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Abstract
Organizations use cloud service providers for outsourcing their data, since this includes advantages
such as: scalability, security and no need for in house experts. Therefore, outsourcing data to cloud
providers results in reduced costs. The disadvantage of outsourcing data to a cloud provider, is that
organizations are not in control of their own data. When organizations are not in control of their data,
they are subject to privacy risks. Privacy risks should be avoided, especially when sensitive data
such as medical or financial records are involved. Therefore, organizations protect their data by only
outsourcing encrypted data to cloud providers. However, data analysis on encrypted data is significantly
reduced due to computational and communicational overhead.

A commonly used data analysis method, such as k-Nearest Neighbour Search (k- NNS), is useful
when for finding similar records in a database for a given query. Previous research shows success using
k-NNS methods while preserving privacy, by using fully homomorphic encryption. However, previous
solutions required the client to be online and help in the protocol, or make use of non-colluding servers.

Therefore, we introduce our k-NNS protocol, which outsources all the work to the cloud server and
the client is not involved in the computation. Our k-NNS protocol shows success on data sets used
to test k-NNS applications, however is significantly slower than solutions which involve the client or
non-colluding servers.
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1
Introduction

Our daily lives are increasingly dependent on the digital world, as technology has become more read-
ily available [61]. With 4.6 billion active internet users worldwide [4] society is highly connected and
technology, such as the internet, has become an integral part of our lives. Where 80% of the EU’s
population between 17–74 years make use of the internet on a daily basis [71]. From social media
platforms such as Facebook, Instagram and Tiktok, to interacting with your local government through
their website. Besides that, e-commerce sales worldwide is estimated to grow to $7,391 billion in 2025,
where it was $4.938 billion in 2021 [28].

With widespread usage of new technology and the internet, our ability to collect and analyse data
has improved. The abundance of data is clear, since in 2020 a total of 64.2 zettabytes were generated
worldwide and is expected to grow to 180 zettabytes by 2025 [57]. Humans generate data when
scrolling on social media, streaming services, online transactions and interacting with organizations in
the public sector, among others. However, not only humans generate data any more but also machines,
such as Internet of Things devices. The collection of all data generated by machines and humans is
typically referred to as Big Data. But what makes it worth collecting and storing all this data?

1.1. Data Driven Society
In today’s world, data is being used in various domains such as healthcare, finance, education, adver-
tisement and transportation [40] [24]. In the past, decision-making was often done by human experts,
based on intuition and experience, but with the advent of big data, this is no longer required. Instead,
organizations gather and analyse large volumes of data to make calculated decisions. By analysing
data, organizations can gain insights into customer behaviour, market trends, and other key factors
that can impact their business. This is called a data driven society, where businesses, governments,
and individuals rely heavily on data to make decisions [56]. Making decisions based on data analysis
is called data-driven decision-making. Data driven decision-making has become increasingly popular
due to the availability of vast amounts of data that can be analysed to extract valuable insights [12].
The use of data in decision-making helps organizations make informed decisions that are backed by
evidence rather than guesswork.

There are two main advantages why organizations use data-driven decision-making. Firstly, it al-
lows organizations to make decisions based on evidence found in the data, resulting in accurate and
explainable decisions [67]. While in the past, decisions were based on intuition and experiences from
experts. Secondly, data driven decision-making also allows organizations to work more efficiently [7],
since computers are able to parse more information than a human.

Examples of success stories of data-driven decision-making are targeted advertisements and loan
applications. Using data about individuals, advertisers are able to reach their target group efficiently,
resulting in more profit. Because targeted advertisement is a powerful tool, companies exploit this and
offer services to help organizations market their products or services. A known example of a company
which utilizes data to provide targeted advertisement is Google. Just Google is able to generate $224.4
billion from advertisements in 2022, which has almost doubled since 2019 when it was $134.81 billion
[9]. Another example of data driven decision-making are banks offering loans and insurances to con-
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2 1. Introduction

sumers. Using data of previous customers, predictions about new applications can be used to increase
the organization’s processes. The big data analytics market in the banking industry is estimated to be
around $62.10 billion by 2025 [46]. There also exists non-profit use cases, such as customized treat-
ment plans in healthcare applications and requests to the government. The healthcare sector has been
making progress in adapting data driven decision-making, applying it to healthcare records [62]. Using
data driven decision-making, hospitals are able to provide efficient and accurate healthcare treatment
plans, as well as offloading workload from the employees. In 2025, it is expected that the market worth
of big data analytics in healthcare would be worth $67.82 billion [59].

1.2. Cloud Services
As more data is generated from individuals, the task of storing and processing the data becomes
challenging. Leading to problems for organizations who do not possess the capacity to store and
process this data. There are companies, such as Amazon and Microsoft, who exploit this gap in the
market and offer services such as storage and computing services. It is clear that organizations make
use cloud service providers, since the cloud service provider industry it has grown by 23% in 2022 [65].

Cloud providers offer services such as on Data Analytics as a Service (DAaaS), which allows per-
forming data analytics in an outsourced environment. DAaaS is a relevant topic since in 2019, because
almost half of all data analytics were outsourced, a figure that is expected to grow [6].

Making use of DAaaS has four main advantages for organizations. One of the main advantages is
that it is trivial for clients of cloud providers to scale up or down storage or computing as the demand
rises or declines, respectively [20]. Not only is it trivial to scale up or down a service, deploying it on
a cloud provider is often faster than purchasing hardware themselves and setting it up. Organizations
therefore require no need for in-house experts to handle their own servers if they did wish to make use
of a cloud provider. Having in-house experts is especially a problem when servers need to be set up
across the globe. Whereas, by making use of a cloud provider, this is a trivial task.

Secondly, organizations themselves are not responsible for the security of the servers [20]. This
includes the physical security of the actual servers, as well as cybersecurity. Cloud providers have
hired security experts, who are able to deploy the most advanced firewall solutions. Because cloud
providers have in-house expertise, cloud service providers can provider better protection against ma-
licious internet traffic, That is not considering the often limited access to the physical location of the
servers.

The next advantage includes reliable uptime and recovery options, since cloud providers often have
multiple servers across the world [20]. In case of emergencies, cloud service providers are able to keep
the service running and also provide recovery features.

The final advantages of using a DAaaS, is that it ultimately saves costs and human resources.
Because clients of cloud service providers only pay for what they actually use [20], as well as not
having to pay for replacing of hardware and hiring experts. Finally, because cloud providers have
multiple clients, they are able to achieve economy of scale. Thus, cloud providers are able to offer a
service cheaper than if clients were to use their own solution [47].

1.3. 𝑘-Nearest Neighbour Search
Cloud service providers makes it possible to outsource data driven decision-making, which is not a
simple process and requires multiple steps to achieve [53], such as gathering, cleaning and analysing
the data. This research will focus on the actual analysis step in the process of data driven decision-
making. The analysis step performs an algorithm on a dataset and returns a result, from which a
conclusion can be derived.

Data driven decision-making consists of four main analytic models: descriptive, diagnostic, pre-
dictive and prescriptive [35]. This thesis focuses on 𝑘-Nearest Neighbour Search (𝑘-NNS), a form of
predictive analytics, which aims to predict what is most likely to happen in the future based on previous
events.

𝑘-NNS is a form of a proximity search and can be defined as follows. For a query q ∈ ℝ𝑑 and a
database D with 𝑛 records x ∈ ℝ𝑑, where 𝑛 is the number of records and 𝑑 the number of attributes,
find the 𝑘 closest points for q in D. Where the closeness is defined by a distance function, such as
Euclidean or Manhattan distance. 𝑘-NNS returns either the entire point, or the ID of the 𝑘 closest points
to the query.
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𝑘-NNS is used in modern data analysis applications, where first data (images, text, audio, etc…) is
converted to a feature vector. A feature vector is a representation of some data in the form of 𝑣 ∈ ℝ𝑑,
where 𝑑 is the number of attributes. Some common applications where 𝑘-NNS is utilized are:

• Information retrieval: The 𝑘-NNS algorithm can be used to find the most similar documents
or articles based on their content. By representing documents as a feature vector, 𝑘-NNS can
retrieve relevant documents based on their similarity to a query.

• Image recognition: 𝑘-NNS can be employed for tasks such as image classification and object
recognition. Given a new image, 𝑘-NNS can find the 𝑘 most similar images from a database,
allowing for image matching and categorization.

• Recommendation systems: 𝑘-NNS is used to suggest items or products based on the prefer-
ences or behaviour of similar users. By finding the nearest neighbours of a user, the system can
recommend items that similar users have shown interest in.

• Anomaly detection: 𝑘-NNS can be applied to identify anomalies or outliers in datasets. By
measuring the distance to the 𝑘 nearest neighbours of a data point, it is possible to determine if
it deviates significantly from its neighbours, indicating it as a potential anomaly.

1.4. Privacy & Ethical Challenges
Making use of cloud providers also has risks associated with them. One of the risks associated with the
use of a cloud provider, is that cloud providers might not always be an honest party [74]. Cloud providers
might read and use the data stored by clients for their own benefits. This is not limited by selling data
to third parties and training their own models. Or even sell information to another organization making
use of the same service [74].

Leaking sensitive information has serious consequences for the client of the cloud service provider,
as well as for the provider itself. One well known occurrence of sensitive data being leaked, happened
in 2019 when Cambridge Analytica gathered data from users on Facebook [66]. The data gathered,
likely included information about the users “public profile, page likes, birthday and current city” [22].
Using this data, Cambridge Analytica was able to create a model about a user’s political alignment
[60], which may have impacted individuals involved by influencing their votes in elections [36].

To avoid leaking sensitive information, the European Union introduced the General Data Protection
Regulation (GDPR) [29] to protect data for European citizens. The main takeaway from the GDPR,
is that organizations are required to use privacy-by-design. Privacy-by-design is to take privacy in
account, throughout all stages of a design process. To outsource 𝑘-NNS to cloud service providers,
the data should be protected, such that no sensitive information is leaked, but still needs to be able to
get meaningful results from the data.

1.5. Privacy Preserving 𝑘-NNS
Techniques which help to protect sensitive data, while still allowing to perform operations on the data to
gain meaningful results, are called privacy enhancing techniques. Privacy enhancing techniques have
been used in combination with 𝑘-NNS, which we will refer to as Privacy Preserving 𝑘-NNS. Examples
of privacy preserving techniques are anonymization, compression and encryption.

Anonymization techniques make changes to the data in order to not being able to identify an indi-
vidual or a group of individuals, while still being able to make accurate approximate decisions. This
is done in literature through k-anonymity [68], l-diversity [51] and t-closeness [48]. However, using
anonymization techniques decreases accuracy of data mining techniques and cannot guarantee any
privacy leaks.

Compressions techniques such as hashing are also common among literature. Hashing is used
in bloom filters and locality sensitive hashing, which compress each individual record in the data into
a vector. These techniques suffer from the same problems as anonymization techniques, such as
accuracy loss and in the case of bloom filters, is insecure.

Lastly, encryption techniques convert the original data, otherwise known as plaintext, into unread-
able data known as a ciphertext. Encryption techniques are able to not leak any information about the
plaintext, by studying the ciphertext. The downside of applying an encryption scheme, is that it requires
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computation to encrypt and decrypt, as well as limiting the ability to perform data analysis. One of the
reasons organizations are hesitant to encrypt data before outsourcing, is because it increases compu-
tation and communication, as well as decreasing utilization. Just 11% of organizations have encrypted
between 81-100% of the sensitive data they store in the cloud [65]. However, encryption is guaranteed
to ensure privacy and accuracy.

With developments in privacy enhancing technologies, challenges in privacy preserving 𝑘-NNS are
being overcome. However, current literature in privacy preserving 𝑘-NNS or similar problems (𝑘-means)
have tradeoffs in their implementation. Chen et al. [14] introduced a secure 𝑘-NNS algorithm which
allowed users to query on a database with millions of records. However, they required that the database
is stored in plaintext and that the client is involved in the computation. Which requires the client to still
have computational and communicational capabilities. Works of [43] [23] [42], have tried to resolve
these issues. But, they all require two or more non-colluding servers, which requires strong guarantees
and trust between the parties. Finally, Shaul et al. [63] provide a probabilistic solution using standalone
server, for 𝑘-ish classifier. Having these tradeoffs limits the utility of outsourcing 𝑘-NNS to cloud service
providers.

1.6. Research Question
The aim of this research is to perform privacy preserving k-Nearest Neighbour, which enables orga-
nizations to outsource their data to cloud service providers without compromising on privacy, utility,
accuracy. To achieve this, we focus on a 𝑘-NNS problem where no sensitive information is leaked.
Besides that, the client should not be involved in the computation and thus should have minimal com-
munication overhead. Finally, 𝑘-NNS should be able to run on a single stand-alone server. To achieve
these requirements, this thesis will answer the following research question:

Is it possible to perform deterministic Privacy Preserving 𝑘-Nearest Neighbour search in
outsourced environments using one cloud server and no interaction?

We define the following sub-questions, to help answer the main research question:

1. How can we guarantee the privacy of the data and the query in outsourced environments, while
still maintaining deterministic results?

2. How can we construct 𝑘-NNS to use only one cloud server?

3. How can we construct 𝑘-NNS such that the client is not involved in the calculation?

4. How can we make use of the resources available in outsourced environments?

1.7. Contributions
We propose a Privacy Preserving 𝑘-NNS protocol which is able to protect the data, while maximizing
utility. Utility is maximized since it allows deterministic queries on the data, without leaking sensitive
information. Also, our solution does not require the assumptions of two or more non-colluding servers.
Finally, the client is not involved in the computation, which saves resources for the client.

Our solution makes use of new advancements in Fully Homomorphic Encryption techniques, which
makes it possible to perform non-linear operations in under a second. Limiting the number of bootstrap-
ping operations in fully homomorphic operations, by means of limiting the plaintext domain, enables
our solution to keep operations fast. Besides that, the protocol supports parallelization, which makes
it suitable for outsourced environments.

This work aims to provide value for any individuals or organizations that require 𝑘-NNS in outsourced
environments, as well as providing value for the cloud providers themselves. Firstly, individuals or orga-
nizations often do not outsource their data, since it is a tradeoff between privacy and utility. Performing
𝑘-NNS on plaintext data is fast and accurate, but unsecure. Performing Privacy Preserving 𝑘-NNS has
reduced accuracy or has a significant computation or communication overhead. This paper aims to
reduce the gap between usability and computation overhead for sensitive data. This is of interest for
organizations that work with sensitive data that needs to be outsourced, such as hospitals, banks and
the government.
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Secondly, cloud providers would also benefit from this research. As organizations are more keen
to outsource their data, cloud providers will receive more clients. Finally, this would not only have
influence on cloud providers and their client, but also on the person whose data they store and use.
Organizations would be more inclined to store data in ciphertext, since the drawbacks of doing privacy
preserving 𝑘-NNS is dwindling.

