
Correcting Non Positive Definite Correlation Matrices

Stef Marée

BSc Thesis Applied Mathematics, TU Delft

s.c.maree@student.tudelft.nl

June 15, 2012

To my little sisters.

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Literature . 5
1.3 Background Knowledge . 6
1.4 Problem Statement . 7

2 Measure Of Distance 7

3 Checking for Positive Definiteness 8
3.1 Eigenvalue Criteria . 8
3.2 Cholesky Decomposition . 10

4 Correcting Non Positive Definite Matrices 14
4.1 Iterative Spectral Method . 14

4.1.1 Dykstra’s Correction . 16
4.2 Scaled Spectral Method . 18
4.3 Gradient Updating Method . 21

4.3.1 Input Matrix: Cholesky Form . 24
4.3.2 Input Matrix: Scaled Form . 25
4.3.3 Input Matrix: Scaled Spectral Form . 26
4.3.4 Stopping Criteria . 26
4.3.5 Numerical Calibration . 27

4.4 Adjusted Gradient Updating Method . 29

5 Comparing Methods 32

6 Weighting Correlations 34
6.1 Weighting the Iterative Spectral Method . 34

6.1.1 Choosing Weights . 34
6.2 Weighting the Scaled Spectral Method . 36

7 Other Methods 38
7.1 Hypersphere Method . 38

7.1.1 Results for the Hypersphere method . 42
7.2 Vines Method . 42

7.2.1 Results for the Vines Method . 44
7.2.2 Weighting Correlations with the Vines Method 44

7.3 Quadratically Convergent Newton Method . 45

8 Conclusion 46

9 Recommendations and Discussion 47

10 References 48

3

11 Matlab-files 49
11.1 Test Correlation . 49
11.2 Generate Invalid Correlation Matrix . 50
11.3 Cholesky decomposition . 50
11.4 Iterative Spectral Method . 51
11.5 Alternating Projections Method . 52
11.6 Scaled Spectral Decomposition . 53
11.7 Gradient Updating Method, Starting Scaled . 54
11.8 Gradient Updating Method, Starting Cholesky 55
11.9 Adjusted Gradient Updating Method, Starting Scaled 57
11.10Adjusted Gradient Updating Method, Starting Cholesky 59
11.11Iterative Spectral Weighted . 60
11.12Scaled Spectral Weighted . 62
11.13Hypersphere Decomposition . 63
11.14Positive Definite Check by Vines . 63
11.15Vines Method . 65
11.16Vines Method, Weighted . 66

4

1 Introduction

1.1 Motivation

This report is written as a part of my bachelor internship in the Derivative, Research and
Validation team of Rabobank International.

In finance, the movements of assets, like stocks or interest rates are often modelled by the
Wiener process, see for example [18]. In the case of a financial derivative on two or more
assets, the correlation between the underlying is an important driver for this process and should
be taken into account in the modeling. By writing the correlations in matrix form, Cholesky
decomposition is applied to this matrix to correlate the Wiener process linearly.

However, Cholesky decomposition prerequisites that the correlation matrix is positive definite,
see Theorem 4. Unfortunately, this is not always the case since correlations are not directly
available in the market, but have to estimated from for example market data. If there is not
enough market data available, the estimated correlation matrix could be non positive definite.
In this report, we consider di↵erent algorithms of correcting these invalid correlation matrices.

By correcting invalid correlation matrices, we mean we are looking for the nearest valid
correlation matrix given an invalid correlation matrix. As a measure of nearness we use the
Frobenius norm.

At Rabobank International, for a specific application, time series of seven years of weekly
market data have to be analyzed. This means that 364 correlation matrices are processed, of
which all of them have to be checked for positive definiteness. Subsequently, we have to correct

all non positive definite correlation matrices. Since a lot of these checks for positive definiteness
have to be done, we look for a fast and reliable method to do this.

The target of this report is to derive an algorithm that computes the nearest valid correlation
matrix as fast as possible. However, it is also important that the resulting valid matrix is close
to the original invalid matrix.

An invalid correlation matrix contains estimated correlations. While estimating these corre-
lations, one has more confidence in the value of some correlation than is has in others. Therefore,
we also consider a weighted distance measure.

All of the methods we discuss in this report are implemented in Matlab, and the programs
are included in the end of the report. All tests are performed in Matlab 7.11.0 (R2010b) on a
Windows 7 64-Bit pc with a 3.07 GHz processor and 4GB of memory.

1.2 Literature

A lot of research is done on the subject of adjusting invalid correlation matrices. See for example
[16, 20, 10]. This is most likely due to the fact that there is no analytic or exact solution for
finding the nearest correlation matrix [10].

In 1999 Rebonato and Jäckel published the article titled: “The most general methodology to
create a valid correlation matrix for risk management and option pricing purposes.” [16], which
mentions two algorithms of correcting correlation matrices. The first one is the Hypersphere
Decomposition method. This method uses a parameterization in terms of hypersphere coordi-
nates, which guarantee that the resulting matrix will be positive definiteness with unit diagonal.
The other method Rebonato and Jäckel introduce is the Spectral Decomposition method. This
method is based on the property that all the eigenvalues of a positive definite matrix are positive.
After decomposing the correlation matrix in its eigenvalues and eigenvectors, they replace the
negative eigenvalues by a small positive value and recompose it back together. However, this
destroys the unit diagonal. The clever solution proposed by Rebonato and Jäckel is to scale the

5

matrix back in a way it has unit diagonal again. Improvements on the methods of Rebonato and
Jäckel are made in [17, 15].

Two years later, Higham published the Alternating Projections method [10]. Given the subset
of all positive definite matrices and the subset of all matrices with unit diagonal, the Alternating
Projections method iterates over both subsets until it reaches the intersection of it.

Zhang and Yin proposed a gradient updating scheme for finding the nearest correlation matrix
[20]. Also Qi and Sun succeeded in calculating the dual of the nearness problem, and this resulted
in a quadratically convergent quasi-Newton algorithm [14].

Kurowicka and Cooke [12] used partial correlations and vines to find the nearest correlation
matrix by only changing those correlations that destroy the positive definiteness of the matrix.

1.3 Background Knowledge

In this section the necessary background knowledge is given. Consider a portfolio containing n

assets, denoted by the random variables X1, . . . , Xn. Let i, j 2 {1, 2, . . . , n}, then denote the
expected value of Xi by E(Xi) = µi and the variance of Xi by Var(Xi) = �

2
i . We now define the

correlation between a pair Xi and Xj .

Definition 1 (Pearson Correlation). The correlation between two random variables Xi and Xj

is given by

⇢i,j =
E [(Xi � µi)(Xj � µj)]

�i�j
,

and is defined only if both �i and �j are finite and nonzero.

Bounds for the correlations can be found using the Cauchy-Schwarz inequality [3, p. 30] Note
that �2

i = E[(Xi � µi)2], then

|⇢i,j |
2 =

|E[(Xi � µi)(Xj � µj)]|
2

�

2
i �

2
j



E[(Xi � µi)2]E[(Xj � µj)2]

�

2
i �

2
j

= 1.

From the above equation it follows that correlations take values in the interval [�1, 1]. It is clear
from the definition that correlations are independent of order, ⇢i,j = ⇢j,i, and that the correlation
between a random variable and itself is equal to one.

For convenience, we arrange the correlations into matrix form. This matrix is what we call a
correlation matrix and is precisely defined in the next definition.

Definition 2 (Correlation Matrix). The correlation matrix of n random variables X1, . . . , Xn

is the n⇥ n matrix whose (i, j)th entry is ⇢i,j.

From the properties of correlation we derived previously, we see that a correlation matrix is
symmetric (⇢i,j = ⇢j,i), has unit diagonal (⇢i,i = 1) and all of its entries are contained in the
interval [�1, 1].

Now consider again the portfolio containing the n assets X1, . . . , Xn. Let ai 2 R denote the
amount of Xi in the portfolio. Note that ai can be negative due to for example short selling.

Then the variance of the portfolio is given by

0 < Var

nX

i=1

aiXi

!
=

nX

i,j=1

aiaj�i�j⇢i,j . (1.1)

6

We can write this down as a vector matrix product by letting v be the column vector whose i

th

entry is �iai and C the correlation matrix of X1, . . . , Xn. Then we can reformulate Equation
(1.1) to

0 <

nX

i,j=1

aiaj�i�j⇢i,j = vT
Cv.

A matrix which satisfies the above inequality for every vector v unequal to zero is called
positive definite.

Definition 3 (Positive Definite Matrix). A matrix A 2 Rn⇥n
is called positive definite if vTAv >

0 for all vectors v 2 Rn
\{0}.

We distinguish correlation matrices which are valid and invalid in the following definition.

Definition 4 (Valid and Invalid Correlation Matrices). A valid correlation matrix is a sym-

metric positive definite matrix with unit diagonal and entries in [-1,1]. An invalid correlation

matrix is a symmetric matrix with unit diagonal and entries in [-1,1], but which is non positive

definite.

1.4 Problem Statement

Now we have recalled the necessary background knowledge, we can formulate our research ques-
tion.

Problem 1 (Nearness Problem). Given an invalid correlation matrix C, we want to find a valid

correlation matrix Ĉ such that the distance ||C � Ĉ|| is minimal in a certain matrix norm.

In this report we look for algorithms that solve Problem 1. This algorithm has to be fast
and the resulting matrix Ĉ has to be close to C. The speed of an algorithm is measured by the
computational time, i.e. the time it takes to find the matrix Ĉ. The accuracy or distance of an
algorithm is expressed by the distance between the resulting matrix Ĉ and C. We discuss in the
next section which matrix norm is most appropriate for measuring this distance.

