fact, Figure 5b confirms that the
phenomenon is caused by a sequence of consecutive flights. The graph shows the marginal effect of the latter
two in the schedule, and clearly there are almost no signs left of a deteriorating expenditure. For both, higher
load factors result in more participation in non-aeronautical activities, which was expected from Figure 4b.
Ergo, flight 6 and 7 do not hinder other passengers, but are only hindered themselves by their predecessors.
The interdependence between two flights that check-in at the same counters is visualized by Figure 5c. Despite
the pattern looks entirely different, it is essentially a combination of the one-dimensional partial dependencies
in Figure 4b and 4c. The plot reveals two interesting phenomena: 1) the expenditure increases with more
passengers on flight 6, albeit at a slower rate as occupancy rises on flight 2, and 2) the point at which adding
passengers on flight 2 starts to negatively affect the expenditure shifts to the right with a lower occupancy on
flight 6. It demonstrates that there are indeed knock-on effects, providing explicit evidence of emergence. That
is, passengers from earlier flights impede the terminal journey of those from subsequent flights, which limits
their ability to engage in discretionary activities. This, in turn, lowers the total expenditure.

While we focused primarily on examples where travelers were delayed at both check-in and security, one
should bear in mind that the phenomenon is not limited to solely these cases. For instance, the marginal effect
of flights 1 and 4 in Figure F.2 in Appendix F still shows a reasonable degree of curvature, even though they
are last to use their respective check-in counters. This means that they also affect subsequent flights, but only
by increasing the waiting time at security and thus not at check-in.

The analysis is finalized by comparing the previous results with the outcome of SHAP and regression weights
as a means of validation. SHAP’s bee swarm summary plot is depicted by Figure F.3 in Appendix F. It does
not reveal the aforementioned emergent phenomena, but the global impact and direction of features are clearly
in accordance with the expectations. However, one salient detail is the influence of staffing strategies. We
did not elaborately discuss them before, though the plot suggests that especially security check strategy 1
and 2 may have a negative impact on the opportunity to participate in non-aeronautical activities. This is
indeed the case if one has a look at the marginal effect in Figure F.4. It will therefore come as no surprise
that these two are among the worst possible alternatives, as shown by Table E.3 in Appendix E. Secondly, by
analyzing weights of the regularized higher-order polynomial, we also include a model-specific method. The
intercept equals 1162.4, while the call-to-gate-strategy squared has the highest absolute coefficient with a value
of −506.6. Both the impact and direction are thus as expected, and it is also interesting to point out that the
shape of f(x) = 1162.4 − 506.6x2 heavily resembles the one in Figure 4a. As a final remark, the possibilities

80 100 120 140
Number of pax on flight 2 [#]

80

90

100

110

120

130

140

Nu
m

be
r o

f p
ax

 o
n 

fli
gh

t 5
 [#

]

1236.60

1251.89

1267.17

1282.45

1297.74

1313.02

(a) Marginal effect of flight 2 and 5.

80 100 120 140
Number of pax on flight 6 [#]

80

90

100

110

120

130

140

Nu
m

be
r o

f p
ax

 o
n 

fli
gh

t 7
 [#

]

1236.72

1259.92

1283.11

1306.30

1329.49

1352.68

(b) Marginal effect of flight 6 and 7.

80 100 120 140
Number of pax on flight 2 [#]

80

90

100

110

120

130

140

Nu
m

be
r o

f p
ax

 o
n 

fli
gh

t 6
 [#

]

1234.40

1252.77

1271.14
1289.51

1307.88

1326.24

(c) Marginal effect of flight 2 and 6.

Figure 5: Two-dimensional partial dependence plots of the total expenditure.

16



of RuleFit have been explored, but the results were too unstable to draw conclusions. Not only are seemingly
important decision rules entirely different for successive trials, their overlap also introduces a lot of ambiguity.
We therefore argue that the method is less suitable for interpretation and validation purposes.

This concludes the analysis of total expenditure on discretionary activities. A combination of poor staffing
strategies at security and high occupancy rates on certain flights was found to disrupt the terminal journey of
passengers on subsequent flights. As a result of these knock-on phenomena, less free time is left for discretionary
activities, which has a negative effect on the total expenditure. With that, the throughput at the security
checkpoint is examined next, and how its saturation affects the journey of outbound passengers at RTHA.

5.3 Analysis of the Saturation at Security
The second case study originates from the observation that throughput at security and the number of missed
flights are not correlated at all, while correlation between the latter and average waiting time at security
is 0.80 (p < 0.01). Section C.2 in Appendix C of the Supporting Work argued that these results make sense,
namely the checkpoint is the system’s main bottleneck. At some point, it reaches its maximum capacity as
the crowd grows. Consequently, the throughput remains constant while waiting times add up quickly, causing
passengers to miss their flight. Such phenomena are the result of various interdependent dynamics. The aim of
current case study is therefore to provide more in-depth evidence of these emergent properties.

The analysis commences again with a local method, but this time with insights from LIME instead of a one-
at-a-time sensitivity analysis. Figure 6 explains how the throughput at security is influenced. We compare an
uncrowded terminal against a crowded one; both scenarios presume good staffing strategies and an early call-to-
gate, the values of which are shown in the graphs. A trivial conclusion is that high load factors lead to positive
contributions to the number of passengers passing through security, and vice versa. Furthermore, note that
constantly operating the checkpoint at full capacity — security check strategy 16 — positively impacts the total
flow. That is logical, as it delivers the best possible service, thereby maximizing throughput. Notwithstanding,
one should remain vigilant about the discrepancy between predictions of LIME and the surrogate. The error is
around 30 passengers for both scenarios, which is rather large compared to the size of the feature impacts. This
calls for some caution with using LIME as the sole method of interpretation, even if it produces comprehensible
insights. For example, if we triangulate it with the outcome of SHAP in Figure F.5 of Appendix F, there
are clearly some inconsistencies. On the one hand, LIME appears to inflate the impact of security check
strategy 16; it is not even visible on the bee swarm summary plot since its effect is negligible. On the other
hand, SHAP never reports a negative impact for the second check-in strategy, despite it being almost negligible
as well. Nevertheless, the other features are generally consistent and in line with expectations. We now focus on
flights 2 and 6 for the remainder of the analysis. These two are among the most impactful, according to LIME
and SHAP, and have an additional interconnection. Indeed, they are assigned to the same check-in counters,
allowing us to examine whether there are again knock-on effects as in the previous case study.

Interdependent relationships are best understood by plotting the partial dependence, so Figure 7 visualizes
three relevant cases. The marginal effect of flights 2 and 6 on the number of passengers who completed security
is depicted in Figure 7a. First of all, note that decision boundaries are not as smooth as in previous dependence

10 5 0 5
Impact on response [#]

41.50 < CTGstrategy <= 54.00
CIstrategy=2

94.00 < pax1 <= 118.00
57.00 < pax4 <= 72.00

SCstrategy=16
92.00 < pax5 <= 116.00
92.75 < pax3 <= 113.50
90.00 < pax6 <= 114.00
89.00 < pax2 <= 113.00
89.00 < pax7 <= 111.50

Intercept: 707.54
Local prediction: 648.48

Surrogate prediction: 613.00

(a) Uncrowded terminal.

0 5 10 15 20
Impact on response [#]

41.50 < CTGstrategy <= 54.00
CIstrategy=2

72.00 < pax4 <= 86.00
113.50 < pax3 <= 133.00

SCstrategy=16
111.50 < pax7 <= 132.00
118.00 < pax1 <= 136.00
116.00 < pax5 <= 134.25
114.00 < pax6 <= 136.00
113.00 < pax2 <= 133.00

Intercept: 667.42
Local prediction: 771.03

Surrogate prediction: 798.23

(b) Crowded terminal.

Figure 6: Local interpretable model-agnostic explanations of the throughput at security. The interpretation is as follows.
The vertical axis shows all input parameters and their assumed values, while the corresponding contributions to the
response are plotted horizontally. These contributions can be considered as the impact on a prediction relative to the
intercept of LIME’s approximation. Bars appear red if the effect is negative and green otherwise. To connect the dots,
LIME arrives at its local prediction by adding the individual contributions of all features to the intercept, which should
then be close to the actual outcome of the investigated surrogate model.

17



80 100 120 140
Number of pax on flight 2 [#]

80

90

100

110

120

130

140
Nu

m
be

r o
f p

ax
 o

n 
fli

gh
t 6

 [#
]

644.78

661.99

679.19

696.40

713.61

730.81

(a) Marginal effect of flight 2 and 6 on
the throughput at security.

80 100 120 140
Number of pax on flight 2 [#]

80

90

100

110

120

130

140

Nu
m

be
r o

f p
ax

 o
n 

fli
gh

t 6
 [#

]

3.99

6.16

8.33
10.50

12.67

14.83

(b) Marginal effect of flight 2 and 6 on
the number of missed flights.

80 100 120 140
Number of pax on flight 2 [#]

0

20

40

60

80

100

Pa
rti

al
 d

ep
en

de
nc

e 
[#

]

Average

(c) Marginal effect of flight 2 on the
number of missed flights.

Figure 7: Partial dependence plots of the throughput at security and number of missed flights.

plots. This makes sense because it is one of the two responses that is mimicked by gradient boosting rather
than by a polynomial; the outcome of the former is inherently more erratic. Secondly, at a given occupancy
rate on flight 6, the response levels off when the number of passengers on the second flight exceeds 120–130.
That indeed seems to confirm our earlier hypothesis: at some point, the security checkpoint becomes saturated,
hence adding passengers no longer increases throughput. The phenomenon is not visible in flight 6, which is
logical as it is much later in the schedule — obstructing the checkpoint is therefore less likely. In fact, its load
factor and the throughput practically have a positive linear relationship. These findings are also apparent in the
one-dimensional counterparts, depicted by Figures F.6a and F.6b in Appendix F. A natural follow-up question
is then what happens to passengers who failed to complete the security check on time. Figure 7b shows the
consequence by plotting the marginal effect of flights 2 and 6 on the total number of missed flights. The graph
confirms our expectations, namely from about 120 passengers on flight 2, more and more people do not reach
their gate on time. Flight 6 also has a slight impact, albeit rather limited because contour lines in the critical
region are almost vertical. Finally, Figure 7c shows that the effect of flight 2 even accelerates as it approaches
its maximum capacity, suggesting that there must be some degree of knock-on phenomena. The sixth flight does
not appear to be affected, as otherwise it would have been visible in Figure 7b through more horizontal contours
in the upper part. Nonetheless, flight 2 clearly has a considerable impact on whether or not the checkpoint may
become obstructed. Note, however, the heterogeneity among the individual conditional expectation curves in
Figure 7c. This proves that the conditions in the terminal remain important. For example, if it is not busy at
all, then adding passengers to solely flight 2 will not necessarily increase the number of missed flights.

Next, we also analyze feature importances to see exactly which key drivers control the checkpoint’s through-
put, average waiting time, and the ensuing number of missed flights. The results are shown in Figure 8,
respectively. It is immediately noticeable that the graphs of the latter two are similar; both are driven primar-
ily by the staffing strategy at security and to a lesser extent by occupancy rates. The opposite holds for the
checkpoint’s throughput, although the difference is not as pronounced. One should interpret these results as
follows. Under normal circumstances, more passengers lead to more passage through security, which is therefore
mainly determined by the load factor on flights. However, if the airport opts for a bad strategy, waiting times
may increase considerably. The extent also depends on how busy it is, but personnel strategy is more decisive.
That is logical, as it directly dictates the number of lanes to be opened. Ceteris paribus, fewer lanes will always
lead to longer waiting times, but not necessarily to a lower throughput. This explains the difference between
Figures 8a and 8b. However, there is a risk that the waiting time, which we know is predominately driven

CIstra
tegy

SCstra
tegy

CTGstra
tegy

pax1
pax2

pax3
pax4

pax5
pax6

pax7
0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n 
de

cr
ea

se
 in

 R
2 

[-]

(a) Throughput at security.

CIstra
tegy

SCstra
tegy

CTGstra
tegy

pax1
pax2

pax3
pax4

pax5
pax6

pax7
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
de

cr
ea

se
 in

 R
2 

[-]

(b) Average queuing time at security.

CIstra
tegy

SCstra
tegy

CTGstra
tegy

pax1
pax2

pax3
pax4

pax5
pax6

pax7
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ea

n 
de

cr
ea

se
 in

 R
2 

[-]

(c) Number of missed flights.

Figure 8: Visualization of permutation feature importances.

18



by strategy, will continue to rise so passengers are no longer able to reach their gate on time. At that point,
the number of missed flights will increase rapidly, especially when it is busy. Queuing time and the number of
missed flights thus have the same key drivers. These findings are confirmed by plotting the marginal effect of the
security check strategy on the three respective responses in Figure F.7 of Appendix F. There is clearly a strong
influence of certain strategies; especially those that close all but one lane after two hours appear to be really
detrimental (see Table E.3 in Appendix E). While the relative effect on throughput may seem limited, note that
Figure F.7a and F.7c are actually complementary. Hence, passengers who failed to pass security on time, will
eventually miss their flight. Based on these insights, we conclude that there are indeed emergent phenomena
which can lead to saturation of the security checkpoint. If so, waiting times may increase substantially, resulting
in a high number of missed flights. This particularly happens in combination with poor staffing strategies.

Finally, the interpretations are again juxtaposed with SHAP as a means of validation. The bee swarm
summary plot of the throughput was already shown in Figure F.5, but we also added those of the average
queuing time and number of missed flights in Figures F.8 and F.9 of Appendix F, respectively. Aside from the
previously discussed inconsistencies between LIME and SHAP, the results are actually rather consistent and in
line with expectations. However, there is one interesting finding to point out. Security check strategy 4 makes
the checkpoint operate at full capacity from an hour onward, so it is presumed to be a solid approach. According
to SHAP, throughput is indeed higher and fewer passengers end up missing their flight. Yet, it appears that the
strategy also prolongs the expected waiting time at security. This may conflict with what one would initially
believe, although in fact it makes sense. By operating with too small a capacity, more passengers arrive than
can be handled, causing the queue to grow. If suddenly all lanes are opened, then there is already a considerable
queue while passengers are still arriving. Eventually, the queue is eliminated and a smooth passage is possible,
although it took some time and increased the average wait. This again confirms that longer waiting times can,
but not always, lead to a higher number of missed flights. Ergo, one ought to be careful about implying such
causalities. Nonetheless, our previous arguments are in accordance with SHAP, which concludes the second
case study. In the next section, we continue with the discussion where further implications are derived.

6 Discussion
From the results, it is evident that the proposed methodology is rather effective in explaining the dynamics
of complex sociotechnical systems, based on an existing validated agent-based simulation model. The main
presumption was that one already has access to such a faithful model, though we remind the reader not to take
this for granted. In practice, it will not always be the case and alternatives such as obtaining real-word data
are often infeasible. Moreover, one must also be aware of imperfections in the model. AATOM is known to be
meticulously close to reality, but there are always certain assumptions. For example, Mekic et al. [48] mention
passengers’ perfect sense of time, the neglect of boarding delays, and so on. Surrogate models are directly
subject to these limitations.

The surrogates were created in stage I of the methodology. While the resulting out-of-sample performance
is rather impressive, it is in line with expectations. Namely, our validation metrics are comparable to those
of De Leeuw et al. [11], who meta-modeled similar responses of AATOM. An important note, however, is
that we investigated the departure flow in the terminal of RTHA; a much more complex system than theirs.
Consequently, more sophistication does not automatically lead to a deterioration in the performance of surrogate
models, though one should also not forget our advanced sampling approach — active learning is deemed rather
powerful [42, 21]. An interesting discovery is that the above authors achieved high accuracy with random forests,
thereby contradicting our findings. Indeed, the meta-modeling performance of random forests was found to be
notably weak. Two probable causes are the increased system complexity or a different sampling strategy, as the
other methodological steps were largely similar. Furthermore, the predictive strength of regularized higher-order
polynomials should definitely not be underestimated. They turned out to be superior in 7 out of 9 cases. This
may be somewhat surprising at first, but we emphasize that they are known to perform particularly well when
responses behave like polynomials [58]. In addition, they provide analytical expressions of these responses as a
function of the input parameters. Such transparency is considered a major strength, especially if the ultimate
purpose is to gain insight into underlying relationships.

Yet, one cannot always rely on transparency to explain the rationale behind surrogates. Stage II of the
methodology therefore introduced a more generic approach, combining both model-agnostic and model-specific
interpretation methods. Emergent phenomena were clearly observed and the first case study is accordant with
the conclusions of Mekic et al. [48]. For example, delaying the call-to-gate does indeed increase total expenditure,
as does shortening waiting times at security. However, our methodology allowed us to go further in depth. We
could even attribute certain phenomena down to load factors on specific flights. Stage II thus provides a
unique insight into actual root causes, which is a considerable strength. For the synthesis, mainly model-
agnostic methods were used. They are more accessible and easier to apply, while the model-specific methods
were prone to the following weaknesses: 1) RuleFit proved to be very unstable, and 2) it was rather difficult

19



to materialize polynomial regression weights into concrete implications. Regarding the latter, regularization
may have drastically reduced the number of non-zero coefficients, the resulting expressions still consist of
more than 100 terms each. This remains challenging to interpret, so transparency does not always promote
explainability. The downside thereof is that we have not explicitly revealed how exactly a surrogate arrives
at its outcome. Agnostic methods do clarify the behavior of responses, but not the internal reasoning of a
model. Next, a weakness of stage II is finding the right illustrations to include in the analysis. By considering
several approaches, numerous results are obtained, from which a careful selection must be made. We found a
one-at-a-time sensitivity analysis, LIME, and correlation coefficients particularly useful to pinpoint interesting
directions. From there, partial dependence plots turned out to be the preferred alternative when visualizing
relevant dynamics, along with support from Sobol indices and feature importances to identify key drivers. Two
final remarks are: 1) LIME raises questions about its reliability, despite providing comprehensible insights, and
2) SHAP’s bee swarm summary plots are especially strong for validation purposes because of their holistic view.
Altogether, we conclude that the methodology’s second stage excels at explaining the dynamics of complex
systems, even if it is sometimes challenging to find the right illustrations for the interpretation. Surrogate
abstractions do preserve emergent properties, and hence they can be employed to enhance the understanding
of a system that is otherwise difficult to analyze.

To generalize above findings, the scope of the two-stage methodology is not limited to solely agent-based
models, nor to airport terminal operations. Firstly, it can be applied to essentially any type of model, although
preferably one that entails a heavy computational burden. Otherwise, there are probably more efficient ap-
proaches, without the need to create surrogates as an intermediate step. That being said, it is not obligatory
to use the methodology in its entirety. The two stages are in fact modular and may be deployed separately.
For example, if accurate machine learning models are already available, one can go directly to the second stage.
Conversely, if there is a mere desire to speed up the calculation process, then the first stage will suffice. The
combination of both stages is thus only recommended if the ultimate purpose is to enhance the understanding
of a particular model, for which conventional approaches fall short due to computational limitations. Secondly,
we have applied the methodology to airport terminal operations, but its applicability certainly goes further.
The only requirements are that responses should be numerical in nature and there must be a meaningful rela-
tionship between input and output parameters, direct or indirect. The former because promising interpretation
methods for classification were not incorporated, such as in the case study of Belle and Papantonis [5]. The
latter because otherwise it is rather difficult to visualize interdependencies and explain the overall dynamics of a
system. A final consideration is whether it is desirable to have solely one surrogate model for a response across
the entire feature space. For example, we found the number of missed flights more challenging to mimic. The
predominant influence of higher-order interaction effects definitely plays a role, but the response is also zero for
the vast majority of scenarios in the terminal. This makes sense, because missing a flight due to overcrowding
is actually quite rare. It seems that surrogates cannot handle such patterns as well as agent-based models, so
a better alternative may be to first distinguish between nominal and non-nominal scenarios, and then consider
the respective regions of the feature space individually. A proof of concept is presented by ten Broeke et al. [66],
where classification was applied first, followed by regression. To conclude, our proposed methodology is fairly
generic, although there are boundaries to its applicability within which the best results are achieved.

Finally, we address two important limitations. On the one hand, a critical assumption is that responses are
deemed deterministic — their stochasticity was averaged out by the law of large numbers. This is of course
not true in reality and can even affect the emergence and knock-on effects in the system. On the other hand,
the Hammersley sequence was selected as the initial sampling method. Based on our experience, we do not
recommend this for future work. The reason is that in some exceptional cases, its beneficial properties only
appear when the sample is large enough with respect to the number of features (see Appendix C of the Supporting
Work). While related issues were largely resolved by the subsequent active learning algorithm, another method,
such as Latin hypercube sampling, could have prevented them in the first place [71, 38]. Having discussed the
implications of our methodology, the research is finalized with a conclusion and further recommendations.

7 Conclusions and Future Work
The motivation for our research originates from the observation that existing airport terminal operations mod-
els: 1) suffer from heavy computational requirements, and 2) reveal their emergent properties only a posteriori.
These are typical challenges of agent-based modeling, the principle according to which they are usually built.
Therefore, we introduced a two-stage methodology to analyze such systems in a more efficient way. The first
stage involves the development of faithful surrogate models, whereafter the second stage applies techniques from
the emerging field of explainable artificial intelligence to these abstractions. The novelty of our methodology
lies thus in the amalgamation, rather than in the respective research fields themselves. Indeed, we have explored
their common ground to take advantage of synergies. A successful application reveals the properties of the focal
system, which in the case of a sociotechnical system mainly concerns emergent phenomena.

20



Proof of the methodology’s efficacy is provided by conducting two case studies on AATOM; a validated
agent-based airport terminal operations model. On the one hand, we looked at the total expenditure on non-
compulsory activities, like shopping and dining. It was found that the journey of some passengers may be
disturbed in such a way there is an effect on their spending behavior. Knock-on phenomena were observed,
with travelers from earlier flights holding up those from later flights at check-in and security. Consequently,
less free time is left to engage in discretionary activities. It happens especially when the terminal is busy in
combination with poor airport staffing strategies. This is a clear example of emergence, the root causes of which
could even be associated to specific strategies and the occupancy on certain flights. On the other hand, we
also examined the throughput at security. More passengers means more passage, but there is an evident point
where the checkpoint reaches its maximum capacity. As a result, throughput remains constant, while the queue
and therefore the waiting time quickly increase. This even goes so far as to put passengers at risk of missing
their flight. Again, unequivocal evidence of emergent properties, which are thus clearly preserved in surrogates.
The key drivers of the phenomenon could also be traced back, along with the critical settings; it only occurs
under certain conditions. Altogether, the case studies demonstrated that the proposed methodology is indeed
able to accurately abstract and explain the dynamics of airport terminal operations through surrogate modeling
an existing simulation model. This confirms the research objective and emphasizes the strengths of combining
meta-modeling with interpretable machine learning. Unique and detailed insights were attained into properties
and relationships that would otherwise have been very difficult to reveal due to computational limitations.

We conclude the research by recommending three promising directions for future work, based on our expe-
rience. First of all, it is believed that responses can be mimicked more accurately if an advance distinction is
made between certain scenarios in the airport terminal. For example, one could distinguish between nominal and
non-nominal situations, as mentioned in the discussion. Their associated dynamics are rather diverse, which
raises the question of the best approach to meta-model disparate and rare events — a particularly relevant
question for scholars interested in safety and security related issues. Secondly, we solely looked at averages or
total values of responses, but it is evident that their behavior may change over the simulated time frame. Such
changes can be quite considerable; think of the waiting time at security, which is strongly influenced by the flight
schedule. Hence, including time as an extra dimension could reveal properties that were previously invisible.
Doing so will certainly add complexity, yet it is crucial to enhance the understanding of a sociotechnical system
even further. Our final recommendation relates to the interpretation of machine learning models. While the
discipline is still emerging, most effort is clearly being put into model-agnostic methods. That makes sense
because they have a broader applicability, though a model’s explicit internal reasoning can only be elucidated
through model-specific approaches. We therefore advocate further development of the latter.

References
[1] R. Alizadeh, J. K. Allen, and F. Mistree. Managing computational complexity using surrogate models: a

critical review. Research in Engineering Design, 31(3):275–298, July 2020. ISSN 0934-9839. doi: 10.1007/
s00163-020-00336-7. URL http://link.springer.com/10.1007/s00163-020-00336-7.

[2] R. Andonie. Hyperparameter optimization in learning systems. Journal of Membrane Computing, 1
(4):279–291, Dec. 2019. doi: 10.1007/s41965-019-00023-0. URL http://link.springer.com/10.1007/
s41965-019-00023-0.

[3] F. Archetti and A. Candelieri. Bayesian Optimization and Data Science. SpringerBriefs in Optimization.
Springer International Publishing, Cham, 2019. ISBN 978-3-030-24494-1. doi: 10.1007/978-3-030-24494-1.
URL http://link.springer.com/10.1007/978-3-030-24494-1.

[4] A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia, S. Gil-
Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Herrera. Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58:82–115,
June 2020. ISSN 1566-2535. doi: 10.1016/j.inffus.2019.12.012. URL https://www.sciencedirect.com/
science/article/pii/S1566253519308103.

[5] V. Belle and I. Papantonis. Principles and Practice of Explainable Machine Learning. Frontiers in Big
Data, 4:39, 2021. ISSN 2624-909X. doi: 10.3389/fdata.2021.688969. URL https://www.frontiersin.
org/article/10.3389/fdata.2021.688969.

[6] A. Bhosekar and M. Ierapetritou. Advances in surrogate based modeling, feasibility analysis, and op-
timization: A review. Computers & Chemical Engineering, 108:250–267, Sept. 2017. ISSN 0098-
1354. doi: 10.1016/j.compchemeng.2017.09.017. URL https://linkinghub.elsevier.com/retrieve/
pii/S0098135417303228.

21



[7] E. Borgonovo and E. Plischke. Sensitivity analysis: A review of recent advances. European Journal of
Operational Research, 248(3):869–887, Feb. 2016. ISSN 0377-2217. doi: 10.1016/j.ejor.2015.06.032. URL
https://linkinghub.elsevier.com/retrieve/pii/S0377221715005469.

[8] K. Cheng, Z. Lu, C. Ling, and S. Zhou. Surrogate-assisted global sensitivity analysis: an overview.
Structural and Multidisciplinary Optimization, 61(3):1187–1213, Mar. 2020. ISSN 1615-147X. doi:
10.1007/s00158-019-02413-5. URL http://link.springer.com/10.1007/s00158-019-02413-5.

[9] D. Chicco, M. J. Warrens, and G. Jurman. The coefficient of determination R-squared is more informative
than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science,
7, July 2021. ISSN 2376-5992. doi: 10.7717/peerj-cs.623. URL https://peerj.com/articles/cs-623.

[10] D. Curcio, F. Longo, G. Mirabelli, and E. Pappoff. Passengers Flow Analysis And Security Issues In Airport
Terminals Using Modeling & Simulation. In ECMS 2007, pages 374–379. ECMS, June 2007. ISBN 978-0-
9553018-2-7. doi: 10.7148/2007-0374. URL http://www.scs-europe.net/dlib/2007/2007-0374.htm.

[11] B. De Leeuw, S. S. Mohammadi Ziabari, and A. Sharpanskykh. Surrogate Modeling of Agent-based Airport
Terminal Operations. In Multi-Agent-Based Simulation XXIII, Auckland, New Zealand, Mar. 2022. URL
https://mabsworkshop.github.io/articles/MABS_2022_paper_9.pdf.

[12] R. De Neufville, A. Odoni, P. Belobaba, and T. Reynolds. Airport Systems: Planning, Design, and
Management. McGraw-Hill, New York, 2nd edition, 2013. ISBN 978-0-07-177058-3.

[13] F. Dekking, C. Kraaikamp, H. Lopuhaä, and L. Meester. A modern introduction to probability and statistics:
understanding why and how. Springer texts in statistics. Springer, London, 2005. ISBN 978-1-85233-896-1.

[14] R. Elshawi, M. H. Al-Mallah, and S. Sakr. On the interpretability of machine learning-based model
for predicting hypertension. BMC Medical Informatics and Decision Making, 19(1):146, Dec. 2019. ISSN
1472-6947. doi: 10.1186/s12911-019-0874-0. URL https://bmcmedinformdecismak.biomedcentral.com/
articles/10.1186/s12911-019-0874-0.

[15] D. S. Fay. A biologist’s guide to statistical thinking and analysis. WormBook, pages 1–54, July
2013. ISSN 15518507. doi: 10.1895/wormbook.1.159.1. URL http://www.wormbook.org/chapters/www_
statisticalanalysis/statisticalanalysis.html.

[16] A. Fisher, C. Rudin, and F. Dominici. All Models are Wrong, but Many are Useful: Learning a Variable’s
Importance by Studying an Entire Class of Prediction Models Simultaneously. Journal of Machine Learning
Research, 20(177):1–81, 2019. ISSN 1533-7928. URL http://jmlr.org/papers/v20/18-760.html.

[17] A. I. J. Forrester, A. Sóbester, and A. J. Keane. Engineering Design via Surrogate Modelling: A Practical
Guide. Wiley, 1 edition, July 2008. ISBN 978-0-470-06068-1. URL https://onlinelibrary.wiley.com/
doi/book/10.1002/9780470770801.

[18] J. H. Friedman. Multivariate Adaptive Regression Splines. The Annals of Statistics, 19(1):1–67, Mar. 1991.
ISSN 0090-5364, 2168-8966. doi: 10.1214/aos/1176347963. URL http://projecteuclid.org/journals/
annals-of-statistics/volume-19/issue-1/Multivariate-Adaptive-Regression-Splines/10.
1214/aos/1176347963.full.

[19] J. H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statis-
tics, 29(5):1189–1232, 2001. ISSN 0090-5364. URL http://www.jstor.org/stable/2699986. Publisher:
Institute of Mathematical Statistics.

[20] J. H. Friedman and B. E. Popescu. Predictive learning via rule ensembles. The Annals
of Applied Statistics, 2(3), Sept. 2008. ISSN 1932-6157. doi: 10.1214/07-AOAS148. URL
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-2/issue-3/
Predictive-learning-via-rule-ensembles/10.1214/07-AOAS148.full.

[21] J. N. Fuhg, A. Fau, and U. Nackenhorst. State-of-the-Art and Comparative Review of Adaptive Sam-
pling Methods for Kriging. Archives of Computational Methods in Engineering, 28(4):2689–2747, June
2021. ISSN 1134-3060. doi: 10.1007/s11831-020-09474-6. URL https://link.springer.com/10.1007/
s11831-020-09474-6.

[22] A. Graham. Managing Airports: An International Perspective. Routledge, New York, 4th edition, Sept.
2013. ISBN 978-0-415-52941-9.

22



[23] A. Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow : Concepts, Tools,
and Techniques to Build Intelligent Systems, volume 2th. O’Reilly Media, Sebastopol, CA, 2019. ISBN
978-1-4920-3264-9.

[24] B. Hailpern and P. Santhanam. Software debugging, testing, and verification. IBM Systems Journal, 41(1):
4–12, 2002. ISSN 0018-8670. doi: 10.1147/sj.411.0004. URL https://ieeexplore.ieee.org/document/
5386906.

[25] T. Hastie, R. Tibshirani, and J. H. Friedman. The elements of statistical learning: data mining, inference,
and prediction. Springer series in statistics. Springer, New York, NY, 2nd edition, 2009. ISBN 978-0-387-
84857-0.

[26] T. Head, M. Kumar, H. Nahrstaedt, G. Louppe, and I. Shcherbatyi. Scikit-Optimize: Sequential model-
based optimization in Python, Oct. 2021. URL https://zenodo.org/record/5565057.

[27] F. Hutter, J. Lücke, and L. Schmidt-Thieme. Beyond Manual Tuning of Hyperparameters. Künstliche
Intelligenz, 29(4):329–337, Nov. 2015. ISSN 0933-1875. doi: 10.1007/s13218-015-0381-0. URL http:
//link.springer.com/10.1007/s13218-015-0381-0.

[28] IATA. Airport Development Reference Manual. Montreal, 9th edition, 2004. ISBN 978-92-9195-086-7.

[29] K. C. James and M. Bhasi. Development of model categories for performance improvement studies related
to airport terminal operations. Journal of Simulation, 4(2):98–108, June 2010. ISSN 1747-7778. doi:
10.1057/jos.2009.27. URL https://www.tandfonline.com/doi/full/10.1057/jos.2009.27.

[30] S. Janssen, A.-N. Blok, and A. Knol. AATOM - An Agent-based Airport Terminal Operations Model.
Delft University of Technology, Apr. 2018. URL https://research.tudelft.nl/en/publications/
aatom-an-agent-based-airport-terminal-operations-model.

[31] S. Janssen, A. Sharpanskykh, and R. Curran. AbSRiM: An Agent-Based Security Risk Management
Approach for Airport Operations. Risk Analysis, 39(7):1582–1596, 2019. ISSN 1539-6924. doi: 10.1111/
risa.13278. URL http://onlinelibrary.wiley.com/doi/abs/10.1111/risa.13278.

[32] S. Janssen, A. Sharpanskykh, and R. Curran. Agent-based modelling and analysis of security and efficiency
in airport terminals. Transportation Research Part C: Emerging Technologies, 100:142–160, Mar. 2019.
ISSN 0968-090X. doi: 10.1016/j.trc.2019.01.012. URL https://linkinghub.elsevier.com/retrieve/
pii/S0968090X1830809X.

[33] S. Janssen, A. Sharpanskykh, R. Curran, and K. Langendoen. AATOM: An Agent-Based Airport Terminal
Operations Model Simulator. In Proceedings of the 2019 Summer Simulation Conference (SummerSim ’19),
page 12, Berlin, July 2019. Assoc Computing Machinery.

[34] S. Janssen, A. Sharpanskykh, R. Curran, and K. Langendoen. Using causal discovery to analyze emer-
gence in agent-based models. Simulation Modelling Practice and Theory, 96:101940, Nov. 2019. ISSN
1569190X. doi: 10.1016/j.simpat.2019.101940. URL https://linkinghub.elsevier.com/retrieve/pii/
S1569190X19300735.

[35] S. Janssen, R. van der Sommen, A. Dilweg, and A. Sharpanskykh. Data-Driven Analysis of Airport Security
Checkpoint Operations. Aerospace, 7(6):69, May 2020. ISSN 2226-4310. doi: 10.3390/aerospace7060069.
URL https://www.mdpi.com/2226-4310/7/6/69.

[36] L. Jia, R. Alizadeh, J. Hao, G. Wang, J. K. Allen, and F. Mistree. A rule-based method for automated sur-
rogate model selection. Advanced Engineering Informatics, 45:101123, Aug. 2020. ISSN 1474-0346. doi: 10.
1016/j.aei.2020.101123. URL https://linkinghub.elsevier.com/retrieve/pii/S1474034620300926.

[37] S. Kalakou and F. Moura. Analyzing passenger behavior in airport terminals based on activity preferences.
Journal of Air Transport Management, 96, Sept. 2021. ISSN 0969-6997. doi: 10.1016/j.jairtraman.2021.
102110. URL https://linkinghub.elsevier.com/retrieve/pii/S0969699721000934.

[38] L. Kocis and W. J. Whiten. Computational investigations of low-discrepancy sequences. ACM Transactions
on Mathematical Software, 23(2):266–294, June 1997. ISSN 0098-3500. doi: 10.1145/264029.264064. URL
https://dl.acm.org/doi/10.1145/264029.264064.

[39] D. P. Kuttichira, S. Gupta, C. Li, S. Rana, and S. Venkatesh. Explaining Black-Box Models Using Inter-
pretable Surrogates. In PRICAI 2019: Trends in Artificial Intelligence, volume 11670, pages 3–15. Springer
International Publishing, Cham, 2019. ISBN 978-3-030-29907-1. doi: 10.1007/978-3-030-29908-8_1. URL
http://link.springer.com/10.1007/978-3-030-29908-8_1.

23



[40] C. Q. Lam. Sequential Adaptive Designs In Computer Experiments For Response Surface Model
Fit. PhD thesis, Ohio State University, 2008. URL http://rave.ohiolink.edu/etdc/view?acc_num=
osu1211911211.

[41] F. Lamperti, A. Roventini, and A. Sani. Agent-based model calibration using machine learning surrogates.
Journal of Economic Dynamics and Control, 90:366–389, May 2018. ISSN 0165-1889. doi: 10.1016/j.jedc.
2018.03.011. URL https://linkinghub.elsevier.com/retrieve/pii/S0165188918301088.

[42] H. Liu, Y.-S. Ong, and J. Cai. A survey of adaptive sampling for global metamodeling in support of
simulation-based complex engineering design. Structural and Multidisciplinary Optimization, 57(1):393–
416, Jan. 2018. ISSN 1615-147X. doi: 10.1007/s00158-017-1739-8. URL http://link.springer.com/10.
1007/s00158-017-1739-8.

[43] J. L. Loeppky, J. Sacks, and W. J. Welch. Choosing the Sample Size of a Computer Experiment: A Practical
Guide. Technometrics, 51(4):366–376, Nov. 2009. ISSN 0040-1706. doi: 10.1198/TECH.2009.08040. URL
http://www.tandfonline.com/doi/abs/10.1198/TECH.2009.08040.

[44] S. M. Lundberg and S.-I. Lee. A Unified Approach to Interpreting Model Predictions. In
Advances in Neural Information Processing Systems, volume 30, Long Beach, CA, USA,
2017. Curran Associates, Inc. URL https://proceedings.neurips.cc/paper/2017/hash/
8a20a8621978632d76c43dfd28b67767-Abstract.html.

[45] C. Macal and M. North. Tutorial on agent-based modeling and simulation. In Proceedings of the Winter
Simulation Conference, 2005., pages 2–15, Dec. 2005. doi: 10.1109/WSC.2005.1574234. ISSN: 1558-4305.

[46] L. Magalhães, V. Reis, and R. Macário. A new methodological framework for evaluating flexible op-
tions at airport passenger terminals. Case Studies on Transport Policy, 8(1):76–84, Mar. 2020. ISSN
2213-624X. doi: 10.1016/j.cstp.2018.03.003. URL https://linkinghub.elsevier.com/retrieve/pii/
S2213624X18300749.

[47] I. E. Manataki and K. G. Zografos. Development and Demonstration of a Modeling Framework for Air-
port Terminal Planning and Performance Evaluation. Transportation Research Record: Journal of the
Transportation Research Board, 2106(1):66–75, Jan. 2009. ISSN 0361-1981. doi: 10.3141/2106-08. URL
http://journals.sagepub.com/doi/10.3141/2106-08.

[48] A. Mekic, S. S. Mohammadi Ziabari, and A. Sharpanskykh. Systemic Agent-Based Modeling and Analysis
of Passenger Discretionary Activities in Airport Terminals. Aerospace, 8(6):162, June 2021. doi: 10.3390/
aerospace8060162. URL https://www.mdpi.com/2226-4310/8/6/162.

[49] C. Molnar. Interpretable Machine Learning. Lulu, 2nd edition, Feb. 2019. ISBN 978-0-244-76852-2. URL
https://christophm.github.io/interpretable-ml-book/.

[50] M. Naser. An engineer’s guide to eXplainable Artificial Intelligence and Interpretable Machine Learning:
Navigating causality, forced goodness, and the false perception of inference. Automation in Construc-
tion, 129, Sept. 2021. ISSN 0926-5805. doi: 10.1016/j.autcon.2021.103821. URL https://linkinghub.
elsevier.com/retrieve/pii/S0926580521002727.

[51] C. Nóbrega and L. Marinho. Towards explaining recommendations through local surrogate models. In
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pages 1671–1678, Limassol
Cyprus, Apr. 2019. ACM. ISBN 978-1-4503-5933-7. doi: 10.1145/3297280.3297443. URL https://dl.
acm.org/doi/10.1145/3297280.3297443.

[52] H. Noble and R. Heale. Triangulation in research, with examples. Evidence Based Nursing, 22(3):67–68,
July 2019. ISSN 1367-6539, 1468-9618. doi: 10.1136/ebnurs-2019-103145. URL https://ebn.bmj.com/
lookup/doi/10.1136/ebnurs-2019-103145.

[53] P. Pao-Yen Wu and K. Mengersen. A review of models and model usage scenarios for an airport complex sys-
tem. Transportation Research Part A: Policy and Practice, 47:124–140, Jan. 2013. ISSN 0965-8564. doi: 10.
1016/j.tra.2012.10.015. URL https://linkinghub.elsevier.com/retrieve/pii/S0965856412001541.

[54] T. Patel and W. Wilkes. Strikes and Labor Shortages Leave European Airports in Chaos.
Bloomberg, June 2022. URL https://www.bloomberg.com/news/articles/2022-06-09/
the-travel-boom-has-caught-airlines-still-in-bust-mode-off-guard.

24



[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
URL https://jmlr.csail.mit.edu/papers/volume12/pedregosa11a/pedregosa11a.pdf.

[56] B. Pietzsch, S. Fiedler, K. G. Mertens, M. Richter, C. Scherer, K. Widyastuti, M.-C. Wimmler, L. Za-
kharova, and U. Berger. Metamodels for Evaluating, Calibrating and Applying Agent-Based Models:
A Review. Journal of Artificial Societies and Social Simulation, 23(2):9, 2020. ISSN 1460-7425. doi:
10.18564/jasss.4274. URL http://jasss.soc.surrey.ac.uk/23/2/9.html.

[57] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. Adaptive computation
and machine learning. MIT Press, Cambridge, Mass, 2006. ISBN 978-0-262-18253-9.

[58] S. Razavi, B. A. Tolson, and D. H. Burn. Review of surrogate modeling in water resources. Water Resources
Research, 48(7), 2012. ISSN 1944-7973. doi: 10.1029/2011WR011527. URL http://onlinelibrary.
wiley.com/doi/abs/10.1029/2011WR011527.

[59] M. T. Ribeiro, S. Singh, and C. Guestrin. Model-Agnostic Interpretability of Machine Learning.
arXiv:1606.05386 [cs, stat], June 2016. URL http://arxiv.org/abs/1606.05386.

[60] M. T. Ribeiro, S. Singh, and C. Guestrin. "Why Should I Trust You?": Explaining the Predictions of Any
Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, pages 1135–1144, New York, NY, USA, Aug. 2016. Association for Computing
Machinery. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939778. URL http://doi.org/10.1145/
2939672.2939778.

[61] R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke. Explainable Machine Learning for Scientific Insights
and Discoveries. IEEE Access, 8:42200–42216, 2020. ISSN 2169-3536. doi: 10.1109/ACCESS.2020.2976199.

[62] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola.
Global Sensitivity Analysis: The Primer. John Wiley, Chichester, England, 2008. ISBN 978-0-470-05997-5.

[63] E. Schulz, M. Speekenbrink, and A. Krause. A tutorial on Gaussian process regression: Modelling,
exploring, and exploiting functions. Journal of Mathematical Psychology, 85:1–16, Aug. 2018. ISSN
0022-2496. doi: 10.1016/j.jmp.2018.03.001. URL https://linkinghub.elsevier.com/retrieve/pii/
S0022249617302158.

[64] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the Human Out of the Loop:
A Review of Bayesian Optimization. Proceedings of the IEEE, 104(1):148–175, Jan. 2016. ISSN 1558-2256.
doi: 10.1109/JPROC.2015.2494218.

[65] T. W. Simpson, D. K. J. Lin, and W. Chen. Sampling Strategies for Computer Experiments: Design
and Analysis. International Journal of Reliability and Applications, 2(3):209–240, 2001. URL http:
//www.personal.psu.edu/users/j/x/jxz203/lin/Lin_pub/2001_IJRA.pdf.

[66] G. ten Broeke, G. van Voorn, A. Ligtenberg, and J. Molenaar. The Use of Surrogate Models to Analyse
Agent-Based Models. Journal of Artificial Societies and Social Simulation, 24(2):3, 2021. ISSN 1460-7425.
doi: 10.18564/jasss.4530. URL http://jasss.soc.surrey.ac.uk/24/2/3.html.

[67] V. A. Thurmond. The Point of Triangulation. Journal of Nursing Scholarship, 33(3):253–258, Sept.
2001. ISSN 1527-6546, 1547-5069. doi: 10.1111/j.1547-5069.2001.00253.x. URL https://onlinelibrary.
wiley.com/doi/10.1111/j.1547-5069.2001.00253.x.

[68] B. Timmins and K. Austin. Heathrow flight cancellations cause queues and ’chaos’. BBC News, June 2022.
URL https://www.bbc.com/news/business-61857008.

[69] V. Tosic. A review of airport passenger terminal operations analysis and modelling. Transportation Research
Part A: Policy and Practice, 26(1):3–26, Jan. 1992. ISSN 0965-8564. doi: 10.1016/0965-8564(92)90041-5.
URL https://linkinghub.elsevier.com/retrieve/pii/0965856492900415.

[70] T. Van Steenkiste, J. van der Herten, I. Couckuyt, and T. Dhaene. Data-Efficient Sensitivity Analysis with
Surrogate Modeling. In Uncertainty Modeling for Engineering Applications, PoliTO Springer Series, pages
55–69. Springer International Publishing, Cham, 2019. ISBN 978-3-030-04870-9. URL https://doi.org/
10.1007/978-3-030-04870-9_4.

25



[71] F. A. Viana. Things you wanted to know about the Latin hypercube design and were afraid to ask. In
10th World Congress on Structural and Multidisciplinary Optimization, page 9, Orlando, USA, May 2013.
URL https://mae.ufl.edu/mdo/Papers/5176.pdf.

[72] G. G. Wang and S. Shan. Review of Metamodeling Techniques in Support of Engineering Design Op-
timization. Journal of Mechanical Design, 129(4):370–380, Apr. 2007. ISSN 1050-0472. doi: 10.1115/
1.2429697. URL https://asmedigitalcollection.asme.org/mechanicaldesign/article/129/4/370/
466824/Review-of-Metamodeling-Techniques-in-Support-of.

[73] P. Westermann and R. Evins. Surrogate modelling for sustainable building design A review. Energy and
Buildings, 198:170–186, Sept. 2019. ISSN 0378-7788. doi: 10.1016/j.enbuild.2019.05.057. URL https:
//www.sciencedirect.com/science/article/pii/S0378778819302877.

[74] U. Wilensky and W. Rand. An Introduction to Agent-Based Modeling: Modeling Natural, Social, and
Engineered Complex Systems with NetLogo. MIT Press, Cambridge, MA, USA, Apr. 2015. ISBN 978-0-
262-73189-8.

[75] B. Williams and S. Cremaschi. Selection of surrogate modeling techniques for surface approximation and
surrogate-based optimization. Chemical Engineering Research and Design, 170:76–89, June 2021. ISSN
0263-8762. doi: 10.1016/j.cherd.2021.03.028. URL https://www.sciencedirect.com/science/article/
pii/S0263876221001465.

[76] D. H. Wolpert. What Is Important About the No Free Lunch Theorems? In P. M. Pardalos, V. Rasskazova,
and M. N. Vrahatis, editors, Black Box Optimization, Machine Learning, and No-Free Lunch Theorems,
Springer Optimization and Its Applications, pages 373–388. Springer International Publishing, Cham, 2021.
ISBN 978-3-030-66515-9. URL https://doi.org/10.1007/978-3-030-66515-9_13.

[77] T.-T. Wong, W.-S. Luk, and P.-A. Heng. Sampling with Hammersley and Halton Points. Journal of
Graphics Tools, 2(2):9–24, Jan. 1997. ISSN 1086-7651. doi: 10.1080/10867651.1997.10487471. URL http:
//www.tandfonline.com/doi/abs/10.1080/10867651.1997.10487471.

[78] L. Yang and A. Shami. On hyperparameter optimization of machine learning algorithms: Theory and
practice. Neurocomputing, 415:295–316, Nov. 2020. ISSN 0925-2312. doi: 10.1016/j.neucom.2020.07.061.
URL https://linkinghub.elsevier.com/retrieve/pii/S0925231220311693.

[79] R. Yondo, E. Andrés, and E. Valero. A review on design of experiments and surrogate models in aircraft
real-time and many-query aerodynamic analyses. Progress in Aerospace Sciences, 96:23–61, Jan. 2018.
ISSN 0376-0421. doi: 10.1016/j.paerosci.2017.11.003. URL https://www.sciencedirect.com/science/
article/pii/S0376042117300611.

[80] T. Yu and H. Zhu. Hyper-Parameter Optimization: A Review of Algorithms and Applications.
arXiv:2003.05689 [cs, stat], Mar. 2020. URL http://arxiv.org/abs/2003.05689.

26



II
Literature Study

Previously graded under AE4020

29





1
Introduction

As air traffic is characterized by a rather stable global growth rate of approximately 4% per annum, the airline
industry has long been known for its attractive long-term prospects [21]. Several scholars use it as a main
argument why their studies in this area are relevant [e.g., 1, 6, 15]. While the argument is sound, abrupt events
such as the outbreak of the COVID-19 pandemic also show its vulnerability — according to the International
Civil Aviation Organization, in 2020, the total number of passengers dropped about 60% in comparison with
the year before [37]. Despite the industry has shown great forces of resilience to past ’black swan’ events like
the 9/11 attacks or the 2008 financial crisis, a 60% decline is unprecedented. Now more than ever, it proves
the need for the sector to make their operations more agile and lean. They have to react quickly to unforeseen
events and adapt to the new circumstances.

Airports are a key element in the system: they enable air transport activities by providing the necessary
infrastructure and services. While they generally have a rather inflexible spending pattern due to their rela-
tively high fixed costs, Graham [33] has calculated that staffing and outsourcing of services account for more
than 50% of their total expenditure. Airports should therefore strive to operate as efficiently as possible. That
is, minimizing operating expenses while maximizing the level of service. This is not only to ensure an opti-
mal usage of resources, but also to meet the ever-changing customer demand for non-aeronautical terminal
activities, which are an important source of their revenue [54, 68].

