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Abstract

Nowadays, Mobile Mapping System (MMS) have been widely used in railway, with inte-
grated Inertial Navigation System (INS)/Global Navigation Satellite System (GNSS) system
as the common approach. For environments where GNSS signals become unavailable, addi-
tional aiding sources need to be considered to preserve the quality of measurement. Typ-
ically, in most applications, a Distance Measurement Indicator (DMI) is combined with the
INS/GNSS system to ensure the desired accuracy. Nevertheless, as this approach is physi-
cally less feasible for railway, alternative solutions would be preferred. To bridge this gap,
we investigate the applicability of Simultaneous Localization and Mapping (SLAM) integra-
tion with INS/GNSS for the case of a railway MMS. In particular, we aim to propose a solution
for adapting a Monocular Visual (Inertial) SLAM method for railway application and further
evaluate our solution using real-world data based on the RILA system (Fugro’s rail MMS).
Accordingly, this dissertation consists of the following three research activities.

Firstly, we have conducted a literature review on the existing monocular Visual Inertial
SLAM methods to identify the technique which fulfils the key requirements of the rail ap-
plication. Considering the results of the study, we selected the ORB-SLAM3 method and
proposed an end-to-end pipeline that covers all the phases to adapt it for RILA system.

Secondly, the impact of adapting ORB-SLAM3 technique on performance of the trajectory
estimation has been evaluated using two criteria: Absolute Position Error (APE) and Relative
Position Error (RPE). Accordingly, a case study using RILA dataset was developed for the
experimental evaluations. In this case study, we have simulated a scenario in which the train
entered the station, stayed there stationary for 1 minute, and then left the station slowly and
manually inserted GNSS blockages before and after the station. Furthermore, a ground-truth
trajectory was generated to evaluate the quality of the estimated SLAM-based trajectory. The
results revealed that both APE and RPE increases with significant fluctuations in the first 15
seconds due to the lack of SLAM initialization time. Therefore, we introduced an strategy
for fine-tuning the accuracy by allocating sufficient time for SLAM initialization phase. The
APE and RPE were significantly reduced after fine-tuning and the expected estimated error
at each time was equal to 4.3% of the travelled path length.

Finally, we presented the effect of using Zero Velocity Update (ZUPT) signals as aiding in-
formation on the accuracy of the estimated trajectory in the areas with poor GNSS coverage.
Consequently, we manually inserted the extracted ZUPT signals to the INS/GNSS integra-
tion process and then compared the positional accuracy of the generated trajectories with
and without this information. The results show that the estimated positional accuracy was
improved by 30% with only 51 seconds of stationary condition in our case study.

Overall, based on the obtained results from the evaluations, it is possible to claim that our
proposed ORB-SLAM3 technique has great potential to improve the estimated positional ac-
curacy and in particular can be used as a standalone ZUPT detector in railway application.
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1. Introduction

Over the last two decades, MMSs have become a rising trend in mapping applications due to
their capabilities of providing fast, accurate, efficient, and complete data collection [63]. Any
MMS consists of several sensors, for example, laser scanners, metric and panoramic cameras,
Global Navigation Satellite System (GNSS), Inertial Navigation System (INS), and Distance
Measurement Indicator (DMI) [5]. These systems measure 2D or 3D geometric information
utilizing their sensors attached to a vehicle, for instance, a car, a train, an aircraft, or a boat,
to generate a geo-referenced point cloud of all objects along their trajectory [51].

GNSS is the core element of any traditional vehicle navigation system that can provide
centimeter-level accuracy. However, due to multipath effects and GNSS outages (over tunnels,
large structures, and vegetation), it is practically difficult to sustain the GNSS signal during
a complete survey. In order to address this problem, an Inertial Measurement Unit (IMU) is
fused with GNSS data. An IMU consists of three-axis accelerometers and gyroscopes that pro-
vide self-contained data about the vehicle’s instant position, velocity, and attitude. It should
be notified that, because of its dead reckoning (DR) working principle (new positions are
calculated using the earlier ones), the IMU errors are grown over time, causing drift. These
errors are due to the noise and biases existing in the inertial sensor measurements [51]. For
this reason, in most MMSs, GNSS data is used to provide periodic corrections to IMU outputs.
Furthermore, a DMI is also fused with the GNSS/IMU as an additional aiding device in most
of these systems. DMI is a cost-effective and robust sensor to measure rotational data. Its
measured data can be further processed into position and velocity to be integrated with
INS/GNSS output [51].

Recently, MMS with INS/GNSS/DMI and mapping sensors have been extensively developed.
In most cases, a Kalman filter is used in these systems to combine INS/GNSS/DMI measure-
ments to produce optimum navigation information. Nevertheless, the navigation outputs
in the current MMS still have errors, mainly over GNSS challenging areas where GNSS data
is not available (due to GNSS outages) or not accurate enough (due to multipath errors) to
be fused with IMU data. Therefore, another aiding system is required to provide a robust,
precise, and stable navigation solution, especially in long-term GNSS-blocked environments
[51]. In order to achieve this goal, one possible solution is the image-assisted Simultaneous
Localization and Mapping (SLAM) system to be used as an additional aiding algorithm in
combination with the INS/GNSS tool, and thus improving the MMS trajectory estimation.

Simultaneous Localization and Mapping (SLAM) has become a well-known study area as a
promising approach, recently solving most of the issues linked to the autonomous robot
applications [31]. A fully autonomous robot should have the capability of exploring the
surrounding environment, building a complete map, and locating itself on the map without
any user’s support needed. Mainly if GNSS data is unavailable or does not have adequate
accuracy, the robot must determine on its own, which reference points have to be used to
create a proper map and simultaneously estimate its trajectory [29].

There are two main types of SLAM systems: visual SLAM and non-visual SLAM. Visual SLAM
systems use camera data as input, while non-visual SLAM systems rely on sensors such as
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LIDAR, Sound Navigation and Ranging (SONAR), or Radio Detection and Ranging (RADAR).
Recently, there has been a growing interest in developing algorithms for visual SLAM due
to the abundance of visual information that can be extracted from cameras, as well as their
simplicity and cost-effectiveness when compared to LIDAR sensors. However, one of the
major limitations of visual SLAM is its dependence on lighting conditions. This means that
sufficient light is required to capture high-quality images that can be used as input for the
visual SLAM algorithm.

Visual Simultaneous Localization And Mapping (V-SLAM) comprises three principal compo-
nents. The first part is the Visual Odometry (Visual Odometry (VO)), which is the process of
estimating the robot’s trajectory by just utilizing its on-board camera observations [60]. The
second component is recognizing an already visited environment, known as the loop clos-
ing phase. The third step is applying optimization techniques to compute a global, uniform,
and complete map. It is worth stating that, in contrast to VO, which aims to estimate the
robot path incrementally and only cares about its local consistency, V-SLAM’s key objective is
to acquire a global, consistent estimation of the trajectory. In order to do this, V-SLAM needs
to create and sustain the environment map even for the cases where localization is the only
goal [60].

Most of the V-SLAM algorithms are very sensitive to motion blur, occlusions and lighting
changes. In addition, for the monocular (single camera) V-SLAM case, the obtained result
is up to the scale. In contrast, the inertial sensors can provide the motion’s absolute scale
and are robust against the aggressive movement, whereas their output data is noisy, which
diverges very quickly. Therefore, it is possible to significantly boost both the algorithm’s
robustness and accuracy by fusing the inertial sensor measurements to V-SLAM in a tightly
coupled manner [53]. When an IMU is integrated with the visual sensor under the concept of
SLAM/Odometery, the algorithms are usually known as Visual Inertial SLAM (Visual Inertial
Simultaneous Localization And Mapping (VI-SLAM)) and Visual Inertial Odometry (Visual
Inertial Odometry (VIO)).

Interestingly, different research have been done on integrating the INS/GNSS/SLAM for var-
ious applications over the last few years. However, up to the author’s knowledge, none of
them examined the V-SLAM/VI-SLAM system’s applicability for the case of a railway MMS
attached on a train traveling at medium speeds in a dynamic environment, such as sta-
tion areas or urban canyons. Moreover, in contrast to typical ground robots, the railway
MMS has one distinctive characteristic: its motion is constrained to the rail paths. This spe-
cific constraint implies some benefits and drawbacks to the quality of motion estimation,
which need to be analyzed precisely. Therefore, this research thesis investigates how the
V-SLAM/VI-SLAM algorithms can be used as part of the RILA system to enhance its trajectory
in GNSS-challenging conditions, with the main focus on train station environments.

The rest of this chapter is structured as follows. First, we present the concepts of SLAM.
Furthermore, we introduce an overview to the RILA setup. Then we declare the problem and
our research questions and, finally, we address the structure for the rest of this dissertation.
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1.1. Simultaneous Localization and Mapping (SLAM)
Concept

Over the last decade, SLAM has become a significant study area as an assuring method
to solve most of the issues linked to the autonomous robot applications [31]. A fully au-
tonomous robot should have the ability to explore its surrounding environment without any
assistance, construct an accurate map and locate itself on it. Mainly in the case of GNSS
unavailability the robot must decide, on its own, what are the proper reference points on
which to create a map and estimate its trajectory at the same time [29].

In the following subsections, initially, the concepts of localization and mapping are explained
independently. Next, the SLAM problem is defined, and its mathematical representation is
addressed.

1.1.1. Localization

With the purpose of making autonomous robots move correctly in unknown environments,
having prior information of their surrounding is necessary. In the localization step, the
robot’s position is estimated based on the known location of the landmarks around it. The
robot passes through the environment and identifies different landmarks using its sensor
data. After that, the robot can determine its location relative to these landmarks. Figure
1.1 shows an illustration of the robot’s localization step within a known map. As it can be
seen here, the robot can initially recognize the landmarks precisely. However, as it moves
further along its path, it wrongly decides to turn left instead of turning right, possibly due
to various environmental factors. At this stage, the robot uses its sensor observations to
discover the landmarks within the map and correct its location accordingly. Moreover, it is
crucial to notice that, during this step, the correctness of the localization relies directly on
the accuracy of sensor data and the motion performance quality [72].

Figure 1.1.: An example of robot’s localization when the environment map is given [72].

1.1.2. Mapping

Besides the localization step, the other part of the SLAM approach is the mapping phase. In
this phase, the robot’s position is known, and the landmarks’ location needs to be computed
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using the robot sensors. When a robot moves through the environment, its on-board sensors
collect observations from the surrounding landmarks. Using these observations, the robot
can construct a map that depicts the location of each landmark. As illustrated in Figure
1.2, the estimated location of the landmarks is not definite due to the presence of noise in
the sensor data. These uncertainties are shown clearly by the ellipse around the landmarks.
In order to determine the precise position of the landmarks within a specific bound, these
uncertainties need to be estimated beforehand using the Gaussian distribution, as mentioned
in [72].

Figure 1.2.: Illustration of robot’s mapping when its trajectory is known [72].

1.1.3. Localization and Mapping Simultaneously

After describing the localization and mapping phases, the SLAM process is defined briefly
in this section. According to [7], the SLAM method’s primary aim is to create a model of
the environment (the map) while simultaneously calculating the robot’s location within this
map. In the SLAM process, the accuracy of the localization and the mapping construction
are directly dependent. This means that, in order to precisely determine the location of the
robot, a high-quality map is necessary. At the same time, an exact localization process is
essential to create a precise map [72].

To explain the SLAM problem’s mathematical basis, firstly, different variables involved in this
approach need to be specified. Figure 1.3 exhibits the SLAM system’s graphical model that
represents the robot’s trajectory and the sequence of sensor measurements. Additionally,
in this model, the arrows are used to indicate the causal relations between these variables
[66]. Here, for the remaining part of this section, we will mostly refer to the discussions,
notations, and equations which are used by [66] unless otherwise stated.

To start with, the path of the robot can be described as follows:

XT = {x0, x1, x2, ...xt} (1.1)

Here, x0 is the robot’s known initial position and xt denotes its location at time t. XT is the
sequence of the robot’s locations, which shows its trajectory over the time interval T.

Secondly, the sequence of control commands or odometry information illustrated by Eq.
(1.2) is used to characterize the robot’s relative movement. The odometry measurement
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Figure 1.3.: Graphical illustration of the SLAM technique. In this model, shaded nodes are
observable parameters to the robot, and non-shaded nodes are the variables that the

robot tries to estimate. Arrows that connect these nodes are casual relationships. ut is the
odometry data which relates the robot’s poses at time t − 1 and t. In addition, zt is the
robot’s sensor observation which can be used to relate the features in the environment

map and the robot position at epoch t [66].

denoted by ut, may be taken from wheel encoders or the controls command sent to the
robot’s motor, which describes the movement between epoch t − 1 and t. In a perfect world,
the entire trajectory XT can be retrieved from the initial position x0 using odometry data for
noise-free movement. Nonetheless, these data are imperfect, and the trajectory integration
eventually deviates from the truth.

UT = {u1, u2, u3, ...ut} (1.2)

Thirdly, the robot needs a series of observations at several points to establish information
between the robot position xt and the features in the world map m. Depending on the robot’s
sensors, its observation may be in the form of camera images [69] or LIDAR data [70] from a
laser scanner, as mentioned in [72]. The sequence of observations can be defined as shown in
Eq. (1.3), presuming that at each point in time, the robot performs only one observation.

ZT = {z1, z2, z3, ...zt} (1.3)

The SLAM problem is now the process of determining the trajectory of the robot and its
surrounding environment map concurrently using the odometry and sensors measurements.
From a probabilistic viewpoint, the SLAM problem may be classified into two different types.
First, as [71] explained, the online SLAM requires determining the posterior over the current
robot’s position and the environment map. The mathematical representation of the online
SLAM [66] is shown below:
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p
(

xt, m
∣∣∣ ZT , UT

)
(1.4)

Where xt shows the robot position at time t, m is the map of the environment, ZT indicates
the observations, and UT is the control input. It is worth mentioning that the online SLAM
problems are often solved using filter-based algorithms, which are incremental, meaning
that the earlier observations and control inputs are discarded once processed [71].

The second classification of the SLAM problem is the full (offline) SLAM. The objective of the
full SLAM is to calculate the joint posterior probability over the robot’s entire path XT along
with the map m from the observed data ZT and control input UT . The batch algorithms are
usually addressed to solve the offline SLAM problems [66, 71].

p
(

XT , m
∣∣∣ ZT , UT

)
(1.5)

Furthermore, two other models that correspond to the arrows in Figure 1.3 need to be de-
scribed for solving the SLAM problem. First, the motion model that relates two sequential
locations of the robot using odometry data can be determined using Eq. (1.6). [72].

p
(

xt

∣∣∣ xt−1, ut

)
(1.6)

After that, the observation model showing the probability distribution of the robot observa-
tion while the robot’s location xt, and the environment map m is known, may be defined by
[72] :

p
(

zt

∣∣∣ xt, m
)

(1.7)

1.2. RILA Setup

This study focuses on one of Fugro’s mobile mapping systems, RILA, which has been
adapted for rail inspections. As demonstrated in Figure 1.4, the train-mounted system inte-
grates a variety of technologies such as GNSS, IMU, LIDAR scanner, video cameras, and laser
vision to measure railway track geometry. This method allows for conducting track surveys
at high speeds of up to 200 km/h (125 mph) without requiring track possession [79]. RILA
can be easily attached to any passenger train to gather precise engineering data on the rail
corridor. This eliminates the need for surveyors to work on live railways, making it a much
safer alternative.

The data collected by RILA can be used to derive a wide range of valuable information
related to rail track geometry and safety parameters. This includes parameters such as
track gauge and cant, as well as identifying rail wear and the condition of switches and
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crossings. The data can also be utilized to determine ride comfort parameters, which is
important for ensuring a smooth and safe ride for passengers. Furthermore, the collected
data can contribute to Building Information Models (BIMs), which is a valuable resource
for designers, engineers, and other stakeholders involved in the rail industry. Overall, the
data provided by RILA is highly versatile and can be used for a wide range of applications,
contributing to the overall safety and efficiency of rail transportation systems.

Railway track geometry measurement can be classified into two types: absolute and relative.
Absolute track geometry measures the track position and is important during the design,
construction, and as-built stages. Surveyors typically perform this measurement using var-
ious techniques such as GNSS, total station surveys, static and mobile laser scanning. The
measured parameters include radius and gradients, which are critical for the track layout.
In contrast, relative track geometry measures the track quality, and hence it is essential for
planning maintenance and repairs. It includes parameters such as track gauge, longitudinal
level, alignment, cant (cross level), and twist [79].

In RILA system , the collected absolute track geometry data meets the stringent accuracy
requirements necessary for track design and is already in use in the Netherlands and the
United Kingdom [79]. Moreover, the computed relative track geometry parameters satisfy
the accuracy standards set by the European standard EN 13848-1. The methodology used
to obtain these measurements is validated through comparison with results obtained using
conventional approaches, such as track recording vehicles.

1.2.1. Existing Approaches and Constraints

This section discusses the importance of accurate trajectory estimation for the RILA sys-
tem and the limitations of existing methods. Generating reliable point cloud data requires
precise trajectory estimation. Any errors or drifts during the estimation process can cause
the resulting data to have incorrect offsets and rotations. This can lead to discrepancies
when comparing multiple surveys of the same area, affecting the quality and accuracy of
the data. Therefore, accurate trajectory estimation is essential for maintaining consistency
and repeatability in point cloud data, ultimately enhancing the reliability and usefulness of
the generated data for various applications.

The RILA system integrates INS and GNSS sensors, providing reliable trajectory estimation
under normal conditions. As reported in [79], the system’s standard deviation in the hor-
izontal and vertical directions are less than 8 mm and 12 mm, respectively, whereas the
geo-referenced point cloud accuracy is typically around 10 mm and 15 mm, respectively.
However, the accuracy of the trajectory estimation may decrease when GNSS environmental
conditions become challenging. For instance, when a train travels through a partially cov-
ered station, the accuracy of GNSS data is impacted. This is because of less-than-optimal
Position Dilution Of Precision (PDOP) values resulting from satellite geometry, and signifi-
cant multi-path conditions caused by nearby objects close to the GNSS antenna. These fac-
tors significantly impact the accuracy of the GNSS data, reducing its reliability for trajectory
estimation. Therefore, there is a need to improve the accuracy of the trajectory estimation
to ensure the consistency and reliability of the generated point cloud data, particularly in
challenging environmental conditions.