1.8. Outline
The remainder of this thesis is organized as follows: Chapter 2 discusses the preliminaries of this thesis,
which addresses all required knowledge. Related work done by previous researchers is discussed in
Chapter 3. Chapter 4 discusses our Privacy Preserving 𝑘-NNS, including design goals, design choices
and algorithms. Analysis of our protocol is done in Chapter 5, which includes a complexity analysis,
security analysis and practical analysis using data sets used in previous research. Finally, Chapter 6
provides an overview of the discussion and any future work.





2
Preliminaries

This chapter will discuss knowledge and techniques used in privacy preserving 𝑘-NN, which our contri-
bution will build on. We will briefly discuss privacy preserving 𝑘-NNS, different outsourcing scenarios,
adversarial behaviours and homomorphic encryption.

2.1. Privacy Preserving 𝑘-Nearest Neighbour Search
𝑘-Nearest Neighbour Search (𝑘-NNS) is a technique used to analyse data to locate the 𝑘 closest points
in a given dataset, respective to a given query. An example of a 𝑘-NNS task is shown in Figure 2.1. 𝑘-
NNS returns either the entire data points or just the ID of the top 𝑘 points. Other derivatives of 𝑘-Nearest
Neighbour algorithms, such as k-Means, can return a classification as a result.

In 𝑘-NNS, the dataset is represented by a set of data points, each having multiple attributes or
features. These features could represent various characteristics of the data points, such as numerical
measurements, categorical labels, or even complex structures. In modern data analysis applications,
data such as, images, text, audio, etc…, is first converted to a feature vector. A feature vector is a
representation of some data in the form of 𝑣 ∈ ℝ𝑑, where 𝑑 is the number of attributes.

The 𝑘-NN search process involves the following steps:

1. Distance Metric Selection: To measure the similarity between data points and a query, a dis-
tance metric needs to be chosen. The specific distance metric is dependent on the nature of
the data and the problem. Examples of distance metric are: Euclidean, Manhattan and cosine
distance.

2. Distance Calculation: When a query is received, the first step is to calculate the distance for
each data point, respective to a given query. For each data point, the distance is defined as
∑𝑑𝑖=1 𝑑(𝑞𝑖 , 𝑥𝑖), where 𝑑 is the number of attributes and 𝑑(𝑞𝑖 , 𝑥𝑖) is the distance function between
the query and a data point attribute.

3. Neighbour Selection: To retrieve the 𝑘 most similar points, a trivial solution is first sorting the
items and returning the first 𝑘 points. Other selection algorithms use complex data structures to
speed up finding the most similar points.

Factors influencing the effectiveness of 𝑘-NNS are dependent on the underlying data and the im-
plementation. Factors include the number of rows and attributes in a data set, distance metric and
underlying data structures. Other performance increases can be obtained by using approximations.

Privacy Preserving 𝑘-NNS is a specific instance of 𝑘-NNS, which limits the amount of knowledge a
certain party can obtain. The client is not allowed to know anything beyond the specific query and the
result of that query. The server should not be able to recover any sensitive information and should only
participate for the computation capabilities. Any third-parties should not be able to known anything.

7
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Figure 2.1: An example of a 𝑘-NNS task (Retrieved from: [3])

2.2. Outsourcing Scenarios
Outsourcing Privacy Preserving 𝑘-NN tasks can consist of different scenarios, based on how the client
and server(s) interact with each other during computation. Different scenarios are employed based
on the computation limitations and the tasks’ adaptability. Three common scenarios which will be
discussed: Standalone Server, Client-Server and a Non-Colluding Servers scenario. The client and
server are defined as follows:

• Client refers to the party which outsources the computational tasks and performs a query.

• Server refers to the party or parties, which performs computational tasks for a client, such as a
cloud service provider.

Figure 2.2 provides an overview of the configuration and interaction between the client and the server(s).

Figure 2.2: Commonly used scenarios when outsourcing computational tasks (Retrieved from: [70])

2.2.1. Standalone Server
In the standalone server scenario, as illustrated in Figure 2.2a, the client outsources the task to the
server and is not involved in any computation. Because the client is not involved in any computation,
there is also no further interaction required between the client and the server. Only the server is involved
in the computation of the task and sends the result back to the client. The standalone server is the
ideal scenario for outsourcing computation tasks, because the client does not require any computation
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resources for itself. Since the standalone server scenario does not require any interaction, the client
can be offline during the computation of the task.

2.2.2. Client-Server
The client-server scenario, as described in 2.2b, is similar to the standalone server scenario, but this
time the client is involved in the computation. Because the client is involved in the computation, it is
required that the client has computational and bandwidth resources. Also, now the client is required to
be online during the computation of the task. The client-server scenario is used over the standalone
server scenario to speed up computations or perform operations that are not possible without disclosing
sensitive information.

2.2.3. Non-Colluding Servers
When there are not enough computational resources on only one cloud server, as in the standalone
server scenario, but the client cannot be involved in the computation as described in the client-server
scenario, the non-colluding servers scenario can be used. The non-colluding servers scenario, illus-
trated in Figure 2.2c, uses two or more servers who do not collude with each other, such that the
multiple servers work together to receive the result. It is crucial that the servers do not collude with
each other, otherwise the servers would be able to retrieve private information. Non-Colluding servers
scenario therefore requires strong guarantees between the parties and trust.

2.3. Adversarial Capabilities & Behaviour
To design a privacy preserving protocol, it is necessary to define the capabilities and behaviours of any
adversaries. An adversary can be the client, the server(s) or third-parties. First, we will discuss differ-
ent capabilities of adversaries as described in literature. Secondly, we will describe three adversarial
behaviours which are used in literature.

2.3.1. Adversarial Capabilities
To prove that a protocol is secure against adversaries, it is necessary to understand how powerful the
adversary is. The literature differentiates between bounded and unbounded adversaries. We briefly
discuss the definition of bounded and unbounded adversaries.

BoundedAdversaries have limited computational capabilities to break a cryptographic scheme. Break-
ing a cryptographic schememeans it is possible to retrieve the plaintext with a probability of 1. If a crypto
scheme is secure against a bounded adversary, the crypto scheme is called computationally secure.
Computationally secure schemes require the adversaries to perform𝑁 operations using the best known
algorithm, where 𝑁 is large, such that it is considered infeasible.

The number of operations to break the crypto scheme can be expressed as 2𝑛, where 𝑛 is the bit
security level. The minimum 𝑛-bit security today is defined to be 𝑛 = 80, as recommended by NIST
[8]. The number of security bits recommended, compensating for future advancements in computing
power, is defined to be 𝑛 = 128.

Unbounded Adversaries have unlimited computation capabilities and thus requires a stricter defi-
nition for a secure crypto scheme. A cryptographic scheme which is secure against unbounded adver-
saries, is called unconditional or information theoretic secure. A crypto scheme which is unconditionally
secure, requires that it does not leak any information, which is defined as perfect secrecy. A formal
definition of perfect secrecy is defined in Definition 1. An example of a cryptographic scheme which
provides perfect secrecy is One Time Pad [52].

Definition 1 (Perfect Secrecy). A crypto scheme provides perfect secrecy when: 𝑝(𝑃 = 𝑚|𝐶 = 𝑐) =
𝑝(𝑃 = 𝑚), for all plaintexts 𝑚 and all ciphertexts 𝑐.

2.3.2. Adversarial Behaviour
Besides defining adversarial capabilities, adversarial behaviours should also be consideredwhen analysing
a protocol. In this section, we briefly discuss the different adversarial behaviours used in literature, such
as semi-honest, malicious and covert.
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Semi-Honest or honest-but-curious adversarial behaviour is the weakest behaviour, but used in situ-
ations when parties have a mutual trust. In the semi-honest behaviour, the adversary does not deviate
from the protocol, however it tries to learn as much as possible during the protocol. The information
can be obtained from inputs, outputs and intermediate messages and calculations.

Malicious adversarial behaviour allows the adversary to deviate from the protocol to learn as much
information as possible. The malicious model is a stronger behaviour model than a semi-honest model
and is therefore desired. However, to make a protocol secure against a malicious adversary has an
overhead compared to a semi-honest model.

Covert adversarial behaviour allows an adversary to behave malicious and to learn as much informa-
tion as possible, but with a chance of being detected. This adversarial behaviour model is a compromise
between the semi-honest and malicious behaviour model.

2.4. Approach
In this section, we will briefly describe different privacy preserving techniques which can be used to
perform Privacy Preserving 𝑘-NNS.

Anonymization can be used to perform Privacy Preserving 𝑘-NNS efficiently. Using anonymization
techniques allows the protocol to perform the operations in plaintext, for which already efficient al-
gorithms exist. Anonymization works in the standalone server scenario and can be highly paralleliz-
able. However, before outsourcing the data to the server, the client first has to anonymize the dataset.
Anonymizing a dataset is a computationally expensive task in itself and therefore requires the client to
have computationally capabilities, which we are trying to outsource. Besides that, anonymization limits
the amount of information an adversary is able to gather, but it cannot guarantee that no information is
leaked.

Locality Sensitive Hashing (LSH) is also an efficient method of performing 𝑘-NNS efficiently. LSH
can be performed in the standalone server scenario, be parallelizable, as well as achieving privacy.
The disadvantage of using LSH, is that it is probabilistic. Since LSH is probabilistic, it is possible that
a non-similar record is returned to the result.

Multi Party Computation (MPC) techniques, such as secret sharing, garbled circuit and using partial
homomorphic encryption schemes in the non-colluding servers setting have been used in literature al-
ready. The advantages of using MPC, is that is able to protect the query, the result and the data using
cryptographic primitives. MPC is preferred in scenarios where the client has computational capabili-
ties or the server is allowed to communicate with other servers, since MPC is often faster than fully
homomorphic encryption.

Fully Homomorphic Encryption (FHE), allows the server to be able to compute any arbitrary func-
tion in the standalone server scenario and these computations can be parallelized. Since FHE can
compute any arbitrary function, the protocol can have the same behaviour as the plaintext implementa-
tion. However, the disadvantage of using FHE is the significant computational overhead for the server.
Depending on the FHE scheme, either non-linear operations or linear operations are expensive.

For our protocol, we will be making use of Fully Homomorphic Encryption, although FHE has a
significant computation overhead. FHE allows our protocol to be non-interactive without the use of
non-colluding servers, while preserving the privacy and same behaviour as plaintext implementations.

2.5. Homomorphic Encryption
Homomorphic Encryption makes it possible to perform operations on ciphertexts, which transforms the
underlying plaintext as well. Operations on ciphertexts are possible because of homomorphism, which
is a structure preserving map between two algebraic structures. Some crypto schemes support ho-
momorphic operations, such as additive and multiplicative homomorphism. Crypto schemes that sup-
port homomorphic operations are called homomorphic encryption schemes. Homomorphic encryption
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schemes can be subdivided into multiple categories: partial, levelled and fully homomorphic.
Partial homomorphic encryption schemes only support one homomorphic operation, such as ad-

dition or multiplication. Partial homomorphic schemes are therefore called additive or multiplicative
homomorphic, based on their supported homomorphic operation. An example of an additive homo-
morphic scheme is the Paillier scheme [54].

Levelled homomorphic encryption schemes support a limited number of homomorphic operations
until the results become unintelligible. Levelled homomorphic encryption schemes can support both
additive and multiplicative homomorphism, which allows computing an arbitrary small function.

Fully homomorphic encryption schemes allow unlimited number of additions and multiplications.
Fully homomorphism was first introduced by Gentry [30], which introduced a method called bootstrap-
ping, to convert a levelled homomorphic encryption scheme to a fully homomorphic encryption scheme.
Using an unlimited amount of additions and multiplications, it is possible to compute any arbitrary func-
tion. However, although it is possible to compute any arbitrary function in theory, in practise this is
infeasible since the bootstrapping operations are computationally expensive.

2.5.1. Fully Homomorphic Encryption Schemes
In the literature, numerous fully homomorphic encryption (FHE) schemes have been proposed, how-
ever not one FHE scheme performs best for all tasks. In order to perform non-linear operations using
FHE, arithmetic circuits can be used. Arithmetic circuits work on a bitwise level, such that one is able
to create logic gates. When performing operations with two integers, they first have to be encoded
as binary, then multiple additions and multiplications are applied on those bits. Therefore, performing
non-linear operations has a significant overhead and different FHE schemes use different methods to
make operations efficient. We will briefly discuss various FHE schemes and their strong and weak
points.

Two of the earlier FHE schemes are BGV [10] and BFV [27], for which homomorphic operations are
slower than other works. However, BGV and BFV support Single Instruction Multiple Data (SIMD) [64]
operations. SIMD operations makes it possible to pack multiple messages into one ciphertext, thus
performing multiple operations in one instruction. Making use of SIMD operations make it possible to
perform fast comparisons, as described in [33]. Therefore, for some arithmetic circuits it might be faster
to use an FHE scheme that supports SIMD, but is slower in single operations.

Another FHE scheme which supports SIMD, is CKKS [16]. CKKS has the benefit of supporting
complex and real numbers, while allowing to pack more bits into a ciphertext. However, CKKS is an
approximate scheme and therefore cannot be used in applications which require high precision and is
slower than alternatives.

TFHE [18] is an FHE scheme which does not support SIMD, but rather performs all operations in
binary. By performing all operations on a bit wise level, it is trivial to implement non-linear operations.
However, the gain in efficiency for non-linear operations is compensated in the lack of efficiency in
performing additions and multiplications on integers. Performing additions and multiplications using
TFHE requires implementing whole arithmetic circuits, which as an overhead. Another advantage of
TFHE, is the performance of the bootstrapping operations. Besides that, TFHE support programmable
bootstrapping, which allows one to perform a function during the bootstrapping operations, speeding
up arithmetic circuits.

Finally, Klemsa and Onen [44] proposed the FHE scheme Parmesan, which builds on top of TFHE.
Parmesan improves the efficiency of multiple operations, by making specific operations parallelizable
and maximizing the number of cores used. But, not all operations are yet implemented. The authors
claim to have a speed-up of 2.3 times when squaring and adding, on a 12 core machine. However,
Parmesan made use of all the 12 cores while Concrete, a previous version of TFHE, used only one
core. Therefore, even if Parmesan is faster, it would be better to parallelize each operation instead of
a single operation.