A logical follow-up question is how airports can optimize their complex terminal operations. Namely,
this is not as straightforward as it may sound. The issue has been the subject of many studies and several
modeling approaches have already been explored. Especially in regard to operational planning and design,
agent-based simulation models are most commonly used according to the meta-study by Pao-Yen Wu and
Mengersen [74]. One of the main reasons for the popularity of such models is that they are highly detailed
without compromising the complexity and emergent properties of the overall system [68]. Notwithstand-
ing, they require a lot of computational power, which can be a limiting factor as the scale of the simulation
increases. Therefore, in addition to developing such detailed models, researchers have considered the possi-
bilities of surrogates. These models mimic the original ones by means of so-called black-box functions [11].
Fundamentally, they are subject to a dichotomy between savings in computational time and their level of
accuracy [28]. Hence, as long as the reduced computational resources justify a certain lower level of accuracy,
they can be a viable alternative to the original model [78].

With that knowledge, and based on the notion that there are several lacunae in the existing research, this
thesis will further explore the possibilities of surrogate modeling. The focal model is AATOM, which is the ab-
breviation for agent-based airport terminal operations model. It was recently designed, built and validated by
Janssen [46] at the Faculty of Aerospace Engineering at Delft University of Technology, and has been further
developed ever since. AATOM is known for its high-fidelity to the actual terminal system, although it suffers
from large computational requirements. Our research is therefore an extension to the work of De Leeuw [20],
who was first to develop surrogates of the simulation model. Yet it goes beyond proving the concept, as in ad-
dition to improving the current accuracy, the aim is also to use the meta-models in gaining relevant insights
into the dynamics of the underlying system. Such analyses can be rather challenging with original agent-
based models, because on top of the computational burden, they reveal the statistics only a posteriori [60]. To
achieve a thorough understanding of the model behavior, synergies with the rapidly emerging research on ex-
plainable artificial intelligence will be exploited, alongside more traditional approaches. This is possible since

31



32 1. Introduction

the distinct disciplines share an important common interest, which is to interpret and explain the reasoning
behind machine learning algorithms [58, 72, 96]. Applying these methods to the surrogates will identify which
rules, variables and characteristics of airport terminal operations are most decisive, leading to a better un-
derstanding of the system. Moreover, it will also demonstrate the further potential of meta-modeling in this
direction. Altogether, the objective of the research can be summarized as to accurately abstract and explain
the dynamics of complex airport terminal operations by means of creating high-performing and interpretable
surrogate models based on a detailed and validated agent-based terminal simulation model. The outcome
of the thesis is mainly relevant for airport and airline managers, as it leads to detailed insights into terminal
processes and provides them with an efficient decision-making tool. Put differently, it enables them to act
agile and adapt quickly to the flight schedule, thereby maximizing service against operating expenses. Fur-
thermore, the research is also interesting for engineering applications, such as in the design of a new airport
terminal. These are exercises with many degrees of freedom, requiring a lot of computations. Hence, fast
calculation models that are both accurate and interpretable are never a superfluous luxury.

This report follows after the project plan and takes the first essential steps of the actual research. It
presents the literature survey, in which the state-of-the-art academic knowledge on the multidisciplinary
subject has been critically reviewed. Chapter 2 is first and discusses the key elements of modeling airport
terminal operations. The main topics include a description of the general passenger terminal characteristics,
a brief overview of existing models and an elaborate explanation of AATOM. Thereafter, chapter 3 continues
by expounding the principles behind surrogate modeling. It sets the stage with a succinct introduction, after
which it reviews common sampling strategies, promising black-box architectures for the meta-models, meth-
ods to optimize their hyperparameters and most importantly, validation metrics. The chapter concludes with
an overview of the ultimately selected methodology for creating the surrogates. Having access to accurate
meta-models is one thing, but their usage can be extended even further for the interpretation and under-
standing of the underlying system. The possibilities are explained and assessed in chapter 4, distinguishing
between model-agnostic and model-specific approaches. Finally, the literature survey has naturally led to the
identification of some knowledge gaps in the scientific literature. These are the lacunae where our research
intends to contribute. The proposal is presented in chapter 5, which consists of the objective and research
questions, a motivation on the relevance of the project, and an extensive planning to translate the intentions
into actual work packages. The latter is done by means of a Gantt chart.



2
Modeling Airport Terminal Operations

With airports being a key element in the overall air transport system, this chapter takes a closer look at their
activities. First, section 2.1 discusses the characteristics of an airport terminal, which is central in passen-
ger handling. Due to the inherent complexity resulting from natural human behavior, there has been great
interest in modeling the operations inside terminals. Therefore, section 2.2 follows with a brief overview of
leading models in the scientific literature. Lastly, we elaborate in section 2.3 on one particular model that was
recently developed by Janssen [47] at the Aerospace Engineering Faculty of the Delft University of Technology.
The agent-based airport terminal operations model, henceforth abbreviated as AATOM, will be extensively
used further in the research.

2.1. The Characteristics of an Airport Terminal
Air transport is a highly international business, crossing many national borders. In this context, substantial
efforts have been made by several organizations to standardize the sector. For airports, the International Air
Transport Association (IATA) drafted the Airport Development Reference Manual as the industry standard
[see 44]. A direct result of its success is that most international airports have actually a very similar design.
A simplified high-level visualization of a typical layout is depicted in Figure 2.1, based on information from
De Neufville et al. [21], IATA [44], Sturdivant and Chong [93]. For clarity purposes, the legend splits up airport
and terminal building elements in two categories. The former is more holistic and contains the most impor-
tant parts of an airport. IATA generally distinguishes between airside and landside areas [44]. The airside area

Airport elements:
Landside area
Airside area
Runway/taxiway
Aircraft

Terminal building elements:
Public area
Checkpoint
Restricted area with gates
Check-in desk/luggage drop-off
Border control
Security control
Entrance

Figure 2.1: High-level visualization of a typical international airport [based on information from 21, 44, 93].

33



34 2. Modeling Airport Terminal Operations

contains the infrastructure which directly relates to the operations of aircraft, so this includes runways, taxi-
ways, parking areas, etc. It makes sense that the area is well secured and therefore inaccessible to the public.
On the contrary, the landside area accommodates the infrastructure to facilitate passengers and cargo han-
dling. This includes terminal buildings, but hotels, public and private transport facilities are also part of it.
Thus, the landside area consists of the elements that connect the outside world with air transport. The sec-
ond category in the legend of Figure 2.1 contains the elements of a passenger terminal building. It consists
of two areas: a publicly accessible one and one with restrictions [93]. Typical elements of the public area are
check-in counters, baggage drop-off points, shops, restaurants, etc. The restricted or sterile area can only be
accessed after going through the checkpoint, where a security screening is performed and if necessary also an
inspection of the passport [6]. Typical elements of this area are of course the gates, but there are also lounges,
shops, restaurants, waiting places, etc.

The literature describes three types of flows in a terminal, namely departing, transferring and arriving
passengers [19]. In current research, we focus on the departure flow to limit the scope. Passengers in this
flow carry out a number of actions with the ultimate goal of catching a flight. Using information from Alod-
haibi et al. [4], Andreatta et al. [6], Kalakou and Moura [54], a flowchart is drawn in Figure 2.2 with the general
departure process. Note that the colors are consistent with previous Figure 2.1 to link the actions with a phys-
ical location at the airport. It starts with passengers arriving at the passenger terminal. Since most airlines
offer online check-in services, they may have already checked-in before arrival. These passengers can directly
proceed to the checkpoint if they do not need to drop-off luggage for the cargo hold. I.e., they are traveling
without or only carry-on baggage for the cabin. Passengers who have not checked-in beforehand can do so at
the counters in the terminal. This is generally also the place where luggage can be dropped-off for the cargo
hold. Next, passengers must go through the checkpoint to access their gate in the restricted area. Regardless
the destination, everyone is subject to a security screening to ensure no illegal items are taken on board an
aircraft. The carry-on luggage is scanned with an X-ray sensor, while the passengers themselves have to walk
through a metal detector [21]. Further tests can be done at random or if dangerous goods are suspected.
After the security check, the next step depends on the destination. For domestic flights, passengers can go
directly to their gate where they will embark the aircraft. However, for international flights, they must first
pass through the border control unit where their passports are checked. Only thereafter they can proceed to
their gate. Notice that there is a special situation in Europe according to the Schengen Treaty, which aims to
abolish border controls between participating countries [44]. Consequently, seemingly international flights
can in fact be treated as a domestic flight as no passport inspection is required. Finally, keep in mind that
the flowchart in Figure 2.2 only shows the essential actions passengers need to do in order to catch a flight.
More than ever, the so-called non-aernautical activities are getting more attention [54]. This includes retail
shopping, dining, drinking, and other leisure activities. So in between the essential actions, passengers are
free to spend their time as they wish. There are plenty of options, both in the public and the restricted area.

To conclude the section, special attention is paid to Rotterdam The Hague Airport, which is commonly
abbreviated as RTHA. With approximately two million passengers per year, it is the third largest airport in the
Netherlands [82]. They offer flights to about 50 destinations across Europe. As a regional airport, services
are not only provided for scheduled and charter flights, but also for business and government-related air
traffic [82]. To get an idea of the airport terminal, Figure 2.3 draws a simplified map of the recently renovated
departure hall [83]. It shows the most relevant elements from the security check onward, which in the picture
is called the ’central security filter’. Thereafter, gates 1 to 6 are for flights with destinations in the Schengen
area, while gates 7 to 11 are for destinations outside the Schengen area; so a passport inspection is only
required to access the latter gates. Furthermore, the non-aeronautical activities in the departure hall are also

Arrival at the
passenger
terminal

Check-in 
and/or baggage 

drop-off
Security 

check

Border 
control

Departure
international

flight

Departure
domestic

flight

Public area Checkpoint Restricted area Flow direction

Figure 2.2: Flowchart of outbound passengers [based on information from 4, 6, 54].



2.2. A Brief Overview of Existing Models and Related Work 35

Figure 2.3: Map of the Rotterdam The Hague Airport departure hall [83].

depicted, such as restaurants and shops. The reason for the special attention to RTHA is because the airport
is selected as the experimental layout for current research. From a theoretical point of view, this choice is not
relevant to the outcome of the study. After all, apart from a few calibration aspects, a different layout does not
change the fundamental principles in an airport. It is thus a matter of choosing an application for the design
of experiments. Notwithstanding, there are practical reasons at play. The first one is the availability of data
and insights from an earlier study (see Janssen et al. [52]). This includes historical flight details, a detailed
map of the terminal layout, insights into passenger types, etc. Such data is crucial to create a model that stays
close to reality. In addition to that, previous study by De Leeuw [20] used a simple fictitious configuration
for the proof of concept. To push the boundaries and see whether the findings still hold in more complex
systems, we have the ambition to use a real airport layout. The challenge here will be to cleverly limit the
increased computational burden, but this is not insurmountable. Altogether, the availability of information
and its increased complexity makes RTHA a great choice for the experimental layout.

2.2. A Brief Overview of Existing Models and Related Work
Just as airports are central to the overall air transport system, terminals in turn form the heart of airport op-
erations. They are known for their complexity resulting from many dynamic interactions with several stake-
holders [19]. Not only does this lead to conflicting interests, it also involves a large degree of stochasticity
through natural cognitive behavior and the random occurrence of unplanned events. In the literature, a sys-
tem with such emergent characteristics is often called a ’sociotechnical system’ [e.g., 68, 74]. The fact that
they are difficult to understand makes them a challenge for decision-makers, both from a managerial and an
engineering perspective. It proves the need for proper airport terminal activity modeling, as heuristics are
no longer sufficient and it is simply not possible to test all scenarios that may arise in practice [66]. Terminal
process modeling has long been a popular research topic, as its design directly affects human behavior. Es-
pecially with the rise of the air transport sector in the second half of last century, it received more scholarly
attention. Therefore, this section examines key concepts in the literature to provide an overview of currently
existing models and it additionally identifies interesting directions in academic research.



36 2. Modeling Airport Terminal Operations

One of the earlier review studies about terminal operation modeling is Tosic [94]. At the end of last cen-
tury, they argue that a lot of work has been done along with the emergence of the sector, but that major knowl-
edge gaps still occur. These gaps mostly relate to planning issues, which become inherently more complex
with growing traffic patterns. The study therefore presented a comprehensive overview of the state-of-the-
art, so that academics could continue to build knowledge about airport terminals. Interestingly, the author
divided the models based on 7 topics: one to forecast the demand, 5 topics that are tied to a specific physical
location or process in the terminal building (e.g., service counters, luggage handling, assignment of gates,
and so on) and one that models the whole terminal. Properly forecasting passenger demand is important
for planning purposes, affecting short to long-term decisions. More recent literature categorizes this under
strategic, tactical and operational decision-making [45, 65]. Strategic decisions are long-term design choices
for an airport under development. For example, this can be to determine the size of the terminal building
or the number of runways based on a prospected number of passengers. Furthermore, tactical decisions are
generally made in the medium-term. Examples of such decisions are the number of check-in counters or the
number of walk-through metal detectors at the security checkpoint. Finally, operational decisions are con-
cerned with actually running an airport. They therefore have a short-term character (e.g., crew scheduling).
According to Tosic [94], the passenger demand is commonly forecasted using traditional statistics. This in-
volves finding statistical relations between parameters and analyzing demand patterns over time. Of course,
several methods exist with varying degrees of difficulty. The findings are then extrapolated to future passen-
ger numbers, which in turn is used for strategic, tactical and operational planning.

The second category in the meta-study by Tosic [94] are the models for a specific physical location or pro-
cess in and around the airport terminal. While this is of course rather broad, most relevant to current research
are the methods concerned with modeling the flow of passengers. Therefore, other applications such as gate
assignment or the design of luggage transportation are not considered further. A notable finding is that the
vast majority of the methods intend to infer about the service quality of the processes, which is commonly
expressed in waiting times, lengths of queues, etc. Later research mentioned an ordinal level of service scale
from A to F, which goes from excellent service to a complete breakdown of the process from a passenger point
of view (e.g., see Table 1 in Andreatta et al. [6]). The scale can be applied to various terminal processes with
expected standards defined by IATA in their Airport Development Reference Manual [44]. Regarding passen-
ger flows, it is thus not surprising that queuing theory plays a big role in this category, as it allows for a direct
calculation of the characteristics that define a queue. In the development of the theory, scholars make an
important distinction between stochastic and deterministic approaches [74, 94]. The former incorporates
the random factors and uncertainties where terminal processes are faced with, such as human behavior. For
example, one never knows exactly when passengers arrive or how long a security check takes. Stochastic ap-
proaches are useful here because they can model processes with statistical distributions rather than specific
values. The options are manifold, but the meta-study by Tosic [94] mentions for example a Poisson distribu-
tion for passenger arrivals. Up to date, this is still very relevant as can be seen in the study of Mekic et al. [68],
where Table A.1 overviews the parameters and distributions of their model. To give an example, a Normal dis-
tribution is used for the time of the check-in process. Statistical distributions can be obtained by gathering
actual data of a process at the airport (for RTHA, see the analysis by Janssen et al. [52]). On the other hand,
deterministic approaches may also be used in queuing theory. These models do not contain any random fac-
tors, so under the same conditions, they will always have the same output values. Both approaches have their
advantages and disadvantages; stochastic models are generally closer to reality and therefore more accurate,
however, the downside is that they are more complicated compared to deterministic models. The purpose
of modeling is often not only to achieve high levels of accuracy, but also to use them for understanding the
underlying process [94]. Depending on the purpose, one can thus opt for one or the other approach.

Terminal processes are generally modeled in two ways: either analytically or through simulation — not to
be confused with the former discussion on stochastic or deterministic approaches [66]. In analytical models,
the relations between variables are expressed in an abstract and mathematical manner. Processes are thus
formulated with one or more equations. As a result, it is often possible to obtain exact solutions. The bene-
fit is that these models are very quick, precise and not overly complicated. However, this comes at the cost
of accuracy, as assumptions are required to construct the expressions in the first place [66]. An example of
analytical models are the methods from the field of operations research, such as an objective function which
trades off different units of cost under certain constraints to ultimately arrive at an optimal solution. Tosic [94]
mentions several applications in the design of passenger routes through a terminal building. Another exam-
ple is mentioned by Pao-Yen Wu and Mengersen [74], where stochastic programming is applied to model the
service time of a certain terminal process in order to estimate the optimal number of open desks (e.g., think



2.2. A Brief Overview of Existing Models and Related Work 37

of the check-in process). Alternatively, simulation-based models are different in the sense that they are not
made up of mathematical expressions. Instead, solutions are obtained in a numerical manner. The benefit is
that they are capable of modeling much more complex structures using less simplifying assumptions. Con-
sequently, this leads to more realistic and faithful solutions with a better conservation of a system’s emergent
properties. The downside, however, is its greater computational requirements, as many simulation runs are
required to cancel out numerical effects. In addition, they generally require more input data and information
about the underlying system, making them more intense to use [66]. The literature again discusses several
applications, like a Monte Carlo method for a simulation of the check-in process or an agent-based model to
simulate congestions at different locations in an airport terminal [74, 94]. So, as with the previous discussion,
scholars can choose between analytical or simulation-based approaches depending on their needs. When
sufficient information about the system is available in combination with a computational budget, one will
generally choose a simulation-based approach if the system entails a certain degree of complexity.

The last category in the study by Tosic [94] are models that aim to represent multiple processes simultane-
ously or even the entire terminal building. That is useful as it enables one to consider the system as a whole,
instead of isolating separate processes. In the end, they all contribute to the emergent properties of an airport
terminal. One thing which immediately stands out is that almost all examples are simulation-based models.
However, this actually makes sense as it can be rather challenging for analytical models to capture much of
the complexity associated with an entire sociotechnical system. The author discusses several applications in
the literature: from models that consider a particular flow (e.g., departure or arrival) to those for the entire ter-
minal. The benefit of the latter is that they take into account the interactions between different subsystems.
Indeed, terminal operations are interrelated with flight operations, ground handling, etc. Notwithstanding, it
is not always beneficial to consider as much from the system as possible. Scientists often make a distinction
between microscopic, mesoscopic and macroscopic models [66, 74]. This is particularly relevant for holistic
models, as it is a categorization based on the level of detail. Microscopic models entail high levels of detail,
even to the extent that passengers and their interactions are considered individually [74]. Moreover, this also
includes the interactions between passengers and the environment in which they find themselves. They are
therefore extremely useful if one requires accurate information about certain operational challenges [66]. The
opposite are macroscopic models. These models approach the issues from a higher level. In other words, they
are more aggregate, leaving out unnecessary details. The advantage is that they allow for a straightforward
but complete modeling approach, at the expense of accuracy [66]. Nonetheless, that is sufficient for many
applications: e.g., Manataki and Zografos [66] mentioned its use for strategic decisions that have a longer
horizon. The difference between microscopic and macroscopic models is however not black and white. Pao-
Yen Wu and Mengersen [74] mentioned mesoscopic models, which are situated in between. These models
still focus on higher level and more aggregate interactions, although they do so in more detail compared to
macroscopic models. For example, mesoscopic models do not consider individual passengers, but rather fo-
cus on the characteristics of the passenger flow itself. Such models are useful because they combine the best
of both worlds; i.e., they can be much more efficient than microscopic models without necessarily omitting
all the details. It makes them ideal candidates to plan operational processes [74]. For example, an optimal
number of available check-in counters can be determined by analyzing the characteristics of passenger flows;
mesoscopic models can easily distinguish between peak or off-peak traffic patterns. For this purpose, there
would be no need to consider passengers on an individual basis.

Besides a distinction at the level of detail, the more recent meta-study of Pao-Yen Wu and Mengersen [74]
provides a unique overview of existing models that are differentiated according to their use case. They iden-
tified four purposes, viz. models to plan the capacity of terminal processes, models to design the operations
behind it, models to evaluate security risks and models to assess the overall performance of an airport. In-
terestingly, this is where above discussions come together, as the categorization reveals quite clearly which
approach scholars prefer per use case. The capacity of terminal processes is usually modeled using analyt-
ical approaches, either stochastic or deterministic. When looking further into the models themselves, this
actually makes sense, because their purpose is e.g. to analyze the throughput of different layout options or to
evaluate the capacity of a hypothetical terminal process. Clearly, the models are used to make decisions about
longer-term planning issues — decisions with a strategic or tactical horizon. High-level analytical approaches
are seemingly sufficient to address these challenges. This is definitely not the case for models that are used in
operational design. Pao-Yen Wu and Mengersen [74] show that the vast majority of models in this domain are
agent-based. That is a microscopic or mesoscopic simulation approach which is able to model the behav-
ior of individual passengers with the interactions between them and the environment. Hence, agent-based
modeling is a very suitable approach if one requires detailed information on a certain terminal process, es-



38 2. Modeling Airport Terminal Operations

pecially if it is largely affected by human behavior. Third, stochastic approaches play a big role in evaluating
security risks. Since these tasks inherently involve a high degree of uncertainty, probability distributions are
useful to model vulnerabilities and threats to airport security. According to the meta-study, the models are
applied in the evaluation of risk assessment tasks and in the development of airport security policies. The
final purpose of use was to measure the performance of passenger terminals. Models in this category have
not been discussed extensively before because they are rather different from the others. That is, subjective
input data might be required to measure the satisfaction of passengers about an airport terminal. An elab-
orate review study on this topic was done by Zidarova and Zografos [110], who indeed made the important
distinction between objective and subjective methods, but also between a combination of both (i.e., hybrid).
Nevertheless, objective approaches in this domain are rather scarce. An example of such a method is extract-
ing the aforementioned level of service standards from IATA [44]. They are objective because they measure
the performance of terminal processes based on e.g. available space, occupancy, waiting times in queues,
etc. These insights are certainly helpful, although they fail to capture the perception from the passengers’
perspective. This problem is solved by using subjective or hybrid models — they do take into account data
such as surveys with Likert scales, qualitative insights from interviews, etc. The models then translate the
subjective data into meaningful performance metrics. For fully subjective models, this is usually done with
traditional statistical tools (e.g., regression to assess key drivers) [110]. Hybrid approaches are more compli-
cated because of a generally different objective for which the models are used. While subjective approaches
infer about passengers satisfaction, hybrid ones aim to analyze passenger perception in an objective manner
so that the results can be fed back to the prescribed levels of service. In that sense, their task is to identify the
boundary values on subjective scales and convert them into objective service levels [110].

With that, we touched upon the main directions and approaches of airport terminal modeling in the liter-
ature. Summarizing this section, Table 2.1 lists the main dimensions from the discussion by which the models
can be classified. Note that the overview is not necessarily exhaustive, although it contains the most impor-
tant ones. It is clear that a lot of research has been done on the topic and that it is still ongoing. Especially the
review by Pao-Yen Wu and Mengersen [74] has had a great influence on recent work. Their recommendations
for future model development have been widely used ever since. For example, Nõmmik and Antov [73] used
these insights to create a capacity model of a local airport in Estonia, while Alodhaibi et al. [4] designed a
framework to simulate passenger flows of an international airport in Australia. More recently, albeit still in
line with the trends of the meta-study, Janssen [47] have developed a versatile agent-based simulator that al-
lows highly detailed modeling of airport terminal processes. Agent-based models became especially relevant
as computing power is increasing, giving researchers the opportunity to create simulators that are meticu-
lously close to reality. Since this model will form the backbone of current research, the following section 2.3
further elaborates on its details and working principles.

Table 2.1: Main dimensions to categorize airport terminal models.

Process Nature Horizon Detail Usage Input Uncertainty

Check-in Simulation Strategic Macroscopic Capacity Subjective Stochastic

Gate assignment Analytical Tactical Mesoscopic Operations Objective Deterministic

· · · Operational Microscopic Security Hybrid

Combination∗ Performance

Ref. [94] [66, 94] [45, 65] [66, 74] [74] [110] [94]
∗Combination refers to models that are made up of multiple terminal processes

2.3. The AATOM Simulator
At its core, AATOM is built on the philosophy and principles of agent-based modeling. Subsection 2.3.1 there-
fore introduces the general concepts of this modeling technique. Subsequently, the architecture and funda-
mentals behind the agent-based airport terminal operations model are explained in subsection 2.3.2. Lastly,
subsection 2.3.3 provides an overview of the model’s input and output parameters, as these will play a key
role in the current research.



2.3. The AATOM Simulator 39

2.3.1. Agent-based Modeling
Fueled by increasing computational power, agent-based modeling — often abbreviated as ABM — has re-
ceived quite a bit of academic attention in recent years. That is largely because it features some unique ca-
pabilities that cannot be achieved with more traditional approaches, some of which were touched upon in
previous section 2.2. In essence, ABM is a microscopic bottom-up approach used in the discrete simulation
of complex heterogeneous dynamical systems, which often involve a large degree of stochasticity [12]. Go-
ing into further detail, ABM is microscopic because actors are modeled on an individual basis, whereby they
make decisions and perform actions independently of one another [64]. They come in different forms and
internal states, making ABM a heterogeneous method. The actors operate in a certain environment where
they interact not only with each other, but also with the environment [64]. The result of the interactions is
that the emergent properties of the system naturally appear from the dynamics and this is rather unique.
These properties can seldom be captured by traditional statistics and mathematical approaches [12, 17]. As
ABM is one of the few approaches that can do so meticulously close to reality while remaining flexible, it is
the epitome of modeling complex sociotechnical systems and its corresponding dynamics. Moreover, it will
come as no surprise that the origin of the method lies in the simulation of human behavior and social inter-
actions, which is known for its complexity, irrationality and stochasticity [17]. Note that the simulation part
is an important aspect here; having the model is one thing, the statistics are only revealed a posteriori. The
characteristics of the system are thus not known beforehand [60]. The main steps in the ABM process are
therefore first to create the model, then to run the simulation and finally to obtain the outcome in order to
draw conclusions about the underlying system. In practice, the simulation is performed along a discrete time
dimension, although the difference between successive steps is generally so small that it differs not much
from the continuous time [17]. Lastly, ABM was said to be a bottom-up approach. That is because it starts
with modeling the individual actors in a certain environment. Eventually, their simulated actions and inter-
actions lead to a sociotechnical system with emergent properties. So what actually happens is that the overall
system is modeled and analyzed starting from its smallest element. To frame it in the words of Crooks and
Heppenstall [17, p. 101], "local phenomena are understood and measured at a global level".

There are three main components in ABM: an environment, agents and their interactions [102]. The
coherence between the three is depicted in Figure 2.4. In the environment, there are agents — technical
jargon for the actors in a system — that have heterogeneous cognitive properties. This gives them the tools
to make autonomous decisions, enabling them to perform actions based on a particular goal they want to
achieve. This is facilitated by protocols so that they can interact and communicate during their journey, both
with each other and with the environment [64]. Their intelligence also allows them to actively act and react
to what is going on. In other words, they do not bluntly pursue their goals without considering the situation
in the environment around them. These behavioral rules, typically in the form of mathematical expressions
and if-then statements, are established based on the insights about the actual actors in the system, which
may be obtained through the analysis of data, scientific publications, field experts, and so on [17]. Finally,
the environment represents the space where the agents interact and try to achieve their goals [102]. This is
generally the physical location of the underlying system. So in the case of an ABM for outbound passengers
at an airport, the environment would be the terminal building with all of its furniture and equipment.

Lastly, the advantages of using ABM are compared against its disadvantages. The extent to which schol-
ars are harmonious on this, is rather striking. They mention three main benefits, namely ABM’s ability to
catch the emergence of a complex system, its flexibility throughout the modeling process, and its natural
bottom-up approach to build a larger whole out of a coherence between several small parts [12, 17, 64]. Con-
versely, the main drawbacks are the following. Firstly, it remains challenging to incorporate all psychological

Agent

Environment

Agent

Interaction

Figure 2.4: The three components of agent-based modeling [based on theory from 102].



40 2. Modeling Airport Terminal Operations

elements of human behavior. Another challenge is to find the right balance in the level of detail which is
relevant to consider. Finally, it needs high computational demands due to its microscopic nature [12, 17].
Nonetheless, according to the argumentation in Bonabeau [12] and Macal and North [64], ABM remains a
very attractive modeling approach when a system has the following characteristics. Most importantly, it is
trivial that agents and their interactions must play a key role in a complex environment. Especially if the in-
teractions are difficult to understand and non-linear, ABM excels compared to other methods. Second, the
same holds when the heterogeneity of agents is an important factor to take into account. Similarly, when
the actions of agents are dynamic and can suddenly change based on certain events happening in the en-
vironment, scholars recommend to use ABM. Altogether, it proves to be an excellent method when one is
interested in modeling a sociotechnical system. There are a myriad of examples in the literature, of which
some are to model people’s behavior in financial markets, crowd control, consumer behavior, the analysis of
flows, and so on [12, 64]. Moving back to the scope of current research, modeling passenger flows in airport
terminals would be a textbook example where the application of ABM is appropriate.

2.3.2. Model Architecture
It is now clear that airport terminals can be called sociotechnical systems which are rather challenging to
model due to their inherent complexity. With this in mind, AATOM was developed from the notion that
there is a lack of accessible simulation models. Existing options are not accurate enough, too generic, too
difficult to use or their source code is not openly available [51]. Therefore, Janssen [47] created AATOM — a
model specifically for the agent-based simulation of airport terminals. It is designed with an object-oriented
philosophy, allowing scientists to easily model the associated passenger flows. This makes it a very versatile
tool, as it can be completely adapted to any set of requirements. One of its main features is that it contains
prebuilt components of the terminal, such as check-in desks or a security checkpoint [51]. Consequently,
based on a few building blocks, the layout of an entire terminal can be built with just a few lines of code.

AATOM focuses mainly on the departing passenger flow. In accordance with Figure 2.2, the most impor-
tant elements are the check-in, the security check, passport control and a set of discretionary activities [48].
The latter concerns the non-aeronautical activities that are not mandatory for passengers to catch a flight; so
this includes shopping, dining, using restrooms, etc. As always, creating a model also means that a number
of assumptions are necessary, as listed by Janssen et al. [48, p. 35]. The overview is self-explanatory so there
will not be gone into detail, but one example is that passengers are always traveling alone. The assumptions
and their respective effects should be kept in mind when using the model. Furthermore, a big advantage
is that AATOM and its components are calibrated and validated with real data gathered at airports [46, 51].
This is important because it ensures that the outcomes of a simulation are close to those in reality and it
gives the model validity. Since its development, the model has shown its capabilities in various studies. Some
recent examples include Janssen et al. [50] on the relationship between checkpoint security and efficiency,
Janssen et al. [49] on the management of airport security risks and Mekic et al. [68] with an analysis on the
non-aeronautical activities and their impact on terminal operations.

The architecture of AATOM is now further explained with information from the technical report by Janssen
et al. [48]1. The description consists of three parts according to the three main components of agent-based
modeling. Namely, the environment, the construction of the agents themselves and their interactions. Fi-
nally, as the model has been further developed since its introduction, the recent updates are also discussed.

The Environment
As one would expect, the environment contains all elements of an airport terminal. AATOM defines three
objects in this environment, viz. a flight, an area and a physical object. We readily stress on the fact that these
objects are not necessarily tangible parts of the terminal. For example, a flight does not exist physically, but
is rather an abstract element in the system. The three objects are now discussed in respective order.

Traffic at airports is provided by flights. While AATOM allows for both departing and arriving flights, cur-
rent research focuses on the outbound flow. Each flight leaves at a certain time with a specific number of pas-
sengers from a predefined gate at the airport. Flights are managed by the operators behind allocated check-in
desks in the public area of the terminal. Which ones exactly and the number of desks is also predetermined.
Note that AATOM sees the flight details and planning as is — it is thus an input of the model.

The second object of the environment is an area. As in reality, an airport terminal consists of several
functional areas. These are modeled as two-dimensional bounded surfaces and can be seen as containers

1For the sake of readability of the literature review, it is not constantly cited, but all information about the architecture of AATOM is
obtained from the technical report, unless stated otherwise.



2.3. The AATOM Simulator 41

Open area

Secure area

Entrance area

Check-in area

Checkpoint area

Facility area

Gate area

Border control area

Arrival area

Queuing area

Figure 2.5: Functional areas in AATOM and their mutual relations [based on information from 48, 68].

for designated subareas or physical objects. Essentially, the areas represent the ’world’ of the agents in which
they interact and perform actions. AATOM knows 10 different areas which are are depicted in Figure 2.5
together with their mutual relations — they can overlap. The visualization should be read from left to right,
starting with a distinction between the open and the secure area. Figure 2.1 introduced them as respectively
the public and the restricted area. The difference between the two is explained in section 2.1, so they will
not be discussed further here. The open area must consist of an entrance, a check-in and a checkpoint area.
The entrance is the place in the terminal where outgoing passengers arrive and incoming passengers leave.
Hence from the perspective of AATOM, it defines the agent generation and removal place of the system. The
check-in area is explained with Figure 2.2: passengers who have not checked-in online before arriving at the
airport should do so at the counters in the open area. Passengers can access the secure area by going through
the checkpoint for a security check. This process is also elaborately described in section 2.1. Facility areas
can be present in the open area, but that is optional and depends on the layout of the airport. These are the
places where discretionary activities take place (e.g., shopping, dining, restrooms). Furthermore, the secure
area must consist of a gate and an arrival area. They are in fact the inverse of the entrance. Namely, these
are the respective places in the terminal where outbound passengers are removed when their flight departs
and inbound passengers are generated when their flight arrives. If an airport facilitates international (or non-
Schengen) flights, there is also a border control area to check passengers’ passports when entering or leaving
the Schengen area. Again, facility areas may be present in the secure area, although it is optional and depends
on the layout of the airport. The last functional area in Figure 2.5 is where passengers queue up. They await in
queues until they can be assisted at the checkpoint, check-in counters, border control, facilities or the gate.

The final object of the environment are physical objects. This is a broad term which represents all physi-
cally existing elements in the airport terminal. Every object has at least three properties: whether it is a sen-
sor, whether it is transparent and whether it is blocking. Sensors enable security officers to detect dangerous
goods or illegal items at the security checkpoint. AATOM knows three different sensors, viz. an X-ray sensor,
a walk-through metal detector (WTMD) and an explosive trace detector (ETD). Respectively, they observe the
threat of passengers’ carry-on baggage, the presence of metal and whether there are particles of explosives.
Furthermore, the transparency property determines whether agents or sensors can observe through a cer-
tain object. For example, this is not possible for a wall in the building, while it is possible for seats. Third,
the blocking property of an object determines whether agents or other physical objects that block can have
the same position within the passenger terminal. Apart from the earlier discussed sensors, the technical re-
port mentions belts, queue separators, seats, walls, desks and luggage as existing physical objects in AATOM.
The latter is somewhat special; it has three additional properties, namely a level of threat, its complexity and
whether it is carry-on or checked baggage for the aircraft’s cargo hold.

Now that all elements of the environment have been explained, Figure 2.6 shows what the terminal layout
of Rotterdam The Hague Airport looks like in AATOM. When passengers arrive at the airport through the
entrance (A), they are in the public area (B). Those who have not checked-in online, can do so at the check-
in counters (C) after waiting in the designated queues (I). Thereafter, all passengers can continue via other
queues (J) to the security checkpoint (D) to access the restricted area. This area is split up into a departure
hall (E) and an arrival hall (F). The arrival hall is not further developed as the research focuses on solely the
outbound passenger flow. The departure hall has gates 1 to 6 for flights with destinations in the Schengen



42 2. Modeling Airport Terminal Operations

area and gates 7 to 11 for flights outside the Schengen area (the numbers on the map correspond to the gate
numbers). All gates have seats where passengers can wait. To access the latter gates, passengers should go
through border control to have their passports checked (G). Along the journey, passengers are free to make
use of the facility areas for non-aeronautical activities (H). Note that the markings are not exhaustive, but
rather are illustrative to clarify the main features of the map. Finally, we emphasize the similarity of the
departure hall with the actual one of RTHA in Figure 2.3. Only the length of the security check queue (J) is
exaggerated, but that is to accommodate all passengers in the queuing area as they could otherwise cause
congestion. This would lead to spurious results and is therefore avoided by lengthening queues.

A A

B

C

D

E FG

12345678

9
10

11

H

H

H
H

H

H

H

I

J

Figure 2.6: Modeled terminal layout of RTHA in AATOM [partly based on information from 51].

Agents
Agents are the key players in the environment. Three types can be defined in AATOM: passengers, operators
and orchestrators. The former is trivial, operators are generally the employees in the terminal (e.g., secu-
rity officers, check-in staff, cashiers, etc.) and orchestrators help with coordinating and monitoring (e.g.,
employees who open or close check-in counters). Agents have certain goals on which they act and interact
accordingly. Behind their reasoning is a three-layer hierarchical architecture, allowing AATOM to realistically
model human behavior. The architecture is visualized in Figure 2.7, which is now discussed in more detail
with the operational, tactical and strategic layers2 respectively.

The operational layer is at the bottom of the structure and is directly involved with fellow agents and the
environment. Two modules are part of the layer: viz. the perception and the actuation module. The first
is occupied with the perception of information. Essentially, the observations of an agent are collected and
form the input of the model. The module then feeds this information to the tactical layer above. Secondly,
the actions of an agent are executed by the actuation module. That is the model’s output. For this, the tac-
tical layer gives specific instructions. The type of actions can be broad, such as walking3 or communicating.
An important note is that not all agents can do the same observations or actions. For example, passengers
cannot check-in themselves at the airport counters, only an operator agent who is responsible for the check-
in process can do so. This is, inter alia, what introduces the heterogeneity between different agents in the
system — just like in reality.

The tactical layer is in between the other two. It consists of four modules mainly concerned with inter-
preting perceptions, having a belief, navigating in the environment and setting out a sequence of activities.
The information from the operational layer goes to the interpretation module, which interprets an agent’s
perceptions in collaboration with the belief module. Meanwhile, the belief module aligns itself with the in-
terpretations if inconsistencies are noticed. So, in addition to feeding information to the strategic layer, the
belief module is essentially a memory. It remembers an agent’s characteristics, interpretations, activity states,
action states and a plan from the strategic layer, which together make up the belief. Furthermore, the remain-
ing two modules of the tactical layer use this information. On the one hand, the activity module combines

2As operators execute single activities rather than sequences (like passengers), a strategic layer is redundant and thus omitted for them.
3It is not explained further due to the scope of current research, but the walking of agents and how it is affected by others around them

has been modeled on the basis of social forces using the research of Helbing et al. [40]



2.3. The AATOM Simulator 43

Figure 2.7: Architectural layout of agents in AATOM [48]. They operate as follows. Observations are perceived and interpreted, allowing
agents to reason so that their activities can be set. Ultimately, this leads to the actuation of specific actions.

the belief with input from the strategic layer to determine which activities an agent should perform. These
are then passed to the operational layer for actuation. The technical report lists various activities that op-
erator and passenger agents can carry out. They are not covered here, but some examples are the check-in
activity for outbound passengers, shopping activity for incoming and outgoing passengers, passport control
for security officers, etc. On the other hand, the navigation module combines the belief with input from
the activity module to navigate through the airport terminal. In line with the assumptions of the model, the
navigation module provides the shortest path to an agent’s target. Of course, this path must be free of any
blocking objects in the environment. AATOM realizes this with the pathfinding algorithms of Cui and Shi [18]
and Harabor and Grastien [36]. In addition, it is interesting to mention that agents can detect when they get
stuck. If so, they will try an alternate route to their target.

The strategic layer is at the top of the architectural layout. Its main tasks are to define the goal of an agent,
have a belief and do the necessary reasoning. The goal module contains the set of activities an agent wishes
to accomplish. They are sequenced (e.g., outbound passengers must complete check-in before proceeding
to security) and may be time-bound (e.g., outbound passengers aim to finish the gate activity before their
flight’s departure time). As in the tactical one, the strategic layer also has a belief module, albeit at a higher
level. It only memorizes and updates an agent’s interpretations, activity states and plan. There is mutual com-
munication between the belief module and the goal module, the tactical layer and the reasoning module. In
turn, the latter consists of three sub-modules: the analysis, planning and decision-making modules. The first
one examines an agent’s current state. Based on that, the module decides whether a new plan or a decision
is required. If so, this is communicated accordingly to the respective modules. A plan is essentially a list of
activities that corresponds as closely as possible to the activities in the goal module. If any, the remaining
degrees of freedom are covered by the decision-making module. For example, that is to select a queue for the
check-in counters if there are multiple options. Such choices are not part of the planning module.



44 2. Modeling Airport Terminal Operations

Agent Interactions
The final component of the agent-based model is that agents can interact with the environment and with
one another. Accordingly, two types of interactions are defined in AATOM. First, operator agents are respon-
sible for handling and guiding the passengers through specific activities in the terminal. In a sense, they
are the connection between a passenger and the environment. Hence, only the operators interact with the
environment; passengers do not. The technical report mentions two instances, namely check-in agents man-
aging flights and security officers using sensors. The second type are interactions between agents themselves.
Mostly, that are operators interacting with passengers during the activities in the terminal. There are several
examples, including border control checking passports, check-in agents checking-in passengers, security of-
ficers carrying out additional baggage checks, etc. Nevertheless, operators can also interact with colleagues.
A good example is at the security checkpoint: if the X-ray operator finds a certain baggage suspicious, it orders
another security officer to further examine the baggage for any illegal items.

The interactions of operators and passengers have been explained, but the discussion about agents in
AATOM also mentioned a third type for coordinating and monitoring. Orchestrators are special because,
depending on their goals, they can interact with just about everything. It really comes down to their tasks.
To give an example, if an orchestrator manages the security checkpoint, it interacts with the environment to
open or close lanes.

Further Development of the Model Architecture
After the introduction of AATOM by Janssen [47], it has been further developed ever since. In the meantime,
the model is extended in two main directions. On the one hand, there is the version of Köstler [57] and van der
Horst [95], which primarily focused on the profound improvement of the airport’s checkpoint. Moreover, they
added multiple configurations of alternative security screening setups to enhance the versatility of AATOM.
On the other hand, Mekic et al. [68] expanded the model more holistically. They particularly improved the
possibilities to integrate non-aeronautical activities in the simulations, although the cognitive behavior of
agents was also further developed. Namely, they added basic traits and emotions to the architecture in Fig-
ure 2.7. To briefly explain the update, it leads to the reasoning module in the strategic layer being affected by
both the belief module and an agent’s emotions, which in turn are steered by the traits [68]. Logically, this has
an impact on the other layers, and therefore on the overall cognitive behavior. In line with the arguments in
section 2.1 why we opted for RTHA as the experimental layout, it makes sense to select the latter alternative
by Mekic et al. [68] for our research. Up to date, it is the most advanced version of AATOM to simulate the
operations of an entire passenger terminal.

2.3.3. Input and Output Parameters
Now that the architecture of the model is clear, the input and output parameters of the model are discussed
as they will play an important role. First of all, we emphasize the fact that AATOM was created as a versatile
tool. This means that essentially everything can be customized and adapted to the requirements of the user.
Consequently, a full list of all parameters would be too comprehensive and complicated. AATOM solves this
cleverly by defining calibrated presets (e.g., the distribution of the time needed for checking-in at the airport
counters) [51]. For most of these settings, the standards will be used. That is justified as the purpose of current
research is more to look at it from the airport managing perspective. It involves, for example, examining the
relation between the number of open lanes at the security checkpoint and the average waiting time for pas-
sengers in the queue, and so on. An overview of the relevant input parameters is listed in Table 2.2. They are
retrieved from the source code of the AATOM version that was developed by Mekic et al. [68]. Generally, there
are two types of input parameters; those related to the flight schedule and those related to the airport strat-
egy. Gatet and Paxt belong to the former type, and essentially determine how many passengers depart from
which gate at what particular time. The other three belong to the latter, which defines how airport managers
intend to operate the terminal. It includes the strategic deployment of staff and the settings of the call-to-
gate system. More elaborate explanations are given in the table, though there is a small remark regarding the
parameters of the flight schedule. While it seems that Gatet and Paxt are the only two inputs, notice that they
are defined for every available time slot t regardless of whether a flight is actually planned. In other words, if
an airport has 6 available time slots in a given time frame, AATOM requires 15 input parameters — 6 times 2
parameters for the flight schedule and 3 parameters to determine the aforementioned strategy.

Finally, similar to the input, the output parameters are listed in Table 2.3 along with an explanation. They
are also retrieved from the source code of the AATOM version by Mekic et al. [68]. In principle, these pa-
rameters are key performance indicators (KPIs) because they provide insights into how the airport terminal



2.3. The AATOM Simulator 45

handles its passengers. The KPIs can be divided into three categories: those for the check-in process, those for
the security checkpoint and the more generic ones. On the one hand, the first two categories have indicators
for the average queuing time and the throughput. On the other hand, the generic ones are the average time to
reach a gate, the number of missed flights and the total expenditure of passengers during non-aeronautical
activities. A last note is that AATOM allows to define and extract any KPI that a user needs. Also in this regard,
it is a versatile and flexible tool. Nonetheless, the standard indicators from Table 2.3 give a good overview
of the terminal performance. No other KPIs will be defined as they are considered sufficient for the current
research.

Table 2.2: Relevant input parameters to define simulations in AATOM.

Input parameter Unit Explanation

Gatet [-]

An integer indicating from which gate the flight on time slot t is sched-
uled to depart. It can range from 0 to 11, in accordance with the layout of
RTHA from Figure 2.3 and Figure 2.6. Recall that gates 1 to 6 correspond
to flights with a destination inside the Schengen area and vice versa for
the other gates. If it is 0, no flight is scheduled on the time slot.

Paxt [#]
An integer indicating how many passengers are traveling with the flight
on time slot t . It is strictly positive, bound by the maximum capacity of
the aircraft. If it is 0, no flight is scheduled on the time slot.

CTGstrategy [s]
A positive real number that determines the time when passengers are
called to their gate prior to the departure time. It represents the airport’s
call-to-gate (CTG) strategy [68].

CIstrategy [-]
An integer that determines the number of open check-in counters over
time. It represents the airport’s check-in (CI) strategy. An orchestrator
agent couples the number with a predefined strategy [68].

SCstrategy [-]

An integer that determines the number of open lanes at the security
checkpoint over time. It represents the airport’s security check (SC)
strategy. An orchestrator agent couples the number with a predefined
strategy [68].

Table 2.3: Relevant output parameters from the simulations in AATOM.

Output parameter Unit Explanation

AvgQueueTimeC I [s]
Indicates the average time that passengers wait in a queue until they can
be served at an available check-in (CI) counter.

AvgQueueTimeSC [s]
Indicates the average time that passengers wait in a queue until they can
be served at a security checkpoint (SC) lane.

AvgTimeToGate [s]
Indicates the average time it takes passengers to get to their gate. It is
counted from the moment they arrive at the airport.

PaxCompletedC I [#]
Indicates the total number of passengers that have completed the
check-in (CI) activity at the airport counters (i.e., the throughput).

PaxCompletedSC [#]
Indicates the total number of passengers that have completed the secu-
rity check (SC) activity at the checkpoint (i.e., the throughput).

NumMissedFlights [#]
Indicates the total number of passengers who could not reach their gate
at the time of departure.

TotalExpenditure [e]
Indicates the amount of money that all passengers together have spent
during their non-aeronautical activities [68].





3
Surrogate Modeling

Now that the state-of-the-art models for airport terminals have been explained, this chapter examines the
possibilities for surrogate modeling. Section 3.1 introduces what exactly it is and why it is useful. Moreover,
a theoretical framework is also provided with the typical steps. Each of them is then further explained in a
separate section. Respectively, section 3.2 discusses several methods to generate samples from AATOM, sec-
tion 3.3 compares commonly used black-box algorithms for surrogate modeling, section 3.4 reviews various
strategies for tuning the hyperparameters and section 3.5 elaborates on validating the surrogates. Finally, all
theory is synthesized in section 3.6. This section presents the ultimately selected methodology for current
research.

3.1. An Introduction to Surrogate Modeling
The previous chapter pointed out that the simulation of airport terminals using agent-based models has ad-
vantages that cannot be achieved by other approaches. The microscopic approach allows a detailed modeling
of the complex sociotechnical system while preserving its emergent properties. While this is generally con-
sidered a good argument for using agent-based modeling, it is also its greatest weakness — scholars continue
to push the boundaries despite currently available technology [76]. Indeed, the higher the level of detail,
the greater the computational cost. This problem becomes especially apparent when the model is used for
analysis, optimization or design tasks. They are inherently computationally expensive because a broad input
parameter space easily leads to the so-called ’curse of dimensionality’ [60]. To illustrate this with a straight-
forward example, if one were to test 4 parameters with 10 possibilities each, a serial process would take more
than 27 hours when a single simulation run lasts 10 seconds. It proves the need for a different approach: what
if scholars are willing to give up some of the accuracy in turn for a much faster algorithm? Going back to
previous example, if a single simulation run now takes only 0.5 seconds instead of 10, the total process would
reduce to a mere 80 minutes.

Above reasoning is one of the main arguments for surrogate modeling, which is the art of fitting black-box
functions between the input and output of an original model in an attempt to accurately mimic its behavior
[11, 28]. The benefit is that, once a meta-model is trained, it can approximate the output at a fraction of the
computational effort that would otherwise be required. Hence, surrogates are fundamentally subject to a di-
chotomy between savings in computational time and their level of accuracy. In other words, as long as the
reduced computational time justifies a certain lower level of accuracy, they can be a viable alternative to the
original approach [28, 78]. The concept of surrogate modeling is not new and knows several applications in
engineering: e.g., Forrester et al. [28] mentioned structural analysis, computational fluid dynamics, geostatis-
tics, etc. More recently, it is also finding its way to emulate agent-based simulation models, as demonstrated
in the meta-study by Pietzsch et al. [76]. De Leeuw [20] followed the trend and was the first to apply meta-
modeling specifically to the AATOM simulator. The proof of concept showed that it was possible to create
surrogates with an accuracy of 93% on average. While these results are certainly promising, there were also
challenges. For example, the model encountered difficulties predicting the number of missed flights where
the accuracy dropped to 83%. This leaves room for improvement and uncovers a first gap in the existing aca-
demic knowledge: to what extent can the current accuracy of the surrogate models be improved? Possible
research opportunities include testing different black-box functions, using different sampling methods or re-

47



48 3. Surrogate Modeling

vising the performance metrics. If successful, this will advance the capability of emulating airport terminal
processes, which results in remarkably faster algorithms without compromising too much of the accuracy.