Currently, to address the challenges in trajectory estimation, the RILA system employs a
weighted average method. The method involves conducting multiple runs over the same
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track and averaging the post-processing results to increase the reliability and accuracy of the
final trajectory estimation. The automated weighting process reduces the impact of runs that
differ greatly from the mean. However, this method is effective only if each survey possesses
an acceptable absolute accuracy. If not, the averaged values may lack accuracy, resulting in
discrepancies from the actual true trajectory values. Therefore, integrating SLAM into RILA
system can be a valuable solution to improve the absolute accuracy of each survey, espe-
cially in challenging areas. In other words, SLAM can enhance trajectory accuracy without
requiring additional field measurements. By improving the accuracy of individual surveys,
the overall accuracy of the weighted average method can be significantly enhanced.

Figure 1.4.: RILA System Overview

1.3. Problem Statement

Having identified the potential advantages of using V-SLAM/VI-SLAM algorithms to improve
RILA trajectory estimation, the first research question is formulated as follow:

RQ1. How Monocular Visual (Inertial) SLAM methods can be implemented on the RILA
system to enhance the positional accuracy of trajectory measurements over GNSS challeng-
ing sites, such as train stations?

To answer this research question, Firstly, a literature study is conducted to compare the
available Visual (Inertial) SLAM methods and subsequently, select the suitable candidate ac-
cording to the key requirements of railway applications. Secondly, the trajectory is generated
using the selected VI-SLAM method. To this end, the selected method requires modification
based on our case study to be examined using the collected data from RILA system.

Multiple aiding information can be extracted from the generated SLAM-based trajectory, in-
cluding Zero Velocity Update (ZUPT) which can be used to improve our INS/GNSS integration
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result. Hence, the first sub-research question is formulated as follow:

SUB-RQ1. In which way, the Zero Velocity Update (ZUPT) information extracted from
the SLAM solution can be used during post-processing to limit RILA’s IMU drifts?

Having developed the SLAM-based solution for RILA system, it needs to be validated using
a corresponding ground-truth trajectory. Therefore, the second research question is defined
as follow:

RQ2. How the generated Visual Inertial SLAM solution can be validated using INS-GNSS
data collected by RILA system?

To answer this research question, it is assumed that the output trajectory of the RILA in open
sky condition where the satellite coverage is adequate can be considered as our ground truth.
Furthermore, a problematic trajectory is required to be generated by blocking the GNSS data
for a certain period of time. Finally, the SLAM-based trajectory over the problematic area is
compared with the ground truth.

In the next step, towards our research goal, the identified SLAM-based solution in the first
research question 1.3 is required to be evaluated using different criteria. To this end, the
SLAM-based method is mainly examined in the railway station area, where the condition is
repetitive, low texture and dynamic, to investigate the maximum achievable accuracy.

SUB-RQ2. What is the achievable accuracy of the proposed SLAM approach in dynamic,
low texture, and repetitive corridor-like mapping environments such as Dutch railway sta-
tions?

1.4. Thesis Contribution

This work contributes to the SLAM research domain by (i) providing an extensive overview of
existing techniques, (ii) highlighting the current limitations and challenges of the techniques
for the railway application, (iii) developing a pipeline to adapt the selected SLAM technique
based on RILA system requirement, and (iv) evaluating the proposed technique using a
real-world industrial use case. In summary, the main contribution of this dissertation can be
categorized into the following two subjects:
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Contribution 1. Proposing a SLAM-based technique to improve the trajectory measure-
ments in GNSS challenging areas for the railway application

The following three steps are taken place to achieve the first contribution:

1. Selecting a SLAM technique to improve the positional accuracy of the estimated trajec-
tories in GNSS challenging areas for the railway application.

2. Proposing a comprehensive pipeline to implement the chosen SLAM method for RILA
system.

3. Fine-tuning the result of the execution of the pipeline to enhance the precision and the
repeatability.

Contribution 2. Evaluating the performance of the proposed SLAM-based technique by
defining relevant Key Performance Indicator (KPI) such as accuracy and error values

To achieve the second contribution, the following three steps are considered:

1. Analysing the performance using experimental approaches based on the relevant met-
rics.

2. Exploring the achievable accuracy of the proposed technique considering the railway
environment limitations and challenges.

3. Investigating the impact of the aiding information, extracted from the SLAM result, on
correcting the estimated trajectory.

1.5. Thesis Outline

The remainder of this thesis, as illustrated in Figure 1.5, is structured as follows. Chapter
2 introduces basics of SLAM and V-SLAM and additionally covers the carried out related
work. Chapter 3 seeks to find an answer for the first research question (RQ1) of this study
by implementing a VI-SLAM method for RILA system. Subsequently, Chapter 4 answers the
second research question (RQ2) as well as the first sub-question by investigating the impact
of ZUPT on trajectory improvement. Furthermore, it addresses the second sub-question
of this study by analysing the selected SLAM-based method, using a set of performance
metrics and establishing experiment. Finally, Chapter 5 concludes the thesis and suggests
some research directions for future work.
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Figure 1.5.: A proposed dissertation outline
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2. Background

This chapter aims to give a brief overview of SLAM by defining the terminologies and the con-
cepts relevant to the work. The relevant concepts are further elaborated to gain the required
understanding of the existing SLAM methods and to select the proper method considering
the limitations and challenges of the railway application. Section 2.1 broadly outlines the
three main methods for solving the SLAM problem. Section 2.2 presents the V-SLAM method
and introduces the VO and its different configurations. In section 2.3, the different techniques
as well as the processing methods for INS-GNSS integration are stated. Finally, Section 2.4
reviews the existing works in the area of VI-SLAM and highlights the suitable method for our
study.

2.1. SLAM Paradigms

The SLAM problem has been a significant research focus in robotics for the last few decades.
Various techniques have been proposed to solve the SLAM problem, and these techniques
can be broadly classified into three main paradigms: Extended Kalman Filter (EKF)-based,
Particle Filter-based, and Graph-based SLAM [72].

The EKF-based SLAM approach is the oldest and the most well-known method for SLAM. It
is an extension of the Kalman Filter and is computationally efficient. The EKF-based SLAM
uses a linearized approximation of the nonlinear observation and state models to estimate
the robot’s pose and the map. The Particle Filter-based SLAM method is a non-parametric
approach that uses a set of particles to represent the robot’s state and the map. The Particle
Filter is a popular online SLAM method that can handle non-linear observation and state
models.

In recent years, the Graph-based SLAM has gained popularity as a promising solution to
the SLAM problem. Graph-based SLAM methods represent the environment and the robot’s
trajectory as a graph, where the nodes of the graph correspond to the robot’s poses and the
map features, and the edges correspond to the constraints between them. The graph-based
SLAM approach uses a nonlinear optimization technique to solve the graph’s constraints,
which results in an optimal estimate of the robot’s trajectory and the map. In the next
section, we will focus on the Graph-based SLAM paradigm and its different optimization
techniques used for solving the SLAM problem [66, 72].

2.1.1. Graph-based SLAM

The graph-based approach uses the nonlinear sparse optimization technique to solve the
SLAM problem. The main idea of graph-based technique can be explained as follows [66]:

• The robot poses and landmarks locations are considered as some nodes in a graph.
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• Each consecutive pair of positions xt, xt−1 is connected by an arc which indicates the
observation obtained from the odometry measurement ut at time t.

• The robot pose xt, is connected by some other arcs to all sensed landmarks mi at time
epoch t.

• These steps will be done consecutively for the entire trajectory to construct the graph.

• In this imaginary graph, all arcs can be thought of some soft constraints. The best
estimate of the robot’s trajectory and the environment map can be determined then by
relaxing these constraints.

To clarify the technique mentioned above, the construction of such a graph can be explained
using the following figures. Initially, imagine the robot observes the landmark m1 at the
first epoch. At this point, an arc needs to be added in the graph to connect x1 and m1. To
illustrate these constraints in a matrix format, this step causes a value to be inserted in the
elements between x1 and m1 as shown in Figure 2.1.

Figure 2.1.: Observing the first landmark m1[66]

Now, let us assume the robot moves from its initial pose x1 to x2. This movement can be
represented by an arc between poses x1 and x2 using the odometry measurement u2. Figure
2.2 indicates this motion between x1 and x2 and its corresponding element in the matrix
representation.

Figure 2.2.: Moving from x1 to x2 [66]

Similarly, as indicted in Figure 2.3, these two basic steps can be done successively to con-
struct the graph.
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Figure 2.3.: Construction the graph consecutively, several step [66]

As it can be seen, the constructed graph is sparse, which means every specific node is just
linked to a few numbers of other nodes. Now, let us think of this graph as a kind of spring-
mass model. In this case, solving the SLAM problem can be considered as determining the
minimum energy of this model. To show this, let us now represent the corresponding graph
by the log-posterior of the SLAM problem as follows [66]:

log p(XT , m
∣∣∣ ZT , UT) = const + Σ

t
log p(xt

∣∣∣ xt−1, ut) + Σ
t

log p(zt

∣∣∣ xt, m) (2.1)

It is worth noting that in the graph, two sorts of constraints exist. The first type is the
constraint from each single motion event log p(xt

∣∣∣ xt−1, ut), while the second type is driven

from a sensor observation log p(zt

∣∣∣ xt, m). An arc represents each of these constraints in
the graph. Finally, the SLAM problem is solved by determining the mode of the following
equation [66]:

X∗
t , m∗ = argmin

XT ,m
log p(XT , m

∣∣∣ ZT , UT) (2.2)

As shown in Eq. (2.2), the objective is to find the robot trajectory X∗
t and the map of the envi-

ronment m∗ with which the full SLAM argument log p(XT , m
∣∣∣ ZT , UT) is maximized. Several

optimization techniques are available that can be used to solve this problem as presented in
[66].

As mentioned earlier, scalability is one of the main difficulties for EKF SLAM, which makes it
not an efficient method for large-scale mapping. The chief limiting factor of EKF is its con-
tinuously (and quadratically) growing covariance matrix. On the contrary, the graph-based
techniques do not have such limitations. The necessary memory is linear, and the update
time of the graph is fixed in this method. Moreover, most graph-based methods are natu-
rally offline, which means they are used to optimize the robot’s entire trajectory using the
collected observations [66]. Since this research aims to improve Rila system’s full trajectory
in an offline manner (by batch processing of the observed data), graph-based techniques can
be a suitable SLAM paradigm to be used considering the characteristics mentioned above.
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2.2. Image-based SLAM

In recent years, there has been an increasing interest in exploring algorithms for image-
assisted SLAM, also called Visual SLAM (V-SLAM), due to the intense visual information
extracted from the camera, its simplicity, and cost-efficiency [84]. As [60] stated, the V-SLAM
process’s principal aim is computing a global, steady estimation of the robot trajectory. In
general, the V-SLAM approach can be illustrated by the following expression [19]:

VSLAM = VO + loop closure + global map optimization (2.3)

As it is presented in Eq. (2.3), V-SLAM comprises three main components. The first phase, VO,
is the process of estimating the robot’s trajectory utilizing its on-board camera observations
[60]. The second phase consists in recognizing the already visited environment, known as
loop closure. Finally, the third phase is about applying optimization techniques to compute
a global, consistent map.

In this section, the V-SLAM approach will be discussed briefly. First, the camera modeling
and calibration are illustrated in section 2.2.1. Next, section 2.2.2 describes the various
camera configurations for VO approaches. Following that, section 2.2.3 explains the VO
pipeline. Subsequently, the distinctions between the VO and V-SLAM methods are clarified in
section 2.2.4. Finally, the Visual Inertial SLAM (VI-SLAM) approach is introduced briefly in
section 2.2.5.

2.2.1. Camera Modeling and Calibration

Before describing the fundamentals of V-SLAM approaches, three different frames that are
used in this study have to be specified:

1. The vision frame (v), is a local frame fixed concerning Earth and is also known as the
world frame.

2. The camera frame (c), which defines the position and orientation of the camera.

3. The image frame (I), is a frame describing the pixel coordinates on the image plane.

Furthermore, in vision techniques, mainly the Pinhole Projection Model is used to compute
the 3D motion of the camera from the 2D images. This model is illustrated by Figure 2.4.
Additionally, in this section, most of the notations, equations, and discussions are referred
to [2] unless specified otherwise.

As illustrated by Figure 2.4, a 3D point in the vision frame is denoted by pv and its projection
in the image plane by pI . These two points can be related using the following expression:

kc pI
h = Πpv

h (2.4)

In Eq. (2.4), a 3D world point pv and its corresponding 2D image point pI are given in the ho-
mogeneous coordinates by pI

h and pv
h to represent the projection as a linear transformation.

In addition, Kc is a scale factor introduced due to the unknown depth parameter using a sin-
gle camera. The projection matrix is denoted by Π, which depends on the camera’s intrinsic

16



2.2. Image-based SLAM

Figure 2.4.: Pinhole Camera Projection Model [2, P.36]

and extrinsic parameters. Furthermore, the principle point is indicated by c0 = (u0, v0)
which gives the pixel coordinates of the image plane and the optical axis intersection.

Next, the calibration matrix that describes the transformation among the camera and the
image frames can be defined:

Kc =

Ku f sγ u0
0 kv f v0
0 0 1

 (2.5)

where the focal length and the skew factor are denoted by f and sγ, respectively. ku and
kv indicate the number of pixels per unit distance in different directions, and (u0, v0) is
the principle point coordinates in the image frame. As [60] mentioned, there are several
open-source camera calibration toolboxes developed, which can be used to estimate the
above-defined calibration matrix Kc.

Now, considering a position vector Pv
c and a rotation matrix Cc2v that indicates the rotation

from the camera to vision frame, the relation between camera and vision coordinates for a
physical 3D point may be formulated as:

pv = Cc2v pc + pv
c (2.6)

Knowing that Cc2v is an orthogonal matrix (C−1
c2v = CT

c2v), to project a 3D point from a vision
into an image frame by using a pinhole camera model can be expressed as follows:

Π = Kc[CT
c2v−CT

c2v pv
c ] (2.7)

2.2.2. Monocular, Stereo and RGB-D Setup

A VO system’s primary purpose is to estimate an agent’s trajectory on which a camera is
rigidly mounted. Depending on the application’s key requirements, different camera setups
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for VO implementation may be utilized. Monocular, Stereo, and RGB-D setups, which are
the most popular VO approaches in the literature, are presented here. Moreover, it should
be stated that, various V-SLAM algorithms are developed recently using different camera
models such as monocular [14, 42], stereo [65, 43], RGB-D [25, 30], Omni-directional [32, 55]
cameras.

Monocular

The monocular configuration is the most straightforward approach because just one camera
is necessary to perform VO. In this method, the 3D scene is projected on the image plane,
causing the loss of depth data. This means the obtained results with monocular implemen-
tation have the scale ambiguity. However, it is possible to determine the poses and the 3D
environment’s model by combining several frames from a single camera [19]. In the monoc-
ular approach, a minimum of three consecutive images is required to estimate the motion.
In the first frame, some features need to be detected. Next, those features are re-observed,
matched, and 3D points are triangulated in the second frame. Finally, the motion of the
camera can be determined in the third frame. Moreover, the absolute scale can be obtained
by fusing another aiding sensor, such as an IMU, LIDAR sensor, or a predefined item in the
scene[19]. Figure 2.5 shows an illustration of a monocular VO system.

Figure 2.5.: An illustration of monocular VO system. P indicates the physical 3D points in
vision frame, C gives the camera poses and T denotes the relative transformation between
consecutive epochs. Furthermore, the purple line shows the trajectory of the camera. [84]

.

Stereo

Second, the stereo systems comprise two cameras. These cameras are separated by a fixed
span identified as the baseline. In this setup, the depth information may be determined by
triangulation at each epoch, using the same observed features by the left and right cameras.
Thus, only two sequential frames are needed to evaluate the motion with stereo systems. In
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2.2. Image-based SLAM

the first frame, the depth is computed by triangulation, and then the movement is calculated
in the second one [19]. An illustration of a simple stereo geometry is given by Figure 2.6.
Here, f indicates the focal length, Z is the depth. In addition, C1 and C2 are the center of
lenses, x1 and x2 are the image coordinates in the left and right cameras, respectively [62,
P.112].

Figure 2.6.: An illustration of a simple stereo geometry [62, P.112]

The following expressions can be then derived, considering the equivalency condition be-
tween the triangles △Wx1x2 and △Wc1c2 :

Z + f
Z

=
x1 + x2 + B

B
(2.8)

Rearranging Eq. (2.8) gives the depth Z :

Z =
f B

x1 + x2
(2.9)

In Eq. (2.9), the disparity is denoted by (x1 + x2). If the baseline distance B between two
cameras and their focal length f are known for a given stereo model, the depth information
Z can be calculated. It should be remarked that the depth and disparity are inversely pro-
portional. This shows an object closer to the camera has a larger disparity compared to a
farther one [62].

Several studies have been conducted on the basis of a stereo-based method. This method
is prevalent and widely used in various applications since it can provide an absolute scale
without the need for an additional aiding sensor to be integrated. Nevertheless, the stereo
systems’ performance directly depends on the baseline distance between the two cameras.
This means, if the distance to the observed landmarks is much greater than the baseline, the
triangulation between the two cameras cannot be performed precisely, and the stereo setup
demotes to the monocular one. This can be considered as one of the main limitations of
stereo VO configuration [60, 19].
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RGB-D

RGB-D cameras are the sensors that collect RGB images together with their corresponding
depth details. As [25] stated, RGB-D cameras rely on either active stereo or time-of-flight
sensing to determine the depth. Namely, the Kinect, developed by Microsoft, is a well-
known device that uses this principle to generate 3D point cloud data. Moreover, these
cameras are capable of producing 2D and 3D information simultaneously, making them
an appropriate sensor to be used to solve a robot’s motion estimation problem. In recent
years, RGB-D VO approaches have been meticulously investigated, which provide high-
accurate assuring results. Additionally, these methods can produce RGB and depth images
concurrently. Consequently, in contrast to monocular VO, they do not suffer from scale
ambiguity. Nevertheless, one of the RGB-D VO methods’ main concern is their reliability
that prevents them from being used widely in fully autonomous robot applications. They
may fail in various challenging environments since the sensor data is processed differently
by these methods [18].

2.2.3. Visual Odometry (VO)

According to [60], VO is the method of calculating a robot’s motion only using its on-board
camera observations. The phrase, VO, is selected due to its relation to wheel odometry
working principle, which, by integrating the number of its wheels turns, gradually calcu-
lates a vehicle’s movement. Similarly, VO works by incrementally estimating the vehicle’s
position by following the changes generated by motion in its on-board cameras’ images. It
is worth noting that a semi-static well-textured scene with adequate lighting is essential for
VO methods to work efficiently. Furthermore, in order to estimate the motion correctly, the
subsequent images should have sufficient scene overlap.