2 Measure Of Distance

As in Problem 1, let C be an invalid n⇥n correlation matrix, and Ĉ a valid correlation matrix.
Then we want the distance

||C � Ĉ||,

to be as small as possible in a certain matrix norm. Di↵erent norms can be used, as discussed
in [9]. We discuss the most common norms and mention their advantages and disadvantages.

Consider p-norms, which are defined for a real number 1  p  1 and a vector x 2 Rn by

||A||p = max
|x|p=1

||Ax||p,

where |x|p is the vector norm given by

|x|p =

nX

i=1

x

p
i

!1/p

.

In this report, we consider the length of a vector in the p = 2 vector norm.

7

The task of computing a matrix p-norm is di�cult for p > 1 since it is a non linear optimization
problem constrained by |x|p = 1. So we look for norms which are easier to evaluate.

The matrix p-norm with p = 1 is given by

||A||1 = max
j

nX

i=1

|ai,j |.

The p-norm for p =1 is defined similar but per row, ||A||1 = maxi
Pn

j=1 |ai,j |.

The p-norms for p = 1 and p =1 use a maximum function and are therefore non-continuous
functions. Also, for these norms only absolute di↵erence of the row that is most changed is
measured, but not the di↵erence of all the matrix entries.

The Frobenius norm, sometimes also called the Euclidean norm, of a matrix A with entries
ai,j for i, j = 1, 2, . . . , n, is defined by

||A||F =

vuut
nX

i,j=1

|ai,j |
2
. (2.1)

The Frobenius norm is numerically easy to compute and therefore of interest to be used as
measure of distance in Problem 1. Also, the Frobenius norm measures the distance per matrix
entry for all of the entries. This is exactly what we want to accomplish in Problem 1, since we
want to make as few adjustments to the estimated correlations as possible.

In Matlab, the Frobenius norm from Equation (2.1) is given by the command norm(A,’fro’).

3 Checking for Positive Definiteness

Definition 3 states whether a matrix is positive definite or not. It is however cumbersome to
implement this definition numerically, since it is impossible to verify the positive definite property
for all vectors v 2 Rn (in finite time). Therefore, we look for equivalences of Definition 3.

Determining whether a symmetric matrix is positive definite can be done by looking at its
eigenvalues. We prove that a real symmetric matrix is positive definite if and only if all of its
eigenvalues are positive.

3.1 Eigenvalue Criteria

Let us recall the definition of eigenvalues.

Definition 5 (Eigenvalues). Let A be an n⇥ n matrix. Then, every scalar �i which solves

Asi = �isi, (3.1)

is called an eigenvalue of A corresponding to the eigenvector si 2 Rn
\{0}. The eigenspace of A

is given by de span (i.e. all linear combinations) of the eigenvectors si.

Eigenvalues � of matrix A can be found by solving the equation1

det(A� �I) = 0,

where I is the n⇥ n identity matrix, containing ones on the diagonal and zeros everywhere else.
The eigenvectors can be found by substituting the eigenvalues � in Equation (3.1).

1This is derived from the fact that As = �s can be written as (A� I�)s = 0 for s 6= 0. So (A� I�) is singular,
and has therefore a determinant equal to zero.

8

The next theorem is a general result from the linear algebra, and guarantees that the eigen-
values � exist for (invalid) correlation matrices.

Theorem 1 (Spectral Theorem). Any real symmetric n⇥ n matrix A can be written as

A = SLS

T
,

where L is a diagonal matrix containing the eigenvalues �i 2 R for i = 1, 2, . . . , n of A and the

columns of S are the eigenvectors of A, in the same order as the corresponding eigenvalues in

such way that S is orthogonal

2
. This is called the Spectral decomposition of A.

Proof. This is a well known result in the linear algebra. The proof and more background reading
on this topic can be found in [3, p. 354] or any linear algebra book.

In Matlab, the spectral decomposition of a matrix A in the orthogonal matrix S and the
matrix L containing the eigenvalues on the diagonal such that A = SLS

T is given by [S,L] =

eig(A). We illustrate Theorem 1 with an example.

Example 3.1 (Spectral Decomposition). Let

C =

0

BB@

1 0.9 0.7

0.9 1 0.3

0.7 0.3 1

1

CCA , (3.2)

then the eigenvalues of C are �1 = �0.007, �2 = 0.711 and �3 = 2.297. The corresponding
eigenvectors are

s1 =

0

BB@

0.748

�0.563

�0.352

1

CCA , s2 =

0

BB@

0.074

0.597

�0.799

1

CCA and s3 =

0

BB@

0.660

0.571

0.488

1

CCA .

Note that length of all eigenvectors is one and sTi sj = 0 for i 6= j. We set the eigenvectors as
columns of S and retrieve the decomposition C = SLS

T given by

S =

0

BB@

0.748 0.074 0.660

�0.563 0.597 0.571

�0.352 �0.799 0.488

1

CCA and L =

0

BB@

�0.007 0 0

0 0.711 0

0 0 2.297

1

CCA . (3.3)

4

Let C be an (invalid) correlation matrix. Since it is symmetric, we can decompose it in its
eigenvalues and eigenvectors

C = SLS

T
,

using Spectral Theorem 1. Then L is a diagonal matrix with the eigenvalues �i for i = 1, 2, . . . , n
on the diagonal and S the orthogonal matrix with the corresponding eigenvectors si as columns.

2Matrix A is orthogonal if AAT = I. This is equal to saying for all columns vi of A that vT
i vi = 1 and

vT
i vj = 0 for i 6= j.

9

Since the span of all eigenvectors si is Rn, i.e. we can write any vector x 2 Rn as linear
combination as

x =
nX

i=1

cisi,

with ci a scalar. Then according to the definition of eigenvalues, Equation (3.1), we get

Cx = C

nX

i=1

cisi

!
=

nX

i=1

ciCsi =
nX

i=1

ci�isi,

and if we multiply this on the left side with xT , we get

xT
Cx = xT

nX

i=1

ci�isi =
nX

i=1

c

2
i�is

T
i si.

Where the last equality follows from the fact that S is orthogonal, which implies sTi sj = 0 for
i 6= j. Also, from the orthogonality of S follows that sTi si = 1, so

xT
Cx =

nX

i=1

c

2
i�i. (3.4)

Now note that c

2
i is always positive since it it squared. Therefore the expression on the right

hand side of Equation (3.4) is positive for any choice of ci if and only if all the �i are positive.
Let us summarize this result into a theorem.

Theorem 2 (Eigenvalue criteria). A symmetric matrix is positive definite if and only if all of

its eigenvalues are positive.

Proof. The proof follows from the above reasoning. More background reading on the relation
between eigenvalues and positive definiteness can be done in for example [3, Chapter 8].

The calculation of eigenvalues for an n⇥n matrix requires that an n-dimensional polynomial
is solved. This cannot be done exactly, so the eigenvalues are estimated. This results however
into numerical errors. Moreover, if an invalid correlation matrix has t non positive eigenvalues,
then the nearest correlation matrix will have at least t zero eigenvalues [10, Theorem 2.5]. If
numerical errors such as round-o↵ errors occur when calculating an eigenvalue close to zero, we
could conclude incorrectly that a matrix is non positive definite.

3.2 Cholesky Decomposition

The reason we need the estimated correlation matrix to be positive definite, is that the Cholesky
decomposition is applied to it. This Cholesky decomposition fails when the matrix is non positive
definite, which we prove in Theorem 4. We first formulate another criterion for determining
whether a symmetric matrix is positive definite. Then we define the Cholesky decomposition of
a symmetric matrix and use it to determine if a matrix is positive definite.

Theorem 3. Let A be an n ⇥ n symmetric matrix. Then A is positive definite if and only if

there exists a matrix B 2 Rn⇥n
\{0} such that

A = BB

T
.

10

Proof. Let A be a symmetric positive definite matrix. Then, according to Theorem 1 it can be
decomposed as

A = SLS

T
, (3.5)

where L is a diagonal matrix containing the eigenvalues �i for i = 1, 2, . . . , n of A, and S an
orthogonal matrix with as columns the eigenvectors si of A. A is assumed to be positive definite,
so it follows from Theorem 2 that all �i > 0. Therefore we can take the square roots of �i. Let
p

L be the diagonal matrix with
p

�i on the diagonal. Note that L =
p

L

p

L. Then we can write
Equation (3.5) as

A = S

p

L

p

LS

T = S

p

L

⇣
S

p

L

⌘T
.

Let B = S

p

L and the result follows immediately.
To prove the su�ciency, let B 2 Rn⇥n and v 2 Rn

\{0}. Let A = BB

T , then

vT
Av = vT

BB

Tv = (BTv)T (BTv) = |B

Tv|2 > 0. (3.6)

Now, consider again an estimated correlation matrix C. If we can find a matrix B such
that C = BB

T , it is positive definite by Theorem 3. In the proof above is shown that if C is
positive definite, this matrix B can be found using Spectral Theorem 1. Since it is rather slow
to compute all eigenvalues and eigenvectors of a matrix, we use the Cholesky decomposition to
find such matrix.

Theorem 4 (Cholesky Decomposition). If A is a symmetric positive definite matrix, then A

can be decomposed as

A = MM

T
,

where M is a unique lower triangular matrix with strictly positive diagonal entries. We call M

the Cholesky factor of A.

We derive an algorithm to find the lower diagonal matrix M from Theorem 4, such that
A = MM

T for a positive definite n⇥ n matrix A. Partition A and M as the block matrices

A =

a1,1 aT1

a1 A1

!
and M =

m1,1 0

m1 M1

!
, (3.7)

where a1,1 is the upper left entry of A, a1 2 R(n�1) and A1 an (n � 1) ⇥ (n � 1) matrix, and
analogue definitions for matrix M . Then, we substitute this partitioning into the multiplication
A = MM

T to get the equations

a1,1 = m

2
1,1,

a1 = m1,1m1,

A1 = m1mT
1 +M1M

T
1 .

