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ABSTRACT
The nonlinear stability of three-dimensional boundary

layers over various undulated surfaces was calculated us-
ing the generalized Nonlinear Parabolized Stability Equations
(NPSE). The results are compared with a flat plate configura-
tion to assess the effect of the undulation shape on the stability
of the boundary layer. It was found that the effect of surface
undulations is significant and should not be ignored when per-
forming stability analysis. All undulation shapes considered in
this work showed a destabilization of the primary mode and the
associated harmonics. The stability of the boundary layer was
directly affected by the amplitude of the undulations, while
their respective shape did not meaningfully affect the evolu-
tion of the crossflow instabilities within the parameter range
considered in this work.

Introduction
The laminar-to-turbulent transition of boundary layers di-

rectly affects the skin friction drag experienced by an aircraft
wing resulting in increased fuel costs and associated emis-
sions. At the same time, the manufacturing of wings is subject
to limitations resulting in necessary junctions (gaps and steps)
and bolts on the wing surface. Furthermore, plate rolling tech-
niques and operational loads affect the surface smoothness of
the wing plate itself, by inherently creating long-wavelength
streamwise waviness. Despite the presence of such geometri-
cal deviations from an ideal wing and their long known impor-
tance to the transition scenario (see e.g. Holmes et al. (1985);
Nayfeh et al. (1988) ), stability calculations are often still per-
formed assuming a perfectly smooth surface. Accounting for
finer physical details in the stability calculations of boundary
layers is crucial for the design of realistic laminar wings that
aim to delay the onset of turbulence.

In one of the earliest works concerning the stability
of three-dimensional boundary layers over undulated plates,
Masad (1996) found a destabilizing effect that was positively
correlated with the amplitude of the undulations. Thomas et al.
(2016) instead found a stabilization of the primary mode for
some cases with sinusoidal surface undulations and cites the

importance of surface wavelength and phase. The existence of
surface undulations is significant to the stability of the flow and
can result in both positive (stabilization) and negative (destabi-
lization) effects on the dominant mode. The parameter space is
large and requires an efficient (nonlinear) stability calculation
framework to be analyzed thoroughly.

The Nonlinear Parabolized Stability Equations (NPSE)
are commonly used to calculate the stability of growing bound-
ary layers. Nevertheless, their application is limited due to
the assumption of slowly varying perturbation shape. This as-
sumption appears to be valid for smooth surfaces with limited
localized surface gradients as shown by Park & Park (2013)
and Park & Oh (2020). The PSE have therein been shown to
be effective in predicting the stability around localized curva-
ture for 2-dimensional boundary layers. Franco Sumariva et al.
(2020) show that sharp geometric features break this assump-
tion and require a fully elliptic stability method instead. Addi-
tionally, the step size limitation, inherent in the PSE method-
ology, is mentioned as a crucial limitation for stability over
smooth humps. A relaxation of the step size restriction that
would allow for finer streamwise discretization is not consid-
ered explicitly in that work. Thomas et al. (2016) analyzed
the linear stability of a swept wing featuring sunsoidal surface
deformations with LPSE and Linear Harmonic Navier-Stokes
(LHNS), thus establishing some validity of the PSE assump-
tion in undulated surface boundary layer cases, even for cases
with small separation regions in the basic state.

Based on the afformentioned studies, the PSE are used
for this problem due to the unrivaled speed by which nonlin-
ear simulations can be performed. This allows for a paramet-
ric study to be performed that considers also the shape of the
undulations. This study aims to analyze the effect of undula-
tion shape on the stability of three-dimensional boundary lay-
ers and show the effectiveness of the PSE framework for this
type of problem.