VO typically consists of three main stages to calculate the robot trajectory based on a series
of images captured by its on-board camera. The first stage defines matches among two
consecutive images and during the second stage, outliers are eliminated. Finally, in the last
step, the motion between the two captured images is estimated [2]. The illustration of these
three stages is given by Figure 2.7, which is explained as follow:

Establishing Matches

In this stage, two consecutive images are compared by matching their identical characteris-
tics. Whether the features detection and tracking are needed, this step may be categorized
as either feature-based or direct approach [33].

Feature-based methods The feature-based methods, also known as indirect methods, de-
tect and track a limited set of critical features between successive frames. In this way, by
determining and minimizing sparse feature points’ re-projection errors, the relative motion
among two images is estimated. In other words, the main concept behind feature-based
methods is to break the problem into two consecutive stages; firstly, from the image, a
collection of features is detected. Secondly, the camera poses and scene geometry can be
computed by using these feature observations [17].
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Figure 2.7.: A Block diagram showing the Visual Odometry main steps.

In this method, the feature detectors are used to search and select salient features in the
image, like corners, edges, and blobs. In fact, depending on the requirements, a trade-off
between the feature quality and the required computational resources needs to be made
in order to choose suitable feature detectors [2]. For example, the Shi-Tomasi [64], Haris
[21], and Feature from Accelerated Segment Test (FAST) [56] detectors are some of the most
popular algorithms which are used broadly.

Consequently, after detecting the features in the image, they need to be uniquely distin-
guished using feature descriptors. Those descriptors that are invariant against various vari-
ations such as viewpoint, scale, illumination, and noise are known to be the most stable
descriptors. There are several descriptor implementations where some of the most common
are: the Scale Invariant Feature Transform (Scale Invariant Feature Transform (SIFT)) [37],
Binary Robust Independent Elementary Features (BRIEF) [8] and (Oriented FAST and Rotated
BRIEF (ORB)) [57]. Several implementations are based on different combinations of detec-
tors and descriptors, which can have diverse performances. In other words, the variety of
a detector-descriptor should be chosen such that they function together optimally consid-
ering the environment model and the application’s requirements. [23] and [27] intensively
compare and assess several varieties of feature descriptors and detectors [2, 19].
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Finally, in this step, the features with similar characteristics need to be matched or tracked
[2]. As [84] stated, the term feature tracking is used when the same features are followed
among two adjacent images and is helpful when there are little changes in the motion. On
the other hand, feature matching involves selecting features separately and matching them
across several frames. It would be specifically beneficial if notable variations in the features’
appearance occur due to tracking them over more extended sequences. An illustration of
feature matching applying SIFT, Speeded Up Robust Features (SURF) and BRIEF descriptors
is shown in Figure 2.8.

Figure 2.8.: An example of feature matching methods. (a) shows SIFT, (b) SURF and (c)
BRIEF matches [84, P.306]

.

Direct methods: In contrast to feature-based methods, in the direct approaches, also known
as appearance-based methods, the goal is to minimize a photo-metric error among cor-
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responding pixels in consecutive images using only the sensor photo-metric observations
[19]. Direct methods can be classified further into three different approaches as [83] men-
tioned—first, the dense methods [45] which utilize all image pixels information. Second, the
semi-dense approaches [17] which use only pixels with sufficient gradient, and finally, in the
sparse method [16], the sparsely selected pixels are considered. Furthermore, by minimiz-
ing the photo-metric error using non-linear optimization techniques, the pixel depths and
camera positions can be computed [83].

It has to be pointed out that the optical flow technique is the principal theory behind the
direct method. Within this technique, the intensities of neighboring pixels are used to de-
termine the displacement of intensity patterns from one frame to another. In this way, by
applying the optical flow technique, the relative motion between objects and a camera can be
computed. In other words, the value of optical flow indicates the amount of pixel’s intensity,
which has moved in consecutive images [19]. Figure 2.9 shows the illustration of the optical
flow matching technique between two consecutive images.

Figure 2.9.: Optical flow matching technique [2, P.39]

As [84] mentioned, the Intensity Coherence assumption is applied to determine the optical
flow at all pixels. This assumption says that the intensity of a point projected in two consec-
utive images remains fixed (or roughly fixed). Considering this, the optical flow constraint
equation may be derived:
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∂I
∂x

vx +
∂I
∂y

vy +
∂I
∂t

= 0 (2.10)

In Eq. (2.10), the optical flow components are shown by vx and vy. Additionally, ∂I
∂x , ∂I

∂y

and ∂I
∂t are the image gradients along x, y and time respectively. [82] reviewed a number of

various developed algorithms for solving the optical flow problem utilizing the described
motion constraint equation [84].

In general, the feature-based VO is more robust for illumination and viewing changes be-
tween sequential images compared to the direct approaches due to their advanced feature
descriptors. Nevertheless, detection and matching features require extra computational re-
sources, which significantly restricts the number of retained features in the system. There-
fore, the recreated 3D world models are relatively sparse and often can not be used directly
in practical applications [83].

On the other hand, because it is possible to extract more information from the scene, the
direct methods in a low-texture environment are more robust and can provide much denser
3D point clouds [83]. However, as [33] stated, because the direct methods utilize the entire
image information, they are computationally quite expensive and much slower compared
to the feature-based approaches. Furthermore, the direct methods are very susceptible to
un-modeled artifacts such as camera auto exposure and rolling shutter effect because of the
direct image adjustment formulation. More specifically, in practice, the principle of Intensity
Coherence is not always valid, significantly decreasing the efficiency of the direct method
when lighting conditions change quickly [83].

Outlier Removal

As can be seen in Figure 2.7, outlier removal is the second phase of the VO process. In this
phase, incorrect matches, known as outliers, mostly because of the noisy sensors, changes
in viewpoint and lighting, need to be excluded [84]. In order to address this, the Random
Sampling Consensus (Random Sampling Consensus (RANSAC)) is frequently applied. An
example of the RANSAC method is illustrated in Figure 2.10 and its step by step description
can be found in [84]. Furthermore, the Epipolar geometry constraint can be used to imple-
ment the RANSAC algorithm for the outlier removal process as will be discussed further in
this section [2].

Figure. 2.11 illustrates the geometrical Epipolar constraint. In this figure, pI
k−1 and pI

k
indicate the corresponding homogeneous image points seen from two consecutive locations
of the camera at epochs k − 1 and k. Therefore, as [22] addressed, ck−1, ck, pI

k−1, pI
k and the

correspondence 3D point pv need to be located in an identical plane known as the Epipolar
plane. Considering this, the Epipolar constraint equation can be defined by [2]:

pI
k

T
Fc

k pI
k−1 = 0 (2.11)

In Eq. (2.11), the Fundamental Matrix at epoch k is denoted by Fc
k . This Fundamental Matrix

represents the transformation of the camera between epochs k − 1 and k, together with the
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Figure 2.10.: An example of RANSAC algorithm. The outliers are indicated by the points
which are located outside the dash lines [19].

Figure 2.11.: An illustration of Epipolar geometry constraint. pv and pI deonte a physical
3D point in the vision frame and its projection in the image plane. I(k−1) and Ik are

images at epochs k − 1 and k respectively. ck−1 and ck also show the camera locations at
time (k − 1) and k [2, P.41]

internal camera calibration parameters. Besides, by each pair of homogeneous image points,
a constraint can be added for the fundamental matrix calculation. According to [22], the
normalized 8-point method may be implemented in combination with the RANSAC algorithm
to determine Fc

k . To put it in another way, a minimum of 8 pairs of image points must be
rightly matched to compute the fundamental matrix Fc

k . The other points that do not meet
the geometrical Epipolar constraints defined by Eq. (2.11) can be counted as outliers and
eliminated.

Similarly, as shown in [2, P.41], for the calibrated camera case, the geometrical Epipolar
constraint can be rewritten as:

pI
k

T
Ec

k pI
K−1 = 0 (2.12)
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Where,

• pI
k = pI

k(K
T
c )

−1,

• pI
k−1 = K−1

c pI
k−1,

• Kc is the known camera calibration matrix,

• And, Ec
k indicates the Essential Matrix which is a simplified version of the fundamental

matrix for the case when the camera calibration is given.

Since the camera calibration matrix is known, in this case, at least, five pairs of correctly
matched points are required to determine Ec

k. As [46] pointed out, the 5-point algorithm
may be employed here for the essential matrix estimation. In other words, if a minimum
of five correct matches is observed, Ec

k may be calculated directly. Furthermore, the system
described by Eq. 2.12 is over-determined if more than five correct matches are obtainable. In
this case, the least square minimization method can be applied to solve the problem, giving
more robust results [2]. An illustration of 2D-to-2D motion is demonstrated by Fig 2.12.

Figure 2.12.: Examples of 2D-to-2D motion [59].

Motion Estimation

According to [60], motion estimation is the main calculation phase conducted for each image
in a VO approach. More specifically, after eliminating the outliers and estimating the essen-
tial matrix, the camera motion (2D to 2D) among every consecutive image may be computed
using the earlier steps established matches. As mentioned before, for the calibrated camera
case, the essential matrix may be determined by Eq. (2.12). Following that, as [22] described,
this matrix may be decomposed into two parts; a rotation matrix and a displacement vector
[2]:

Ec
k =

((
pck

k−1,k

)
×
)

Ck−1,k (2.13)

Where, the rotation matrix and the translation vector between epochs k− 1 and k are denoted
by Ck−1,k and pck

k−1,k respectively. Moreover,
((

pck
k−1,k

)
×
)

expresses the skew-symmetric

matrix of pck
k−1,k.

Finally, as [60] stated, after concatenating all these single displacement vectors and rotation
matrices, the trajectory of the camera may be estimated using Eq. (2.14) and Eq. (2.15) [2].
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Cck2v = Cck−12v CT
k−1,k (2.14)

pv
ck
= pv

ck−1
+ Cck2v pck

k−1,k (2.15)

Scale Estimation

As stated earlier, to determine an image sequence’s trajectory, subsequent transformations
need to be concatenated. In order to do this, the absolute scales are also necessary, which
can be obtained using an extra aiding sensor such as an IMU. However, as [60] addressed,
instead of computing the absolute scale, which is not possible from two images, the relative
scales for successive transformations can be estimated using Eq. (2.16).

r =

∥∥∥Pk−1,i−Pk−1,j

∥∥∥∥∥∥Pk,i−Pk,j

∥∥∥ (2.16)

Where, Pk,i and Pk,j are two 3D points in the vision frame at time epoch k. Additionally,
to achieve a more robust estimation, the scale ratios for several points are calculated, and
the mean is considered alternatively as the relative scale. Following that, using the obtained
distance ratio r, the translation vector can be scaled [19, 60].

Bundle Adjustment

Bundle Adjustment (Bundle Adjustment (BA)) is another important concept that should be
explained in this section. As mentioned above, to reconstruct the trajectory during the VO
process, successive transformations that each have their own uncertainties must be concate-
nated. As a result, the agent’s pose uncertainty depends on the uncertainty introduced by
all former transformations, as shown in Figure 2.13. To minimize these uncertainties, BA is
a common approach that can be applied. In other words, BA is a nonlinear least-squares
optimization used to optimize the camera poses and 3D features coordinates observed over
various frames. The mathematical representation of minimizing the image re-projection
error function in BA is shown below [60, 19]:

argmin
Xi ,Ck

∑
i,k

∥∥∥pi
k−g(Xi, Ck)

∥∥∥2
(2.17)

Where,

• Xi indicates the ith 3D landmark.

• The ith 2D point of Xi measured in the kth image denoted by pi
k.

• And, g(Xi, Ck) shows the 3-D landmark Xi re-projection according to camera pose Ck.
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BA is a critical process to optimize the obtained accuracy, mainly when the robot detects a
loop closure (when returns to an earlier visited environment). This means if the robot’s ob-
served scene has features that have been seen before, the accumulated drifts of the trajectory
can be eliminated by using the already known location of the 3D features [2].

Figure 2.13.: The uncertainty in camera pose at epoch k directly related to its uncertatity at
the previous epoch k − 1 (shown as the black solid ellipse) plus the produced uncertainty

by the transformation Tk,k−1 (indicated as the gray dashed ellipse) [19].

2.2.4. Visual Simultaneous Localization and Mapping (V-SLAM)

In contrast to VO, which aims to estimate the robot path incrementally and only cares about
its local consistency, V-SLAM’s principal objective is to acquire a global, consistent estimation
of the robot trajectory. To do this, V-SLAM needs to build and maintain the environment map
even for the case where localization is the only objective. In fact, keeping track of a map is
necessary to detect loop closure. It has to be notified that loop closure is done by correlating
the observed features and the robot positions, which can significantly reduce the drift in
both the camera trajectory and environment map. To put it another way, by observing the
features that have already been observed, V-SLAM integrates this constraint into the map to
improve the camera path accuracy [60].

To reconstruct the 3D map from 2D features within the V-SLAM approach, the triangulation
process is needed. As shown in Figure 2.14, within the triangulation process, the 3D location
of a feature p̂v needs to be computed by crossing back-projected rays from the corresponding
2D image points at two consecutive image frames (p̃I

k−1 and p̃I
k) [2]. According to [60],

in absolute conditions, these back-projected rays should intersect each other in a single
point p̂v; though, they almost never crossed due to calibration errors, camera model, the
processing errors, and the noise in the image. As a result, from all intersecting rays, the
point at a minimal distance in the least square senses can be chosen as a solution.
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Figure 2.14.: Illustration of the triangulation process within V-SLAM [2]

Keyframe-based

Generally, V-SLAM methods can be classified into two distinct implementations. The first
implementation is the filtering-based V-SLAM, which is centered on creating a probabilistic
3D feature map that represents the estimation of the camera’s current position and the
reconstructed 3D feature map in the vision frame. This method uses Bayesian filters, for
example the Kalman filter or the Particle Filter, to estimate the state variables (the camera
pose and 3D features) as the camera moves [2].

The second implementation is the non-filtering methods, also known as keyframe based
methods. In this approach, the optimization of global BA is maintained for the selected
keyframes. In other words, reconstructing the 3D map by choosing some selective frames is
the central concept behind the keyframe based method. These frames need to be selected so
that using the minimum number of correspondences between two images, the 3D map can
be reconstructed. In this way, the reconstruction is just performed if there is a significant
shift in the scene. The main advantage of keyframe based V-SLAM is that its computational
expense decreases significantly because only a small number of frames are processed during
the map reconstruction stage. The second advantage of this method is that it assures an
adequate baseline for triangulating among the two selected images. To make this more
precise, in the case of straight movement, when there is no distinguished variation in the
observed scene, the time interval between two selected keyframes is longer. On the other
hand, if the camera turns, the observed scene would change rapidly, and this would require
a quick change of keyframes to consider the new features observed by the camera [60, 2].

Figure 2.15.: An example of Keyframe selection process [2]
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Figure 2.15 shows an example of the keyframe selection process. In Figure 2.15 , the nth

keyframe is shown by K fn. Additionally, Ik depicts the captured image at time epoch k.
During this process, after selecting K fn as a keyframe, the number of corresponding fea-
tures between K fn and Ik+1 is determined. If the number of correspondences is less than a
predefined threshold, Ik+1 would be chosen as the next keyframe; otherwise, the next cap-
tured image needs to be examined. It is worth mentioning that, although only keyframes
are used for 3D map reconstruction, the camera trajectory is estimated for all the frames
given the location of the previously reconstructed 3D features. Because of this, BA, which is
already explained in section 2.2.3 is usually implemented as a refinement process.

It has to be noted, the matching step in V-SLAM, in contrast to VO, where the matching is
only established between 2D features, includes the 3D reconstructed features. This means
that aside from 2D to 2D correspondences introduced earlier for VO, the V-SLAM algorithm
utilizes the 3D to 3D and the 3D to 2D matching methods [2]. For 3D to 3D correspondences,
the camera motion is determined by estimating the aligning transformation of the two sets
of 3D features. This can be done by using Eq. (2.18) [60]:

argmin
Tk

∑
i

∥∥∥X̃i
k−TkX̃i

k−1

∥∥∥ (2.18)

where Tk is the transformation, the ith feature is shown by subscript i . The homogeneous
coordinates of the 3D features are given by X̃i

k and X̃i
k−1.

On the other hand, for 3D to 2D motion estimation, the transformation Tk needs to be
determined using the 3D correspondence Xk−1 and the 2D feature pk. To estimate the trans-
formation Tk that minimizes the image reprojection the following equation can be used [60]:

argmin
Tk

∑
i

∥∥∥pi
k− p̂i

k−1

∥∥∥2
(2.19)

In Eq. (2.19), Tk is the transformation, the reprojection of the 3D feature Xi
k−1 into the image

Ik using the transformation Tk is denoted by p̂i
k−1. This problem is known as perspective from

n points(PnP) and several solutions are available in the literature which can be used to solve
it [60].

In general, as addressed by [46], the 3D to 2D motion estimation that minimizes the image
reprojection error has higher accuracy compared to 3D to 3D methods, which is based on
minimizing the feature position error. This makes it the most popular approach for the
motion estimation process [60].

2.2.5. Visual Inertial Simultaneous Localization and Mapping (VI-SLAM)

As described earlier, in visually distinguishable areas, V-SLAM can produce an accurate trajec-
tory concurrently with the environment’s 3D map. However, most of the V-SLAM algorithms
are very sensitive to occlusions, motion blur, and illumination changes. Additionally, for the
monocular V-SLAM case, the obtained result is up to the scale. On the other hand, inertial
sensors, such as IMU, can give high-frequency self-motion data. Inertial sensors are robust
against the aggressive motion and can provide the motion’s absolute scale, but their output
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data is noisy, diverging very quickly. Considering the characteristics of V-SLAM and inertial
sensors, it is possible to significantly boost both the algorithm’s robustness and accuracy by
fusing the inertial sensor measurements to V-SLAM in a tightly coupled manner [53].

The benefit of integrating the visual and inertial sensors is most apparent in a monocular
V-SLAM system, which can solve the scale ambiguity issue and may reduce the accumulated
drifts over time. In other words, an inertial sensor, like IMU, may be used to determine
the absolute scale for the monocular V-SLAM algorithm or even to improve the accuracy of
the system by fusing the obtained data from both the camera and the IMU [19]. Since this
research’s main objective is to enhance the Rila trajectory accuracy in the GNSS challenging
area using one of its attached cameras in a monocular setup, the VI-SLAM algorithm is chosen
as the main pipeline for this study. Therefore, a literature study is conducted to higlights
the most popular and suitable monocular VI-SLAM algorithms for railway applications in
section 2.4.