(3.8)

Where we define the multiplication vvT of a vector v 2 R1⇥n with entries vi as an n ⇥ n

matrix with its (i, j)th entry given by vivj . We want to derive expressions for the entries of M ,
so first we need to be sure that a1,1 > 0. This is proven in the next theorem.

Theorem 5. The diagonal entries of a symmetric positive definite matrix A are positive.

11

Proof. Given a symmetric positive definite n⇥n matrix A. According to Theorem 3, there exists
a matrix B 2 Rn⇥n such that A = BB

T . Let b̃i be the i

th row of B, then the diagonal entries

ai,i of A are given by b̃ib̃
T

i = |b̃i|
2
> 0.

We can write m1,1 =
p

a1,1, since a1,1 is a diagonal entry of A. The second equation of (3.8)
does not cause any trouble and gives

m1 = a1/
p

a1,1.

The last equation of (3.8) can be formulated as

M1M
T
1 = A1 �m1m

T
1 .

To find M1, we need to apply the Cholesky decomposition of A1 �m1mT
1 . This procedure

thus results into an iterative algorithm for finding M . For the second step, set A = A1 and repeat
the above. This we can repeat until A1 is a single entry. We then have found the Cholesky factor
M . The remaining step is that we need to prove that if A is positive definite, than A1 �m1mT

1

is also positive definite. This is formulated in the next theorem.

Theorem 6. Let A be a symmetric positive definite n ⇥ n matrix and m1 = a1/
p

a1,1, where

a1,1, a1 and A1 are as in Equation (3.7). Then A1 �m1mT
1 is symmetric positive definite.

Proof. Since A is assumed to be symmetric so are A1 and A1�m1mT
1 . Now let v1 2 Rn�1

\{0}.

Define v =

v0

v1

!
where v0 = �aT1 v1/a1,1. Then since v 6= 0 we have

0 < vT
Av =

v0

v1

!T
a1,1 aT1

a1 A1

!
v0

v1

!

=

v0

v1

!T
a1,1v0 + aT1 v1

a1v0 +A1v1

!

= a1,1v
2
0 + v0aT1 v1 + vT

1 a1v0 + vT
1 A1v1

= a1,1
a

T
1 v1

a1,1

a

T
1 v1

a1,1
�

a

T
1 v1

a1,1
aT1 v1 � vT

1 a1
a

T
1 v1

a1,1
+ vT

1 A1v1

= vT
1

⇣
A1 �

a1a
T
1

a1,1

⌘
v1

= vT
1

�
A1 �m1mT

1

�
v1.

We conclude that A1 �m1mT
1 is symmetric positive definite.

Now we can state the proof of the Cholesky decomposition.

Proof of Theorem 4. Let A be an n ⇥ n symmetric positive definite matrix. Then for n = 1,
A = [a1,1] is a real positive number. The Cholesky matrix M is equal to

p

a1,1.
Now assume that A is positive definite, then from Theorem 6, A1�m1mT

1 is positive definite,
where A1 is an (n� 1)⇥ (n� 1) matrix. Now by induction it follows that Theorem 4 is true for
all n.

Cholesky decomposition is used to solve the linear system Ax = y when A is a symmetric
positive definite matrix. Substituting the Cholesky factors into the equation yields MM

Tx = y.
By Letting z = M

Tx we get
Ax = M (MTx)| {z }

z

= Mz = y.

12

Thus, z can be found by solving the triangular system of equations Mz = y and subsequently
the solution x can be found by solving the triangular system M

Tx = z. More information
regarding the Cholesky decomposition can be found in [13, 11].

Since the application of the Cholesky decomposition has to be applied in the process of
analyzing time series , it saves time if we use it to determine if a matrix is positive definite.
Then, if the matrix is positive definite, we have already computed the Cholesky factor M , and
have not lost any computational time.

A simple implementation of the Cholesky Decomposition for checking whether a symmetric
matrix A is positive definite is given below. The implementation of this algorithm in Matlab is
given in Section 11.3. Matlab also has a build-in function for calculating the Cholesky factor of
matrix A, chol(A).

Algorithm 1 (Cholesky Decomposition). Let A be a symmetric matrix. Let M be an n ⇥ n

matrix and m̃i be the i

th row of M . Then

1. For i = 1, 2, . . . , n repeat

(a) For j = 1, 2, . . . , i� 1 repeat mi,j = ai,j � m̃im̃
T
j

(b) If ai,i�m̃im̃
T
i is positive, then set mi,i =

q
ai,i � m̃im̃

T
i . Else, stop. A is non positive

definite.

We compare the speed of checking for positive definiteness by eigenvalues and Cholesky
decomposition. The results are shown in Table 3.1. Here, the build-in Matlab functions eig(A)
and chol(A) are used. As discussed in [5], there are more e�cient eigenvalue solvers around, but
they are by no means more e�cient than using the Cholesky decomposition to check whether a
matrix is positive definite.

Cholesky Eigenvalues

n = 10 0.02 0.04

n = 25 0.02 0.09

n = 50 0.02 0.33

n = 100 0.06 1.29

n = 250 0.18 11.14

n = 500 1.88 48.04

n = 1000 7.69 403.02

Table 3.1: CPU Time (ms) for checking if a matrix of size n is positive definite in Matlab.

The main reason we need the estimated correlation matrix to be positive definite is so that
we can apply the Cholesky decomposition to it. Therefore, if an estimated correlation matrix is
positive definite according to the Cholesky decomposition, we are sure the Cholesky factor M

exists, regardless of the impact of round-o↵ errors. This is not the case if we check the matrix
by eigenvalue decomposition since round-o↵ errors may occur during this decomposition.

To check if a matrix C is a valid correlation matrix we use the function test cor(M), given
in Section 11.1.

13

4 Correcting Non Positive Definite Matrices

In this section we provide a number of methods to adjust non-positive definite correlation matrices
in such a way they become positive definite. We look in to the behavior of the methods in terms
of distance from the original matrix and computational time.

4.1 Iterative Spectral Method

The Iterative Spectral method is based upon the spectral decomposition as in Theorem 1. It
is a simplified version of the Alternating Projections method proposed by Higham in [10]. We
first discuss the simplified version and after that we discuss Higham’s Alternating Projections
method. The algorithm for the Iterative Spectral method is given in Algorithm 2.

Algorithm 2 (Iterative Spectral Algorithm). Let C be an (invalid) correlation matrix. Set
C1 = C and k = 1. Then

1. Determine Lk and Sk such that Ck = SkLkS
T
k as in Theorem 1.

2. If all eigenvalues of Ck are positive, then stop, Ck is positive definite. Else, continue:

3. Let L+
k be Lk with negative eigenvalues replaced by a small positive value a.

4. Set Ck+1 = SkL
+
k S

T
k .

5. Set the diagonal entries of Ck+1 to 1.

6. Set k = k + 1 and go to Step 1.

The implementation of the Iterative Spectral method in Matlab for an invalid correlation
matrix C is given in Section 11.4. We explain what happens in Algorithm 2.

First, we apply Spectral decomposition to matrix Ck. This is always possible as was shown
in Theorem 1. Therefrom, we determine whether Ck is positive definite by checking the diagonal
entries of Lk. If all the diagonal entries are positive, we may stop; Ck is positive definite. Else,
we replace all negative eigenvalues by a small positive value a and compose it back together as
Ck+1. However, this increases the diagonal entries of Ck+1. We can see this by noting that the
diagonal entries cki,i of Ck, are given by

c

k
i,i = �1v

2
i,1 + · · ·+ �nv

2
i,n. (4.1)

So by replacing all negative eigenvalues �i with a � �i, we get c
k+1
i,i � 1. We correct the diagonal

of Ck+1 by setting it equal to one. Note that the sum of the diagonal entries of a matrix is equal
to the sum of its eigenvalues [3, p.302]. We lower the diagonal entries and therefore also the
eigenvalues. This results most likely into a non positive definite matrix Ck+1. As we show in
Example 4.1, the eigenvalues are less negative. Therefore, we repeat this procedure until Ck is
positive definite and has unit diagonal.

Convergence of this algorithm to a point where Ck is both positive definite and has unit
diagonal is proven by Higham in [10, p. 337]. He proved that this algorithm converges always to
a valid correlation matrix. However, this matrix may not be the nearest valid correlation matrix.
Dykstra’s correction can be applied to guarantee convergence to the nearest correlation matrix.
This is discussed in Section 4.1.1.

We illustrate the Iterative Spectral method in the following example.

14

Example 4.1 (The Iterative Spectral Algorithm). We continue with the result of Example 3.1,
Equation (3.3). We note C1 has a negative eigenvalue, which we replace by a = 0.001. So we get

S1 =

0

BB@

0.748 0.074 0.660

�0.563 0.597 0.571

�0.352 �0.799 0.488

1

CCA and L

+
1 =

0

BB@

0.001 0 0

0 0.711 0

0 0 2.297

1

CCA , (4.2)

and the new matrix C2 is given by

C2 = S1L
+
1 S

T
1 =

0

BB@

1.005 0.897 0.698

0.897 1.003 0.302

0.698 0.302 1.001

1

CCA . (4.3)

We see the diagonal entries are no longer equal to one, so we change them back to ones and
recompute the eigenvalues and eigenvectors. The eigenvalues are shown in Table 4.1. We see the
negative eigenvalue has increased, but is still negative.