Surrogate models are mainly used in two research areas. On the one hand they provide a better under-
standing of the underlying system, on the other hand they ensure a more efficient process optimization and
design [55]. The former is useful as it helps to explain specific model behavior and why certain outcomes
are the result of predefined scenario settings in a simulation. The ultimate goal is to fully comprehend the
dynamics of a system. This can be realized in various ways. For example, as surrogates are much faster than
the original model, one can perform extensive analyses to gain insights into the sensitivity, feasibility, uncer-
tainty, robustness, if-then rules, and so on [11, 14, 23, 55]. Moreover, a thorough comprehension makes it
easier to visualize properties and relations between parameters. An example from the literature is the study
by Elshawi et al. [25] who reviewed several methods to interpret and visualize machine learning models. Us-
ing both global and local techniques, they managed to gain detailed insights into the relationships between
several variables to assess people’s risk of hypertension. Next to this, another important reason is the cre-
ation of less complex models. While it is true that sophisticated algorithms can generally capture trends and
patterns that are often too difficult for simpler methods, a thorny issue for scientists remains the poor under-
standing of how exactly they arrive at their solution. For example, Belle and Papantonis [10] openly question
if we can really trust them or could the results perhaps be spurious? It was the main motivation of Kuttichira
et al. [58] and Nóbrega and Marinho [72] to create surrogates that are less complex than the original models.
They demonstrated the usefulness of comprehensible decision trees and linear regression, respectively. With
that, a second gap in the literature is the application of system understanding techniques on the AATOM sim-
ulator. That is especially relevant as the research of De Leeuw [20] mainly focused on the proof of concept.
Consequently, the system understanding research area remained largely untouched. The author did a pre-
liminary analysis into the variable importances of a random forest regressor. However, given the possibilities
of surrogate modeling in other applications, it quickly becomes clear that there are many more techniques
that can be applied. Therefore, the main backbone of current thesis will be to attain a better understanding of
the complex operations in airport terminals. Chapter 4 is devoted to this research area and reviews the most
promising methods from the academic literature.

The second research area is the usage of surrogate models for optimization and design tasks. Evidently,
such tasks often involve large parameter spaces, thereby requiring a lot of resources and time which may not
always be available. Access to efficient and faster models provides engineers and managers, among other
stakeholders, with more powerful tools. That is, more calculations can be done in less time. Some examples
of this area in the literature are Song et al. [91] with the structural design for crashworthiness and Wang et al.
[99] who optimized the power density of fuel cells. Despite the great potential and practical relevance of this
direction, the scope of current research is limited to the system understanding area.

To conclude the introduction, Figure 3.1 depicts the general steps of the surrogate modeling process
[14, 28, 78]. The first step is to determine the design of experiments (DOE). One should choose a sampling
strategy that extracts as much information as possible from the computationally expensive model with as few
data points as possible. Promising strategies are further discussed in section 3.2. Then, when the samples are
available, one can train and optimize the meta-models. Although in practice, training and optimizing algo-
rithms often go hand in hand, their theory is explained separately for the sake of clarity. Section 3.3 reviews
commonly used abstraction algorithms with their advantages and disadvantages, while the hyperparame-
ter optimization approaches are discussed in section 3.4. An important note is that previous steps are not
necessarily sequential, it depends on the DOE — hence the feedback loop in Figure 3.1. For example, active
learning strategies exist that iteratively sample, train and optimize surrogates until a certain stopping crite-
rion is reached. Possible criterions are the available computational budget or the accuracy of the emulator.
Finally, it is crucial to properly validate the meta-model. The details are explained in section 3.5, but this
mainly involves comparing the output of AATOM and the surrogate using appropriate validation metrics,
such as for example the coefficient of determination or the root-mean-square error. Logically, it is important
to do this with an untouched test sample to avoid fallacious conclusions.

Sample from the
computationally
expensive model

Train and optimize
the meta-model

Validate the meta-
model

Figure 3.1: High-level framework of a typical surrogate modeling process [based on information from 14, 28, 78].



3.2. Design of Experiments 49

3.2. Design of Experiments
The design of experiments (DOE) is the first important step of surrogate modeling. Essentially, the process
is concerned with creating a training sample for the meta-models. This is achieved by collecting data across
the domain of the expensive model [61]. It makes sense that the sample should contain as much statistical
information as possible — a surrogate cannot be expected to have more knowledge than the information it
has been trained with. Therefore, this section explores promising sampling methods. The goal is to select a
feasible method that extracts the maximum amount of information with the smallest possible sample of data.
After all, it remains intensive to run simulations on AATOM.

Quite a bit of research has been done in this area because of its importance. As a result, there are nu-
merous approaches to design the experiments, each with their pros and cons. A general overview of how the
methods are usually categorized is shown in Figure 3.2. The theory is retrieved from the recent meta-studies
by Liu et al. [61] and Fuhg et al. [32]. In essence, scholars distinguish between one-shot and sequential ap-
proaches. The former is the simplest: the sample is collected all at once and hence the name ’one-shot’ [61].
It does not take into account any available knowledge. Figure 3.3a visualizes how the method could look like
in practice. A number of input values are determined across the domain (indicated by the red dots), which are
then fed to the expensive model to calculate the corresponding output. That way, a sample can be obtained.
The benefits are that it is relatively easy to implement and the input values can be chosen in such a way as
to avoid errors dedicated to randomness [100]. However, the one-shot sampling approach tends to focus on
the boundaries of the domain. Depending on the goal, this may not necessarily be a problem, although it can
lead to missing regions of interest on the inside [61]. The phenomenon is clearly visible in Figure 3.3a, where
the so-called region of interest is the dark area located in the upper left corner.

On the other hand, there are the sequential approaches. As the name implies, data is collected sequen-
tially, as opposed to the one-shot methods. This involves an algorithm that interprets the already gathered
knowledge in order to grow the sample in a smart way [61]. There are multiple approaches to achieve this; the
literature divides them into two categories. The first one are space-filling methods. They have the property of
selecting data points as such to avoid gaps in the domain or in other words, they provide a better spread [32].
The working principle of space-filling DOEs is visualized in Figure 3.3b. What typically happens is that they
enrich the samples by iteratively collecting new data using a space-filling criterion. For example, the red dots
in the picture indicate an initial sample, to which the purple triangles are added in a sequential manner. No-
tice that this method fills the domain better, allowing it to capture more of the region of interest. Space-filling
approaches are widely adopted for surrogate modeling purposes [11]. Despite being slightly more compli-
cated than one-shot approaches, they are valued for their dispersal ability, leading to the efficient and robust
creation of high-quality samples [61]. Nevertheless, there exist even more efficient approaches. One-shot and
space-filling DOEs fail to utilize information from the surrogates themselves. While one can have the most
dispersed sample, this does not necessarily guarantee the best possible performance of the meta-models.
That is why adaptive sampling has received a lot of academic attention in recent years [32]. We describe it
as the process where an algorithm iteratively samples in the regions from which a surrogate model benefits
the most. Hence, it is also known as ’active learning’ because an emulator is trained simultaneously [61]. The
notion is that with the same or even a smaller sample size, adaptive approaches should outperform the other
two because data points are selected in such a way as to maximize the accuracy of the meta-models. In addi-
tion, it might even lead to a reduction in computational requirements for the sampling process [61]. There are

DESIGN OF EXPERIMENTS

One-shot Sequential

Space-filling Adaptive

Figure 3.2: Categorization of the most com-
mon sampling approaches for the DOE
[adapted from 32, 61].

(a) One-shot. (b) Space-filling. (c) Adaptive.

Figure 3.3: Visualization of the three sampling approaches [inspired by 32, 61].



50 3. Surrogate Modeling

several ways to identify these regions of interest, an example might be to select the point where the model has
the greatest uncertainty. Figure 3.3c visualizes how adaptive sampling could look like in practice. As for the
space-filling approach, an initial sample is collected first (see the red dots). However, this time the surrogate
model is already trained with the initial sample. Then, the region with the largest uncertainty is evaluated
by means of an acquisition function [8]. Using this information, the active learning algorithm selects a new
data point after which the process is repeated until a stopping criterion is reached (see the purple triangles).
Clearly, the adaptive sampling approach focuses more on the darker area — the overall region of interest. The
advantage of this method proves itself easily; with similar intensity to generate the sample, higher-quality
information can be obtained in comparison with the more traditional alternatives. This is especially useful
when the emulated model is very expensive to evaluate [61]. Notwithstanding, applying adaptive sampling is
not as easy as it sounds. It is not only a technical challenge, one must carefully weigh the exploration of the
entire domain against the exploitation of interesting regions. This is a dichotomy which is often encountered
in optimization exercises — one should avoid getting stuck in local optima [11]. A simplified representation
of the two concepts is given in Figure 3.4 [32]. Clearly, an exploitation-focused approach (Figure 3.4b) gives
more attention to local extrema, while an exploration-focused approach (Figure 3.4c) covers more of the do-
main. The art is to find an optimal balance between the two.

(a) Initial sample. (b) Focus on exploitation. (c) Focus on exploration.

Figure 3.4: Difference between exploration and exploitation [32]. The dashed function is the target, the blue dots make up the initial
sample, the red dots are the adaptively sampled data points, and the blue function is the fitted surrogate using the entire sample.

Back to adaptive sampling; its general principle can be expressed according to Equation 3.1, as given in the
study of Liu et al. [61]. AATOM is represented by the target function f . The purpose is then to sample a new
input vector x so that the acquisition function AF is maximized. As can be seen, both the exploration and
exploitation interests are taken into account. The process recurs until the stopping criterion is reached.

for f in D ∈Rn , xnext = arg max
x∈D

AF
(
exploration(x),exploitation(x)

)
(3.1)

Despite the adaptive sampling strategy is more complicated than the other approaches, it comes with great
advantages. It will help to extract the most relevant information from AATOM with a limited computational
budget. This is particularly useful since the simulator is rather intensive. Moreover, it was also one of the
urging recommendations of De Leeuw [20] following the proof of concept. We therefore opt for the active
learning approach in the current research. It is further elaborated in subsection 3.2.1 and subsection 3.2.2,
where the former discusses the methods to select an initial sample and the latter the details about the adap-
tive sampling algorithm.

3.2.1. Initial Sampling
Since adaptive sampling requires the uncertainty of a surrogate, one must first train the model to evaluate
its output. This in turn can only be done if an initial sample is available. In the literature, scholars seem
to use four sampling methods more than others: Latin hypercube sampling (LHS), orthogonal arrays, Ham-
mersley sequences and uniform designs [100]. They are now briefly explained, while their advantages and
disadvantages are summarized in Table 3.1.

Latin hypercube sampling comes first. Introduced a while ago by McKay et al. [67], it is by far the most
popular approach in the design of experiments, even today [61, 97]. Assume that one aspires to sample from
a two-dimensional input space. The two parameters x1 and x2 range both from 1 to 3, resulting in a total of
9 possibilities if only the integer values are taken into account. The LHS algorithm would then choose the
options so that only one sample is taken from each row and column [97]. This is what they call a Latin square,



3.2. Design of Experiments 51

Table 3.1: Advantages and disadvantages of the considered initial sampling methods.

Method Advantages Disadvantages Ref.

Latin hypercube sampling
Flexible, space-filling, strati-
fied, non-collapsing

Correlation in the samples,
suffers from dimensionality

[88, 97]

Orthogonal arrays
Similar to LHS, reduces the
correlation in the samples,
covers the boundaries well

Suffers from dimensionality [88, 100]

Hammersley sequences

Low discrepancy, maintains
uniformity in higher dimen-
sions, space-filling, computa-
tionally efficient

Poor coverage of the bound-
aries, quasirandom

[88, 105]

Uniform designs
Similar to LHS, uniformity,
low discrepancy

Poor coverage of the bound-
aries, suffers from dimension-
ality

[88, 100]

which becomes a Latin hypercube in a multi-dimensional space. A remarkable drawback from Table 3.1 is
that LHS may suffer from correlation in the samples. Using orthogonal arrays instead resolves this problem: it
is very similar to LHS, although the data points are chosen so that the correlation is minimal without com-
promising the Latin hypercube principle [97]. While this is a first improvement compared to the original LHS,
another issue remains that the discrepancy is not accounted for. These are the ’gaps’ in the domain which
may arise when an algorithm samples too much around the same locations. Specific attention is paid to this
by the uniform designs. Again, the method is similar to the original LHS, but now the algorithm is forced to
select data points in the middle of the subspaces. In comparison, the regular LHS does this randomly [97]. As
a result, more uniformity should lead to a lower discrepancy in the input space.

The last sampling method is entirely different from the other three, and neither is it an extension to LHS.
Hammersley sequences sample according to the Hammersley set, which is a mathematical formulation to
generate sequences with a low discrepancy while maintaining a uniform distribution [105]. As a result of
using a sequence, they are technically not entirely random, even if they appear to be. This is what math-
ematicians call ’quasirandom’. It leads to samples that are well uniformly distributed, even in higher di-
mensions, without requiring much computational effort [105]. The full details behind the mathematics have
been omitted to limit the scope of the literature study, but a simple example to get the idea is as follows. Sup-
pose that one wants to sample between 0 and 1, an arbitrary mathematical sequence could be as 0.5, 0.25,
0.75, 0.125, 0.625, 0.375, 0.875, etc. Note that the discrepancies in the one-dimensional domain are gradually
reduced without compromising the uniformity. The actual Hammersley sequence in a multi-dimensional
design space is of course more complex than this example, but the general principle remains the same.

To see what the differences between the considered methods look like in practice, a simple experiment
is set up to make an initial sample of 15 data points along two-dimensions x1 and x2. They both range from
0 to 1. The results are shown in Figure 3.5. The first Figure 3.5a is a benchmark, because in this sample the
data has been randomly selected. The LHS in Figure 3.5b provides a better space-filling, although it indeed
suffers from correlation — the plot shows a positive relation between x1 and x2. Sampling with orthogonal

0 0.2 0.4 0.6 0.8 1
x1

0

0.2

0.4

0.6

0.8

1

x 2

(a) Random sampling.

0 0.2 0.4 0.6 0.8 1
x1

0

0.2

0.4

0.6

0.8

1

x 2

(b) Latin hypercube.

0 0.2 0.4 0.6 0.8 1
x1

0

0.2

0.4

0.6

0.8

1

x 2

(c) Orthogonal arrays.

0 0.2 0.4 0.6 0.8 1
x1

0

0.2

0.4

0.6

0.8

1

x 2

(d) Uniform designs.

0 0.2 0.4 0.6 0.8 1
x1

0

0.2

0.4

0.6

0.8

1

x 2

(e) Hammersley sequences.

Figure 3.5: Comparison between different space-filling methods to generate an initial sample. The results are created on the basis of a
tutorial by Head et al. [39], which is in the documentation of the scikit-optimize package in Python.



52 3. Surrogate Modeling

arrays solve this problem; in Figure 3.5c there is no clear evidence anymore of a correlation between the two
parameters. However, one can still find a presence of gaps as the data points are not well distributed across
the input space. This can be solved by using an approach which entails the uniformity property, such as uni-
form designs or Hammersley sequences. Their samples are shown in Figure 3.5d and Figure 3.5e respectively.
The uniform design method is definitely an improvement compared to the others, however the Hammersley
sequence yields the lowest discrepancy and best uniformity of the considered methods. In addition, it does
so at a low computational cost. As the initial sample is used to train the surrogate model for the first time, it is
important to have a well-distributed collection of data points. That is because no information on interesting
regions is available. Hence, the meta-models should first explore as much of the domain as possible. Only
thereafter, when the adaptive sampling algorithm takes over, the exploitation aspect can be considered as
well. Therefore, we choose the Hammersley sequence approach to generate the initial sample; it serves the
exploration interests particularly well. The fact that it is only quasirandom is not an issue for this purpose,
nor is the poor coverage at the boundaries. Moreover, to validate this choice, Simpson et al. [88] performed
two experiments to compare, among other things, the four sampling methods. The study found that uniform
designs and Hammersley sequences consistently led to meta-models with the lowest root-mean-square error.
Ergo, the selected method will lay a good foundation for the adaptive sampling algorithm.

3.2.2. Adaptive Sampling
When a meta-model has been trained on the initial sample, the adaptive sampling algorithm continues the
work. The first step is to assess the surrogate’s uncertainty over the domain. This information is required
for an acquisition function, which indicates the region of interest to sample a next data point. The new data
is then added to the initial sample and the surrogate model is retrained. This process is repeated until it
reaches a stopping criterion. The three steps are now discussed further, because there are again numerous
approaches to realize the adaptive strategy. Respectively, these are first the methods to obtain the uncertainty
of meta-models, then the possible acquisitions functions and lastly the stopping criteria.

Obtaining the Uncertainty of Surrogate Models
The uncertainty of surrogate models is usually described by the errors of their predictions. While this may
seem trivial at first, calculating the prediction errors across the entire input space is not an easy task. In
most cases, an intermediate step is required to evaluate a proxy for the prediction error. According to the
meta-study by Liu et al. [61], four types of methods can be distinguished to obtain (in)directly the prediction
error of surrogate models. Either they use the variance, a query-by-committee (QBC), error metrics under a
cross-validation (CV) strategy or the derivatives. These are now explained in respective order.

A straightforward way to assess the uncertainty of a surrogate model is to evaluate its prediction variance,
which is more commonly known as the MSE — the mean squared error. The notion is that regions with the
highest variance are likely to match the regions with the greatest prediction error [61]. It is an effective and
widely used approach, often associated with Gaussian processes (GP). That makes sense, since GPs naturally
yield the prediction variance [8]. Based on prior knowledge, a posterior distribution is fitted according to
Equation 3.2 [from 61], where f is the target, f̂ the surrogate, σ̂2 the variance and x the input vector.

f (x) ∼ GP
(

f̂ (x), σ̂2(x)
)

(3.2)

This is the basic principle of Bayesian inference: additional information is used to improve the prior belief of
the GP model [8]. More details about GP regression are discussed in section 3.3. The advantages of a variance-
based approach are that it is the most natural, powerful and efficient way to infer about the prediction error
over the entire domain [8, 61]. In addition, the surrogate is trained in close cooperation with the adaptive
sampling algorithm. Notwithstanding, this can also be considered a weakness, as only a few meta-models
have the ability of providing the prediction variance. Consequently, one is limited in advance to those meth-
ods that can [61]. Further disadvantages of using specifically Gaussian processes are that only real values can
be assumed, the cubic increase in computational effort with the sample size, and scaling issues with high
dimensional input spaces [8]. These drawbacks can be solved by using other approaches such as random
forests or neural networks instead of GP regression, as they provide the variance as well [8]. They are also
explained in section 3.3.

The second strategy to locate regions of interest is to establish a committee of several surrogate models.
Scholars describe the ensemble method as a query-by-committee or QBC in short [32, 61]. The key idea
is expressed by Equation 3.3 [from 61] and is actually rather simple. A t number of diverse meta-models
are fitted on the initial sample. Next, all members i of the committee C calculate their output f̂i (x) at a



3.2. Design of Experiments 53

potential location x . The most interesting region is then determined at the location in the domain where the
members have the least agreement [61]. One would expect that this is also where the prediction errors are
the greatest. QBC thus assumes that the committee disagreement is a proxy for the prediction error of the
actual emulator. Furthermore, the committee members must be sufficiently diverse, because comparable
meta-models simply would not lead to disagreements [32].

C = {
f̂1, f̂2, . . . , f̂t

}
(3.3)

The benefit of QBC is that it is more generic and does not rely on one specific surrogate model. This gives
a lot of flexibility. In addition, the committee’s diversity makes the approach generally less susceptible to
overfitting on the training sample [61]. However, QBC also comes with some disadvantages. An ensemble of
meta-models inherently leads to more models that need to be trained and optimized, with all the associated
consequences. Moreover, the members should be carefully selected so that they are sufficiently diverse. The
committee needs disagreement to be meaningful [32]. Finally, the independence from a surrogate also has
a drawback. Namely, the prediction error of the model is not directly reduced by sampling at the most un-
certain regions in the domain, but only via an intermediate committee. A risk is therefore the existence of a
discrepancy between the committee disagreement and the actual prediction error.

The third method according to the review by Liu et al. [61] is to evaluate the prediction error under a
cross-validation strategy. The details about CV are explained in section 3.4, but the main principle is that a
surrogate is trained on all data points of the sample with size m except one. The prediction error e is then
measured at that single point i according to Equation 3.4 [from 32, 61]. This is repeated for all data points in
the sample. The location with the largest error is then assumed to be the most uncertain region.

∀i ∈ [1,m] : e(xi ) = ∣∣ f (xi )− f̂−i (xi )
∣∣ (3.4)

The CV strategy is unique as it directly measures the prediction error. Notice, however, that the calculation
uses the sample minus one point xi . There is thus still a discrepancy with the true error of the surrogate model
that is trained on all available data [32]. Moreover, it is also important to understand that the CV error leads to
a data point that has already been sampled. While this indicates the general region of interest, an inevitable
follow-up question is where exactly the next point should be sampled. So the neighborhood is known, but an
exact location cannot be deduced directly [61]. Furthermore, this strategy is also independent of the model.
It can essentially be implemented with any surrogate, allowing for a lot of flexibility. Nevertheless, the main
disadvantage remains that the CV algorithm only evaluates already observed data. Not only does this limit the
knowledge to certain parts of the domain, it might also result in oversampling. That is the phenomenon when
data is collected which is actually redundant [61]. Finally, assessing the prediction error for all data points in
the sample can be computationally expensive [32]. This requires the surrogate model to be retrained for every
single point: the prediction error cannot be evaluated at a location that was included for training the model.
That would give a spurious impression of the surrogate’s performance.

The final strategy is to make use of a surrogate model’s derivatives. More specifically, the gradient at a
point x can be obtained through Equation 3.5 [from 61, 92]. Again, f̂ denotes the surrogate model and x the
n-dimensional input vector at the point in the domain where the gradient is calculated. This method is based
on the notion that meta-models have the least accuracy in regions with large gradients [61].

for f̂ : Rn →R, ∇ f̂ (x) =
[

∂

∂x1
f̂ (x) ,

∂

∂x2
f̂ (x) , · · · ,

∂

∂xn
f̂ (x)

]ᵀ
(3.5)

The literature is rather scarce when it comes to using derivatives for adaptive sampling purposes [32]. One
reason could be that it suffers from some persistent issues. For example, the approach is strictly limited to
surrogate models that are differentiable, which is not always evident [61]. Another challenge is that the meta-
model should be sufficiently accurate before any meaningful insights can be obtained [61]. An underfitted
model does not contain much information, while an overfitted model can send the algorithm in the wrong
direction. Finally, identifying regions with large gradients is one thing, translating them into locations for the
next data point to sample is not always straightforward [61].

Now that they all have been discussed, the logical next step would be to choose a particular approach.
However, this choice goes beyond comparing pros and cons. Recall that in Figure 3.4 an important distinction
was made between exploration and exploitation. Indeed, it is vital that these two concepts are well balanced
to create an adaptive sampling algorithm that is both effective and efficient. For example, a method based
purely on the variance of a surrogate model would favor exploration over exploitation, and vice versa for a
method based solely on the cross-validation prediction error [32]. This is where acquisition functions come
into place. These are techniques which compromise the two concepts, as explained further below [8].



54 3. Surrogate Modeling

Acquisition Function
Meanwhile, it is clear that choosing the right acquisition function can make or break the adaptive sampling
algorithm. Although the techniques have been used extensively for optimization tasks [8], research into their
application to global surrogate modeling is still emerging. Nevertheless, a rigorous review study has been
carried out very recently by Fuhg et al. [32]. Essentially, they made an overview of the state-of-the-art by eval-
uating 14 methods along various drivers. Their analysis is particularly interesting because the entire spectrum
of meta-modeling was considered, rather than just the technical performance. As would be expected from the
commonly used "No Free Lunch" theorem [104], no approach is considerably better than others across the
board [32]. It therefore remains important to carefully trade-off the characteristics of methods against their
task. Nevertheless, Fuhg et al. [32] narrow the scope based on experimental results by proposing 3 promising
acquisition functions for surrogate modeling. These are MEPE, EIGF and MIPT, which stand for "maximiz-
ing expected prediction error", "expected improvement for global fit" and "Monte Carlo-intersite-proj-th",
respectively. They are now briefly explained.

First the MEPE approach, which pursues a cross-validation strategy in combination with the variance
of the surrogate model. In essence, the acquisition function selects the new data point in such a way as to
maximize a weighted sum of the CV prediction error and the variance [32]. The weights add up to one and
balances both terms for exploration and exploitation. To relief the computational burden, the authors suggest
to approximate the prediction error. Secondly, the EIGF is the brainchild of Lam [59], who extended the more
commonly known "expected improvement". The acquisition function also uses the variance, but now com-
bined with the squared difference between the surrogate model’s prediction and the nearest true outcome
[32, 61]. That way, it also manages to include both exploration and exploitation interests. The last suggestion
was to consider MIPT. That is a more naive approach based on the Monte Carlo principle. After randomly se-
lecting a set of candidates, the acquisition function selects the next data point that has the maximum distance
from previously sampled points [32]. Notice that this method does not consider any exploitation interests.

Next, the three considered acquisition functions are compared in Table 3.2 based on various criteria. The
results were obtained from Table 3 in Fuhg et al. [32, p. 2728]. A plus sign represents a positive evaluation and
vice versa for the minus sign. Outstanding performance — positive or negative — is indicated by two signs.
The MIPT seems to outperform the two other. That is because it is a rather simple approach which focuses
solely on exploring the domain as much as possible. Hence, not a lot of complexity is involved which is often
necessary for the exploitation purpose. Notwithstanding, we have the ambition to consider both aspects in
the sampling process. That is because adding an exploitation term should faster lead to a meta-model with a
smaller prediction error. Since AATOM is intensive to evaluate, a strategy purely based on exploration can be
rather computationally expensive. This limits the choice between MEPE and EIGF. According to Fuhg et al.
[32], MEPE would be the preferred option, although they also immediately point out that it is not the easiest
approach. MEPE entails quite some complexity. A good compromise would then be EIGF. The authors praise
its reliable and solid performance for meta-modeling purposes, without increasing the theoretical complexity
or computational requirements too much. For this reason, we choose the EIGF acquisition function.

To connect the dots, the discussions about obtaining a surrogate model’s uncertainty and acquisition
functions can be summarized as follows. By selecting the EIGF approach, there is opted for a variance-based
strategy that is enriched with a geometric measure for the prediction error [32]. This makes it possible to

Table 3.2: Qualitative comparison of the considered acquisition functions [based on Table 3 in 32, p. 2728].

Criterion MEPE EIGF MIPT

Suitability for surrogate modeling ++ + ++

Capturing regular responses + + +

Capturing irregular responses ++ + ++

Performance with small initial samples ++ + ++

Ability to cope with dimensionality + + +

Tendency to keep sampling around the same location + + ++

Independency of the surrogate model - - +

Required computational effort + ++ +

Programming complexity - ++ ++

Complexity to identify the next data point - + +



3.3. Methods Used in Surrogate Modeling 55

consider both exploration and exploitation during the adaptive sampling process. Ultimately, this will lead
to an efficient but effective surrogate modeling process. When applying the theory in practice, the general
Equation 3.1 can now be written as Equation 3.6 [from 32, 61], where x∗ denotes the closest input vector
that has already been sampled to an arbitrary point x in the domain. We added α as a balancing factor
to control the trade-off. The hyperparameter is allowed to change throughout the sampling process, albeit
strictly between zero and one. The closer to one, the more preference is given to exploration and vice versa to
exploitation.

for f in D ∈Rn , xnext = arg max
x∈D

[
α

(
σ̂2(x)

)+ (1−α)
(

f̂ (x)− f (x∗)
)2

]
(3.6)

Stopping Criterion
A side effect of adaptive sampling is that it does not end naturally. However, this can be easily solved by im-
plementing a stopping criterion. That is a predefined condition which determines when to stop the sampling
algorithm [32]. Thus, data is continuously collected until the criterion is met, after which the sample is con-
sidered sufficiently informative. The literature generally distinguishes between two types of criteria: either
based on practical limitations or based on the accuracy of the meta-model [32, 61]. Usually, scholars opt for
the former, because that is the main concern in many cases. Practically, this is realized by imposing a time
limit or computational constraints [32]. The other option is to use the meta-model’s accuracy, which is an
interesting approach because it collects so many data points until the surrogate behaves as desired. This is
achieved by evaluating a validation metric1 — possibly under a cross-validation strategy [61]. The sampling
algorithm continues until a specific goal is achieved or until the successive difference is so small that the
surrogate model no longer benefits from additional data. Ideally, we would choose a criterion based the sur-
rogate model accuracy because of its efficiency. However, this is rather challenging in practice as it gives no
control over the computation time. Since the sampling process is expected to be a computationally expen-
sive task, the servers of the Air Transport Operations research group at the Delft University of Technology will
be used as a supercomputer. Access is granted during predetermined time slots, so it is important to keep
track of the time. We therefore opt for a stopping criterion that is primarily based on a time limit, although
performance metrics will be monitored in the process to see whether additional sampling slots are needed.

3.3. Methods Used in Surrogate Modeling
Now that the sampling approach has been determined, the next step is to identify black-box functions that
could be promising surrogate models. Specifically, this means finding an appropriate function f̂ so that the
prediction error e is as small as possible compared to the actual outcome of AATOM, denoted by f . The
mathematical description is given in Equation 3.7 [from 53], where x is an n-dimensional input vector.

f (x) = f̂ (x)+e (3.7)

We mentioned earlier that meta-modeling has received a lot of academic attention over the years. Hence, it
should come as no surprise that a multitude of algorithms have been tried out for this purpose. In the early
days, scholars limited themselves to mostly linear models. These models are however still widely used up
to this day, mainly because of their simplicity [100]. Later on, Gaussian processes and radial basis functions
made their entrance as they proved to be more accurate, albeit at a higher computational cost [100, 101].
Nowadays, research into the possibilities of machine learning is thriving. Its application to surrogate model-
ing has not been overlooked with support-vector machines, decision trees and neural networks as the most
recent additions to the field [3, 78]. The theory behind these six main model categories is now further dis-
cussed in subsection 3.3.1 to subsection 3.3.6 respectively. Finally, we compare them in subsection 3.3.7 and
then select the ones that will be used in the current research.

3.3.1. Linear Models
Expressions that linearly combine mathematical terms are referred to as linear models. This is a broad cat-
egory that comes with many possibilities. The simplest and best known method is linear regression, abbre-
viated as LR. It is formulated according to Equation 3.8 [from 11], in which the regression coefficients are
represented by wi . In essence, LR expresses the surrogate model as a weighted sum of the input variables.

f̂ (x) = w0 +
n∑

i=1
wi xi (3.8)

1Interesting validation metrics are discussed in section 3.5.



56 3. Surrogate Modeling

The question is then how one can obtain the coefficients to fit the regression model. This is usually done by
minimizing the sum of squared errors between the surrogate f̂ and the target f over the available sample
data — a method known as ordinary least squares (OLS) [11]. LR is popular because it is straightforward,
very interpretable and not computationally demanding [100]. However, this also makes it less suitable for
more complicated problems. The accuracy rapidly drops when dealing with relations that are non-linear [78].
Therefore, higher-order polynomials2 are often preferred because they are better able to capture curvilinear
patterns [3]. The most commonly applied polynomials for surrogate modeling are those of the second-order
[78]. Generally, they are formulated according to Equation 3.9 [from 107]. Note that the interactions between
the variables are also taken into account.

f̂ (x) = w0 +
n∑

i=1
wi xi +

n∑
i=1

n∑
j=i

wi j xi x j (3.9)

It is readily clear that polynomials have advantages over LR. Without adding too much complexity, they can
model relations that are non-linear and even non-monotonic. Their performance is especially strong when
responses are known in advance to behave like polynomials [78]. Conversely, the same also makes them
rather inadequate if this were not the case. They remain bound to the polynomial form. Another issue is
that these surrogates struggle with responses that have multiple optima, a phenomenon mathematicians call
multimodality [107]. Furthermore, the order can be increased even further, although it should be borne in
mind that this results in an explosive increase in terms. Many terms lead to many weights, which in turn
require large samples to be sufficiently accurate [78]. On top of that, they can also cause instability [107].

An important drawback of both LR and higher-order polynomials is that their functional form is deter-
mined over the entire domain. For example, the above methods would have difficulties to emulate a function
that is first linear and then becomes quadratic. Friedman [29] resolved this issue by introducing multivari-
ate adaptive regression splines, henceforth abbreviated as MARS. The approach is regarded as an extension
to linear models since they are made up of a weighted sum of so-called basis functions [101]. Their general
formulation is given in Equation 3.10 [from 53]. The basis functions and their total number are denoted by B
and M respectively.

f̂ (x) = w0 +
M∑

i=1
wi Bi (x) (3.10)

A basis function can take three forms, either it is a constant, or it is a spline, or it is a multiplication of multiple
splines [103]. In its simplest form, a spline — in this application usually referred to as a "hinge function" — is
defined as max(0, x − t ) or max(0, t − x) [53]. Hereby, the "knot value" t is a constant which is determined
when the model is fitted. MARS is more complicated than the first two approaches, because in addition to
the weights, the basis functions are also to be decided. The surrogates are trained in two steps: a forward and
a backward pass [103]. In short, the forward pass considers several potential basis functions and calculates
their corresponding weights based on the OLS method. The functions that ultimately reduce the error the
most are then added to the model. This will likely result in overfitting on the sample, but therefore a backward
pass is performed as well [38]. The basis functions that yield the least reduction in error are again omitted.
This fosters the surrogate’s ability to generalize on inputs it has not been trained with. The advantages of
MARS are as follows [38, 107]. First of all, it is of course better at modeling responses with different functional
forms across the domain than LR or polynomials. Second, since it selects the basis functions in such a way
as to reduce the error the most, a natural way of regularization is carried out by choosing the more important
variables. Lastly, they are efficient and can cope with large samples. On the other hand, they are not always
as accurate and tend to overfit easily despite the backward pass [38, 107]. They are also not as interpretable
as compared to the other linear models.

3.3.2. Gaussian Processes
The second category are surrogates based on a Gaussian process (GP). Rasmussen and Williams [77] define
this as a group of random variables that has the property of being multivariate normally distributed for each
finite combination of its constituents. This is rather abstract to understand, but it essentially means that a
distribution is placed over functions. GPs have thus the benefit that the functional space is used directly to
infer about the underlying system [77]. The method originates from what geostaticians introduced as Kriging,
which expresses responses as a function of nearby observations and their correlations [28]. Over the years,

2While at first, one might argue that higher-order polynomials are no longer linear models, it is important to understand that the surro-
gate remains a weighted sum of mathematical terms. It is thus not required that the terms themselves be linear.



3.3. Methods Used in Surrogate Modeling 57

the approach has become a popular basis for surrogate modeling frameworks because of its favorable prop-
erties. Namely, it can predict not only responses at unsampled locations, but also the associated uncertainty
[78]. That is the reason why it is a very suitable method in combination with adaptive sampling. Indeed,
subsection 3.2.2 discussed that one aspires to sample in the most uncertain regions.

Surrogate models constructed from GPs are described in their general format according to Equation 3.11
[from 77, 87]. The mean function is denoted by m(x) and the covariance function by k(x , x ′). The former
is the expectation of the surrogate at a certain location x (see Equation 3.12). Here is also where several
types of Kriging originate; some assume the prior mean to be a constant, others assume it to be unknown
or even of some functional form [107]. Its modern application as a machine learning technique usually sets
it to be zero. That way, the computational requirements are less intensive and the covariance function will
completely take over the inference [77, 87]. The role of the covariance function, which is oftentimes also
referred to as a kernel, is to express a relation between the responses at locations x and x ′ [87]. The general
form is given in Equation 3.13, but note that there are several ways to model the correlation. Some examples
are constant, linear, (squared) exponential, spherical, Matérn kernels, and so on [11, 107]. Nevertheless, their
premise remains the same: the further away x and x ′ are from each other, the less likely they are correlated
[87]. In other words, if the Euclidian distance is small, their responses are presumed to behave akin. One of
the most commonly used kernel functions is the squared exponential, as given in Equation 3.14 [from 77, 87].
In the equation, one can clearly see that the value of the kernel function increases with a decreasing distance
between x and x ′, with l a hyperparameter scaling the length.

f̂ (x) = GP
(
m(x),k(x , x ′)

)
(3.11)

m(x) = E
[

f̂ (x)
]

(3.12)

k(x , x ′) = E
[(

f̂ (x)−m(x)
)(

f̂ (x ′)−m(x ′)
)]

(3.13)

k(x , x ′) = e

(
− ||x−x′ ||2

2l2

)
(3.14)

Moving from theory to practice, a simple one-dimensional example of GP regression is illustrated in Figure 3.6
[based on 75]. In Figure 3.6a, functions are drawn from the GP before it has been fit on known observations.
One can clearly observe that the mean value is equal to zero over the entire domain, which makes sense
since the prior mean was assumed to be zero. However, this changes when functions are drawn from the
posterior distribution, shown by Figure 3.6b. There is still some uncertainty, but as the functions interpolate
the observed points, it is greatly reduced in the neighborhood of the points. In practice, there is no need to
draw individual functions from the GP as they altogether lead to a mean value and a variance (or standard
deviation) over the domain. Those are the two output values that are eventually used. In summary, the mean
value of a GP surrogate is more reliable the closer it is near the response of an input combination that has
actually been sampled in AATOM, where reliability is represented by the variance (or standard deviation).

It is now clear that one of the greatest advantages of GP regression is that it offers a measure of uncer-
tainty while making a prediction [78]. It is a popular active learning approach for this reason alone, with a
proven track-record in the field. On top of that, GPs are also praised for the high accuracy they can generally
achieve [101]. Lastly, their hyperparameters can be determined in an objective manner with a maximum like-
lihood calculation [78, 107]. However, despite being an attractive method for surrogate modeling, they also
have their drawbacks. GPs tend to become computationally intensive with larger sample sizes. The reason is

0 1 2 3 4 5
x

3

2

1

0

1

2

3

f(x
)

(a) Sampling from the prior distribution.

0 1 2 3 4 5
x

3

2

1

0

1

2

3

f(x
)

(b) Sampling from the posterior distribution.

Figure 3.6: A simple one-dimensional example of GP regression. The programming code of the example is obtained from a tutorial by
Metzen and Lemaitre in the documentation of the scikit-learn package [75]. The solid dark line is the mean of the GP, the gray area
represents the standard deviation, the dashed lines are functions drawn from the GP and the red dots represent the known observations.



58 3. Surrogate Modeling

because the posterior is obtained by inverting the covariance matrix, which becomes more challenging with
an increasing number of observations [11, 107]. Another point of attention should be that the sampling algo-
rithm does not take data points that are too close to one another. Otherwise, there is a risk that the covariance
matrix becomes ill-conditioned, resulting in severe response instability with respect to small changes in the
input vector [78]. Finally, GPs involve some mathematical complexity. This makes them black-boxes and
quite difficult for post hoc interpretation [101].

3.3.3. Radial Basis Functions
Another popular meta-modeling method is the usage of radial basis functions (RBFs). These functions model
responses based on distances from known observations [11]. This seems somewhat similar to the principle
of GPs because they also make use of Euclidian distances. However, the main difference is that RBFs do not
build the surrogate as a stochastic process, but rather as a weighted sum of basis functions. With m the size
of the sample and B a basis function, the general notation of RBFs is shown in Equation 3.15 [from 3, 11].
Similar to the linear models, w denotes the allocated weights to the basis functions.

f̂ (x) =
m∑

i=1
wi Bi (||x −xi ||) (3.15)

There are again multiple ways to define basis functions. They can be linear, cubic, thin plate, Gaussian, multi-
quadratic, and so on [11, 28]. For example, a cubic basic function is given in Equation 3.16 [from 11].

B (||x −xi ||) = ||x −xi ||3 (3.16)

The choice of the basis function depends on the data. There is no single format that generally stands out
over the others, although Bhosekar and Ierapetritou [11] mentioned the success of the cubic and Forrester
et al. [28] mentioned the popularity of the Gaussian (see Equation 3.14). It is usually determined by trying out
different functions. The associated weights are calculated through the ordinary least squares method [78].

The advantages and disadvantages of RBFs are to some extent comparable with GPs. Their construction
is not as complex, yet they still manage to capture non-linear responses [28]. Notwithstanding, they do not
give insights into the uncertainty of their predictions, which makes them even more difficult to interpret
[101]. Furthermore, it is not always as straightforward to determine the basis functions and their possible
hyperparameters. This often involves some iterations on a trial and error basis [78]. Finally, one must again
be careful with clustering in the sample. Ill-conditioning can induce undesired instability in the response of
the surrogate model [28].

3.3.4. Support-vector Machines
Along with the emergence of machine learning, support-vector machines (SVM) are one of the more recent
additions to surrogate modeling architectures [100]. They are more common in classification tasks, although
they also find their way into regression, better known as support-vector regression (SVR) [107]. Quite similar
to RBFs, the model is made up of a weighted sum of basis functions in addition to a constant µ. The general
format is given in Equation 3.17 [from 11, 28].

f̂ (x) =µ+
m∑

i=1
wi Bi (x , xi ) (3.17)

Now, one might be wondering how SVR and RBFs differ. That is in the calculation of the base term and the
weights. Instead of the OLS method, SVR makes use of an optimization problem. A simple (linear) example is
formulated according Equation 3.18 [from 11, 28], where ξ is a slack variable, ε determines the unpenalized
error range, C is a tolerance hyperparameter and f is the output from AATOM.

Minimize
1

2
||w ||2 + C

n

m∑
i=1

(
ξ−i +ξ+i

)
Subject to w · xi +µ− fi ≤ ε+ξ−i

fi −w · xi −µ≤ ε+ξ+i
ξ−i ,ξ+i ≥ 0

(3.18)

This requires some additional explanation, which will be done in conjunction with Figure 3.7 [89]. In essence,
SVR tries to find a fit to the data that explains as much of its variation as possible, while restraining the com-
plexity of the surrogate [28]. The variation is said to be perfectly explained if all data points of the sample



3.3. Methods Used in Surrogate Modeling 59

x

f(x) +ε

-ε
0

ξ

(a) The tube within errors remain unpenalized.

ξ

Cost

-ε 0 +ε Error

(b) The effect of outliers on the cost function.

Figure 3.7: Main principle of support-vector regression [89]. The red dot indicates an outlier at a distance ξ from the tube.

would be within an accepted range ±ε from the surrogate. This range is called a "tube", and is represented by
the first two constraints in Equation 3.18 [28]. However, one should be careful not to force this, otherwise the
model would easily overfit. That results in a surrogate that generalizes poorly to unexplored regions, which
is of course undesired. The optimization problem does this by choosing the weights so that the norm of the
weight vector is as small as possible (see the first term in the cost function of the optimization problem) [28].
Graphically, the tube is shown in Figure 3.7a; minimizing w tries to flatten it as much as possible. So far the
theory makes sense, but a question raises how outliers are handled. Indeed, Figure 3.7a shows a fitted surro-
gate model, even though there are three data points outside the accepted ±ε-range. That is allowed because
of the slack variables ξ in Equation 3.18. Without them, the optimization problem would not be feasible [89].
Notice that the slack variables are also included in the cost function. Their effect is depicted in Figure 3.7b. It
illustrates that only outside the tube, the associated penalty increases linearly with the error [28]. The rate at
which this happens is managed by the tolerance hyperparameter C . Hence, tuning the parameter balances
the complexity of the surrogate against the extent to which outliers are accepted [89]. In summary, support-
vector regression aims to fit a function to the sample so that the data points are within a tube of predefined
width, without making the function too complex. To some degree, outliers can be outside this range, although
this is kept at a minimum because it entails a penalty in an optimization problem.

Up to now, it was assumed that the basis functions were linear. However in practice, the responses of
AATOM are likely to be more complex. SVR can cope with that by adopting different basis functions to map
the input into a so-called feature space [107]. The principle is the same as with GPs and RBFs. Common
kernels are linear, polynomial, Gaussian, sigmoid, and so on [107]. The optimal choice again depends on the
data and is usually determined by trying and comparing the different functions with one another.

It is quite remarkable that scholars are not entirely harmonious about the accuracy of SVR. Some argue
that they outperform fellow surrogate modeling techniques [e.g., 100], others mention a comparable perfor-
mance [e.g., 11], while Williams and Cremaschi [103] even said that they are generally not as accurate. A
reason for the disagreement might be the need for a thorough hyperparameter optimization. This includes
not only choosing the right kernel function, but also the width of the tube (determined by ε) and the toler-
ance for outliers (determined by C ). The algorithm is thus rather flexible, which can be considered both an
advantage and a disadvantage. Nevertheless, properly determining the optimal parameters is not always a
straightforward task and requires quite some attention from the user [78, 107]. Another disadvantage of SVR
is that the weights are determined through an optimization problem. Especially with an increasing dimen-
sionality, this process could become computationally intensive [11, 103]. The method is also rather difficult
to interpret [38]. On the contrary, Yondo et al. [107] praise its robustness, low risk of overfitting and ability to
perform well with small samples. Razavi et al. [78] argue that SVR handles well noisy data because of the error
insensitivity in the tube, and mentions the advantage of incorporated regularization. By that, they mean the
tolerance C in the acceptance of outliers.

3.3.5. Decision Trees
Apart from support-vector machines, machine learning models on the basis of decision trees are also gaining
momentum. The reason why is not far-fetched; they are considered to be one of the most powerful algorithms
that are currently available [34]. Usually they are applied in an ensemble consisting of multiple trees, but to
understand the general working principle, a single tree is explained first. The explanation is based on the
theory from Hastie et al. [38].

Imagine that AATOM has one response Y and two inputs X1 and X2. A sample is available to train the
algorithm. The regression tree — a decision tree for regression tasks — is then constructed as follows. Without
any additional knowledge, the best estimate for the response would simply be the average of the sample.



60 3. Surrogate Modeling

(a) A two-dimensional regression tree. (b) The partitioned input space. (c) The tree’s response.

Figure 3.8: The principle behind regression trees [38].

This is of course rather naive and probably not very accurate, especially since we know that the response
changes over the domain. The regression tree solves this by splitting the sample in two groups, based on a
certain condition. All data points that have an X1 smaller than or equal to a value t1 are part of one group
and the others make up the second group. The estimated response of data points with an X1 smaller than
t1 is now the average of the first group, while the same holds for the other group. There are now thus two
possible responses. The question is then which value of t1 results in the best split. Cleverly, this is determined
based on squared errors: t1 is chosen as such that the sum of squared errors between the predictions of
the regression tree and the actual outcome of AATOM is minimized. In the current example, both X1 and
X2 are evaluated and eventually the best option is selected. However, for a real case with n dimensions, a
hyperparameter can limit the considered options by randomly selecting a subset of the features at every split.
While the two distinct responses are already a great improvement compared to the naive average of the entire
sample from the beginning, the regression tree can do even better. Indeed, the two groups can be split up
further. That happens until a leaf reaches a predefined number of observations or until the regression tree
reaches a predefined depth. These are again two hyperparameters of the algorithm. It is important to note
that trees are built in a recursive manner. That is, the splits are determined after one another. In the example,
the value of t1 is set before there is any knowledge about later splits t2 to t4. The algorithm is thus said to be
greedy. The fact that t1 is the best option at that time does not guarantee that this was the overall best choice
when taking into account later splits. Yet, such approach is required to limit the computational burden of
the algorithm [38]. Altogether, the end result of the regression tree is illustrated in Figure 3.8 [38]. At the left,
Figure 3.8a shows the actual tree with four splits. This leads to five possible responses R1 to R5. How exactly
the input space has been partitioned is shown by Figure 3.8b. We can see that there are five groups, each
leading to one of the responses as depicted in Figure 3.8c at the right.

The main benefit of decision trees is undisputed: they are very interpretable [3, 34, 38]. This was readily
clear from the example. They are not difficult to understand and the partitioned input space leads to acces-
sible rules that can be used to explain the behavior of the algorithm. On top of that, they are powerful and
can handle almost any type of data [34]. It does not matter whether an input variable is e.g. continuous or
discrete. However, decision trees are prone to some disadvantages. First of all, a problem is that they are
not very robust. Minor changes in the training sample could result in entirely different trees [34]. They can
thus be rather unstable, increasing the variance [38]. Furthermore, they are not smooth. The response will
be the same as long as one stays within a partition, but once the boundary is crossed into another, the re-
sponse suddenly changes. This phenomenon is clearly visible in Figure 3.8c [38]. Finally, decision trees tend
to quickly overfit on the training sample. Consequently, they struggle to properly generalize, making them
rather inaccurate for regions that have not been explored [3, 34].

Despite the drawbacks mentioned above, decision trees are actually used a lot in machine learning tasks.
The key is that they are rarely used alone, but rather in an ensemble of multiple trees. Analogously, scholars
refer to these structures as "forests". The notion is that an ensemble of many trees can make better predic-
tions than one tree on its own [34, 38]. We will consider two approaches to build the forest. On the one hand,
random forests are created through bootstrap aggregation, better known abbreviated as bagging. One the
other hand, trees can be concatenated, which is known as boosting. The fundamental difference between
the two approaches is the way they aim to improve their performance. The former reduces the variance by



3.3. Methods Used in Surrogate Modeling 61

...

Average

...

(a) Random forests.

Prediction

Prediction error

New prediction = old 
prediction + learning 
rate x estimated error 

Estimated error 

Prediction error

New prediction = old 
prediction + learning 
rate x estimated error 

Estimated error 

…

…

…

…

(b) Gradient boosting.

Figure 3.9: The principle behind ensembles of regression trees [based on materials from 34].

averaging many independent trees in accordance with the law of large numbers [34]. Conversely, the latter
focuses on reducing the bias, as it grows trees specifically for that purpose [38]. Thus, they both reduce the
prediction errors of single decision trees, albeit in a different way. Hastie et al. [38] describe this with the
bias-variance decomposition of the error. The principles behind random forests (RF) and gradient boosting
regression (GB) are now explained in respective order, along with their advantages and disadvantages.