To conclude, BGV and BFV are fast only in specific instances where SIMD can be used, and slower
otherwise. The same goes for CKKS, which should only be used when complex or real numbers are
required. Finally, TFHE is the best choice for performing an arbitrary circuit because of the flexibility
and the fast bootstrapping. TFHE is preferred over Parmesan when the operations can be parallelized,
and Parmesan only outperforms TFHE when all operations need to be performed sequentially on a
multithreaded machine. Therefore, in our work we will consider the TFHE scheme, where the imple-
mentation of the scheme can be found here [76] and is provided by Zama.
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2.5.2. TFHE
One specific instance of a fully homomorphic encryption scheme is TFHE [18]. TFHE supports additions
and multiplications, as well as non-linear operations through an arithmetic circuit. The security of TFHE
depends on the underlying assumption that the LearningWith Error (LWE) [58] problem is hard to solve.
Encryption schemes that depend on LWE are considered to be resistant against attacks from quantum
computers.

Encrypting data using TFHE requires that the plaintext data must first be encoded in a unsigned
integer. When encoding a value, as seen in Equation 2.1 and Figure 2.3, the value is set to the most
significant bits of an unsigned integer and some noise is added to the least significant bits for security.
After encoding, it is possible to encrypt the encoded message to a LWE ciphertext. We refer the reader
for the specific implementation of encrypting using TFHE to the original paper [18].

𝑚′ = (𝑚 ∗ Δ) + 𝜖 (2.1)

Figure 2.3: An encoding of a message 𝑚 using TFHE (Retrieved from: [75])

Performing operations on TFHE ciphertext is possible up to a certain limit, otherwise the underly-
ing message gets corrupted. This is due to the noise that is being introduced in the encoding of the
message, as seen in Equation 2.1. Performing operations on the ciphertexts means not only are the
operations performed on the underlying message, but also on the noise. The noise grows additively
for additive operations and multiplicatively for multiplicative operations. In order to protect the underly-
ing message from the error corrupting the message, a padding is used between the message and the
noise, as seen in Figure 2.3.

To use more operations, the noise level needs to be reset and for which techniques by Gentry
are [30] used, by performing a bootstrapping operations. TFHE can support up to a certain number
of operations before bootstrapping is needed. The number of operations is depended on the oper-
ations applied and the parameters chosen for the cryptographic scheme. As described before, the
noise grows multiplicatively with multiplications and therefore requires bootstrapping more often. Boot-
strapping allows TFHE to perform unlimited multiplications and additions, however bootstrapping is
computationally expensive.

Since bootstrapping is computationally expensive, TFHE support Programmable Bootstrapping
(BPS) [17], allowing to perform univariate functions while bootstrapping. While not reducing the ef-
ficiency of bootstrapping, BPS does increase the utility of bootstrapping. Since TFHE supports eval-
uating a function using BPS, it also supports nonlinear operations, which makes arithmetic circuits
significantly faster.



3
Related Work

There have been multiple studies about performing Privacy Preserving 𝑘-Nearest Neighbour protocols
in outsourced scenarios. This section provides an overview of different techniques used to perform 𝑘-
NN. Not only 𝑘-NNS are discussed, but also other variants of k-Nearest Neighbour, since the building
blocks in these algorithms are similar.

First, in Section 3.1 we discuss how researchers perform 𝑘-NN on plaintext without leaking sensitive
information using anonymization techniques. Secondly, in Section 3.2 compression techniques are
discussed, which are probabilistic schemes that use efficient data structures to quickly find similar
entries. Next, Section 3.3 describes different cryptographic solutions, where we focus on interactive
and non-interactive protocols. Finally, we summarize all related work in Section 3.4.

3.1. Anonymization Techniques
Some researchers argue that encryption techniques are not necessary, since it is possible to achieve
privacy by making changes in the data such that no group or individuals can be distinguished. Advo-
cates of anonymization techniques reason that performing data driven decision-making on encrypted
data is not usable in some situations, since it has a large computation and communicational overhead.
Anonymization techniques allow data driven decision-making in plaintext, which has significant compu-
tational and communicational advantages, with minimal privacy risks. Anonymization techniques only
introduce overhead during the initial setup, after which it introduces no additional complexity. Therefore,
we briefly discuss commonly used techniques such as 𝑘-anonymity [68], 𝑙-diversity [51] and 𝑡-closeness
[48].

To understand anonymization techniques, it is important to distinguish different types of attributes in
a dataset. Attributes can be classified under three categories: identifier, quasi-identifier, sensitive and
non-sensitive attributes. Identifiers are attributes which enable an adversary to fully identify an individ-
ual on solely one attribute. Quasi-identifiers are attributes which can somewhat identify an individual,
but a combination of quasi-identifiers can be used to fully identify an individual with external knowl-
edge. Sensitive attributes contain data that can lead to harm, such as identity theft or other crimes.
The European Union [21] defines the following characteristics of data as sensitive:

• personal data revealing racial or ethnic origin, political opinions, religious or philosophical beliefs;

• trade-union membership;

• genetic data, biometric data processed solely to identify a human being;

• health-related data;

• data concerning a person’s sex life or sexual orientation.

Non-sensitive attributes are data that is not sensitive. Anonymization techniques aim to protect sensi-
tive data of individuals, by not being able to identify the individuals themselves.

One of the early techniques used to protect sensitive data by altering the data, is k-anonymity [68].
𝑘-Anonymity aims to alter the data, such that each individual cannot be distinguished from at least
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𝑘 − 1 other individuals in the dataset, by performing operations on identifiers and quasi-identifiers. It
is possible to achieve 𝑘-anonymity by performing suppression and generalization techniques on the
data, such that there are no identifiers for every combination of quasi-identifiers, such that it can be
indistinctly matched to at least 𝑘 individuals [68]. Suppression techniques aim to remove values in
attributes, whereas generalization replaces values by an approximation or range. Table 3.2 is a 4-
anonymized table of Table 3.1.

𝑘-Anonymity is a tradeoff between privacy and accuracy. Increasing 𝑘meansmore privacy, however
this results in lower accuracy since more data needs to be changed. There are multiple permutations
of the dataset possible to achieve 𝑘-anonymity. However, not all permutations result in good accuracy.
Therefore, finding the optimal 𝑘-anonymity set has been an active area of research [41].

Further research has shown that 𝑘-anonymity by itself is not able to provide indistinguishability,
since it is vulnerable to at least two attacks. First, an adversary is able to retrieve the sensitive attribute
from an individual in an 𝑘-anonymized dataset, if the data is vulnerable to a homogeneity attack [51]. A
homogeneity attack is possible when there is no diversity for sensitive attributes in the group generated
by 𝑘-anonymity. As seen in Table 3.2, the third group only includes the sensitive attribute Cancer. If
an adversary knows the victim lives on zip code 13053 and is 31 years old, this only leaves records
9, 10, 11 and 12. Since records 9 to 12 only have the sensitive attribute Cancer, the adversary can
distinguish that the victim has a certain sensitive attribute.

Secondly, 𝑘-anonymity is vulnerable to background knowledge attacks [51]. Background knowledge
attacks use external information to narrow down the number of possible sensitive attributes. Using the
anonymized dataset in Table 3.2, the victim aged 21, living in Japan on zip code 13068, the adversary
can conclude that the victim is in the first group (records 1-4). The adversary can now only conclude
that the victim either has a heart disease or a viral infection. But, using the knowledge that Japanese
people are unlikely to suffer from a heart disease, the adversary can conclude that the victim must
suffer from a viral infection.

Table 3.1: Example of inpatient microdata (from [51])

Non-Sensitive Sensitive
Zip Code Age Nationality Condition

1 13053 28 Russian Heart Disease
2 13068 29 American Heart Disease
3 13068 21 Japanese Viral Infection
4 13053 23 American Viral Infection
5 14853 50 Indian Cancer
6 14853 55 Russian Heart Disease
7 14850 47 American Viral Infection
8 14850 49 American Viral Infection
9 13053 31 American Cancer
10 13053 37 Indian Cancer
11 13068 36 Japanese Cancer
12 13068 35 American Cancer

To protect against homogeneity and background knowledge attacks, l-diversity [51] was intro-
duced, which is an extension to 𝑘-anonymity. To achieve 𝑙-diversity, first perform 𝑘-anonymity, after
that the dataset requires that for each quasi-identifier block, there are at least 𝑙 well represented sen-
sitive values for sensitive attributes. A 3-diverse arrangement of the dataset of Table 3.2 is shown in
Table 3.3.

𝑙-Diversity protects against homogeneity attacks and limits the adversaries’ ability to perform a
background knowledge attack. By increasing 𝑙, the adversary requires more background knowledge
to conclude a victim’s sensitive attribute. However, increasing 𝑙 can lead to inaccurate results, since
more generalization needs to be performed to reach 𝑙-diversity. Besides that, it is not always possible
to get 𝑙-diversity, since there may not be enough sensitive attributes.

Datasets conforming to 𝑙-diversity can still leak information about sensitive attributes if an adversary
has background knowledge about the global distribution of the data [48]. 𝑙-Diversity leaks information
because it is vulnerable against skewness and similarity attacks. Skewness attacks can happen when
the overall distribution of the sensitive value is skewed. It allows an adversary to wrongly classify a large
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Table 3.2: 4-anonymous inpatient microdata (from [51])

Non-Sensitive Sensitive
Zip Code Age Nationality Condition

1 130** <30 * Heart Disease
2 130** <30 * Heart Disease
3 130** <30 * Viral Infection
4 130** <30 * Viral Infection
5 1485* ≥40 * Cancer
6 1485* ≥40 * Heart Disease
7 1485* ≥40 * Viral Infection
8 1485* ≥40 * Viral Infection
9 130** 3* * Cancer
10 130** 3* * Cancer
11 130** 3* * Cancer
12 130** 3* * Cancer

portion of individuals with a sensitive attribute that can negatively affect the result. Similarity attacks
happen because 𝑙-diversity does not differentiate between semantically similar sensitive values.

Table 3.3: 3-Diverse inpatient microdata (from [51])

Non-Sensitive Sensitive
Zip Code Age Nationality Condition

1 130** ≤40 * Heart Disease
4 130** ≤40 * Heart Disease
9 130** ≤40 * Cancer
10 130** ≤40 * Cancer
5 1485* >40 * Cancer
6 1485* >40 * Heart Disease
7 1485* >40 * Viral Infection
8 1485* >40 * Viral Infection
2 130** ≤40 * Heart Disease
3 130** ≤40 * Viral Infection
11 130** ≤40 * Cancer
12 130** ≤40 * Cancer

t-closeness [48] aims to solve the issues in 𝑙-diversity, by limiting the distance between sensitive
data distributions to be within a certain limit 𝑡. A table conforms to 𝑡-closeness, when for each equiva-
lence class “the distance between the distribution of a sensitive attribute in this class and the distribution
of the attribute in the whole table is no more than a threshold 𝑡” [48]. The original paper used the Earth
Mover Distance (EMD) as a metric to calculate the distance between two distributions. EMD can be
described as the minimal amount of work needed to transform one distribution into another by moving
the distribution mass. 𝑡-Closeness solves skewness attacks and limits the ability to perform similarity
attacks. Therefore, reducing the information an adversary is able to obtain from the data, even with
background knowledge.

Anonymization techniques make changes to the data, such that it is hard for an adversary to identify
groups or individuals. Although, anonymization cannot guarantee any leakage from the dataset when
the adversary has enough background knowledge. The advantage of anonymization is that one is able
to perform complex operations on the plaintext. Because it is possible to perform operations on the
plaintext, faster and more accurate algorithms can be deployed. However, since changes are made to
the data, the results might differ from the original data.
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3.2. Compression Techniques
Compression techniques use one-way functions to convert plaintext into a hash value. The advantage
of compression techniques, is that you do not work on the plaintext directly, and it provides privacy by
that it is hard to find the underlying plaintext from the hash value. Besides that, compression techniques
are often faster than trivial techniques such as linear scan through all the data, and are able to achieve
a sublinear time complexity. This section discusses two compression techniques that show promise in
current research: bloom filters and locality sensitive hashing.

Vatsalan and Christen [72] make use of bloom filters to efficiently calculate similarity scores over a
database and a query. Bloom filters are a probabilistic data structure which are known to be space-
efficient. Bloom filters are a useful tool for checking whether an element is a member of a set. It
is possible for bloom filters to return a false positive since it is a probabilistic scheme, but not false
negatives.

A bloom filter consists of a𝑚 size array filled with all zeroes. Using 𝑘 different hash functions which
map a specific record or the attributes separately, into the 𝑚 dimension array by setting a bit into that
position in that array. Using this 𝑚 dimension array, it is possible to check for similarity by repeating
the hashing operation on any query to check if the query is in the set. If there is a bit set in the query
bloom filter array, but not in the array of the data point, it is definitely not a member of the set. If all bits
are set in the query array, then there is a high likelihood that the query is a member of the set.

Figure 3.1: An example of a bloom filter where the query 𝑤 is not a member of the set (Retrieved from: [26])

Similarity is based on the Dice coefficient similarity, as shown in Definition 2, where 𝑣𝑖 is a bloom
filter with 𝑥𝑖 the number of bits set and 𝑐 the number of common bits that are set to 1. The similarity
score is a number between 0 and 1, where 0 means no similarity and 1 means they are the same.
Although bloom filter are efficient structures for finding similar items, Christen et al. have proven that
bloom filters are insecure [19].

Definition 2 (Dice Coefficient Similarity). 𝑠𝑖𝑚𝑀(𝑣1, 𝑣2) =
2×𝑐
𝑥1+𝑥2

Huang et al. [31] make use of locality sensitive hashing (LSH) to find similar records efficiently. LSH
is a compression technique which uses multiple hashing functions to find similar items. Using multiple
hashing functions, it is possible to map ’similar’ items into the same hashing buckets. If items are in
the same bucket, then there is a high probability that the items are similar. Picking a specific family of
hashing functions ℱ, it is possible to determine the likelihood that items are similar when they are in
the same bucket.

The hash function family ℱ maps ℎ ∶ 𝑀 → 𝑆, where 𝑀 is the data point and 𝑆 is a collection of hash
buckets. The hash function family ℱ is locality sensitive when for the points 𝑝, 𝑞 [34]:

• (𝑑(𝑝, 𝑞) ≤ 𝑅 → ℎ(𝑝) = ℎ(𝑞)) ≥ 𝑃1 (Is in the bucket when they are similar).

• (𝑑(𝑝, 𝑞) ≥ 𝑐𝑅 → ℎ(𝑝) = ℎ(𝑞)) ≤ 𝑃2 (Is in the bucket when they are NOT similar).

A LSH family ℱ is useful when 𝑃1 > 𝑃2, so when the likelihood of two items that are in the bucket are
similar is bigger, than if they are not similar. However, all LSH techniques are probabilistic, therefore it
is possible that some entries are not related at all.
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3.3. Cryptographic-based 𝑘-NN
In this section, we discusses related work which makes use of cryptographic techniques to perform
𝑘-NN protocols. First, interactive protocols are discussed, which are protocols that work in the client-
server and non-colluding servers scenario After that, protocols in the standalone server are considered.