2.3. INS-GNSS Integration Methods

There are various integration strategies used for INS-GNSS integration, each with its own
advantages and limitations. One significant advantage of the integration of INS and GNSS is
their complementary nature [3, 41]. According to [3], GNSS systems are more stable in the
long-term, meaning their errors are effectively time-invariant with homogeneous accuracy.
On the other hand, INS short-term errors are relatively small, but they degrade rapidly and
are unbounded, making external aiding necessary. Therefore, GNSS systems can be used as
external aiding to bound INS errors. In other words, INS sensors provide accurate short-
term data with a high rate and can be used to interpolate GNSS trajectory. Additionally,
INS sensors supply data with continuity, while GNSS is subject to outages caused by signal
blocking or interference. High-precision inertial sensors such as tactical or superior grade
can be used to bridge GNSS outages. Moreover, INS systems provide a complete navigation
state, including position, velocity, and attitude, while a single GNSS receiver cannot supply
angular information.

To integrate GNSS and INS systems, there are three commonly used integration strategies:
loosely coupled integration, tightly coupled integration, and ultra-tight integration. How-
ever, as stated in [41], ultra-tight integration is implemented only by hardware manufactur-
ers. Therefore, this section focuses on the other two techniques which are briefly explained
in the next sub-sections.

2.3.1. Loosely Coupled Kalman Filter

The Loosely Coupled Kalman Filter (LCKF) is a common approach for integrating GNSS and
INS data. In this approach, the GNSS and INS data are processed independently and then
combined in a Kalman filter. The Kalman filter estimates the state of the system (position,
velocity, attitude) based on the measurements from both the GNSS and INS systems. The
LCKF has been widely studied and applied in many applications, including airborne, ground
vehicle, and pedestrian navigation systems [81, 3, 41]. Figure 2.16 represents the integration
scheme of this approach.
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Figure 2.16.: The Loosely Coupled Integration Scheme [3]

One advantage of the LCKF is that it can handle different measurement update rates for GNSS
and INS data, which can be useful for systems that require high update rates. Additionally,
the LCKF allows for easy implementation and tuning of the filter parameters, making it a
practical solution for real-time navigation systems. However, the LCKF has some limitations,
including the need for accurate calibration of the sensor errors, and the fact that it does not
fully exploit the complementary nature of GNSS and INS data. As a result, the accuracy of
the LCKF can degrade over time, especially in challenging environments [81, 3, 41].

2.3.2. Tightly Coupled Kalman Filter

The Tightly Coupled Kalman Filter (TCKF) is another approach for integrating GNSS and
INS data. In contrast to the loosely coupled method, the tightly coupled method directly
incorporates the raw measurements from GNSS into the filter, rather than using the GNSS
receiver’s position solutions as input to the INS. Figure 2.17 shows the integration scheme
of this approach. It can be seen that the raw measurements from GNSS are not processed in
a separate filter but instead are directly integrated into a single filter. This allows for a more
efficient and accurate integration, as the GNSS measurements are incorporated more directly
into the filter, leading to better tracking of the system’s state. The tightly coupled approach
has been shown to provide higher accuracy than the loosely coupled method, particularly
in challenging environments with high levels of multi-path and signal interference [49, 50,
3, 41].

One of the challenges with the tightly coupled approach is the increased computational
complexity of the algorithm due to the direct use of the raw GNSS measurements. This
can make the algorithm more difficult to implement in real-time applications with limited
processing power. To overcome this, various techniques have been proposed, such as the use
of adaptive filtering methods, which adjust the filter parameters based on the level of GNSS
signal strength and quality [49]. Additionally, the use of efficient hardware and software
architectures, such as Field Programmable Gate Arrays (FPGAs) and graphics processing
units (GPUs), can help to accelerate the processing speed of the algorithm [50]. Overall,
the tightly coupled Kalman Filter provides a powerful and accurate method for integrating
GNSS and INS data, although it requires careful consideration of computational complexity
and hardware resources in order to implement in real-time applications.
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Figure 2.17.: The Tightly Coupled Integration Scheme [3]

2.3.3. Processing Methods and Directions

Different methods exist to process GNSS data, such as differential GNSS and Precise Point Po-
sitioning. In the RILA system, the latter technique is utilized. According to [20], differential
GNSS is a technique that reduces the error in GPS-derived positions by using additional data
from a reference GNSS station at a known position.

Furthermore, in RILA system during post-processing it is possible to run GNSS data both
forwards and backwards in time, and independent forward and backward solutions are au-
tomatically combined to maximize accuracy. This combined method of processing achieves
different solution types, such as fixed or float solutions, for different parts of the survey,
depending on factors like baseline length, satellite geometry, and the number of satellites
available. In the combined solution, inverse variance weighting is applied to ensure that the
direction with the lower estimated errors receives the most weight in the combined trajec-
tory.

2.4. Literature Review

VI-SLAM that integrates the visual and inertial data for localization and mapping has become
more attractive for different applications. As mentioned earlier, to improve the RILA tra-
jectory accuracy in the GNSS challenging areas, which is the main objective of this research,
VI-SLAM is selected as the principal pipeline. Generally, VI-SLAM algorithms may be classified
into two categories: filtering-based and optimization-based approaches. [12] is listed and
shown the state-of-the-art VI-SLAM approaches, including the fusion types, camera setups,
and their possible applications. In this section, some of the most popular state-of-the-art
VI-SLAM methods are reviewed. Finally, some of the railway application related works under
the SLAM framework are presented.
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2.4.1. Filtering Based Methods

Considering the sensor fusion methods, filtering-based VI-SLAM algorithms may be catego-
rized as loosely coupled and tightly coupled. In the loosely coupled approaches, the inertial
sensor data and the observed images are processed separately before being integrated [13].
In contrast, in the tightly coupled algorithms, the camera’s state is fused with IMU and in-
serted into the motion and observation equations to compute the full state. The tightly
coupled method has more computational complexity; however, due to computer technology
developments, the tightly coupled processes currently form the main research focus and are
more popular [12].

One of the classical filtering based VI-SLAM system is the Multi-State Constraint Kalman
Filter (Multi State Constraint Kalman Filter (MSCKF)) [40]. In this method, a measurement
model is derived to represent the geometric constraints when a static feature is detected
from several camera positions. In MSCKF algorithms, the SIFT feature is extracted, and 30
camera poses are maintained in the filter state. In this method, the 3D feature position is not
inserted in the state vector, causing the computational complexity to be linear in the number
of features. Due to this, it is suitable for large-scale real-time mapping applications. In [8],
MSCKF and the Sliding Window Filter (Sliding Window Filter (SWF)) are compared and it is
proved that the latter is more precise and less sensitive to the tuning parameters [12, 13].

Robust Visual Inertial Odometry (ROVIO) is a monocular visual-inertial algorithm pre-
sented in [6]. In this approach, image patches’ pixel intensity errors are directly utilized to
obtain precise tracking performance together with a high level of robustness. In this model,
the FAST corner is used for establishing feature matches. After matching, the multilevel
patch features’ tracking is linked to the EKF during the update phase, using intensity errors.
It should be mentioned that within this algorithm, a pure robocentric method is used to
estimate the location of 3D landmarks concerning the current position of the camera. In
addition, there is no need for any initialization procedure in this framework because of the
robocentric, inverse-distance landmark parameterization, making it an effective power-up-
and-go state estimation system. In [6], the authors show how this algorithm can be applied
for highly dynamic hand-held experiments and they evidence its efficient functionality in
the control loop of a multi-rotor unmanned aerial vehicle.

In robotics, one of the principal challenges is achieving a robust and accurate state estima-
tion. Through obtaining precise pose estimation using a prior map, the system applicability
can be significantly improved [12]. In order to attain this goal and achieve an exact and
drift-free motion estimation, [61] developed a robust and accurate visual-inertial system to
localize against a prior map. This presented algorithm in [61], called An open Framework
for Research in Visual-inertial Mapping and Localization (MAPLAB), is an open-source
visual-inertial pipeline to create, process and handle multi-session maps. This algorithm is a
ready-to-use VI-SLAM system employed as a tool for visual-inertial batch optimization, loop
closing, and map merging.

In addition, within the MAPLAB framework, a new tool called Robust Visual Inertial Odome-
try with Localization Integration (ROVIOLI) has been developed. It consists mainly of ROVIO
with localization integration, applied as a front-end SLAM tool. Furthermore, MAPLAB is
one of the first VI-SLAM frameworks that can be utilized for a broad diversity of applications
in a single system. It is tested extensively for several cases, such as micro aerial vehicles,
autonomous cars, walking robots, and autonomous underwater vehicles.
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2.4.2. Optimization Based Methods

The optimization-based VI-SLAM approach has recently become more popular due to com-
puter technology developments. Within this approach, the entire SLAM framework is splitted
into two components; the front-end SLAM that is responsible for constructing the map and
the back-end SLAM that optimizes the pose estimates. For the back-end SLAM section, dif-
ferent optimization tools are usually used, namely g2o [34] (an open-source framework for
graph-based nonlinear error functions optimization) and ceres-solver [26] ( which is a C++
library to model and solve complex optimization problems). Below, some of the most pop-
ular state-of-the-arts optimization-based VI-SLAM are briefly reviewed [12].

Open Keyframe-based Visual-Inertial SLAM (OKVIS) [35] is a keyframe optimization-based
sliding window VI-SLAM system that integrates the IMU and landmark re-projection error
terms into a cost function to be optimized. In this algorithm, the former keyframes are partly
marginalized to keep a limited-sized optimization window in order to make a real-time op-
eration possible. The authors showed that the global coherence of the gravity direction and
robust outlier removal for the IMU motion model could be achieved by using their proposed
method. Nonetheless, all the advantages of keyframe based nonlinear optimization are also
achievable within their approach. Furthermore, by analyzing the acquired data from a stereo
visual-inertial system, it is shown that their method can provide more accurate and robust
real-time results compared to vision-only or loosely coupled approaches.

[44] proposed a novel algorithm, known as Visual Inertial Oriented FAST and Rotated
BRIEF Simultaneous Localization And Mapping (VI-ORB-SLAM). This algorithm integrates
the monocular camera with the inertial sensor in a tightly coupled manner. This algorithm
contains ORB sparse as a front-end SLAM component, whereas its back-end SLAM is based on
graph optimization techniques. The proposed approach can also close the loop for trajec-
tory estimation if the sensor revisits the same environment and hence, this allows achieving
zero-drift localization in contrast to VO methods where drift grows unlimited. As men-
tioned earlier, the developed algorithm focuses on the monocular camera setup to recover
the well-known scale ambiguity issue. A novel IMU initialization approach is employed
in their proposed VI-SLAM system to estimate the scale, velocity, gravity direction, and the
accelerometer and gyroscope biases in a few seconds accurately.

[44] showed that the VI-ORB-SLAM system is able to reach a standard scale factor error of 1%
with centimeter precision on several micro-aerial vehicle public data-sets. Furthermore, by
comparing their method with some of the state-of-the-art visual-inertial systems, it is proven
that VI-ORB-SLAM has greater accuracy because of map reuse and no drift accumulation.

As [10] stated, ORB-SLAM3 is the system which can perform V-SLAM, VI-SLAM, and multi-
map-SLAM for several camera setups (monocular, stereo, and RGB-D) using different lens
models (pinhole and fisheye). ORB-SLAM3 is a tightly-coupled feature-based VI-SLAM method
entirely built upon Maximum a Posteriori (Maximum a Posteriori (MAP)) estimation, even
within the IMU initialization stage. According to the authors, their developed system can be
used robustly in real-time for small and large scale applications, achieving 2 to 5 times more
accurate result compared to the previous cutting-edge methods.

It is worth mentioning that ORB-SLAM3 is built on Oriented FAST and Rotated BRIEF Si-
multaneous Localization And Mapping (ORB-SLAM) [42, 43] and VI-ORB-SLAM [44] which are
the first visual and visual-inertial approaches that used the full profit of data association to
reach drift-free localization in previously mapped environments. In comparison with those
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methods, one of the main novelties of ORB-SLAM3 is the possibility of multiple-map data as-
sociation, making it also a suitable system for railway applications. Thus, ORB-SLAM3 is able
to match and use the element coming from previous mapping runs in the bundle adjust-
ment phase. In other words, ORB-SLAM3 has the capability to reach the actual aim of a SLAM
system: creating a map of the environment to be saved and used later (not even necessarily
from the same mapping season) for obtaining accurate localization.

2.4.3. Railway Application Related Works

[24] introduced a SLAM framework for path constrained motion. A novel SLAM strategy for
moving platforms in case of tightly curve-constrained, i.e., 1-D motion. Their proposed filter
is verified using real-world railway survey data to confirm that it is capable of acquiring the
result with a position error of less than 1m and a precision of around 10cm for iterative
mapping of railway tracks. In [80], visual track recognition is performed based on edge
extraction with a known track gauge width. In their approach, only the direction that a
train turns at switches is determined and not a continuous position estimate of the vehicle.
The system is examined with real data from test runs with different weather conditions in
various places and it is confirmed to be very robust for track-selective self-localization of
railroad vehicles [75].

Moreover, [36] proposed a monocular vision-based localization algorithm for railway ap-
plications with different speed conditions. This approach derives keyframes and reference
frames and uses only a few useful features to represent each keyframe. Their test outcomes
confirm that their proposed method can reach 88.8% precision with 100% recall under an
acceptable range of deviation from the ground truth, which outperforms SeqSLAM [39], a
localization and mapping algorithm benchmark. In [4] a complete vision-based odometry
system for rail vehicles is developed. This method converts a front-facing camera image
into a birds-eye view of the track to determine the two successive frames’ correspondences.
The drawback of this framework is that in low-texture environments or repeated pattern
conditions, which is frequently the case for railway environments, this approach might fail
[75].

In addition, [75] reviewed the applicability, challenges, and constraints of the cutting-edge
visual and visual-inertial odometry using different camera configurations for railway appli-
cations. Multiple data-sets recorded in industrial, urban, and forest environments are used
and evaluated in their review. Based on their analyzed results, the stereo visual-inertial
odometry outperforms other methods for rail vehicle’s applications, as it can provide an
accurate and robust motion estimation due to its complementing sensor modalities.
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This chapter aims at addressing the first research question of this study. This question
enquires to define key requirements for railway application. These key requirements are
further used to choose the most suitable SLAM method from the previously reviewed algo-
rithms in chapter 2. Furthermore, a pipeline is presented to implement the selected method
for RILA system to improve the positional accuracy of the estimated trajectory in area with
poor GNSS coverage.

To this end, section 3.1 introduces the key requirement and the selected method. Section 3.2
discusses some preliminaries regarding the frame definition and the system calibration of the
method. Section 3.3 presents the different phases of the pipeline that we used to implement
the chosen method for RILA system. Finally, Section 3.4 implements the selected method
based on the pipeline for RILA system.

3.1. Algorithm Selection

Various VI-SLAM algorithms are often developed for different applications. This makes it
quite challenging to compare them with each other comprehensively. However, all of these
systems have their own capabilities that can be considered to select the most appropri-
ate method to achieve our research objectives. In this section, the critical requirements
for improving RILA trajectory in GNSS challenging areas are discussed. Furthermore, the
most suitable algorithm which can fulfill these essential requirements is selected for this
research.

3.1.1. Railway application key requirements

As stated before, the RILA system consists of a GNSS receiver, INS sensors, video cameras,
and laser scanners mounted on a train to perform real-time measurements related to ab-
solute and relative track position and geometry with engineering level accuracy. For RILA
trajectory estimation, currently, the GNSS/INS data is integrated with an external software
package, which sometimes drifts remarkably in GNSS-denied areas. Therefore, the fusion
of the SLAM-based aiding algorithm in RILA system is necessary in order to reach its de-
sired accuracy. Regarding the selection of the most suitable image-assisted SLAM algorithm,
first, the main challenges, limitations, and requirements for motion estimation in railway
environments, particularly for RILA case, were described below.

In general, for railway applications, only a few restrictions exist regarding the weight, size,
and required power of the localization system. This makes it possible to openly select suit-
able sensor modalities and estimation algorithms from the wide range of available V-SLAM
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solutions [75]. However, since RILA is a stand-alone MMS attached to a train, some additional
limitations exist that need to be considered during the selection of the motion estimation ap-
proach:

• Due to weight restrictions, adding extra sensors in the RILA unit is not possible with-
out following a complicated certifying process.

• Installing a DMI sensor for aiding INS/GNSS integration algorithm is not feasible due to
the RILA installation procedure. RILA system is independent of its mounting platform
and should have the possibility to be installed on any passenger train in less than three
minutes. Figure 3.1 shows RILA sub-systems and the way it should be installed on any
trains as fast as possible.

• The position and orientation of the three video-cameras placed on the RILA unit are
fixed and can not be modified easily.

Figure 3.1.: RILA subsystems.

3.1.2. Selected method

In this section, considering the RILA application’s key requirements, the most suitable
method for this research was selected step by step:

Camera setup selection

Based on the literature, the stereo visual approach is more robust than the monocular con-
figuration due to its faster initialization process. Also, in the stereo method, the real scale
can be directly estimated, which is another significant advantage of this method compared
to the monocular one [10]. However, in the RILA system, the orientation of the two adjacent
cameras results in not enough overlap between them (around 15%). In addition, the current
distance (baseline) between two adjacent cameras is much shorter than the standard stereo
systems. Based on these two hardware-related limitations, it is expected that the stereo ap-
proach is not able to perform efficiently and robustly. Therefore, during this research study,
the monocular visual SLAM method would be used.
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Fusing inertial data to V-SLAM algorithm

As described earlier, for the monocular V-SLAM case, the obtained result is up to the scale.
The inertial sensor, such as IMU that provides the motion’s absolute scale, needs to be fused
with the V-SLAM system to solve this scale ambiguity issue. In this way, it is possible to boost
both the algorithm’s robustness and accuracy significantly. Based on this, the monocular
VI-SLAM algorithm is selected as the main framework for this study. According to [10],
for applications where stereo camera setup is not attainable, the monocular-inertial can be
employed without missing much in terms of robustness and accuracy.

Dynamic environments

In general, the feature-based VO is more robust to illumination, occlusions, scale, and view-
ing changes between consecutive images compared to the direct approaches, because of their
advanced feature descriptors. In contrast, the direct methods, also known as appearance-
based methods, utilize the pixels’ intensities and exploit more visual information, make
them more robust for motion estimation even in texture-less areas [19]. Nevertheless, con-
sidering this study’s primary focus, which is improving the RILA trajectory in the station ar-
eas, the feature-based methods are more suitable for motion estimation than the appearance-
based ones, as they are more invariant to dynamic situations.

Multi-Map Capability

One of the objectives of this research study is to investigate if the processing of the same
track’s multi-temporal data, collected by the RILA system during its four different runs, can
improve the trajectory’s positional accuracy. To be able to achieve this goal, during our final
algorithm selection for this research project, a monocular VI-SLAM system with multi-map
capability is chosen.