The architecture of random forests is depicted in Figure 3.9a [based on 34]. From top to bottom, the
first step is to create a subsample. This is done by randomly drawing data points from the overall sample,
where the same point can be selected more than once — a bootstrap sample according to the terminology
[38]. Then, as explained before, a single regression tree is trained on the subsample. This process is repeated
until the forest reaches a predefined size, which is an additional hyperparameter of the model. Finally, the
ultimate response f̂ (x) of the random forest is determined by taking the average of all individual trees [34, 38].
Random forests are one of the most popularly used algorithms in machine learning. That is because they are
extremely powerful, do not require a lot of preprocessing and are generally very accurate on a wide variety of
data sets [34, 38]. Moreover, even with the slightest tuning, they already yield a solid performance. They do
not require too much effort in optimizing the hyperparameters [38]. The ensemble structure makes random
forests inherently less interpretable and more computationally intensive in comparison with single regression
trees. However, a large benefit is that they give insights into the relative importance of variables. This measure
shows which inputs contribute the most in making accurate predictions and is therefore a very relevant tool
for the explainability of the model [34, 38]. Finally, it should be noted that random forests are a complex
algorithm. This makes it powerful, but also prone to overfitting on the training sample [38]. If there are signs
of the phenomenon, it can be managed through the hyperparameters or increasing the sample size.

Alternatively, the boosting algorithm is illustrated in Figure 3.9b [based on 34]. Readily it can be seen
that the philosophy behind the architecture is entirely different from random forests. Trees are not grown in
parallel, but sequentially [34]. From left to right, the first step is to create an initial prediction of the response.
Usually this is just a constant, such as the average value of the sample [38]. Subsequently, the prediction
errors — residuals — can be evaluated and here is the point from which the gradient boosting algorithm is
rather unique in its further approach. Namely, it will fit a new regression tree onto the residuals. An updated
prediction is then made based on the old one plus the estimated error, scaled by the learning rate. This is
repeated until the sequence reaches a predefined length [34, 38]. The learning rate and the total number
of trees are thus two important hyperparameters of the algorithm. So in essence, gradient boosting directly
reduces the bias of its response. For that reason, it is one of the most accurate machine learning architectures
that is currently available. They are often able to outperform random forests, although this comes at the
disadvantage of being more complex to implement [38]. Tuning their hyperparameters need more attention
to avoid overfitting, but one should also be careful for underfitting [34]. In addition, they entail longer training
times. The reason is because the trees cannot be trained in parallel threads. Indeed, the sequential design
forces the algorithm to train one tree after the other [34]. Finally, gradient boosting is of course also less
interpretable than single regression trees. Although just as with random forests, they give insights into the
relative importance of the input variables, which is considered a great advantage [38].



62 3. Surrogate Modeling

3.3.6. Neural Networks
The last type of models that is considered are feedforward neural networks (NN). Contrary to what one might
think, NNs have been around for a while. However, they were only popularized with an increasing availability
of computational power and the development of efficient training methods [34, 98]. Over the years, they have
been commonly used as surrogates [78]. Their general principle is illustrated in Figure 3.10 [based on 98].

i j k

l

Input layer Hidden layer Hidden layer Output layer

yj = Φ(Σxiwi+b) yk = Φ(Σxjwj+b) yl = Σxkwk+b

wi wj wk

(a) Construction of a network.

Σxiwi+b Φ(·)

x1

x2

x3

xn

...

yj

w1
w2

w3

wn

(b) Mathematics of a neuron.

Figure 3.10: Architectural structure of artificial neural networks [adapted from 98].

Biological neurons have been the source of inspiration for the creation of NNs [34]. Essentially they are an
interconnection of nodes, constructed according to Figure 3.10a. It starts from the input layer, which feeds
data into the network. In general, each neuron corresponds to one dimension of the input vector, meaning
that in practice there could be many more than three [34]. This information is then passed to the first hidden
layer, which again consists of several neurons. Their input is processed according to Figure 3.10b. First, the
inputs xi are multiplied by a weight wi , after which a bias term b is added. The outcome is then entered into
a so-called activation function Φ. This triggers neurons and adds non-linearity to the network, allowing it
to capture highly complex responses [34]. Popular functions for regression tasks are a ReLU (rectified linear
unit), a hyperbolic tangent and a sigmoid [98]. Respectively, the former is simply equal to zero or its input if
that is positive, the hyperbolic tangent scales its input between minus and positive one, and the latter scales
its input between zero and one. The result of the activation function is then passed to the following layer, after
which the process is repeated. The network in Figure 3.10a has two hidden layers, but in practice there can be
as many as one wishes. Moreover, this also holds for the size of a layer. The example shows that both hidden
layers each consist of three neurons; however, this is also determined per design. The architectural layout is
thus highly flexible and must be carefully determined according to the data that is being modeled. The neural
network ends in the output layer. As the name implies, this layer yields the response of the surrogate model,
where each neuron typically corresponds to one output variable [34]. For regression tasks, there is generally
no activation function in the neurons of the output layer, but that again is a design choice [34].

While the theory behind the architecture of NNs is actually rather straightforward, the main challenge
lies in training them. The weights3 should be adjusted so that the error between their output and the actual
response is minimal [38]. This intensive process has been revolutionized with the introduction of backprop-
agation by Rumelhart et al. [85]. The essence of the training algorithm is as follows. It starts with randomly
initializing the weights. A first batch from the sample data is then fed to the network, resulting in an output.
This is called the forward pass [34]. Logically, the first results will be highly inaccurate, but that is normal.
The next step is to calculate the prediction error, which is usually done through a loss function based on the
squared errors [38]. So far this is actually quite similar to previous models. However, the main difference now
is how NNs learn from their mistakes. They do so by attributing the error back to the neurons in proportion
to their contribution. Simply put, the error is propagated back by applying the chain rule from the output
layer, through the hidden layers until it arrives again at the input layer — the backward pass [34]. This infor-
mation enables the training algorithm to update the weights of the neural network. It does so by following a
learning rate weighted gradient descent on the associated error functions of the interconnections [34]. The
forward and backward passes are continued multiple times with different batches until the NN converges to

3Bias terms are henceforth considered part of the weights; think of it as an extra neuron for each layer (except the output) which is always
equal to one. The biases are then equivalent to the weights of their interconnections. The literature describes it as a bias neuron [34, 38].



3.3. Methods Used in Surrogate Modeling 63

a solution. Note that it is possible for batches to be used more than once. The terminology refers to a number
of epochs for the number of times the whole training sample has been passed through the network [38].

Artificial neural networks join the group of tree ensembles as the most powerful algorithms available in
machine learning. The deep structure with non-linearities allows them to capture complex relations, which
may consist of numerous dimensions [34, 38, 98, 107]. Moreover, they naturally consider interactions be-
tween the input parameters [101]. NNs can be very accurate and are proven methods in their application
as surrogate models [107]. The fact that they are extremely flexible — their construction and especially the
number of hidden layers is completely customizable — is considered both an advantage and a disadvantage.
Indeed, it gives the user a lot of room for optimization, but doing so is not an easy task and might require
many manual iterations [38, 98]. On top of that, the training algorithm is computationally rather intensive
and requires a lot of data. It may take several hours for the solution to converge [34]. In terms of interpretabil-
ity, NNs are one of the worst possible alternatives. They are virtually complete black-boxes, making it difficult
to understand how they get to their output [38, 101, 107]. Another challenge is that they are prone to over-
fitting [38, 107]. This must be carefully kept in mind when training, otherwise the model will make inferior
predictions for unexplored regions in the domain. Finally, Hastie et al. [38] mention the risk of local minima
in the loss function. A consequence may be the convergence of the training algorithm to a solution which is
sub-optimal. Nonetheless, Géron [34] states that this phenomenon is actually seldom.

3.3.7. Comparison Between the Methods
Now that the six modeling categories have been discussed, along with the advantages and disadvantages of
every candidate, it is time to compare them and select the best alternatives. However, before we can do that,
at first it is important to identify the criteria which determine whether a method is considered suitable or
not. With the goals of the research in mind, two drivers can be readily set: accuracy and interpretability.
On the one hand, the responses of the surrogates need to be sufficiently close to those of AATOM. This is
evident, but otherwise they would be rather ineffective for further usage and analysis. On the other hand,
improving the system understanding is also an important driver for meta-modeling AATOM. The selected
methods should therefore be sufficiently transparent so that their behavior can be thoroughly analyzed. Next,
another criterion is meeting the requirements. Recall that in section 3.2 an adaptive sampling strategy was
determined based on a surrogate model’s variance; not all of them have the ability to provide insights into
their uncertainty, so the models’ capabilities must be taken into account. A final aspect to include in the
trade-off is feasibility. This is broad, but mainly relates to the practical accessibility of a model. They will be
evaluated based on the required programming effort, and time to train and optimize the hyperparameters.

Due to its natural integration with the selected sampling strategy, the first method that we choose is Gaus-
sian process regression. In the end, the model is already trained because of the active learning procedure.
However, that is not the only reason. Apart from perfectly meeting the requirements, GP regression is also
praised for its high accuracy and is fairly feasible to use. Notwithstanding, a problem is the lack of trans-
parency. They do indicate the uncertainty of their predictions, but other than that their behavior is difficult
to interpret. This can be solved by using the collected sample to train more interpretable models, such as
linear approaches. One of their strengths is the low complexity, while still being able to generalize accept-
ably well. They are not the most accurate alternatives, but that is not the purpose either. The popularly used
second-order polynomial is selected because of its high interpretability and feasibility — they have no hy-
perparameters, so no optimization is required. Furthermore, we prefer them over linear regression as they
still manage to capture relations that are non-linear and non-monotonic. The final category that is interest-
ing to consider are the tree ensembles. Random forests and gradient boosting are among the most powerful
machine learning algorithms available. Accuracy is thus the main driver for them to be selected. On top of
that, they are much more feasible compared to neural networks. The latter is rather complex and requires a
lot of effort to properly optimize. While gradient boosting tends to outperform random forests, we will use
them both regardless for the following reason. In the proof of concept study by De Leeuw [20], random forests
regression was selected as the main meta-model for AATOM. Hence, to compare results, it will be necessary
to also use the method. The disadvantage is that this requires the optimization of both methods, although
the selection of a clever tuning algorithm in subsequent section 3.4 is expected to mitigate the issue.

Altogether, we select four methods to meta-model AATOM. GP regression because it perfectly meets the
requirements, a second-order polynomial because of its interpretability, and the highest accuracy is likely
achieved by random forests and gradient boosting. Moreover, these four methods are all considered feasible.
LR, MARS, RBFs, SVMs, single decision trees and NNs are not taken into account because they are either too
inaccurate, too complicated or too difficult to interpret.



64 3. Surrogate Modeling

3.4. Hyperparameter Optimization
Selecting the model architectures is one thing, they also should be properly optimized to get the most out
of them. The performance of machine learning algorithms can be severely affected by the choice of hyper-
parameters [42]. In concrete terms, this means that the parameters should be chosen as such to minimize
the prediction error given a certain training sample. Finding the optimal combination can be a difficult and,
above all, a computationally demanding task [42]. Hence, it will not be surprising that this topic has received
some scholarly attention. The most popular approaches are now briefly described, their advantages and dis-
advantages are summarized in Table 3.3, and finally we select a suitable method for current research.

The most widely adopted approach is a grid search [42]. The principle behind this method is rather
straightforward: the user defines a number of parameter combinations, after which the search algorithm
tests them all exhaustively [106]. The combination corresponding to the best performance is then selected
for the machine learning model. Instead of manually defining combinations, an alternative approach is to
express the parameter spaces by means of statistical distributions [5]. This is the random search; the algo-
rithm draws random samples from the distributions and tests their performance. This process is repeated
until a computational budget is reached, or when the machine learning model is sufficiently accurate [109].
Thereafter, the best combination is chosen. The simplicity and generally good performance contributed to
the popularity of both methods. But more than ever, scholars are emphasizing their naivety [5, 42]. They do
not learn throughout the search process and keep drawing candidates from the entire parameter space. This
makes them rather inefficient and has led to adoption of Bayesian optimization (BO). With less iterations,
BO usually succeeds to find a combination that is close to the global optimum [106]. It works as follows. A
surrogate model is fitted to the objective (e.g., a prediction error metric), then the parameter combination is
selected that leads to the surrogate’s optimum, after which this combination is evaluated on the actual ma-
chine learning model. Finally, the surrogate is updated with the new information and the process continues
sequentially until a predefined number of iterations is attained [5, 106]. Note the analogy with the selected
adaptive sampling approach from section 3.2, although the fundamental difference is that the goal now is
to find a global optimal hyperparameter setting rather than to fit a model as closely to AATOM’s response as
possible. Besides BO, another commonly used method that offers the possibility to search for global optima
are evolutionary metaheuristics. This is a category of algorithms based on the theory of evolution, guided by

Table 3.3: Advantages and disadvantages of the considered hyperparameter tuning methods.

Method Advantages Disadvantages Ref.

Grid search
Simple, transparent, allows
for multi-threading

Suffers from dimensional-
ity, requires experience on
promising candidates, only
limited ranges are practical

[5, 109]

Random search

Larger and higher dimen-
sional search spaces are
possible, can be easily
stopped and resumed, allows
for multi-threading

Inefficient, remains compu-
tationally intensive, finding
the optimal combination is
not guaranteed

[5, 109]

Bayesian optimization

Efficient, high chances to
find a combination close to
the global optimum, no need
for prior experience regard-
ing promising candidates

Difficult for multi-threading,
rather complex

[106, 109]

Evolutionary metaheuristics

Effective without being too
complex, good chances to
find a combination close to
the global optimum

Multi-threading not always
possible, experience on
promising regions for ini-
tialization is desirable for a
fast convergence, consists of
complicated hyperparame-
ters itself

[106, 109]



3.4. Hyperparameter Optimization 65

the principle of "survival of the fittest" [2]. The high-level idea is to start with a population of parameter com-
binations that is randomly initialized. The individuals are then evaluated by means of an objective, which
essentially determines their "fitness" (e.g., a prediction error metric). The best ones have the highest chances
to survive, after which crossover and mutation is performed on them to create a new generation. This pro-
cess is again continued until a computational budget is reached, or when the machine learning algorithm is
sufficiently accurate [2, 106, 109].

Now that the main working principle of promising hyperparameter tuning strategies are discussed, we
will compare the advantages and disadvantages in Table 3.3 to select the most appropriate method. The ben-
efits of a grid and a random search are indeed attractive. They are not too complex and have a good chance
of finding a solid parameter setting. However, they remain rather inefficient and do not guarantee a global
optimum. We therefore have the ambition to choose a more sophisticated method. In particular, our prefer-
ence goes to Bayesian optimization over evolutionary metaheuristics because it directly searches for the best
parameter combination, without requiring too much of optimization itself. It is an efficient algorithm with a
high chance of finding a solution close to the global optimum. Moreover, no prior information is necessary
about promising parameters — the algorithm takes already care of that. Furthermore, the complexity of BO
is not deemed an issue because of its similarity with the adaptive sampling strategy from section 3.2. A lot
of knowledge has already been gathered about the method. From the practical perspective, Bayesian opti-
mization is really well integrated with the scikit-learn package in Python using scikit-optimize [39, 75]. This
greatly reduces the programming effort required during the implementation. The only challenge could be the
difficulty for multi-threading, although the computational demands are not expected to exceed the available
budget. Hence, Bayesian optimization is a solid choice to tune the hyperparameters of the machine learning
models for this research.

Finally, it has been mentioned that the tuning strategies evaluate the performance of machine learning
models during the optimization. While this may sound trivial at first, an important consideration is which
data set to use. On the one hand, validation on the training set produces spurious results because perfor-
mance metrics have to be calculated on unseen data. On the other hand, the test set is required for the
overall validation (see section 3.5) and is therefore not available for the hyperparameter optimization. The
ideal solution would be to collect a separate data set specifically for this purpose [38]. However, recall that
sampling from the AATOM simulator is computationally intensive. A more practical and very popular ap-
proach is to use cross-validation (CV). The main principle is illustrated in Figure 3.11 [75]. The training set is
partitioned into K subsamples, which are often referred to as K-folds in the literature. Typically, the number
of folds is set to 5 or even 10 [38]. The CV algorithm then trains the machine learning model on all folds ex-
cept one, which is used for evaluating the performance. The illustration shows the training folds in green and
the validation fold in blue. This is repeated K times, testing on a different fold each time. Finally, the overall
cross-validation performance metric for a specific hyperparameter combination is obtained by averaging the
individual metrics calculated on the underlying validation folds [38]. In summary, CV uses the data of the
training sample more efficiently, although it has the disadvantage of being more computationally demand-
ing. Per tested hyperparameter set, the machine learning model needs to be trained K times — once for every
fold. Ultimately, the model is retrained on the whole training sample with the hyperparameters that resulted
in the best cross-validation performance. This is then the trained surrogate model of AATOM, ready to be
used for further analysis.

All data

Training data Test data

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 1

Split 2

Split 3

Split 4

Split 5

Fold 1

Fold 1

Fold 1

Fold 1

Fold 2 Find the optimal
hyperparameters

Figure 3.11: Hyperparameter tuning with a K-fold cross-validation approach [75].



66 3. Surrogate Modeling

3.5. Model Validation
The previous section often mentioned that the performance, prediction error, or validation metrics would
be evaluated. This can be done in several ways, so current section will therefore present common indicators
from the literature. Undoubtedly, the coefficient of determination R2 is one of the most popular metrics
[16]. It is calculated according to Equation 3.19 [from 11, 14]. Again, f (xi ) denotes the actual response of
AATOM for a certain input xi , f̂ (xi ) the the surrogate model’s predicted response and f the average of all true
responses in the test set. The size of the sample is given by m.

R2 = 1−
∑m

i=1

(
f (xi )− f̂ (xi )

)2

∑m
i=1

(
f (xi )− f

)2 (3.19)

The performance indicator can be interpreted as follows. It gives the proportion of variation in the response
of AATOM that is explained by the input parameters in the surrogate model f̂ [16, 26]. Hence, the closer to
one, the better the model. While the coefficient of determination is a very useful and informative metric,
it does not directly measure the prediction error. An alternative would the root-mean-square error (RMSE),
which is the square root of the mean squared error (MSE) as indicated in Equation 3.20 [from 3, 28].

RMSE =
p

MSE =

√√√√∑m
i=1

(
f (xi )− f̂ (xi )

)2

m
(3.20)

Unlike the coefficient of determination, the RMSE is expressed on the same scale of the response. The benefit
is that it indicates the expected prediction error of the surrogate model. It is thus a good measure for its
uncertainty. Consequently, the lower the RMSE, the more accurately a meta-model is able to predict the true
response of AATOM. Instead of squaring and taking the root, another approach is to use the absolute value of
the prediction error. This is the mean absolute error (MAE), as given in Equation 3.21 [from 11, 14].

MAE =
∑m

i=1

∣∣ f (xi )− f̂ (xi )
∣∣

m
(3.21)

Logically, the RMSE and the MAE are closely related. There is however an important distinction between
the two. Since the RMSE involves squaring the discrepancy between the actual and predicted response, it is
naturally more sensitive to outliers [16]. So the greater the difference between the two indicators, the more
the surrogate model is affected by outliers. With this in mind, it is always a good idea to evaluate both indi-
cators. Finally, like the RMSE, the MAE is also expressed on the same scale as the response. While this has
both advantages and disadvantages, the performance of surrogate models for different responses cannot be
compared when they are expressed on other scales. The mean absolute percentage error (MAPE) resolves the
issue by calculating the prediction error relatively. It is formulated according to Equation 3.22 [from 16].

MAPE =
∑m

i=1

∣∣∣ f (xi )− f̂ (xi )
f (xi )

∣∣∣
m

(3.22)

The relative nature of the MAPE makes it possible to compare the performance for different responses. How-
ever, one should be careful when using it on low values. The closer the responses are to zero, the more the
indicator tends to exaggerate the error [16]. That is because of the fraction in Equation 3.22, where the pre-
diction error is in the numerator and the true response in the denominator. Logically, when the former is
quite large and the latter close to zero, the MAPE explodes easily. This is not necessarily a problem, though
the results should be interpreted accordingly.

During the discussion it became clear that the different key performance indicators (KPIs) all have their
advantages and disadvantages. For that reason, we do not select just one metric for the overall validation
of the surrogate models, but rather compute all four. This gives a better insight into the bigger picture and
ensures a stronger interpretation of the results. Notwithstanding, the hyperparameter optimization from
section 3.4 requires one indicator to quantify the model performance for the tested parameter combinations.
The effect of different metrics on the optimization process is rather marginal, so we choose the most com-
monly used coefficient of determination for this. A final consideration is the test set. It was mentioned earlier
with Figure 3.11 that a separate sample must be isolated for the validation of the models. Indeed, a surrogate
model cannot be trained and tested on the same data. The usual procedure is to split the sample in a training



3.6. Selected Methodology 67

and a test set. Typical proportions of data going to the test set are 20% to 25% [34, 38]. However, it is impor-
tant to understand that this is not as straightforward when the sample has been collected adaptively. Doing
so could jeopardize the benefits of active learning, which is of course undesired. We choose to solve the prob-
lem by creating an additional data set. More specifically, there will be randomly sampled from AATOM using
the input parameter combinations that have not been selected during the adaptive sampling process. This
continues until the size of the test set is about 20% of the whole sample. Once again, the sole purpose of the
test set is to validate the surrogate models and therefore will strictly not be used for any other purpose.

3.6. Selected Methodology
In conclusion of this chapter, an overview of the selected methods is presented in Figure 3.12. It essentially
shows the whole process how the surrogate models will be generated. The first step is the design of exper-
iments. An initial sample is created using a Hammersley sequence with a size of 10 times the number of
dimensions in the input vector. This is in line with the recommendations of Loeppky et al. [62], who exam-
ined the effect of initial sample sizes on Gaussian process surrogates [61]. After that, the adaptive sampling
algorithm takes over. The Gaussian process model is trained on the available data such that the expected
improvement for global fit acquisition function can indicate the most interesting region. The identified data
point is then sampled from AATOM and the process is repeated. This continues until the stopping criterion
is reached. Subsequently, the available training sample is used to train four machine learning models: a
second-order polynomial, a Gaussian process regressor, a random forest regressor and a gradient boosting
regressor. If the model consists of hyperparameters, they are tuned with a Bayesian optimization algorithm
under a K-fold cross-validation strategy. Thereafter, the models are retrained on the whole training set with
their optimal parameters. The last step is to validate them. To do so, an independent test set must be sam-
pled first. This is done by randomly picking input parameter combinations that have not been selected by
the active learning process until the proportion of the test set equals 20% of all collected data. Finally, the R2,
RMSE, MAE and MAPE are calculated when the test data is available, which then allows the interpretation of
the results. After this, the surrogate models are ready for further analysis, as will be explained in chapter 4.

VALIDATION

SAMPLING

TRAINING AND OPTIMIZATION

Use a Hammersley
sequence to create an
initial sample with the

size of 10 times the
number of dimensions

Train a Gaussian
process regression
machine learning

model

Stopping 
criterion reached
(time/accuracy)?

Identify the next data
point to sample based

on the EIGF
acquisition function

Sample the
selected data

point in
AATOM

Second-order
polynomial

Gaussian process
regression

Random forest
regression

Gradient boosting
regression

If necessary, find the optimal hyperparameters using Bayesian optimization under a K-fold cross-validation strategy

Identify the input
parameter combinations

that have not yet been
sampled from AATOM

Retrain the models on the whole training set

Randomly sample until
the proportion of test set
equals 20% of the whole

sample

Calculate the R2, RMSE,
MAE and MAPE on the

test set

No

Yes

Interpret the results

Figure 3.12: Overview of the selected methodology.





4
System Understanding

When the concept of surrogate modeling was introduced in section 3.1, we argued that it can play an impor-
tant role in understanding the underlying system. Since surrogates are much faster than the original model,
extensive analyses can be performed, but also their intrinsic properties can lead to interesting conclusions.
The traditional approach to explain a model’s behavior has been to conduct a sensitivity analysis (SA) [96].
It allows to investigate the effect of input parameters on the output, both on a local and a global level. The
usefulness of a SA is undisputed, but further research in this area has actually been thriving lately. Fueled by
the European Union’s adaption of the General Data Protection Regulation, scholars have shown a profound
interest in understanding and explaining the reasoning behind machine learning algorithms [58, 72]. Indeed,
the black-box nature makes them difficult to interpret for the user. Seemingly simple questions, whether the
outcome is trustworthy or not, or how they arrive at their solutions, are actually quite challenging to answer.
The literature calls it explainable artificial intelligence (XAI), which even goes so far as questioning whether
accuracy or explainability should be optimized — perhaps some of the accuracy can be abandoned to achieve
greater transparency [81]. Therefore, due to their identical goals, we will further exploit the common ground
of traditional approaches and XAI in an attempt to extract relevant information about the complex dynamics
in airport terminals using the surrogate models. The purpose of this chapter is not to provide an exhaustive
overview of all available methods for achieving this, but rather to touch upon the most important ones. Nei-
ther will there be a selection of the most promising, they are all useful in their own way and can be deployed
during the analysis according to the needs. A common distinction in the literature is between methods that
are independent of the model and methods that are specific to a particular architecture [71]. Respectively,
section 4.1 elaborates on the model-agnostic approaches and section 4.2 on the model-specific ones.

4.1. Model-agnostic Approaches
Interpretation methods that are independent from the machine learning algorithm are referred to as model-
agnostic [71]. They can be applied to essentially any model; only the effect of the input parameters on the
output is analyzed. The internal working principle of an algorithm is thus disregarded [9, 25]. This makes
model-agnostic approaches flexible and gives them a large user base. However, while they do provide in-
sight into the behavior of responses, it remains unclear how exactly the model arrived at its outcome [25].
Nevertheless, only a handful of machine learning models are capable of producing model-specific informa-
tion, so model-agnostics are often the last resort. Based on the studies by Belle and Papantonis [10], Elshawi
et al. [25], Molnar [70], and Borgonovo and Plischke [13], we have divided the most common approaches
for regression models into five categories as follows. Subsection 4.1.1 is first with the traditional sensitivity
analysis. Secondly, a popular way to gain more knowledge about the nature of the relationships between
inputs and outputs, along with their influence, is by creating dependency plots. Three related methods for
doing so are described in subsection 4.1.2. Next, subsection 4.1.3 continues with methods to extract the rel-
evancy of features. This includes the well-known importances, but their interactions are also considered.
Fourth, subsection 4.1.4 discusses LIME, which stands for local interpretable model-agnostic explanations.
It is an common approach for the local interpretation of a machine learning model’s output. Lastly, SHAP is
reviewed in subsection 4.1.5. This is the abbreviation for Shapley additive explanations, a method based on
game theory.

69



70 4. System Understanding

4.1.1. Sensitivity Analysis
First and foremost, there is the sensitivity analysis (SA). The general purpose of a SA is to examine how the
responses of a model behave with regard to changes in its parameters. Put differently, it involves assigning
response variability to the causative inputs [13, 86]. As would be expected, several ways exist to realize this.
We distinguish between local and global approaches, which will now be discussed in respective order.

Local methods analyze the sensitivity of the model around a particular point in the input space [13, 96].
More specifically, the effect on the response is measured per proportional change in one of the input param-
eters. One way to obtain this information is by evaluating the gradient. Namely, partial derivatives naturally
describe the sensitivity along the individual dimensions [13]. While such an approach is common in the liter-
ature, the one-at-a-time (OAT) sensitivity analysis is actually much more popular. It produces similar results,
and is one of the easiest and most straightforward methods to get insight into the local response behavior
[13]. The formal expression is given in Equation 4.1 [from 13]. The main principle is that all input parameters
x0
−i are kept constant except one xi . Then, this feature is changed in the positive direction. The extent ∆x+

i is
at the discretion of the user, one just needs to make sure that all parameters are changed in the same relative
manner (e.g., each by 10%). Otherwise, their effects on response would be difficult to compare. The next step
is to plug the changed parameter along with the unmodified ones into the machine learning model, resulting
in a new output. The sensitivity ∆+

i f̂ to the parameter under investigation is ultimately represented by the

difference it causes in the response, with respect to the baseline value f̂ (x0). Vice versa, the same can be done
for the negative direction.

∆+
i f̂ = f̂ (xi +∆x+

i , x0
−i )− f̂ (x0) (4.1)

The advantage of the OAT sensitivity analysis is that it is a simple and evident approach that quickly gives a
solid indication of the direction and magnitude of a particular parameter change on the model’s output value.
It does not involve too much complexity. Moreover, the results can be easily displayed in a tornado diagram,
which shows the effects sorted by magnitude for both negative and positive changes for all parameters [13].
On the contrary, its greatest weakness is that variable interactions are not considered. For example, input pa-
rameters can influence one another, which might result in an entirely different model reaction when they are
varied altogether [13]. This could lead to fallacious conclusions and therefore a more sophisticated approach
would be appropriate in such non-linear cases.

In contrast to local methods, a global approach examines the model behavior over the entire input space
[96]. In its simplest form, a good first step to visualize the global relationships between the different inputs
and the output is to create scatter plots [13, 86]. It gives a first indication of the overall picture. However,
to obtain more quantifiable insights, one must go beyond that. We consider the most common variance-
based approach by Sobol [90], which attributes the variance in a model’s response to the input variables in
proportion to their contribution [96]. Under the assumption that the inputs are independent from each other,
the output of the surrogate model f̂ (x) may be decomposed according to Equation 4.2 [from 86, 96]. It shows
that a response can be expressed by a sum of functions with an increasing number of dimensions, where the
total dimensionality of the input vector is denoted by n.

f̂ (x) = f̂0 +
n∑

i=1
f̂i (xi )+

n∑
i=1

n∑
j>i

f̂i j (xi , x j )+
n∑

i=1

n∑
j>i

n∑
k> j

f̂i j k (xi , x j , xk )+·· ·+ f̂i j k...n(xi , x j , xk , ..., xn) (4.2)

From here, Sobol [90] proved that the variance can also be broken down. This is the famous analysis of
variance decomposition, as given in Equation 4.3 [from 86, 96]. Essentially, the expression demonstrates that
the total variance of a machine learning model’s output can be split up into separate parts, which are directly
related to the corresponding input parameters and their interactions.

σ2 =
n∑

i=1
σ2

i +
n∑

i=1

n∑
j>i

σ2
i j +

n∑
i=1

n∑
j>i

n∑
k> j

σ2
i j k +·· ·+σ2

i j k...n (4.3)

If all terms are then divided by the total variance σ2, we arrive at the standardized Equation 4.4 [from 86]. It is
the sum of so-called Sobol sensitivity indices, which naturally adds up to one. The index of a particular term
is a direct measure of its sensitivity. Hence, it shows how much the variance of the model’s output is affected
by the term [86]. This applies not only to the first-order indices Si , one for each input dimension, but also to
the higher-order interactions Si j , Si j k , etc.

n∑
i=1

Si +
n∑

i=1

n∑
j>i

Si j +
n∑

i=1

n∑
j>i

n∑
k> j

Si j k +·· ·+Si j k...n = 1 (4.4)



4.1. Model-agnostic Approaches 71

Analyzing the first and higher-order indices gives a good idea about the global sensitivity. Notwithstanding,
the number of indices can easily explode with an increasing dimensionality. This is resolved by calculating
the total index for a certain input parameter. A three-dimensional example is given by Equation 4.5 [from 86].
The total sensitivity index for the second dimension ST 2 is the sum of all components from Equation 4.4 in
which that dimension was involved. Thus, it measures the total contribution of a parameter with respect to
the variation in the output of a machine learning model [86].

ST 2 = S2 +S12 +S23 +S123 (4.5)

The global variance-based SA is widely adopted because it gives a full picture of the sensitivity. The variation
in a model’s output can be rather easily attributed to particular input parameters and interactions [86]. More-
over, the results are straightforward to interpret and non-linear models can be analyzed without any issues
[90, 96]. Nonetheless, the method tends to be computationally expensive, as calculating the indices requires
many model interrogations [86]. This clearly shows one of the biggest benefits of using a surrogate instead
of AATOM itself — it would take a lot of time otherwise. Finally, one should be careful about taking the vari-
ance as a true proxy for the variability in the response [13, 96]. Technically, the two concepts are not entirely
equivalent, although it does provide a solid and robust understanding of the sensitivity of the variables.

4.1.2. Dependency Plots
A sensitivity analysis shows to what extent the output of a machine learning model is affected by changes in
the input, but says nothing about the actual form of the relationship. Such information can be obtained by
analyzing the dependency of the outcome on the input parameters [10, 70]. The strength of this approach is
that one can easily see how responses behave as a function of a feature. For example, it can detect whether the
nature of the relation is (non-)monotonic, (non-)linear, and so on [70]. The literature on XAI describes three
general trends to visualize the dependency, being the partial dependence plot, the individual conditional
expectation and the accumulated local effects [25, 70, 71]. They are commonly abbreviated as PDP, ICE and
ALE. The three methods are closely related, and will now be further discussed in respective order.

The concept of a PDP was introduced by Friedman [30]. It is a global method which essentially shows the
marginalized effect of a particular input variable on the response of a machine learning model [70]. Formally,
the partial dependence PD is described by Equation 4.6 [from 30, 70]. In practice, however, it is approximated
by the summation on the right. The investigated features are denoted by xs ; usually this is only one, although
it is also possible to consider two at once. All other features are represented by xc , p is the probability density
function, and m is again the size of the sample. Then, the outcome’s partial dependence on xs is calculated
by taking the mean response value for all varying x (i )

c in the sample [70]. This results in a function that shows
how the model behavior is affected by solely xs .

PDxs (xs ) = Exc

[
f̂ (xs , xc )

]=∫
f̂ (xs , xc ) p (xc )d xc ≈ 1

m

m∑
i=1

f̂
(

xs , x (i )
c

)
(4.6)

To see what dependency plots look like in practice, an example of bicycle rental is shown in Figure 4.1. The
results are retrieved from Molnar [70]. Essentially, the example aims to predict the daily number of bicycles
that will be rented from a particular company, based primarily on weather-related information. A random
forest machine learning algorithm is trained to make the predictions. One of the features is the temperature in
degrees Celcius on the day in question, which we will now further examine. Figure 4.1a depicts the PDP on the
left. The plot indicates that the relationship between temperature and the predicted number of rental bicycles
is non-linear and non-monotonic. Initially, the number of bicycles increases with warmer temperatures, but
it reaches a ceiling between 15 and 25 degrees. If the temperature rises further, then the number of rentals
starts to decrease again. This seems logical: people like to cycle with a comfortable temperature, which is
neither too cold nor too hot. The main benefit of visualizing the dependency between features and a machine
learning model’s response this way is its intuitiveness [10, 25, 70]. There is no ambiguity and a PDP can
easily be understood by the user. In addition, they are not technically challenging to generate in practice
[70]. An important drawback, however, is that they assume strict independence between the input variables
[25, 70, 71]. That could be a problem if some features are correlated — averaging the model’s outcome over x (i )

c
in Equation 4.6 can lead to parameter combinations that are unlikely in reality. Another disadvantage of PDPs
is that it is practically impossible to visualize the dependency for more than two input variables [70]. The plot
would become too complex to interpret otherwise. Also, the distribution of the sampled data points should
ideally be considered at the same time, as can be seen just above the horizontal axis in Figure 4.1a. The risk



72 4. System Understanding

(a) Partial dependence plot. (b) Individual conditional expectation. (c) Accumulated local effects.

Figure 4.1: The three approaches to plotting dependencies, applied on an example of bicycle rental [70].

of not doing so is that too much attention is paid to parts in the domain about which truthful information
is actually rather scarce [70]. A final weakness of PDPs is that heterogeneity cannot be detected [10, 70].
Indeed, only the average relationship is considered instead of individual instances. This carries the risk that
important information can be hidden in the average, potentially leading to erroneous conclusions.

One way to solve the average-related issues of PDPs is to simply not take the average, and so the individual
conditional expectation (ICE) was introduced. Instead of averaging the model’s response over x (i )

c , one can
also plot all individual cases [70]. Hence, for all instances i in the sample with size m, the ICE draws every
f̂ (xs , x (i )

c ) in one plot over the domain of xs . Note that this is the same function that was originally averaged
with the approximation term on the right in Equation 4.6. Consequently, the curve of a PDP is in fact the
mean of all the individual curves in an ICE plot. Applying it to the same bicycle rental example as before, the
ICE plot is shown in Figure 4.1b. The graph does not demonstrate any major differences among the instances.
A conclusion is therefore that the relationship between the temperature and the number of rental bicycles is
fairly homogeneous [70]. Thus, for this case, the PDP is a valid summary of the nature of the interconnection.
The advantages and disadvantages of PDPs and ICE plots are similar because of their kinship. ICE plots
remain intuitive and can still be easily understood by the user [25, 70]. However, an area where ICE plots
are superior to PDPs is their ability to reveal heterogeneity in the dependency of a model’s outcome on a
feature [10, 70]. For that reason alone, it is always a good idea to interpret both plots side by side. Conversely,
ICE plots no longer allow to analyze the dependency of the response on two features simultaneously, and
they tend to get hectic due to all the individual curves [25, 70]. Although, like PDPs, the main drawback
remains their assumption of strict independence between the input variables [25, 70]. To illustrate the issue,
if the solar irradiance was one of the other features of the bicycle rental example, a positive correlation with
the temperature would be expected. One may then wonder how to interpret the ICE curves in the upper
region of the temperature domain for instances that actually have a very low irradiance. Indeed, some of the
parameters combinations could be nonexistent in reality, which can lead to erroneous visualizations.

While PDPs and ICE plots are popular methods in the field of explainable artificial intelligence, the fact
that they assume the absence of any correlation between the input variables has sparked the interest of schol-
ars to come up with an alternative approach. Apley and Zhu [7] therefore introduced the accumulated local
effects (ALE) plot. The mathematics behind ALE plots are rather complicated, so for the sake of the literature
survey we will explain them intuitively. First and foremost, the essence remains the same as for PDPs and ICE
plots: they intend to visualize the dependency of a machine learning model’s response to a particular feature
[70]. However, ALE plots distinguish themselves by the way they do this. Recall again the bicycle rental exam-
ple. To obtain the expected number of bicycles, the PDP uses the mean response for a particular temperature,
say 15 degrees Celcius. To mitigate the assumption of feature independence, an ALE plot uses the conditional



4.1. Model-agnostic Approaches 73

distribution of an input parameter instead of the marginal [70]. Concretely, the domain of the investigated
feature is split into a number of intervals. The local effect is then obtained by subtracting the response value
for the feature assuming the interval’s lower bound from the response value for the feature assuming the
upper bound. This is repeated for all data points that are located in the interval, after which the average dif-
ference is calculated. Applied to the rental example; if the bin width of the interval were two degrees, the local
effect at 15 degrees Celcius would be the mean difference in predicted bicycles between 16 degrees and 14
degrees. The strength of using differences rather than average response values is that it isolates the effect of
the investigated feature from any other influences [70]. While the benefit of this approach is evident, inter-
preting the differences as they are would be challenging. Therefore, ALE plots accumulate the results across
the intervals and center the ultimate curve around zero [70]. To illustrate this with an example, the plot for the
effect of temperate on the predicted bicycle rentals is shown in Figure 4.1c. The interpretation is as follows. If
the temperature equals 20 degrees Celcius, then its primary effect on the number of rental bicycles is about
575 bicycles greater than average [70]. So an ALE plot must be seen as the reflection of a feature’s principle
effect against the mean outcome of a machine learning model, at a specific location in the domain. Hence,
a wrongful interpretation is to consider the curve as the expected behavior of the model when varying the
respective input parameter, as argued by the creators Apley and Zhu [7]. Logically, the main advantage of ALE
plots is that they are more reliable than PDPs or ICE plots, since feature independence is not assumed [7, 70].
This would be especially true in the case of correlation among the input variables. Moreover, they are again
fairly straightforward to understand and are also much more efficient from the computational perspective
[7, 70]. They can be considerably faster than PDPs. Notwithstanding, ALE plots do entail some drawbacks.
They are definitely more complex than PDPs and ICE plots, and require the determination of the ideal bin
width for the intervals [70]. On top of that, detecting heterogeneity is fairly difficult, if not impossible. A final
notion is that it remains a burden to separately analyze input parameters that are actually correlated, even
though ALE plots do not require them to be independent. In such cases, a better alternative may be to jointly
consider their effect on the outcome of the model [70].

4.1.3. Feature Relevancy
Since the outcome of a machine learning model is expressed as a function of the input variables, one may
wonder which ones are more determinative than others. In this sense, examining the feature relevancy is a
useful model-agnostic approach to understanding them. We will discuss feature importances first and then
feature interactions. Both are global methods, with the former measuring how strongly the model depends
on the individual parameters and the latter to what extent parameters influence one another [25, 71].

The principle behind calculating feature importances is actually rather evident. The idea was concretized
by Fisher et al. [27] in the field of XAI [70]. In essence, the method relies on perturbations. Once a machine
learning model is fitted, the first step is to select an error metric. Most likely, this is one of the performance
indicators from section 3.5. Thereafter, the respective feature is randomly permuted over its domain and
the associated model error is constantly reassessed. This process is performed on all input variables, after
which the information can be plotted in one graph. A box plot is drawn of the increases in model error due to
the permutations for each feature. They are listed in decreasing order to enhance the interpretability of the
graph. A feature is considered more important as the discrepancy with the original error increased during
the permutation process [70]. Put differently, the more a model is dependent on a particular parameter, the
more the prediction error enlarges when it has no longer access to the respective information. Calculating
feature importances is popular because it provides one comprehensive overview of the bigger picture [27, 70].
Not only are they very understandable, they also take interactions into account. Namely, the permutation
process eradicates any influence of the examined feature, so the result represents its total importance. Lastly,
the method needs to interrogate the machine learning model a few times for the calculations, but it is not
computationally demanding as retraining the algorithm is not necessary [70]. On the other hand, a drawback
of permutation-based feature importances is that there is no consensus yet on whether to calculate the results
on the training sample or on the test set. There are valid arguments for both options [70]. In addition, the
randomness caused by the perturbations can lead to instability in the results. This can be solved by increasing
the number of permutations per feature, although that naturally requires more calculations [70]. One has to
find an optimal balance. A much bigger issue is that the feature importances are also prone to the same
assumption of PDPs and ICE plots. Indeed, they deem the input variables to be completely independent.
According to Molnar [70], this entails two threats. On the one hand, the random permutations could result
in infeasible parameter combinations that may be used during the calculations. On the other hand, if two
or more features are correlated, their true importance may be divided amongst them. Such cases are rather



74 4. System Understanding

difficult to interpret. Finally, an important note is to not confuse the current approach with the popularly
used feature importances of regression tree (ensemble) models, which use the node impurity [27]. The latter
is model-specific and calculates how much a feature can diminish the variance on average [70].

Since importances cannot distinguish between main and interaction effects, they often go hand in hand
with the calculation of feature interactions. This is the phenomenon where input variables exert influence on
one another so that the response of a machine learning model is no longer a linear addition of the main effects
[71]. A post hoc approach to investigate the strength of interactions is to isolate their impact on the variability
in the outcome of the model. If these results are then divided by the total variability, proportional influences
are obtained [25, 70]. This way of reasoning is the principle idea behind the seminal work of Friedman and
Popescu [31], who proposed the H-statistic [70]. The theory is based on partial dependencies, as discussed
with Equation 4.6 in the previous subsection 4.1.2. The expression for the H-statistic of a particular feature j
with any of the other parameters is given in Equation 4.7 [from 31, 70].

H 2
j =

∑m
i=1

[
f̂
(
x (i )

)−PD j

(
x(i )

j

)
−PD− j

(
x (i )
− j

)]2

∑m
i=1 f̂

(
x (i )

)2 (4.7)

The sample size is again denoted by m. In essence, the numerator offsets the model’s response against the
partial dependence on feature j and the partial dependence on all the others except j . What remains of the
total variance can therefore be associated to solely the interaction effects of x j . This is then normalized by the
denominator to arrive at the proportion of the model’s variability that is described by the feature’s interactions
[31, 70]. Hence, the H-statistic is always between zero and one, with a value of zero corresponding to an input
parameter that does not affect any other parameters. Subsequently, Friedman and Popescu [31] recommend
to further examine those features with the greatest values for the evaluated statistic. In particular, they refer
to the interaction effects between two variables j and k, which can be obtained according to Equation 4.8
[from 31, 70]. This is the expression for the H-statistic between two specific features.

H 2
j k =

∑m
i=1

[
PD j k

(
x(i )

j , x(i )
k

)
−PD j

(
x(i )

j

)
−PDk

(
x(i )

k

)]2

∑m
i=1 PD j k

(
x(i )

j , x(i )
k

)2 (4.8)

Similar to the earlier Equation 4.7, current H-statistic isolates the pure variance of the partial dependence
from x j and xk that is caused by the influence the two parameters exert on each other [31]. The value is also
normalized, so a statistic of zero means that there is no interaction between x j and xk . Vice versa, a statistic
of one means that the model is not subject to any of their main effects [70]. In that case, the response is
thus only affected by the interactions among parameters j and k. To emphasize once again the difference
between the two H-statistics H 2

j and H 2
j k ; the first represents the total interaction strength of x j on any of

the other features, while the second represents the specific two-way interaction strength between x j and xk

on the machine learning model [70]. The fact that H-statistics are dimensionless and unambiguously clear
is one their main advantages. There is no doubt because the statistic directly measures the proportion of
model variability due to the examined feature(s) [70]. Moreover, they do not assume any functional form
between the parameters — all types of interactions are considered [25, 70]. A last benefit is that they allow to
calculate interactions of even higher orders than presented, though this also increases the complexity [31].
Conversely, one of the biggest drawbacks is its computational intensity, as the calculations require many
model interrogations [25, 70]. A possible approach to alleviate the burden is by not using all the m data points,
but that would also make the statistic less stable. One must therefore carefully weigh both concerns. Another
issue according to Molnar [70] is the absence of a proper test statistic for hypothesis testing. While the H-
statistic measures the strength of interactions, it is rather hard to objectively assess from which threshold
the effect should be considered significant. Finally, the method again suffers from the assumption of feature
independence [70]. This makes sense, because it is directly based on partial dependence functions, which
are subject to the presumption. Nevertheless, H-statistics remain a useful tool to understand the behavior of
machine learning models, especially in extension to analyzing two-way PDPs [70].

4.1.4. Local Interpretable Model-agnostic Explanations
The next considered method for interpreting model behavior is LIME, which is short for local interpretable
model-agnostic explanations. It originated from the research by Ribeiro et al. [80], and is currently one of
the most popular approaches in the field of XAI [10]. From a high-level perspective, the idea of LIME is to



4.1. Model-agnostic Approaches 75

explain the reasoning behind black-box algorithms by means of training a local model that is transparent,
and therefore easy to interpret [10]. This requires some further explanation. First of all, it is a local technique.
So the purpose is not to explain the machine learning model’s behavior across the entire domain, but rather
for smaller demarcated regions of interest. Furthermore, LIME uses transparent surrogates to facilitate the
local explanations. The choice of the meta-model is not etched in stone, although it is common to use linear
regression or decision trees, preferably with regularization [70, 80]. Altogether, the creators emphasize that
LIME should be locally faithful [80]. This means that the explanations of the surrogate at a particular point in
the domain must be in accordance with the local behavior of the black-box algorithm. An implication is that
the usage of local characteristics is enabled. Hence, features that are of great importance on a global level
may not be relevant at all in a local region, and vice versa [80]. More formally, the principle behind LIME can
be written according to Equation 4.9 [from 70, 80].

ξ(x) = arg min
g∈G

[
L

(
f̂ , g ,πx

)+Ω(g )
]

(4.9)

In the expression, ξ(x) is the local explanation of LIME at the point x. The purpose is then to find a surrogate
g from the set G with transparent and interpretable models, which is as faithful as possible to the black-box’s
local response f̂ without being too complex [70]. The fidelity is represented by a loss function L , which in
practice would be one of the error metrics from section 3.5. At the same time, one should refrain from making
the surrogate too opaque, as indicated by Ω(g ). This term can be regarded as the regularization of the meta-
model. Examples are to limit the decision trees’ depth or to increase the number of regression weights that
are equal to zero [80]. Lastly, the extent to which LIME considers a region around x to be local is described by
πx . In other words, this parameter thus defines the part of the domain to be used for generating explanations
in the local behavior of the model [70].

Now that the philosophy is clear, we take a closer look at how exactly LIME obtains its insights. The expla-
nation is based on the step-by-step descriptions by Molnar [70] and Ribeiro et al. [80]. Recall that it is a local
method, so one has to choose a particular location of interest x first. Subsequently, data is sampled by per-
turbations in the feature space and the corresponding responses are retrieved from the black-box algorithm.
The closer a data point is to x, the more influence it is assigned through πx . In practice, this is accomplished
by a kernel function measuring the proximity, with the points closest to x given the highest weights. Next, the
weighted sample is fed to a transparent surrogate. The model is then fitted to the data, after which its inter-
nal characteristics can be interpreted to explain the local behavior and phenomena of the original black-box
algorithm. An example of how this looks in practice can be found in Figure 4.2 [based on 24, 80]. A random
forest algorithm is used to predict people’s development of diabetes a year after performing various tests. Its
target value is expressed on a quantitative but unitless scale. The results of LIME are generated based on an
L2-regularized regression meta-algorithm. In the visualization, the behavior of the model is explained at a
particular point x in the domain for which the disease was estimated to become 232.06. This is depicted in
the lower left, along with the range of the black-box function. The five most important (standardized) features
are tabulated at the right under "Feature Value". In the middle, the individual contribution of each variable
is visualized. The stronger their impact, the higher they are listed. For example, if parameter s5 is greater
than 0.03, it results in an increase of 46.94 to the intercept of the fitted surrogate. Vice versa, the prediction is
decreased by 3.70 because the feature value of sex equals zero. The intercept and the prediction of the local

Figure 4.2: Example of local insights by LIME, applied to data from a study on diabetes. The data comes from Efron et al. [24] and the
results were obtained using a tutorial on the code of Ribeiro et al. [80] that was attached to their research.