3.3.1. Interactive Protocols
One of the first papers written to perform Privacy Preserving 𝑘-Nearest Neighbour (𝑘-NNS) was done
by Elmehdwi et al. [23]. Elmehdwi et al. provided the first protocol, which was secure, accurate and
outsourced the majority of the computation to the cloud server. The protocol uses Euclidean distance
as distance metric and made use of a partially homomorphic crypto scheme, the Paillier crypto scheme,
which allows additive operations on ciphertexts. However, the Paillier crypto scheme does not support
multiplication and non-linear operations, which are necessary to calculate the distances and finding
the minimum distances without communication. To calculate Euclidean distances and finding minimum
distances, one needs to be able to perform multiplication and comparisons. Therefore, Elmehdwi et al.
provide interactive protocols to perform multiplications and finding minimum distances.

To calculate Euclidean distances, the authors use a Secure Multiplication protocol. Using two
rounds of interaction, Elmehdwi et al. are able to multiply two encrypted numbers. The Secure Multi-
plication is then used to compute Secure Squared Euclidean Distances.

To compare two different values encrypted by the Paillier cryptosystem, the authors use bit decom-
position, where each integer is represented as an encrypted binary representation. Then, after finding
the first index where one vector of bits is smaller, that vector is reconstructed to an integer again.

The protocol is designed to be used in the non-colluding servers scenario, such that the client is
not involved in any computation. The overhead for the protocol is 𝒪(𝑛 ∗ (𝑙 +𝑚 + 𝑘 ∗ 𝑙 ∗ 𝑙𝑜𝑔2𝑛)), where
𝑛 is the number of rows, 𝑙 the number of bits to represent an integer after squaring, 𝑘 the number of
minimum values to find and 𝑚 the number of attributes.

An extension on the work of Elmehdwi et al. is provided by Kim et al. [43], which aimed to improve
the efficiency of the protocol. Kim et al. were able to realize an efficiency improvement in the protocol
by making use of data structures, which are efficient in searching for points. The data structure used
is a k-d tree, which is able to partition points in 𝑘 dimensions. Because of these partitions, one is able
to eliminate irrelevant portions of the k-d tree, finding the point with the minimum distance faster. One
downside of using a k-d tree is, it is only efficient when 𝑛 >> 2𝑘, where 𝑛 is the number of records and
𝑘 the number of attributes of the data. Also, the authors introduce an improved version of the Secure
Squared Euclidean Distance protocol introduced by Elmehdwi et al. and propose the Enhanced Secure
Squared Euclidean Distance protocol. The speed-up is obtained by making use of data packing, which
puts multiple data into one ciphertext, allowing to perform multiple operations with only one operation.
As a result of these performance increases, Kim et al. are able to gain a speed-up of up to 24 times in
comparison with the work of Elmehdwi et al, although the authors do not provide a complexity analyses.
However, to optimize the performance gains, it requires choosing the right parameters for the k-d tree.

Kesarwani et al. [42] also provide a Privacy Preserving 𝑘-NN protocol in the non-colluding scenario.
However, the authors use a levelled homomorphic encryption scheme, Brakerski-Gentry-Vaikuntanathan
(BGV), which allows a limited number of additions and multiplications, as well as support data packing.
The author’s choice of using a levelled homomorphic encryption scheme is based on the fact that it
supports more operations than a partial homomorphic scheme, but is faster than a fully homomorphic
encryption scheme. Using BGV, Kesarwani et al. are able to compute 𝑘-NN with minimal communica-
tion overhead, since the protocol only uses a single round. The number of homomorphic operations is
𝒪(𝑛 ∗ (𝑘 + 𝑑 + 𝒟)), where 𝑛 is the number of records, 𝑘 the number of minimum values to find, 𝑑 the
number of attributes and 𝐷 the number of distance to calculate.

Zheng et al. [77] also make use of k-d trees in the non-colluding scenario, as well as introducing a
scalar preserving crypto scheme, MASPE. MASPE is able to preserve the sign of the scalar, which
makes it possible to perform cheap comparisons, which is especially useful for searching in k-d trees.
Equation 3.1 & 3.2 shows the relation of the sign between the plaintext and the ciphertext for MASPE



18 3. Related Work

and a query 𝑞, a query token 𝑇𝐾𝑞, a record 𝑥 and the ciphertext of 𝑥, 𝐶𝑥:

𝑥 ∘ 𝑞 ≤ 0 ⇔ 𝐶𝑥 ∘ 𝑇𝐾𝑞 < 0. (3.1)

𝑥 ∘ 𝑞 > 0 ⇔ 𝐶𝑥 ∘ 𝑇𝐾𝑞 > 0. (3.2)

MASPE is an improved version of the ASPE crypto scheme [78], since ASPE was deemed to be inse-
cure under known plaintext attacks [49]. Other variants of ASPE, such as MRSE [13] and MKFSE [73],
were also proven to be insecure. So it is unsure if MASPE is secure.

A recent paper from Chen et al. [14] proposes a protocol for solving Secure 𝑘-NNS, which aims to
protect the query of the client from the server and the data of the server for the client in the client-
server scenario. Secure 𝑘-NNS differs from Privacy Preserving 𝑘-NNS, since in Secure 𝑘-NNS the
server is allowed to have access to the plaintext of the sensitive data but keeping the query private,
while in Privacy Preserving 𝑘-NNS the server is not allowed to have access to the sensitive data.

Although Secure 𝑘-NNS differs from Privacy Preserving 𝑘-NNS, Chen et al. do use useful primitives
such as Garbled Circuits, Secret sharing, Homomorphic Encryption and Oblivious RAM. Using the
aforementioned cryptographic primitives, the authors propose the SANNS protocol. SANNS is a Secure
Approximate k-Nearest Neighbour Search protocol which supports large databases such as SIFT [39],
which contains a million entries and 128 attributes. SANNS is able to support large databases, since
it uses the strong points of each cryptographic primitive. Homomorphic encryption is used for distance
computation, garbled circuits for top-𝑘 selection, Oblivious Ram for securely retrieving values and using
secret sharing for connecting all the primitives.

3.3.2. Standalone Protocols
Shaul et al. [63] propose a 𝑘-ish NN classifier in the standalone scenario. Instead of returning exactly
𝑘 records or IDs, the protocol returns the classification of the majority of the 𝑘 ≃ 𝑘 results. To be
more exact, 𝑘/2 < 𝜅 < 3𝑘/2. Since 𝑘 does not have to be exact, the authors are able to improve the
efficiency of the protocol. The improvement in efficiency is necessary since the server has to do all the
computation itself, and Shaul et al. make use of the levelled homomorphic BGV crypto scheme [10]
which as a significant computational overhead.

The authors achieve the efficiency improvement by assuming the underlying data follows a Gaus-
sian distribution. Next, Shaul et al. calculate 𝜇 and 𝜎 on the underlying data and sampling multiple
times from this distribution to find the k-nearest neighbours with a high probability. Another efficiency
improvement comes from the decision when to use arithmetic circuits and when to use polynomials
for non-linear operations. Since multiplications in BGV are expensive, the decision on whether to use
a polynomial or an arithmetic circuit depends on the number of multiplication gates (size(𝐶)) and the
longest path of multiplications (depth(𝐶)) in the circuit. Paterson et al. [55] showed that it is possible
to express any polynomial ℙ𝑝(𝑥) ∶ ℤ𝑝 → ℤ𝑝 with an arithmetic circuit 𝐶, such that size(𝐶) = 𝒪(√𝑝) and
depth(𝐶) = 𝒪(log 𝑝). Thus, depending on the complexity of the polynomial to compute, Shaul et al. are
able to decide whether to use polynomials or an arithmetic circuit.

Jäschke and Armknecht [38] focused on an unsupervised version of a 𝑘-NN problem, 𝑘-Means clus-
tering in the standalone server scenario. The authors use a fully homomorphic encryption scheme
to perform linear and non-linear operations on a single cloud server. In order to perform non-linear
operations using fully homomorphic encryption, an arithmetic circuit is used. In standard arithmetic
circuits, integers are binary encoded. Jäschke and Armknecht experimented using different encodings
for arithmetic circuits, and compared the number of additions and multiplications needed. According
to [37], using a base 𝑝 = 2 has the best performance. Therefore, the authors use TFHE [76], a fully
homomorphic encryption scheme, which uses a binary encoding.

Jäschke and Armknecht also consider using a different distance metric than Euclidean distance.
Performing operations on fully homomorphic encrypted data has a significant overhead, therefore one
should consider reducing the number of bits used in the computation. The disadvantage of using
Euclidean distance is that the distance is squared, which requires more bits for distance computation.
Therefore, the authors use the Manhattan distance. Instead of squaring the distance across each
dimension, one takes the absolute value. Since a different distance metric is used, misclassification
can occur. Jäschke and Armknecht tested the accuracy loss between the Manhattan distance and
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Euclidean distance and concluded that less than 2% is misclassified and sometimes performs better.
Besides that, [1] claim that Manhattan distance performs better on highly dimensional data.

3.4. Summary
All the works discussed aim to provide privacy without reducing utility, we briefly summarize the tech-
niques. An overview of all the techniques are given in Table 3.4.

Anonymization techniques, such as 𝑘-anonymity, 𝑙-diversity and 𝑡-closeness, make changes to the
data, such that it is not possible to identify groups or individuals and link it to sensitive data. The advan-
tage of using anonymized data is being able to perform algorithms in plaintext. However, anonymizing
datasets is not a trivial task and cannot guarantee any information leakage, as well as reducing accu-
racy, since the anonymized data differs from the original data set.

Compression techniques are able to provide security in a standalone server scenario, while achiev-
ing sublinear time complexity. However, it has been shown that Bloom Filters are not secure, although
Locality Sensitive Hashing is. The disadvantage of using compression techniques is the fact that it is
probabilistic, thus it is possible for two unrelated records to be returned.

Cryptographic techniques are able to provide security by encrypting the data, while still being able
to perform operations on the ciphertext. The main disadvantage of using cryptographic techniques is
the computational or communicational overhead. As discussed before, some works use multiple cloud
servers or the client to help with computing intermediate results to increase efficiency.

All in all, to the best of our knowledge, there does not exist a privacy preserving 𝑘-NNS protocol
which is suitable for outsourced environments which is deterministic in the standalone server scenario
and with minimal interaction.

Table 3.4: Overview of related work

Work Secure Deterministic Standalone Server 𝑘-NNS Approach
Anonymization [68][51][48] 6 6 3 3 Anonymization
Vatsalan and Christen [72] 6 6 3 3 Bloom filter

Huang et al. [31] 3 6 3 3 LSH
Eldmehdwi et al [23] 3 3 6 3 Paillier

Kim et al. [43] 3 3 6 3 Paillier
Kesarwani et al. [43] 3 3 6 3 BGV
Zheng et al. [77] ? 6 6 3 MASPE
Chen et al. [14] 3 6 6 3 Garbled Circuits
Shaul et al. [63] 3 6 3 6 BGV

Jäschke and Armknecht [38] 3 3/6 3 6 TFHE





4
Privacy Preserving 𝑘-NNS

In this chapter, we introduce our Privacy Preserving 𝑘-NNS protocol. First we introduce the goals of
our protocol, secondly we describe which privacy preserving technique is used. Next, the setup of our
protocol is discussed, as well as how to perform distance calculation and top-𝑘 selection. Any syntax
that is used during this chapter is described in Table 4.1.

Table 4.1: Syntax used in the chapter

Symbol Definition

[[⋅]] Homomorphically encrypted value

𝑚𝑖𝑛([[⋅]], [[⋅]]) Min function on two encrypted values

𝑚𝑎𝑥([[⋅]], [[⋅]]) Max function on two encrypted values

𝑔𝑡([[⋅]], [[⋅]]) Greater than function on two encrypted values and result ∈ {0, 1}
𝑒𝑞([[⋅]], [[⋅]]) Equal function on two encrypted values and result ∈ {0, 1}
𝐶𝑀𝑈𝑋([[𝑐]], [[𝑙]], [[𝑟]]) A multiplexer circuit for encrypted data, which returns either 𝑙 or

𝑟, depending on 𝑐

4.1. Design Goals
To design a Privacy Preserving 𝑘-NNS, it is necessary to establish requirements the protocol should
conform to. We briefly describe the requirements:

• Query Privacy: The protocol should guarantee query privacy of the client. Query privacy requires
that only the client is able to read the contents of the query. Therefore, the server and any third-
parties cannot read the contents of the query.

• Result Privacy: The result of the protocol, from the server to the client, should be protected such
that only the client is able to read the contents. The server or any third-parties should not be able
to read the contents.

• Data Privacy: The data stored on the server, given out by the data owner, should be kept private
for the server, as well as any third-parties. Besides that, the client should only be able to read the
contents of the result and not any other data kept on the server.

• Parallelism: The protocol should be highly parallelizable. Parallelism is desired, since cloud
servers typically provide instances with high number of cores.

21
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• Standalone Server: The protocol should work in the standalone server scenario, which requires
minimal interaction between the client and a single server. The server should perform all the
computations and is not allowed to outsource the computation to other servers.

• Deterministic: The protocol should be deterministic, meaning it should provide consistent re-
sults, comparable to plaintext implementations.

For our protocol, it is also necessary to define the adversarial behaviour and capabilities. As de-
scribed in Section 2.3.1, our protocol will be secure against bounded adversaries, since the security
of TFHE also depends on bounded adversaries. Besides that, our protocol will be secure against
semi-honest adversarials, as described in Section 2.3.2, which is inline with other works on privacy
preserving 𝑘-NNS.

4.2. Setup
Before the client can send queries to the server, some set up is required by the client. The client is
responsible for choosing the parameters of the encryption scheme and generating and distributing the
keys.

As discussed earlier, TFHE performs arithmetic circuits on a bitwise level. In order to represent
large integers, TFHE concatenates multiple smaller ciphertexts using either radix-based integers or the
Chinese Remainder Theorem (CRT). In our work, we only consider the radix-based integers. Although
CRT is faster in some instances, due to faster bootstrapping and not needing to propagate carries in
circuits, it does not support comparisons, min or max functions. Comparisons, min and max functions
are required to perform our protocol.

Instead, a radix representation is used, which concatenates smaller blocks together to eventually
represent a larger integer. The number of blocks needed to represent an integer depends on the size of
the smaller blocks, which are called shortints. Shortints consist of a message space and a buffer space,
where both themessage and the buffer space support a size from 1 to 4, which is called the basisℬ. The
message space holds the actual message, where the buffer space is needed to propagate results to the
next shortint. To represent a large integer, the integer can be written as𝑚 = 𝑚0+𝑚1 ∗ℬ+𝑚2 ∗ℬ2+… ,
where each𝑚𝑖 is encrypted individually and𝑚𝑖 < ℬ. The size of the basisℬ has impact on the efficiency
of the operations, therefore it is important to choose the right basis. Although the message basis and
the buffer basis can differ, we will keep the buffer and the message the same size. If the buffer space
is smaller than the message space, it can lead to incorrect results due to over-and underflows.