Accuracy and Robustness

RILA acquisition system aims to measure absolute and relative track position with engineering-
level accuracy. To assist the RILA system in achieving this goal, particularly in GNSS chal-
lenging areas, it is necessary to choose an accurate and robust algorithm. In [10], Carlos
Campos et al. compared the performance of some of the most common state-of-the-art
V-SLAM/VI-SLAM using EuRoC data-set. Their evaluation shows that the ORB-SLAM3 is as
robust as the best systems available in the literature. In addition, ORB-SLAM3 achieves more
accurate results in all sensor configurations compared to the most accurate methods by a
wide margin. Notably, in monocular-inertial configuration, ORB-SLAM3 can perform twice
more accurately in comparison with Direct Sparse Visual-Inertial Odometry (VI-DSO) [77]
and A Robust and Versatile Monocular Visual-Inertial State Estimator (VINS-Mono) [52], un-
derlying the advantages of mid-term and long-term data association again.

Finally, after considering all the criteria mentioned above, ORB-SLAM3 was chosen as our
monocular visual-inertial SLAM algorithm to be used during this research project.
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3.2. ORB-SLAM3

To address our research objectives, we selected ORB-SLAM3. An overview on this method was
previously presented in chapter 2. However, in this section we present some preliminaries
regarding the different frame definitions, and system calibration methods of ORB-SLAM3.

3.2.1. ORB-SLAM3 Frames Definitions

As shown in Figure 3.2, the ORB-SLAM3 uses three different reference frames [11, 48] which
are described as follow:

• World (W): W frame is a fixed reference system. In this frame, the zW axis is pointing
up in opposite of the gravity vector direction, i.e., gW as illustrated in Figure 3.2. In
ORB-SLAM3, the first camera position defines the the world reference frame.

• Body (B): B frame is an optimizable reference system. This frame is aligned with the
IMU coordinate system. An important assumption here is that the IMU’s gyroscopes
and accelerometers have fully aligned reference system.

• Cameras (C1 and C2): C1 and C2 frames define the camera coordinate systems. In these
frames, the zC axis is pointing forward aligned with the optical axis of the camera. The
other two axes, namely xC and yC are pointing to the right and down, aligned with the
image vectors u and v, respectively.

Figure 3.2.: ORB-SLAM3 reference frames as illusterated in [48]

3.2.2. ORB-SLAM3 System Calibration

System calibration is divided into two stages; extrinsic and intrinsic calibration [48]. During
extrinsic calibration the geometrical relation between different sensors are defined using a
set of parameters. Whereas, intrinsic calibration defines the set of parameters related to each
sensor itself.
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Extrinsic parameters are used to transform the C1 frame to the B frame. Equation 3.1
formulates this relation for monocular inertial case:

TWC1 = TWBTBC1 (3.1)

where, TWC1 and TWB are the homogeneous matrices which transform C1and B frames to W
frame, respectively. In addition, TBC1 denotes the matrix to transform points in C1 frame to
B frame.

Intrinsic parameters, as stated earlier, is defined for each sensor. For our case study, the
intrinsic calibration for visual and inertial sensors are described separately.

Depending on camera set-up, different calibration parameters were provided. For Pinhole
camera, the intrinsic parameters are the camera focal length ( fx, fy) and central point (cx,
cy) in pixel. Moreover, radial-tangential distortion model is the other intrinsic parameter
defined as k1, k2, k3. The last parameters are p1, p2 which address the tangential distortion
coefficients.

Furthermore, Gyroscope Noise Density, Accelerometer Noise Density, Gyroscope Random Walk,
and Accelerometer Random Walk defines the IMU intrinsic parameters. These parameters are
available in the datasheet of the IMU sensors. The mathematical representation of these
parameters can be found in [48].

3.3. RILA ORB-SLAM3 Pipeline

In this section, the adaption of ORB-SLAM3 method for RILA system is presented. To this end,
a pipeline for RILA ORB-SLAM3 is depicted in Figure 3.3. This pipeline includes five main
phases: SLAM Tool Installation, Input Data Preparation, SLAM Tool Execution, Validation,
and Trajectory Correction. In the following subsections, each phase with its used techniques
is described.

3.3.1. Phase (1): SLAM Tool Installation

In the initial phase, ORB-SLAM3 tool together with several C++ open source libraries were
installed on a Linux-based platform. For this study, Ubuntu 18.04 was used as our build
environment which was run on a powerful machine (Intel(R) Core(TM) i9-9980HK CPU @
2.40GHz , 32 GB RAM) to ensure a real time performance with stable and accurate results.
The dependencies for the ORB-SLAM3 are as follow:

• OpenCV: An open source library which provides real-time optimized computer vision
tools and functions. In ORB-SLAM3 framework, this library is used mainly for image
processing and feature extraction [47].

• Pangolin: A lightweight and portable platform which provides a set of libraries to pro-
totype and visualize the video based data. ORB-SLAM3 uses Pangolin as a visualization
and user interface [67].

• g2o: An open source framework to optimize nonlinear problems based on graph the-
ory. Since ORB-SLAM3 is a graph-based SLAM, this framework is used for optimization
of the nonlinear error functions [54].
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Figure 3.3.: RILA ORB-SLAM3 Pipeline.

• Eigen3: A C++ library which is used to solve linear algebra related problems[38].
ORB-SLAM3 utilizes this library as part of g2o framework.

• DBoW2: An open source C++ library which provides an image database to enhance
making queries and feature comparisons [15]. Place recognition in ORB-SLAM3 employs
this library.

After setting up the build environment, the ORB-SLAM3 library was generated and installed
on the machine. As the final step, Robot Operating System (ROS) was set up to further
organize the build environment and make easier the access to different SLAM related tools
and configuration.

To automate all these stages, a bash script was written by the author to fully install the
ORB-SLAM3 which can be found in appendix A.

3.3.2. Phase (2): Input Data Preparation

The input data preparation phase should effectively calibrate the system, define the differ-
ent coordinate systems and rotation matrices to enable transformation from one coordinate
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system to another according to the ORB-SLAM3 requirements. The outcome of this phase is a
set of input files which are later used by the ORB-SLAM3 tool.

Figure 3.4 illustrates in more details the input data preparation stages. Initially, the camera
and IMU sensor need to be calibrated using the collected calibration datasets.To this end, a
Fugro custom-made calibration tool, Hand Eye Calibration (HEC), was used to calibrate the
camera and estimate the intrinsic parameters such as focal length ( fx, fy) and optical cen-
ters (cx, cy) as well as distortion coefficients (k1, k2, k3, p1, p2). Moreover, for IMU calibration,
kalibr allan tool was used to verify the provided accelerometer and gyroscope noise values
from the datasheet. After verifying the intrinsic parameters of our sensors, the HEC tool was
used for determining the extrinsic parameters and generating the corresponding rotation
matrix.
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Figure 3.4.: ORB-SLAM3 Input Data Preparation Phase.

Ultimately, the computed calibration parameters along with the sequence of images captured
by the camera and the IMU sensor data were used to generate the set of input files for the
ORB-SLAM3 tool. These input files are presented in green boxes in Figure 3.4.

3.3.3. Phase (3): SLAM Tool Execution

The SLAM tool execution phase is the heart of this pipeline. Within this phase, the aim is to
produce a SLAM based trajectory using the previously generated input files. In this step, the
proper configuration for our platform was chosen and subsequently the ORB-SLAM3 script
was executed according to this configuration.

In the script, first, the path to vocabulary was defined which contains a vocabulary-tree of
visual words, i.e., Bag of Words. This hierarchical visual vocabulary is commonly used for
place recognition and loop closure. The vocabulary was built offline from a huge training
collection of images and their features. For each feature in the image a visual word was as-
signed which has a weight according to the frequency of appearance in the training images.
The higher the frequency, the lower the assigned weight is since the word is less discrimi-
native. In this way, each image has a bag-of-word vector, i.e., a sparse numerical vector. To
check the similarity between the images, their vectors are compared.

Secondly, the path to settings file was passed to the script. The setting file contains the
camera intrinsic calibration parameters, the resolution, and the frame rate. It also includes
the IMU intrinsic parameters and frequency as well as the rotation matrix from camera to
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3. Proposed Monocular VI-SLAM for RILA System

IMU frames and the color order of the images (such as BGR, RGB,...). Finally, the ORB binary
descriptor parameters were specified in the settings file that can be optionally fine-tuned.

Eventually, after executing of the script, the SLAM based trajectory was generated which
includes the position and orientation of the vehicle in each epochs.

Furthermore, the generated trajectory needs to be fine-tuned. This happened in two steps:
Firstly, to ensure the precision and repeatability of our method the two key input parameters,
(1) ORB-extractor, (2) IMU noise model, require optimization. The ORB-extractor is used to
define the number of features per image which are used during the motion estimation.
Moreover, the IMU noise model has an important effect on the behavior and the stability of
our SLAM tool. If the estimated values are too optimistic, too much weight on IMU is placed
which makes the system unstable.

Secondly, the accuracy of the SLAM trajectory needs to be improved. In general, all the SLAM
tools ask for a certain time for initialization. During this initialization process, the vehicle
needs to be stationary as much as possible and only has limited rotational movements.
However, in our case study, the train enters the station area with medium to high speed.
Therefore, there is not enough stationary time for the initialization of our SLAM tool. Hence,
there would be some outlier data which would affect on the quality of the final trajectory.
To reduce this effect, a fine-tunning method is used as explained in section 4.4.

3.3.4. Phase (4): Validation

Validation phase is required to evaluate the quality of the generated SLAM based trajectory.
This phase is described in detail in section 4.

3.3.5. Phase (5): Trajectory Correction

Multiple aiding information can be extracted from the generated SLAM trajectory. In correc-
tion phase, the impact of these information on improving the accuracy of RILA trajectory in
the GNSS challenging area is examined. Section 4.5 discusses this phase in detail.

3.4. Implementation of RILA ORB-SLAM3

This section describes how the ORB-SLAM3 can be implemented for RILA system. First, the
RILA’s reference frames are stated precisely. Next, it is addressed how RILA system is cali-
brated according to ORB-SLAM3 requirements and the generated calibration file is presented.
After that, the selected RILA dataset for this study is used and the first result utilizing RILA
ORB-SLAM3 is generated. Finally, after evaluating RILA ORB-SLAM3’s result, the first phase of
fine-tuning for precision and repeatability is implemented to make the system more stable.

3.4.1. RILA Frames Definitions

For RILA system we define three different frames, namely body, IMU and camera frames.
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Body frame is defined to be aligned with the vehicle reference frame (when mounted on
the rear-end of a train, ’facing’ backward). This frame is represented using East-North-
Up (ENU) convention:

• Origin is at the center of gravity of the IMU.

• Positive X axis is pointing toward right.

• Positive Y axis is pointing forward (toward the train).

• Positive Z axis is pointing up

Figure 3.5 shows the RILA’s sensors and visualizes its body frame.

Figure 3.5.: RILA body frame: (1) IMU, (2) GNSS antenna, (3) Track scanners, (4) LIDAR
scanners, (5) cameras

IMU frame as illustrated in figure 3.6 is defined as:

• Positive X axis is downward.

• Positive Y axis is toward right.

• Positive Z axis is toward rear (away from train).

Figure 3.6.: The IMU frame mounted in RILA system.
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Camera frame uses OpenCV convention and is coincident with the optical center of the
camera. As shown in Figure 3.7, the camera frame in RILA system is defined as follows:

• Positive X axis is toward right.

• Positive Y axis is downward.

• Positive Z axis is pointing forward along the optical axis.

Figure 3.7.: Camera frame definition by OpenCV convention [9].

3.4.2. RILA ORB-SLAM3 System Calibration

The main objectives of system calibration is to determine the position and orientation of
the various sensors to a common reference frame, i.e., the body frame. To be able to use
ORB-SLAM3 tool, the RILA system should be calibrated according to the described require-
ments in 3.2.2. To do so, firstly the FUGRO HEC tool was employed to compute the intrinsic
and extrinsic parameters of RILA’s installed sensors. After that, the computed parameters
are used to generate the calibration YAML file which later ORB-SLAM3 tool utilizes as input
files.

As mentioned in section 3.2.2, the intrinsic parameters of the camera were estimated using
the HEC tool. Moreover, these parameters for the IMU sensore were provided by the manu-
facturer, i.e. iMAR. Table 3.2 and Table 3.1 summarize the estimated intrinsic parameters for
the IMU and camera, respectively.

Table 3.1.: RILA’s IMU Intrinsic Parameters

Intrinsic Parameter Value

Gyroscope Noise Density [rad/s0.5] 0.00029888

Accelerometer Noise Density [m/s1.5] 0.0001000000

Gyroscope Random Walk [rad/s1.5] 0.0000000001

Accelerometer Random Walk [m/s2.5] 0.0000031620
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Table 3.2.: RILA’s Camera Intrinsic Parameters

Intrinsic Parameter Value

fx 1499.84104007175

fy 1499.8475095955

cx 1014.58125785923

cy 1021.26199168825

k1 -0.171918629792281

k2 0.118149760774721

k3 -0.0233476114366727

p1 -0.000448848328024488

p2 -2.29280010419978E-05

At this stage, to correctly relate measured accelerations and gyroscope in the IMU frame
to attitude and position changes in the real world a relation between the sensor and our
defined body frames needs to be established. This can be done by rotating the body frame
(ENU convention) step by step in the following order:

1. Rotate Yaw over body Z-axis

2. Rotate Pitch over the (rotated) body X-axis

3. Rotate Roll over the (twice rotated) body Y-axis

By applying the above-mentioned rotation steps, the Euler angles is computed as follows:

1. Yaw: Rotate −90 [degree (deg)] over body Z-axis.

Figure 3.8.: IMU- Body alignment (step 1).

2. Pitch: No rotation over body X-axis ( 0 [deg], as Y-Axis is already pointing in right
direction).

3. Roll: Rotate +90 [deg] over the body Y-axis, this makes the body frame aligned with
IMU sensor frame as shown in Figure 3.9.

Utilizing the obtained Euler angles (Roll, Pitch and Yaw) and considering the proper rotation
orders for ENU frames (ZXY), the rotation matrix for aligning IMU and body frames was
computed and shown by Eq. (3.2). Assuming the accelometers and gyroscopes use the same
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Figure 3.9.: IMU- Body alignment (step 3).

reference frames, these sensors’ raw observations are multiplied by the computed RBI matrix
to transform the IMU measurements into our defined body frame.

RBI =

 0 1 0
0 0 −1
−1 0 0

 (3.2)

After aligning the IMU and body frames, next, RILA camera’s extrinsic parameters were
generated. To do so, firstly, the HEC tool was utilized to estimate the boresight angles which
are used to align the IMU and the camera frames. Secondly, by using Robotic Total Station
(RTS) the offsets between the camera and the IMU origins were measured and computed.
Table 3.3 presents these six parameters.

Table 3.3.: RILA Camera’s Extrinsic Parameters

Boresight Angels [deg]
Roll -0.1595
Pitch 0.03
Yaw -179.943

Offsets [m]
Right -0.1770
Front -0.1968

Up 0.2777

Subsequently, the transformation matrix, TBC, is computed. This matrix is used later by
our SLAM tool to transform points expressed in the camera frame to the body/IMU frame.
To compute TBC, first, the body frame (ENU) was rotated to be aligned with our defined
OpenCV camera frame using the rotation matrix, RBCOpenCV , as shown by Eq. (3.3).

RBC(OpenCV)
=

1 0 0
0 0 1
0 −1 0

 (3.3)

Secondly, the camera to body rotation matrix was corrected utilizing the estimated borsight
angles shown in Table 3.3 using the following equation:
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RBC = RBC(OpenCV)
.RBC(BA)

(3.4)

Where RBC is the rotation matrix to move from RILA camera frame to the body/IMU frame,
RBC(OpenCV)

is the rotation matrix to move from our defined OpenCV camera frame to RILA
body frame and RBC(BA)

is the computed boresignt angles rotation matrix.

Finally, Eq. (3.3), Eq. (3.4), and the computed extrinsic parameters shown in Table 3.3 were
used to generate the transformation matrix, TBC, presented in Eq (3.5).

TBC =


−0.999995631831873 −0.002783274290178 0.000994837373168 −0.1770
−0.000993376063089 −0.000526365888985 −0.999999368071274 −0.1968
0.002783796179806 −0.999995988153541 0.000523598751674 0.2777

0 0 0 1

 (3.5)

Furthermore, to generate the calibration file according to ORB-SLAM3 requirements some
other parameters should be defined, namely, the camera frame rate, the camera resolution,
the color order of the images (BGR or RGB or ignored if grayscale), and the IMU frequency.
Table 3.4 summarizes these parameters for RILA setup. At this stage, by computing all the
parameters, the settings file for the execution of ORB-SLAM3 tool is prepared.

Table 3.4.: RILA’s Sensors Extra Parameters

Sensors Parameter Value

Camera Frame Rate [Hertz] 15

Camera Resolution 2016 × 2016

Color Order RGB

IMU Frequency [Hertz] 300

3.4.3. Execution of RILA ORB-SLAM3

After calibration of RILA ORB-SLAM3, in this section first it is explained how the RILA dataset
was used as input data for our SLAM tool. Next, using the initial defined setting parameters,
RILA ORB-SLAM3 is executed and the results are presented. Furthermore, the necessity of
fine-tuning at this stage is addressed.

As stated in section 3.3.2, the sequence of images captured by RILA’s camera in combination
with raw IMU data are used as inputs for our SLAM tool. Moreover, the default parameters
shown in Tables 3.1, 3.2 and 3.4 together with the computed transformation matrix by Eq.
(3.5) are used to generate the calibration input file which is presented in appendix C. It
should be noted that for the ORB-extractor parameter at this stage, the recommended value
by [11] was used, i.e., 1000.
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Figure 3.10 illustrates the generated RILA ORB-SLAM3-based trajectory utilizing the above
mentioned parameters. In Figure 3.10a, the 3D view of this trajectory is shown while Fig-
ures 3.10b and 3.10c represent the orientations (Roll, Pitch and Yaw) and the positions (xyz)
at each epochs, respectively.

(a) The 3D view

(b) The XYZ vs. time (c) The RPY vs. time

Figure 3.10.: RILA ORB-SLAM3 trajectory

To investigate the consistency of the results, the experiment was executed 5 times with the
default parameters. The results are illustrated in Figure 3.11.

As shown in Figure 3.11a, after 5 runs the 3D trajectories differ significantly, indicating the
instability in the system. Moreover, the initialization period between different executions
are noticeably unpredictable as can be seen in Figure 3.11b and 3.11c. Additionally, during
the execution several warnings appeared in SLAM tool which indicates the unreliability of
the system using the default parameters. Consequently, the following section 3.4.4 states a
proper fine tuning method to further stabilize the system for repeatability.