C1 C2 C3 C4

�1 2.297 2.294 2.293 2.292

�2 0.711 0.709 0.708 0.708

�3 -0.007 -0.002 -0.0005 0.0003

Table 4.1: Eigenvalues of the example matrix of Equation (3.2) after two iterations of the Iterative
Spectral method

We repeat these steps until we obtain the positive definite correlation matrix

C4 =

0

BB@

1.0000 0.8943 0.6965

0.8943 1.0000 0.3027

0.6965 0.3027 1.0000

1

CCA , (4.4)

with eigenvalues as shown in Table 4.1. The distance in terms of the Frobenius norm between
C and C4 is 0.0102. 4

The speed of convergence of the Iterative Spectral method depends on the matrix size n and
the value of a > 0 to which we set the negative eigenvalues in Step 3 of Algorithm 2. The
influence of those parameters on the speed of convergence is shown in Figure 4.1.

For this figure, we generated random invalid correlation matrices. A random invalid correla-
tion matrix is generated by sampling its entries uniform from [-1,1]. Then we take into account
that the matrix has to be symmetric and that its diagonal entries are equal to 1. In the end,
we check whether it is non positive definite. The Matlab implementation of this random ma-
trix generation is given in Section 11.2. Then in each step we have averaged the results of 10
simulations.

In the left sub figure of Figure 4.1, we see the number of iterations increases as a decreases
for all matrix sizes n. Since we cannot alter n, we look at more detail to the impact of a on
the distance of the resulting matrix. We want a to be as high as possible to reduce the number
of iterations. The impact of a on the distance is shown in more detail in Figure 4.2. Picking
a < 10�3 does not a↵ect the distance within three decimals. Therefore, we use a = 10�3 from
now on.

15

10
−10

10
−1

10
−5

10
−13

0

50

100
0

50

100

150

200

250

an

D
is

ta
n

ce

Behaviour of the Iterative Spectral Method in terms of a and n

10
−10

10
−1

10
−5

10
−13

0

50

100
0

100

200

300

400

500

an

It
e
ra

tio
n

s

Figure 4.1: Iterations (left) and Distance (right) for the spectral method per matrix dimension
n and parameter a.

10
−15

10
−10

10
−5

10
0

8.3

8.35

8.4

8.45

8.5

8.55

a

D
is

ta
n
ce

Matrix (n=25) distance vs parameter a

Figure 4.2: Distance versus di↵erent a in the Iterative Spectral method

4.1.1 Dykstra’s Correction

In [10], Higham talks in detail about the convergence of the Iterative Spectral algorithm. He
introduces two sets:

S =
�
A = A

T
2 Rn⇥n : A � 0

,

U =
�
A = A

T
2 Rn⇥n : ai,i = 1, i = 1, 2, . . . , n

.

(4.5)

where S is the set of all symmetric positive definite matrices and U the set of symmetric matrices
with unit diagonal. Then, we can call the projections PU (A) and PS(A) the projections of a
matrix A on the sets U and S respectively, and see Algorithm 2 as iterating for k = 1, 2, . . . over
the projections

Ak+1 PU (PS(Ak)).

16

The idea of iterating over projections of subspaces was analyze by von Neumann, who proved
convergence to the nearest intersection of both subspaces. See [6] for a survey on the von
Neumann method. The sets S and U are no subspaces, so this von Neumann convergence does
not apply. When the subspaces are replaced by closed convex sets, the iteration can converge
to non optimal points [8]. Therefore Higham applies a modified iteration due to Dykstra [7],
which introduces a correction to each projection which can be seen as a normal vector to the
corresponding convex set. Applying the Dykstra’s correction to the Iterative Spectral method
results in Algorithm 3.

Algorithm 3 (Alternating Projections method). Let C be an (invalid) correlation matrix. Set
C1 = C, �S1 = 0 and k = 1. Then

1. Dykstra’s Corrections: Let Rk = Ck ��Sk.

2. Determine Lk and Sk such that Rk = SkLkS
T
k .

3. PS projection: Let L

+
k be L with the negative eigenvalues replaced by a small positive

value a.

4. Set Ck+1 = SkL
+
k S

T
k .

5. Set �Sk+1 = Ck+1 �Rk.

6. PU projection: Set all diagonal elements of Ck+1 to 1.

7. Check of Ck+1 is positive definite. Then stop. Else set k = k + 1 and go to Step 1.

The implementation of Algorithm 3 is given in Section 11.5.
In the Iterative Spectral method, we apply a spectral decomposition to Ck each iteration.

We use this to determine whether Ck is positive definite, so we can stop the algorithm.
The downside of the Alternating Projections method is that we do not decompose Ck spec-

trally, but Rk. So at the end of each iteration, an additional check has to be done to determine
whether Ck+1 is positive definite. Therefore, an iteration of the Alternating Projections method
is more time consuming than an iteration of the Iterative Spectral method.

We stop Algorithm 3 as soon as matrix Ck+1 is positive definite. We check this using the
Cholesky decomposition of Section 3.2. The Iterative Spectral method (IS) and the Alternating
Projections method (AP) are very similar, so we compare them in the next example.

Example 4.2 (Alternating Projections Method). We continue to use the same invalid correlation
matrix C as defined in Example 3.1. Applying the above described algorithm, using a = 0.001,
results in

C4 =

0

BB@

1.0000 0.8943 0.6965

0.8943 1.0000 0.3027

0.6965 0.3027 1.0000

1

CCA .

For di↵erent values of a, the results are shown in Table 4.2. We see that the behavior of the
Alternating Projections method (AP) and Iterative Spectral method (IS) is the same for this
small example matrix.

Since the results do not di↵er for this 3 ⇥ 3 matrix, we also compare di↵erent sizes of ma-
trices. The results are shown in Table 4.3. It is clear Dykstra’s corrections slows down the
convergence. The Alternating Projections method is slower than the Iterative Spectral method,
and the distance is almost the same.

4

17

a AP iterations AP distance IS iterations IS distance

a = 10�1 1 0.0812 1 0.0812

a = 10�2 1 0.0131 1 0.0131

a = 10�3 3 0.0102 3 0.0102

a = 10�4 6 0.0098 6 0.0098

Table 4.2: Iterations and distance for matrix C of Example 3.1 using the Alternating Projections
method (AP) and the Iterative Spectral method (IS).

IS AP

n = 25 8.80 / 7.1 8.79 / 7.1

n = 50 20.36 / 24.0 20.35 / 39.7

n = 100 44.87 / 196.5 44.85 / 321.9

Table 4.3: Distance / CPU time (ms) Results the Alternating Projections method (AP) and the
Iterative Spectral method (IS).

From our point of view, we note that Dykstra’s correction is not worth adding to the Iterative
Spectral method, since it slows down the convergence and the profit in accuracy is negligible.

4.2 Scaled Spectral Method

In the Iterative Spectral method from Section 4.1 we replace the negative eigenvalues of the invalid
correlation matrix. This changes the diagonal entries of the resulting matrix. By changing the
diagonal values manually back to 1, we destroy the positive definiteness of the matrix. In the
Scaled Spectral method, we scale the resulting matrix in a such a way that the diagonal becomes
unit. How to create such a scaling matrix and how to make sure the resulting matrix is symmetric
and positive definite was presented in [16].

Consider an invalid correlation matrix C. We apply the Spectral decomposition from Theorem
1 to find the matrices S and L such that C = SLS

T . L is the matrix with the eigenvalues of
C on the diagonal. Since we assumed C to be non positive definite, L has at least one negative
diagonal entry. We replace these negative diagonal entries in L with a small positive value a and
call it L+. Then, we calculate C2 = SL

+
S

T . Now C2 is positive definite, but has no longer unit
diagonal.

The diagonal entries ci,i of C2 are given by ci,i =
Pn

j=1 s
2
i,j�

+
j where si,j is the (i, j)th entry

of S and �+j the (j, j)th entry of L+.
To scale the diagonal entries of C2 back to 1, we have to multiply each diagonal entry with

its inverse. Also we have to make sure C2 stays positive definite. Define scaling matrix T as a
diagonal matrix with diagonal entries ti,i = [ci,i]�1, where ci,i is the i

th diagonal entry of C2.
Now, scale C2 as

p

TC

p

T . Note that the square root of a diagonal matrix is equal to taking

the square root of its diagonal entries. Then we see
p

TC2

p

T = (
p

TS

p

L

+)(
p

L

+
S

T
p

T) = (
p

TS

p

L

+)(
p

TS

p

L

+)T ,

and therefore
p

TC2

p

T is positive definite according to Theorem 3. Also, the diagonal entries

18

of the scaled matrix are given by are given by

p
ti,ici,i

p
ti,i =

2

4

vuut
nX

j=1

s

2
i,j�

+
j

3

5
�10

@
nX

j=1

s

2
i,j�

+
j

1

A

2

4

vuut
nX

j=1

s

2
i,j�

+
j

3

5
�1

= 1.

Now,
p

TC2

p

T is a valid correlation matrix. We illustrate these steps in the following
example.

Example 4.3 (Scaled Spectral decomposition). We use the same matrix from Example 3.1. Let

C =

0

BB@

1 0.9 0.7

0.9 1 0.3

0.7 0.3 1

1

CCA , (4.6)

then, since C is symmetric, we can apply Spectral decomposition as in Theorem 1. This results
in diagonal eigenvalue matrix L and eigenvector matrix S given by

S =

0

BB@

0.748 0.074 0.660

�0.563 0.597 0.571

�0.352 �0.799 0.488

1

CCA and L =

0

BB@

�0.007 0 0

0 0.711 0

0 0 2.297

1

CCA . (4.7)

Since the first eigenvalue is negative, we replace it by a = 10�13. Now, we can compute C2,

C2 = SL

+
S

T =

0

BB@

1.004 0.897 0.698

0.897 1.002 0.302

0.698 0.302 1.001

1

CCA ,

and note the diagonal elements indeed increased. To fix this, we create the scaling matrix T ,
given by

T =

0

BB@

1
1.004 0 0

0 1
1.002 0

0 0 1
1.001

1

CCA .