Jäschke and Armknecht argue that using a basis of 2 leads to the best overall performance [37].
Besides that, the authors of the implementation of TFHE published benchmarks of different operations
using different parameters, see Table 4.2. However, Table 4.2 only considers operations on a shortint
using different parameters. Therefore, Table 4.3 shows the performance of different parameters using
16-bit integers. In the case of using a radix base of 3, we used an 18 bit integer, since 16 is not divisible
by 3. As seen in Table 4.3, only a basis of 1 is faster than a basis of 2, just for addition. Not only is basis
2 faster in multiplications, but using a basis of one, the max function is not supported due to the need
to perform programmable bootstrapping, which requires at least a message + buffer space of 4. All in
all, the parameter set where the message and buffer space consist of 2 bits performs the best. When
using shortints with ℬ = 2, the number of blocks needed to represent an integer is 𝑛𝑏𝑙𝑜𝑐𝑘𝑠 =

𝑛𝑏𝑖𝑡𝑠
2 ,

where 𝑛𝑏𝑖𝑡𝑠 is the size of the plaintext message space.

Table 4.2: Benchmark performances of different message and buffer sizes for TFHE [76]

Parameter set add mul_lsb programmable_bootstrap
PARAM_MESSAGE_1_BUFFER_1 7.90 ms 8.00 ms 8.10 ms
PARAM_MESSAGE_2_BUFFER_2 18.4 ms 18.1 ms 18.4 ms
PARAM_MESSAGE_3_BUFFER_3 131.5 ms 129.5 ms 129.4 ms
PARAM_MESSAGE_4_BUFFER_4 852.5 ms 839.7 ms 828.1 ms

The client is responsible for generating the keys and providing the server with the keys required to
perform the protocol. The client should generate three keys: Secret Key, Public Key and Cloud Key.
The secret key is used to encrypt and decrypt data and should always be kept private from other parties.
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Table 4.3: Total running time summed for 1000 operations of different message and buffer sizes using 16-bit integers. (For
PARAM_MESSAGE_3_BUFFER_3 an 18 bit integer was used)

Parameter set add mul max
PARAM_MESSAGE_1_BUFFER_1 11.68 s 29.98s -
PARAM_MESSAGE_2_BUFFER_2 13.09 s 21.80 s 25.21 s
PARAM_MESSAGE_3_BUFFER_3 60.00 s 106.40 s 115.82 s
PARAM_MESSAGE_4_BUFFER_4 181.68 s >500 s 368.27 s

Leaking the secret key allows any arbitrary party to decrypt immediate steps in the protocol. The public
key can be distributed to the server, which allows the server to only encrypt messages. The cloud key
is used to perform homomorphic operations on the encrypted data and to perform bootstrapping. After
the client has generated the keys, the client should encrypt all the data using the secret key and send
the encrypted data to the server, together with the public and cloud key.

The security of the scheme depends on parameters chosen, such as noise level and key size. We
assume parameters are chosen such that it is able to provide 128 bits of security [76], calculated by a
lattice estimator.

4.3. Distance Calculation
The first step in performing 𝑘-NNS using Fully Homomorphic Encryption (FHE) is calculating the dis-
tances between the query and the records in the database. Distances can be defined by using a
distance metric, which formulates a function to define a distance between two points. We will briefly
describe two commonly used distance metrics, then we perform experiments to find the accuracy loss
between the two. Finally, we discuss the actual implementation using fully homomorphic encryption of
the distance metric.

4.3.1. Distance Metric
The most common metric is the Euclidean distance, as defined in Equation 4.1. In short, Euclidean
sums the squared distances of all the attributes and then takes the square root. The advantage of
using Euclidean distance for distance metric, is that outliers are move heavily punished due to the
squared exponential. The disadvantage of using Euclidean distance is also the squared factor, which
causes the distance to grow exponentially. If the distance space grows faster, this means that more
bits are needed to represent the distance without an overflow. Besides that, performing a square root
on encrypted data is computationally expensive and not accurate. Therefore, literature uses Euclidean
distance without the square root, as defined in Equation 4.2

𝑑(𝑥, 𝑞) = √
𝑗=𝑑

∑
𝑗=0

(𝑥𝑗 − 𝑞𝑗)2 (4.1)

𝑑(𝑥, 𝑞) =
𝑗=𝑑

∑
𝑗=0

(𝑥𝑗 − 𝑞𝑗)2 (4.2)

Another example of a distance metric, is the Manhattan distance as defined in Equation 4.3. Man-
hattan distance differs from Euclidean distance by taking the sum of the absolute differences instead
of squaring it. Using Manhattan distance, outliers are not punished more heavily, but instead have the
same weighting as points close the query. One of the reasons of using Manhattan distance is reducing
the distance space, as done in [38]. Since Manhattan distance uses an absolute function instead of
squaring, the distance space grows linearly. Therefore, when using the Manhattan distance metric, it
is possible to use less bits in the protocol than the Euclidean distance metric.

𝑑(𝑥, 𝑞) =
𝑗=𝑑

∑
𝑗=0

|𝑥𝑗 − 𝑞𝑗| (4.3)
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The main cost of homomorphic operations using TFHE is the bootstrapping operation between
shortint block, which is necessary to propagate the carry between blocks. Therefore, performing oper-
ations on a smaller number of bits is preferred, since this results in less bootstrapping operations. That
is why our protocol will implement the Manhattan distance.

4.3.2. Implementation
Now that we have defined the distance metric, the Manhattan distance, it needs to be implemented
using fully homomorphic encryption. We will discuss challenges and solutions for implementing the
Manhattan distance.

As mentioned in Section 2.4, we will be making use of TFHE [76] as homomorphic encryption
scheme. TFHE only supports unsigned integers, which is a challenge since both Euclidean and Man-
hattan distance requires negative numbers.

The first solution requires using an encoding such that it is possible to represent signed integers. An
earlier work by Jäschke and Armknecht [38] used two’s complement, together with an arithmetic circuit
to implement the absolute function. The algorithm is shown in Algorithm 1. First, the most significant
bit 𝑐 and the negation of 𝑎 are calculated. Then, using a controlled multiplexer, depending on the most
significant bit 𝑐, either 𝑥′ or 𝑥 is returned. This circuit works, since if the most significant bit is set, 𝑥
is already negative. Therefore, returning the negation of 𝑥, which was already calculated by 𝑥′, the
positive representation of 𝑥 is returned. If 𝑐 is not set, then 𝑥 is already positive and return 𝑥.

Algorithm 1Manhattan distance using absolute arithmetic circuit proposed by Jäschke and Armknecht
[38].
Input:
[[𝑎]] = [[𝑎𝑛]] … [[𝑎1]][[𝑎0]] ∶ binary encoded encrypted integer
[[𝑏]] = [[𝑏𝑛]] … [[𝑏1]][[𝑏0]] ∶ binary encoded encrypted integer

Output: [[|𝑎 − 𝑏|]]
[[𝑥]] ← [[𝑎]] − [[𝑏]]
// Set the control bit as the most significant bit of 𝑥
[[𝑐]] ← [[𝑥𝑛]]
// Calculate the negation of 𝑥
[[𝑥′]] ← −[[𝑥]]
// If 𝑐 = 1, then 𝑥 is negative, thus return 𝑥′. Else return 𝑥
[[𝑑]] ← 𝐶𝑀𝑈𝑋([[𝑐]], [[𝑥′]], [[𝑥]])
return [[𝑑]]

Although the absolute algorithm proposed by Jäschke and Armknecht works, it has disadvantages.
Using two’s complement reduces the message space by one bit, since it is required to represent neg-
ative numbers. This is unfavourable, because each bit that is required increases the runtime. Besides
that, calculating the circuit as described in Algorithm 1 is computationally expensive. The circuit is com-
putationally expensive because of the CMUX, which is a gate that uses a control bit 𝑐, to select either
𝑥 or 𝑦. CMUX gates are useful, because it is not possible to perform if else branches on encrypted
data. Since the data is encrypted, it is impossible to branch and therefore both branches have to be
executed. However, it is still possible to implement if else branches by using a CMUX gate, by multi-
plying by 1 if a statement is true, and 0 when a statement is false and summing the result. A CMUX
can be written in multiple ways, as shown in Equation 4.4 and 4.5. Using Equation 4.5 is preferred over
Equation 4.4, since this saves doing an extra multiplication. As mentioned before, multiplications are
computationally expensive and therefore should be avoided as much as possible.

𝐶𝑀𝑈𝑋(𝑐, 𝑥, 𝑦) = (1 − 𝑐) ∗ 𝑥 + 𝑐 ∗ 𝑦 (4.4)

𝐶𝑀𝑈𝑋(𝑐, 𝑥, 𝑦) = 𝑐 ∗ (𝑥 − 𝑦) + 𝑦 (4.5)

We therefore propose an arithmetic circuit using TFHE, which is more efficient in calculating the Man-
hattan distance. According to the benchmarks published by Zama [76], which are shown in Table 4.4,
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multiplications become increasingly more expensive as the bit size increases. While, performing a
minimum function only becomes slightly more expensive when the bit size increases. Therefore, when
using a plaintext size of 16 bits, it is faster to perform two min or max functions than one multiplica-
tion. Since, Algorithm 1 uses at least one multiplication in the CMUX, we propose to calculate the
Manhattan distance using a min or a max. Our implementation is shown in Algorithm 3. By first calcu-
lating the maximum of two integers and the minimum of two integers, it is possible to guarantee that
𝑙𝑒𝑓𝑡 − 𝑟𝑖𝑔ℎ𝑡 ≥ 0, since 𝑙𝑒𝑓𝑡 ≥ 𝑟𝑖𝑔ℎ𝑡. Not only is our solution faster, we do not require an encoding
which requires the use of an extra bit.

Table 4.4: Performance benchmarks for the add, mul and min operations using TFHE [76]. Each radix-based integer consists
of two message bits and two buffer bits and using the default flag.

Plaintext Size add mul min
8 bits 129.0 ms 227.2 ms 186.8 ms
16 bits 256.3 ms 756.0 ms 233.1 ms
32 bits 469.4 ms 2.10 s 282.9 ms
64 bits 959.9 ms 5.53 s 336.5 ms

Algorithm 2 Our Manhattan distance arithmetic circuit.
Input:
[[𝑎]] = [[𝑎𝑛]] … [[𝑎1]][[𝑎0]] ∶ binary encoded encrypted integer
[[𝑏]] = [[𝑏𝑛]] … [[𝑏1]][[𝑏0]] ∶ binary encoded encrypted integer

Output: [[ |𝑎 − 𝑏| ]]
// Find the maximum of 𝑎 and 𝑏
[[𝑙𝑒𝑓𝑡]] ← 𝑚𝑎𝑥([[𝑎]], [[𝑏]])
// Find the minimum of 𝑎 and 𝑏
[[𝑟𝑖𝑔ℎ𝑡]] ← 𝑚𝑖𝑛([[𝑎]], [[𝑏]])
// 𝑑 is always ≥0, since 𝑙𝑒𝑓𝑡 ≥𝑟𝑖𝑔ℎ𝑡
[[𝑑]] ← [[𝑙𝑒𝑓𝑡]] − [[𝑟𝑖𝑔ℎ𝑡]]
return [[𝑑]]

4.4. Top-𝑘 Selection
The next step in performing Privacy Preserving 𝑘-NNS, is finding theminimum 𝑘-distances. This section
discusses different approaches to find the minimum of a set of distances.

4.4.1. Sorting
The trivial implementation of finding the 𝑘 minimum distances is to first sort the distances and return
the 𝑘 first entries. However, secure sorting algorithms on encrypted data are inefficient. Commonly
used sorting algorithms such as quick sort or merge sort cannot be performed securely without sig-
nificant overhead, due to not being able to partition the data. The data cannot be partitioned, since
two ciphertexts are indistinguishable from each other and can therefore not decide on how to parti-
tion the data. Therefore, quick sort and merge sort have the same complexity as bubble and insertion
sort, 𝒪(𝑛2). Bitonic and odd-even merge sort are sorting algorithms which can be performed parallel
and be performed on encrypted data, with a complexity of 𝒪(𝑛log2(𝑛)). Although this is more efficient
than other sorting algorithms, the algorithm performs the work to sort all the distances, while only 𝑘 are
needed. Therefore, we believe we can reduce the complexity in the case of Privacy Preserving 𝑘-NNS.
An overview of the complexities of the sorting algorithms are shown in Table 4.5.

4.4.2. Plaintext Solutions
Finding the smallest or largest 𝑘 items in a list is a well solved problem in the plaintext setting, however
we will show these do not apply when working on encrypted data.

Hadian and Sobel already showed in 1969 that the upper bound for the amount of comparisons for
finding the 𝑘 largest items is bounded by Equation 4.6, where 𝑛 is the total number of items. Hadian
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Algorithm 3 Our distance computation circuit
Input:
𝑄 = 𝑄 ∈ ℤ𝑑 ∶ Encrypted query
𝐷 = 𝐷 ∈ ℤ𝑛×𝑑 ∶ Encrypted database

Output: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ∶ Encrypted distances
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ← 𝐸𝑚𝑝𝑡𝑦
// Do for each row in the database
for i ←0, …n do

// initialize distance to 0 for each row
[[𝑙𝑜𝑐𝑎𝑙𝐷𝑖𝑠𝑡]] ← [[0]]
𝑥 ← 𝐷[𝑖]
// Do for each attribute
for j ←0, …, d do

[[𝑎]] ← 𝑥[𝑗]
[[𝑏]] ← 𝑄[𝑗]

// Calculate Manhattan distance between a and b
[[𝑙𝑒𝑓𝑡]] ← 𝑚𝑎𝑥([[𝑎]], [[𝑏]])
[[𝑟𝑖𝑔ℎ𝑡]] ← 𝑚𝑖𝑛([[𝑎]], [[𝑏]])
[[𝑑𝑖𝑠𝑡]] ← [[𝑙𝑒𝑓𝑡]] − [[𝑟𝑖𝑔ℎ𝑡]]

// Sum the distance
[[𝑙𝑜𝑐𝑎𝑙𝐷𝑖𝑠𝑡]] ← [[𝑙𝑜𝑐𝑎𝑙𝐷𝑖𝑠𝑡]] + [[𝑑𝑖𝑠𝑡]]

end for
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠.𝑝𝑢𝑠ℎ([[𝑙𝑜𝑐𝑎𝑙𝐷𝑖𝑠𝑡]])

end for
return 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠

Table 4.5: Complexity of sorting algorithms on encrypted data, expressed as the number of comparisons needed. (Retrieved
from [25])

Sorting Algorithm Complexity
Bubble Sort 𝒪(𝑛2)
Insertion Sort 𝒪(𝑛2)
Merge Sort 𝒪(𝑛2)
Insertion Sort 𝒪(𝑛2)
Bitonic Sort 𝒪(𝑛(log2(𝑛))2)
Odd-Even Sort 𝒪(𝑛(log2(𝑛))2)

and Sobel were able to prove this using replacement selection in a binary tree, and will briefly discuss
this to find the 𝑘 minimum values. First, create a binary tree with 𝑛−𝑘 items, and keep those 𝑘 items in
reserve. After finding the minimum in the tree, and replace the minimum of that we found in the leave
of the tree, with one of the items we kept in reserve and find the minimum again. However, this time
we do not have to compare everything in the tree, since we already computed previous paths. Only
compute the path from the leave to the root that we changed, resulting in needing to perform fewer
comparisons. Although, replacement selection provides us with a good upper bound for the number
of comparisons, it cannot be efficiently performed on encrypted data, because replacement selection
requires partitioning. To perform replacement selection on encrypted data would require to compute all
the paths in the tree again, losing the efficiency of the algorithm.