Nondimensionalization
In this work, all quantities are presented nondimension-

ally. Distances are normalized by the boundary layer thick-
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Figure 1. Schematic of a sinusoidally undulated swept plate and the computational domain.

ness, taken as δ99 at the inflow, i.e. the reference length de-
noted lre f = 7.71 ·10−4 m. The inflow velocity U0 = 15.1 m/s
is used to normalize velocities. A global Reynolds number
is defined using these constants and the kinematic viscosity
ν = 1.51 ·10−5 m/s2 as: Re = U0∗lre f

ν
.

Problem Statement
The stability of the boundary layers over swept plates

with respect to the freestream flow direction is considered. A
schematic of the problem is shown in figure 1. The virtual
leading edge is shown upstream of the computational stability
domain meaning that a pre-existing boundary layer and cross-
flow instability is present at the inflow. The computational do-
main L = 470 · lre f (0.3m). The undulation starts at a distance
of 27·lre f (2 cm) downstream of the inflow, ramping up to the
maximum amplitude at a distance of 162 lre f (12.5 cm) down-
stream of the inflow. This is explained in more detail later in
this section. The spanwise component of the external flow is
constant, W∞ =−1.24 ·U∞, the streamwise velocity is a func-
tion of the leading edge orthogonal dimension, x, following
the external velocity distribution of the experiments of Rius-
Vidales & Kotsonis (2021) as described in Casacuberta et al.
(2021).

The transition scenario on swept-wings is generally gov-
erned by the evolution of stationary crossflow instabilities due
to the low freestream turbulence found in free-flight conditions
as noted by Bippes & Müller (1990) and Deyhle & Bippes
(1996). In this work, therefore, no travelling crossflow modes
are considered and for all modes ω = 0. For the flat plate case,
it was found that the mode specified by the spanwise wave-
length of λz = 7.5mm is the most unstable mode and thus this
mode will be introduced at the inflow for all cases. It is pos-
sible that the undulations affect the stability of the boundary
layer in such a way that other modes govern the transition sce-
nario instead. A more robust transition analysis would there-
fore require a nonlinear N-envelope analysis that is considered
out of the scope of this work however.

The nonlinear stability of several variations of stream-
wise surface undulations is considered. After a flat plate re-
gion downstream of the inflow, a growing sinusoidal func-
tion is altered to either contain a skew or a flat top to as-
sess the effect of the undulations’ shape. For the undulations,
the shape is described by algebraic functions subject to ei-
ther the skew parameter k(= [3,5,7,1000]), or shape param-
eter b(= [0,1,1.5,2]). These parameters appear in the surface
shape functions as:

yw(x) = r(x) ·h ·Norm
[
tan−1

( sin(s)
k+1− cos(s)

)]
(1)

yw(x) = r(x) ·h ·

√
1+b2

1+b2 · sin2(s)
sin(s) (2)

Here, Norm indicates a normalization of the shape and
s(x) = (x−S)2π

λw
, where λw is the streamwise wavelength of the

undulations, S is a constant offset before which the plate is flat,
h is the undulation height, and k is a constant skew parameter.
The ramp, r(x) = tanh

(
20 · lre f (x−S)

)
, ensures a smooth in-

troduction of the waviness. Note that the cases described by
k = 1000 and b = 0 are the same case as these shapes approx-
imate a sine function.

The amplitude can be adjusted through the parameter h
although it is maintained at h = 0.3059 · lre f in this work. Still,
it will be shown that this small undulation amplitude has a no-
ticeable effect on the stability of the base flow. The base flow
does not feature any separation for the cases presented here.
The geometric shape of the undulation can be adjusted to be
more square by varying the parameter b in equation 2. The
resulting surfaces are shown below in figure 2.

Methodology
The stability of swept undulated plates is considered non-

linearly using the NPSE methodology. The NPSE are de-
rived for generalized coordinates, parabolizing the equations
in the body-fitted grid along the streamwise direction. The
basic state is found using the steady incompressible laminar
Navier Stokes formulation in the commercial finite element
solver COMSOL. The details for both the base flow solver and
PSE methods are presented in this section.

