Training semantic segmentation of aerial imagery using synthetic data

Camilo Cáceres

Supervisor 1: Shenglan Du Supervisor 2: Jantien Stoter Supervisor Readar: Sven Briels

Content

- Motivation
- Related Work
- Objectives
- Research Questions
- Methodology
- Conclusions
- Discussion
- Future Work

Motivation

Semantic segmentation and Deep Learning

- Change Detection
- Land cover
- Updating Cartography

FUDelft READAR

Image taken from: https://beyondminds.ai/blog/a-simple-guide-to-semantic-segmentation/

Image taken from: https://docs.ecognition.com/eCognition_documentation/

Related Work

Maggioroi et. al (2017) Kampffmeyer et. al (2016)

Limitations

Same training and testing area
Do not talk about the quality of training data
Model Oriented Focus

Deep Learning Projects

80% time for Data Processing (cleaning training data)

Chicago

Chicago – reference

Image taken from: https://docs.ecognition.com/eCognition_documentation/

Synthetic Data

SYNTHIA (2018) SYNTHINEL (2021)

Image taken from: G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez. The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes. Technical report, 2016.

Image taken from: F. Kong, B. Huang, K. Bradbury, and J. Malof. The Synthinel-1 dataset: a collection of high resolution synthetic overhead imagery for building segmentation. 1089, 2019.

Domain Adaptation

Transfer Learning

Generative Adversarial Networks

Shor, J. (2022). GANs. https://developers.google.com/machine-learning/gan

Deep Reinforcement Learning for Soft Robotic Applications: Brief Overview with Impending Challenges -Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/A-Training-Architecture-of-CycleGAN-B-Training-Architecture-of-a-CyCADA_fig7_329368817 [accessed 23 May, 7 2022]

Objective

Evaluate the use of synthetic images for deep learning in aerial imagery

Research Questions

To what extent can synthetic data improve the current Deep Learning-based models for automated semantic segmentation for aerial images?

Sub-questions:

Creation of Synthetic City

3D Models

 25
 50

 100
 500

Quantity, Mix

Cross-Domain, Domain Adaptation

Methodology

City Engine

Procedural Modelling

Computed Generated Architecture Shaped Grammar

S --> 1("circle") m=B(7) t(3,0,0) s(10,0,10) minus(m) B(11) B(h) --> extrude(h)

Training and Testing Data

Synthetic Dataset

real

estate radar

Haaksbergen

Potsdam

Real Dataset

Building Road Other

13

FuseNet Architecture

Assessment

Experiment Design

1. Building Models

2. Tree Models

3. Road Patterns

4. Quantity Images

5. Mix between real and synthetic

6. Cross–Domain

7. Domain Adaptation

Building Models

Model	loU Building	IoU Road	loU Other	mloU
Dutch City	0.58	0.20	0.59	0.46
International City (Default)	0.57	0.04	0.59	0.40

Table 2. Buildings Performance

Building Road Other

(a) True Ortho(c) International City

(b) Ground Truth
(d) Dutch City

Visual Assessment

True Ortho

Ground Truth

Dutch City

International City

Visual Assessment

Building Road Other

True Ortho

DSM

Ground Truth

Dutch City

International City

Road Patterns

Model	loU building	loU roads	loU other	mloU
Organic	0.45	0.28	0.54	0.42
Raster	0.49	0.36	0.48	0.44
Organic - Raster	0.43	0.30	0.43	0.39
Radial	0.46	0.36	0.22	0.35

Table 2. Road Pattern Performance

Radial

Visual Assessment

Road

Other

Tree Models

Model	IoU building	IoU roads	IoU other	mloU
No trees	0.43	0.30	0.43	0.39
Poly Tree	0.43	0.30	0.42	0.39
Fan Tree	0.40	0.22	0.29	0.30
Realistic Tree	0.57	0.29	0.29	0.38

 Table 3. Trees Performance

Visual Assessment

True Ortho

TUDelft

Ground Truth

Fan Tree

Realistic Tree

Poly Tree

Domain Adaptation

Model	loU building	IoU roads	loU other	mloU
Synthetic City	0.56	0.26	0.53	0.45
Coral	0.46	0.05	0.58	0.36
Coral by Classes	0.44	0.04	0.59	0.36
Cycle GAN	0.51	0.40	0.55	0.49
Cycada	0.52	0.39	0.56	0.49

Table 8. Domain Adaptation

Synthetic

Coral

Cycle GAN

Coral by class

Cycada

Quantity of synthetic images

Model	IoU building	IoU roads	IoU other	mloU
188	0.47	0.23	0.21	0.31
378	0.52	0.31	0.51	0.44
756	0.56	0.26	0.53	0.44
1512	0.52	0.33	0.57	0.48
3024	0.50	0.32	0.56	0.46

 Table 4. Quantity Performance

Graph 1. Synthetic Learning Curve

A mix of Real and Synthetic Data

Model	loU building	loU roads	loU other	mloU	
Real 100% (1444 img)	0.82	0.66	0.79	0.75	
Real 80% (1156 img) Synt 20% (288 img)	0.81	0.67	0.79	0.76	
Real 50% (722 img) Synt 50% (722 img)	0.81	0.65	0.79	0.75	<
Real 20% (288 img) Synt 80% (1156 img)	0.79	0.60	0.76	0.71	
Synt 100% (1444 img)	0.49	0.39	0.31	0.35	

Table 5. Mix real and synthetic data

	Model	IoU building	IoU roads	IoU other	mloU
	1444	0.82	0.66	0.79	0.75
>	722	0.81	0.65	0.79	0.75
	288	0.79	0.61	0.77	0.72
	144	0.79	0.58	0.76	0.70

Table 6. Training with 100% real imagery

26

Cross-domain Visual Assessment

Ground Truth

Potsdam

Haaksbergen

Potsdam - Synthetic

Haaksbergen -Synthetic

27

Haaksbergen

Potsdam **TUDelft**

DSM

DSM

Cross – Domain Scenarios

Training	Testing	loU building	IoU roads	IoU other	mloU
Potsdam	Haaksbergen	0.62	0.35	0.39	0.45
50% Potsdam – 50 % Synthetic	Haaksbergen	0.75	0.31	0.40	0.49
Haaksbergen	Potsdam	0.54	0.13	0.35	0.34
50% Haaksbergen – 50% Synthetic	Potsdam	0.66	0.20	0.38	0.42

Table 7. Cross-Domain Scenarios

Cross-domain Visual Assessment

True Ortho

DSM

Ground Truth

100% Real

50% real – 50% Synthetic

29

To what extent can synthetic data improve the current **Deep Learning-based models** for automated semantic segmentation for aerial images?

Synthetic data improves performance when gap between domains is big

Real data with small gap has a robust performance

Contributions

Cross-Domain Projects: Synthetic imagery helps to improve performance when lack of label data

Understanding the learning of Deep Learning models: Freedom of design helps to understand the learning process of the model

Starting Point to produce synthetic data: The potential of synthetic data is high → Detects aprox. 95% of building pixels

Limitations

Massive graphic computation for the creation of a virtual world

Limited realism of synthetic city

Insufficient size of texture's Library

Regular quality of training and testing data

Future Work

Use of gaming engines to achieve more realism

Employ 3D models as City models for labelling process

A review of Deep Learning models trained with synthetic data

Thank you for your attention

Camilo Caceres

FuseNet Hyper-Parameters

Value
Weighted Cross Entropy
Adam
0.0001
4
20
•

The models are trained using a single GPU (rtx2080ti 12 GB)