This results in

p

TC2

p

T =

0

BB@

1.000 0.894 0.696

0.894 1.000 0.301

0.696 0.301 1.000

1

CCA , (4.8)

which is positive definite with eigenvalues �1 = 1 · 10�13, �2 = 2.2904 and �3 = 0.7096. The
distance in terms of the Frobenius norm with the original matrix is 0.0100, which is slightly
better than the distance of the Iterative Spectral method (0.0102). 4

Algorithm 4 (Scaled Spectral method). Let C be an n⇥ n invalid correlation matrix.

1. Determine S and L such that C = SLS

T as in Theorem 1.

2. Let L+ be L with negative eigenvalues replaced by a small positive value a.

19

3. Denote the entries of S by si,j and the entries of L+ by �+j . Then calculate the scaling
matrix T with entries ti,j given by

T =

8
<

:
ti,j =

hP
j s

2
i,j�

+
j

i�1
, i = j

ti,j = 0. i 6= j

(4.9)

4. Set C2 =
p

TSL

+
S

T
p

T .

The Matlab implementation of this algorithm can be found in Section 11.6.

The Scaled Spectral method is non iterative. Therefore it applies only one eigenvalue decom-
position. This makes the Scaled Spectral method faster than the Iterative Spectral method, since
this method has to perform several eigenvalue decompositions. Also, the choice of parameter a
has no e↵ect on the number of iterations, but does a↵ect the accuracy. This is shown in Figure
4.3.

10
−10

10
−5

9.05

9.1

9.15

9.2

9.25

9.3

9.35

9.4

a

D
is

ta
n
ce

Distance for matrix with n = 25 with the Iterative Spectral method

Figure 4.3: The influence of the parameter a for the Iterative Spectral method.

This implies that a should be chosen as small as possible. However, one needs to account for
round-o↵ errors. If the eigenvalues of the resulting matrix are too close to zero, the matrix could
become non positive definite due to round-o↵ errors.

Numerical experiments show that for a machine precision of 2.2�16, it is safe to pick a = 10�13.

20

4.3 Gradient Updating Method

Y. Zhang introduces another approach to find the solution of Problem 1 in [20]. In [20], finding the
nearest correlation matrix is formulated as a minimization problem with the objective function
given by

f(A,B) =
1

2
||BA� Ĉ||

2
F .

If we set A = B

T then by Theorem 3, BA is positive definite. Also, we want the diagonal of BA

to be unit.
Denote the j

th column of A by aj , j = 1, 2, . . . , n, and ai,j as the i

th element of the j

th

column of A, also let ãi be the i

th row of A. Then the objective function can be written as

f(A,B) = 1
2 ||C �BA||

2
F

= 1
2

Pn
j=1 ||cj �Baj ||2

= 1
2

Pm
j=1(cj �Baj)T (cj �Baj)

= 1
2

Pn
i,j=1(ci,j � b̃iaj)2.

By di↵erentiating the above equation to au,v with u, v 2 {1, 2, . . . , n} fixed, we get

@
@au,v

f(A,B) = 1
2

Pn
i,j=1 2

⇣
ci,j � b̃iaj

⌘
@

@au,v

⇣
�b̃iaj

⌘

=
Pn

i,j=1

⇣
b̃iaj � ci,j

⌘
@

@au,v

⇣
b̃iaj

⌘
,

by the chain rule. Since

@

@au,v

⇣
b̃iaj

⌘
=

(
0, if j 6= v,

bi,u, if j = v,

the derivative of f with respect to au,v becomes

@

@au,v
f(A,B) =

nX

i=1

⇣
b̃iav � ci,v

⌘
bi,u = bT

u (Bav � cv) .

Now we have an expression for the derivative of f to a fixed au,v, we can rewrite it in the matrix
form

@f(A,B)

@A

= B

T (BA� C) .

For the gradient of f(A,B) with respect to B, the computations are analog, which result in

@f(A,B)

@B

= (BA� C)AT
.

From the multivariate analysis, we know a multivariate function decreases fastest in the
direction of the negative gradient. This topic is extensively discussed in [1, §12.7]. We use an
updating scheme for the matrices A and B with the above calculated gradients. Therefore, let
�k and k be positive scalars, denoting the step length for respectivily A and B. Then, the
gradient updating scheme is given by

Ak+1 = Ak � �k
@f(Ak, Bk)

@A

, (4.10)

21

Bk+1 = Bk � k
@f(Ak, Bk)

@B

,

We use the updating schemes above to iterate to the nearest valid correlation matrix. To
ensure positive definiteness of this resulting matrix we need Ak to be equal to B

T
k . In that way

we have BkAk = BkB
T
k , which is positive definite by Theorem 3. So we average each iteration

Bk+1 ⌘ (Bk+1 +A

T
k+1)/2,

and set
Ak+1 ⌘ B

T
k+1.

To guarantee unit diagonal, we create a scaling matrix T in the same way as in Equation (4.9).
Therefore, we define the operation diag(v).

Definition 6 (The Diag Operator). The operation diag(v) for a vector v 2 Rn
maps that vector

to the diagonal of an n ⇥ n matrix, with all o↵-diagonal entries equal to zero. The operation

diag(A) for a matrix A is the vector of diagonal entries of A. This definition is the same as the

Matlab function diag().

Using Definition 6 we define T = diag(diag(Bk+1Ak+1)�1). and scale Ak+1 and Bk+1 as

Bk+1 =
p

TBk+1 and Ak+1 = Ak+1

p

T .

Next, we discuss how to choose the steplength parameters �k and k. Therefore we use
the Armijo rule, which guarantees that we reduce the objective function each iteration of the
gradient updating scheme.

Definition 7 (Armijo Rule). Given the gradient updating scheme

xk+1 = xk � ak
@f(xk)

@x

,

we define the Armijo inequality as

f(xk+1)� f(xk)  �

✓
@f(xk)

@x

◆T

(xk+1 � xk),

with � 2 (0, 1). If the inequality is satisfied, the step length ak is ‘su�cient’, which means the

objective function decreased enough.[2, 19]

In the definition of the Armijo rule, the updated xk is defined as a vector. In this case, we
apply gradient updating to matrices. Therefore, we need to define the dot product analogue for
matrices. We illustrate this in a very simple example.

Example 4.4. Given two real-valued vectors

v =
⇣
a b c d

⌘T
and w =

⇣
e f g h

⌘T
,

their dot product is given by

hv,wi = vTw = ae+ bf + cg + dh.

Now in matrix format,

V =

a b

c d

!
and W =

e f

g h

!
,

22

we define hV,W i = trace(V T
W), where the trace of a matrix is the sum of its diagonal elements.

Thus,

hV,W i = trace(V T
W) = ae+ cg + bf + dh.

4

We use the Armijo rule for the updating scheme of Equation (4.10). With this rule we
determine an upper bound for �k. From Definition 7 follows

f(Ak+1, Bk)� f(Ak, Bk)  �

⌧
@f(Ak, Bk)

@A

, (Ak1 �Ak)

�
,

To predict f(Ak+1, Bk) we use a Taylor expansion. Therefore, we calculate the second order
gradient of f with respect to A.

@2f(A,B)
@a2

u,v
= @

@au,v

hPn
i=1 bi,ub̃iav

i

=
Pn

i=1 bi,u
@

@au,v

h
b̃iav

i

=
Pn

i=1 bi,ubi,u,

which, in matrix form is written as

@

2
f(A,B)

@A

2
= B

T
B.

We thus get the Taylor expansion

f(Ak+1, B) ⇡ f(Ak, Bk) +
⌦
Ak+1 �Ak,

@
@Af(Ak, Bk)

↵

+ 1
2

D
Ak+1 �Ak,

@2

@A2 f(Ak, Bk)(Ak+1 �Ak)
E
.

(4.11)

This expansions is exact since the second order gradient is a constant function and therefore the
next term vanishes. Combining these results and substituting them in the Armijo rule gives

0 � 2(1� �)

⌧
@f

@A

(Ak, Bk), Ak+1 �Ak

�
+
⌦
Ak+1 �Ak, (B

T
k Bk)(Ak1 �Ak)

↵
.

Using the gradient updating scheme of Equation (4.10), we can rewrite Ak+1 �Ak and get

0 � ��k2(1� �)
D

@f
@A (Ak, Bk),

@f
@A (Ak, Bk)

E

+�2k

D
@f
@A (Ak, Bk), (BT

k Bk)
@f
@A (Ak, Bk)

E
,

Since we have chosen the step length �k to be positive, we can divide by it without changing
the direction of the unequal sign. Also note that trace(AT

A) = ||A||

2
F . By dividing the above

inequality by ��k we get

0  2(1� �)

����

����
@f(Ak, Bk)

@A

����

����
2

F

� �k

����

����Bk
@f(Ak, Bk)

@A

����

����
2

F

.

We can repeat the above computations analogues for k, which results in the follow bounds
on the step length.

23

�k 

2(1� �)
���
���@f(Ak,Bk)

@A

���
���
2

F���
���B @f(Ak,Bk)

@A |

���
���
2

F

and k 

2(1� �)
���
���@f(Ak,Bk)

@B

���
���
2

F���
���@f(Ak,Bk)

@B A

���
���
2

F

. (4.12)

We want the step lengths �k and k to be as large as possible, within the above derived
bounds, such that the distance decreases most each iteration. So we take �k and k be equal to
their upper bounds. Combining the above results we obtain the following algorithm.