𝑉𝑘 ≤ 𝑛 − 𝑘 + (𝑘 − 1)⌈𝑙𝑜𝑔2(𝑛 + 2 − 𝑘)⌉ (4.6)

Another solution involves using a min or max heap data structure to hold the 𝑘 highest or lowest
items in the list. A heap is a tree like structure which allows to efficiently search the tree for smaller
or larger items. When iterating over distances, compare if the distance is smaller than the largest
item in the heap and replace it. In plaintext this can be implemented in 𝒪(𝑛log2(𝑘)). Again, using
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such an implementation introduces challenges when converting it to work on encrypted data. Firstly,
searching the heap introduces additional complexity since it requires partitioning, which is not possible
on encrypted data. Secondly, using a min heap structure is not parrallelizable, since it requires editing
a single data structure which would require to work with a mutex, thus slowing down computation.

4.4.3. Our Solution
Our solution is a variant of the replacement selection algorithm as described in Section 4.4.2. The
first step in our algorithm is to create a binary tree, to compute all the distances to find the minimum
distance. Using the 𝑚𝑖𝑛(𝑥, 𝑦) function, the smallest value is propagated to the root of the tree. For
the trivial case where 𝑘 = 1, the root of the tree contains the smallest value of all the values in the
list, and the ID is returned. The advantage of using a binary tree, is the possibility of parallelizing the
computation as much as possible.

For the case when 𝑘 > 1, it is necessary to perform another step to find all the other 𝑘’s. After
a minimum has been found, it needs to be removed from the leave of the tree and replaced by an
encryption of MAX_VALUE. One way to replace the minimum is to iterate over the list of distances
again, and check if the ID of the minimum is equal to the one in the list, which is the most accurate
solution. The entire algorithm is shown in Algorithm 4.

Note that performing an equality function on two encrypted values, returns an encrypted bit over
the entire plaintext domain. Therefore, when performing operations which multiply values from an
equality, only the least significant shortint block of the output integer of the equality function has to be
used. Using only the least significant shortint block during multiplications can be used in for example
a CMUX circuit to speed up computation.

4.4.4. Optimization
Algorithm 4 shows the implementation on how to retrieve the ID of the 𝑘 closest records, but wewill show
it is possible to make some optimizations in some special scenarios where only some specific attributes
need to be returned. The disadvantage of using the ID as a replacement attribute, is that the size of the
data set size is limited by the size of the plaintext domain, which is defined as: ℬ2 ∗num_of_blocks > 𝑛,
where ℬ is the message size for a shortint and 𝑛 the data set size. The database limit can be increased
by incrementing either the message size of the shortint or the number of blocks in an integer, but
increasing the number of bits or blocks impacts the efficiency of the protocol significantly. Therefore, if
it is possible to remove the ID attribute from the protocol, and only return the specific attributes needed,
without increasing the bit size of the shortints or number of blocks.

Using the distance of the minimum found in a round instead of the ID, it is possible to update the
list of distances, which is shown in Algorithm 5. The advantage of using the distance instead of the
ID, is now we can support large databases without compensating for a large bit size for the plaintext.
The disadvantage of using such a method, is that the distances need to be unique to achieve a 100%
accuracy. If the distances are not unique, it can occur that two records with the same respective
distance to a query get both updated instead of one, resulting in a different result than a plaintext
implementation.

Updating only one record is possible with an extra variable, as shown in Algorithm 6, however this
introduces extra overhead due to the need for extra circuits. The downside of using additional circuits,
is that gates are expensive and also make the protocol less parrallelizable due to the need for a mutex.
Because mutex is a data structure such that only one thread can have access to a resource at a time,
this results in extra overhead for threads that cannot access the data structure. However, using an
extra bit in combination with a mutex makes it possible to achieve the same accuracy as the algorithm
comparing ID’s.

An encrypted bit is used, which is initialized as 0, and will be set to 1 when the minimum distance
has been found in the list of distances, which is done by using an OR gate on the bit which check for
equality of the minimum distance. Then the CMUX is only applied when the equality check bit is set
and the encrypted bit is not set.
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Algorithm 4 Top-k Selection using ID as replacement
Input:
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 = [([[𝐼𝐷, 𝑑𝑖𝑠𝑡]]1), … , ([[𝐼𝐷, 𝑑𝑖𝑠𝑡]]𝑛)] ∶ Homomorpically encrypted tuples of the record ID and distance
𝐶𝑘 ∶ Cloudkey to perform homomorphic operations
𝑃𝑘 ∶ Publickey to encrypt plaintext to ciphertext
𝑘 ∶ The number of nearest neighbours to find

Output: [([[𝐼𝐷, 𝑑𝑖𝑠𝑡]]1), … , [[𝐼𝐷, 𝑑𝑖𝑠𝑡]]𝑘] The top-k closest records to a specific query
𝑡𝑜𝑝𝐾 ← 𝐸𝑚𝑝𝑡𝑦
// Start a new round to find a new minimum value
for 𝑖 ← 1,… , 𝑘 do

𝑑𝑖𝑠𝑡 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠
// Find the minimum value in the list of distances
while 𝑠𝑖𝑧𝑒(𝑑𝑖𝑠𝑡)! = 1 do

[[𝑙𝑒𝑓𝑡]] ← [[𝑑𝑖𝑠𝑡]].𝑝𝑜𝑝()
[[𝑟𝑖𝑔ℎ𝑡]] ← [[𝑑𝑖𝑠𝑡]].𝑝𝑜𝑝()
[[𝑙𝑜𝑤]] ← 𝑚𝑖𝑛([[𝑙𝑒𝑓𝑡]], [[𝑟𝑖𝑔ℎ𝑡]])

end while
// The found minimum distance
[[𝑚𝑖𝑛]] ← [[𝑑𝑖𝑠𝑡]].𝑝𝑜𝑝()
𝑡𝑜𝑝𝐾.𝑝𝑢𝑠ℎ([[𝑚𝑖𝑛]])
// If in the last round, skip the last phase
if 𝑖 = 𝑘 then

break
end if
// Update list of distances for a new round
for 𝑗 ← 1,… , 𝑛 do

([[𝐼𝐷]], [[𝑑𝑖𝑠𝑡]])) ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑗]
[[𝑐]] ← 𝐶𝑘.𝑒𝑞([[𝐼𝐷]], [[𝑚𝑖𝑛.𝑑𝑖𝑠𝑡]])
[[𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒]] ← 𝑃𝑘.𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑀𝐴𝑋_𝑉𝐴𝐿𝑈𝐸)
// Replace the distance of this record with MAX_VALUE if IDs match
[[𝑛𝑒𝑤𝐷𝑖𝑠𝑡]] ← 𝐶𝑀𝑈𝑋([[𝑐]], [[𝑑𝑖𝑠𝑡]], [[𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒]])
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑗] ← ([[𝐼𝐷]], [[𝑛𝑒𝑤𝐷𝑖𝑠𝑡]])

end for
end for
return 𝑡𝑜𝑝𝐾
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Algorithm 5 Top-k Selection using the distance as replacement.
Input:
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 = [([[𝑎𝑡𝑡𝑟𝑖 , 𝑑𝑖𝑠𝑡]]1), … , ([[𝑎𝑡𝑡𝑟𝑖 , 𝑑𝑖𝑠𝑡]]𝑛)] ∶ Homomorpically encrypted tuples of the record ID and distance
𝐶𝑘 ∶ Cloudkey to perform homomorphic operations
𝑃𝑘 ∶ Publickey to encrypt plaintext to ciphertext
𝑘 ∶ The number of nearest neighbours to find

Output: [([[𝑎𝑡𝑡𝑟𝑖 , 𝑑𝑖𝑠𝑡]]1), … , [[𝑎𝑡𝑡𝑟𝑖 , 𝑑𝑖𝑠𝑡]]𝑘] The top-k closest records to a specific query
𝑡𝑜𝑝𝐾 ← 𝐸𝑚𝑝𝑡𝑦
// Start a new round to find a new minimum value
for 𝑖 ← 1,… , 𝑘 do

𝑑𝑖𝑠𝑡 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠
// Find the minimum value in the list of distances
while 𝑠𝑖𝑧𝑒(𝑑𝑖𝑠𝑡)! = 1 do

[[𝑙𝑒𝑓𝑡]] ← [[𝑑𝑖𝑠𝑡]].𝑝𝑜𝑝()
[[𝑟𝑖𝑔ℎ𝑡]] ← [[𝑑𝑖𝑠𝑡]].𝑝𝑜𝑝()
[[𝑙𝑜𝑤]] ← 𝐶𝑘.𝑚𝑖𝑛([[𝑙𝑒𝑓𝑡]], [[𝑟𝑖𝑔ℎ𝑡]])

end while
// The found minimum distance
[[𝑚𝑖𝑛]] ← [[𝑑𝑖𝑠𝑡]].𝑝𝑜𝑝()
𝑡𝑜𝑝 − 𝑘.𝑝𝑢𝑠ℎ([[𝑚𝑖𝑛]])
// If in the last round, skip the last phase
if 𝑖 = 𝑘 then

break
end if
// Update list of distances for a new round
for 𝑗 ← 1,… , 𝑛 do

([[𝑎𝑡𝑡𝑟𝑖]], [[𝑑𝑖𝑠𝑡]])) ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑗]
[[𝑐]] ← 𝐶𝑘.𝑒𝑞([[𝑑𝑖𝑠𝑡]], [[𝑚𝑖𝑛.𝑑𝑖𝑠𝑡]])
[[𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒]] ← 𝑃𝑘.𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑀𝐴𝑋_𝑉𝐴𝐿𝑈𝐸)
// Replace the distance of this record with MAX_VALUE if distances match
[[𝑛𝑒𝑤𝐷𝑖𝑠𝑡]] ← 𝐶𝑀𝑈𝑋([[𝑐]], [[𝑑𝑖𝑠𝑡]], [[𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒]])
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑗] ← ([[𝑎𝑡𝑡𝑟𝑖]], [[𝑛𝑒𝑤𝐷𝑖𝑠𝑡]])

end for
end for
return 𝑡𝑜𝑝𝐾
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Algorithm 6 Top-k Selection using distance as replacement together with a mutex
Input:
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ∶ Homomorpically encrypted tuples of the record ID and distance
𝐶𝑘 ∶ Cloudkey to perform homomorphic operations
𝑃𝑘 ∶ Publickey to encrypt plaintext to ciphertext
𝑘 ∶ The number of nearest neighbours to find

Output: [([[𝑎𝑡𝑡𝑟𝑖 , 𝑑𝑖𝑠𝑡]]1), … , [[𝑎𝑡𝑡𝑟𝑖 , 𝑑𝑖𝑠𝑡]]𝑘] The top-k closest records to a specific query
𝑡𝑜𝑝𝐾 ← 𝐸𝑚𝑝𝑡𝑦
// Start a new round to find a new minimum value
for 𝑖 ← 1,… , 𝑘 do

𝑑𝑖𝑠𝑡 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠
// Find the minimum value in the list of distances
while 𝑠𝑖𝑧𝑒(𝑑𝑖𝑠𝑡)! = 1 do

[[𝑙𝑒𝑓𝑡]] ← [[𝑑𝑖𝑠𝑡]].𝑝𝑜𝑝()
[[𝑟𝑖𝑔ℎ𝑡]] ← [[𝑑𝑖𝑠𝑡]].𝑝𝑜𝑝()
[[𝑙𝑜𝑤]] ← 𝐶𝑘.𝑚𝑖𝑛([[𝑙𝑒𝑓𝑡]], [[𝑟𝑖𝑔ℎ𝑡]])

end while
// The found minimum distance
[[𝑚𝑖𝑛]] ← [[𝑑𝑖𝑠𝑡]].𝑝𝑜𝑝()
𝑡𝑜𝑝 − 𝑘.𝑝𝑢𝑠ℎ([[𝑚𝑖𝑛]])
// If in the last round, skip the last phase
if 𝑖 = 𝑘 then

break
end if
// Encrypt a 0 bit to keep count if a replacement has been found
[[𝑚]] ← 𝑃𝑘.𝑒𝑛𝑐𝑟𝑦𝑝𝑡(0)
// Update list of distances for a new round
for 𝑗 ← 1,… , 𝑛 do

([[𝑎𝑡𝑡𝑟𝑖]], [[𝑑𝑖𝑠𝑡]])) ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑗]
[[𝑐]] ← 𝐶𝑘.𝑒𝑞([[𝑑𝑖𝑠𝑡]], [[𝑚𝑖𝑛.𝑑𝑖𝑠𝑡]])
// Only perform replacement when distances are equal and m == 0
𝑠𝑒𝑙𝑒𝑐𝑡 ← 𝐶𝑘.𝑔𝑡([[𝑐]], [[𝑚]])
// Update tracking bit if a replacement has been found or has already been found
[[𝑚]] ← 𝐶𝑘.𝑜𝑟([[𝑚𝑙], [[𝑐]])
[[𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒]] ← 𝑃𝑘.𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑀𝐴𝑋_𝑉𝐴𝐿𝑈𝐸)
// Replace the distance of this record with MAX_VALUE if select == 1
[[𝑛𝑒𝑤𝐷𝑖𝑠𝑡]] ← 𝐶𝑀𝑈𝑋([[𝑠𝑒𝑙𝑒𝑐𝑡]], [[𝑑𝑖𝑠𝑡]], [[𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒]])
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑗] ← ([[𝑎𝑡𝑡𝑟𝑖]], [[𝑛𝑒𝑤𝐷𝑖𝑠𝑡]])

end for
end for
return 𝑡𝑜𝑝𝐾
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Analysis

This chapter further analyses our protocol, using theoretical and practical analyses. First, in the the-
oretical analysis, we discuss the security of our protocol and the complexity. Finally, in the practical
analysis, our protocol is run on a cloud server to test the scalability of our protocol with respect to the
number of cores.