3.4.4. RILA ORB-SLAM3 Fine-tuning (1): Improving Precision and
Repeatability

To improve the precision and repeatability of our SLAM tool, mainly two parameters are
considered to be optimized, namely (1) IMU noise model and (2) ORB Extractor. The IMU
noise model defines how much weight should be placed on IMU measurements during the
motion estimation. In fact, if this model is too optimistic, the system relies too much on
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(a) The 3D view of RILA ORB-SLAM3 trajectory

(b) The XYZ vs. time (c) The RPY vs. time

Figure 3.11.: RILA ORB-SLAM3 Trajectory

IMU which leads to instability. It is worth mentioning that, the IMU noise models are derived
from a sensor that is static and at a constant temperature. Therefore, to consider unmodelled
effects, it is advised to inflate the random walk parameters by 10 which improve the IMU
initialization convergence [48].

Furthermore, as mentioned earlier, the ORB-extractor parameter indicates the number of
extracted features in each frame. By increasing this value, a denser point cloud is generated,
and therefore with greater probability the neighbour frames are matched. As a result, the
SLAM tool is able to track itself properly and the chance of loosing the track is reduced. This
noticeably impacts the overall stability of the system as well as improving the speed of the
initialization process. To find the optimal value, different experiments were conducted and
eventually, by analysing the obtained results, we reached to the range of 6000 to 6500. Values
above 6500 are not recommended as they highly affects the performance of the SLAM tool by
increasing the feature extraction process time.

Figure 3.12 depicts the outcome of 5 runs using the fine-tuned IMU noise model and ORB-
extractor parameters. The 3D view of the trajectories, presented in Figure 3.12a, shows
that the output of the 5 runs are perfectly match, in contrast to Figure 3.11a. Moreover, as
can be seen in Figure 3.12b and 3.12c, the overall trend of these 5 runs are highly aligned.
Additionally, the initialization periods are remarkably similar between all the execution
rounds.
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(a) The 3D view of RILA ORB-SLAM3 trajectory

(b) The XYZ vs. time (c) The RPY vs. time

Figure 3.12.: RILA ORB-SLAM3 Trajectory
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4. RILA ORB-SLAM3 Performance
Analysis

After implementing RILA ORB-SLAM3 and producing the SLAM-based trajectories using RILA
dataset, in this chapter it is shown how we conducted the performance analysis for RILA
ORB-SLAM3. To this end, Figure 4.1 depicts the workflow for the validation and trajectory
correction phases.

For the validation, firstly, the Inertial Explorer (IE) tool used the raw data collected by RILA’s
GNSS and INS sensors to generate the ground-truth trajectory for our case study. As previ-
ously stated, it is assumed that the output trajectory of the RILA in open sky condition
with adequate satellite coverage is accurate enough to be considered as the ground-truth.
Next, we used EVO tool that is a python package to handle, evaluate, and compare the
generated trajectories. Using this tool, first the SLAM-based trajectory (generated in previ-
ous phase 3.3.3) was aligned with the ground-truth employing the Umeyama’s method [76].
Eventually, the defined performance metrics were computed by EVO tool to undertake the
performance analysis.

Generate the 
SLAM Trajectory

Visualize and 
store the 

generated SLAM 
Trajectory 

GNSS Data  

 INS Data

Generate Ground Truth 
trajectory using  INS-GNSS 

integration tool (IE ).
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FineTuning(1)    
Improve Precision?

Yes

No

Adjust the SLAM 
parameters 

SLAM Tool 
Execut ion

Extracted ZUPT from 
SLAM result

Re-generate  trajectory 
using  INS-GNSS 

integration tool (IE ) 
inserting ZUPT manually.

Re-generate  trajectory 
using  INS-GNSS 

integration tool (IE ) 
without ZUPT.

Compare the 
obtained results 

posit ional 
accuracies

Visulaliza and 
store the 

comparison 
results

FineTuning(2)    
Improve Accuracy?

No

Evaluate APE 
and RPE

Yes

Trajectory 
Correct ion

Figure 4.1.: RILA ORB-SLAM3 Validation and Trajectory Correction Phase.

Subsequently, after generating the validated trajectory, we are interested in investigating
which information can be extracted from this trajectory to assist INS-GNSS integration via
IE tool. Furthermore, the effect of the selected information on improving the accuracy of
RILA trajectory in the GNSS challenging area is examined in the trajectory correction phase.
Section 4.5 discusses this phase in detail.

The rest of this chapter is structured as follow: firstly, two relevant performance metrics are
defined. Next, our experimental setup used in validation and trajectory correction phases
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are briefly described. Following that, the obtained results are evaluated using our defined
performance metrics. Afterwards, it is addressed how our SLAM tool was fine tuned for this
case study. Finally, the trajectory correction using the extracted information is discussed.

4.1. Performance Metrics

To evaluate the quality of the estimated SLAM-based trajectory, it is common to compare it
with a ground-truth trajectory acquired using a motion caption system or derived from high
quality GNSS data. However, comparing these trajectories is not always straightforward.
There are mainly two difficulties which need to be tackled. First, the generated SLAM-
based and the ground-truth trajectories are often not expressed in the same reference frames,
and, hence comparing them directly is not possible. To solve this first problem, a so called
trajectory alignment is an essential step to transform the estimated SLAM-based trajectory
into the ground-truth’s reference frame. Since a trajectory is high-dimensional data which
comprises the states at many different epochs, summarizing all its information into concise
accuracy metrics is not an easy task. Thus this second problem can be solved, by defining
some meaningful performance metrics and utilizing them to properly evaluate the obtained
results [85, 68].

Figure 4.2 illustrates the process of trajectory evaluation. First off, the estimated SLAM-
based trajectory (presented in blue) is aligned with the ground-truth (presented in black).
Afterwards, the trajectory estimation error is computed using different performance metrics.
In the following two subsections, we explain the chosen metrics in this research.

Figure 4.2.: The process of evaluating trajectory estimation errors [85].

4.1.1. Absolute Position Error (APE)

APE is one of the standard and commonly used metrics in robotic applications to evaluate the
SLAM-based trajectory[68, 85]. APE compares the absolute distances between the SLAM-based
and the ground-truth trajectories to evaluate the global consistency of the SLAM solution.
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For computing APE, first the frames in which these two trajectories are expressed should be
aligned [68]. This alignment can be performed in closed form using Umeyama’s method
which is described comprehensively in [76]. To this end, the absolute position error at epoch
(i), i.e, Fi is computed using Eq. (4.1),

Fi = Q−1
i SPi (4.1)

where Pi and Qi are the estimated and the corresponding time-aligned ground-truth poses
at epoch i, respectively. Moreover, S represents the rigid-body transformation to map the
estimated poses P1:n onto the ground-truth poses Q1:n [68].

Assuming a sequence of n camera poses, the root mean squared error over all epochs of the
translational parts is formulated according to Eq. (4.2).

RMSE(F1:n) =

 1
n

n

∑
i=1

∥trans(Fi)∥2

 1
2

(4.2)

4.1.2. Relative Position Error (RPE)

The other standard and widely used metrics for evaluating the trajectory estimation in par-
ticular for visual odometry systems is RPE [68, 85, 58]. In contrast to APE which measures
the global consistency of the SLAM systems, RPE assesses the local accuracy of the estimated
trajectory by computing the difference between relative transformations over a fixed time
interval ∆. The relative position error at epoch i, i.e, Ei is then defined using the following
equation [68]:

Ei =

Q−1
i Qi+∆

−1P−1
i Pi+∆

 (4.3)

In Eq. (4.3), Pi and Pi+∆ are the estimated poses at epochs (i) and (i + ∆) respectively. More-
over, the corresponding ground-truth poses at time indices (i) and (i + ∆) are represented by
Qi and Qi+∆.

Furthermore, Eq. (4.2) computes the root mean squared error over all epochs of the transla-
tion parts [68].

RMSE(E1:n, ∆) =

 1
m

m

∑
i=1

∥trans(Ei)∥2

 1
2

(4.4)

where n is the number of camera poses in a sequence; ∆ is a fixed time interval over which
the relative pose errors are computed. Moreover, the number of individual relative pose
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errors along the trajectory is represented by m = n − ∆. Ultimately, trans(Ei) indicates the
translational components of the error Ei.

Figure 4.3 illustrates the process of generating APE and RPE graphically. As can be seen
in Figure 4.3a, the estimated trajectory is first aligned with the ground-truth. After that
the absolute differences between the aligned estimation and the ground-truth are calculated
over all epochs to compute APE.

(a) APE

(b) RPE

Figure 4.3.: Graphical representations of Absolute and Relative Position Errors [85]

Moreover, as illustrated in Figure 4.3b, to estimate RPE, first the sub-trajectories of length d
are selected. Each sub-trajectory is then aligned with the corresponding part in the ground-
truth trajectory. Next, the error of the end state for each sub-trajectory, i.e., δdk, is calculated.
This should be done for all the sub-trajectories and can be repeated for different lengths d
to compute RPE.

4.2. Experimental Setup

This section presents the experimental setup used in the validation and trajectory correction
phases. As discussed in the problem statement, we aim to evaluate the impact of utilizing
ORB-SLAM3 in areas where GNSS coverage is poor, such as fully covered train stations for
example Delft station where full GNSS blockages may occur. In these situations, accurate
estimation of the train’s position can be challenging.

To this end, for our experiments, we simulated the scenario where the train enters the station,
stays there stationary for 1 minute, and then leaves the station slowly. In this scenario, the
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total duration that the train spent in the station without any GNSS signal is approximately 2
minutes.

To simulate this real-life example, we manually inserted 90 seconds of GNSS blockages before
and after the station in our experiments. This 5-minute period with GNSS blockages, which
we refer to as the GNSS challenging area, is illustrated in Figure 4.4. However, it is worth noting
that in other semi-covered stations, such as Utrecht or Rotterdam stations for example, the
GNSS blockage may be partial rather than full.

Since the RILA system has a high-grade IMU and the trajectory is normally processed in two
different directions (forward and reverse), the positional accuracy in the central part of the
trajectory, where the train is inside the station, is worse compared to the intervals outside
the station. Therefore, we focused on the duration of 109 seconds, which corresponds to
the central part of the GNSS challenging area, and refer to it as the area of interest, as shown
with the blue box in Figure 4.4. We executed the developed ORB-SLAM3 tool for this area of
interest to evaluate the generated trajectory against the ground-truth.

Figure 4.4.: The 5-minute GNSS challenging area including the area of interest highlighted
by the blue box.

In the context of this study, the scenario where the train enters the station and stays there for
a period of time represents a challenging situation for the RILA system. During this period,
the train is subject to complete GNSS blockages, meaning that no satellite signals are received
by the GNSS receiver onboard the train.

In real-life train stations, some stations can be particularly challenging in terms of GNSS
reception due to their physical layout. For example, some stations are constructed like
tunnels or are located underground, making it difficult for GNSS signals to penetrate and
reach the receiver. In these cases, complete GNSS blockages can occur, similar to what is
simulated in the current study.

When complete GNSS blockages occur, the system has no external reference for position and
orientation, and must rely solely on internal sensors such as the IMU and visual sensors.
This can result in a degradation of accuracy and reliability in the estimated position and
orientation of the train. Therefore, the scenario of a complete GNSS blockage, particularly in
the area of the station, is considered the worst case scenario for the RILA system, and is the
focus of this study.
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4.2.1. Effect of Motion Parameters

The drift in both the INS-GNSS system and the SLAM system is influenced by various factors,
including time, speed, and distance traveled, but the relationships between these factors
differ for each system.

In the INS-GNSS system, the generated drift is directly influenced by the speed of the train.
The INS sensor readings accumulate errors over time, and the slower the train moves, the
longer it spends in the area without GNSS coverage, which allows more error accumulation.
For example, if a train travels a distance of 10 kilometers with 1 kilometer having no GNSS
coverage and an INS sensor error rate of 0.1% per hour, the INS drift increases as the speed
of the train decreases. At a speed of 100 km/h, the train spends 36 seconds in the area, ac-
cumulating an error of 0.6 meters, while at 25 km/h, it spends 144 seconds and accumulates
an error of 2.4 meters.

In contrast, the drift in the SLAM system is not directly related to time and speed but is
primarily influenced by the distance traveled. For a fixed distance, if the train speed changes,
the SLAM drift remains approximately constant. However, if the traveled distance increases,
the SLAM drift also increases. For instance, assuming a train travels a distance of 100 meters
at a constant speed of 10 m/s while performing SLAM, the drift after traveling 100 meters is
approximately 1 meter. If the same train were to travel 200 meters at the same speed, the
drift in the SLAM system would increase to approximately 2 meters. However, if the train
were to travel the same 100 meters at a different speed (e.g., 5 m/s or 20 m/s), the drift
would be approximately the same.

It is worth noting that the quality of the sensors used, as well as their calibration and syn-
chronization, can affect the drift in both systems. A high-quality IMU with proper calibration
and synchronization can reduce the drift in the INS-GNSS system, while a high-quality cam-
era with proper calibration and synchronization can reduce the drift in the SLAM system. In
summary, the INS-GNSS system and the SLAM system are subject to drift, and their relation-
ship with motion parameters varies. It is essential to consider the specific characteristics of
each system and the conditions in which they are utilized to ensure accurate and reliable
performance.

4.2.2. Ground-truth Generation

As mentioned previously, to generate the ground-truth for our experiments, we used the
output trajectory of RILA utilizing only its GNSS/INS data, in open sky condition. In fact, we
assumed that if the satellite reception is high, the generated trajectory of RILA is accurate
enough to be considered as our ground-truth.

To generate the ground-truth trajectory, firstly the virtual reference stations and the RILA
GNSS raw data were processed using IE tool. Consequently, this processed GNSS data was
combined with the IMU data using the loosely coupled Kalman filter to generate a trajectory.
IE tool supports multiple formats to export this trajectory, such as Google Earth, DXF, RIGEL
POF, and Smoothed Best Estimate of Trajectory (SBET) formats, from which we chose the lat-
ter for our experiments. The SBET file logs various information including position, rotation,
velocity, and acceleration at corresponding timestamps. However, to be able to conduct the
performance analysis, the SBET file was converted to the EVO tool supported format, i.e.,
TUM to be further used as our ground-truth.
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For converting the SBET file to TUM format, two major steps are required as follow:

• First off, the position information in SBET file which is expressed in geodetic coordinate
(latitude, longitude, altitude) was converted into local tangent plane ENU coordinate
(East, North, Up).

• Secondly, the rotational information in SBET file is described using Euler Angles. How-
ever, TUM requires Quanternion convention. Therefore, an Euler Angles to Quan-
ternion conversion was done.

A python script was developed to carry out the above-mentioned conversion and generate
the ground-truth trajectory for the experiments, which can be found in appendix B.

4.2.3. Trajectories Alignment Methods

As mentioned in the section 4.1, the groundtruth and the SLAM-based trajectories are de-
fined in two arbitrary frames. In monocular VI-SLAM, the system is capable of estimating
the camera pose (i.e., position and orientation) using a combination of visual and inertial
measurements. However, the estimated camera pose has four degrees of freedom that are
unobservable, which are the global position and the yaw angle [86, 87]. As a result, the
estimated trajectory cannot be directly compared to the ground truth.

To overcome this challenge, an alignment process is performed between the estimated tra-
jectory and the ground truth. The alignment process involves two steps: the first step is
an origin alignment, where the global position of the estimated trajectory is aligned with
the ground truth by finding a translation vector that minimizes the difference between the
estimated positions and the ground truth positions. The second step is a yaw-only rigid
body transformation, where the rotation around the gravity is estimated by finding a rota-
tion matrix that minimizes the difference between the estimated orientation and the ground
truth orientation[86, 87].

To perform the yaw-only rigid body transformation, the Umeyama method is often used,
which is a closed-form solution that minimizes the distance between two sets of points in
different coordinate systems[28, 76]. By applying this method, the estimated trajectory can
be transformed to match the ground truth in terms of global position and orientation up
to the yaw angle. Once the alignment process is completed, the accuracy of the estimated
trajectory can be evaluated by comparing it to the ground truth.

For our evaluation, we utilized the following methods provided by EVO tool:

• The Special Euclidean Group in 3D (SE3): A rigid body transformation which consists
of a translation and a rotation part. This method is mostly used for stereo SLAM cases
where the scale is known.

• Similarity Transformation in 3D (Sim3): A transformation model with seven param-
eters(i.e., scale factor, three translation parameters and three rotation angles). This
method is similar to SE3 with extra degree of freedom to estimate the unknown scale
which is necessary for monocular SLAM.

• Scale Correction: A scale factor estimation which used in monocular SLAM to correct
the random scale without any translational or rotational alignment.
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• Origin Alignment: A simple method method which aligns only the origins of the two
trajectories. This method is effective in drift estimation particularly for odometry cases.

In the following sections, based on necessity, each of these alignment methods are used and
mentioned explicitly.

4.3. Validation Results

According to the validation workflow 4.1, the generated SLAM-based trajectory over the area
of interest was compared to the ground-truth using Sim3 alignment method described briefly
in the previous section. The obtained results from the EVO tool is presented in Figure 4.5.

(a) The 3D view

(b) The RPY vs. time (c) The XYZ vs. time

Figure 4.5.: RILA ORB-SLAM3 trajectory over the area of interest vs the corresponding
ground-truth trajectory

The 3D view of the trajectories, presented in Figure 4.5a, indicates that the generated SLAM
result is perfectly match to the ground-truth. Moreover, as can be seen in Figures 4.5c and
4.5b, the translational and rotational parts of the trajectories are aligned with the same trends
to a great extent.

In the next two subsections, we present the results of our evaluation for metrics defined in
Section 4.1.
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4.3.1. The Estimated APE Before Fine Tuning

To validate the obtained SLAM trajectory, we computed the APE with respect to the transla-
tional part using the EVO tool as explained in section 4.1.1. For aligning the trajectories, the
SE3 method was used over the first 10 poses. Figure 4.6 shows the estimated APE for our case
study.

Figure 4.6a presents the calculated APE for the period of 109 second, i.e., the area of interest
inside the station, shown in Figure 4.4. The purple line and the blue bar address the Root
Mean Squared Error (RMSE) and Standard Deviation (STD) values, respectively. Furthermore,
to reduce the effect of outliers in the statistical analysis, the mean and median parameters
are computed as well, shown in green and red lines. Table 4.1 summarizes all these values.