76 4. System Understanding

meta-model are shown at the top left. To connect the dots, LIME arrives at an outcome of 232.83 by adding
the individual contributions of all important parameters to the intercept1. One can see that this result is very
close to the original outcome from the random forest model of 232.06. In summary, the essence of LIME is
to interpret the local behavior of black-boxes by means of fitting a transparent surrogate on perturbed data,
where nearby data points have a greater influence on the explanations [70].

One of LIME’s greatest strengths is its overall flexibility [70, 79]. Essentially, the user can build and apply
the method as needed; it is fully customizable. This results in many possibilities for a wide variety of appli-
cations, but an inherent disadvantage is that it also leads to more degrees of freedom during the implemen-
tation. For example, one might be wondering which type of surrogate is best to approximate the black-box
algorithm, how to define the kernel function, what the best approach is to select the most important features,
or how to perturb the data when collecting a sample [70, 79]. Answering these kinds of questions is not always
trivial and may take a number of iterations under a trial and error strategy. On top of that, the complexity of
the meta-model must be carefully weighted against its explanatory power. These two concepts are often-
times conflicting. Notwithstanding, once the architecture for a particular case has been determined, Ribeiro
et al. [79] praise LIME’s low switching costs to different black-boxes. This makes it easy to compare the re-
sults for different models. Furthermore, despite its flexibility, the method remains rather straightforward to
understand and utilize [70]. This also applies to their explanations, which are not too different to interpret.
Moreover, they include metrics for the reliability, helping critical users to put their results into perspective
[70]. Finally, a last concern by Molnar [70] is that the insights produced by LIME can be quite unstable. For
example, the conclusions from nearby data points may be completely different. One should therefore always
keep this in mind and preferably investigate the robustness of the explanations in more detail.

4.1.5. Shapley Additive Explanations
Finally, we discuss SHAP, which next to LIME is also one of the more recent additions to model-agnostic ap-
proaches in XAI research. It stands for Shapley additive explanations and is considered an eminent interpre-
tation technique [10]. This is mainly due to its solidified theoretical foundation, which the alternatives often
lack [10, 70]. To give an example, Molnar [70] mentioned that LIME explains the behavior of a model by fitting
a local surrogate around the point of interest, but there is no theoretical basis to prove the validity of such an
approach. This is in stark contrast to SHAP, which is based on cooperative game theory [10]. Lundberg and
Lee [63] applied these long-standing fundamentals to interpret the local responses of machine learning mod-
els. At the heart of the method are Shapley values, which is a way of estimating the individual contributions
of the input parameters to the model’s outcome. The high-level principle is as follows, with features seen
as game players and the local response as payoff. First, various coalitions are constructed from all possible
subsets of the players, both inclusive and exclusive a particular feature in question. The machine learning
model is then retrained on all coalitions, each eliciting different reactions from which marginal contributions
can be obtained. These can be weighted over all possibilities, so that their sum results in a certain value for
the examined feature in accordance with its contribution to the payoff [10, 63, 70]. This is the Shapley value,
which essentially divides the prediction (payoff) in proportion to the impacts of the respective input vari-
ables (players) [25]. In other words, it gives a fair view on how a machine learning model’s output is affected
by which features. The mathematical expression is shown in Equation 4.10 [from 63, 70].

ϕxi =
∑

S⊆{x1,x2,...,xn }\xi

|S|! (n −|S|−1)!

n!

[
f̂S∪{xi }

(
xS∪{xi }

)− f̂S (xS )
]

(4.10)

The Shapley value of a particular feature i at a certain location x in the domain is denoted by ϕxi and the sub-
set S represents the possible combinations of the n features except xi . For all S, the machine learning model
is first trained and evaluated on the coalition including xi , and then on the same, but this time excluding xi .
Thereafter, their difference is taken as can be seen by the expression’s subtraction on the right. The discrep-
ancy is the marginal contribution of xi to the prediction for that particular coalition S. Subsequently, this
result is multiplied by the fraction on the left, which yields a weight as a function of the subset size |S| and the
total number of features n. The magnitude of the coefficients is U-shaped in relation to the number of players
in the subset, so both smaller and larger coalitions are given more weight. Ultimately, by adding the weighted
marginal contributions of xi for every coalition together, one obtains the Shapley value of a particular feature
i at location x [63, 70].

While at first, the theoretical background of SHAP may seem rather abstract, the method becomes more
accessible when applied in practice. For that, we revisit the diabetes example from LIME in subsection 4.1.4.

1That is, 232.83 ≈ 125.15+46.94+41.79+18.07+4.59−3.70. Small deviations are due to rounding.



4.1. Model-agnostic Approaches 77

(a) Waterfall plot. (b) Beeswarm summary plot. (c) Dependence scatter plot.

Figure 4.3: Example of the possibilities with SHAP, applied to data from a study on diabetes. The data comes from Efron et al. [24] and
the results were obtained using a tutorial on the code of Lundberg and Lee [63] that was attached to their research.

Three common visualizations are presented in Figure 4.3 [based on 24, 63]. On the left in Figure 4.3a, there
is the waterfall plot which shows the Shapley values of all features at a particular data point x . The chart
should be read from bottom to top. Namely, it starts from the mean response: 152.13 in this case. Then,
the contribution of each feature is listed in ascending order, until it reaches the model’s response 171.09
for the instance x . With that in mind, an important element for proper interpretation is to view Shapley
values as the contribution of their respective input variables to the discrepancy between the actual and the
average response at a given point x in the domain [70]. In the example, s5 affected the outcome by 31.92
in the positive direction from its expected value. Note that Shapley values can be either negative or positive
and they are expressed in the same unit as the target value. Waterfall plots are an excellent tool for local
explainability, however, it would be useful if feature contributions can be visualized for multiple data points
in the feature space. Hence, Lundberg and Lee [63] introduced beeswarm summary plots, as depicted in
Figure 4.3b. This shows at one glance how the machine learning model is being influenced. For all x in
the sample, the Shapley values are calculated for each parameter and plotted along the horizontal axis. The
features are sorted vertically according to a descending mean absolute SHAP value. Furthermore, one dot
represents one instance, while the dots are colored accordant with the value of the respective feature. To give
a specific example, the higher the value of s3, the more negative its Shapley value, meaning that the response
is affected more in the negative direction and vice versa. Lastly, the vertical dispersion indicates the density
of the data points. The third graph in Figure 4.3c is useful to visualize the relationship between a feature and
its Shapley values. In this case, it shows that a higher bmi affects the target value positively compared to
the mean. But there is more, because the plot also allows to show interactions with other parameters using
colors. For example, the machine learning model predicts that patients with a (standardized) bmi of about
-0.025 have a lower value for the development of diabetes within a year if their (standardized) test results of s5
are high, and vice versa. Finally, the distribution of the data points over their input space is displayed in gray
at the bottom. Notice that this differs from the vertical dispersion in the beeswarm plots, as these show the
distribution relative to the domain of the Shapley value. In short, SHAP is a versatile and powerful approach,
which makes it possible to clearly visualize and interpret the contribution of features to the prediction of a
machine learning algorithm at both a local and global level [70].

Looking at SHAP’s strengths, it makes sense that it has become one of the more prominent methods for
interpreting the behavior of machine learning models. All types of influences and interactions are taken
into account in a fair way, creating a complete picture of how responses are influenced [70, 71]. Moreover,
this is achieved on the basis of valid theoretical arguments [10, 25, 70]. Another advantage is that SHAP
has the ability to fully dissect the change in model output with respect to an unambiguous datum — the
mean prediction [70]. The different influences can then be linked back to their origin. Furthermore, since
global explanations are made up of local ones, they are consistent with each other [70]. This is quite a unique
benefit over the alternatives. Notwithstanding, SHAP is also exposed to some disadvantages. Scholars are
especially vocal about its computational requirements [10, 25, 70, 71]. In many cases it is infeasible to obtain
the exact Shapley values. To remedy that, the creators Lundberg and Lee [63] suggested to approximate them,
though one has to accept the ensuing consequences, such as additional assumptions [10]. Also, SHAP leads
to definite values as is, which must be interpreted accordingly. This is in contrast to LIME, for example, where



78 4. System Understanding

the result is a transparent model. These models allow for further analysis, like examining the effect of small
perturbations [70]. It makes sense that this is more difficult with Shapley values. Lastly, as with several of the
other interpretation methods, the features are again presumed to be independent and therefore any possible
correlation between them is ignored [70].

4.2. Model-specific Approaches
Unlike model-agnostics, model-specific approaches explain the behavior of machine learning algorithms
from within [25, 71]. They use internal properties to interpret how responses come about. Consequently, the
application of these methods is severely restricted to algorithms that are of the same nature, as they depend
on intrinsic information. This is an evident drawback, but it should be borne in mind that model-agnostic
approaches do not explicitly reveal the internal working principles of a model [25]. They do explain how the
outcome is affected, albeit on the basis of an intermediate step where proxies are the rule rather than the
exception. For direct interpretations, one should resort to model-specific approaches. Logically, the more
transparent a machine learning model, the easier it becomes to understand its internal reasoning [70]. That
was the main reason in subsection 3.3.7 why we specifically selected a second-order polynomial as part of
the alternatives. Namely, it allows a thorough analysis of the regression coefficients, which must be one of
the most elementary approaches of model-specific analysis [70]. The method is further discussed in sub-
section 4.2.1. The second considered architecture was Gaussian process regression. While highly praised as
powerful surrogate models, their internal reasoning remains tremendously difficult to understand. Surpris-
ingly, the academic efforts on making them interpretable are actually rather scarce. An exception is the very
recent study by Yoshikawa and Iwata [108], who presented a promising method for discovering local feature
contributions. Notwithstanding, due to its recency, practical implementations are not yet available to the
best of our knowledge. We therefore restrict ourselves to solely model-agnostic approaches for the Gaussian
process regression model. This is different for the last two considered surrogates: random forests and gradi-
ent boosting regression. Recall from subsection 3.3.5 that both models are made up of individual regression
trees. Hence, in principle they are not complicated, but their ensemble structure introduces a lot of com-
plexity. That is why they are extremely powerful, but the downside is that their internal reasoning becomes
difficult to interpret. To overcome this and take advantage of both worlds, Friedman and Popescu [31] pro-
posed a method to extract the key decision rules [70]. It is known in the literature as RuleFit, which is further
elaborated upon in subsection 4.2.2.

4.2.1. Analysis of Regression Weights
Linear regression is one of the most established procedures for modeling statistical relations. Since the details
behind the architecture were already explained in subsection 3.3.1, they are not discussed further here. The
model is popular because it is not only very transparent, it also comes with various techniques to assess its
validity [9]. This is important, because the approach is not sophisticated. As a result, capturing more complex
relationships can be challenging, which could jeopardize the overall accuracy [70]. Hence, before pursuing
any further analysis, one should first make sure that the model is sufficiently trustworthy. It would be point-
less to infer about system dynamics if the surrogate model cannot mimic the responses of AATOM after all.
Logically, this includes the common validation metrics from section 3.5, but specific to linear regression are
also the statistical significance tests [9]. For example, the F-statistic can be used to test whether the depen-
dent variable is influenced by the independent variables. In this case, the null hypothesis is that the features
do not affect the output, as opposed to the alternative that the model fits better by including them. Similarly,
this can also be done for the effects of individual input parameters, where the statistical significance can
be determined with t-statistics [9, 38]. These are well-known and widely accepted tests to evaluate whether
and which parameters truly influence a response. Furthermore, they also enable calculating the confidence
intervals of the regression coefficients, which helps to extract the certainty of the features’ true effects [38].

If the linear model proves to be valid, one can use it for further analysis. In particular, the regression
weights form the basis for drawing conclusions about the dynamics of the underlying system. For example,
should the OLS method define the coefficient of some continuous feature to be 100, then it can be interpreted
as the effect on the response of one unit change [70]. In other words, if the value of the feature increases by
one, ceteris paribus, the value of the response increases by 100 and vice versa. Regression weights are in
that sense a global measure of sensitivity. However, it is crucial to understand that these coefficients have di-
mensions, and therefore an order of magnitude. For example, if the model expresses the outcome in degrees
Celcius and one of its input variables is expressed in kilograms, then the regression weight will have the unit



4.2. Model-specific Approaches 79

degrees Celcius per kilograms. As a result, different coefficients are likely to be differently scaled. This makes
them rather challenging to compare and does not explain which features have the largest impact on the de-
pendent variable. Nevertheless, Borgonovo and Plischke [13] mentioned that analyzing regression weights
is a successful method for global sensitivity analysis, but they refer to standardized coefficients which omit
the scaling issues. If the input parameters were not standardized beforehand, it can be done according to
Equation 4.11 [from 13]. Here, βi is the standardized coefficient of feature i and wi is the original weight. The
former is obtained by scaling the latter with the ratio between the standard deviation of the respective feature
and the standard deviation of the model’s outcome [13].

βi = wi

√
σ2

ip
σ̂2

(4.11)

The fact that the coefficients of the linear model are now all expressed on the same unitless scale makes them
comparable. Moreover, they actually become natural measures for the model’s sensitivity to the correspond-
ing features [13]. That is, the higher the absolute value of a standardized regression weight, the more the
feature affects the response. Lastly, the sign of βi indicates the direction of the relationship. If it is negative,
increasing the value of the parameter results in a decreasing outcome and vice versa.

Analyzing standardized regression coefficients has the benefit of being well accepted by the research com-
munity. That is mainly because its theoretical background is sound, allowing for extensive statistical analysis.
Thanks to this, the model-specific approach is mature, has a proven track record and comes with a lot of prior
experience [13, 70]. Moreover, the sensitivity measures can be readily obtained, without requiring many fur-
ther calculations [13, 70]. A last advantage is the method’s transparency and accessibility. One can easily
understand how its results are attained and the linear architecture enables decomposition, which enhances
the overall interpretability [9, 70]. However, a challenge remains the general mediocre performance of linear
models. Their simplicity often prevents them from capturing complex relations, or requires the user to define
non-linearities explicitly, as for example with the selected second-order polynomial [70]. The response of the
model is by all means bound to its format, which in many cases is the prime reason for its poor predictive
power. It makes sense that the surrogate must be sufficiently accurate, otherwise the trustworthiness of the
model-specific explanations could be questioned [13]. Finally, one should be careful with multicollinearity. If
there would any presence of correlation among features, then the standardized regression weights might not
reflect their true sensitivity [70]. This could lead to fallacious conclusions, which is of course undesirable.

4.2.2. RuleFit
Tree-based machine learning algorithms are among the most popular alternatives, mainly because of their
overall impressive performance [34]. However, this comes at the expense of interpretability. They are usually
so complex that users can no longer understand their reasoning. Therefore, Friedman and Popescu [31] sug-
gested to extract the rules from the ensembles and then to determine which are the most dominant. While
the details behind regression trees and their ensembles were expounded in subsection 3.3.5, the general prin-
ciple of how decision rules can be abstracted is depicted in Figure 4.4 [70]. The tree in the example consists
of four rules, as indicated by the red arrows. Note that they do not necessarily have to end up in the terminal
leaves. Earlier decisions are also considered, as is the case with r1. This can be done for all trees in an en-
semble, leading to a myriad of rules. To determine which ones are the most important and what their impact
is, RuleFit uses regularized linear regression with both the decision rules and the direct effects of the input
parameters [70]. The parameter value of a decision rule equals one if the condition is met, and zero other-

Figure 4.4: Abstracting decision rules from regression trees [70].



80 4. System Understanding

wise. The further interpretation of the regression is comparable to ordinary linear models, since it concerns
the analysis of the coefficients. Notwithstanding, it resolves one of the most impeding limitations of linear
regression. By including decision rules, the algorithm can naturally capture interactions between the param-
eters, which would otherwise have been much more difficult [70]. Going into further detail, the approach
requires two stages. First the rules must be generated and abstracted, to then determine which ones are the
most important. We now elaborate on the two steps in respective order.

Since RuleFit remains model-specific, decision rules are directly retrieved from a fitted surrogate. The two
selected tree ensembles — random forests and gradient boosting — qualify, so one can adopt this approach
to interpret them both. Essentially, the first stage omits the outcome of the machine learning model and
aggregates solely its rules. These can be formally expressed according to Equation 4.12 [from 31, 70].

ri (x) = ∏
j∈Si

I
(
x j ∈ s j i

)
(4.12)

Here, one of the possible rules r of a tree i is as follows. For each input parameter j that is part of the con-
sidered set of parameters S in the tree, the indicator function I is equal to one if the value of parameter j is
in the subset s as defined by the corresponding split of the tree [70]. If all the indicator functions’ conditions
hold for a particular data point x , then the rule yields one, which is the mathematical equivalent of a true
statement. This seems abstract, but an example will show that it is actually rather straightforward in practice.
Revisiting Figure 4.4, the formal expression of the fourth rule would be I (x2 < 3) · I (x5 ≥ 7). The rule is true
if both conditions are. From the moment either one is not, its indicator function becomes zero, which im-
mediately affects the entire rule. Conditions are thus connected by means of logical conjunction. Finally, an
important consideration is the depth of the individual trees, as it directly determines the maximum number
of conditions in a rule [31, 70]. Recall from subsection 3.3.5 that this was one of the hyperparameters. Too
great a depth impairs the interpretability, so one should keep the trees shallow. Molnar [70] recommends a
number no greater than three.

The first stage results in a large number of decision rules, where one may or may not be more important
than the other [70]. Together with the input parameters, they form the input for a regularized linear regression
model, which can identify the most dominant factors. Subsequently, a regression model is created to express
the features and the decision rules by means of a weighted sum. This is in a similar fashion as Equation 3.8
from subsection 3.3.1. However, for the present purpose it would be problematic to calculate the coefficients
using OLS. The reason is that there are simply too many input dimensions to the linear model, which does
not promote the interpretability. Hence, some degree of sparsity would be highly desirable, making LASSO2 a
better alternative [70]. Applied to RuleFit, the regression coefficients for the features w f and for the decision
rules wr are determined according to Equation 4.13 [from 31, 70].

{
w f , wr

}= arg min
w f ,wr

[
m∑

i=1
L

(
f (xi ) , f̂ (xi )

)+λ ·
(

n∑
i=1

∣∣w fi

∣∣+ k∑
i=1

∣∣wri

∣∣)] (4.13)

The cost function consists of two parts. The left term contains a loss function L which measures the dis-
crepancy between the outcome of the regression model f̂ and the actual outcome of AATOM f for all data
points xi in the sample with size m [70]. Logically, one wants to reduce this model error metric as much as
possible. But not at all costs, because the aim is also to achieve sufficiently sparse coefficients. This interest
is defended by the second term on the right. It is what mathematicians refer to as the L1-norm, which is
essentially the weights’ sum of the absolute values [38]. In the expression, the number of input parameters
is again denoted by n and k refers to the number of decisions rules obtained from the first stage. Since the
coefficients themselves are included in the cost function, many will be forced to be zero and that is exactly
the purpose [70]. The extent to which this happens can be controlled by the regularization hyperparameter λ.
The higher it is, the more the weights are penalized. Ultimately, the cost function leads to sparse coefficients
that determine the linear regression model. These can be further analyzed in a next step to draw conclusions
about the relevancy of the features and the decision rules [70].

The analysis of regression coefficients is actually quite similar to what we explained in subsection 4.2.1;
one should just keep the two different kinds of parameters in mind. The weights w f of the features can be
interpreted as before. That is, one unit increase in its value, ceteris paribus, adds the respective weight to
the response and vice versa [70]. This does not apply to the weights wr of the decision rules because the
multiplication of the indicator functions leads to a binary result. A rule is either true or false, and its value

2LASSO is the abbreviation for least absolute shrinkage and selection operator.



4.2. Model-specific Approaches 81

can therefore not shift by one unit. Consequently, these coefficients must be interpreted as the effect on the
prediction when a rule is true [70]. However, there is more than only the coefficients. The fact that decision
rules are part of the algorithm makes it possible to calculate their support. Essentially, that is a metric which
indicates the relative number of data points abiding the rule [31, 70]. For example, if the support of the first
rule r1 in Figure 4.4 would be 80%, it means that 80% of the instances in the sample have an x2 lower than
three. The final by-product of RuleFit is that features importances can also be obtained. Nonetheless, the
calculation is somewhat more complicated than for earlier interpretation methods. The reason is the com-
bination between direct influences and decision rules, where some features can even be present in multiple
rules [70]. The absolute value of the regression coefficients form the basis, but they must first be scaled by
their standard deviation to make them comparable. In essence, the importances where a particular feature
is involved are added to one another, although the contribution of the decision rules part is averaged, be-
cause otherwise the direct influence would be eroded [31, 70]. That said, the interpretation remains similar
to before. The higher the importance, the more the model relies on the feature in making its predictions [70].

RuleFit is promising because it combines the strengths of linear models and tree ensembles all in one
[31, 70]. On the one hand, the inclusion of decisions rules allows the model to capture complex relationships,
and to naturally consider interaction phenomena between the input variables. On the other hand, the end
product remains a transparent linear regression model. This makes it a powerful approach without compro-
mising interpretability. Moreover, it entails some flexibility, since one can for example change the depth of
the regression trees and tune the regularization hyperparameter [70]. The user can thus optimize the model
according to the necessities. Lastly, RuleFit yields an actual model rather than just some explanations. This
provides the opportunity to perform additional analyses, which could enhance the interpretability even fur-
ther [70]. Notwithstanding, there are also some drawbacks and weaknesses. One of the main issues is that
some of the rules might be overlapping, which deteriorates the explanatory power. For example, the model
can consider x2 < 3 and x2 < 7 as two separate decision rules. This is rather difficult to interpret, because the
second rule will always be true if the first is. Hence, one cannot always read regression weights as the iso-
lated effect of a rule on the response, as others may be interfering [70]. Furthermore, RuleFit remains a linear
model. Despite the consideration of decision rules, there is no guarantee of comparable accuracy to the tree
ensembles. In the end, the architecture is no more than a weighted sum [70]. Another issue is that a large
number of rules may be necessary, making the architectural reasoning more difficult to explain [70]. The reg-
ularization hyperparameter must therefore balance the prediction error against the complexity of the model.
Finally, while RuleFit is model-specific because it directly analyzes the decision rules from a tree ensemble,
an intermediate step is required for the actual interpretation. This is an inherent weakness of the approach,
yet of key importance to provide any insight into the behavior of model.





5
Research Proposal

As a natural consequence of the literature survey on the state-of-the-art, knowledge gaps have arisen that
we aim to fill. Therefore, this chapter presents the proposal for the intended research. First, section 5.1 lists
the objective and research questions, along with their motivation and novelty. Subsequently, the relevance
of the study is argued in section 5.2. This mainly concerns which stakeholders benefit from which specific
contributions to the academic knowledge. Lastly, the intentions are translated into practice by section 5.3,
which divides the work into concrete packages and covers the further planning of the project.

5.1. Objective and Research Questions
Reviewing existing literature on airport terminal modeling, surrogate modeling and interpretable machine
learning has uncovered a number of important scientific lacunae. In particular, there is a need for highly
accurate but comprehensible models that are capable of explaining the complex dynamics in sociotechnical
environments, such as airport terminals. This is not a straightforward exercise, as these systems are charac-
terized by emergent properties resulting from natural human behavior. Nonetheless, agent-based simulation
models can approximate the real-life situations with high fidelity, although they suffer from substantial com-
putational requirements. Hence the interest in surrogates, which are deemed promising alternatives at much
lower intensity. Altogether, this leads to the objective of our research, which can be described as:

The research aims to accurately abstract and explain the dynamics of complex airport terminal
operations by means of creating high-performing and interpretable surrogate models based on a
detailed and validated agent-based terminal simulation model.

Achieving the objective requires a multidisciplinary approach. More specifically, the boundaries of current
academic knowledge are being pushed along three dimensions. Namely, the ambition to sample adaptively
from AATOM, the accuracy improvement of the state-of-the-art surrogate models, and the further analysis of
the meta-models for understanding the system. Sampling is the first step, where the strategy is determined by
the design of experiments. It makes sense that choosing the right parameters and then the right data points
in the associated parameter space is essential to arrive at a sufficiently informative sample — one cannot
expect excellent performance from a surrogate model if its training data is of poor quality. When the sample
is considered adequate, the second step is to get the most out of it. This includes the architectural choices
and optimization of the meta-models, as well as how to measure their performance in a fair way. Finally,
the surrogates also form the basis for obtaining a detailed understanding of airport terminal operations. Im-
portant considerations are their transparency and interpretability, although opaque models with an inherent
back box character can be analyzed as well using model-agnostic techniques. These three dimensions can
be summarized in the research question, which aims to fill the identified gaps in an effort to accomplish the
objective. It forms the main backbone of our intended research and reads as follows:

How can machine learning algorithms simultaneously achieve high accuracy and high explain-
ability in the meta-modeling process of a computationally expensive agent-based simulation model
for airport terminal operations?

83



84 5. Research Proposal

In order to steer the thesis in the right direction and to remove ambiguities, the research question has been
divided into clear sub-questions according to the three dimensions:

1. How and to what extent is the selected adaptive sampling strategy capable of extracting high-quality
information from AATOM?

(a) Which input and output variables are most appropriate to use in the surrogate modeling process?

(b) What is the required computational budget to consider the sample as sufficiently informative, i.e.
when and how is the stopping criterion reached?

(c) How does the sample look like? Are the collected data points well distributed across the entire
parameter space or do they tend to cluster around certain locations?

(d) What is the optimal balance between exploration and exploitation of the domain, and does this
change during the sampling process?

2. What is the overall performance of the surrogate models in terms of accuracy compared to the true
output of AATOM?

(a) What are the most appropriate key performance indicators to measure the accuracy and are there
considerable differences between them? If so, how can the differences be explained?

(b) How does the performance of the selected surrogate models compare? Which are the most and
least accurate?

(c) How large are the differences in achieved meta-model accuracy for different responses of AATOM?

(d) To what extent is the accuracy of the surrogate models affected by the optimization of their hyper-
parameters?

(e) To what extent are the emergent properties of the airport terminal system preserved in the surro-
gate models?

3. How can the dynamics behind airport terminal operations be explained based on the surrogate models?

(a) Which of the model-agnostic approaches are most successful in extracting and visualizing the
relevant rules, variables and characteristics from the surrogate models?

(b) Which of the model-specific approaches are most successful in extracting and visualizing the rel-
evant rules, variables and characteristics from the surrogate models?

(c) What are the main differences between the insights from model-agnostic and model-specific ap-
proaches and how can they be explained?

(d) Which rules, variables and characteristics of airport terminal operations are most relevant to un-
derstand the system dynamics and make it explainable?

(e) What are the main strengths and weaknesses of currently available methods and what would be
promising directions for future research in the field of interpretable machine learning for meta-
modeling purposes in particular?

To conclude this section, we briefly emphasize the novelty of the intended research as compared to the exist-
ing academic knowledge. First and foremost, active learning and meta-modeling are definitely not new con-
cepts in engineering. However, their application to airport terminal operations remains rather unexplored,
especially when combined with AATOM. It is therefore important to continue the work of De Leeuw [20], as
there are still many unknowns in what could revolutionize managerial and engineering approaches in the
domain. Secondly, this also holds for the application of interpretation methods to the surrogates, despite the
fact that the associated academic knowledge is still in its infancy. Research on explainable artificial intelli-
gence is flourishing and promising directions are being identified. We contribute by juxtaposing the state-
of-the-art approaches on actual case studies, and strive for synergies with surrogate modeling in particular.
So in that regard, the novelty lies not only in their application to AATOM’s meta-models, but also in their
mutual comparison when being applied in practice. This makes it possible to indicate promising directions
for further research into the usage of meta-modeling to explain the complex dynamics of sociotechnical sys-
tems. A final note is that highly detailed agent-based models remain essential to develop decent emulators.
Therefore, the aim of our work is by no means to replace one with the other, but rather to exploit the common
ground to achieve high accuracy at low computational costs for modeling airport terminal operations.



5.2. Relevance of the Project 85

5.2. Relevance of the Project
At first, one may wonder for whom it would be useful to create meta-models of another model that are known
in advance to be less accurate. In line with the research areas as mentioned in section 3.1, there are two im-
portant reasons: to enhance the understanding of airport terminal processes and to support process opti-
mization and design tasks. The main purpose of the former is to thoroughly understand the system and its
emergent properties. So it is about the dynamics, key drivers, rules and variable relationships in regard to
the operational settings of the processes in passenger terminals. Such information is particularly relevant to
airport and airline managers, as they have to make key decisions about the terminal operations based on a
particular flight schedule. Here is also the common ground with the latter reason: if the surrogate models
prove to be sufficiently accurate, they can even be used directly in the decision-making. That is only possible
because they are much faster and less susceptible to response stochasticity in contrast to AATOM itself. This
could improve the way managers make their day-to-day decisions — the meta-models can ensure more agile
and lean terminal processes by aligning the operational settings exactly with the expectations from the flight
schedule. In other words, they would enable managers to better meet user demands in the future. Doing
as such with the agent-based simulation model would require a lot of computational efforts, which may not
be feasible from the practical perspective. However, apart from the operational side, the usefulness of surro-
gates can also be extended to the engineering field. For example, if a new terminal is being built, the layout
is designed based on prospected traffic patterns and passenger flows. It makes sense that fast models of the
terminal are greatly welcome to find the most optimal design in an acceptable time frame, especially since
these tasks are often characterized by large parameter spaces. After all, more efficient calculation methods
are never a superfluous luxury.

Synthesizing the two mentioned reasons, our research leads to the following practical benefits. The first
and most obvious is that surrogate models are much more efficient and faster than AATOM. Even though
they are less accurate than the agent-based simulation model, their savings in computational expenses far
outweigh the drawbacks. Secondly, a direct consequence is that faster models allow for a more extensive
analysis of underlying systems and the usage of the models in optimization and design tasks. Current thesis
focuses in particular on the former, where these insights are expected to reveal promising extensions to the
research on the common ground of surrogate modeling and interpretable machine learning. This is espe-
cially relevant at the moment since the academic knowledge of explainable artificial intelligence is advancing
rapidly. Finally, it results in powerful tools for rapid but robust decision-making. With such tools, airports can
ultimately operate more efficiently by better deploying resources such as personnel and services in relation
to the flight schedule.

5.3. Planning of the Project
Now that the research opportunities have been defined in detail, the ambitions are translated into practice by
drawing up an extensive planning. First, the work is split into different packages, each consisting of several
specific tasks. Then it is estimated how long it takes for them to be completed, after which they are added to a
Gantt chart. This is done so that they are time-bound, making dependencies and parallel tasks clearly visible.
Lastly, important milestones and holidays are also included to get a full picture of the project’s timeline.

The Gantt chart is depicted in Figure 5.1. Overall, the project is divided in five work packages, henceforth
abbreviated as WP. The first two are already completed by the time of writing. Respectively, WP1 took about
two months and was mainly concerned with the orientation phase of the thesis. It started with the search
for a topic and research methodologies, while it ended with the submission of the project plan before the
deadline of November 5, 2021. After that, the preparatory work was done in WP2, which took about 4 months
in total. The key deliverable was the current literature survey, immediately followed by the kick-off meet-
ing on February 25, 2022. Collecting, reading and processing literature were therefore the core tasks of the
package, although the foundation for the actual research has also been laid, such as preparing the selected
version of AATOM for the sampling process. Next, the third WP contains the tasks for the surrogate model
development. This includes sampling, programming the algorithms, hyperparameter tuning, verification
and validation, extraction of results, preliminary model interpretation and initial writing of the thesis paper.
WP3 is estimated to last approximately 3 months and ends with the mid-term meeting in early June 2022,
where the first results will be presented. After developing the models, they are subject to further analysis to
explain and interpret the reasoning behind their behavior. This is carried out in WP4, which will take about
2 months. The main tasks are to design and perform model-specific and model-agnostic analyses. Finally,
WP6 is concerned with finalizing the thesis. The planning reserved another 2 months for this last package.



86 5. Research Proposal

2
5

P
la

n
 D

u
ra

ti
o

n
A

c
tu

a
l 
S
ta

rt
%

 C
o

m
p

le
te

A
c

tu
a

l 
(b

e
y
o

n
d

 p
la

n
)

%
 C

o
m

p
le

te
 (

b
e

y
o

n
d

 p
la

n
)

W
o

rk
 p

a
c

k
a

g
e

M
ile

st
o

n
e

H
o

lid
a

y
s

ID
TA

S
K

S
ta

rt
D

u
ra

ti
o

n
S
ta

rt
D

u
ra

ti
o

n
P

R
O

G
R

E
S
S

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
4

0
4

1
4

2
4

3

W
P
1

O
R

IE
N

TA
TI

O
N

1
.1

To
p

ic
 s

e
a

rc
h

1
1

1
1

1
0

0
%

1
.2

To
p

ic
 e

x
p

lo
ra

ti
o

n
2

2
2

2
1

0
0

%

1
.3

R
e

se
a

rc
h

 m
e

th
o

d
o

lo
g

ie
s

2
5

2
5

1
0

0
%

1
.4

In
fo

rm
a

ti
o

n
 l
it

e
ra

c
y
 3

2
2

2
2

1
0

0
%

1
.5

D
e

fi
n

e
 p

re
lim

. 
o

b
js

. 
a

n
d

 R
Q

s
3

1
3

1
1

0
0

%

1
.6

In
it

ia
l 
lit

e
ra

tu
re

 s
e

a
rc

h
3

7
3

7
1

0
0

%

1
.7

In
it

ia
l 
re

a
d

in
g

 a
n

d
 l
it

. 
m

a
tr

ix
4

6
4

6
1

0
0

%

1
.8

C
re

a
te

 p
la

n
n

in
g

5
1

5
1

1
0

0
%

1
.9

W
ri
te

 p
ro

je
c

t 
p

la
n

5
5

5
5

1
0

0
%

1
.1

0
In

it
ia

l 
p

ro
g

ra
m

m
in

g
5

5
5

5
1

0
0

%

1
.1

1
S
u

b
m

it
 p

ro
je

c
t 

p
la

n
1

0
1

1
0

1
1

0
0

%

W
P
2

P
R

E
P
A

R
A

TI
O

N

2
.1

C
o

n
t.

 l
it

e
ra

tu
re

 s
e

a
rc

h
1

0
1

6
1

0
1

6
1

0
0

%

2
.2

C
o

n
t.

 r
e

a
d

in
g

 a
n

d
 l
it

. 
m

a
tr

ix
1

0
1

6
1

0
1

6
1

0
0

%

2
.3

C
o

n
ti

n
u

e
 p

ro
g

ra
m

m
in

g
1

0
1

7
1

0
1

7
9

0
%

2
.4

P
ro

o
fr

e
a

d
in

g
1

0
1

9
1

0
1

9
6

0
%

2
.5

W
ri
te

 c
h

a
p

te
r 

in
tr

o
d

u
c

ti
o

n
1

2
1

4
1

2
1

4
1

0
0

%

2
.6

W
ri
te

 c
h

a
p

te
r 

m
o

d
e

lin
g

 A
TO

1
2

3
1

2
3

1
0

0
%

2
.7

W
ri
te

 c
h

a
p

te
r 

S
M

1
5

7
1

5
7

1
0

0
%

2
.8

H
o

lid
a

y
s

1
8

1
1

8
1

1
0

0
%

2
.9

W
ri
te

 c
h

a
p

te
r 

S
U

2
2

3
2

2
3

1
0

0
%

2
.1

0
W

ri
te

 c
h

a
p

te
r 

p
ro

p
o

sa
l

2
3

3
2

3
3

1
0

0
%

2
.1

1
S
u

b
m

it
 d

ra
ft

 l
it

e
ra

tu
re

 s
tu

d
y

2
5

1
2

5
1

0
%

2
.1

2
P

re
p

a
re

 k
ic

k
-o

ff
 m

e
e

ti
n

g
2

6
1

2
6

1
0

%

2
.1

3
K

ic
k
-o

ff
 m

e
e

ti
n

g
2

6
1

2
6

1
0

%

2
.1

4
W

ri
te

 c
h

a
p

te
r 

e
x
e

c
. 
su

m
. 

2
7

1
2

7
1

0
%

2
.1

5
Im

p
le

m
e

n
t 

fe
e

d
b

a
c

k
2

7
2

2
7

2
0

%

2
.1

6
S
u

b
m

it
 l
it

e
ra

tu
re

 s
tu

d
y

2
8

1
2

8
1

0
%

W
P
3

M
O

D
E
L 

D
E
V

E
LO

P
M

E
N

T

3
.1

D
e

v
. 
D

O
E
 a

n
d

 s
a

m
p

lin
g

2
7

4
2

7
4

0
%

3
.2

R
u

n
 s

a
m

p
lin

g
 a

lg
o

ri
th

m
2

9
1

0
2

9
1

0
0

%

3
.3

D
e

v
. 
S
M

 a
lg

o
ri
th

m
s

2
9

1
0

2
9

1
0

0
%

3
.4

D
e

v
. 
h

y
p

. 
o

p
t.

 a
lg

o
ri
th

m
 

2
9

1
0

2
9

1
0

0
%

3
.5

D
e

v
. 
V

&
V

2
9

1
0

2
9

1
0

0
%

3
.6

In
it

ia
l 
th

e
si

s 
w

ri
ti

n
g

3
1

9
3

1
9

0
%

3
.7

H
o

lid
a

y
s

3
6

1
3

6
1

0
%

3
.8

E
x
tr

a
c

t 
re

le
v

a
n

t 
re

su
lt

s
3

7
3

3
7

3
0

%

3
.9

E
x
tr

a
c

t 
p

re
lim

. 
sy

s.
 i
n

si
g

h
ts

3
7

3
3

7
3

0
%

3
.1

0
P

re
p

a
re

 m
id

-t
e

rm
 m

e
e

ti
n

g
3

9
2

3
9

2
0

%

3
.1

1
M

id
-t

e
rm

 m
e

e
ti

n
g

4
0

1
4

0
1

0
%

W
P
4

S
Y

S
TE

M
 A

N
A

LY
S
IS

4
.1

D
e

v
. 
m

o
d

e
l-

sp
e

c
if
ic

 a
n

a
.

3
7

6
3

7
6

0
%

4
.2

D
e

v
. 
m

o
d

e
l-

a
g

n
o

st
ic

 a
n

a
.

3
7

1
0

3
7

1
0

0
%

4
.3

C
o

n
t.

 t
h

e
si

s 
w

ri
ti

n
g

 
4

1
6

4
1

6
0

%

4
.4

E
x
tr

a
c

t 
sy

s.
 a

n
a

. 
in

si
g

h
ts

 
4

1
6

4
1

6
0

%

4
.5

R
e

a
c

h
 d

e
ta

ile
d

 c
o

n
c

lu
si

o
n

s
4

5
2

4
5

2
0

%

4
.6

H
o

lid
a

y
s

4
7

4
4

7
4

0
%

W
P
5

F
IN

A
LI

Z
A

TI
O

N

6
.1

F
in

a
liz

e
 t

h
e

si
s 

d
ra

ft
5

1
2

5
1

2
0

%

6
.2

S
u

b
m

it
 t

h
e

si
s 

d
ra

ft
5

2
1

5
2

1
0

%

6
.4

P
re

p
a

re
 g

re
e

n
 l
ig

h
t 

m
e

e
ti

n
g

5
3

2
5

3
2

0
%

6
.5

G
re

e
n

 l
ig

h
t 

m
e

e
ti

n
g

5
4

1
5

4
1

0
%

6
.6

W
ri
te

 p
re

fa
c

e
5

5
1

5
5

1
0

%

6
.7

Im
p

le
m

e
n

t 
fe

e
d

b
a

c
k

5
5

2
5

5
2

0
%

6
.8

S
u

b
m

it
 t

h
e

si
s

5
6

1
5

6
1

0
%

6
.9

P
re

p
a

re
 t

h
e

si
s 

d
e

fe
n

se
5

7
2

5
7

2
0

%

6
.1

0
Th

e
si

s 
d

e
fe

n
se

5
8

1
5

8
1

0
%

J
U

L
A

U
G

La
st

 u
p

d
a

te
d

 o
n

: 
1

4
/0

2
/2

0
2

2

N
a

m
e

: 
B

e
n

ja
m

in
 C

.D
. 
D

e
 B

o
ss

c
h

e
r

S
tu

d
e

n
t 

n
u

m
b

e
r:

 4
4

2
9

8
8

5
P

ro
je

c
t 

w
e

e
k

:

P
LA

N
A

C
TU

A
L

S
E
P

O
C

T

2
0

2
2

2
0

2
1

S
E
P

O
C

T
N

O
V

M
A

Y
J
U

N
D

E
C

J
A

N
F
E
B

M
A

R
A

P
R

Figure 5.1: Planning of the entire thesis project, extracted in week 7 of 2022.



5.3. Planning of the Project 87

This is likely an overestimation, but it was done on purpose to incorporate for uncertainties that may arise
throughout the project. WP6 consists of several milestones and important deadlines. Chronologically, that
is a review of the draft paper, the green light meeting, the submission of the thesis and finally the defense in
October 2022. As always, actual progress deviates from the planning, so the Gantt chart will be revised once
again at the remaining milestone meetings, being the mid-term and green light meeting.

In summary, the project was scoped in WP1, after which the existing knowledge around the topic has been
synthesized in WP2. Subsequently, realizing WP3 and WP4 provides the answers to the research question, in
order to achieve the objective. Ultimately, WP5 completes the project and finalizes the last milestones and
deliverables. There are two closing remarks. First, the time for the literature study and thesis itself — WP2 to
WP5 — adds up to about 11 months in total. While this may seem against the standard of 9 months, holidays
are also included along with a buffer against unforeseen circumstances. Delays are of course undesirable and
are therefore anticipated early. Second, the work packages are generally planned in a sequential order. That
makes sense because they usually depend on the previous one. Notwithstanding, there are some preparatory
tasks which can be completed earlier. The Gantt chart shows them at the time they should be carried out. Task
1.10 is an example; it covers the initial programming steps in WP1 to set up the interface between AATOM and
Python. In principle, the task is thus not related to writing the project plan, despite it appearing so.





III
Supporting Work

89





A
Preparing AATOM for Surrogate Modeling

The starting point of our research was the presumption that AATOM has been verified, validated, and cali-
brated. This is confirmed by the creators in Janssen et al. [51] for the original version, although the question
arises whether this also holds for the later developments of the model. Despite the validation and calibration
efforts mentioned by Mekic et al. [68], they remained rather unclear about the extent to which extensions
have been verified. Since surrogates can only be as accurate as the training data they are fitted upon, meta-
modeling requires access to models that are virtually error-free and produce data of high quality. The current
appendix investigates whether that is indeed the case for the latest version of AATOM. More specifically, sec-
tion A.1 describes the test procedure along with an overview of the identified issues, after which section A.2
continues with the implemented solutions.

A.1. Testing the Model
Testing the source code of software for programming bugs is usually done in multiple steps. Traditionally,
it starts with unit testing individual components and ends with integration testing entire systems, and their
interconnections [35]. While such an approach leads to rigorous verification of AATOM, it is also time con-
suming and rather complex to execute properly afterwards, independent of the code development. For that
reason, a more practical approach is preferred, for example on an explanatory basis. An advantage of AATOM
is that it comes with a graphical user interface (GUI) which shows exactly what is happening inside the airport
terminal, along with a live tracking of the output parameters. Not only is this useful for getting acquainted
with the simulation model in general, it also proves to be an excellent tool for debugging and verification
purposes. Therefore, to test the model’s robustness and see whether it behaves as expected, several simula-
tions are performed with different input settings while manually observing the GUI. This includes examining
both different traffic scenarios as well as different airport strategies, like the check-in counter staffing. The
downside of such an approach is that it is rather infeasible to automate the identification of software issues.
Instead, one has to constantly monitor the user interface, which naturally takes a lot of time. Moreover, an-
other risk is that there might be bugs that are visually difficult to detect. Notwithstanding, despite these
drawbacks, the explanatory approach is deemed more feasible and effective compared to the traditional one
in preparing AATOM for being meta-modeled.

The test process started with examining the layout of RTHA that was already available in AATOM, as de-
picted in Figure A.11. Two elements readily attract attention. On the one hand, the security checkpoint queue
is largely exaggerated compared to reality, and on the other hand, there is a fictitious wall just to the left of
the right-hand entrance. Both may seem strange at first, but the explanations are actually rather straight-
forward. That is, the former has been extended in order to accommodate all passengers in line. If this were
not the case, and more agents want to enter the queue than its capacity allows, it would eventually lead to
a total obstruction of the security checkpoint. Agents will block the queue entry for the remainder of the
simulation due to undesired emergent behavior that occurs as a result of the interaction between the social
forces of Helbing et al. [40] and the way the queuing activity is defined in the model. Consequently, extending
the queue is a straightforward modification to avoid the erroneous phenomenon without endangering the
overall validity. Ideally, one should improve the source code, but to respect the scope of the current research,

1The various elements on the map have been previously described by Figure 2.6 of the Literature Study in Part II.

91



92 A. Preparing AATOM for Surrogate Modeling

Figure A.1: Modeled layout of RTHA that was originally available in the latest AATOM version.

we held on to the rather pragmatic but effective solution. Secondly, the fictitious wall at the right-hand en-
trance is to adjust the agents’ navigational behavior. As AATOM uses the pathfinding algorithms by Cui and
Shi [18] and Harabor and Grastien [36], passengers are inclined to take the shortest walking route towards
their destination [48]. The consequence of such behavior is that they can pass just next to the entrance of
another queue, which is somewhere on their way. While this is not necessarily an issue, it sometimes leads to
them being pushed inside if there happens to be some other passenger about to enter that particular queue.
This is also an undesired effect of the social forces between the agents. The resulting problem is that most
of the time, the two passengers cannot resolve the conflict on their own, with one wanting to leave and the
other wanting to stay in line. This again leads to the total obstruction of the queue for the remainder of the
simulation, which would falsify the output of AATOM because these conflicting situations do not occur in
reality. In principle, the ideal solution would be to use an updated or even a different pathfinding algorithm,
though a pragmatic solution is also possible by defining fictitious walls. These are walls that do not exist in
practice, but they trick the navigation module in finding a path that avoids the entrance of a queue on the
way to an agent’s destination. The main advantage of this approach is that it easily resolves the issue. Going
back to Figure A.1, agents entering the terminal are forced to remain right of the fictitious wall, and thus will
not interfere with the queue for the establishment left of the right-hand entrance. However, the solution is
sub-optimal because it does not solve the root cause of the problem, and on top of that, it influences the
navigational behavior of the agents in an unnatural way. Even though passengers do not take the shortest
path in reality either, forcing them to go around certain areas may affect the emergent properties during a
simulation. Notwithstanding, since the new walking routes are very similar to the previous ones, the effect
on the ultimate outcome is rather marginal. For that reason, we again adopt the pragmatic solution.

Now that it is clear why the layout of RTHA in AATOM differs slightly from reality, the actual testing pro-
cedure can be initiated. As mentioned, the model was consecutively given different input parameters while
monitoring the GUI to identify possible errors. At the same time, the random seed was also varied to con-
trol the stochasticity, although logs were made so that particular scenarios in the airport terminal could be
reproduced in case issues were found. Two kinds of problems soon came to light, yet surprisingly they had
been discovered before. Namely, queues become obstructed if their capacity is exceeded and passengers are
sometimes pushed into a queue where they do not want to be — these are the exact same issues for which
Mekic et al. [68] already implemented pragmatic solutions in Figure A.1. It appears that other areas in the
terminal are also affected by the unrealistic emergent behavior of agents. Examples from the GUI are shown
in Figure A.2. On the left, Figure A.2a illustrates what happens when more passengers try to enter a check-in
queue than there is available space. The agents typically block the entrance and are unable to resolve the
situation themselves. One can see that they stopped entering the queue, despite a gap forming as the pre-
vious passengers still carry on. Needless to say, these congestions have a major impact on the outcome of
simulations, so they must be eliminated before using AATOM for surrogate modeling. Interestingly, queues
at the check-in counters are the most sensitive to the phenomenon: border control, and food and beverage
outlets are generally unaffected. Moving on to the second problem, Figure A.2b and A.2c show a particular
passenger that passes very close to a border control and a check-in queue, respectively. Their walking route is



A.1. Testing the Model 93

(a) A congested check-in queue. (b) An agent passing just next to a border control queue. (c) An agent passing just next to a check-in queue.

Figure A.2: Frequently occurring issues in AATOM.

indicated with a light blue line, so it is clear they do not intend to go into any of the queues. Notwithstanding,
if another passenger wants to enter that specific queue at the exact same time, the agent is pushed inside and
a similar congestion arises as in Figure A.2a. Again, this is of course highly undesirable, as such situations
are unlikely in practice and if they did occur, passengers would be able to resolve it themselves. Altogether, it
seems that Mekic et al. [68] have only partially eliminated the queue blocking issues for the tested scenarios,
so the following section A.2 will further explore the options to prevent this from happening.