5.1. Theoretical Analysis
5.1.1. Security Analysis
To prove that our Privacy Preserving 𝑘-NNS protocol is secure, it is important to establish that the
underlying cryptographic primitive, TFHE, is secure under a certain set of parameters, by using Lemma
1 and 2. After we have established that the underlying cryptographic primitive is secure, we show that
our protocol is secure under a semi-honest client and server. To prove Theorem 1, we show that our
protocol holds under a simulation proof.

The hardness of the TFHE scheme, relies on the hardness of a torus based problems of Learning
With Errors (LWE) [11] and Generalized Learning With Error (GLWE) [15]. The hardness of both LWE
and GLWE are described in Lemma 1 and 2 respectively, for some security parameter 𝜆, where 𝑛 ∶=
𝑛(𝜆). 𝒳 ∶= 𝒳(𝜆), 𝑁 ∶= 𝑁(𝜆). 𝒳 ∶= 𝒳(𝜆) and 𝑘 = 𝑘(𝜆) [17]. Since ciphertexts are indistinguishable
from random noise under a sufficiently large 𝜆, TFHE is IND-CPA secure with 128 bits of security [75].

Lemma 1. (LWE problem over the torus). Let 𝑛 ∈ ℕ and let 𝑠 = (𝑠1, … , 𝑠𝑛)
$← ℬ𝑛 . Let also 𝒳 be an

error distribution over ℛ. It is computationally hard to distinguish the following distributions [17]:
𝒟0 = {(𝑎, 𝑟)|𝑎

$← 𝕋𝑛 , 𝑟 $← 𝕋}
and
𝒟1 = {(𝑎, 𝑟)|𝑎 = (𝑎1, … , 𝑎𝑛)

$← 𝕋𝑛 , 𝑟 = ∑𝑛𝑗=1 𝑠𝑗 ⋅ 𝑎𝑗 + 𝑒, 𝑒 ← 𝒳}.

Lemma 2. (GLWE problem over the torus). Let 𝑁, 𝑘 ∈ ℕ with 𝑁 a power of 2 and let and let 𝑠 =
(𝑠1, … , 𝑠𝑘)

$← ℬ𝑁[𝑋]𝑘 . Let also 𝒳 be an error distribution over ℛ𝑛[𝑋]. It is computationally hard to
distinguish the following distributions [17]:
𝒟0 = {(𝑎, 𝑟)|𝑎

$← 𝕋𝑁[𝑋]𝑘 , 𝑟
$← 𝕋𝑁[𝑋]}

and
𝒟1 = {(𝑎, 𝑟)|𝑎 = (𝑎1, … , 𝑎𝑘)

$← 𝕋𝑁[𝑋]𝑘 , 𝑟 = ∑
𝑘
𝑗=1 𝑠𝑗 ⋅ 𝑎𝑗 + 𝑒, 𝑒 ← 𝒳}.

We will now prove that our privacy preserving 𝑘-NNS protocol is secure under the bounded honest-
but-curious adversarial model, using a simulation proof. The proof holds for all three versions of our 𝑘-
NNS protocol, and proves Theorem 1. A simulation proves that and adversary can learn approximately
as much information from a ciphertext in the Real world, as if it had received nothing or random noise,
Ideal world.

To set up the simulation proof, we follow the construction from [63] and use Definitions 3 and 4 from
[50] to prove the security of our protocol under honest-but-curious adversaries. Let 𝜋 be a protocol
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which executes 𝑓 and View𝜋,𝑖(𝑥, 𝑦, 𝜆) the view of a party 𝑖, which executes 𝜋 on (𝑥, 𝑦), where 𝜆 is the
security parameter. The view of a part 𝑖, includes its inputs, randomness and all message received. In
our case, our protocol consists of two parties, the client and the server. The parties have the following
shared parameters:

• ℰ: IND-CPA secure encryption scheme,

• 𝜆: Security parameter,
• 𝑑: Number of attributes of a record in the database,
• 𝑏: Plaintext domain size,
• 𝑃𝑘: Public key,
• 𝑘: Number of items to return,
• 𝐶𝑘: Cloud server key.

Besides that, the client has private inputs:

• 𝑄 ∶ Query 𝑄 ∈ ℤ𝑑2𝑏 ,
• 𝑆𝑘: Secret key,

and outputs 𝑘 ID’s of records in the database: 𝑡𝑜𝑝𝐾 ∈ ℤ𝑘2𝑏 . Finally, the server has the following addi-
tional input:

• 𝐷: Database 𝐷 ∈ ℤ𝑛×𝑑2𝑏 ,

• 𝑛: Size of the database,
and has no output.

Definition 3. Let 𝑓 be a functionality such that 𝑓 ∶ {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where 𝑓 = (𝑓1, 𝑓2).
That is, for every pair of inputs 𝑥, 𝑦 ∈ {0, 1}𝑛, the output pair is a random variable (𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦))
ranging over pairs of strings. The first party (with input 𝑥) wishes to obtain 𝑓1(𝑥, 𝑦), and the second
party (with input 𝑦) wishes to obtain𝑓2(𝑥, 𝑦)
Definition 4. Let 𝑓 = (𝑓1, 𝑓2) be a functionality. We say that 𝜋 securely computes 𝑓 in the presence
of honest-but-curious adversary if there exist probabilistic polynomial-time algorithms 𝑆1 and 𝑆2 such
that:
{(𝒮1(1𝑛 , 𝑥, 𝑓1(𝑥, 𝑦)), 𝑓(𝑥, 𝑦))}𝑥,𝑦,𝑛

𝑐≡ {(view𝜋1 (𝑥, 𝑦, 𝑛), output𝜋(𝑥, 𝑦, 𝑛))}𝑥,𝑦,𝑛, and
{(𝒮2(1𝑛 , 𝑥, 𝑓2(𝑥, 𝑦)), 𝑓(𝑥, 𝑦))}𝑥,𝑦,𝑛

𝑐≡ {(view𝜋2 (𝑥, 𝑦, 𝑛), output𝜋(𝑥, 𝑦, 𝑛))}𝑥,𝑦,𝑛,
where 𝑥, 𝑦 ∈ {0, 1}∗ such that |𝑥| = |𝑦|, and 𝑛 ∈ ℕ.
Theorem 1. Assuming the hardness of torus based problems of LWE and GLWE, our 𝑘-NNS protocol
is secure, under a semi-honest client and server.

Proof. We construct a simulator 𝒮, when given the server’s inputs and outputs (1𝜆 , ℰ, 𝑏, 𝑑, 𝑘, 𝑛, 𝑆, 𝑡𝑜𝑝𝐾),
is computationally indistinguishable from a real execution of the protocol. The simulator performs the
following operations:

1. Generate a random query 𝑄′ ∈ ℤ𝑑2𝑏 , and encrypt it with the public key.
2. Execute the 𝑘-NNS protocol using 𝑄′.
3. The simulator outputs the result of the protocol, topK’ ∈ ℤ𝑘×𝑛𝑛 .

The output of the simulator in the Ideal scenario is 𝑆(… ) = ([[𝑄′]], [[𝑡𝑜𝑝𝐾′]]), which we will now prove
is indistinguishable from the view of the server in the Real scenario. The view of the server in the
Real scenario is 𝑣𝑖𝑒𝑤(𝒜) = ([[𝑄]], [[𝑡𝑜𝑝𝐾]]). Both the view of the simulator and the real scenario
are indistinguishable, since both the view of the simulator and server are generated by a IND-CPA
secure scheme ℰ. Therefore, we can conclude according to Definition 4 that 𝑆(… ) 𝑐≡ 𝑣𝑖𝑒𝑤(𝒜), thus
our protocol is secure against honest-but-curious adversaries.
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5.1.2. Complexity Analyses
To compare our protocol to other protocols, it is necessary to define the complexity of our protocol,
which we will define by giving the runtime complexity.

First, the runtime complexity is discussed expressed in the number of entries in the database, 𝑛,
the number of attributes each entry has, 𝑑, and 𝑘. As described in Chapter 4, the protocol consists of
three main steps: distance computation, top-k selection, distance replacement. An overview of all the
runtime complexities are given in Table 5.1.

The distance computation is equal for all three version of the protocol, as described in Chapter 4. To
compute the distance, it requires calculating the Manhattan distance for each record in the database.
Computing the Manhattan distance for one record, involves summing the absolute difference between
two values, giving a runtime complexity of 𝒪(𝑑). Thus, calculating the Manhattan distance 𝑛 times,
gives a runtime complexity of 𝒪(𝑛 ∗ 𝑑).

Next, the top-k selection runtime is also equal for all three version of the protocol, since the difference
between the protocols are a tradeoff between accuracy, utility and speed. To find the minimum value
of a list of values, we create a binary tree and calculate all possible branches of this tree. Requiring us
to calculate (𝑛2 +

𝑛
4 +

𝑛
8 +

𝑛
16 +…), 𝑚𝑖𝑛() functions, giving us a runtime complexity of 𝒪(𝑛). However,

since the protocol aims to find the 𝑘 smallest value, it performs the binary tree 𝑘 times, giving a runtime
complexity of 𝒪(𝑛 ∗ 𝑘).

After theminimum value was found, it is required to update theminimum value in the list of distances,
otherwise in the next iteration, the same value will be found. By iterating over the list of distances and
performing an equality check in combination with a CMUX gate, it is possible to update the values.
Now, since we iterate over the entire list and repeat 𝑘 − 1 times, it results in a runtime complexity of
𝒪(𝑛 ∗ 𝑘).

Finally, the total runtime complexity of all three protocols can be defined, by adding the runtime
complexities together. First, we perform the distance computation and after this, perform the top-k
selection with the distance updates, giving a runtime complexity of: 𝒪((𝑛 ∗ 𝑑) + (𝑛 ∗ 𝑘) + (𝑛 ∗ 𝑘)). This
can be simplified to: 𝒪((𝑛 ∗ 𝑑) + 2(𝑛 ∗ 𝑘)) → 𝒪(𝑛 ∗ (𝑑 + 𝑘)).

Table 5.1: Runtime complexities for the server for a given query for all three protocols.

Protocol ID Distance Mutex
Distance Computation 𝒪(𝑛 ∗ 𝑑) 𝒪(𝑛 ∗ 𝑑) 𝒪(𝑛 ∗ 𝑑)
Top-k Selection 𝒪(𝑛 ∗ 𝑘) 𝒪(𝑛 ∗ 𝑘) 𝒪(𝑛 ∗ 𝑘)
Update Distances 𝒪(𝑛 ∗ 𝑘) 𝒪(𝑛 ∗ 𝑘) 𝒪(𝑛 ∗ 𝑘)
Total Complexity 𝒪(𝑛 ∗ (𝑑 + 𝑘))) 𝒪(𝑛 ∗ (𝑑 + 𝑘))) 𝒪(𝑛 ∗ (𝑑 + 𝑘)))

5.2. Practical Analyses
To test the performance of our protocol, the three protocols will be tested again two commonly used
datasets, SIFT1M [39] and Deep1B [5]. First, the setup is discussed for the experiments, followed by
the results of the experiments.

5.2.1. Setup
Before the experiments are run, it is important to define the metrics such that we can assess the
performance of our protocols. Firstly, it is important to check the accuracy of the protocol against
a plaintext implementation. Accuracy will be divided into two sub-categories: ordered accuracy and
unordered accuracy. Order accuracy will be defined as the number of IDs correct in the right place,
divided by the total number requested, 𝑘. Unordered accuracy will be determined by the number of
IDs correct in any order, divided by the total number requested, 𝑘. Besides that, it is important to
quantify the execution time of our protocols, and will therefore time how long it takes to execute a
query. The execution time is split up into three phases: distance computation, top-k selection and
updating distances.

Secondly, the parameters used impact the performance of our protocol and therefore an overview
of all parameters used are shown in Table 5.2. We use 𝑘 = 50, such that we can test the accuracy
of Algorithm 5. Unfortunately, because 𝑘 = 50, the experiments are computationally expensive and
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therefore can only perform one query per Algorithm on a given data set, since access computational
resources are limited. In our experiments, the plaintext domain will consist of 16 bits, using 8 blocks of
2 bit shortints, since reducing the number of bits, also reduces the number of operations and bootstrap-
ping needed. The plaintext size of 16 bits was chosen, such that we can guarantee that the distance
between any given query does not overflow, while keeping the plaintext size small enough to prevent
expensive computations.

The SIFT1M and Deep1B database consist of a million and a billion entries respectively, which is
unfeasible to run in this study. Therefore, a subset of these datasets are used, which consist both of
the first 1000 entries, having 128 and 96 attributes respectively. Together with the dataset, example
queries are given, for which the first entry is used in the experiments. The values in the SIFT1M dataset
are already integers between 0 and 255 and thus requires no normalizing, since we can guarantee that
our underlying plaintext does not overflow, since 128 ∗ 255 < 216. However, the values in the Deep1B
dataset are floating point numbers between −1 and 1, which requires normalizing before use. Our
protocol only considers positive integers, thus first the data set is incremented by one, afterwards
divided 2, such that the values now lie between 0 and 1. In order to assure the underlying plaintext
does not overflow, the scaling factor should be smaller than: 2

16

96 . Using a scaling factor of 9 bits and
rounding down, 29 = 512, the highest accuracy is achieved, while assuring correctness. Therefore, all
values of the Deep1B dataset are integers between 0 and 512.

All experiments were run on Amazon Computing Services (AWS) [2] EC2 instances. Specifically,
the c6ax24large instances, having 96 vCPUs and 192 GiB of random access memory.

Table 5.2

Parameter shortint_size n_blocks k num_of_queries
Value 2M2B 8 50 1

5.2.2. Results
The results for the subsets of the SIFT1M and Deep1B data set in shown in Tables 5.3 and Table 5.4.
The results between the SIFT1M andDeep1B data sets are very similar in accuracy and runtime, except
for the distance computation, which depends on the number of entries 𝑛, and the number of attributes
𝑑. The difference between distance computation time is caused by the large number of attributes in
the SIFT1M over the Deep1B data set, 128 over 96. Note that the runtime for each protocol for a given
data set are the same, since only the top-k selection part of the protocol differentiates. Besides that,
the runtimes of the SIFT1M and the Deep1B data sets are similar, which is explained by the fact that
the top-k selection part depends on the number of entries 𝑛 and 𝑘, which are 𝑛 = 1000 and 𝑘 = 50
for both data sets. It is also noteworthy to see that the runtime of the top-k selection step increases
linearly with 𝑘, see Figure 5.2 and Figure 5.1.