In COMSOL, the inflow is prescribed by an analytical
Falkner-Scan-Cooke solution. At the wall, the no-slip con-
dition is imposed and a pressure description of a favourable
pressure gradient is prescribed at the top boundary as found
in Casacuberta et al. (2021). This top boundary is placed at a
height, H, which through preliminary investigations is found
to have no influence on the results (H = 51.9∗ lre f ). The out-
let prescribes a constant static pressure condition equal to the
static pressure found at the top boundary at that streamwise
location. Two finite elements are present in the spanwise di-
rection, z, with periodic boundary conditions. Velocities and
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Figure 2. Surface undulations (not to scale) for the (a) skewed sinusoidals with k =[1000 7 5 3] and (b) squared sinusoidals with
b =[2.5 2 1.5 0] in orange, blue, purple and green respectively.

pressures are calculated using second-order elements of which
there exist 78 in the wall-normal direction clustered to the wall
and 877 equispaced in the streamwise direction, using a direct
solver procedure.

To analyze the stability of the basic state, a body-fitted co-
ordinate system is introduced with the ξ -axis at η = 0 being lo-
cally parallel and normal to the wall surface. The η-coordinate
is constructed such that the grid is locally orthogonal at the
wall as is required for parabolization along the ξ -axis. After a
perturbation analysis is performed on the generalized Navier-
Stokes equations, the nonlinear solution ansatz is introduced:

q′(ξ ,η ,z, t) = ∑
m

∑
n

q̂m,n(ξ ,η)ei(
∫ ξe

ξs
α(ξ )dξ ∗+βnz−ωmt)

+ c.c

(3)
Here q′ is the perturbation state vector [u′,v′,w′, p′]T described
by a truncated sum of modes denoted by m and n for angular
frequency ω , and spanwise wavelength, β , respectively. The
streamwise wavenumber, α , is complex with the real part de-
scribing the wavenumber and the imaginary part the growth
rate. The ∗ denotes an integration variable. Lastly, t is the
time, i is the imaginary unit and c.c denotes the complex con-
jugate.

The resulting equations, in generalized coordinates, are
presented in system form as:

Lq̂+M
∂ q̂
∂ξ

+N
∂α

∂ξ
q̂ = r (4)

Where L, M and N are:

L=



L+ ∂U
∂x

∂U
∂y 0 iαξx +ηxD1

∂V
∂x L+ ∂V

∂y 0 ηyD1 + iαξy

∂W
∂x

∂W
∂y L iβ

iαξx +ηxD1 iαξy +ηyD1 iβ 0



M=



M 0 0 ξx

0 M 0 ξy

0 0 M 0

ξx ξy 0 0



N=



− i
Re (ξ

2
x +ξ 2

y ) 0 0 0

0 − i
Re (ξ

2
x +ξ 2

y ) 0 0

0 0 − i
Re (ξ

2
x +ξ 2

y ) 0

0 0 0 0



r =


−u ∂u

∂ξ
ξx−u ∂u

∂η
ηx− v ∂u

∂ξ
ξy− v ∂u

∂η
ηy− iβuw

−u ∂v
∂ξ

ξx−u ∂v
∂η

ηx− v ∂v
∂ξ

ξy− v ∂v
∂η

ηy− iβvw
−u ∂w

∂ξ
ξx−u ∂w

∂η
ηx− v ∂w

∂ξ
ξy− v ∂w

∂η
ηy− iβw2

0

 ,
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Figure 3. Amplitude evolution of the 1st (thick line), 2nd (dashed), 3rd (dash-dotted), 4th (thin line) and 5th (thin dash-dotted)
harmonic and the mean flow distortion (dotted) over swept plates with (a) skewed surface undulations k =[1000 7 5 3] and (b) square
sinusoidals with b =[0 1 1.5 2] in orange, blue, red and green respectively. The reference CFI evolution over a flat plate is shown in
black.