Algorithm 5. Choose starting matrices A1 and B1 such that A1B1 is close to C. Also choose
parameter � and set k = 1. Then repeat the following steps until you are satisfied.

1. Compute the gradient grad(Ak) = B

T
k (BkAk � C),

2. Choose step length �k = 2(1��)||grad(Ak)||2F
||Bkgrad(Ak)||2F

3. Set Ak+1 = Ak � �kgrad(Ak).

4. Compute the gradient grad(Bk) = (BkAk+1 � C)AT
k+1,

5. Choose step length k = 2(1��)||grad(Bk)||2F
||grad(Bk)Ak||2F

6. Set Bk+1 = Bk � kgrad(Bk).

7. Set Bk+1 = (Bk+1 +A

T
k+1)/2,

8. Compute T = diag(diag(BT
k+1Bk+1)�1),

9. Scale Bk+1 =
p

TBk+1 and A = B

T
k+1

p

T

10. Set k = k + 1 and go to Step 1. Stop when satisfied.

To use the above algorithm, we need to determine a stopping criteria and certain input
matrices A1 and B1. For this, we compare di↵erent input possibilities. We want the initial
matrix B1A1 to be as close as possible to the target matrix C, i.e.

||B1A1 � C||

2
F ,

has to be low. Since B1A1 is positive definite by Theorem 3, we look for forms of positive definite
matrices close to the target matrix.

4.3.1 Input Matrix: Cholesky Form

We look for a positive definite matrix C̃ close to an invalid n⇥n correlation matrix C. Let c̄ be
the average of all o↵-diagonal entries of C, which is

c̄ =
1

n

2
� n

0

@
X

i,j

ci,j � n

1

A
.

Intuitively, the matrix

C̃ =

(
c̃i,j = c̄, if i 6= j

c̃i,j = 1, if i = j

would be close to C. However, we need to write it in the form C̃ = B1A1. Therefore we apply
the Cholesky decomposition to it. In order to do so, C̃ has to be positive definite. We show for
which value of the o↵-diagonal entries the matrix C̃ is positive definite.

24

Theorem 7. Let C be an n⇥n matrix with unit diagonal and o↵ diagonal entries equal to c̄ 2 R.
Then C is positive definite if c̄ 2

⇣
�1
n�1 , 1

⌘
.

Proof. Let the entries of C be given by ci,j = 1 for i = j and ci,j = c̄ for i, j 2 {1, 2, . . . , n}.
Then the eigenvalues of C are given by

�1,...,n�1 = 1� c̄ and �n = (n� 1)c̄+ 1,

and therefore, C is positive definite if c̄ 2
⇣

�1
n�1 , 1

⌘
.

We see from the above theorem that C̃ is positive definite if c̄ 2

⇣
�1
n�1 , 1

⌘
, which is a

prerequisite to apply Cholesky decomposition. So, let C̃1 be given by

C̃1 =

(
c̃i,j = max

⇣
�1
n�1 , c̄

⌘
if i 6= j

c̃i,j = 1 if i = j

.

Now apply the Cholesky decomposition to C̃ to get the initial matrices

B1 = chol(C̃) and A1 = B

T
1 . (4.13)

4.3.2 Input Matrix: Scaled Form

The second form of input matrices we consider is based on the scaling in Step 8 and 9 of
Algorithm 5. Since we do not account for the scaling in the gradient updating, it might be an
advantage to scale the input matrices A1 and B1 in advance.

We set B1 = C with diagonal entries replaced by ↵ and A1 = B

T
1 . Let c̃i,j be the (i, j)th

entry of C̃ = B1A1 and b̃i the i

th row of B1. Then the diagonal entries c̃i,i = b̃
T

i b̃i of C̃ will be
unequal to one in general.

We create the scaling matrix T with diagonal entries ti,i =
⇣
b̃
T

i b̃i

⌘�1
. Therefore the initial

guess C̃ =
p

TB1A1

p

T will have unit diagonal. However, we want C̃ to be close to C, so each

entry c̃i,j = b̃
T

i b̃j of C̃, has to be close to ci,j . We determine which ↵ to choose such that C̃ is
close to C. Assume all entries of C are constant and with value c. We then solve

c̃i,j ⇡ c =
2↵c+ (n� 2)c2

↵

2 + (n� 1)c2
⇡ b̃

T

i b̃j = c̃i,j ,

for ↵. We get as solution

↵ = 1 +
p

1� (c2(n� 1) + c(2� n)). (4.14)

We could set c equal to the average of all o↵-diagonal entries of C. However, taking the average
of C costs about 0.35 milliseconds for a matrix of n = 100. This is about 20% of the time the
algorithm needs to perform one iteration, as we see in Section 5. Also, after one iteration the
choice of c is negligible. We illustrate this in Table 4.4. We have to take in account the bounds

�1
n�1 < c < 1 to make sure the square root in Equation (4.14) is defined properly.

Therefore, we assume c = 0.5, which gives ↵ = 1+
p
n+1
2 . Numerical results show that taking

values of ↵ in the neighborhood of 1 +
p
n+1
2 gives more accurate results. We therefore pick

↵ =
p
n
2 .

25

Initital distance Distance after 1 iteration

c = 0 52.41 47.13

c = 0.25 48.18 46.11

c = 0.5 48.11 46.14

c = 0.75 48.20 46.11

Table 4.4: Comparing di↵erent c to determine ↵ for an 100 ⇥ 100 matrix with an average o↵-
diagonal entry value of 0 for the Gradient Updating method.

Summarizing the above derivation gives us the initial matrices

B1 =

(
bi,j = ci,j , for i 6= j

bi,j =
p
n
2 , for i = j.

, and A1 = B

T
1 .

Since we have made a lot of assumptions, these initial matrices are not very accurate. However
they converge very fast in the first iteration as we saw in Table 4.4. This is most likely due to
the fact the initial matrix has unit diagonal and is scaled already. We show this after we have
determined a stopping criterion.

4.3.3 Input Matrix: Scaled Spectral Form

We could first apply the scaled spectral method to the invalid correlation matrix C. The resulting
matrix Ĉ is close to C in terms of the Frobenius norm. Since Ĉ is positive definite, we can
decompose it in B1 and A1 such that Ĉ = B1A1, where A1 = B

T
1 .

However, the scaled spectral method uses an eigenvalue decomposition which is rather time
consuming. Using the same 100⇥100 matrix as we have used to generate the results in Table 4.4,
we see the distance of the resulting matrix from the Scaled Spectral method to the target matrix
C is 47.04. This distance is about the same as the results in Table 4.4. However, the spectral
method takes about 7.9 milliseconds to calculate this input matrix, while the calculations in
Table 4.4 for 1 iteration took 4.5 milliseconds.

We conclude that the other forms of input matrices are faster, and the resulting distance
is similar. So we do not use the Scaled Spectral method as input for the Gradient Updating
method.

4.3.4 Stopping Criteria

Let rk = ||AkBk � C||F be the distance at iteration k, then we define the stopping criterion as

|rk � rk�1|

rk
 10�2

Of course, this value can be adjusted to gain or lose accuracy, at the expense of duration.
Warning: Lowering this tolerance too much can result in numerical errors due to, for ex-

ample, the machine precision. How small this tolerance value may be depends highly upon the
matrix dimension.

26

4.3.5 Numerical Calibration

We have derived two di↵erent input matrices and a stopping criterion for the Gradient Updating
method. The only variable left to determine is �.

We calibrate the Gradient Updating method (GU) for both the Cholesky based input matrix
from Section 4.3.1 (Cholesky) and the scaled input matrix from Section 4.3.2 (Scaled). For
di↵erent values of � we show the behavior for the Gradient Updating method in Figure 4.4.
This figure is generated by generating 50 invalid correlation matrices with n = 25 and entries
uniformly distributed over (�1, 1), see the Matlab file from Section 11.2. The results are shown
in Figure 4.4.

0.2 0.4 0.6 0.8
8

8.5

9

9.5

10

10.5

11
Distance for the Gradient methods

sigma

D
is

ta
n

ce

0.2 0.4 0.6 0.8
2

3

4

5

6

7
Number of iterations for the Gradient methods

sigma

It
e

ra
tio

n
s

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

Time for the Gradient methods

sigma

T
im

e
 (

m
s)

GU, Cholesky

GU, scaled

GU, Cholesky
GU, scaled

GU, Cholesky

GU, scaled

Figure 4.4: Results of the Gradient method with the two starting matrices for di↵erent �.

As we see in Figure 4.4 sub figure 2, the distance of both initial matrices is almost constant
for � � 0.3. For small �, the performance of the Cholesky decomposition is unsatisfactory. From
Figure 4.4 sub figure 1, it follows that we should pick a � 2 [0.5, 0.6]. This results in the fasted
convergence.

However, by choosing the upper bounds for the step length �k and k, we do not take in
account that the matrices Ak and Bk will be averaged and scaled every iteration. Therefore, we
cannot guarantee that the bounds will hold. This becomes visible when we sample an invalid
correlation matrix C with o↵ diagonal entries ci,j 2 (�1, 0). This is shown in Figure 4.5.

We see clearly in Figure 4.5 that the Gradient Updating method is not converging. Since the
convergence fails, we check whether this is caused by a wrong step length.

In Figure 4.6, the results of the Gradient Updating methods are compared for di↵erent values
of �. As we see for matrices with negative entries, � should be picked � > 0.6

To force convergence of the algorithm, we check each iteration if the distance of the calculated
matrix to the original matrix C has decreased. If it did not, divide the step length by two and

27

1 2 3 4 5
12

13

14

15

16

17

18

19

20

Iterations

D
is

ta
n
ce

Distance per iteration for sigma = 0.9

2 4 6 8 10
12

13

14

15

16

17

18

19

20

21

Iterations

D
is

ta
n
ce

Distance per iteration for sigma = 0.5

GU, Cholesky
GU, scaled

GU, Cholesky

GU, scaled

Figure 4.5: The convergence of the Gradient Updating methods with � = 0.5 (left) and � = 0.9
(right) and tol = 10�2 for matrix n = 25 and entries ci,j 2 (�1, 0)

try again. This is called Armijo backtracing.