In addition to the rather frequent queue obstructions, the explanatory tests revealed one other problem
that requires a little more attention. Namely, it turned out that passengers suddenly stopped walking through
one of the metal detectors at the security checkpoint. The occurrence must be very rare as it was only dis-
covered once, although the consequences were serious for obvious reasons. It is depicted in Figure A.3 — an
agent is clearly stuck at the right-hand metal detector, blocking the two respective lanes. As a result, only the
left two lanes remain available, one of which was closed at the time due to airport strategy. This quickly led to
a huge queue with increasing waiting times, causing many passengers to miss their flight. Despite being rare,
several questions arose as to why this happened and how it could be resolved. The main concern was that
it is caused by a bug in the source code of AATOM. And if this indeed turns out to be the case, does it affect
other operations that may be less detectable in the GUI? While finding such a bug is most likely not straight-
forward, it is clear that no pragmatic solutions to the problem exist either. It does not involve the obstruction
of queues, so elongations or fictitious walls will not help. Hence, a closer analysis of the issue along with
an examination of the source code is necessary. It started by reviewing the general principles of the security
checkpoint and the roles of its operators. The first hypothesis was that the bug is related to the walk-through
metal detector. However, further analysis revealed that the detector had already made an observation, and
that the operators were advised to conduct an additional test for detecting explosives traces. So, as a matter of
fact, the passenger has actually passed the point where it appears to be stuck. This implies that the bug must
be further along in the process. Furthermore, it was also found that it happened shortly after a particular flight
had departed, of which several passengers were still at the security checkpoint. This causes AATOM to register
them as having missed their flight. A direct consequence is that they want to destroy themselves: they want
to be taken out of the simulation because their ultimate goal can no longer be reached. Knowing this, the real
reason for the impediment turned out to be as follows. When an agent is destroyed while it is getting tested
for explosive traces, the concerned operator is not informed. Therefore, the agent does not proceed with the
next passenger that requires such a test, who then keeps waiting at the metal detector as it is neither allowed
to collect its luggage. Ultimately, this leads to the total obstruction of the two particular lanes. In summary,
closer analysis revealed that the issue from Figure A.3 only occurs under very specific circumstances. So it is

Figure A.3: An agent being stuck at the security checkpoint’s walk-through metal detector.



94 A. Preparing AATOM for Surrogate Modeling

indeed a rare software bug, although one should not forget the enormous impact on the operations when it
does happen. For that reason, the following section will also consider a solution to this problem. Finally, a
follow-up question arose as to whether the bug was also present at other places in the airport terminal. Since
further testing and investigation of the source code did not uncover other cases, it seems to be a standalone
issue in the explosive trace detection process.

In conclusion, the testing procedure identified three remaining problems in the latest version of AATOM:
queues with insufficient capacity, agents being accidentally pushed into areas they do not want to be, and
operators not being notified of removed passengers. Hence, finding suitable solutions to solve these three
problems will be the main concern of section A.2. However, there is one final note before proceeding. Despite
the explanatory tests have challenged the robustness of the model, it is unlikely that all of the bugs have
been discovered. The most apparent ones have, but that is no guarantee for the less visible. Moreover, it
is very difficult to eliminate all issues when the source code is as complex as AATOM’s, especially with our
limited research scope. Therefore, to build an additional layer of reliability around the model, outliers will
be detected and removed from the sampled data points before being used further. In this way, unaccounted
for irregularities are caught without the risk of impairing the data set. The removal of outliers is discussed
in more detail in section B.2 of the Appendix B. Of course, the random seed is still being logged, so should a
pattern arise caused by a specific bug during the sampling process, action can be taken accordingly.

A.2. Bug Fixes and Implemented Changes
The previous section identified three urging issues that must be resolved before AATOM can be used for sur-
rogate modeling. We now take a closer look at which bug fixes are the most appropriate. However, for two
of them this is actually rather evident. Recall that Mekic et al. [68] used pragmatic tricks to cleverly avoid the
obstruction of queues. Regarding that, section A.1 has previously argued that adopting these solutions was
the best option due to their simplicity and marginal effect on the outcome of the simulations. Moreover, it
respects the scope of the current research, as revising the social forces model and the pathfinding algorithm
would be a study in itself. Hence, the most suitable way to proceed is to slightly modify the terminal of RTHA
in the model, which led to the new layout in Figure A.4. The largest change is at the check-in counters, where
queues were expanded from 4 to 11 rows. To realize this, the outer walls of the terminal building in the lower
left corner had to be altered first, although the effect on the simulation is negligible. While the extensions
solved the capacity problems, agents were still being pushed inside the queues. That is why five fictitious
walls were added in the corner: one on the right side of each queue and one just above the left entrance of the
building. The latter is likely to have the biggest impact on the simulations, as it forces arriving agents to go left
or right. Notwithstanding, it solves many issues because chances are minimized of them walking past queue
entrances on the way to their goal. Especially the passengers who have already checked in beforehand are
now more inclined to go right, directly to security. All in all, the effect of these seemingly large changes on the
ultimate simulation responses is actually rather marginal. It is probably most noticeable by a slight increase
in the total walking distance and therefore also the time it takes to reach the gate, although the latter will be

Figure A.4: Modified layout of RTHA that avoids the obstruction of queues.



A.2. Bug Fixes and Implemented Changes 95

much more affected by the waiting times in the queues. Furthermore, there were also some subtle changes.
First of all, the queues at border control were sufficiently large, but the walls around have been extended into
the open space below. Passenger leaving the store on the left to catch a flight at one of the Schengen gates (i.e.,
gates 1 to 6) tended to walk just past the queue entrances. This is prevented by the simple modification. Then,
there is the main restaurant in the middle of the restricted area, where two fictitious walls were added. One at
the entrance of the queue, and a more subtle elongation to the right of the operator agent serving customers.
The former was necessary to give the arriving passengers a little more space from those who are leaving the
restaurant from below to a particular Schengen gate. Otherwise, they may be pushed back into the restau-
rant. The latter, however, was more of a precaution to separate the incoming and outgoing flow. No issues
were observed on the GUI, but the checkout area became rather busy as it was often along the shortest route
for the exiting customers. Finally, the fictitious wall that was earlier discussed in section A.1 at the right-hand
entrance of the terminal building is slightly extended compared to Figure A.1. The reason is that obstructions
were still discovered, albeit rarely. That corner also turned out to be rather busy, with passengers entering
the terminal building on the one hand, and others wanting to visit the coffee corner. The elongation created
some additional space between the different flows of agents, decreasing the social pressure at the queue en-
trance. This prevents the entering passengers from being accidentally pushed inside. To conclude, fictitious
walls and queue elongations solved many of the issues in the terminal, while their effects on the simulation
responses are almost negligible. Hence, we therefore decided to adopt the modified layout in Figure A.4 for
the current research.

The third issue — related to the explosive trace detection check — was less straightforward. No pragmatic
solutions were available, so it was necessary to dive into the source code of AATOM. The bug was resolved by
adding the following if-statement to the activity of the concerned operator agent.

// This statement fixes a rare but impactful bug that when a passenger gets destroyed during
// the ETD check (e.g., because of missing the flight), it keeps blocking the security
// checkpoint because the operator is not informed.
if (passengerToCheck.isDestroyed()) {

passengerToCheck = nextPassenger;
nextPassenger = null;
waited = false;
goTo = false;
if (passengerToCheck == null) {

endActivity();
}
return;

}

In essence, it makes the operator slightly more intelligent. When it detects that the passenger to check is
destroyed from the simulation, it will now continue with the next one. For that reason, the code inside the
if-statement is very similar to how the operator normally completes its explosive trace detection check. The
only difference is thus the condition on the first line. Adding the above snippet has no further deteriorating
effects on the simulation. Therefore, it is the best possible solution to the identified software bug.

To conclude the current section, and actually the whole chapter, Table A.1 summarizes the encountered
issues during robustness testing the latest AATOM version by Mekic et al. [68]. The most appropriate solutions
are also included, along with their unwanted side effects. After making these changes to the RTHA terminal
layout and fixing the bug in the source code of the software, one arrives at the ultimate version that is used in
our research.



96 A. Preparing AATOM for Surrogate Modeling

Table A.1: Summary of the identified issues in AATOM and their corresponding solutions.

Issue Solution Side effects

The queues at the check-in coun-
ters do not have sufficient capac-
ity to accommodate all waiting
passengers, leading to unrealistic
obstructions.

Extending the queues naturally
increases their capacity, so that
passengers no longer have to
wait outside.

The walking distance increases
slightly and with it also the aver-
age queue time, although the ef-
fects are marginal compared to
other factors, such as the per-
sonnel strategy or the number of
passengers on flights.

Passengers can be accidentally
pushed into arbitrary queues
where they do not have to be.
This can lead to unrealistic ob-
structions.

The addition of fictitious walls
tricks the pathfinding algorithm
to avoid the entrances of other
queues en route to an agent’s
destination.

The pathfinding algorithm
searches for the new shortest
journey around the fictitious
walls, slightly increasing the
total walking distance and the
average time it takes to reach
the gate. However, the effects
are marginal compared to the
other factors, like the security
checkpoint staffing strategy.

When a passenger’s flight departs
while it is being tested for explo-
sive traces, the operator agent is
not informed that the passenger
is actually removed from the sim-
ulation, resulting in a total block-
age of the respective lanes at the
security checkpoint.

By improving the intelligence of
the operator responsible for the
explosive trace detection, it can
observe whether the passenger
to check has been destroyed from
the simulation.

None, because the solution re-
solves the issue directly in the
source code of AATOM.



B
Obtaining Stable Simulation Responses

Sociotechnical systems are characterized by a high degree of stochasticity, and so are their agent-based sim-
ulation models. This is a natural consequence when modeling human behavior, where cognitive, social,
technical, and organizational factors play a major role. While the background of agent-based modeling is
discussed in subsection 2.3.1 of the Literature Study in Part II, the current appendix examines to what extent
AATOM’s results are influenced by random events. This is commonly measured by the coefficient of varia-
tion, as elaborated upon in section B.1. However, aside from the natural variability, the responses can also be
affected by particular flaws in AATOM. A lot of effort was put into Appendix A to solve the issues, although
one can never be sure when using the model on a larger scale. It is therefore wise to add an extra layer of ro-
bustness by removing the outliers, which are usually a sign of faulty simulation runs. Nonetheless, this should
be done with caution, as eliminating some of the correct outcomes can lead to a bias in the responses. The
procedure is discussed in detail by section B.2.

B.1. Calculating the Coefficient of Variation
It is very likely that consecutive simulations in AATOM with the exact same input parameters will always lead
to slightly different results. Namely, the stochasticity in the system makes every run unique, which is why
the operations in the passenger terminal are almost never identical. This makes sense, because it is also
the case in reality. Imagine the following scenario: by coincidence, two arbitrary days have the same flights,
the same number of bookings, and the same airport strategies. The "input parameters" are thus identical.
Nevertheless, it turns out that the average waiting time in the queue for the security check differs in the end.
This is one example, but it also holds for the other responses. While there could be a myriad of possible
causes, if just one passenger decides to arrive 10 minutes later, the emergent properties of the system are
already changing. However, an airport terminal involves not one but hundreds of autonomous agents, all of
whom make their own decisions. The situation can therefore be considerably different. This is clearly visible
in the output data, as depicted by Figure B.1. The histograms show the distributions of three arbitrarily chosen
responses for a random point in the feature space. They are all bell-shaped and mostly symmetrical, but there
is indeed some variability. For example, the total expenditure in the left graph varies between e1,100 and

1200 1400 1600 1800
Total expenditure [ ]

0

20

40

60

80

100

120

Re
sp

on
se

 d
ist

rib
ut

io
n 

[#
]

1200 1300 1400 1500 1600
Average time to reach the gate [s]

0

20

40

60

80

100

120

Re
sp

on
se

 d
ist

rib
ut

io
n 

[#
]

690 700 710 720
Number of pax that passed security [#]
0

20

40

60

80

100

120

Re
sp

on
se

 d
ist

rib
ut

io
n 

[#
]

Figure B.1: The distributions of three responses when running simulations with the same input parameters.

97



98 B. Obtaining Stable Simulation Responses

e1,900, which is quite a lot compared to the average of aboute1,500. Consequently, the important question
arises which of the simulation runs should be used in the ultimate data sample for surrogate modeling. Or is
it better to perform multiple simulations with the same settings and take the average?

Unlike agent-based models, surrogates are deterministic in nature. They associate one input vector with
one specific output vector, which means that it is difficult for them to consider stochasticity. As a result, there
is no variation in the response of a black-box function if the same parameters are entered over and over again.
This complicates the overall meta-modeling process, although it can be overcome rather easily by the law of
large numbers [22]. In essence, the law states that if the simulation is run several times with the same set-
tings in AATOM, the average response eventually approaches the value one would expect. Going back to the
expenditure in the left graph of Figure B.1, the average ofe1,500 is indeed a reasonable representation of the
response from a deterministic point of view. So knowing that the effects of the stochasticity can be elimi-
nated, an important follow-up question is how many simulations are required to consider the average result
as stable. For this, one can resort to the coefficient of variation cv — a common approach to describe the sta-
tistical dispersion of a particular outcome. It is calculated according to Equation B.1 [from 26]. The response’s
standard deviation and mean of consecutive simulation runs are indicated by s and f̄ , respectively.

cv = s

f̄
(B.1)

The core idea is relatively simple: the lower the coefficient, the less a response is affected by sample instability.
Note that one can even compare different output parameters, as the scale is omitted by the division [26].

The coefficient of variation becomes particularly interesting when plotted against an increasing sample
size. Namely, it shows when the response stabilizes, allowing to determine the fewest number of simulation
runs required to consider the average as the deterministic result. An example is shown in Figure B.2, which
considers a data point with a moderate number of passengers in the terminal and a mediocre airport strat-
egy1. The first attempt over 500 simulation runs resulted in Figure B.2a on the left. While the coefficient of
variation is seemingly small for all responses, the curve for the number of missed flights in purple is rather
problematic. Moreover, it is actually quite surprising that flights were missed at all — the input parameters
called for a modest number of passengers, well below the breakdown limits of the airport terminal. This
required further investigation, so the simulations of interest were rerun with their corresponding random
seeds while examining the GUI in AATOM. It soon became apparent that not all problems had been resolved
in Appendix A, as the bizarre results were caused by flaws in the simulation model. The occurrence of these
phenomena is rare, although it has a considerable effect on the responses. Hence, it is crucial to somehow
remove the erroneous simulation runs. A separate section B.2 is dedicated to this, because the issue was ac-
tually anticipated. After removing three faulty outliers, one arrives at the graph in Figure B.2b, which makes
much more sense. Note that there is no longer a curve for the number of missed flights. The response’s value
was always zero, meaning the coefficient of variation is mathematically undefined. However, the curves for
the other responses are precisely as expected. There is quite a bit of instability in the beginning, but it quickly
diminishes over an increasing number of simulations. Overall, the check-in’s average waiting time and maxi-

0 100 200 300 400 500
Number of simulation runs [#]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n 
[-]

(a) Before removing the outliers.

0 100 200 300 400 500
Number of simulation runs [#]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n 
[-] AvgQueueTime_SC

AvgTimeToGate
PaxCompleted_SC
PaxCompleted_CI
NumMissedFlights
TotalExpenditure
MaxPaxInQueue_SC
AvgQueueTime_CI
MaxPaxInQueue_CI

(b) After removing the outliers.

Figure B.2: The coefficient of variation against the number of simulation runs.

1The data point corresponds to a scenario where the airport opted for check-in strategy 5, security check strategy 2, a call-to-gate 30
minutes prior departure, and a load factor of 75% on all flights. See Appendix E for more information.



B.1. Calculating the Coefficient of Variation 99

mum queue size are the most subject to variability, while throughput at security is the least. Notwithstanding,
with the standard deviation of the former two stabilizing at about 15% of their mean, these results are defi-
nitely acceptable. Furthermore, the coefficients of variation appear to become stable from a sample size of
approximately 175 runs for all responses. This suggests that there is no need to perform more simulations at
a single data point, as the mean will not change much anymore.

While 175 repetitions may be sufficient for the previously chosen data point with a moderate number
of passengers, it does not guarantee the same for other scenarios. That is, fewer or more passengers with
different airport strategies could cause less or more instability. Therefore, two additional scenarios are also
examined to see the effect of the crowd on the system’s output parameters. The graphs are depicted in Fig-
ure B.3 for 300 simulation runs each. On the one hand, Figure B.3a, shows the results for a low-traffic scenario
with excellent airport strategies, leading to very few passengers in the terminal2. This is in stark contrast to
Figure B.3b, which considers a data point associated with extreme crowds. Such a situation can be elicited
by setting the flights to fully booked in combination with poor airport strategies3. It is quite interesting to
see that there are indeed some differences between the two scenarios. First of all, a higher number of pas-
sengers in the system seems to yield less variability in general. This may seem strange, although it actually
makes sense as passengers are more restricted in their freedom. For example, if the waiting time at the secu-
rity checkpoint equals one hour instead of 15 minutes, there is less time for non-aeronautical activities like
shopping or dining. On the contrary, passengers have much more opportunities to enjoy themselves when
their time spent in queues is almost negligible. This is just one example of how crowd size can influence the
variability of the system’s responses. Furthermore, note that there is a curve for the number of missed flights
in the right graph, as opposed to the one on the left — the response even stabilizes rather quickly. Since no
flights are missed with only a few passengers in the terminal, it again makes sense that the coefficient of vari-
ation for that case is undefined. Lastly, the effects of the crowd are also visible on the number of simulations
required to obtain stable results. The low-traffic scenario appears to be consistent with the previous finding
from Figure B.2b, while the the high-traffic scenario’s output parameters are already stabilizing at about 125
runs. However, this is not so surprising, given the above explanation about the affected freedom of the agents.
In conclusion, it can be said that the choice of input parameters does indeed influence the number of simula-
tions required for stable results, albeit not excessively. The average response can be considered deterministic
from at least 125 and 175 runs, respectively for a very quiet and a very busy airport terminal.

It is interesting to see that different scenarios in the airport terminal influence the variability of AATOM’s
output parameters, although in practice it is rather challenging to use this to our advantage. One cannot pre-
dict in advance whether a particular input setting will lead to many or few passengers in the system, except
for some obvious cases as discussed in Figure B.3. A solution could be a more active approach by examining
the coefficient of variation as data is being sampled. This seems promising in theory, but creates a lot of un-
certainty because it is not known how many simulations will ultimately be needed. In fact, chances are high
that the ideal number of runs will even be different per data point. Furthermore, hyperparameters must be

0 50 100 150 200 250 300
Number of simulation runs [#]

0.00

0.05

0.10

0.15

0.20

0.25

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n 
[-]

(a) Few passengers in the airport terminal.

0 50 100 150 200 250 300
Number of simulation runs [#]

0.00

0.05

0.10

0.15

0.20

0.25

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n 
[-] AvgQueueTime_SC

AvgTimeToGate
PaxCompleted_SC
PaxCompleted_CI
NumMissedFlights
TotalExpenditure
MaxPaxInQueue_SC
AvgQueueTime_CI
MaxPaxInQueue_CI

(b) Many passengers in the airport terminal.

Figure B.3: The effect of the number of passengers in the system on the coefficient of variation.

2In this scenario, the airport opted for check-in strategy 2, security check strategy 4, a call-to-gate 60 minutes prior departure, and a load
factor of 50% on all flights. See Appendix E for more information.

3In this scenario, the airport opted for check-in strategy 5, security check strategy 5, a call-to-gate 15 minutes prior departure, and a load
factor of 100% on all flights. See Appendix E for more information.



100 B. Obtaining Stable Simulation Responses

chosen to determine when a response is considered stable, which is not so straightforward. For those reasons,
along with some practical considerations, it is better to use a method that entails less uncertainty. Namely,
the sampling process will be carried out on the online server of the Air Transport and Operations research
group at the Delft University of Technology. This is necessary due to the computational intensity of AATOM;
gathering sufficient data would otherwise be rather impossible. Looking at the implementation side of it, two
interesting facts are that the supercomputer consists of 256 central processing units and sampling data points
from the feature space is a sequential process. The latter means that one data point has to be sampled after
the other: it is very difficult to consider multiple data points at the same time because of the active learning
strategy. Therefore, to avoid wasting any of the available computational resources, we decided to run 256
simulations for each data point of the domain being sampled. The benefits of multiprocessing would other-
wise be compromised if only a part of the available cores were used. This number is well above 175, which
was previously set as the minimum for scenarios with the greatest variability. Nonetheless, additional runs
never hurt, as it can only improve the stability even further — especially if the outliers are still to be removed.
Hence, 256 simulations per data point is a solid choice, taking into account both technical requirements and
practical possibilities.

B.2. Removing Erroneous Simulation Runs
In the previous section, Figure B.2a made it readily clear that Appendix A failed to resolve all issues in AATOM.
Despite the efforts, however, this was expected in advance. The model is simply too complex to be flawless,
especially when it is used for simulating airport terminals in their entirety. Removing the erroneous results
is therefore crucial to ensure the overall integrity of the data. Namely, it increases the robustness against
contamination, as was clearly the case in the first attempt to plot the coefficient of variation. The number of
missed flights was most affected, so the response is further examined in Table B.1 by calculating the frequen-
cies of the simulations’ outcomes. Almost all runs end up being zero, which means that the irregularities in
Figure B.2a are caused by solely three instances. It is remarkable that 0.6% of the 500 iterations has such an
influence on the variability. However, they are also rather easy to detect, so it should not be too difficult to
omit them from the ultimate data set. While the outliers were removed manually in the example, it must be
automated for the overall sampling process. This is not only to create some consistency, but also because of
the total amount of data that is expected to be gathered — it would be too much to do by hand.

Yet, detecting outliers is an area of research in its own right. It has already sparked the interest of many
scholars, leading to countless possibilities. Among them are Hodge and Austin [41] and Rousseeuw and Hu-
bert [84], who provide a comprehensive overview of the state-of-the-art. As the former concludes, it is im-
portant to understand that there is no one-size-fits-all. Choosing the right methodology strongly depends on
the data and the ultimate goal. We have therefore not selected any of the options based on certain trade-off
criteria, but considered the problem from a higher-level perspective. For example, instead of bluntly remov-
ing the odd-looking numbers, perhaps there may be some indicators that clearly show the presence of errors
in a simulations run. With that in mind, we created a customized two-phased strategy as presented in Algo-
rithm 1. The procedure combines multiple outlier detection methods and is designed to ensure maximum
robustness: erroneous results should be removed, albeit without touching the correct ones. Otherwise, one
risks to bias the data. The algorithm is now further explained in chronological order: first there are the logical
indicators, and then the more generic detection methods.

Of course, the procedure can only be initiated when AATOM has finished sampling a particular data point.
According to the previous section B.1, such a raw sample consists of 256 simulation runs, each yielding an
output vector with the responses. In the first phase, the algorithm goes through all the runs while monitor-

Table B.1: Response distribution of the number of missed flights for moderate crowds in the terminal.

Number of missed flights [#] Absolute frequency [#] Relative frequency [%]

0 497 99.4

5 1 0.2

10 1 0.2

21 1 0.2

Total 500 100.0



B.2. Removing Erroneous Simulation Runs 101

Algorithm 1 Procedure for removing the outliers from a data point’s sample.

1: \\Phase 1 – Logical indicators
2: for every simulation run in the data point’s sample do
3: if the maximum number of pax in one of the check-in queues ≥ 55 then
4: Remove the simulation run from the sample
5: else if the maximum number of pax in the security check queue ≥ 345 then
6: Remove the simulation run from the sample
7: else
8: Keep the simulation run
9: end if

10: end for
11: \\Phase 2 – Generic detection methods
12: for every simulation run in the data point’s remaining sample do
13: for all individual responses f from the simulation run do
14: IQR ← Q3 − Q1 ◃ Calculation of the interquartile range
15: if IQR = 0 then

16: zscore ← fi− f̄
s ◃ Calculation of the standard score

17: if | zscore | > 3 then
18: Remove the simulation run from the sample and continue with the next one
19: else
20: Keep the simulation run
21: end if
22: else
23: if f ∈ [

Q1 −2.5× IQR, Q3 +2.5× IQR
]

then
24: Keep the simulation run
25: else
26: Remove the simulation run from the sample and continue with the next one
27: end if
28: end if
29: end for
30: end for

ing five specific results. That is, it checks the maximum number of passengers who have been waiting at the
check-in counters (four queues) and at the security checkpoint (one queue). These are the so-called logical
indicators, as they reveal results with a high probability of error. Appendix A showed that the vast majority of
AATOM’s issues originate when passengers are queuing. Hence, it makes sense to examine the statistics of the
queues most prone to unrealistic obstructions, namely those at check-in and security. When passengers can
no longer be accommodated, either due to capacity constraints or an impediment, it often reflects in an un-
usually high number of agents inside. This even goes so far that there are more passengers than theoretically
possible. Therefore, we know that a simulation is very likely to be faulty if one of the maxima is exceeded,
which is 55 per check-in queue and 345 at security. The first phase of the algorithm takes advantage of this
insight by proactively eliminating the concerning simulation runs, as can be seen up to line 10 in the pseudo-
code’s if-statement. Note, however, that many of the impediments have been addressed by the implemented
changes in Appendix A. Consequently, the limits are only occasionally exceeded, but since it still happens, the
phase remains useful. Keeping track of the maximum queue sizes is thus a rather straightforward approach
to detect outliers at an early stage.

While the first phase detects the evident cases, it fails to remove outliers that are harder to observe in
the data. Therefore, we introduce a second phase with more generic detection methods. This is to ensure
as much robustness as possible. Hodge and Austin [41] and Rousseeuw and Hubert [84] presented several
options, so an important question arises as to which method is most suitable. The authors agree on the pop-
ularity of two methods: the usage of z-scores on the one hand, and box plots on the other. The advantage
of both methods is that they are relatively straightforward and fairly robust, though they are limited to uni-
variate instances [41, 84]. Notwithstanding, this should not be a problem as the responses are considered on
an individual basis for simplicity. If one of them turns out to be erroneous, the entire simulation is removed
from the sample. The fundamental difference between the two methods is that the standard score is based



102 B. Obtaining Stable Simulation Responses

on the mean while box plots use the median. This makes the latter considerably less attracted to the outliers
themselves, as is often the case for the former. Rousseeuw and Hubert [84] explain this phenomenon with a
numerical example on page 74, which proves that z-scores can be affected in such a way that they become
ineffective. For that reason, box plots are preferred over z-scores. Since the main principle behind box plots
is rather trivial, it will not be discussed here, but we refer to section 16.4 of Dekking et al. [22, p. 236]. More
interesting, however, is how they can be utilized to detect outliers. For that, one calculates the interquar-
tile range (IQR), which is the difference between the upper (Q3) and the lower quartile (Q1) [84]. Response
values that do not fall within the interval

[
Q1 −1.5× IQR, Q3 +1.5× IQR

]
are then typically referred to as out-

liers. Nevertheless, the factor 1.5 is a general rule of thumb and should preferably be adapted to the data
set — more on that later [41]. Using box plots is a robust approach to detect and eliminate the erroneous sim-
ulation runs, although there is one problem. During the implementation, sometimes many instances were
removed by the algorithm. This seemed rather strange at first, but closer analysis revealed that it is caused by
one specific response. Namely, there are certain scenarios in the airport terminal with long queues, causing
a handful of passengers occasionally to miss their flight. Nevertheless, in more than 50% of the simulation
runs, everyone manages to catch their flight. In such cases, the IQR is zero, resulting in the removal of all
instances where passengers did miss flights. This is of course highly undesirable, inasmuch as it distorts the
data. A rather evident solution is to check the IQR first. Box plots can then only be used if it is not equal to
zero, which is usually the case in practice. However if it is, another detection method should be chosen. While
box plots were previously preferred over standard scores, this is actually the other way around when the IQR
equals zero. Z-scores are not based on quartiles, but rather on a response’s mean and standard deviation [84].
Therefore, they are not susceptible to the same problem as with box plots. The scores zi are obtained accord-
ing to Equation B.2, where f̄ is the mean response, s the standard deviation, and fi the response’s value for a
particular simulation run i [from 84].

zi = fi − f̄

s
(B.2)

The standard scores are then calculated for all instances, and those whose absolute value exceeds a certain
threshold are considered outliers. Rousseeuw and Hubert [84] mention 2.5 as a suitable candidate, although
one has to tailor it to the requirements and the data. Moreover, if done right, it can even solve the aforemen-
tioned issue that z-scores may be affected by the outliers themselves — we will come back to this. Altogether,
Algorithm 1 shows the second phase with the generic detection methods from line 11 up to the end. It goes
through all the individual responses of the data point’s remaining simulation runs and calculates the IQR
first. In the rare cases it actually equals zero, the standard score is used to determine whether or not the in-
stance is an outlier. Otherwise, the decision is based on the interval of the box plot. Note that if one of the
responses is marked as an outlier, the entire simulation run will be discarded and not just the response in
question. The algorithm thus operates univariately for the sake of simplicity, though the consequences are
borne at a multivariate level. In the end, if one output parameter turns out to be an outlier, others most likely
will be too, meaning the whole simulation is actually erroneous. Hence, this is not considered a problem. It
actually makes the algorithm even more robust because responses are looked at on an individual basis, just
as they will be meta-modeled. After eliminating all outliers in the second phase, the output parameters of the
remaining simulation runs are each averaged, which then yields the ultimate deterministic response vector
for the given data point.

Finally, there is one more question. It was mentioned earlier, but the algorithm consists of two hyper-
parameters: the factor by which the IQR is subtracted from and added to the lower and upper quartiles,
respectively, and the absolute z-score from which response instances are considered outliers. Since they are
quite difficult to optimize automatically, it was done on a trial-and-error basis by adjusting the parameters
while examining the plots of the coefficient of variation, as in Figure B.2. Furthermore, the number of dis-
carded simulations was also monitored throughout the process. The hyperparameters must be determined
before starting the active learning process, although the inital set can already be sampled — the Hammersley
sequence does not require any meta-model to be trained. Therefore, we use the initial sample for this, be-
cause it is known as a very uniform data set that takes the entire feature space into account. Ultimately, this
led to the choices on lines 17 and 23 in Algorithm 1, with a z-score threshold of 3 and an IQR factor of 2.5.
For the initial sample, the average removal is 1.95 simulation runs per data point and its standard deviation
is 2.72. No outliers were found in 39 of the 100 data points, while there was a maximum of 12 outliers in one
case. These results are certainly acceptable, especially considering that a total of 256 simulations were per-
formed for every data point. Hence, we conclude that the outlier removal algorithm is effective and performs
as desired.



C
Insights into the Sampled Data Points

The greatest strength of adaptive sampling is that it actively searches for the most interesting data points. At
the same time, however, this also makes the strategy quite precarious, as it entails a lot of uncertainty. One
never knows in advance what part of the feature space will be explored, and how many data points are ex-
actly necessary to end up with a sample that is sufficiently informative. Therefore, this appendix aims to gain
more insight by analyzing the collected data, being the initial, adaptive, validation, and test sets. It starts with
section C.1, which discusses the distribution of the data points in the feature space. For example, there will
be verified whether the initial and adaptive sampling strategies behave as expected. Next, section C.2 con-
tinues by presenting the most relevant summary statistics of the responses. This gives a first impression into
the output of AATOM. Section C.3 comes last and elaborates on the stopping criterion of the active learning
algorithm. More specifically, it examines what exactly triggered the criterion and how many data points were
ultimately needed.

C.1. Distribution of the Data Points in the Feature Space
Analyzing distributions of the data points is useful because it immediately shows which parts of the domain
have been explored, and to what extent. In order to obtain the broadest possible view, the sample is examined
from two perspectives. Namely, subsection C.1.1 and subsection C.1.2 look at the features from their own
dimension and from a two-dimensional perspective, respectively.

C.1.1. One-dimensional Perspective
As discussed by the methodology in section 3 of the Scientific Paper in Part I, the total training sample con-
sists of an initial and an adaptive set. The size of the former was recommended to be 10 times the number of
input parameters, which corresponds to 100 data points. For the latter, however, this cannot be determined
in advance because it depends on the stopping criterion. More on that in section C.3, although we use 200
data points as an initial guess to have enough data to evaluate the criterion upon. This means that the train-
ing set provisionally contains a total of 300 data points. With that knowledge, the sample can be visualized
by plotting the distributions of its input parameters. The result of that is depicted in Figure C.1, where bar
charts were used for categorical features and histograms for the numerical ones. Note that only 4 out of 10
are shown, as the passenger distributions on the other flights were similar to those on flight 7 at the bottom
left. The graphs cover the entire training sample, though they are broken down into chunks to see differences
between the subsets. First of all, there is the initial data set in blue that was sampled using the Hammersley
sequence. According to Table 3.1 of the Literature Study in Part II, the method is praised for its low discrep-
ancy, uniformity, and space-filling behavior — properties that are clearly observable in the one-dimensional
distributions. On the other hand, one of the main weaknesses was a poorer coverage at the boundaries of the
domain. This is also visible, especially with the two categorical features at the top. Altogether, it is reassuring
to see that the characteristics of the initial set match the expectations from the Literature Review. Secondly,
the adaptive data set is displayed in the other colors, which is thus again broken down into smaller parts. The
reason is to examine whether there are substantial differences between the exploration and the exploitation
phases of the active learning process. Namely, it starts with the first 50 data points in the orange adaptive set 1
and ends with the last 50 in the purple set 4. The other two are in between with the remaining 100 data points.

103



104 C. Insights into the Sampled Data Points

1 3 5 7 9 11
Check-in strategy [-]

0

10

20

30

40

50
Tr

ai
ni

ng
 se

t d
ist

rib
ut

io
n 

[#
]

Initial
Adaptive 1
Adaptive 2
Adaptive 3
Adaptive 4

1 3 5 7 9 11 13 15
Security check strategy [-]

0

10

20

30

40

50

60

Tr
ai

ni
ng

 se
t d

ist
rib

ut
io

n 
[#

]

Initial
Adaptive 1
Adaptive 2
Adaptive 3
Adaptive 4

80 100 120 140
Number of pax on flight 7 [#]

0

10

20

30

40

Tr
ai

ni
ng

 se
t d

ist
rib

ut
io

n 
[#

]

Initial
Adaptive 1
Adaptive 2
Adaptive 3
Adaptive 4

20 30 40 50 60
Call-to-gate strategy [min]

0

10

20

30

40

50

Tr
ai

ni
ng

 se
t d

ist
rib

ut
io

n 
[#

]

Initial
Adaptive 1
Adaptive 2
Adaptive 3
Adaptive 4

Figure C.1: One-dimensional training sample distributions of four input parameters.

Since the EIGF acquisition function uses a decaying strategy, the first set focuses mainly on exploration while
the last one focuses on exploitation. Again, this can be observed in the distributions. The density of the for-
mer in orange is greatest at the edges of the feature spaces, which makes sense as the Hammersley sequence
was known to underperform there. Hence, the active learning algorithm immediately seems to compensate
for this deficiency. The latter in purple is different, as the largest densities are not necessarily located at the
boundaries. Instead, it heavily depends on the feature in question, suggesting that the algorithm is indeed
searching for the most difficult areas to predict. For the check-in, these are the two extremes: either a very bad
or a very good strategy1. In terms of security checkpoint occupancy, surrogate models appear to struggle the
most with the worst possible strategies, while the best ones are seemingly no problem at all2. For the number
of passengers on the flights, it is to a greater extent spread out over the domain, although the edges receive
slightly more attention. Lastly, simulations with high call-to-gate strategies are apparently harder to predict
than lower ones, as can be seen in the lower right histogram. Altogether, these findings are also in line with
the expectations. The adaptive sample is clearly no longer uniform, starts with a preference for exploration,
and ends with predominantly exploitation. Note that as a result, some areas not revisited after the initial sam-
pling procedure, which is the case for security checkpoint strategies 12 and 13. Yet, we do not consider this a
problem, because if it were, the active learning algorithm would have sampled there.

In addition to the training sample, the current research also requires a validation set to optimize the hy-
perparameters and a test set to evaluate the out-of-sample performance of the surrogate models. According
to the methodology in section 3 of the Scientific Paper in Part I, the two sets should be collected using random
sampling so that the proportion of each equals 20% of the entire data set. Knowing that the training set has
300 data points for now, both the validation and test set must contain 100 data points to meet this require-
ment3. The one-dimensional distributions of two arbitrary input parameters for each sample are shown in
Figure C.2 and Figure C.3, respectively. The graphs for the other features have been omitted for the sake of the
report, although they are very comparable to the ones we discuss. They are all fairly well-distributed across
the domain, but not quite as uniform as the Hammersley sequence. Nevertheless, this cannot be expected

1See Table E.2 in Appendix E.
2See Table E.3 in Appendix E.
3I.e., 20%× (300+2m) = m, where m denotes the sample size of either the validation or the test set.



C.1. Distribution of the Data Points in the Feature Space 105

1 3 5 7 9 11
Check-in strategy [-]

0

2

4

6

8

10
Va

lid
at

io
n 

se
t d

ist
rib

ut
io

n 
[#

]

80 100 120 140
Number of pax on flight 3 [#]

0

2

4

6

8

10

12

14

Va
lid

at
io

n 
se

t d
ist

rib
ut

io
n 

[#
]

Figure C.2: One-dimensional validation sample distributions of two input parameters.

1 3 5 7 9 11 13 15
Security check strategy [-]

0

2

4

6

8

10

Te
st

 se
t d

ist
rib

ut
io

n 
[#

]

20 30 40 50 60
Call-to-gate strategy [min]

0

2

4

6

8

10

12

14

Te
st

 se
t d

ist
rib

ut
io

n 
[#

]

Figure C.3: One-dimensional test sample distributions of two input parameters.

from random sampling. The important finding is that there are no visible patterns or signs of severe clus-
tering around certain areas, despite some settings have indeed been selected more often than others. This
suggests that the two are presumably very decent validation and test sets, as a degree of randomness is desir-
able in order to be as independent of the training sample as possible. In conclusion, the distributions of the
data sets reveal no surprises, which verifies the expectations from the Literature Survey.

C.1.2. Two-dimensional Perspective
While the one-dimensional distributions of the features may be in line with expectations, there is no guar-
antee that the same is true for other dimensions. Indeed, different perspectives can yield different insights,
despite the fact that increasing dimensionality makes the analysis more challenging. The two-dimensional
perspective is still feasible, but higher than that becomes rather impractical for human interpretation. There-
fore, in addition to the previous subsection, we limit ourselves to two dimensions as can be seen in Figure C.4.
The plots show the distributions of the initial sample between two particular features. For example, the first
histogram on the left visualizes where the Hammersley sequence chose its 100 data points in the domains

1 3 5 7 9 11
Check-in strategy [-]

15
20
25
30
35
40
45
50
55

Ca
ll-

to
-g

at
e 

st
ra

te
gy

 [m
in

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Initial set distribution [#]

1 3 5 7 9 11 13 15
Security check strategy [-]

80

90

100

110

120

130

140

Nu
m

be
r o

f p
ax

 o
n 

fli
gh

t 6
 [#

]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Initial set distribution [#]

80 100 120 140
Number of pax on flight 2 [#]

80

90

100

110

120

130

140

Nu
m

be
r o

f p
ax

 o
n 

fli
gh

t 6
 [#

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Initial set distribution [#]

Figure C.4: Two-dimensional distributions of the initial sample.



106 C. Insights into the Sampled Data Points

of the call-to-gate and check-in strategy. In general, almost all graphs are very similar to the two on the
left — most of them have been omitted for the sake of the report. It is clear that the initial sampling method
maintains its uniformity, low discrepancy, and space-filling properties in 2D. Moreover, the poorer coverage
at the boundaries remains, albeit less apparent than in 1D. Hence, the advantages and disadvantages of the
Hammersley sequence from Table 3.1 of the Literature Study in Part II seem to withstand a higher dimen-
sional perspective. The histogram on the right, however, is a different story. It is quite surprising to see such a
pattern in the distribution of the number of passengers on flight 2 and 6. Despite being rare, these phenom-
ena are of course undesirable because they do not occur in practice. Namely, it is an artifact of the sampling
procedure. Recall that the Hammersley set is a mathematical quasirandom sequence, along which the sam-
pler selects data points. This is beneficial because it is accompanied by some favorable properties, such as
uniformity and a low discrepancy in high dimensional feature spaces. Yet, there is no guarantee that this also
applies to subspaces of the hypercube, as is clearly the case here. Some degree of patterning was expected,
but not to the extent discovered in the right graph. It proves the relevance of considering multiple perspec-
tives, as such phenomena are nearly impossible to detect in one-dimensional visualizations. The example
will be analyzed in more detail, but first we discuss histograms of the adaptive sample.

These are depicted in Figure C.5. Again, only a small selection is shown, as it would be rather abundant
to present them all. The adaptive distributions are very different from the ones of the initial set, although
this was to be expected from the one-dimensional analysis by Figure C.1 in the previous subsection C.1.1. In
fact, they are very consistent with the earlier findings and reveal no surprising elements. The distributions
are certainly not uniform, they are no longer space-filling, and therefore leave gaps in the domain. This
makes sense, since the purpose of active learning was solely to explore and exploit the feature space, using
prior knowledge from the initial sample. More interestingly, however, is that the two-dimensional histograms
disclose the most difficult areas to predict in relation to feature interdependencies. For example, in the left
graph, the acquisition function favored check-in strategy 1 and 2 with either low or high passenger numbers
on flight 6. The figure in the middle is quite extreme, with many simulations being selected that have check-
in and security check strategy 1. None of the other feature combinations have such a skewed distribution,
although it does make sense for these two as they are both extremely bad strategies4. They result in large
queues, for which the system responses are seemingly harder to predict. Lastly, the selected data points for
the number of passengers on flight 1 and 7 are more spread out across their domain, as can be seen in the right
graph. Nonetheless, the regions where both flights are either quite empty or fully booked are sampled more
often. In summary, the two-dimensional distributions of the adaptive sample are in line with expectations.
Even though there are no surprises, the visualizations remain useful as they reveal the feature settings that
surrogate models struggle with the most.

Now that the adaptive sample has been discussed, we revisit the instance of the initial sample with the
observed pattern. The two-dimensional histogram on the right in Figure C.4 shows the overall distribution,
although it remains somewhat unclear exactly which data points were selected by the Hammersley sequence.
A scatter plot would allow a closer examination, as can be seen in Figure C.6. The focal case between the
number of passengers on flight 2 and 6 is depicted in Figure C.6a on the left. While the scatter plot looks as
expected from the histogram, there are two elements that stand out. On the one hand, it appears that suc-
cessive data points are sampled along oblique lines across the two-dimensional feature space. On the other
hand, these lines seem to huddle together, resulting in three main clusters. This is rather inconsistent with the

1 3 5 7 9 11
Check-in strategy [-]

80

90

100

110

120

130

140

Nu
m

be
r o

f p
ax

 o
n 

fli
gh

t 6
 [#

]

0
1
2
3
4
5
6
7
8
9 Adaptive set distribution [#]

1 3 5 7 9 11
Check-in strategy [-]

1

3

5

7

9

11

13

Se
cu

rit
y 

ch
ec

k 
st

ra
te

gy
 [-

]

0

5

10

15

20

25

Adaptive set distribution [#]

80 100 120 140
Number of pax on flight 1 [#]

80

90

100

110

120

130

140

Nu
m

be
r o

f p
ax

 o
n 

fli
gh

t 7
 [#

]

0

1

2

3

4

5

6

7

8 Adaptive set distribution [#]

Figure C.5: Two-dimensional distributions of the adaptive sample.

4See Table E.2 and Table E.3 in Appendix E.



C.1. Distribution of the Data Points in the Feature Space 107

80 100 120 140
Number of pax on flight 2 [#]

80

90

100

110

120

130

140

Nu
m

be
r o

f p
ax

 o
n 

fli
gh

t 6
 [#

]

(a) Initial sample.

80 100 120 140
Number of pax on flight 2 [#]

80

90

100

110

120

130

140

150

Nu
m

be
r o

f p
ax

 o
n 

fli
gh

t 6
 [#

]

(b) Adaptive sample.

80 100 120 140
Number of pax on flight 2 [#]

80

90

100

110

120

130

140

150

Nu
m

be
r o

f p
ax

 o
n 

fli
gh

t 6
 [#

]

(c) Total training sample.

Figure C.6: Closer examination of the sample patterns between the number of passengers on flight 2 and 6.

properties of the Hammersley sequence, as previously discussed by the Literature Study in Table 3.1. Clearly,
the two-dimensional space does show discrepancies, is no longer completely space-filling, and loses its uni-
formity. Therefore, a deeper analysis is necessary to find out the reason behind these observations. We start
by going back into the literature, because it is unlikely that scholars have not encountered the phenomenon
before. Kocis and Whiten [56] investigated low-discrepancy sequences and more specifically the effects of
dimensionality and sample size. Interestingly, they confirm the two findings from Figure C.6a in their own
implementation and devote them to the following. The gaps are caused because the sequence selects data
points with a certain periodicity in the domain of the two input parameters, as part of the multi-dimensional
feature space. The higher the dimensionality, the larger the discrepancies, which explains the three clusters.
Furthermore, if the number of dimensions continues to expand, the data points tend to align. This is clearly
visible in Figure C.6a as well. Notwithstanding, the authors mention that the Hammersley sequence is suffi-
ciently uniform for 10 dimensions or less, which was indeed one of the reasons that it was never considered a
potential problem during the selection of the initial sampling method. Their arguments are discordant with
our findings, but there is a natural explanation for this. Namely, Kocis and Whiten [56] mainly examine sam-
ples with a size between a thousand and a million data points, which is substantially higher than our choice
of a hundred. As discussed in section 3.6 of the Literature Study in Part II, Loeppky et al. [62] recommended
that the initial sample size be 10 times the dimensionality when continuing the sampling procedure with
Gaussian process regression. While their argument does not take into account the limitations of the initial
sampling method, keep in mind that there is indeed an adaptive part that follows. This was of course not
the case in the experiments of Kocis and Whiten [56]. Consequently, one can be lenient towards the initial
data set, despite it not being ideal in some of the features’ two-dimensional combinations. As a confirma-
tion, we added the scatter plot of the adaptive sample in Figure C.6b, which altogether results in Figure C.6c.
The exploration and exploitation efforts of the active learning algorithm compensate the deficiencies of the
Hammersley sequence to a large extent. There are still some gaps, but the ultimate training sample in the
right scatter plot is certainly acceptable. In addition, remember that the occurrence is rare and that the two-
dimensional perspective is only a subspace of the hypercube in which the surrogate models actually operate.
We therefore accept the imperfections of the initial sampling method, but include them as limitation in the
Scientific Article in Part I.

Finally, the distributions of the validation and test sets are examined from the two-dimensional perspec-
tive. A selection of the histograms is depicted in Figure C.7 and Figure C.8, respectively. They are actually all
quite similar and exactly as expected. As with the one-dimensional perspective, they fill the domain rather
decently, even though there are some discrepancies. However, this is typical for random sampling and it
should therefore not be compared to space-filling methods, such as the Hammersley sequence. One can
see the randomness — there are no visible patterns or severe clustering of data points, nor are the graphs
subject to some statistical probability distribution. The fact that there are again no surprises reinforces the
expectations from the Literature Review in Part II, leading us to believe that the validation and test samples
are indeed more than fit for purpose. To conclude the two-dimensional perspective, the distributions are
generally in line with those in 1D and the notions from the literature. Only the artifacts of the Hammersley
sequence were not anticipated to be so apparent in the initial sample, despite the active learning algorithm
mitigates most of the patterns. Nonetheless, we closely monitor the ultimate out-of-sample performance of
the surrogate models to see if there would be any deteriorating effects.



108 C. Insights into the Sampled Data Points

1 3 5 7 9 11
Check-in strategy [-]

50

60

70

80

90

Nu
m

be
r o

f p
ax

 o
n 

fli
gh

t 4
 [#

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0 Validation set distribution [#]

1 3 5 7 9 11 13 15
Security check strategy [-]

15
20
25
30
35
40
45
50
55
60

Ca
ll-

to
-g

at
e 

st
ra

te
gy

 [m
in

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 Validation set distribution [#]

Figure C.7: Two-dimensional distributions of the validation sample.

1 3 5 7 9 11
Check-in strategy [-]

1

3

5

7

9

11

13

15

Se
cu

rit
y 

ch
ec

k 
st

ra
te

gy
 [-

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Test set distribution [#]
80 100 120 140

Number of pax on flight 1 [#]

80

90

100

110

120

130

140

Nu
m

be
r o

f p
ax

 o
n 

fli
gh

t 2
 [#

]

0

1

2

3

4

5

Test set distribution [#]

Figure C.8: Two-dimensional distributions of the test sample.

C.2. Summary Statistics of the Responses
Besides visualizing how the input parameters were chosen over their domain, it is also interesting to take a
closer look at the corresponding responses. Doing so provides a first insight into the output of AATOM, which
will be meta-modeled in the current research. The most relevant summary statistics of the training sample are
tabulated in Table C.1. From left to right, there is the mean response, its 95% confidence interval (abbreviated
as CI), the standard deviation (abbreviated as SD), and the minimum, median and maximum value of the
response. The averages are in line with the expectations. It is interesting to see their interconnections: the
average time it takes to reach the gate from entering the terminal, for example, includes the waiting time at
security. For those who have not checked in beforehand, the waiting time at check-in is also included. These
results show that, on average, the majority of time in the terminal is spent at security. Furthermore, note that
the throughput at security is higher than the one at the check-in counters. However, this is very logical. The
latter only counts passengers who do so at the airport itself, while everyone has to go through the security
checkpoint — there is no way around that. Subsequently, the numbers of passengers who completed check-
in and security have the smallest confidence interval and the number of missed flights the largest, relative

Table C.1: Summary statistics of the responses calculated from the training sample.