With D1 and D2 derivative matrices and

L =−iω + iUαξx +UηxD1 + iαV ξy +V ηyD1

+ iβW +
1

Re
(α2(ξ 2

x +ξ
2
y )+β

2)− 1
Re

(η2
x +η

2
y )D2

− 1
Re

2iα(ηyξy +ηxξx)D1−
1

Re
iα(ξyy +ξxx)

− 1
Re

(ηxx +ηyy)D1 (5a)

and

M =Uξx +V ξy−
2iα
Re

(ξ 2
x +ξ

2
y )− (ξxx +ξyy)

1
Re

−
2(ηyξy +ηxξx)

Re
D1 (6a)

It must be noted that the base flow derivatives are still
present in these equations as derivatives with respect to the
physical xy-coordinate system as they are constants to the
stability problem. Furthermore, the last column of M can
be neglected, effectively multiplying the streamwise pressure
derivative ∂ p

∂ξ
by 0 for all modes as suggested by Li & Malik

(1996), in order to relax the step size restriction of the NPSE.
Although this step can be performed reliably in most flat plate
stability simulations, more complex geometries require a care-
ful consideration as the streamwise pressure gradient of the
perturbations might not be negligible. To ensure this step is

valid, a linear validation was also performed neglecting the
∂ p
∂ξ

, as will be shown in the following section.
Guaranteeing the numerical stability of the NPSE is dif-

ficult for the discussed cases, though it can be improved in
several ways if a fine enough base flow simulation is used. In
the present work, some additional measures are taken to this
goal, by adding the mean flow distortion to the base flow after
a transformation of the derivatives to the physical coordinate
frame. This effectively reduces the weight of the right-hand
side, as the effect of the mean flow distortion is accounted for
in the left-hand side rather than through modal interactions as
was suggested by Zhao et al. (2016). Additionally, the non-
linear forcing term is subjected to an under-relaxation factor
of 0.2 in the nonlinear convergence iteration. Lastly, the con-
vergence procedure is split in two steps as shown by Park &
Park (2011), specifically: First, for a given forcing term, the
α is converged for all modes. Then, the forcing term is up-
dated and the process is repeated until, again, the streamwise
wavenumber is converged.

The NPSE are discretized in 400 stages in the streamwise
direction (∆ξ = 0.88) using a first-order backward implicit
Euler scheme. In the wall-normal direction spectral coloca-
tion is employed incorporating 80 Chebyshev polynomials on
an equal number of collocation points that are clustered near
the wall. The initial condition for the primary mode is cre-
ated by solving the local eigenvalue problem for the pertur-
bation velocities, pressure and the complex-valued streamwise
wavenumber. The desired nondimensional initial amplitude,
A0 = 1.75 · 10−3 based on the maximum of the streamwise
perturbation velocity, is then imposed on the primary mode
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Figure 4. Fully reconstructed velocity fields based on the sum of base flow and instability modes. Streamwise velocity in the yz-plane
for the flat plate case (a-d) and the undulated plate (e-h) with k = 1000 at x = 182 (a,e), x = 305 (b,f), x = 367(c,g) and x =427 (d,h)
with the y = 0 representing the local wall location. Contours of streamwise velocity in the xy-plane over the entire streamwise domain
(i,j,k).

and its complex conjugate. The nonlinear terms are incorpo-
rated explicitly in the equations through a forcing term on the
right-hand side. For all stability simulations, five harmonics
and the mean flow distortion are considered while higher har-
monics are suppressed even if they are predicted to cross the
nonlinear introduction threshold of A = 1 ·10−08.

The base flows capture all features and the base flow pro-
files and derivatives were ensured to be smooth throughout the
domain, however, the base flow was not subjected to a sys-
tematic grid convergence study and it is hypothesized that the
numerical stability and convergence of the NPSE can be sig-
nificantly improved through the use of finer base flows.