The ID protocol performs as expected, achieving 100% accuracy compared to the plaintext imple-
mentation also using the Manhatten distance, as well as having a similar or lower runtime compared
to the other two protocols. However, as discussed in Section 4, the ID protocol requires the plaintext
size to be able to support the number of entries in the database. Increasing the plaintext size, results
in extra computation in all steps of the protocol.

Instead of using the ID’s to replace the minimum value in the list of distance, it is possible to match
on the distances, for which the accuracy and runtime is also shown in Table 5.3. Using the distance
as a matching value has a similar runtime as using the ID value, but decreases the accuracy of the
protocol. The accuracy decrease depends on the number of entries in the database that have the
same distance to the query, as well as the size of 𝑘 and the number of entries in the database itself,
since the possibility that two entries have the same distance increases as the database size increases.
The accuracy decrease for the first 1000 entries in the SIFT1M database as 𝑘 increases, are shown in
Figure 5.3, which shows that after 𝑘 = 20, the accuracy starts to decline. The accuracy for the Deep1B
data set shows similar results, where the accuracy decreases after 𝑘 = 11 5.4.

By using theMutex protocol, it is possible to have the same accuracy as the ID protocol, while limiting
the plaintext size, by sacrificing parallelization and extra overhead. The Mutex protocol requires that
only one thread is allowed to obtain the lock, resulting in other threads doing nothing. Besides that, the
protocol has extra overhead due to the need to hold an extra bit to determine if the distance has already
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been updated. However, due to an implementation bug in the TFHE library which caused deadlocks,
we were unable to parallelize the step where the distances are updated, resulting in a significantly
larger runtime. Therefore, newer versions of the TFHE library can significantly improve the run time
of the protocol. In order to save computation resource, the experiment was stopped after 8 hours of
running. Since our protocol scales linearly with 𝑘, the graph is extrapolated using the average runtime.

Table 5.3: Runtime and accuracy for the first 1000 entries in the SIFT1M dataset and 𝑘 = 50.

Protocol: ID Distance Mutex
Ordered accuracy 100% 40% 100%
Non-ordered accuracy 100% 92% 100%
Runtime distance computation 124 mins 124 mins 124 mins
Runtime top-k selection 167 mins 165 mins 23.48 hours*
Total runtime 291 mins 279 mins 25.55 hours*

Table 5.4: Runtime and accuracy for the first 1000 entries in the Deep1B dataset and 𝑘 = 50.

Protocol: ID Distance Mutex
Ordered accuracy 100% 22% 100%
Non-ordered accuracy 100% 86% 100%
Runtime distance computation 92 mins 92 mins 92 mins
Runtime top-k selection 165 mins 166 mins 23.62 hours*
Total runtime 257 mins 258 mins 25.16 hours*

Figure 5.1: Runtime of the first 1000 entries of the Deep1B data set, up to k=50
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Figure 5.2: Runtime of the first 1000 entries of the SIFT1M data set, up to k=50

Figure 5.3: Accuracy graph of the first 1000 entries of the SIFT1M data set, up to k=50
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Figure 5.4: Accuracy graph of the first 1000 entries of the Deep1B data set, up to k=50





6
Discussion & Future Work

This chapter discusses our work and compares it to other works, as well as answering the research
questions brought up in Chapter 1. Besides that, limitations and future work of our research are dis-
cussed, followed by concluding remarks.

6.1. Discussion
6.1.1. Research Questions
To answer our main research question, ”How can we perform accurate Privacy Preserving 𝑘-nearest
neighbour search in outsourced environments using one cloud server and no interaction?”, our four
sub-questions will be used to answer our main research question.

1. How can we guarantee the privacy of the data and the query in outsourced environments, while still
maintaining accurate results?

Our protocol is able to guarantee the privacy of the data and the query by making use of Fully Homo-
morphic Encryption (FHE), which enables to perform any arbitrary function by performing operations on
the ciphertext. By encrypting the data and the query before outsourcing it, it is impossible for the cloud
server or any third-parties to learn information about the underlying data without the private key used
to decrypt the data. Since FHE makes it possible to perform any arbitrary function, it is possible to gain
results similar to plaintext implementations. To guarantee that the results are accurate, the plaintext
size for the protocol should be chosen such that it is larger than the sum of the absolute difference
between a record and a query. When working with floating point numbers, it is possible to gain the
desired accuracy by increasing the plaintext size and scaling the values.

2. How can we construct 𝑘-NNS to use only one cloud server?

By using FHE it is possible to perform any arbitrary function by a single party. By sharing a fully
homomorphic encrypted database with the cloud service provider, together with the public key, for
encrypting, and the server key for performing operations, it allows a client to send queries. The queries
should be fully homomorphic encrypted as well, and the results can be decrypted by the client using the
private key. Therefore, using the FHE approach, no other parties need to be involved in the protocol.

3. How can we construct 𝑘-NNS such that the client is not involved in the calculation?

Again, using FHE the client does not need to be involved in the computation of the protocol, which
allows the client to be ’offline’, while the cloud service provider does all the calculations. The client is
only responsible for sending an encrypted query and decrypting the result.

4. How can we make use of the resources available in outsourced environments
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Cloud service providers offer services which allows organizations to rent powerful server instances
with more memory and cores than regular computers, without the need for any expertise in cloud
computing. Our protocol focuses on making the most use of the large number of cores available in
cloud environments. Although TFHE supports parallelization of individual operations, we have shown
that parallelizing over larger parts of the computation is significantly faster. The performs difference
when parallelizing is possible is clearly visible in Table 5.3 and 5.4 in Chapter 5. When comparing the
ID and Distance protocol with the Mutex protocol, where it was not possible to parallelize when updating
the distances, only individual operations, the runtime increases from hours to a day.

6.1.2. Comparison to Related Work
Our work is the first Privacy Preserving 𝑘-Nearest Neighbour Search protocol to our knowledge, which
does not involve non-colluding servers or involve the client in the computation. Our protocol shows it
is possible to fully outsource the computation of the 𝑘-NNS algorithm to a cloud service provider, while
not revealing anything about the underlying ciphertexts.

Compared to the trivial implementation, FHE sorting using bitonic sort or odd-even sort and returning
the first 𝑘 entries, our protocol has a better runtime complexity. The distance computation runtime
complexity is the same for sorting and our work. However, recall from Table 4.5, that the best FHE
sorting has a runtime complexity of 𝒪(𝑛(log2(𝑛))2), while all three of our protocols have a runtime
complexity of 𝒪(𝑛 ∗ 𝑘) for top-k selection. Therefore, our work outperforms the best known sorting
algorithm when 𝑛 ∗ 𝑘 < 𝑛(log2(𝑛))2).

One of the earliest works done on Privacy Preserving 𝑘-Nearest Neighbour Search in outsourced
environments, was done by Eldmehdwi et al. [23]. Eldmehdwi et al. proposed a solution where the
client is involved with the computation and was able to execute a query on their most secure protocol
with 𝑘 = 25, 𝑑 = 6 and 𝑛 = 2000 in roughly 680 minutes, unparrallalized. Although the number of
entries in the experiments of Eldmehdwi et al. is twice as large as in our experiments, the size of 𝑑
is significantly smaller, on which their protocol scales linearly with. The implementation of Eldmehdwi
et al. could be parrallelized, however this would mean that the client should also have access to
parallelization and thus increasing the computational resources for the client. In our protocol, we are
able to perform a query with 𝑘 = 25, 𝑑 = 96 and 𝑚 = 1000 in roughly 190 minutes as seen in Figure
5.1 using 96 threads, in the standalone server scenario.

Further research on the protocol by Eldmehdwi et al. was done by Kim et al. [43], which were able
to speed up the protocol up to 24 times, which is only possible when 𝑛 >> 2𝑘 due to the use of k-d
trees. However, the protocol by Kim et al. still required the client to help in the computation, requiring
computational and bandwidth resources.

The work by Kesarwani et al. [42] does not require the client to be online during the computation,
but rather make use of non-colluding servers. By assuming that two servers are not malicious and do
not deviate from the protocol or share any other information, Kesarwani et al. are able to speed up
computation in comparison to our work. Kesarwani et al. perform a query with 𝑘 = 20, 𝑑 = 32 and
𝑛 = 858 in under 7 minutes, while our work requires roughly 175 minutes with 𝑘 = 20, 𝑑 = 96 and
𝑛 = 1000. Although the work by Kesarwani et al. is significantly faster, it does require non-colluding
servers which our work does not require.

Chen et al. [14] proposed SANNS, a secure approximate nearest neighbour search protocol, which
was one of the first works to perform Privacy Preserving 𝑘-NNS on large data sets such as SIFT1M
and Deep1B in seconds. Chen et al. were able to retrieve the 𝑘 = 10 closest values to a query for
the SIFT1M data set with 𝑛 = 1.000.000 and 𝑑 = 128 on their ”slow” network taking 139 seconds
and 4.51 GB of bandwidth for the linear implementation, while their clustered implementation took
59.7 seconds and 1.77 GB of bandwidth with a minimum of 90% accuracy. However, the protocol
requires the client help in the computation, as well outsourcing the dataset in plaintext. Besides that, the
clustering protocol requires to first train a clustering model before it can be used. Although our protocol
is significantly slower, it does not require training a clustering model, but only requires encrypting the
initial database and sending it to the server and the client is not required to help during the protocol.

6.2. Limitations
A limitation that was briefly discussed, is that the size of the data set used in the ID protocol is limited
by the size of the plaintext domain chosen. Although the Distance and Mutex protocol are offered as
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Table 6.1: Overview of related work, compared to our solution

Work Deterministic Accurate Standalone Server 𝑘-NNS Approach
Anonymization [68][51][48] 6 6 3 3 Anonymization
Vatsalan and Christen [72] 6 6 3 3 Bloom filter

Huang et al. [31] 3 6 3 3 LSH
Eldmehdwi et al [23] 3 3 6 3 Paillier

Kim et al. [43] 3 3 6 3 Paillier
Kesarwani et al. [43] 3 3 6 3 BGV
Zheng et al. [77] ? 6 6 3 MASPE
Chen et al. [14] 3 6 6 3 Garbled Circuits
Shaul et al. [63] 3 6 3 6 BGV

Jäschke and Armknecht [38] 3 3/6 3 6 TFHE
Our work 3 3 3 3 TFHE

alternatives, they do have their disadvantages, such as sacrificing accuracy or parallelization. The
ID protocol can be used in any circumstance, by incrementing the plaintext size used, but doing so
increases the computation time.

Besides that, our protocol only supports integers and not any other types such as strings or floats.
Floats can be converted into integers by scaling, as done by the Deep1B data set in our experiments.
However, doing so loses some accuracy and requires a larger plaintext size to achieve a higher accu-
racy.

Another limitation is the inability to detect overflows when computing the distances, since the server
cannot distinguish between an overflowed ciphertext and a correct one. When the distance overflows,
it is possible that the value that is most far away from the query, now is closest to the query and thus
an incorrect value is obtained. A solution to solve overflows, is either use a sufficiently large plaintext
size, or add additional circuits such that the client is able to see if the results are correct and did not
overflow.

Next, in the current implementation it is impossible to parallelize the Mutex protocol due to the
protocol deadlocking. The protocol likely deadlocked because of work stealing in the parallelization
library used in the TFHE library used. Work stealing allows threads to steal work from other threads if
that thread is idle. When the thread who has the lock starts computing, the library detects that other
threads are idle and uses the idle threads to compute an operation. However, the current task is now
assigned to the idle thread which is waiting for the lock, which the later scheduled lock has and therefore
resulting in a deadlock.

On top of that, it might be possible for a malicious client to recover parts of the data set by sending
repeated queries. By sending repeated target queries it has been shown that for low-dimensional data
it is possible to recover parts of the data sets [45]. Therefore, it might be necessary to limit the number
of queries or introduce some noise to the results to prevent leakage.

Finally, speeding up a Privacy Preserving 𝑘-NNS does require a significant amount of computing
power for a single query, which is not cheap when renting from a cloud service provider. In our experi-
ments, the c6ax24large EC2 instances from AWS were used, having 96 vCPUs, costing $4.6 per hour.
So performing one query on a subset of the SIFT1M data set requires around 290 minutes, which costs
around $22.23.

6.3. Future Work
During the duration of this research, a new version of the TFHE library, v0.3, has been released, which
includes new features which can speed up the computation of our protocol. Changes include faster
scalar multiplications, additions, subtractions, as well as a build in CMUX operation and parrallelizable
bootstrapping. Although the authors claim faster operations, further research is necessary to determine
the impact on our work.

Besides that, our research used the Manhatten distance to use as a distance metric, however
numerous other distance metrics exists and are in use as well. Therefore, further research should be
done on how to efficiently implement other distance metrics as well.
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TFHEwas chosen for our protocol due to fast non-linear operations, such as comparisons, which are
necessary for top-k selection. Although TFHE is fast for non-linear operations, additions and subtrac-
tions are slower than other fully homomorphic encryption schemes. The distance computation runtime
shown in Table 5.4 and 5.3 clearly shows that computing distances takes more than a third of the total
runtime, which will only increase for a lower 𝑘 or larger datasets. Recently, advancements in other
Fully Homomorphic Encryption schemes, such as BGV, allows performing only slightly slower com-
parisons than TFHE [32] Therefore, further research in other FHE schemes with fast comparisons and
fast arithmetic operations, such as additions and multiplications, can lead to significant improvements
of our protocol.

Finally, other non-cryptographic approaches such as Locality Sensitive Hashing (LSH) shows promise
in performing Privacy Preserving 𝑘-NNS. LSH is especially effective when working with high dimen-
sional data, where our approach scales linearly the size of the dimensions.

6.4. Concluding Remarks
In conclusion, our work shows that it is possible with advances in fully homomorphic encryption, to per-
form Privacy Preserving 𝑘-NNS in the standalone server scenario. Some works focused on assump-
tions such as that the client is required to have access to computational and bandwidth resources,
and help in the computation. Other works used the assumption of non-colluding servers, which does
not require the client to interact in the protocol, but uses two non-malicious servers to perform all the
computation. Although our work is a multitude of factors slower, our solution does not require any
precomputations, interactions or non-colluding assumptions.

We proposed three different protocols which can be used in different scenarios, depending on the
size of the database, accuracy and parallelization possible. A subset of the SIFT1M and the Deep1B
data sets were used to test the performance of our protocol and showed promising results, being able
to compute the top 50 in hours using AWS EC2 instances.

Our protocol hopes to address the discrepancy between having privacy and utility when outsourcing
computational tasks to cloud service providers. By using FHE we were able to hide the underlying data,
while still gaining accurate results, at the cost of a longer computation time. However, data sets more
than a million entries seems unfeasible to use, due to the time and costs of cloud service providers.
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