Response Unit Mean 95% CI SD Minimum Median Maximum

AvgQueueTime_SC [s] 808.61 [766.92, 850.29] 366.89 0.00 718.34 1915.81

AvgTimeToGate [s] 1379.96 [1342.30, 1417.63] 331.50 0.00 1317.14 2216.35

PaxCompleted_SC [#] 682.54 [672.06, 693.01] 92.22 0.00 681.90 825.65

PaxCompleted_CI [#] 356.72 [350.89, 362.56] 51.36 0.00 364.62 447.20

NumMissedFlights [#] 17.65 [13.07, 22.23] 40.29 0.00 0.00 187.47

TotalExpenditure [e] 1211.85 [1177.81, 1245.88] 299.55 0.00 1191.48 1841.82

MaxPaxInQueue_SC [#] 125.41 [119.60, 131.22] 51.16 0.00 118.44 254.96

AvgQueueTime_CI [s] 275.53 [265.42, 285.63] 88.94 0.00 254.55 681.44

MaxPaxInQueue_CI [#] 11.94 [11.64, 12.25] 2.69 0.00 11.55 21.81



C.2. Summary Statistics of the Responses 109

to the mean. The same can be said of the standard deviation, although the result for the latter response is
rather extreme. Namely, the standard deviation of the number of missed flights is more than twice as high as
its mean. This shows a high degree of dispersion in the response, which must be right-tailed since it cannot
be negative for obvious reasons. Furthermore, the minimum value is zero for all output parameters. While
this may seem strange at first, it actually makes sense because flights are canceled if their occupancy rate is
less than 50%. Hence, there is a scenario where this applies to all flights, resulting in zero agents in the airport
terminal. Such a situation is of course not very plausible in practice, although it is technically possible. In the
end, airlines still have the flexibility — albeit limited — not to use their allocated time slots, which are fixed.
Flight cancellations therefore remain an option to ensure the versatility of the surrogate models. Next, the
median is another interesting statistic, and especially its discrepancy with the mean. It shows to what extent
responses are influenced by extrema. We only consider those whose median is outside the 95% confidence
interval of the mean, which is true for all except throughput at security and total expenditure. Apart from the
throughput at check-in, the remaining responses seem to have a lower median than the average. The number
of missed flights is skewed rather extreme, as its median value equals the minimum. This means that in at
least 50% of the simulated scenarios, everyone catches their flight. Finally, there are the maxima in the last
column, which show no peculiarities. The only response with an exceptionally high maximum is again the
number of missed flights. That nearly 190 passengers may not be at their gate on time during the simulated
schedule is a lot. However, the reason behind it is evident as it must be caused by a very busy routine with
extremely poor airport terminal strategies.

Even though the summary statistics in Table C.1 show the most important properties of the responses at a
glance, they are all subject to different scales. It is therefore rather difficult to compare them with one another.
This can be resolved by standardization and plotting the results in box plots, as can be seen in Figure C.9. The
insights from before are now also directly visible in these graphs. For example, the minimum and median
of the number of missed flights do indeed coincide, resulting in a strongly right-tailed distribution. Further-
more, apart from the latter, the interquartile ranges of the remaining responses are more or less comparable.
They are not extremely dispersed and while there may be degrees of skewness, the median is never really far
from the average. However, it is rather interesting that most of the responses’ skew is caused by the values
outside the interquartile range. This is especially visible in the throughput at the check-in counters and at se-
curity, which show heavy left-tails. Other than that, the waiting time at security and the associated maximum
number of passengers in the queue generally appear to be the least variable. All in all, there is certainly some
heterogeneity between the responses, albeit not extreme. The distribution for the number of missed flights is
skewed the most, so it will be interesting to see how this affects the meta-model performance.

Finally, in addition to statistics and standardized visualizations, it is also relevant to check whether the re-
sponses are correlated. This shows how they are influenced altogether and proves the presence of significant
relationships, if any. A correlation matrix is presented in Table C.2, along with their p-values. First and fore-
most, the vast majority of correlation coefficients are rather high, indicating strong positive relationships.
These results are not surprising in principle, though some are very high. For example, the correlation be-

AvgQueueTime_SC

AvgTimeToGate

PaxCompleted_SC

PaxCompleted_CI

NumMisse
dFlights

TotalExpenditure

MaxPaxInQueue_SC

AvgQueueTime_CI

MaxPaxInQueue_CI

6

4

2

0

2

4

St
an

da
rd

ize
d 

re
sp

on
se

s [
-]

Figure C.9: Standardized box plots of the responses obtained from the training sample.



110 C. Insights into the Sampled Data Points

tween the average time to reach the gate and the average queue time at security is almost perfect. The latter
is a direct part of the former, so it does make sense, but also implies that waiting time at security is the main
determinant of the total time spent in the airport terminal. Notwithstanding, one must beware of the fallacy
of questionable causes [26]. The fact that there is correlation does not necessarily mean that one is caused
by the other. An example is the relation between the throughput at security and the maximum number of
passengers in the check-in queues. One can see that they are moderately correlated with a coefficient of 0.56.
Practically speaking, however, the two responses do not have much in common. Instead, they are both simul-
taneously affected by the number of passengers in the terminal. The more agents in the system, the higher
the two responses are likely to be, which explains the correlation. Hence, the coefficients ought to be inter-
preted as such: it shows how the input parameters influence AATOM’s responses in relation to one another.
Furthermore, note that none of the output parameters are negatively correlated with a significance level of
at least 5%, and that the total expenditure has the least overall correlation. Other than very weak positive
relationships with the throughput at check-in and security, the response has no significant coefficients, mak-
ing it rather standalone. Lastly, a remarkable finding is the result between the number of missed flights and
the security checkpoint’s throughput. They are almost unrelated, while there is a weak correlation with the
throughput at check-in. This may seem strange, but it actually makes a lot of sense. Think of it as follows. The
busier it gets, the more agents that have to pass through check-in and security. The same goes for those who
end up missing their flight, but one should realize that this is most likely caused by long waiting times at the
checkpoint — note the fairly strong correlation between these two. Indeed, the main bottleneck of the system
is at security, which becomes saturated as the crowd grows. At that point, people will start to miss their flight
while the throughput remains constant. The checkpoint cannot handle more passengers than its maximum
capacity allows. With this knowledge, in combination with the fact that the check-in counters can achieve a
much higher throughput in the current terminal layout, one can explain the difference in correlation coeffi-
cients with the number of missed flights. These were the most relevant insights from the matrix. Although the
results were not surprising per se, they do provide a thorough understanding into how the responses behave
in relation to one another.

Table C.2: Correlation matrix of the responses obtained from the training sample.

Response 1 2 3 4 5 6 7 8

1. AvgQueueTime_SC

2. AvgTimeToGate 0.98**

3. PaxCompleted_SC 0.47** 0.53**

4. PaxCompleted_CI 0.75** 0.78** 0.92**

5. NumMissedFlights 0.80** 0.74** 0.01 0.41**

6. TotalExpenditure -0.11 0.02 0.18** 0.13* -0.10

7. MaxPaxInQueue_SC 0.92** 0.91** 0.70** 0.86** 0.57** -0.07

8. AvgQueueTime_CI 0.36** 0.45** 0.17** 0.31** 0.41** -0.08 0.31**

9. MaxPaxInQueue_CI 0.62** 0.70** 0.56** 0.70** 0.47** -0.04 0.66** 0.86**

Note: * p < 0.05, ** p < 0.01

C.3. Reaching the Stopping Criterion
A crucial element of the adaptive sampling process is the stopping criterion. This is a predefined condition
that determines when the active learning algorithm should stop, since it has no natural ending. The theoreti-
cal background is discussed in the Literature Study’s subsection 3.2.2 in Part II, though we opted for a hybrid
strategy which combines time constraints with out-of-sample meta-model accuracy. In the end, however, it
turned out that the availability of time slots was less of an issue than initially thought. This allowed more
attention to be paid to surrogate model performance, the result of which is shown in Figure C.10. The graph
shows the responses’ coefficient of determination over an increasing adaptive sample size. It starts from the
initial and ends with the entire training set, which explains the domain of the horizontal axis. Recall that
the 200 data points of the active learning process are still a result of the initial guess as stated by section C.1.
The plot is created after gathering the entire training sample, and after the surrogates were tuned according
to Appendix D. This allows to evaluate the stopping criterion on those models that are ultimately used for



C.3. Reaching the Stopping Criterion 111

100 150 200 250 300
Total sample size [#]

0.4

0.5

0.6

0.7

0.8

0.9

R2
 sc

or
e 

[-]

AvgQueueTime_SC
AvgTimeToGate
PaxCompleted_SC
PaxCompleted_CI
NumMissedFlights
TotalExpenditure
MaxPaxInQueue_SC
AvgQueueTime_CI
MaxPaxInQueue_CI

Figure C.10: Out-of-sample performance of Gaussian process regression over an increasing sample size.

the system analysis in a later phase of the research. If the current adaptive sample size proves to be insuffi-
cient, additional data points are collected and the whole process is repeated. To determine that, the curves
in Figure C.10 must be analyzed, leading to the following conclusions. First and foremost, the out-of-sample
performance of the Gaussian process regression models does indeed seem to improve with a larger adaptive
sample size. This applies to all nine responses of AATOM. Nonetheless, different responses yield different
levels of accuracy and they do not all increase in the same way. Some rise more in the beginning, some more
towards the end, and others are in between. There is thus a degree of heterogeneity, although this was to
be expected knowing that the input parameters affect them differently. While these insights are certainly
interesting, it is more important to analyze the shape of the curves. Namely, they indicate to what extent
meta-model accuracy improves when the adaptive sample is expanded. From the perspective of Figure C.10,
it appears that the coefficient of determination for all responses has practically flattened as the total training
set approaches a size of 300 data points. This suggests that most of the performance improvement potential
has been captured and there is no need to continue the active learning process — the initial guess of 200
adaptive data points was thus actually rather good. Notwithstanding, it is a good idea to also consider more
than one perspective, as other surrogate model architectures or validation metrics can lead to different con-
clusions. The acquisition function may solely use Gaussian process regression results to determine the next
input parameter combination to sample, it does not mean that the stopping criterion cannot be evaluated on
the other architectures.

So similar graphs are visualized in Figure C.11, but now obtained from gradient boosting, polynomial
regression, and random forests, respectively. Recall that these are the remaining machine learning architec-
tures that were selected by subsection 3.3.7 of the Literature Survey in Part II. The legend has been omitted
for the sake of the report, although the same color code is used as in Figure C.10. Clearly, there is quite a
bit of heterogeneity; not only among the responses, but also between the meta-models themselves. Each
curve is essentially different. Nevertheless, it seems that the vast majority of output parameters benefit from
an increasing sample size. There are some exceptions, especially with random forests, but this architecture
has greater problems than responses with diminishing accuracy. We do not elaborately compare the per-

100 150 200 250 300
Total sample size [#]

0.0

0.2

0.4

0.6

0.8

1.0

R2
 sc

or
e 

[-]

AvgQueueTime_SC
AvgTimeToGate
PaxCompleted_SC
PaxCompleted_CI
NumMissedFlights
TotalExpenditure
MaxPaxInQueue_SC
AvgQueueTime_CI
MaxPaxInQueue_CI

(a) Gradient boosting.

100 150 200 250 300
Total sample size [#]

0.6

0.7

0.8

0.9

1.0

R2
 sc

or
e 

[-]

AvgQueueTime_SC
AvgTimeToGate
PaxCompleted_SC
PaxCompleted_CI
NumMissedFlights
TotalExpenditure
MaxPaxInQueue_SC
AvgQueueTime_CI
MaxPaxInQueue_CI

(b) Polynomial regression.

100 150 200 250 300
Total sample size [#]

0.4

0.5

0.6

0.7

0.8

0.9

R2
 sc

or
e 

[-]

AvgQueueTime_SC
AvgTimeToGate
PaxCompleted_SC
PaxCompleted_CI
NumMissedFlights
TotalExpenditure
MaxPaxInQueue_SC
AvgQueueTime_CI
MaxPaxInQueue_CI

(c) Random forests.

Figure C.11: Out-of-sample performance of different meta-models over an increasing sample size.



112 C. Insights into the Sampled Data Points

formance of surrogate models here, as this is covered by section 5 of the Scientific Paper in Part I, albeit
readily clear that Gaussian process regression, gradient boosting, and polynomial regression generally out-
perform random forests. The curves in Figure C.11c are indeed rather disappointing. Nonetheless, also from
the perspective of different surrogate models, the out-of-sample coefficient of determination appears to be
flattening for almost all responses as the adaptive sample size approaches 200 data points. Next to a com-
parison between machine learning architectures, the same can be done for various validation metrics. This
is shown in Figure C.12 for the average time passengers need to reach their gate after entering the airport ter-
minal. As the overall patterns are similar, we only discuss one response to keep the report within reasonable
bounds. The graphs show the coefficient of determination, the root-mean-square error, the mean absolute
percentage error, and the mean absolute error from top left to bottom right. Moreover, they contain the re-
sults for all considered surrogate architectures. One can see that the curves for each type of meta-model are
generally comparable across the distinct performance indicators, despite there are of course some subtle dif-
ferences. More importantly, however, they again seem to flatten near 200 adaptive data points. This confirms
our previous finding and suggests that the initial guess is indeed sufficient, especially considering that multi-
ple perspectives have led to the same conclusion. The potential increase in the accuracy of surrogate models
by additional sampling is most likely marginal, which does not outweigh the associated computational re-
quirements. Therefore, we conclude that the active learning algorithm reaches its stopping criterion at 200
data points. Consequently, the total training sample consists of 100 data points from the initial sample and
200 data points from the adaptive sample, making a total of 300.

100 150 200 250 300
Total sample size [#]

0.5

0.6

0.7

0.8

0.9

R2
 sc

or
e 

[-] LR
GP
RF
GB

100 150 200 250 300
Total sample size [#]

140

120

100

80

60
Ne

ga
tiv

e 
RM

SE
 sc

or
e 

[s
]

LR
GP
RF
GB

100 150 200 250 300
Total sample size [#]

0.09

0.08

0.07

0.06

0.05

0.04

Ne
ga

tiv
e 

M
AP

E 
sc

or
e 

[-]

LR
GP
RF
GB

100 150 200 250 300
Total sample size [#]

120
110
100

90
80
70
60
50

Ne
ga

tiv
e 

M
AE

 sc
or

e 
[s

]

LR
GP
RF
GB

Figure C.12: Comparison between different validation metrics for the average time to reach the gate.



D
Tuning the Meta-models’ Hyperparameters

Hand in hand with machine learning comes the optimization of hyperparameters. These are predefined
settings that determine how an algorithm is constructed and functions. Consequently, their effect on meta-
model performance should not be underestimated, which is why they must be tuned. In section 3.4 of the
Literature Study in Part II, we selected Bayesian optimization (BO) as the most suitable method from the
alternatives for this task. The outcome of that is presented in the current appendix, starting with an overview
of the considered model parameters and their corresponding search space in section D.1. It also contains
arguments as to why exactly these parameters are optimized while some of the others are not. Next, there is
section D.2, which elaborates on the optimization and its results. This includes the settings of the Bayesian
optimizer, the convergence of solutions towards global optima, and an overview of the ultimately selected
hyperparameter values.

D.1. Considered Model Parameters
Before thinking about tuning hyperparameters, it is first necessary to determine which settings should be
taken into account. Some are evident, while others are more dependent on the problem the model is faced
with. Also, it could be that there are specific challenges, such as under- or overfitting, which may require ad-
ditional attention. Nevertheless, one should refrain from considering too many parameters, as otherwise the
dimensionality would complicate the overall optimization process. Several iterations under a trial-and-error
strategy have led to the final overview in Table D.1. While the models were originally selected in section 3.3 of
the Literature Study in Part II, the selection was slightly modified later in the research process1. The table is
consistent with the latest arguments in section 3 of the Scientific Paper in Part I. Furthermore, the parameters
are tabulated per considered machine learning architecture, along with a short description and their search
space. The descriptions are mostly based on the official documentation of the scikit-learn package [75].

First of all, there is the linear regression model (LR), which is effectively implemented as a regularized
higher-order polynomial. This naturally leads to an architecture with two hyperparameters: the degree of the
polynomial and the regularization strength. The former essentially determines the format of the analytical
function between the features and response. The higher, the more complex the model, allowing it to capture
higher-order relationships. Higher degrees may seem beneficial at first, though they also entail some specific
challenges. Namely, it substantially increases the computational intensity and makes the model more sus-
ceptible to overfitting. We have therefore limited the search space to a maximum of four, as this choice still
turned out to be feasible. Nevertheless, overfitting remained a rather persistent issue. Despite being unde-
sirable, it was not surprising to encounter the phenomenon. Recall that one of the arguments for surrogate
modeling was to lighten the computational burden of using AATOM. Notwithstanding, data is still needed to
create the surrogates. The training sample is therefore kept to a minimum, although this in turn increases
the possibility of overfitting. So in a sense, it actually becomes an inherent problem with meta-modeling.
The traditional remedy for an unsatisfactory generalization is to regularize the machine learning model. In
short, this is a mechanism that prevents an algorithm from becoming too complex [34]. While it can be im-

1The main difference concerns the linear regression model. At first, the order of the polynomial was fixed at two, as it appeared to be the
most common choice in literature. Yet, this is rather subjective and not based on the underlying data. We therefore thought of it as a
hyperparameter so that it can be tuned by the Bayesian optimization algorithm.

113



114 D. Tuning the Meta-models’ Hyperparameters

Table D.1: Overview of the surrogate model hyperparameters [75].

Model Parameter Description Search space‡

LR Degree Degree of the polynomial function {1,2,3,4}

α
Strength of the L1 regularization
penalty

{h ∈R|0 ≤ h ≤ 10}

GP α

Level of noise, which is imple-
mented by means of an L2 regular-
ization penalty

{h ∈R|0 < h ≤ 1}

l
Length scale of the Matern kernel
function

{h ∈R|1e−5 ≤ h ≤ 1e5}

ν
Smoothness of the Matern kernel
function

{0.5,1.5,2.5,∞}

RF Splitting criterion
Error function used to find the best
possible splits

{squared,absolute}

Number of trees
Number of individual regression
trees that make up the parallel en-
semble

{h ∈N|2 ≤ h ≤ 1000}

Required data points at a split∗
Fewest number of data points
needed before a regression tree’s
node may be split

{h ∈R|0.001 ≤ h ≤ 0.5}

Required data points at a leaf∗
Fewest number of data points al-
lowed at the leaves of the regres-
sion trees

{h ∈R|0.001 ≤ h ≤ 0.5}

Considered features for a split†
Number of input parameters taken
into account when searching for
new splits

{h ∈R|0.1 ≤ h ≤ 1}

Bootstrap sample size∗
Size of the bootstrap samples to
fit the individual regression trees
upon (i.e., with replacement)

{h ∈R|0.01 ≤ h ≤ 1}

GB Loss function
Error function that should be min-
imized by adding new trees

{squared,absolute}

Learning rate
Shrinkage factor of the influence of
newly added regression trees

{h ∈R|0.01 ≤ h ≤ 1}

Number of trees
Number of individual regression
trees that make up the sequential
ensemble

{h ∈N|2 ≤ h ≤ 1000}

Required data points at a split∗
Fewest number of data points
needed before a regression tree’s
node may be split

{h ∈R|0.001 ≤ h ≤ 0.5}

Required data points at a leaf∗
Fewest number of data points al-
lowed at the leaves of the regres-
sion trees

{h ∈R|0.001 ≤ h ≤ 0.5}

Considered features for a split†
Number of input parameters taken
into account when searching for
new splits

{h ∈R|0.1 ≤ h ≤ 1}

Subsample size∗
Size of the subsamples to fit the in-
dividual regression trees upon (i.e.,
without replacement)

{h ∈R|0.25 ≤ h ≤ 0.75}

∗Expressed as a fraction of the training sample
†Expressed as a fraction of the total number of features
‡In the set-builder notation, h represents a particular hyperparameter



D.1. Considered Model Parameters 115

plemented in several ways, for LR one typically adds a weighted L1 or L2 norm of the regression coefficients
to the objective function. As a result, the model prefers a simpler solution. The weight of this norm is de-
termined by hyperparameter α, where the strength of the regularization increases with a higher value. The
parameter cannot be negative for obvious reasons and the upper bound of its search space is 10. This should
be more than enough for the BO algorithm to find a suitable setting. Furthermore, note that we opted for the
L1 norm. The main reason is for its ability to yield sparse solutions [34]. A higher order polynomial leads to
many terms, most of which are probably irrelevant to estimating the response. LASSO can easily cope with
this by setting the coefficients of these terms to zero. In summary, the LR model consists of two hyperpa-
rameters: one to control the degree of the polynomial function and one to limit its complexity. The Bayesian
optimizer is expected to strike a good balance between the two, taking into account the nature of the data.

The second model is Gaussian process (GP) regression. The architecture is known for being rather versa-
tile. On the one hand, this is beneficial because users can tailor the model to their specific problem. On the
other hand, such flexibility also entails a certain degree of complexity. With that in mind, the philosophy was
to give the BO algorithm as much freedom as possible, but without making it too difficult. This approach is
justified as various responses are considered in the current research, each of which may have different charac-
teristics. Indeed, there is no one-size-fits-all and making prior assumptions (e.g., about the kernel function)
can affect the ultimate performance of a surrogate if they turn out to be invalid. The first hyperparameter
in Table D.1 is α, which incorporates the level of noise in the response. Note that most of variability in the
outcome of AATOM is eliminated because of the stabilization efforts in Appendix B. Nonetheless, allowing
some margin remains a good idea in case of imperfections and it also increases the robustness of the model
by avoiding numerical problems. According to Pedregosa et al. [75], the tolerance for noise is implemented
by means of L2 regularization, which avoids the covariance matrix to be ill-conditioned. Therefore, we in-
clude α during the optimization process with a strictly positive search space less than or equal to one. Apart
from noise, subsection 3.3.2 of the Literature Study in Part II explained that GPs rely heavily on covariance
functions to model a response. Several kernels were mentioned, of which the squared exponential is most
commonly used in existing literature. Notwithstanding, this choice should really depend on a response and
its underlying relationship with the features. A more flexible approach is therefore preferable, so that the
Bayesian optimizer can try out different settings. In that regard, a better alternative is to adopt the Matérn
kernel as it is more generic. Namely, the smoothness of the covariance function can be modified with a hy-
perparameter ν. The effect is visualized by a simple sensitivity analysis in Figure D.1a and shows that the
smoothness increases with higher values of the parameter [77]. The Matérn kernel is particularly interesting
because it is identical to the absolute exponential for a ν of 0.5 and approaches the squared exponential when
ν becomes infinity. In between, the values of 1.5 and 2.5 are also relevant for reasons related to the differentia-
bility [75]. With that information, we select the generic Matérn kernel and rely on the BO algorithm for tuning
ν. Lastly, there is the length scale parameter l , the effect of which is shown in Figure D.1b. One can easily ob-
serve that larger values result in the covariance function being higher at a particular distance between two
arbitrary data points x and x ′. In other words, the responses at the two data points are longer deemed to
behave similar. The length scale is in fact also a hyperparameter, although it is not tuned by the Bayesian
optimization algorithm. That is because the GP regression model optimizes the parameter itself by means of

0 1 2 3 4 5
Distance between two datapoints x and x′ [-]

0.0

0.2

0.4

0.6

0.8

1.0

Co
va

ria
nc

e 
fu

nc
tio

n 
k(

x,
x′

) [
-] : 0.5

: 1.5
: 2.5
: 

(a) The effect of varying ν with a constant l of 1.

0 1 2 3 4 5
Distance between two datapoints x and x′ [-]

0.0

0.2

0.4

0.6

0.8

1.0

Co
va

ria
nc

e 
fu

nc
tio

n 
k(

x,
x′

) [
-]

l: 0.01
l: 0.1
l: 1
l: 10

(b) The effect of varying l with a constant ν of 1.5.

Figure D.1: Tuning the Matérn kernel function [inspired by visualizations from 77].



116 D. Tuning the Meta-models’ Hyperparameters

the marginal likelihood during the training process [75, 77]. Hence, there is no need to consider it again. The
search space is between 1e−5 and 100,000, which is the default setting in the scikit-learn package.

The next machine learning algorithm is the random forest (RF) — one of the two selected tree-based en-
sembles. Clearly, it consists of quite a few hyperparameters that allow users to build the ensemble according
to their needs. The first one is the splitting criterion. In essence, this is an error function which determines
how the individual regression trees should be split. The main principles behind it are explained in subsec-
tion 3.3.5 of the Literature Study in Part II. The default is to use the sum of squared prediction errors, although
scikit-learn provides other options as well, such as minimizing the absolute error [75]. While the latter has a
higher computational burden, the former may be affected by outliers due to the square. Hence, it is not just a
design choice; the characteristics of the data also play a role. We therefore consider the criterion as a hyper-
parameter so that the BO algorithm can determine the best alternative. The second parameter is to decide
on the size of the forest. This is controlled by the number of regression trees, a higher value of which results
in a larger ensemble. The aforementioned subsection 3.3.5 explained that the outcome of the algorithm is es-
sentially the average of its constituent trees. Consequently, the variance reduces with a larger forest, which in
turn should improve performance [38]. Notwithstanding, the improvements usually stabilizes from a certain
size onward, depending on the data. Increasing the number of trees beyond that point just makes it more
computationally intensive and should be avoided. The search space is therefore limited between 2 and 1,000.
The algorithm needs at least two trees to be an ensemble, while the upper bound should be well above the for-
est size where maximum performance is achieved. Next, there are also hyperparameters that influence how
trees are to be grown. They can be fully expanded until it is no longer possible to split the nodes, although
this is generally not a good idea as it degrades the generalization power of the algorithm. Therefore, it is quite
common to prune or regularize regression trees, especially when overfitting is likely. One can achieve this by
limiting the depth of the trees or by setting a maximum number of nodes, as well as requiring a minimum
number of training data points at either the internal or leaf nodes [75]. The effect of these parameters is more
or less comparable, even though they control the ensemble differently. We chose to optimize the latter two
without restricting the former two, because they allow to define the search space as a function of the data.
Namely, the required number of data points is expressed relative to the sample size of the training set. They
can both range from 0.1% to 50%, which is broad enough for the Bayesian optimizer to experiment with dif-
ferent settings. Higher values lead to more regularization. Recall that meta-modeling inherently suffers from
overfitting, so it may be necessary to reduce the complexity in the regression trees to ensure a satisfactory out-
of-sample performance. Lastly, there are two hyperparameters that affect the randomness in the ensemble.
On the one hand, the number of considered features determines how many input parameters are selected
from the feature space when searching for a new split. The number is a constant during the training phase,
but keep in mind that the selection itself is redone for each split. This is to prevent the ensemble from choos-
ing the same features again and again, which fosters heterogeneity among the trees [34]. The hyperparameter
is expressed as a faction of the input dimensionality and is bounded between 10% and 100%. Consequently,
the tuning algorithm has complete freedom as there are only 10 features in total. On the other hand, the ran-
domness can also be controlled by tuning the size of the bootstrap samples. The background on bootstrap
aggregation is again explained in subsection 3.3.5, but in short, the subsamples for training the constituent
regression trees are generated by selecting an arbitrary number of data points from the total training set. Note
that this happens with replacement, so a data point may be selected multiple times [38]. The bootstrap sam-
ple size thus determines how large the subsamples should be. It is also expressed as a fraction of the training
set and the search space has a wide range between 1% and 100%. Logically, the degree of randomness in-
creases with smaller bootstrap samples. Knowing that we can influence the randomness, one may wonder
why this would be beneficial in the first place. Remember that the ensemble’s key principle is to use the av-
erage of numerous regression trees so that the variance diminishes. For that to be successful, it is crucial that
the individual trees are sufficiently diverse. If this were not the case, there would be a considerable amount of
correlation among the trees, hindering the ensemble’s benefits. Hence, a degree of randomness is desirable
to restrain the correlation [38]. The extent to which this should be stimulated depends on the data and is
therefore tuned by the optimization algorithm.

The other tree-based ensemble is gradient boosting regression (GB); the fourth and last architecture un-
der consideration for meta-modeling. The overview in Table D.1 shows that many of the hyperparameters
of GB are in fact the same as those of RF. This may not be surprising, although there are some subtle differ-
ences nonetheless. The loss function comes first and is actually one of the more important ones. Namely,
subsection 3.3.5 of the Literature Study in Part II explained that the boosting algorithm combines numerous
regression trees in a sequential manner. Starting from an initial prediction, new trees are fitted onto the errors



D.2. Results of the Optimization 117

made by the previous one. The way these residuals are calculated is determined by a loss function2. We con-
sider two possibilities: the squared and the absolute loss. From the theory in Hastie et al. [38], it follows that
the former is more sensitive to outliers. This may or may not improve performance and depends on the data.
Therefore, the function is selected by the tuning algorithm. The second hyperparameter is the learning rate,
which controls the influence of newly added trees. After a tree is fitted onto the residuals of its predecessor, it
is added to the sequence of the ensemble. However, it is wise to scale its impact first, as otherwise the model
would overfit rather easily [34]. So in a sense, the parameter determines how quickly the machine learning
model learns from its own mistakes, hence the name. It is implemented as a shrinkage factor and should be
between zero and one. We have chosen to raise the lower bound slightly to 0.01, because this makes more
sense from a practical point of view — the contribution of new trees would erode with values almost equal to
zero and hinder the overall learning process. Of course, the ideal shrinkage also depends on the size of the
sequence, as these two interact with one another. This is managed by the number of trees, whose principle
and search space are similar to RFs. The only difference is that the regression trees are now boosted instead
of bagged, but that has been clearly explained in subsection 3.3.5. Furthermore, note that the following three
hyperparameters and their search spaces are also similar to those of random forests: the required data points
at a split and at a leaf, and the considered number of input parameters at a split. We do not further elaborate
on them here, as they have been extensively discussed in the previous paragraph. Lastly, there remains the
subsample size. This parameter determines the number of data points sampled to train each of the individ-
ual regression trees. So in a sense, one can compare it to the bootstraps samples of the random forest. Their
purpose is the same, which is to reduce the model’s variance by introducing a degree of randomness, though
there is one key difference. Namely, the subsamples are generated without replacement [38]. This means that
a particular data point will never be in the same subsample twice or more. The parameter is usually set to
50%, but the Bayesian optimizer is allowed to select a value between 25% and 75%. Indeed, the ideal setting
depends on the data. To be precise, we are thus actually performing stochastic gradient boosting [38].

There are two final notes to conclude this section. Firstly, from the explanations is clear that some of the
hyperparameters interact with one another. Consequently, they should be tuned altogether, as otherwise it
may lead to sub-optimal solutions. Bayesian optimization handles this quite naturally since the algorithm
searches for the global optimum in the entire hyperparameter space of a model [42]. Interactions are there-
fore automatically taken into consideration. Secondly, it was previously mentioned that the selection in Ta-
ble D.1 was arrived at after several iterations under a trial-and-error strategy. The other parameters are left at
their default values from Pedregosa et al. [75] in the scikit-learn package. However, this does not imply that
they have not been experimented with. During the iterations, it just became clear that a better performance
was achieved by optimizing the tabulated parameters.

D.2. Results of the Optimization
Since it is now clear which hyperparameters ought to be optimized, the next step is to prepare the Bayesian
optimization algorithm. The high-level principle has been explained in section 3.4 of the Literature Study in
Part II. Briefly, however, a meta-model3 is fitted onto a prediction error metric of the machine learning model
as a function of its hyperparameters. Then, an acquisition function proposes new parameters to try, so that
after some iterations the combination is found that yields the highest accuracy. It will not be surprising that
the algorithm itself comes with some flexibility. Hutter et al. [43] mention two important design choices: the
meta-model architecture and an acquisition function. The former must be probabilistic, as this provides the
basis for the latter to evaluate new candidate parameters. Hence, it follows that Gaussian process regres-
sion is the traditional alternative, because of its natural way of expressing uncertainty. Another option would
be to use random forests, although these are better with higher dimensional and non-numeric parameter
spaces [43]. We opt for the traditional choice, as the machine learning models in Table D.1 do not have an
excessive dimensionality, while the vast majority of hyperparameters are numerical. Secondly, one should
decide on the acquisition function. Archetti and Candelieri [8] discuss three common possibilities, being the
probability of improvement, the expected improvement, and the lower confidence bound. The first is one of
the oldest and prefers exploitation over exploration. It does not really incorporate the extent of the improve-
ment, which is why scholars came up with the second option — the most popular alternative up to date [43].
However, the expected improvement still favors exploitation. A better balance can be achieved with the third

2More precisely, the trees are actually trained on the loss function’s negative gradients from the perspective of the latest prediction [38].
3Do not confuse it with the surrogates from Table D.1. This meta-model is a part of the BO algorithm to tune the hyperparameters of

those from the table, which are used to mimic the responses of AATOM. To avoid ambiguity in the current section, we will refer to the
surrogate models from the table as machine learning models.



118 D. Tuning the Meta-models’ Hyperparameters

function, despite it actually starts to bias exploration [8]. All three of the acquisition functions thus have their
advantages and disadvantages. The creators of scikit-optimize, a popular Python implementation for tuning
hyperparameters using Bayesian optimization, cleverly solved this by enabling the user to consider them al-
together [39]. Namely, at every iteration, one of the three acquisition functions is chosen in a probabilistic
manner. That way, there is no need to rely on only one of the alternatives. It is also the package’s default set-
ting, from which we do not intend to deviate. Furthermore, recall that the error metric to fit the meta-model
on was previously set to the coefficient of determination, as argued in section 3.5 of the Literature Study in
Part II. The prediction error is evaluated on the independent validation set, the sole purpose of which was
to optimize the hyperparameters (see the methodology in section 3 of the Scientific Paper in Part I). Finally,
there remains the number of iterations that must be performed. In principle, the sequential optimization
algorithm continues until the coefficient of determination of the machine learning model does not improve
further. It is thus rather difficult to decide on this in advance. Moreover, it can also differ per response and
model. We therefore start with an estimate of 50 randomly selected parameter combinations for the initial
set, after which 200 additional iterations are performed by the Bayesian optimizer. In the next paragraph will
be determined whether or not that is sufficient.

The optimization process can be easily monitored by creating convergence plots. They are presented in
Figure D.2, for each of the nine responses. In essence, the graphs show how the performance of machine
learning models improves over a number of iterations. Note that all four architectures are combined in one

0 50 100 150 200 250
Number of iterations [#]

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Ne
ga

tiv
e 

R2
 sc

or
e 

[-]

GB
RF
GP
LR

(a) Total expenditure.

0 50 100 150 200 250
Number of iterations [#]

0.9

0.8

0.7

0.6

0.5

Ne
ga

tiv
e 

R2
 sc

or
e 

[-]

GB
RF
GP
LR

(b) Average queue time at check-in.

0 50 100 150 200 250
Number of iterations [#]

0.8

0.6

0.4

0.2

0.0

Ne
ga

tiv
e 

R2
 sc

or
e 

[-]

GB
RF
GP
LR

(c) Average queue time at security.

0 50 100 150 200 250
Number of iterations [#]

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Ne
ga

tiv
e 

R2
 sc

or
e 

[-]

GB
RF
GP
LR

(d) Average time needed to reach the gate.

0 50 100 150 200 250
Number of iterations [#]

1.0

0.8

0.6

0.4

0.2

0.0

Ne
ga

tiv
e 

R2
 sc

or
e 

[-]

GB
RF
GP
LR

(e) Maximum queue size at check-in.

0 50 100 150 200 250
Number of iterations [#]

0.8

0.6

0.4

0.2

0.0

0.2

Ne
ga

tiv
e 

R2
 sc

or
e 

[-]

GB
RF
GP
LR

(f) Maximum queue size at security.

0 50 100 150 200 250
Number of iterations [#]

0.5

0.0

0.5

1.0

Ne
ga

tiv
e 

R2
 sc

or
e 

[-]

GB
RF
GP
LR

(g) Number of missed flights.

0 50 100 150 200 250
Number of iterations [#]

1.0

0.8

0.6

0.4

0.2

0.0

0.2

Ne
ga

tiv
e 

R2
 sc

or
e 

[-]

GB
RF
GP
LR

(h) Throughput at check-in.

0 50 100 150 200 250
Number of iterations [#]

0.8

0.6

0.4

0.2

0.0

Ne
ga

tiv
e 

R2
 sc

or
e 

[-]

GB
RF
GP
LR

(i) Throughput at security.

Figure D.2: Convergence plots of the hyperparameter tuning process towards the global optimum.



D.2. Results of the Optimization 119

plot per response. The coefficient of determination is on the vertical axis. It is the negative score, as the
implementation in scikit-optimize requires a minimization problem [39]. Consequently, accuracy increases
with a lower value for the negative R2. Sometimes it happens that the indicator is positive in the beginning
of the optimization. That is, the coefficient of determination is actually negative. This is correct and does not
indicate an issue with the underlying computation, but it means that the machine learning model is severely
underperforming [75]. On the horizontal axis, there are the number of iterations. The first 50 are the ran-
domly selected hyperparameter values for the initial set, followed by 200 iterations of the Bayesian optimizer.
That makes a total of 250. Each trial shows the score corresponding to the best parameter combination of
the attempts so far. Thus, the convergence graphs either decrease or remain constant; they never rise. From
the plots is clear that the biggest improvements are realized in the beginning. However, this is not surprising,
since hyperparameters are arbitrarily chosen from the search space at that time. Hence, it is likely that one
of these trials turns out to be rather decent, which explains why there can be a sudden gain in accuracy at
some point before 50 iterations. The Bayesian optimization algorithm takes over after that, which results in
many smaller decrements. Step by step, it searches for the global optimum. Whether it actually manages
to do so is hard to say, although it is evident that the curves stagnate near the end. This suggests that most
of the advancements in model performance are realized. Therefore, we conclude that 50 initial random se-
lections and 200 subsequent Bayesian updates are sufficient. Any minor improvements after that would not
outweigh the additional computational requirements. Finally, it is worth noting that random forests seem to
be underperforming almost consistently: the discrepancy to the other models is oftentimes rather large. This
may be somewhat surprising, although it is in line with what was previously discovered in section C.3. GB,
GP and LR convergence towards more or less comparable scores, except for the number of missed flights and
the throughput at both check-in and security. Respectively, the higher-order polynomial and twice the gradi-
ent boosting algorithm turn out to be exceptionally better than the others in those cases. Nonetheless, keep
in mind that the optimization results in Figure D.2 are evaluated on the validation and not on the test set.
Hence, these insights can be misleading regarding the actual performance of the machine learning models.
We do not elaborate on that here, as this is discussed in section 5 of the Scientific Paper in Part I.

After 250 iterations, the machine learning models are considered to be optimal. These are the thus the
four models for each response that deliver the best possible performance. The next step is then to select only
one of the four architectures per response. Of course, that is the model which can most accurately mimic the
response in question. Further details behind the selection are discussed in section 5 of the Scientific Paper
in Part I. Notwithstanding, one might be interested in the ultimate hyperparameter combinations to which
the Bayesian optimization algorithm has converged. The result is presented in Table D.2 — only the com-
binations of the selected machine learning models are included for the sake of the report. A higher-order
polynomial is chosen for the first seven responses. Most of them have a degree of three, except for the total
expenditure and the average waiting time at security, for which four was found to be better. Also, they all
seem to benefit from regularization. The vast majority of their regression coefficients are zero because of the
selected values for α. The two responses with a fourth-order polynomial have only 148 and 307 non-zero
terms against a total of 91,389 coefficients, while the others have respectively 136, 212, 112, 142, and 184
non-zero terms against a total of 9,138. It is thus clear that the resulting polynomials are sparse: the final
number of non-zero terms does not explode, despite having rather high degrees. In other words, the mod-
els reap the benefits from adding higher-order complexity without experiencing too many of the associated
drawbacks. Unnecessary terms are marginalized by regularization, which in this case can actually be seen
as a form of feature (and feature interaction) selection. Finding the right balance between the degree and α

is not a straightforward task, but the Bayesian optimization algorithm seems to handle it well. In fact, this
approach turns out to be quite powerful for meta-modeling AATOM’s responses, as it was chosen seven times
out of nine. For the remaining two responses, the throughput at check-in and security, gradient boosting
was the preferred machine learning architecture. The squared loss function appears to be the best option
for both cases, along with fairly low learning rates and a large number of trees. So the influence of new trees
in the sequence is limited, although many are added to compensate for that. Furthermore, the throughput
at check-in requires at least 14.2% of the training sample before splitting a node, but otherwise there are not
many requirements regarding a number of data points at internal nodes or leaves. They are all very close to or
at the lower bound of their search space, which essentially means that the trees are not constrained by these
hyperparameters. Hence, at first glance it seems that trees are allowed to be fully grown. This may be some-
what surprising, as it severely deteriorates the performance of gradient boosting regression in general [38].
However, there is an important caveat one should not forget. Previous section D.1 stated that Table D.1 only
contains the considered parameters for the optimization, which is the result of numerous iterations under a



120 D. Tuning the Meta-models’ Hyperparameters

trial-and-error strategy. The other hyperparameters were left untouched. Unlike random forests, scikit-learn
limits the maximum tree depth of gradient boosting to three by default [75]. The results in Table D.2 suggest
that this setting is the main constraint on tree growth, and thus not the required number of data points. A
logical follow-up question is whether the performance would improve if the maximum tree depth were in-
creased or even considered during the hyperparameter optimization. The experiments showed that this was
not the case. In fact, the accuracy of the machine learning model mostly declined, which is why we decided
to leave the maximum tree depth at its default setting. This choice makes sense, as Hastie et al. [38] argue that
boosted tree ensembles are usually not very sensitive to depths between three and seven, with values above
five rarely improving the accuracy. Note that as a consequence, the algorithm incorporates features interac-
tions up to the third order. Finally, there are the two hyperparameters to control the ensemble’s stochasticity.
Both responses prefer a rather high number of features to consider for making splits, while the subsample
size is close to or at the lower bound of the search space. At 69.1% and 96.9% respectively, these numbers
are likely inflated by the encoding of the airport’s staffing strategies. Recall that these are categorical, so more
features are required to have enough information on the system (see section 4 of the Scientific Paper in Part I).
It seems that the Bayesian optimizer compensated for this by selecting a smaller subsample size. That way,
sufficient randomness in the ensemble is still guaranteed, leading to the best possible performance for mim-
icking AATOM’s throughput at check-in and security. The models and associated settings in Table D.2 are
those that are ultimately used in the system analysis of the airport terminal.

Table D.2: Selected surrogate model hyperparameter values per response.

Response (selected model) Hyperparameter Optimal value

Total expenditure (LR) Degree 4

α 0.494

Average queue time at check-in (LR) Degree 3

α 0.096

Average queue time at security (LR) Degree 4

α 0.217

Average time needed to reach the gate (LR) Degree 3

α 0.224

Maximum queue size at check-in (LR) Degree 3

α 0.005

Maximum queue size at security (LR) Degree 3

α 0.079

Number of missed flights (LR) Degree 3

α 0.013

Throughput at check-in (GB) Loss function Squared

Learning rate 0.045

Number of trees 990

Required data points at a split 0.142

Required data points at a leaf 0.006

Considered features for a split 0.691

Subsample size 0.257

Throughput at security (GB) Loss function Squared

Learning rate 0.017

Number of trees 1000

Required data points at a split 0.001

Required data points at a leaf 0.001

Considered features for a split 0.969

Subsample size 0.250



E
Annex to the Description of the

Agent-based Model

Figure E.1: Architectural layout of agents in AATOM [48]. In essence, they operate as follows: observations are perceived and interpreted,
allowing agents to reason so that their activities can be set. This eventually leads to the actuation of specific actions.

121



122 E. Annex to the Description of the Agent-based Model

Table E.1: A typical flight schedule at RTHA in the fall of 2019. While technically based on assumptions, it resembles the morning rush
hour at the airport, which is considered a busy period in the terminal. We take into account 7 flights from 3 airlines to both Schengen and
Non-Schengen destinations. The check-in counters are in accordance with the terminal layout in Figure 2 of the Scientific Paper; it goes
from the first on the left to the 16th on the right. Furthermore, the number of passengers correspond to usual aircraft types at RTHA, with
a flight being canceled if the occupancy is less than 50% of its total capacity. Finally, note that the simulation time in AATOM matches
with the time slots. A simulation starts 3 hours before the first flight and ends when the last flight departs.

Nr. Slot (UTC) Simulation time (s) Airline Destination Gate Check-in Passengers

(1) 04:55 9000 A Schengen 6 9–12 [75,149]

(2) 04:55 9000 B Schengen 1 1–4 [75,149]

(3) 05:00 9300 B Non-Schengen 7 13–16 [75,149]

(4) 05:05 9600 C Non-Schengen 9 13–16 [49,98]

(5) 05:10 9900 B Schengen 4 5–8 [75,149]

(6) 05:30 11100 B Schengen 2 1–4 [75,149]

(7) 05:45 12000 B Schengen 5 5–8 [75,149]

Table E.2: Presumed check-in staffing strategies at RTHA. The table shows 9 possibilities of how many desks are available. This number
can change over time, which is expressed in seconds prior to the departure of a flight. Note that passengers can only check-in between 2
hours and 45 minutes before take-off. All flights of the schedule assume the same strategy over a certain simulated time frame.

Available check-in counters as a function of time before departure of a flight

Strategy >7200 7200–6300 6300–5400 5400–4500 4500–3600 3600–2700 <2700

(1) 0 1 1 1 1 1 0

(2) 0 2 2 2 2 2 0

(3) 0 1 2 2 2 1 0

(4) 0 1 1 2 2 1 0

(5) 0 1 2 2 1 1 0

(6) 0 1 2 2 2 2 0

(7) 0 1 1 2 2 2 0

(8) 0 2 2 2 1 1 0

(9) 0 2 2 2 2 1 0



123

Table E.3: Presumed security checkpoint staffing strategies at RTHA. The table shows 16 possibilities of how many lanes are available.
This number can change over time, which is expressed in seconds over the simulation time. There is always at least 1 lane staffed,
although between 30 minutes and 2 hours the minimum increases to first 2 and then 4 lanes. The reason for this is to ensure a minimum
available throughout, because otherwise the terminal may become so crowded that it no longer resembles reality.

Available lanes at security as a function of the overall simulation time

Strategy <1800 1800–3600 3600–5400 5400–7200 7200–9000 9000–10800 >10800

(1) 1 2 4 4 1 1 1

(2) 1 2 4 4 3 2 1

(3) 1 2 4 4 4 3 2

(4) 1 2 4 4 4 4 4

(5) 1 3 4 4 1 1 1

(6) 1 3 4 4 3 2 1

(7) 1 3 4 4 4 3 2

(8) 1 3 4 4 4 4 4

(9) 2 4 4 4 1 1 1

(10) 2 4 4 4 3 2 1

(11) 2 4 4 4 4 3 2

(12) 2 4 4 4 4 4 4

(13) 4 4 4 4 1 1 1

(14) 4 4 4 4 3 2 1

(15) 4 4 4 4 4 3 2

(16) 4 4 4 4 4 4 4





F
Annex to the Results

F.1. Surrogate Model Performance

500 600 700 800
Actual response [#]

500

550

600

650

700

750

800

850

Pr
ed

ict
ed

 re
sp

on
se

 [#
]

Ideal fit

(a) Throughput at security.

800 1000 1200 1400 1600 1800
Actual response [s]

800

1000

1200

1400

1600

1800

Pr
ed

ict
ed

 re
sp

on
se

 [s
]

Ideal fit

(b) Average time needed to reach the gate.

300 350 400
Actual response [#]

275

300

325

350

375

400

425

Pr
ed

ict
ed

 re
sp

on
se

 [#
]

Ideal fit

(c) Throughput at check-in.

200 400 600 800 1000 1200
Actual response [s]

200

400

600

800

1000

1200

Pr
ed

ict
ed

 re
sp

on
se

 [s
]

Ideal fit

(d) Average queue time at security.

0 20 40 60 80
Actual response [#]

0

20

40

60

80

Pr
ed

ict
ed

 re
sp

on
se

 [#
]

Ideal fit

(e) Number of missed flights.

800 1000 1200 1400 1600 1800
Actual response [ ]

800

1000

1200

1400

1600

1800

Pr
ed

ict
ed

 re
sp

on
se

 [
]

Ideal fit

(f) Total expenditure.

200 300 400 500
Actual response [s]

200

300

400

500

Pr
ed

ict
ed

 re
sp

on
se

 [s
]

Ideal fit

(g) Average queue time at check-in.

50 100 150 200
Actual response [#]

25

50

75

100

125

150

175

200

225

Pr
ed

ict
ed

 re
sp

on
se

 [#
]

Ideal fit

(h) Maximum queue size at security.

8 10 12 14 16 18
Actual response [#]

8

10

12

14

16

18

Pr
ed

ict
ed

 re
sp

on
se

 [#
]

Ideal fit

(i) Maximum queue size at check-in.

Figure F.1: Predicted versus actual response values of the best performing surrogate models.

125



126 F. Annex to the Results

F.2. Analysis of the Total Expenditure on Discretionary Activities

80 100 120 140
Number of pax on flight 1 [#]

50

60

70

80

90

Nu
m

be
r o

f p
ax

 o
n 

fli
gh

t 4
 [#

]

1254.82

1269.23

1283.63

1298.04

1312.44

1326.85

Figure F.2: Marginal effect of flights 1 and 4 on the total expenditure.

400 200 0 200 400
Shapley value [ ]

cat__SCstrategy_10
cat__SCstrategy_9
cat__CIstrategy_6

cat__SCstrategy_3
cat__SCstrategy_12

cat__CIstrategy_8
cat__SCstrategy_5
cat__CIstrategy_2
cat__CIstrategy_1

cat__SCstrategy_4
cat__SCstrategy_2

num__pax2
num__pax1
num__pax3
num__pax4
num__pax7
num__pax5
num__pax6

cat__SCstrategy_1
num__CTGstrategy

Low

High

Fe
at

ur
e 

va
lu

e

Figure F.3: Bee swarm summary plot of the total expenditure. It shows at one glance to what extent and how the surrogate model is
influenced by its individual input parameters. From top to bottom, we have the most influential parameter to the least, but only the
foremost 20 are plotted. From left to right, Shapley values are displayed as a function of a feature’s value. They should be interpreted as
the impact on a model’s output and are expressed in the same unit as the response. Finally, note that categorical parameters have been
one-hot encoded. Their name starts with ’cat’ and ends with the respective category, while numerical ones just start with ’num’.



F.3. Analysis of the Saturation at Security 127

1 3 5 7 9 11 13 15
Security check strategy [-]

0

200

400

600

800

1000

1200

1400

Pa
rti

al
 d

ep
en

de
nc

e 
[

]

Figure F.4: Marginal effect of the security check strategy on the total expenditure.