Validation of the PSE Assumption in mildly un-
dulating flows

The PSE assumption of slowly varying flow is validated
for the primary mode by comparing the linear PSE result with
results from a harmonic Navier-Stokes (HNS) simulation that
does not neglect higher-order derivatives. This validation is as-
sumed to be independent of the harmonic considered as it ap-
plies to the shape function, rather than the total mode. There-
fore, a linear match between the two methods would point to-

ward the validity of the slowly varying flow assumption for
both the linear and nonlinear system.

Figure 5 shows a comparison between the linear ampli-
tude evolution as calculated per PSE and HNS for the case with
the strongest wall gradients (b = 1.5), proving the validity of
neglecting the higher order derivatives in the PSE derivation.

Results
Base flow simulations were performed for all undulated

plates of section and the reference swept flat plate case. The
basic states were then used to perform nonlinear stability cal-
culations using the NPSE. The base flows show no flow sepa-
ration due to the mild amplitude of the waviness.

The amplitude evolution is shown separately for the
skewed sinusoidal and squared sinusoidal cases in figure 3(a)
and (b) respectively. In all reported cases, the growth of the
crossflow instability is enhanced by the surface undulations.
The local effect of the surface undulations is clearly visible for
all cases, although the differences between the cases are mi-
nor indicating that the shape is not critically important to the
stability response of the boundary layer within the investigated
parameter space.
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Figure 5. Linear amplitude evolution of the primary cross-
flow instability mode (λz = 9.7 · łre f , ω = 0) as calculated per
PSE (line) and HLNS (dashed) for the case b = 1.5.

It should be noted that the validity of NPSE, judged here
by the ability of the NPSE to converge in the presented domain
and providing a linear match with HNS results, is limited and
depends strongly on the geometry (shape and amplitude) of
the wall. For the current case, a greater undulation amplitude
(h > 0.3059 · lre f ), stronger skew (k < 3) or more square shape
(b > 3) could affect the accuracy of the results.

In figure 4, streamwise velocity contours taken from the
fully reconstructed flowfield are depicted. In figures 4(a-d) the
evolution over a flat plate is shown, which can be directly com-
pared to the results of 4(e-h) below, showing the contours at the
same streamwise location for the sinusoidal plate. The com-
parison highlights the deformation of the developed crossflow
instability in the strongly nonlinear regime for the undulated
plate. In figures 4(i-j) xy-planes of the streamwise velocity
contours are shown demonstrating the relative scale of the sur-
face undulations compared to the incoming perturbation. The
streamwise wavelength of the undulation is approximately six
times that of the perturbation and the height is a just under
half the vortex core height. The effect of the mild undulations
is visible in the contours of the crossflow vortex which is in
accordance with the discovered effect on the amplitude evolu-
tion.

Conclusion
The effect of surface undulations on the nonlinear evolu-

tion of crossflow instabilities was considered for several wall
surface undulation shapes.

The local effect of the wall shape variations was found
to be strong and can be directly explained by considering the
effect on the pressure gradient and curvature. Any undulation
considered in this work strongly affects the local stability of
the primary mode directly. Across all undulation shapes a ris-
ing wall expectedly promotes the growth of the incoming CFI
as a result of the pressure gradient becoming more favourable.
After the apex, the pressure gradient becomes more adverse
and the growth of crossflow instabilities is instead reduced.

The behaviour of higher harmonics is found to be more
affected by the nonlinear forcing, governed by the primary
mode, than by the linear effect of the wall shape present in
the base flow and curvature terms.

As mentioned in the introduction, the parameter space

for wall-undulations is too large to cover in this work. The
effects of wavelength, phase, shape and amplitude need
to be considered. This work could only tackle the effect
of undulation shape limited by the PSE assumptions. All
cases caused an accumulated destabilization of the crossflow
instabilities which could lead to a significant advancement of
the transition front. Consequently, it is concluded that surface
undulations have to be accounted for in stability analysis if
present at amplitudes of a similar scale as presented here.
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