(a) The APE w.r.t. translational part in (m) (b) The APE mapped onto trajectory

Figure 4.6.: APE RILA ORB-SLAM3 trajectory over the area of interest before fine tuning

Table 4.1.: APE related parameters w.r.t. translation part before fine tuning

Calculated Parameter
[m]

Value

Maximum 8.990574

Mean 2.996627

Median 2.922912

Minimum 0.049612

RMSE 3.245827

STD 1.247246

As we observe, the APE increases with significant fluctuations in the first 15 seconds and then
slightly stabilizes. The early fluctuations are as a result of SLAM initialization phase in which
it uses different levels of optimizations. Moreover, the APE remains steady roughly between
time 20 and 85 second, indicating the period in which the train is stationary. Eventually,
while the train moves again to leave the station around time 85, a sharp rise occurs in APE
value which is due to the accumulative nature of this metric.

Figure 4.6b plots the 2-dimensional trajectory where APE is mapped onto it. The color bar
shows the range of the errors between the SLAM-based and the ground-truth trajectories. In
the initial part of the trajectory, the APE is within the acceptable range and aligned to the
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reference. However, by reaching to the end of the trajectory, it diverges from the reference
and therefore, the error range increases from yellow towards red.

4.3.2. The Estimated RPE Before Fine Tuning

As stated in section 4.1.2, we considered the RPE to evaluate the local accuracy of the SLAM
result. Figure 4.7 denotes the calculated RPE with respect to the translational part of the
trajectory, where the ∆ is chosen to be 1 meter. Similar to the APE estimation, the SE3
alignment method was applied over the first 10 poses.

In contrast to APE which considers the accumulated errors, RPE measures the errors in local
intervals. Therefore, the maximum RPE value, i.e., 1.28 m, falls into the initial phase where
SLAM is being initialized, as shown in Figure 4.7a. Furthermore, approximately after the first
25 seconds, the RPE remains zero for the period where the train is stationary. And finally, as
it moves again to leave the station, RPE holds a steady value close to the median, i.e., 0.05 m.
The summary of calculated RPE parameters for our case study is listed in Table 4.2.

In Figure 4.7b, the mapped RPE to the 2-dimensional trajectory emphasizes that, while the
local accuracy along the path is acceptable, some peaks (between 0.4 to 1.3 meter) occurs in
the early stage as a result of the SLAM initialization. Henceforth, this results in a RMSE value
of 24 cm in a trajectory segment of 1 meter which is relatively large.

(a) The RPE w.r.t. translational part in (m) (b) The RPE mapped onto trajectory

Figure 4.7.: RPE RILA ORB-SLAM3 trajectory over the area of interest before fine tuning

Table 4.2.: RPE related parameters w.r.t. translational part before fine tuning

Calculated Parameter
[m]

Value

Maximum 1.286857

Mean 0.144211

Median 0.053447

Minimum 0.017912

RMSE 0.245927

STD 0.199206
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4.4. RILA ORB-SLAM3 Fine Tuning (2): Improving Accuracy

By evaluating the results obtained in Section 4.3, the impact of SLAM initialization phase is
noticeable. Allocating sufficient time for initialization, is one of the key requirements for
the SLAM tools. Additionally, it is advised to maintain the rotational movements as gentle
as possible while the translational motion is also not too fast. This is the ideal situation
to ensure the system has enough time to create an initial map and stabilize itself within
that map. Nonetheless, considering our application, establishing this condition is relatively
impossible while the train is approaching to the station. Hence, we decided to come up with
an alternative solution to further fine-tune the generated SLAM-based trajectory for our use
case.

Analyzing the RPE plots, reveals that the significant fluctuations were observed in the begin-
ning of the trajectory, i.e., approximately the first 12 to 17 seconds as shown in Figures 4.8a
and 4.8b. During this period, when the first major outliers happened, SLAM tool was creating
a new map and initialized the IMU within it. Afterwards, several levels of the bundle adjust-
ment were performed and eventually, to adjust the generated trajectory an scale reference
estimation was done.

(a) Zoomed version of the APE plot

(b) Zoomed version of the RPE plot

Figure 4.8.: APE and RPE RILA ORB-SLAM3 trajectory over the area of interest before fine
tuning zoomed on the first 20 seconds

Considering the results, we concluded that for our use case, a period of 15 seconds is re-
quired for the initialization. In this way, the SLAM system is able to generate more accurate
results with the minimum amount of outliers. On the other hand, our area of interest, i.e.,
109 seconds, is mainly the time that train spends inside the station. Therefore, we executed
the SLAM tool over the duration of 124 seconds from which the first 15 seconds were consid-
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ered as the initialization phase, and the rest 109 seconds was the area of interest over which
the performance metrics were recomputed. In Figure 4.9a, RPE for this extended trajectory is
calculated and shown. The orange box represents the initialization phase which is excluded
for the performance metric evaluation.

(a) The RPE w.r.t. translational part in (m) (b) Zoomed version of the RPE plot

Figure 4.9.: RPE RILA ORB-SLAM3 trajectory over the extended dataset (124 seconds)

To better observe the behavior of the SLAM after this fine-tuning, Figure 4.9b depicts the
results of the orange box in detail. Since the train speed in this initialization phase was
higher compared to the previous experiment, we detect larger outliers in comparison to the
results obtained before fine-tuning. However, as mentioned earlier, this phase is separated
from the area of interest and therefore, does not have any influence on the final performance
evaluation. In the following two sub-sections, the estimated APE and RPE for the area of
interest after this fine-tuning is presented.

4.4.1. The estimated APE after fine-tuning

Figure 4.10, shows the APE results for the SLAM-based trajectory after fine-tuning over the
area of interest. As can be seen, the maximum APE value is 3.7 m which is noticeably smaller
comparing to the previous experiment. As expected, this maximum value still occurs at the
end of the trajectory due to the accumulative nature of the APE. Since the fine-tuning reduced
the initial error values, the maximum of APE significantly drops by 60%. Additionally, the
rest of the APE parameters such as RMSE, STD decreased by 35% to 45%. Table 4.3 compares
the statistical parameters before and after the fine-tuning.

According to the literature study, the obtained APE results are acceptable and expected for
scenarios where loop closure is not possible, like the railway applications. In fact, V-SLAM
framework without loop closure is downgraded to the VO and similar to any odometery
systems, the drifts along the trajectory are accumulated. Therefore, the APE value grows
quickly as the traveled distance increases.
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(a) The APE w.r.t. translational part in (m) (b) The APE mapped onto trajectory

Figure 4.10.: Fine-tuned APE RILA ORB-SLAM3 trajectory

Table 4.3.: Comparing APE related parameters w.r.t
translation part before and after fine-tuning

Calculated
Parameter [m]

Value Before
Fine-Tuning

Value After
Fine-Tuning

Improvement
in Percentage
[%]

Maximum 8.990574 3.687226 59

Mean 2.996627 1.891725 36.9

Median 2.922912 1.932055 33.9

Minimum 0.049612 0.007321 85.2

RMSE 3.245827 1.994206 38.6

STD 1.247246 0.631060 49.4

4.4.2. The estimated RPE after fine-tuning

The results for RPE after fine-tuning is presented in Figure 4.11. Overall, the fine-tuning
enhanced the RPE value for all the parameters as expected. The improvement in the RMSE is
remarkable as it reached to 0.06 m. Moreover, as can be seen, the RPE results in a downward
trend while the train was entering the station because of the reduction in speed. On the
other hand, it ascends when the train was accelerating to leave the station. This is expected,
since the relative error between two corresponding trajectory segments directly depends on
the speed value. A summary of comparison between all the RPE parameters before and after
fine-tuning is given in Table 4.4.

By fine-tuning the initialization phase, the RPE results considerably improved. Additionally,
since the remaining outliers still appear in the beginning of the trajectory, it is possible to
further improve the result by choosing a more precise initialization time. To reduce the
impact of these remaining outliers in our evaluation, Median is the best statistical parameter
to take into consideration. As can be seen in Table 4.4, the Median value indicates that the
the estimated relative error in 1 meter is about 5.2%. In other words, for our case study, the
SLAM tool has 52 mm drift per meter.
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(a) The RPE w.r.t. translational part in (m) (b) The RPE mapped onto trajectory

Figure 4.11.: Fine-tuned RPE RILA ORB-SLAM3 trajectory

Table 4.4.: RPE related parameters w.r.t.
translation part

Calculated
Parameter [m]

Value Before
Fine-Tuning

Value After
Fine-Tuning

Improvement
in Percentage
[%]

Maximum 1.286857 0.161808 87.6

Mean 0.144211 0.058434 59.5

Median 0.053447 0.052914 1.0

Minimum 0.017912 0.017087 4.6

RMSE 0.245927 0.062430 74.6

STD 0.199206 0.021977 89

Furthermore, to deal with the unbounded errors in odometry as proposed in [74], the trajec-
tory is divided into different segment lengths by choosing several ∆ values including: 1 m,
10 m, 20 m, and 50 m. To test the evolution of RPE error, the RMSE and median in each case
is computed and summerized in Table 4.5.

Table 4.5.: RPE RMSE and median
w.r.t. translation part for multiple Delta

Delta [m] RMSE [%] Median[%]

1 6.2 5.3

10 4.3 4.3

20 4.3 4.3

50 4.3 4.3

The different values for ∆ shows that the RPE converged to 4.3%. Considering the prior re-
searches [74] in railway applications, the obtained result is reasonable for monocular VI-SLAM
systems without loop closure. However, comparing to other applications the estimated error
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is slightly larger. This is mainly due to the fact that the train movement is constrained to
one direction with the minimum heading changes which results in unobservable IMU biases
that causes scale drifts. Additionally, comparing RILA to indoor robotic systems, the ve-
locity is higher while the camera frame rate is lower. Therefore, the distance between two
consecutive frames is longer which leads to a larger relative error.

4.4.3. RPE and APE Evaluation in Conjunction

According to the obtained RPE, the expected error for the total path length is approximately
15 meter, i.e., 4.3% of the 350 meter (the length of the area of interest over which the SLAM
trajectory is generated). However, the estimated absolute error, presented in section 4.4.1 is
substantially less (around 11 m) than this expected value.

The cause of this noticeable difference highly depends on the selected method for the tra-
jectory alignment. As mentioned in section 4.1, SE3 is one of the most widely used methods
in the literature to align the translation and rotation parts of the trajectories. However, all
these studies aimed to provide a benchmark on different SLAM algorithms. Therefore, the
applied alignment method is a constant condition which has no impact on their obtained
comparison results. Nonetheless, in our research, we are interested in estimating the achiev-
able accuracy itself rather than performing comparison. Accordingly, we computed the APE
by aligning only the origins of the trajectories without any further correction using the sim-
ilarity transformation which reduces the estimated error.

Figure 4.12 illustrates the APE result with the origin alignment. As expected the estimated
APE follows the relation to the computed RPE, in other words the APE is equal to the 4.3%
of the travelled path length at each time. Furthermore, the Figure 4.12b shows the drift
between the SLAM-based trajectory and the ground-truth.

(a) The APE w.r.t. translational part in (m) (b) The APE mapped onto trajectory

Figure 4.12.: APE RILA ORB-SLAM3 trajectory over the area of interest using only origin
alignment

4.5. RILA Trajectory Improvement Using the Extracted Zero
Velocity Update (ZUPT)

Several information can be extracted from the SLAM-based trajectory to improve the accuracy
of the RILA output in the GNSS challenging area. In our use-case, the IE tool can accept three
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aiding information, namely (1) Position, Velocity, Attitude relative updates (PVA) (2) DMI
input (3) ZUPT. To be able to utilize the first two aiding information for RILA system, certain
modification in the IE tool is required which can be done only by the manufacturer which is
out of the scope of this research study. Therefore, ZUPT is selected as our aiding information
to evaluate its impact on enhancing the positional accuracy of RILA.

ZUPT plays a vital role in reducing the uncertainty in generating the trajectory where the
vehicle is stationary. In fact, by employing the ZUPT information, the accumulated IMU drifts
are limited [73], [78].

Generate the 
SLAM Trajectory

Visualize and 
store the 

generated SLAM 
Trajectory 

GNSS Data  

 INS Data

Generate Ground Truth 
trajectory using  INS-GNSS 

integration tool (IE ).
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t rajectories 
using (EVO 

tool)

Validat ion
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Figure 4.13.: RILA ORB-SLAM3 Trajectory Correction Phase.

Figure 4.13 presents the steps of the trajectory correction phase using the ZUPT signals.
Initially, the ZUPT information was extracted from the generated fine-tuned trajectory using
a custom script. Then, to evaluate the impact of ZUPT on the positional accuracy of the
trajectory, we manually input ZUPT signals to the IE tool and generated trajectories with and
without ZUPT information over the 5-minute GNSS challenging area, as shown in Figure 4.4.
Finally, we used the positional accuracy plots, computed by IE, to compare the impact of
the ZUPT signals. These plots illustrate the standard deviation of the east, north, and up
directions over time which enable us to understand how accurate the generated trajectories
are. It is noted in [1], that the estimated error plot does not consider the possible systematic
errors, such as problems in base stations. In the following section, the obtained results are
illustrated and analyzed.

4.5.1. ZUPT Correction Results Analysis

Figure 4.14 depicts the estimated position accuracy plot over the 5-minute GNSS blocked
area without any aiding information. As can be seen, the shape of the estimated plot has
a smooth curve which is due to the fact that our processing is performed in both direction,
(i.e., forward and reverse processing) also different filtering and smoothing steps are done
by IE. It is clearly apparent that the maximum error occurs in the middle of the curve where
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the train is stationary inside the station. Table 4.6 summarizes the maximum estimated error
for each direction as well as the calculated overall maximum estimated error for our case
study where we have 5 minutes of the fully GNSS blockages.

Figure 4.14.: Estimated Positional accuracy without utilization of ZUPT signals. Red, green,
and blue lines shows the estimated error for east, north and height directions,

respectively

Table 4.6.: Maximum standard deviation error in the absence of ZUPT information

North [cm] East [cm] Height [cm] Overall [cm]

61 60 10 86

Figure 4.15 highlights how the extracted ZUPT information improves the positional accuracy
in our case study. As can be seen, while entering the blocking GNSS area from both direction,
the estimated error increases gradually. However, from the moment that the train is station-
ary, this growing trend is stopped due to the fact that the ZUPT can help to mitigate the IMU
drifts. The maximum estimated errors for all the directions along with the computed overall
error is listed in Table 4.7.

Table 4.7.: Maximum standard deviation error using the ZUPT information

North [cm] East [cm] Height [cm] Overall [cm]

36 34 22 63

Comparing the overall estimated errors for both cases, around 30% of improvement is
achieved with only 51 seconds of stationary condition in our case study. It is noticeable
that the East and North error curves are significantly suppressed after applying the ZUPT
information. Although the trend of height error curve is aligned with the other directions,
the estimated error values for this direction slightly rose up.

In the beginning, the reason of this unexpected behavior was not clear to the author. How-
ever, after further investigation, we realized that in the complete dataset (from which the
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Figure 4.15.: Estimated Positional accuracy with utilization of ZUPT signals. Red, green, and
blue lines shows the estimated error for east, north and height directions, respectively

Figure 4.16.: The complete dataset. The vertical yellow bars in the 5-minute GNSS
challenging area represents the ZUPT signals inserted manually. The blue box shows the

problematic area with no base station.

5-minute GNSS challenging area was derived) one of the base stations immediately after the
area of our case study was absent. In Figure 4.16, this problematic area is shown with the
blue box. Therefore, having outliers in the dataset could be one of the reasons that leads to
misbehavior of the height direction.
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This chapter presents the conclusions of the project. The first part focuses on providing
answers to the research questions. In the second part, we propose some suggestions for the
possible future work to further continue this research.

5.1. Conclusion

This dissertation set out to propose a solution to adapt a monocular VI-SLAM method for
railway application. The primary motivation behind this work was to improve the accuracy
of the trajectory estimation in the GNSS challenging area.

Most of the existing works in the domain of SLAM fusion with the INS/GNSS system has sig-
nificantly focused on other applications such as ground robotic rather than mobile mapping
systems for railway. However, in this study, we have aimed at integrating the SLAM frame-
work for the railway application. Such an application has a distinctive characteristic of that
the motion is limited to the rail path in contrast to other applications where the vehicle can
move freely in arbitrary directions. Therefore, we have further evaluated the applicability,
challenges and limitations of the proposed SLAM-based solution using real-world case study
based on the RILA system. The obtained results have demonstrated the effectiveness of our
proposed solution.

To perfectly be utilized in railway application, initially we have formulated the SLAM prob-
lem mathematically in order to understand its important concepts. Furthermore, we have
reviewed studies on the existing SLAM paradigms and outlined their advantages and disad-
vantages for different use cases. Later, we classified the SLAM methods based on the sensor’s
input data into two main categorizes, namely visual, and non-visual SLAM and addressed
their pros and cons according to the railway constraints. Overall, the result has shown that
considering the challenges including high speeds, constrained motion, and dynamic envi-
ronment the V-SLAM methods were suggested due to the possibility to extract intense visual
information from the images, their simplicity and cost-efficiency.

In order to answer the first research question of this work 1.3, firstly, a comprehensive liter-
ature study was conducted to identify, classify and analyze the monocular VI-SLAM methods
considering the railway application constraints. Consequently, a set of key requirements
based on the RILA system was defined to assess the applicability of the methods and se-
lect the most suitable solution for our case study. The result of this study revealed that
ORB-SLAM3 technique fulfills the defined criteria and therefore was chosen as our monocular
VI-SLAM algorithm during this research project.

After identifying the SLAM method, we have designed an end-to-end pipeline that covers
all the phases to adapt the selected technique for RILA system. This pipeline consists of
five phases, namely SLAM Tool Installation, Input Data Preparation, SLAM Tool Execution,
Validation and Trajectory Correction as described in Chapter 3. To implement the selected
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method according to the pipeline, firstly we have calibrated sensors of the RILA system and
generated the intrinsic and extrinsic parameters based on ORB-SLAM3 format. Subsequently,
we executed 5 times the ORB-SLAM3 using the RILA dataset which comprised of images
captured by the camera along with the raw IMU data and the default parameters. However,
by comparing the generated trajectories of these runs, we noticed inconsistency in the results.
To overcome this limitation, we have performed a fine-tuning for precision and repeatability
to make the system stable. To this end, we optimised the IMU noise model to reduce the
dependency on IMU measurements for the trajectory estimation. Additionally, we increased
the ORB-extractor parameter to an optimal value to ensure the SLAM tool is able to track
itself properly. The generated results after this fine-tuning show the overall trend of these 5
runs are highly aligned.