F.3. Analysis of the Saturation at Security

40 20 0 20
Shapley value [#]

cat__CIstrategy_1
cat__CIstrategy_2

cat__SCstrategy_8
cat__CIstrategy_9

cat__CIstrategy_11
cat__CIstrategy_3

cat__SCstrategy_9
cat__SCstrategy_13
cat__SCstrategy_4
cat__CIstrategy_5

num__CTGstrategy
cat__SCstrategy_5

num__pax4
cat__SCstrategy_1

num__pax7
num__pax2
num__pax5
num__pax1
num__pax3
num__pax6

Low

High

Fe
at

ur
e 

va
lu

e

Figure F.5: Bee swarm summary plot of the throughput at security. The interpretation is the same as in Figure F.3.

80 100 120 140
Number of pax on flight 2 [#]

600

650

700

750

800

Pa
rti

al
 d

ep
en

de
nc

e 
[#

]

Average

(a) Marginal effect of flight 2.

80 100 120 140
Number of pax on flight 6 [#]

600

650

700

750

800

Pa
rti

al
 d

ep
en

de
nc

e 
[#

]

Average

(b) Marginal effect of flight 6.

Figure F.6: One-dimensional partial dependence plot of the throughput at security.



128 F. Annex to the Results

1 3 5 7 9 11 13 15
Security check strategy [-]

0

100

200

300

400

500

600

700

Pa
rti

al
 d

ep
en

de
nc

e 
[#

]

(a) Throughput at security.

1 3 5 7 9 11 13 15
Security check strategy [-]

0

200

400

600

800

1000

Pa
rti

al
 d

ep
en

de
nc

e 
[s

]
(b) Average queuing time at security.

1 3 5 7 9 11 13 15
Security check strategy [-]

0

10

20

30

40

50

Pa
rti

al
 d

ep
en

de
nc

e 
[#

]

(c) Number of missed flights.

Figure F.7: Marginal effect of the security check strategy.

100 0 100 200 300 400
Shapley value [s]

cat__CIstrategy_10
cat__SCstrategy_16

cat__CIstrategy_5
cat__SCstrategy_9

cat__SCstrategy_13
cat__SCstrategy_3
cat__CIstrategy_1

cat__SCstrategy_15
cat__SCstrategy_12
cat__SCstrategy_2
cat__SCstrategy_4
cat__SCstrategy_5

num__pax7
num__pax6
num__pax4
num__pax5
num__pax1
num__pax2
num__pax3

cat__SCstrategy_1

Low

High

Fe
at

ur
e 

va
lu

e

Figure F.8: Bee swarm summary plot of the average waiting time at security. The interpretation is the same as in Figure F.3.



F.3. Analysis of the Saturation at Security 129

10 0 10 20 30 40 50
Shapley value [#]

cat__CIstrategy_2
cat__CIstrategy_1

cat__SCstrategy_4
cat__CIstrategy_8

cat__CIstrategy_10
cat__SCstrategy_2
cat__CIstrategy_3
cat__CIstrategy_6

num__CTGstrategy
cat__SCstrategy_9

cat__SCstrategy_13
num__pax4
num__pax6
num__pax1
num__pax3
num__pax7
num__pax5

cat__SCstrategy_5
num__pax2

cat__SCstrategy_1

Low

High

Fe
at

ur
e 

va
lu

e

Figure F.9: Bee swarm summary plot of the number of missed flights. The interpretation is the same as in Figure F.3.





Bibliography

[1] Ludovica Adacher, Marta Flamini, Manuele Guaita, and Elpidio Romano. A model to optimize the
airport terminal departure operations. Transportation Research Procedia, 27:53–60, 2017. ISSN
23521465. doi: 10.1016/j.trpro.2017.12.151. URL https://linkinghub.elsevier.com/retrieve/
pii/S2352146517310487.

[2] Hussain Alibrahim and Simone A. Ludwig. Hyperparameter Optimization: Comparing Genetic Al-
gorithm against Grid Search and Bayesian Optimization. In 2021 IEEE Congress on Evolutionary
Computation (CEC), pages 1551–1559, Kraków, Poland, June 2021. ISBN 978-1-72818-393-0. doi:
10.1109/CEC45853.2021.9504761. URL https://ieeexplore.ieee.org/document/9504761/.

[3] Reza Alizadeh, Janet K. Allen, and Farrokh Mistree. Managing computational complexity using surro-
gate models: a critical review. Research in Engineering Design, 31(3):275–298, July 2020. ISSN 0934-
9839. doi: 10.1007/s00163-020-00336-7. URL http://link.springer.com/10.1007/s00163-020-
00336-7.

[4] Sultan Alodhaibi, Robert L. Burdett, and Prasad KDV. Yarlagadda. Framework for Airport Out-
bound Passenger Flow Modelling. Procedia Engineering, 174:1100–1109, 2017. ISSN 1877-7058.
doi: 10.1016/j.proeng.2017.01.263. URL https://linkinghub.elsevier.com/retrieve/pii/
S1877705817302631.

[5] Rzvan Andonie. Hyperparameter optimization in learning systems. Journal of Membrane Computing,
1(4):279–291, December 2019. doi: 10.1007/s41965-019-00023-0. URL http://link.springer.com/
10.1007/s41965-019-00023-0.

[6] Giovanni Andreatta, Lorenzo Brunetta, and Luca Righi. Evaluating terminal management perfor-
mances using SLAM: The case of Athens International Airport. Computers & Operations Research, 34(6):
1532–1550, June 2007. ISSN 0305-0548. doi: 10.1016/j.cor.2005.07.024. URL https://linkinghub.
elsevier.com/retrieve/pii/S0305054805002352.

[7] Daniel W. Apley and Jingyu Zhu. Visualizing the Effects of Predictor Variables in Black Box Supervised
Learning Models. arXiv:1612.08468 [stat], August 2019. URL http://arxiv.org/abs/1612.08468.

[8] Francesco Archetti and Antonio Candelieri. Bayesian Optimization and Data Science. SpringerBriefs in
Optimization. Springer International Publishing, Cham, 2019. ISBN 978-3-030-24494-1. doi: 10.1007/
978-3-030-24494-1. URL http://link.springer.com/10.1007/978-3-030-24494-1.

[9] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Al-
berto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila,
and Francisco Herrera. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities
and challenges toward responsible AI. Information Fusion, 58:82–115, June 2020. ISSN 1566-2535.
doi: 10.1016/j.inffus.2019.12.012. URL https://www.sciencedirect.com/science/article/pii/
S1566253519308103.

[10] Vaishak Belle and Ioannis Papantonis. Principles and Practice of Explainable Machine Learning.
Frontiers in Big Data, 4:39, 2021. ISSN 2624-909X. doi: 10.3389/fdata.2021.688969. URL https:
//www.frontiersin.org/article/10.3389/fdata.2021.688969.

[11] Atharv Bhosekar and Marianthi Ierapetritou. Advances in surrogate based modeling, feasibility anal-
ysis, and optimization: A review. Computers & Chemical Engineering, 108:250–267, September 2017.
ISSN 0098-1354. doi: 10.1016/j.compchemeng.2017.09.017. URL https://linkinghub.elsevier.
com/retrieve/pii/S0098135417303228.

131

https://linkinghub.elsevier.com/retrieve/pii/S2352146517310487
https://linkinghub.elsevier.com/retrieve/pii/S2352146517310487
https://ieeexplore.ieee.org/document/9504761/
http://link.springer.com/10.1007/s00163-020-00336-7
http://link.springer.com/10.1007/s00163-020-00336-7
https://linkinghub.elsevier.com/retrieve/pii/S1877705817302631
https://linkinghub.elsevier.com/retrieve/pii/S1877705817302631
http://link.springer.com/10.1007/s41965-019-00023-0
http://link.springer.com/10.1007/s41965-019-00023-0
https://linkinghub.elsevier.com/retrieve/pii/S0305054805002352
https://linkinghub.elsevier.com/retrieve/pii/S0305054805002352
http://arxiv.org/abs/1612.08468
http://link.springer.com/10.1007/978-3-030-24494-1
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://www.frontiersin.org/article/10.3389/fdata.2021.688969
https://www.frontiersin.org/article/10.3389/fdata.2021.688969
https://linkinghub.elsevier.com/retrieve/pii/S0098135417303228
https://linkinghub.elsevier.com/retrieve/pii/S0098135417303228


132 Bibliography

[12] E. Bonabeau. Agent-based modeling: Methods and techniques for simulating human systems. Pro-
ceedings of the National Academy of Sciences, 99(3):7280–7287, May 2002. ISSN 0027-8424. doi:
10.1073/pnas.082080899. URL http://www.pnas.org/cgi/doi/10.1073/pnas.082080899.

[13] Emanuele Borgonovo and Elmar Plischke. Sensitivity analysis: A review of recent advances. European
Journal of Operational Research, 248(3):869–887, February 2016. ISSN 0377-2217. doi: 10.1016/j.ejor.
2015.06.032. URL https://linkinghub.elsevier.com/retrieve/pii/S0377221715005469.

[14] Kai Cheng, Zhenzhou Lu, Chunyan Ling, and Suting Zhou. Surrogate-assisted global sensitivity anal-
ysis: an overview. Structural and Multidisciplinary Optimization, 61(3):1187–1213, March 2020. ISSN
1615-147X. doi: 10.1007/s00158-019-02413-5. URL http://link.springer.com/10.1007/s00158-
019-02413-5.

[15] Ping Nan Chiang and Kevin Taaffe. Analysis of Passenger Flow in Airport Terminal. In 2014 Tenth
International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pages
102–105, August 2014. doi: 10.1109/IIH-MSP.2014.32.

[16] Davide Chicco, Matthijs J. Warrens, and Giuseppe Jurman. The coefficient of determination R-squared
is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ
Computer Science, 7, July 2021. ISSN 2376-5992. doi: 10.7717/peerj-cs.623. URL https://peerj.com/
articles/cs-623.

[17] Andrew T. Crooks and Alison J. Heppenstall. Introduction to Agent-Based Modelling. In Alison J.
Heppenstall, Andrew T. Crooks, Linda M. See, and Michael Batty, editors, Agent-Based Models of Ge-
ographical Systems, pages 85–105. Springer Netherlands, Dordrecht, 2012. ISBN 978-90-481-8926-
7. doi: 10.1007/978-90-481-8927-4_5. URL http://link.springer.com/10.1007/978-90-481-
8927-4_5.

[18] Xiao Cui and Hao Shi. A*-based Pathfinding in Modern Computer Games. International Journal of
Computer Science and Network Security, 11(1):125–130, November 2010. URL http://paper.ijcsns.
org/07_book/201101/20110119.pdf.

[19] D. Curcio, F. Longo, G. Mirabelli, and E. Pappoff. Passengers Flow Analysis And Security Issues In Airport
Terminals Using Modeling & Simulation. In ECMS 2007, pages 374–379. ECMS, June 2007. ISBN 978-0-
9553018-2-7. doi: 10.7148/2007-0374. URL http://www.scs-europe.net/dlib/2007/2007-0374.
htm.

[20] Benyamin De Leeuw. Surrogate Modeling of Agent-based Airport Terminal Operations. Master’s the-
sis, Delft University of Technology, July 2021. URL http://resolver.tudelft.nl/uuid:3bd67e27-
6f86-4761-b899-2022d7b6c4fc.

[21] Richard De Neufville, Amedeo Odoni, Peter Belobaba, and Tom Reynolds. Airport Systems: Planning,
Design, and Management. McGraw-Hill, New York, 2nd edition, 2013. ISBN 978-0-07-177058-3.

[22] F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, and L.E. Meester. A modern introduction to probability
and statistics: understanding why and how. Springer texts in statistics. Springer, London, 2005. ISBN
978-1-85233-896-1.

[23] Mert Edali and Gönenç Yücel. Analysis of an individual-based influenza epidemic model using random
forest metamodels and adaptive sequential sampling. Systems Research and Behavioral Science, 37
(6):936–958, November 2020. ISSN 1092-7026, 1099-1743. doi: 10.1002/sres.2763. URL https://
onlinelibrary.wiley.com/doi/10.1002/sres.2763.

[24] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regres-
sion. The Annals of Statistics, 32(2):407–499, April 2004. ISSN 0090-5364. doi: 10.1214/
009053604000000067. URL http://projecteuclid.org/journals/annals-of-statistics/
volume-32/issue-2/Least-angle-regression/10.1214/009053604000000067.full.

[25] Radwa Elshawi, Mouaz H. Al-Mallah, and Sherif Sakr. On the interpretability of machine learning-based
model for predicting hypertension. BMC Medical Informatics and Decision Making, 19(1):146, Decem-
ber 2019. ISSN 1472-6947. doi: 10.1186/s12911-019-0874-0. URL https://bmcmedinformdecismak.
biomedcentral.com/articles/10.1186/s12911-019-0874-0.

http://www.pnas.org/cgi/doi/10.1073/pnas.082080899
https://linkinghub.elsevier.com/retrieve/pii/S0377221715005469
http://link.springer.com/10.1007/s00158-019-02413-5
http://link.springer.com/10.1007/s00158-019-02413-5
https://peerj.com/articles/cs-623
https://peerj.com/articles/cs-623
http://link.springer.com/10.1007/978-90-481-8927-4_5
http://link.springer.com/10.1007/978-90-481-8927-4_5
http://paper.ijcsns.org/07_book/201101/20110119.pdf
http://paper.ijcsns.org/07_book/201101/20110119.pdf
http://www.scs-europe.net/dlib/2007/2007-0374.htm
http://www.scs-europe.net/dlib/2007/2007-0374.htm
http://resolver.tudelft.nl/uuid:3bd67e27-6f86-4761-b899-2022d7b6c4fc
http://resolver.tudelft.nl/uuid:3bd67e27-6f86-4761-b899-2022d7b6c4fc
https://onlinelibrary.wiley.com/doi/10.1002/sres.2763
https://onlinelibrary.wiley.com/doi/10.1002/sres.2763
http://projecteuclid.org/journals/annals-of-statistics/volume-32/issue-2/Least-angle-regression/10.1214/009053604000000067.full
http://projecteuclid.org/journals/annals-of-statistics/volume-32/issue-2/Least-angle-regression/10.1214/009053604000000067.full
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-0874-0
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-0874-0


Bibliography 133

[26] David S. Fay. A biologist’s guide to statistical thinking and analysis. WormBook, pages 1–54, July 2013.
ISSN 15518507. doi: 10.1895/wormbook.1.159.1. URL http://www.wormbook.org/chapters/www_
statisticalanalysis/statisticalanalysis.html.

[27] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All Models are Wrong, but Many are Useful:
Learning a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously.
Journal of Machine Learning Research, 20(177):1–81, 2019. ISSN 1533-7928. URL http://jmlr.org/
papers/v20/18-760.html.

[28] Alexander I. J. Forrester, András Sóbester, and Andy J. Keane. Engineering Design via Surrogate
Modelling: A Practical Guide. Wiley, 1 edition, July 2008. ISBN 978-0-470-06068-1. URL https:
//onlinelibrary.wiley.com/doi/book/10.1002/9780470770801.

[29] Jerome H. Friedman. Multivariate Adaptive Regression Splines. The Annals of Statis-
tics, 19(1):1–67, March 1991. ISSN 0090-5364, 2168-8966. doi: 10.1214/aos/1176347963.
URL http://projecteuclid.org/journals/annals-of-statistics/volume-19/issue-
1/Multivariate-Adaptive-Regression-Splines/10.1214/aos/1176347963.full.

[30] Jerome H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine. The Annals of
Statistics, 29(5):1189–1232, 2001. ISSN 0090-5364. URL http://www.jstor.org/stable/2699986.
Publisher: Institute of Mathematical Statistics.

[31] Jerome H. Friedman and Bogdan E. Popescu. Predictive learning via rule ensembles. The
Annals of Applied Statistics, 2(3), September 2008. ISSN 1932-6157. doi: 10.1214/07-
AOAS148. URL https://projecteuclid.org/journals/annals-of-applied-statistics/
volume-2/issue-3/Predictive-learning-via-rule-ensembles/10.1214/07-AOAS148.full.

[32] Jan N. Fuhg, Amélie Fau, and Udo Nackenhorst. State-of-the-Art and Comparative Review of Adaptive
Sampling Methods for Kriging. Archives of Computational Methods in Engineering, 28(4):2689–2747,
June 2021. ISSN 1134-3060. doi: 10.1007/s11831-020-09474-6. URL https://link.springer.com/
10.1007/s11831-020-09474-6.

[33] Anne Graham. Managing Airports: An International Perspective. Routledge, New York, 4th edition,
September 2013. ISBN 978-0-415-52941-9.

[34] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow : Concepts,
Tools, and Techniques to Build Intelligent Systems, volume 2th. O’Reilly Media, Sebastopol, CA, 2019.
ISBN 978-1-4920-3264-9.

[35] B. Hailpern and P. Santhanam. Software debugging, testing, and verification. IBM Systems Journal,
41(1):4–12, 2002. ISSN 0018-8670. doi: 10.1147/sj.411.0004. URL https://ieeexplore.ieee.org/
document/5386906.

[36] Daniel Harabor and Alban Grastien. Online Graph Pruning for Pathfinding on Grid Maps. In Pro-
ceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, page 6, August 2011. URL
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3761.

[37] Toru Hasegawa, Sijia Chen, and Lan Duong. Effects of Novel Coronavirus (COVID-19) on
Civil Aviation: Economic Impact Analysis. Technical report, ICAO, Montréal, Canada, Septem-
ber 2021. URL https://www.icao.int/sustainability/Documents/COVID-19/ICAO%20COVID%
202021%2009%2022%20Economic%20Impact%20TH%20Toru.pdf.

[38] Trevor Hastie, Robert Tibshirani, and J. H. Friedman. The elements of statistical learning: data mining,
inference, and prediction. Springer series in statistics. Springer, New York, NY, 2nd edition, 2009. ISBN
978-0-387-84857-0.

[39] Tim Head, Manoj Kumar, Holger Nahrstaedt, Gilles Louppe, and Iaroslav Shcherbatyi. Scikit-Optimize:
Sequential model-based optimization in Python, October 2021. URL https://zenodo.org/record/
5565057.

http://www.wormbook.org/chapters/www_statisticalanalysis/statisticalanalysis.html
http://www.wormbook.org/chapters/www_statisticalanalysis/statisticalanalysis.html
http://jmlr.org/papers/v20/18-760.html
http://jmlr.org/papers/v20/18-760.html
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470770801
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470770801
http://projecteuclid.org/journals/annals-of-statistics/volume-19/issue-1/Multivariate-Adaptive-Regression-Splines/10.1214/aos/1176347963.full
http://projecteuclid.org/journals/annals-of-statistics/volume-19/issue-1/Multivariate-Adaptive-Regression-Splines/10.1214/aos/1176347963.full
http://www.jstor.org/stable/2699986
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-2/issue-3/Predictive-learning-via-rule-ensembles/10.1214/07-AOAS148.full
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-2/issue-3/Predictive-learning-via-rule-ensembles/10.1214/07-AOAS148.full
https://link.springer.com/10.1007/s11831-020-09474-6
https://link.springer.com/10.1007/s11831-020-09474-6
https://ieeexplore.ieee.org/document/5386906
https://ieeexplore.ieee.org/document/5386906
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3761
https://www.icao.int/sustainability/Documents/COVID-19/ICAO%20COVID%202021%2009%2022%20Economic%20Impact%20TH%20Toru.pdf
https://www.icao.int/sustainability/Documents/COVID-19/ICAO%20COVID%202021%2009%2022%20Economic%20Impact%20TH%20Toru.pdf
https://zenodo.org/record/5565057
https://zenodo.org/record/5565057


134 Bibliography

[40] Dirk Helbing, Illés Farkas, and Tamás Vicsek. Simulating dynamical features of escape panic. Na-
ture, 407(6803):487–490, September 2000. ISSN 0028-0836. doi: 10.1038/35035023. URL http:
//www.nature.com/articles/35035023.

[41] Victoria Hodge and Jim Austin. A Survey of Outlier Detection Methodologies. Artificial Intelligence
Review, 22(2):85–126, October 2004. ISSN 1573-7462. doi: 10.1023/B:AIRE.0000045502.10941.a9. URL
https://doi.org/10.1023/B:AIRE.0000045502.10941.a9.

[42] Frank Hutter, Jörg Lücke, and Lars Schmidt-Thieme. Beyond Manual Tuning of Hyperparameters. Kün-
stliche Intelligenz, 29(4):329–337, November 2015. ISSN 0933-1875. doi: 10.1007/s13218-015-0381-0.
URL http://link.springer.com/10.1007/s13218-015-0381-0.

[43] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors. Automated Machine Learning: Methods,
Systems, Challenges. The Springer Series on Challenges in Machine Learning. Springer International
Publishing, Cham, 2019. ISBN 978-3-030-05317-8. doi: 10.1007/978-3-030-05318-5. URL http://
link.springer.com/10.1007/978-3-030-05318-5.

[44] IATA. Airport Development Reference Manual. Montreal, 9th edition, 2004. ISBN 978-92-9195-086-7.

[45] K. C. James and M. Bhasi. Development of model categories for performance improvement studies
related to airport terminal operations. Journal of Simulation, 4(2):98–108, June 2010. ISSN 1747-7778.
doi: 10.1057/jos.2009.27. URL https://www.tandfonline.com/doi/full/10.1057/jos.2009.27.

[46] S. A. M. Janssen. Capturing Agents in Security Models: Agent-based Security Risk Management using
Causal Discovery. PhD thesis, Delft University of Technology, April 2020. URL https://doi.org/10.
4233/uuid:f9bbff72-b9b4-4694-a188-b2f1451449af.

[47] Stef Janssen. AATOM - An Agent-based Airport Terminal Operations Model, December 2019. URL
https://github.com/StefJanssen/AATOM.

[48] Stef Janssen, Anne-Nynke Blok, and Arthur Knol. AATOM - An Agent-based Airport Terminal Opera-
tions Model. Delft University of Technology, April 2018. URL https://research.tudelft.nl/en/
publications/aatom-an-agent-based-airport-terminal-operations-model.

[49] Stef Janssen, Alexei Sharpanskykh, and Richard Curran. AbSRiM: An Agent-Based Security Risk Man-
agement Approach for Airport Operations. Risk Analysis, 39(7):1582–1596, 2019. ISSN 1539-6924. doi:
10.1111/risa.13278. URL http://onlinelibrary.wiley.com/doi/abs/10.1111/risa.13278.

[50] Stef Janssen, Alexei Sharpanskykh, and Richard Curran. Agent-based modelling and analysis of secu-
rity and efficiency in airport terminals. Transportation Research Part C: Emerging Technologies, 100:
142–160, March 2019. ISSN 0968-090X. doi: 10.1016/j.trc.2019.01.012. URL https://linkinghub.
elsevier.com/retrieve/pii/S0968090X1830809X.

[51] Stef Janssen, Alexei Sharpanskykh, Richard Curran, and Koen Langendoen. AATOM: An Agent-Based
Airport Terminal Operations Model Simulator. In Proceedings of the 2019 Summer Simulation Confer-
ence (SummerSim ’19), page 12, Berlin, July 2019. Assoc Computing Machinery.

[52] Stef Janssen, Régis van der Sommen, Alexander Dilweg, and Alexei Sharpanskykh. Data-Driven Analysis
of Airport Security Checkpoint Operations. Aerospace, 7(6):69, May 2020. ISSN 2226-4310. doi: 10.3390/
aerospace7060069. URL https://www.mdpi.com/2226-4310/7/6/69.

[53] Liangyue Jia, Reza Alizadeh, Jia Hao, Guoxin Wang, Janet K. Allen, and Farrokh Mistree. A rule-based
method for automated surrogate model selection. Advanced Engineering Informatics, 45:101123, Au-
gust 2020. ISSN 1474-0346. doi: 10.1016/j.aei.2020.101123. URL https://linkinghub.elsevier.
com/retrieve/pii/S1474034620300926.

[54] Sofia Kalakou and Filipe Moura. Analyzing passenger behavior in airport terminals based on ac-
tivity preferences. Journal of Air Transport Management, 96, September 2021. ISSN 0969-6997.
doi: 10.1016/j.jairtraman.2021.102110. URL https://linkinghub.elsevier.com/retrieve/pii/
S0969699721000934.

http://www.nature.com/articles/35035023
http://www.nature.com/articles/35035023
https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
http://link.springer.com/10.1007/s13218-015-0381-0
http://link.springer.com/10.1007/978-3-030-05318-5
http://link.springer.com/10.1007/978-3-030-05318-5
https://www.tandfonline.com/doi/full/10.1057/jos.2009.27
https://doi.org/10.4233/uuid:f9bbff72-b9b4-4694-a188-b2f1451449af
https://doi.org/10.4233/uuid:f9bbff72-b9b4-4694-a188-b2f1451449af
https://github.com/StefJanssen/AATOM
https://research.tudelft.nl/en/publications/aatom-an-agent-based-airport-terminal-operations-model
https://research.tudelft.nl/en/publications/aatom-an-agent-based-airport-terminal-operations-model
http://onlinelibrary.wiley.com/doi/abs/10.1111/risa.13278
https://linkinghub.elsevier.com/retrieve/pii/S0968090X1830809X
https://linkinghub.elsevier.com/retrieve/pii/S0968090X1830809X
https://www.mdpi.com/2226-4310/7/6/69
https://linkinghub.elsevier.com/retrieve/pii/S1474034620300926
https://linkinghub.elsevier.com/retrieve/pii/S1474034620300926
https://linkinghub.elsevier.com/retrieve/pii/S0969699721000934
https://linkinghub.elsevier.com/retrieve/pii/S0969699721000934


Bibliography 135

[55] Jack P. C. Kleijnen. Regression and Kriging Metamodels with Their Experimental Designs in Simulation:
Review. SSRN Electronic Journal, 2015. ISSN 1556-5068. doi: 10.2139/ssrn.2627131. URL http://www.
ssrn.com/abstract=2627131.

[56] Ladislav Kocis and William J. Whiten. Computational investigations of low-discrepancy sequences.
ACM Transactions on Mathematical Software, 23(2):266–294, June 1997. ISSN 0098-3500. doi: 10.1145/
264029.264064. URL https://dl.acm.org/doi/10.1145/264029.264064.

[57] Klemens Köstler. Simulating an Scheduling Airport Security Checkpoints: Q-Learning-Based Alloca-
tion of Operators to Security Teams at an Airport Security Checkpoint. Master’s thesis, Delft Univer-
sity of Technology, November 2021. URL https://repository.tudelft.nl/islandora/object/
uuid%3A4269ed22-debe-432c-8c0f-ac7127341001.

[58] Deepthi Praveenlal Kuttichira, Sunil Gupta, Cheng Li, Santu Rana, and Svetha Venkatesh. Explain-
ing Black-Box Models Using Interpretable Surrogates. In PRICAI 2019: Trends in Artificial Intelligence,
volume 11670, pages 3–15. Springer International Publishing, Cham, 2019. ISBN 978-3-030-29907-
1. doi: 10.1007/978-3-030-29908-8_1. URL http://link.springer.com/10.1007/978-3-030-
29908-8_1.

[59] Chen Quin Lam. Sequential Adaptive Designs In Computer Experiments For Response Surface Model
Fit. PhD thesis, Ohio State University, 2008. URL http://rave.ohiolink.edu/etdc/view?acc_
num=osu1211911211.

[60] Francesco Lamperti, Andrea Roventini, and Amir Sani. Agent-based model calibration using machine
learning surrogates. Journal of Economic Dynamics and Control, 90:366–389, May 2018. ISSN 0165-
1889. doi: 10.1016/j.jedc.2018.03.011. URL https://linkinghub.elsevier.com/retrieve/pii/
S0165188918301088.

[61] Haitao Liu, Yew-Soon Ong, and Jianfei Cai. A survey of adaptive sampling for global metamodeling
in support of simulation-based complex engineering design. Structural and Multidisciplinary Op-
timization, 57(1):393–416, January 2018. ISSN 1615-147X. doi: 10.1007/s00158-017-1739-8. URL
http://link.springer.com/10.1007/s00158-017-1739-8.

[62] Jason L. Loeppky, Jerome Sacks, and William J. Welch. Choosing the Sample Size of a Computer Experi-
ment: A Practical Guide. Technometrics, 51(4):366–376, November 2009. ISSN 0040-1706. doi: 10.1198/
TECH.2009.08040. URL http://www.tandfonline.com/doi/abs/10.1198/TECH.2009.08040.

[63] Scott M Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions.
In Advances in Neural Information Processing Systems, volume 30, Long Beach, CA, USA,
2017. Curran Associates, Inc. URL https://proceedings.neurips.cc/paper/2017/hash/
8a20a8621978632d76c43dfd28b67767-Abstract.html.

[64] C.M. Macal and M.J. North. Tutorial on agent-based modeling and simulation. In Proceedings of the
Winter Simulation Conference, 2005., pages 2–15, December 2005. doi: 10.1109/WSC.2005.1574234.
ISSN: 1558-4305.

[65] Liliana Magalhães, Vasco Reis, and Rosário Macário. A new methodological framework for evaluating
flexible options at airport passenger terminals. Case Studies on Transport Policy, 8(1):76–84, March
2020. ISSN 2213-624X. doi: 10.1016/j.cstp.2018.03.003. URL https://linkinghub.elsevier.com/
retrieve/pii/S2213624X18300749.

[66] Ioanna E. Manataki and Konstantinos G. Zografos. Development and Demonstration of a Model-
ing Framework for Airport Terminal Planning and Performance Evaluation. Transportation Research
Record: Journal of the Transportation Research Board, 2106(1):66–75, January 2009. ISSN 0361-1981.
doi: 10.3141/2106-08. URL http://journals.sagepub.com/doi/10.3141/2106-08.

[67] M. D. McKay, R. J. Beckman, and W. J. Conover. A Comparison of Three Methods for Selecting Values of
Input Variables in the Analysis of Output from a Computer Code. Technometrics, 21(2):239–245, 1979.
ISSN 0040-1706. doi: 10.2307/1268522. URL http://www.jstor.org/stable/1268522.

http://www.ssrn.com/abstract=2627131
http://www.ssrn.com/abstract=2627131
https://dl.acm.org/doi/10.1145/264029.264064
https://repository.tudelft.nl/islandora/object/uuid%3A4269ed22-debe-432c-8c0f-ac7127341001
https://repository.tudelft.nl/islandora/object/uuid%3A4269ed22-debe-432c-8c0f-ac7127341001
http://link.springer.com/10.1007/978-3-030-29908-8_1
http://link.springer.com/10.1007/978-3-030-29908-8_1
http://rave.ohiolink.edu/etdc/view?acc_num=osu1211911211
http://rave.ohiolink.edu/etdc/view?acc_num=osu1211911211
https://linkinghub.elsevier.com/retrieve/pii/S0165188918301088
https://linkinghub.elsevier.com/retrieve/pii/S0165188918301088
http://link.springer.com/10.1007/s00158-017-1739-8
http://www.tandfonline.com/doi/abs/10.1198/TECH.2009.08040
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://linkinghub.elsevier.com/retrieve/pii/S2213624X18300749
https://linkinghub.elsevier.com/retrieve/pii/S2213624X18300749
http://journals.sagepub.com/doi/10.3141/2106-08
http://www.jstor.org/stable/1268522


136 Bibliography

[68] Adin Mekic, Seyed Sahand Mohammadi Ziabari, and Alexei Sharpanskykh. Systemic Agent-Based Mod-
eling and Analysis of Passenger Discretionary Activities in Airport Terminals. Aerospace, 8(6):162, June
2021. doi: 10.3390/aerospace8060162. URL https://www.mdpi.com/2226-4310/8/6/162.

[69] Maike Meyer. Flight delayed? What airports are doing in order to avoid delays caused by board-
ing, November 2019. URL https://www.flight-delayed.co.uk/blog/2019/11/05/flight-
delayed-what-airports-are-doing-in-order-to-avoid-delays-caused-by-boarding.

[70] Christoph Molnar. Interpretable Machine Learning. Lulu, 2nd edition, February 2019. ISBN 978-0-244-
76852-2. URL https://christophm.github.io/interpretable-ml-book/.

[71] M.Z. Naser. An engineer’s guide to eXplainable Artificial Intelligence and Interpretable Machine
Learning: Navigating causality, forced goodness, and the false perception of inference. Automation
in Construction, 129, September 2021. ISSN 0926-5805. doi: 10.1016/j.autcon.2021.103821. URL
https://linkinghub.elsevier.com/retrieve/pii/S0926580521002727.

[72] Caio Nóbrega and Leandro Marinho. Towards explaining recommendations through local surrogate
models. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pages 1671–1678,
Limassol Cyprus, April 2019. ACM. ISBN 978-1-4503-5933-7. doi: 10.1145/3297280.3297443. URL
https://dl.acm.org/doi/10.1145/3297280.3297443.

[73] Allan Nõmmik and Dago Antov. Modelling Regional Airport Terminal Capacity. Procedia Engineering,
178:427–434, 2017. ISSN 1877-7058. doi: 10.1016/j.proeng.2017.01.083. URL https://linkinghub.
elsevier.com/retrieve/pii/S1877705817300838.

[74] Paul Pao-Yen Wu and Kerrie Mengersen. A review of models and model usage scenarios for an airport
complex system. Transportation Research Part A: Policy and Practice, 47:124–140, January 2013. ISSN
0965-8564. doi: 10.1016/j.tra.2012.10.015. URL https://linkinghub.elsevier.com/retrieve/
pii/S0965856412001541.

[75] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
URL https://jmlr.csail.mit.edu/papers/volume12/pedregosa11a/pedregosa11a.pdf.

[76] Bruno Pietzsch, Sebastian Fiedler, Kai G. Mertens, Markus Richter, Cédric Scherer, Kirana Widyastuti,
Marie-Christin Wimmler, Liubov Zakharova, and Uta Berger. Metamodels for Evaluating, Calibrating
and Applying Agent-Based Models: A Review. Journal of Artificial Societies and Social Simulation, 23
(2):9, 2020. ISSN 1460-7425. doi: 10.18564/jasss.4274. URL http://jasss.soc.surrey.ac.uk/23/
2/9.html.

[77] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning. Adap-
tive computation and machine learning. MIT Press, Cambridge, Mass, 2006. ISBN 978-0-262-18253-9.

[78] Saman Razavi, Bryan A. Tolson, and Donald H. Burn. Review of surrogate modeling in water resources.
Water Resources Research, 48(7), 2012. ISSN 1944-7973. doi: 10.1029/2011WR011527. URL http:
//onlinelibrary.wiley.com/doi/abs/10.1029/2011WR011527.

[79] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Model-Agnostic Interpretability of Machine
Learning. arXiv:1606.05386 [cs, stat], June 2016. URL http://arxiv.org/abs/1606.05386.

[80] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why Should I Trust You?": Explaining the
Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, pages 1135–1144, New York, NY, USA, August 2016.
Association for Computing Machinery. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939778. URL
http://doi.org/10.1145/2939672.2939778.

[81] Ribana Roscher, Bastian Bohn, Marco F. Duarte, and Jochen Garcke. Explainable Machine Learning for
Scientific Insights and Discoveries. IEEE Access, 8:42200–42216, 2020. ISSN 2169-3536. doi: 10.1109/
ACCESS.2020.2976199.

https://www.mdpi.com/2226-4310/8/6/162
https://www.flight-delayed.co.uk/blog/2019/11/05/flight-delayed-what-airports-are-doing-in-order-to-avoid-delays-caused-by-boarding
https://www.flight-delayed.co.uk/blog/2019/11/05/flight-delayed-what-airports-are-doing-in-order-to-avoid-delays-caused-by-boarding
https://christophm.github.io/interpretable-ml-book/
https://linkinghub.elsevier.com/retrieve/pii/S0926580521002727
https://dl.acm.org/doi/10.1145/3297280.3297443
https://linkinghub.elsevier.com/retrieve/pii/S1877705817300838
https://linkinghub.elsevier.com/retrieve/pii/S1877705817300838
https://linkinghub.elsevier.com/retrieve/pii/S0965856412001541
https://linkinghub.elsevier.com/retrieve/pii/S0965856412001541
https://jmlr.csail.mit.edu/papers/volume12/pedregosa11a/pedregosa11a.pdf
http://jasss.soc.surrey.ac.uk/23/2/9.html
http://jasss.soc.surrey.ac.uk/23/2/9.html
http://onlinelibrary.wiley.com/doi/abs/10.1029/2011WR011527
http://onlinelibrary.wiley.com/doi/abs/10.1029/2011WR011527
http://arxiv.org/abs/1606.05386
http://doi.org/10.1145/2939672.2939778


Bibliography 137

[82] Rotterdam The Hague Airport. Over ons. URL https://www.rotterdamthehagueairport.nl/
luchthaven-en-ik/organisatie/over-ons/.

[83] Rotterdam The Hague Airport. Welkom in de vernieuwde vertrekhal!, November 2020. URL https:
//www.rotterdamthehagueairport.nl/vernieuwde-vertrekhal/.

[84] Peter J. Rousseeuw and Mia Hubert. Robust statistics for outlier detection. WIREs Data Mining and
Knowledge Discovery, 1(1):73–79, January 2011. ISSN 1942-4787, 1942-4795. doi: 10.1002/widm.2. URL
https://onlinelibrary.wiley.com/doi/10.1002/widm.2.

[85] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Internal Representations
by Error Propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science,
September 1985. URL https://apps.dtic.mil/sti/citations/ADA164453.

[86] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli,
Michaela Saisana, and Stefano Tarantola. Global Sensitivity Analysis: The Primer. John Wiley, Chich-
ester, England, 2008. ISBN 978-0-470-05997-5.

[87] Eric Schulz, Maarten Speekenbrink, and Andreas Krause. A tutorial on Gaussian process regression:
Modelling, exploring, and exploiting functions. Journal of Mathematical Psychology, 85:1–16, August
2018. ISSN 0022-2496. doi: 10.1016/j.jmp.2018.03.001. URL https://linkinghub.elsevier.com/
retrieve/pii/S0022249617302158.

[88] Timothy W. Simpson, Dennis K. J. Lin, and Wei Chen. Sampling Strategies for Computer Experiments:
Design and Analysis. International Journal of Reliability and Applications, 2(3):209–240, 2001. URL
http://www.personal.psu.edu/users/j/x/jxz203/lin/Lin_pub/2001_IJRA.pdf.

[89] Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector regression. Statistics and Com-
puting, 14(3):199–222, August 2004. ISSN 1573-1375. doi: 10.1023/B:STCO.0000035301.49549.88. URL
https://doi.org/10.1023/B:STCO.0000035301.49549.88.

[90] Ilya M Sobol. Sensitivity analysis for non-linear mathematical models. Mathematical modelling and
computational experiment, 1(4):407–414, 1993.

[91] Xueguan Song, Guangyong Sun, Guangyao Li, Weizhao Gao, and Qing Li. Crashworthiness optimiza-
tion of foam-filled tapered thin-walled structure using multiple surrogate models. Structural and Mul-
tidisciplinary Optimization, 47(2):221–231, February 2013. ISSN 1615-147X. doi: 10.1007/s00158-012-
0820-6. URL http://link.springer.com/10.1007/s00158-012-0820-6.

[92] James Stewart. Calculus: early transcendentals. Thomson Brooks/Cole, Belmont, CA, 6th edition, 2008.
ISBN 978-0-495-01166-8.

[93] Rick L. Sturdivant and Edwin K. P. Chong. Systems Engineering Baseline Concept of a Multispectral
Drone Detection Solution for Airports. IEEE Access, 5:7123–7138, 2017. ISSN 2169-3536. doi: 10.1109/
ACCESS.2017.2697979. URL https://ieeexplore.ieee.org/document/7911176/.

[94] Vojin Tosic. A review of airport passenger terminal operations analysis and modelling. Transportation
Research Part A: Policy and Practice, 26(1):3–26, January 1992. ISSN 0965-8564. doi: 10.1016/0965-
8564(92)90041-5. URL https://linkinghub.elsevier.com/retrieve/pii/0965856492900415.

[95] Didier van der Horst. An improved Tabu Search for optimising the configuration of an agent-based sim-
ulation model of a novel security checkpoint. Master’s thesis, Delft University of Technology, Novem-
ber 2021. URL https://repository.tudelft.nl/islandora/object/uuid%3A1dac59fd-8682-
4856-9ef1-c57519fb9bbf.

[96] Tom Van Steenkiste, Joachim van der Herten, Ivo Couckuyt, and Tom Dhaene. Data-Efficient Sensi-
tivity Analysis with Surrogate Modeling. In Uncertainty Modeling for Engineering Applications, PoliTO
Springer Series, pages 55–69. Springer International Publishing, Cham, 2019. ISBN 978-3-030-04870-9.
URL https://doi.org/10.1007/978-3-030-04870-9_4.

https://www.rotterdamthehagueairport.nl/luchthaven-en-ik/organisatie/over-ons/
https://www.rotterdamthehagueairport.nl/luchthaven-en-ik/organisatie/over-ons/
https://www.rotterdamthehagueairport.nl/vernieuwde-vertrekhal/
https://www.rotterdamthehagueairport.nl/vernieuwde-vertrekhal/
https://onlinelibrary.wiley.com/doi/10.1002/widm.2
https://apps.dtic.mil/sti/citations/ADA164453
https://linkinghub.elsevier.com/retrieve/pii/S0022249617302158
https://linkinghub.elsevier.com/retrieve/pii/S0022249617302158
http://www.personal.psu.edu/users/j/x/jxz203/lin/Lin_pub/2001_IJRA.pdf
https://doi.org/10.1023/B:STCO.0000035301.49549.88
http://link.springer.com/10.1007/s00158-012-0820-6
https://ieeexplore.ieee.org/document/7911176/
https://linkinghub.elsevier.com/retrieve/pii/0965856492900415
https://repository.tudelft.nl/islandora/object/uuid%3A1dac59fd-8682-4856-9ef1-c57519fb9bbf
https://repository.tudelft.nl/islandora/object/uuid%3A1dac59fd-8682-4856-9ef1-c57519fb9bbf
https://doi.org/10.1007/978-3-030-04870-9_4


138 Bibliography

[97] Felipe A.C. Viana. Things you wanted to know about the Latin hypercube design and were afraid to ask.
In 10th World Congress on Structural and Multidisciplinary Optimization, page 9, Orlando, USA, May
2013. URL https://mae.ufl.edu/mdo/Papers/5176.pdf.

[98] Sandra Vieira, Walter H.L. Pinaya, and Andrea Mechelli. Using deep learning to investigate the neu-
roimaging correlates of psychiatric and neurological disorders: Methods and applications. Neuro-
science & Biobehavioral Reviews, 74:58–75, March 2017. ISSN 0149-7634. doi: 10.1016/j.neubiorev.
2017.01.002. URL https://linkinghub.elsevier.com/retrieve/pii/S0149763416305176.

[99] Bowen Wang, Biao Xie, Jin Xuan, and Kui Jiao. AI-based optimization of PEM fuel cell catalyst layers
for maximum power density via data-driven surrogate modeling. Energy Conversion and Management,
205:112460, February 2020. ISSN 0196-8904. doi: 10.1016/j.enconman.2019.112460. URL https://
linkinghub.elsevier.com/retrieve/pii/S0196890419314682.

[100] G. Gary Wang and S. Shan. Review of Metamodeling Techniques in Support of Engineering Design Op-
timization. Journal of Mechanical Design, 129(4):370–380, April 2007. ISSN 1050-0472. doi: 10.1115/1.
2429697. URL https://asmedigitalcollection.asme.org/mechanicaldesign/article/129/
4/370/466824/Review-of-Metamodeling-Techniques-in-Support-of.

[101] Paul Westermann and Ralph Evins. Surrogate modelling for sustainable building design A review. En-
ergy and Buildings, 198:170–186, September 2019. ISSN 0378-7788. doi: 10.1016/j.enbuild.2019.05.057.
URL https://www.sciencedirect.com/science/article/pii/S0378778819302877.

[102] Uri Wilensky and William Rand. An Introduction to Agent-Based Modeling: Modeling Natural, Social,
and Engineered Complex Systems with NetLogo. MIT Press, Cambridge, MA, USA, April 2015. ISBN
978-0-262-73189-8.

[103] Bianca Williams and Selen Cremaschi. Selection of surrogate modeling techniques for surface approxi-
mation and surrogate-based optimization. Chemical Engineering Research and Design, 170:76–89, June
2021. ISSN 0263-8762. doi: 10.1016/j.cherd.2021.03.028. URL https://www.sciencedirect.com/
science/article/pii/S0263876221001465.

[104] David H. Wolpert. What Is Important About the No Free Lunch Theorems? In Panos M. Pardalos,
Varvara Rasskazova, and Michael N. Vrahatis, editors, Black Box Optimization, Machine Learning, and
No-Free Lunch Theorems, Springer Optimization and Its Applications, pages 373–388. Springer Interna-
tional Publishing, Cham, 2021. ISBN 978-3-030-66515-9. URL https://doi.org/10.1007/978-3-
030-66515-9_13.

[105] Tien-Tsin Wong, Wai-Shing Luk, and Pheng-Ann Heng. Sampling with Hammersley and Halton Points.
Journal of Graphics Tools, 2(2):9–24, January 1997. ISSN 1086-7651. doi: 10.1080/10867651.1997.
10487471. URL http://www.tandfonline.com/doi/abs/10.1080/10867651.1997.10487471.

[106] Li Yang and Abdallah Shami. On hyperparameter optimization of machine learning algorithms: Theory
and practice. Neurocomputing, 415:295–316, November 2020. ISSN 0925-2312. doi: 10.1016/j.neucom.
2020.07.061. URL https://linkinghub.elsevier.com/retrieve/pii/S0925231220311693.

[107] Raul Yondo, Esther Andrés, and Eusebio Valero. A review on design of experiments and surrogate
models in aircraft real-time and many-query aerodynamic analyses. Progress in Aerospace Sciences,
96:23–61, January 2018. ISSN 0376-0421. doi: 10.1016/j.paerosci.2017.11.003. URL https://www.
sciencedirect.com/science/article/pii/S0376042117300611.

[108] Yuya Yoshikawa and Tomoharu Iwata. Gaussian Process Regression With Interpretable Sample-Wise
Feature Weights. IEEE Transactions on Neural Networks and Learning Systems, pages 1–15, 2021. ISSN
2162-2388. doi: 10.1109/TNNLS.2021.3131234.

[109] Tong Yu and Hong Zhu. Hyper-Parameter Optimization: A Review of Algorithms and Applications.
arXiv:2003.05689 [cs, stat], March 2020. URL http://arxiv.org/abs/2003.05689.

[110] Elena D. Zidarova and Konstantinos G. Zografos. Measuring Quality of Service in Airport Passenger
Terminals. Transportation Research Record, 2214(1):69–76, January 2011. ISSN 0361-1981. doi: 10.
3141/2214-09. URL https://doi.org/10.3141/2214-09. Publisher: SAGE Publications Inc.

https://mae.ufl.edu/mdo/Papers/5176.pdf
https://linkinghub.elsevier.com/retrieve/pii/S0149763416305176
https://linkinghub.elsevier.com/retrieve/pii/S0196890419314682
https://linkinghub.elsevier.com/retrieve/pii/S0196890419314682
https://asmedigitalcollection.asme.org/mechanicaldesign/article/129/4/370/466824/Review-of-Metamodeling-Techniques-in-Support-of
https://asmedigitalcollection.asme.org/mechanicaldesign/article/129/4/370/466824/Review-of-Metamodeling-Techniques-in-Support-of
https://www.sciencedirect.com/science/article/pii/S0378778819302877
https://www.sciencedirect.com/science/article/pii/S0263876221001465
https://www.sciencedirect.com/science/article/pii/S0263876221001465
https://doi.org/10.1007/978-3-030-66515-9_13
https://doi.org/10.1007/978-3-030-66515-9_13
http://www.tandfonline.com/doi/abs/10.1080/10867651.1997.10487471
https://linkinghub.elsevier.com/retrieve/pii/S0925231220311693
https://www.sciencedirect.com/science/article/pii/S0376042117300611
https://www.sciencedirect.com/science/article/pii/S0376042117300611
http://arxiv.org/abs/2003.05689
https://doi.org/10.3141/2214-09

	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	I Scientific Paper
	II Literature Study
	Introduction
	Modeling Airport Terminal Operations
	The Characteristics of an Airport Terminal
	A Brief Overview of Existing Models and Related Work
	The AATOM Simulator
	Agent-based Modeling
	Model Architecture
	Input and Output Parameters


	Surrogate Modeling
	An Introduction to Surrogate Modeling
	Design of Experiments
	Initial Sampling
	Adaptive Sampling

	Methods Used in Surrogate Modeling
	Linear Models
	Gaussian Processes
	Radial Basis Functions
	Support-vector Machines
	Decision Trees
	Neural Networks
	Comparison Between the Methods

	Hyperparameter Optimization
	Model Validation
	Selected Methodology

	System Understanding
	Model-agnostic Approaches
	Sensitivity Analysis
	Dependency Plots
	Feature Relevancy
	Local Interpretable Model-agnostic Explanations
	Shapley Additive Explanations

	Model-specific Approaches
	Analysis of Regression Weights
	RuleFit


	Research Proposal
	Objective and Research Questions
	Relevance of the Project
	Planning of the Project


	III Supporting Work
	Preparing AATOM for Surrogate Modeling
	Testing the Model
	Bug Fixes and Implemented Changes

	Obtaining Stable Simulation Responses
	Calculating the Coefficient of Variation
	Removing Erroneous Simulation Runs

	Insights into the Sampled Data Points
	Distribution of the Data Points in the Feature Space
	One-dimensional Perspective
	Two-dimensional Perspective

	Summary Statistics of the Responses
	Reaching the Stopping Criterion

	Tuning the Meta-models' Hyperparameters
	Considered Model Parameters
	Results of the Optimization

	Annex to the Description of the Agent-based Model
	Annex to the Results
	Surrogate Model Performance
	Analysis of the Total Expenditure on Discretionary Activities
	Analysis of the Saturation at Security

	Bibliography