0.2 0.4 0.6 0.8
10

15

20

25

Distance for the Gradient methods

sigma

D
is

ta
n
ce

0.2 0.4 0.6 0.8
0

20

40

60

80

100
Number of iterations for the Gradient methods

sigma

It
e

ra
tio

n
s

0.2 0.4 0.6 0.8
0

5

10

15
Time for the Gradient methods

sigma

T
im

e
 (

m
s)

GU, Cholesky

GU, scaled

GU, Cholesky
GU, scaled

GU, Cholesky

GU, scaled

Figure 4.6: Results of the Gradient method with the two starting matrices for di↵erent � for
matrices with ci,j 2 (�1, 0).

Let m = 0, 1, 2, . . . and let 1 � � = ⌧

m. Then calculate �k and k by Equation (4.12). If
the distance is smaller, remember the value of m and use for the next iteration. Combining this
with Algorithm 5 leads to the the Gradient Updating Algorithm.

28

Algorithm 6 (Gradient Updating Algorithm). Choose starting matrices A1 and B1 such that
A1B1 is close to C. Also choose the parameter ⌧ and set m = 1 and k = 1. Then

1. Compute the gradient grad(Ak) = B

T
k (BkAk � C),

2. Determine step length �k = 2(⌧m)||grad(Ak)||2F
||Bkgrad(Ak)||2F

3. Set Ak+1 = Ak � �kgrad(Ak).

4. Compute the gradient grad(Bk) = (BkAk+1 � C)AT
k+1,

5. Determine step length k = 2(⌧m)||grad(Bk)||2F
||grad(Bk)Ak||2F

6. Set Bk+1 = Bk � kgrad(Bk).

7. Set Bk+1 = (Bk+1 +A

T
k+1)/2,

8. Compute T = diag(diag(BT
k+1Bk+1)�1),

9. Scale Bk+1 =
p

TBk+1 and A = B

T
k+1

p

T .

10. Calculate the distance rk = ||Bk+1Ak+1 � C||F .

11. If rk+1 � rk < 0 then continue. Else set m = m+ 1 and go to Step 2.

12. If |rk�rk�1|
rk

 10�2 then stop; we are satisfied. Else go to Step 1.

For this new algorithm, we calibrate for ⌧ using the same sampled invalid correlation matrices
as in Figure 4.6. We concluded above that � 2 [0.5, 0.6] was optimal matrices with entries in
(�1, 1). Since ⌧m = 1 � � and m = 1, we should look at the interval ⌧ 2 [0.4, 0.5]. Di↵erent
values of ⌧ are compared in Figure 4.7. From sub figure 2, we see we should pick ⌧ = 0.5 since
it results into a smaller distance of the resulting matrix to the original one. The implementation
of this method is given in Section 11.7 for the Scaled initial matrix and in Section 11.8 for the
Cholesky initial matrix.

This algorithm was derived by Zhang in [20]. However, it was proposed without the check if
the algorithm is converging and the reduction of the steplength if it is not converging.

4.4 Adjusted Gradient Updating Method

In the previous section, the objective function was written as a function of f(A,B). However,
since A

T = B we can reformulate this as a function of B only. Let

g(B) = f(BT
, B) =

1

2
||BB

T
� C||

2
F ,

then we can reduce the number of steps in the Gradient Updating algorithm, since we only have
to iterate over one matrix B instead of over B and its transposed A.

As before, we can calculate the derivative of this function. Let bi be the i

th row of B and b̃j

its jth column, then

g(B) =
1

2

nX

i,j=1

⇣
ci,j � b̃ib̃

T
j

⌘2
.

29

0.2 0.4 0.6 0.8
2

3

4

5

6

7
Number of iterations for the Gradient methods

tau

It
e

ra
tio

n
s

GU, Cholesky
GU, scaled

0.2 0.4 0.6 0.8
8.5

9

9.5

10

10.5
Distance for the Gradient methods

tau

D
is

ta
n

ce

GU, Cholesky
GU, scaled

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

Time for the Gradient methods

tau

T
im

e
 (

m
s)

GU, Cholesky
GU, scaled

Figure 4.7: Results of the Gradient Updating method with the two initial matrices for di↵erent
⌧ for matrices with ci,j 2 (�1, 0).

By picking a fixed entry bu,v with u, v 2 {1, 2, . . . , n} we can calculate the derivative of g(B)
with respect to bu,v,

@

@bu,v
g(B) =

nX

i,j=1

⇣
b̃ib̃j � ci,j

⌘✓
@

@bu,v
b̃ib̃

T
j

◆
.

By evaluating the right hand side we see

@

@bu,v
b̃ib̃

T
j =

8
>>><

>>>:

0 if i, j 6= u,

bj,v if i = u, j 6= u,

bi,v if j = u, i 6= u,

2bu,v if i = j = u.

Combining these results and using the symmetry of C and BB

T , we get

@
@bu,v

g(B) =
Pn

j=1,i 6=i

⇣
b̃ub̃

T
j � cu,j

⌘
bj,v

+
Pn

i=1,i 6=j

⇣
b̃ib̃

T
i � ci,u

⌘
bi,v + 2

⇣
b̃ub̃

T
u � cu,u

⌘
bu,v

= 2
Pn

j=1

⇣
b̃ub̃

T
j � cu,j

⌘
bj,v

= 2
⇣
b̃uB

T
� c̃u

⌘
bv,

which, in matrix form, gives us the gradient of g with respect to B,

@g

@B

= 2(BB

T
� C)B.

30

Again, we use the updating scheme based on the fact that the function g(B) decreases most
in the direction of the negative gradient. This gives

Bk+1 = Bk � ✓k
@g(Bk)

@A

,

where we have to determine the positive step length ✓k. But since the gradient function is a
non linear function on B, we cannot use a Taylor expansion to exactly estimate g(Bk+1) in two
terms. There is simple formula to determine ✓k. We use the bounds on �k and �k to determine
the bound on ✓k.

The bound on �k results into a converging iteration for the Gradient Updating method,
disregarding the scaling. Since

2
@f(BT

, B)

@B

=
@g(B)

@B

,

we let 2✓k = �k, so the first steps of the Gradient Updating algorithm and the adjusted method
are the same. The Gradient Updating method performs iterations, on first Ak and than on Bk.
Since we do these iterations in 1 step, we need to halve the step length �k. This results in

✓k =
1

4
�k =

(⌧m)
���
���@g(B)

@B

���
���
2

F

2
���
���@g(B)

@B

T
���
���
2

F

.

Numerical results confirm that this is a correct estimation of ✓k. The resulting algorithm is

Algorithm 7 (Adjusted Gradient Updating). Choose starting matrix B1 such that C is close
to B1B

T
1 . Also choose parameter ⌧ = 0.5 and set m = 1 and k = 1. Then

1. Compute the gradient gradk = 2(BkB
T
k � C)Bk,

2. Compute parameter ✓k = (⌧m)||gradk||
2
F

2||gradkB
T ||2F

,

3. Calculate the next matrix Bk+1 = Bk � ✓kgradk.

4. Compute T = diag(diag(Bk+1B
T
k+1)

�1),

5. Scale Bk+1 =
p

TBk+1

6. Calculate the distance rk+1 = ||Bk+1B
T
k+1 � C||F

7. If rk+1 � rk < 0 then continue. Else set m = m+ 1 and go to Step 2.

8. If |rk�rk�1|
rk

 10�2 then stop. Else set k = k + 1 and go to Step 1.

The implementation in Matlab for the Adjusted Gradient Updating method is given in Section
11.9 for the Scaled initial matrix and in Section 11.10 for the Cholesky initial matrix

31

5 Comparing Methods

In this section, we compare the methods we have discussed in Section 4. The results we discuss
are shown in Table 5.1. For each matrix size we have generated 20 invalid correlation matrices
by picking its entries uniform for the specified interval, using the algorithm in Section 11.2. Then
we applied the methods of Section 4 to it, and averaged the resulting distance and time.

First, consider the results for the Iterative Spectral method. We see this method is always
the most accurate method, since its distance is the lowest for all matrices. However, this method
applies an eigenvalue decomposition each iteration and is therefore extremely slow for large
matrix sizes. It takes a second to process a matrix of size 250 and 4 to 7 seconds to process an
n = 500 matrix. This is extremely slow, since we see other methods are at least 50 times faster
for matrices of the same size.

The Scaled Spectral method is non iterative, and therefore the CPU time is constant. It is
a lot faster than the Iterative Spectral method, however it is less accurate. This is most clear
for the matrices with ci,j 2 (0, 1). It is very accurate for matrices with negative matrix entries,
there the distance di↵ers less than 1 % from the Iterative Spectral method.

Looking at the Adjusted Gradient Updating methods, we see that for both of the initial
matrices the performance is good. For larger matrices, the performance is good, it is faster and
more accurate than the Scaled Spectral method. Only for ci,j 2 (�1, 0), the Scaled Spectral
method is slightly more accurate, however, the Adjusted Gradient Updating methods are almost
twice as accurate on matrices ci,j 2 (0.25, 0.75) and ci,j 2 (0, 1).

As initial matrix for the Adjusted Gradient Updating methods, we see the Scaled input matrix
performs better in general.