Finally, to answer the second research question (i.e., evaluate our proposed solution), we
have implemented a case study using RILA dataset. In this case study, we have illustrated a
scenario in which the train entered the station, stayed there stationary for 1 minute, and then
left the station slowly. In particular, we manually inserted GNSS blockages before and after
the station to evaluate the impact of utilizing ORB-SLAM3 in the areas where GNSS coverage is
poor. Additionally, we generated a ground-truth trajectory for our case study and conducted
several experiments to validate the obtained SLAM-based trajectory of the proposed solution
according to two criteria. Then, considering the evaluation results we decided on the strategy
for fine-tuning to improve the accuracy. Additional experiments were performed on the fine-
tuned results to determine the extent to which our proposed solution is applicable. In our
experiments, we measured the APE and RPE to evaluate the absolute and local estimated
errors of our solution comparing to the ground-truth trajectory. Furthermore, we revealed
that our proposed solution can achieve higher accuracy by allocating sufficient time for SLAM
initialization. Having compared the results before and after the fine-tuning, we concluded
that both APE and RPE are significantly reduced and the estimated error is around 4.3% of the
travelled path. Last but not least, we assessed the impact of ZUPT information on INS/GNSS
integration result. Having used the ZUPT signal as the aiding information, the estimated
positional accuracy of the trajectory was improved by 30% with 51 seconds of stationary
condition.

Having provided the research findings for the two questions, we can now argue that the
proposed monocular VI-SLAM solution can integrate to INS/GNSS system as an aiding in-
formation algorithm and enhance the trajectory estimation for rail vehicles. In particular,
in sites with GNSS blockage where the vehicle is stationary, the ZUPT information remark-
ably reduces the IMU drift and therefore enhances the trajectory estimation. Please note that
although in our specific case study the stationary period was only 15% of the total GNSS
problematic dataset, an overall 30% improvement in accuracy was achieved. Hence, it is
expected that in real-life scenarios where the train stays much longer in the stations, the
proposed solution improves the estimated positional accuracy more significantly.

By summarizing, our research brings the following scientific achievements:

• A complete pipeline to implement and validate the ORB-SLAM3 for RILA system.

• A truly test over a real-life case study to analyse the performance and explore the
achievable accuracy of the proposed technique considering the railway application.

• A correction to the trajectory estimation using the ZUPT information.
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5.2. Limitations and Future Work

Despite the promising findings provided in this dissertation, a number of research chal-
lenges are still open for further investigation. Firstly, since an specific motion with sufficient
acceleration and rotation is not possible for train, precise IMU initialization is not possible
which results in imprecise scale estimation, i.e., around 1% drift in our case study. Addition-
ally, due to limited yaw angle movement, the bias in this angle is relatively larger than the
rest and therefore increases the absolute error along the travelled path. One interesting so-
lution to tackle this issue is adapting a stereo VI-SLAM method which provides an estimation
for yaw separately.

Additionally, as the travelled distance increases, the odometer drifts grows exponentially
due to the lack of loop closure for rail application. It is possible to reduce this effect by
applying specific modifications in RILA setup and the SLAM pipeline:

• Use camera with higher frame rate: Higher frame-rates improve the rapid motion
tracking and feature extraction which enhance the system accuracy.

• Modify RILA camera setup: The position and orientation of the RILA’s camera should
be adjusted in such a way to enable adapting stereo SLAM. Providing a precise scale
estimation for all scenes, the stereo SLAM method mitigates the scale drift issue.

• Implement the bi-directional processing of the SLAM solution: Similar to INS/GNSS
integration tools, the SLAM solution should be processed in both forward and reverse
directions to reach smoother trajectory results.

• Implement multi-map SLAM: The collected data from the typical 4 RILA’s runs can
be processed under the framework of multi-map SLAM. to imitate the loop closure
condition and provide accurate localization.

As a closing note, it would be interesting to explore how deep learning can be used in
the VI-SLAM pipeline. Specially, deep learning can improve the image feature extraction,
enhance the camera pose and image depth estimation, and extract semantic information for
data association.
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A. ORB-SLAM3 Installation Bash Script

Listing A.1: bash version
#Install instructions for ORB -SLAM3

on a clean Ubuntu 18.04

RUN sudo sh -c ’echo

"deb http :// packages.ros.org/ros/ubuntu

$(lsb_release -sc) main" > /etc/apt/sources.list.d/ros -latest.list’

RUN sudo apt -get update

RUN sudo apt -get install curl

RUN sudo curl -s

https ://raw.githubusercontent.com/ros/rosdistro/master/ros.asc |

sudo apt -key add -

RUN sudo apt -get update && sudo apt -get install -y --no -install -recommends

apt -utils

RUN sudo apt -get install -y \

cmake \

build -essential \

git \

unzip \

pkg -config \

libgtk2.0-dev \

python -dev \

python -numpy \

libgl1 -mesa -dev \

libglew -dev \

libpython2 .7-dev \

libeigen3 -dev \

qt5 -default \

ros -melodic -cv -bridge \

ros -melodic -image -geometry \

ros -melodic -geometry \

ros -melodic -image -pipeline \

&& apt -get clean && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

# Build OpenCV (3.0 or higher should be fine)

RUN cd /tmp && git clone https :// github.com/opencv/opencv.git && \

cd opencv && \

git checkout 4.4.0 && \

mkdir build && cd build && \

cmake -DENABLE_PRECOMPILED_HEADERS=OFF -D WITH_QT=ON -D WITH_GTK=ON
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-D WITH_OPENGL=ON -D CMAKE_BUILD_TYPE=Release

-D CMAKE_INSTALL_PREFIX =/usr/local .. && \

make -j3 && sudo make install && \

cd / && rm -rf /tmp/opencv

# Build Pangolin

RUN cd /tmp && git clone https :// github.com/stevenlovegrove/Pangolin && \

cd Pangolin && mkdir build && cd build && \

cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS=-std=c++11 .. && \

make -j1 && sudo make install && \

cd / && rm -rf /tmp/Pangolin

# Build ORB -SLAM3 for ROS

RUN git clone https :// github.com/UZ -SLAMLab/ORB_SLAM3 ~/ ORB_SLAM3

DO Modify

CHANGE Tracking.cc remove comment from "mpFrameDrawer ->Update(this);"

DO Modify build.sh and build_ros.sh (edit all "make -j" to "make -j1").

To edit the files use "sudo chmod -R o+rw bash.sh"

and "sudo chmod -R o+rw bash_ros.sh" to give write permissions.

FOLLOW steps on http :// wiki.ros.org/melodic/Installation/Ubuntu

RUN sudo ln -s /usr/include/eigen3/Eigen /usr/include/Eigen

RUN . /opt/ros/melodic/setup.sh && \

export ROS_PACKAGE_PATH=${ROS_PACKAGE_PATH }:~/ ORB_SLAM3/Examples/ROS
&& \

cd ~/ ORB_SLAM3/ && \

sudo chmod +x build.sh && ./ build.sh \

sudo chmod +x build_ros.sh && ./ build_ros.sh

# Download dataset

RUN cd ~ && \

mkdir -p Datasets/EuRoc && \

cd Datasets/EuRoc/ && \

curl -O

http :// robotics.ethz.ch/~asl -datasets/ijrr_euroc_mav_dataset/

machine_hall/MH_01_easy/MH_01_easy.zip && \

mkdir MH01 && \

unzip MH_01_easy.zip -d MH01/

#Examples

RUN cd ~/ ORB_SLAM3/

# Mono

./ Examples/Monocular/mono_euroc ./ Vocabulary/ORBvoc.txt

./ Examples/Monocular/EuRoC.yaml ~/ Datasets/EuRoc/MH01

./ Examples/Monocular/EuRoC_TimeStamps/MH01.txt dataset -MH01_mono
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# Mono + Inertial

./ Examples/Monocular -Inertial/mono_inertial_euroc

./ Vocabulary/ORBvoc.txt ./ Examples/Monocular -Inertial/EuRoC.yaml

~/ Datasets/EuRoc/MH01

./ Examples/Monocular -Inertial/EuRoC_TimeStamps/MH01.txt dataset -MH01_monoi

# Stereo

./ Examples/Stereo/stereo_euroc ./ Vocabulary/ORBvoc.txt

./ Examples/Stereo/EuRoC.yaml ~/ Datasets/EuRoc/MH01

./ Examples/Stereo/EuRoC_TimeStamps/MH01.txt dataset -MH01_stereo

# Stereo + Inertial

./ Examples/Stereo -Inertial/stereo_inertial_euroc ./ Vocabulary/ORBvoc.txt

./ Examples/Stereo -Inertial/EuRoC.yaml ~/ Datasets/EuRoc/MH01

./ Examples/Stereo -Inertial/EuRoC_TimeStamps/MH01.txt dataset -MH01_stereoi

#ROS examples

ROS datasets can be downloaded in

https :// projects.asl.ethz.ch/datasets

/doku.php?id=kmavvisualinertialdatasets

#ROS Mono -Inertial

RUN cd ~/ ORB_SLAM3/Examples/ROS/ORB_SLAM3 && \

export ROS_PACKAGE_PATH=${ROS_PACKAGE_PATH }:
~/ ORB_SLAM3/Examples/ROS && \

roscore && \

rosparam set use_sim_time true

ctrl + shift + t to open terminal tab

RUN export ROS_PACKAGE_PATH=${ROS_PACKAGE_PATH }:
~/ ORB_SLAM3/Examples/ROS && \

rosrun ORB_SLAM3 Mono ~/ ORB_SLAM3/Vocabulary/ORBvoc.txt

~/ ORB_SLAM3/Examples/Monocular -Inertial/EuRoC.yaml

ctrl + shift + t to open terminal tab

RUN export ROS_PACKAGE_PATH=${ROS_PACKAGE_PATH }:
~/ ORB_SLAM3/Examples/ROS && \rosbag play --pause

~/ Downloads/V1_02_medium.bag /cam0/image_raw :=/ camera/image_raw /imu0 :=/ imu

PRESS space in rosbag tab

# Evaulation of Monocular -Inertial Example

cd ~/ ORB_SLAM3/Examples

RUN ./Monocular -Inertial/mono_inertial_euroc

../ Vocabulary/ORBvoc.txt ./Monocular -Inertial/EuRoC.yaml

~/ Datasets/EuRoc/MH01 ./Monocular -Inertial/EuRoC_TimeStamps/MH01.txt

~/ Datasets/EuRoc/MH01 ./Monocular -Inertial/EuRoC_TimeStamps/MH01.txt

~/ Datasets/EuRoc/MH01 ./Monocular -Inertial/EuRoC_TimeStamps/MH01.txt

dataset -MH01_monoi

RUN python ../ evaluation/evaluate_ate_scale.py

../ evaluation/Ground_truth/EuRoC_left_cam/MH01_GT.txt

f_dataset -MH01_monoi.txt --plot MH01_monoinertial.pdf --verbose --verbose2
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B. SBET to TUM converter python script

#!/usr/bin/python

# -*- coding: utf -8 -*-

import numpy as np

import pandas as pd

import pyproj

import cut_sbet_in_tum

def sbet_record_types ():

""" Function sbet_record_types

Get a list of the sbet record types

Arguments:

Returns: list of the data types in a sbet record

"""

return [

(’time_sbet ’, np.float64),

(’lat’, np.float64),

(’lon’, np.float64),

(’alt’, np.float64),

(’xvel’, np.float64),

(’yvel’, np.float64),

(’zvel’, np.float64),

(’roll’, np.float64),

(’pitch’, np.float64),

(’heading ’, np.float64),

(’wander ’, np.float64),

(’xacc’, np.float64),

(’yacc’, np.float64),

(’zacc’, np.float64),

(’xang_rate ’, np.float64),

(’yang_rate ’, np.float64),

(’zang_rate ’, np.float64),

]

def con_rad_to_deg_sbet(df):

""""Function con_rad_to_deg

Read a dataframe and convert the variable from radians to degrees

"""

df[’lat’] = np.rad2deg(df[’lat’])
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df[’lon’] = np.rad2deg(df[’lon’])

return df

def readSbet(filename ):

""" Function readSbet

Read an sbet file into a np array.

Arguments:

filename: string of filename to read into a np array

Returns: 2-d np array of sbet data

"""

if not isinstance(filename , str):

raise TypeError(’argument 1 to readSbet must be a string ’)

np_data = np.fromfile(filename , dtype=np.dtype(sbet_record_types ()))

return pd.DataFrame(np_data)

if __name__ == ’__main__ ’:

# print(pyproj.show_versions ())

filepath = \

input(’Enter the full filepath location and name for SBET file: \n’

)

sbet_data = readSbet(filepath)

sbet_data = con_rad_to_deg_sbet(sbet_data)

sbet_data.to_csv(r’SBET_lc1_ref.csv’, index=False)

print ’SBET to Text created successfully!’

df = pd.read_csv(r’SBET_lc1_ref.csv’)

df.columns = [

’GpsTimeOfWeek ’,

’Latitude ’,

’Longitude ’,

’Altitude ’,

’EWSpeed ’,

’NSSpeed ’,

’VertSpeed ’,

’Roll’,

’Pitch’,

’Heading ’,

’Wander ’,

’EWAccuracy ’,

’NSAccuracy ’,

’VertAccuracy ’,

’XAccuracy ’,

’YAccuracy ’,

’ZAccuracy ’,

]

print df [0:1]
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df.iloc[:, 9] = np.multiply(df.iloc[:, 9], -1)

tempX = df[’Latitude ’]. values

tempY = df[’Longitude ’]. values

tempZ = df[’Altitude ’]. values

concar = np.vstack ((tempX , tempY , tempZ ))

etrs89 = pyproj.Proj(’epsg :4258 ’)

ostn15 = pyproj.Proj(init=’epsg :27700 ’,

nadgrids=r’OSTN15_NTv2_ETRStoOSGB.gsb’,

geoidgrids=r’OSGM15_Malin.gtx’)

res = pyproj.transform(etrs89 , ostn15 , *concar) # Converting from ETRS89 to OSGB

df[’East’] = res [0]

df[’North ’] = res [1]

df[’Height ’] = res [2]

df[’qx’] = np.sin(df[’Roll’] / 2) * np.cos(df[’Pitch ’] / 2) \

* np.cos(df[’Heading ’] / 2) - np.cos(df[’Roll’] / 2) \

* np.sin(df[’Pitch’] / 2) * np.sin(df[’Heading ’] / 2)

df[’qy’] = np.cos(df[’Roll’] / 2) * np.sin(df[’Pitch ’] / 2) \

* np.cos(df[’Heading ’] / 2) + np.sin(df[’Roll’] / 2) \

* np.cos(df[’Pitch’] / 2) * np.sin(df[’Heading ’] / 2)

df[’qz’] = np.cos(df[’Roll’] / 2) * np.cos(df[’Pitch ’] / 2) \

* np.sin(df[’Heading ’] / 2) - np.sin(df[’Roll’] / 2) \

* np.sin(df[’Pitch’] / 2) * np.cos(df[’Heading ’] / 2)

df[’qw’] = np.cos(df[’Roll’] / 2) * np.cos(df[’Pitch ’] / 2) \

* np.cos(df[’Heading ’] / 2) + np.sin(df[’Roll’] / 2) \

* np.sin(df[’Pitch’] / 2) * np.sin(df[’Heading ’] / 2)

s(df[’Heading ’] / 2) * np.cos(df[’Roll’] / 2) * np.cos(df[’Pitch’] / 2) \

- np.sin(df[’Heading ’] / 2) * np.sin(df[’Roll’] / 2) \

* np.sin(df[’Pitch’] / 2)

print df [0:1]

np.savetxt(r’44 _Corrected_SBET_lc1_ref.txt’, df[[

’GpsTimeOfWeek ’,

’East’,

’North’,

’Height ’,

’qx’,

’qy’,

’qz’,

’qw’,

]], delimiter=’ ’, fmt=’%1.7f’)
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C. RILA ORB-SLAM3 Caliberation
Settings

%YAML: 1 . 0

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Camera Parameters . Adjust them !
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Camera . type : ”PinHole”

# Camera c a l i b r a t i o n and d i s t o r t i o n parameters (OpenCV)
Camera . fx : 1499.84104007175
Camera . fy : 1499.8475095955
Camera . cx : 1014.58125785923
Camera . cy : 1021.26199168825

Camera . k1 : −0.171918629792281
Camera . k2 : 0 .118149760774721
Camera . k3 : −0.0233476114366727
Camera . p1 : −0.000448848328024488
Camera . p2 : −2.29280010419978E−05

Camera . width : 2016
Camera . height : 2016

# Camera frames per second
Camera . fps : 1 5 . 0

# Color order of the images ( 0 : BGR, 1 : RGB. I t i s ignored i f images are g ra ys ca le )
Camera .RGB: 1

# Transformation from camera to body−frame ( imu )
Tbc : ! ! opencv−matrix

rows : 4
c o l s : 4
dt : f
data : [ −0.99999563183187290 , −0.00278327429017821 , 0 .00099483737316777 , −0.1770 ,

−0 .00099337606308907 , −0.00052636588898528 , −0.99999936807127443 , −0.1968 ,
0 .00278379617980556 , −0 .99999598815354085 , 0 .00052359875167370 , 0 . 2 7 7 7 ,
0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 ]

# IMU noise
IMU. NoiseGyro : 0 .00029888
IMU. NoiseAcc : 0 .0001000000
IMU. GyroWalk : 0 .000000001
IMU. AccWalk : 0 .000031620
IMU. Frequency : 300

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# ORB Parameters
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# ORB E x t r a c t o r : Number of f e a t u r e s per image
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ORBextractor . nFeatures : 6500

# ORB E x t r a c t o r : S c a l e f a c t o r between l e v e l s in the s c a l e pyramid
ORBextractor . s c a l e F a c t o r : 1 . 2

# ORB E x t r a c t o r : Number of l e v e l s in the s c a l e pyramid
ORBextractor . nLevels : 8

# ORB E x t r a c t o r : Fas t threshold
# Image i s divided in a grid . At each c e l l FAST are e x t r a c t e d imposing a minimum response .
# F i r s t l y we impose iniThFAST . I f no corners are detec ted we impose a lower value minThFAST
# You can lower these values i f your images have low c o n t r a s t
ORBextractor . iniThFAST : 20
ORBextractor . minThFAST : 7

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Viewer Parameters
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Viewer . KeyFrameSize : 0 . 0 5
Viewer . KeyFrameLineWidth : 1
Viewer . GraphLineWidth : 0 . 9
Viewer . Po in t S i ze : 2
Viewer . CameraSize : 0 . 0 8
Viewer . CameraLineWidth : 3
Viewer . ViewpointX : 0
Viewer . ViewpointY : −0.7
Viewer . ViewpointZ : −3.5 # −1.8
Viewer . ViewpointF : 500
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