The Gradient Updating methods perform very similar to the Adjusted Gradient updating
methods, but they are slower. Only for ci,j 2 (�1, 0), it is faster, but also it is less accurate.

Some large di↵erences appear for the Adjusted Gradient Updating methods and the Gradient
Updating methods. This is due to the stopping criteria. For matrices of size 500⇥ 500, only two
or three iterations are performed by the Gradient Updating methods and the Adjusted Gradient
Updating methods, after which the decrease in distance is already less than a percent.

32

R
es
u
lt
s

S
p
ec
tr
al

M
et
h
od

s
A
d
ju
st
ed

G
ra
d
ie
nt

U
p
d
at
in
g

G
ra
d
ie
nt

U
p
d
at
in
g

It
er
at
iv
e

S
ca
le
d

C
h
ol
es
ky

S
ca
le
d

C
h
ol
es
ky

S
ca
le
d

ci,j 2 (�1, 1)

n
=

25
8.
91

/
4.
16

9.
23

/
0.
30

8.
95

/
0.
44

8.
98

/
0.
36

9.
01

/
0.
60

9.
03

/
0.
48

n
=

50
20
.3
2
/
14
.9
3

21
.0
9
/
0.
83

20
.3
6
/
1.
40

20
.4
6
/
0.
53

20
.4
8
/
1.
06

20
.5
5
/
0.
77

n
=

10
0

45
.0
0
/
11
5.
03

46
.5
6
/
3.
62

45
.0
6
/
2.
59

45
.2
4
/
1.
52

45
.2
2
/
4.
49

45
.3
8
/
2.
48

n
=

15
0

70
.6
6
/
37
0.
15

72
.9
3
/
9.
00

70
.7
6
/
6.
74

70
.9
9
/
3.
72

70
.9
4
/
11
.2
1

71
.1
8
/
6.
02

n
=

25
0

12
2.
77

/
12
00
.7
1

12
6.
31

/
31
.4
5

12
2.
87

/
24
.7
2

12
3.
36

/
11
.7
0

12
3.
14

/
48
.2
0

12
3.
53

/
21
.1
7

n
=

50
0

25
6.
87

/
74
40
.9
8

26
3.
04

/
19
8.
23

25
7.
52

/
15
6.
78

25
8.
16

/
72
.3
6

25
7.
90

/
32
8.
81

25
8.
26

/
14
3.
27

ci,j 2 (0, 1)

n
=

25
4.
21

/
2.
77

5.
16

/
0.
22

4.
38

/
0.
77

4.
39

/
0.
41

4.
67

/
1.
05

4.
39

/
0.
52

n
=

50
9.
90

/
13
.6
9

13
.3
1
/
0.
81

10
.3
7
/
1.
56

10
.3
4
/
0.
79

11
.2
4
/
2.
48

10
.4
2
/
1.
27

n
=

10
0

22
.1
7
/
10
0.
31

32
.3
2
/
3.
52

23
.4
0
/
4.
39

23
.3
9
/
1.
79

23
.7
7
/
9.
57

23
.2
7
/
4.
06

n
=

15
0

34
.9
9
/
32
9.
88

53
.3
3
/
8.
90

37
.4
8
/
8.
94

36
.8
7
/
3.
77

39
.1
5
/
11
.0
8

37
.2
2
/
5.
63

n
=

25
0

61
.0
0
/
10
82
.3
9

97
.7
0
/
30
.9
7

65
.7
1
/
23
.2
4

64
.4
4
/
7.
78

67
.4
1
/
30
.0
0

64
.6
7
/
12
.1
8

n
=

50
0

12
8.
00

/
66
81
.9
3

21
6.
82

/
19
6.
26

14
3.
40

/
45
.9
9

13
3.
94

/
44
.3
5

14
1.
09

/
12
4.
37

13
4.
02

/
12
6.
99

ci,j 2 (�1, 0)

n
=

25
11
.8
4
/
2.
31

11
.9
4
/
0.
25

11
.9
8
/
0.
47

11
.8
9
/
0.
57

12
.1
6
/
0.
73

11
.9
5
/
0.
82

n
=

50
24
.9
2
/
9.
15

25
.1
1
/
0.
83

25
.2
1
/
1.
16

25
.5
8
/
1.
12

25
.0
4
/
1.
83

25
.1
2
/
1.
86

n
=

10
0

52
.0
7
/
70
.0
8

52
.4
8
/
3.
54

52
.6
5
/
4.
70

52
.6
9
/
3.
84

52
.4
0
/
5.
74

52
.4
9
/
7.
12

n
=

15
0

79
.3
3
/
22
5.
77

79
.9
5
/
9.
07

80
.2
8
/
11
.9
8

80
.2
2
/
10
.2
8

80
.2
3
/
11
.9
4

80
.0
6
/
17
.1
0

n
=

25
0

13
4.
76

/
72
3.
03

13
5.
77

/
31
.7
1

13
9.
34

/
24
.4
3

13
6.
81

/
24
.5
9

13
8.
23

/
12
.3
5

13
9.
54

/
11
.9
8

n
=

50
0

27
4.
35

/
45
89
.4
2

27
6.
28

/
20
0.
42

28
3.
26

/
12
2.
29

27
8.
93

/
14
9.
96

28
6.
06

/
82
.8
3

28
2.
58

/
92
.2
0

ci,j 2 (0.25, 0.75)

n
=

25
1.
28

/
1.
59

1.
67

/
0.
21

1.
41

/
1.
31

1.
41

/
1.
16

1.
45

/
1.
71

1.
47

/
0.
75

n
=

50
3.
57

/
7.
74

5.
53

/
0.
81

3.
96

/
2.
67

4.
19

/
1.
90

4.
47

/
3.
45

4.
10

/
1.
85

n
=

10
0

8.
84

/
59
.9
4

16
.1
1
/
3.
46

9.
90

/
6.
42

9.
98

/
5.
31

10
.9
5
/
8.
52

10
.2
2
/
6.
90

n
=

15
0

14
.5
8
/
19
4.
96

29
.0
0
/
8.
79

16
.6
9
/
11
.4
9

16
.5
7
/
11
.1
1

16
.7
3
/
25
.7
2

16
.9
7
/
15
.5
6

n
=

25
0

26
.4
3
/
64
5.
11

58
.2
9
/
30
.9
5

31
.1
1
/
24
.7
8

30
.7
5
/
20
.5
2

31
.2
1
/
46
.9
9

30
.0
7
/
50
.2
1

n
=

50
0

57
.7
2
/
40
88
.3
1

14
3.
30

/
19
5.
13

71
.7
0
/
47
.3
5

65
.5
5
/
73
.5
0

68
.5
3
/
19
1.
24

64
.8
2
/
14
2.
54

Table 5.1: Distance / CPU time (ms) per method and entry interval.

33

6 Weighting Correlations

By estimating a correlation matrix, one may have much faith in some specific correlations while
others do not matter at all. Therefore, we like to add some weighting to the correlations. We
illustrate this for the Iterative Spectral method of Section 4.1.

6.1 Weighting the Iterative Spectral Method

Let W be a positive definite diagonal matrix, i.e. it has positive diagonal elements, where the
higher wi,i is, the more faith we have in the i

th asset. This is extensively explained by Higham
in [10].

Let C be an invalid correlation matrix and Ĉ be a positive definite correlation matrix. Then
denote the weighted objective function by

f(C) = ||W

1/2(C � Ĉ)W 1/2
||F , (6.1)

then, we get the following algorithm.

Algorithm 8 (Weighted Iterative Spectral Algorithm). Let C be an invalid correlation matrix
and W be a positive definite diagonal matrix. Set C1 = C and k = 1. Then

1. Determine Lk and Sk such that W 1/2
CkW

1/2 = SkLkS
T
k as in Theorem 1.

2. If all eigenvalues of Ck are positive, then stop, Ck is positive definite. Else, continue:

3. Let L+ be L with negative eigenvalues replaced by a small positive value a.

4. Set Ck+1 = W

�1/2
SkL

+
k S

T
k W

�1/2

5. Set the diagonal elements of Ck+1 to 1.

6. Set k = k + 1 and go to Step 1.

The implementation of this algorithm is given in Section 11.11. We illustrate the algorithm
with an example.

Example 6.1. Let W be the diagonal matrix with entries ci,i = 1 for i = 1, 2, 3 and ci,i = 0.01
for i = 1, 2, . . . , 25. Applying this to a randomly generated 25 ⇥ 25 invalid correlation matrix
with entries ci,j 2 (0, 1) gives the result shown in Figure 6.1. This figure shows the absolute
di↵erence per matrix entry.

We have put extra weight on the first three assets, as is clearly visible in the figure. Some
details about the image are shown in the Table 6.1. We see the weight distance, given in Equation
(6.1) has decreased by 1/3, but the total distance of the matrix has doubled.

4

6.1.1 Choosing Weights

How to pick a weighting matrix W is an arbitrary process and depends on the origins of the
estimates. We try to cover most of the questions concerning this by considering the following
test case.

Given an invalid correlation matrix with n = 25 and positive entries ci,j and let the entries
of the diagonal weighting matrix W be given by

34

Distance per entry for the Iterative Spectral unweighted

i

j

5 10 15 20 25

5

10

15

20

25

Distance per entry for the Iterative Spectral weighted

i

j

5 10 15 20 25

5

10

15

20

250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.1: Distance of both the unweighted and weighted It. Spectral method per matrix entry.

Unweighted Weight

It. Spectral It. Spectral

Iterations 13 102

Unweight Distance 3.88 6.49

Weight Distance 0.27 0.09

CPU time (ms) 5.8 31.1

Table 6.1: Results from the Weighted and Unweighted Iterative Spectral method

wi, =

(
a, if i = 1, 2, 3

b, if i = 4, 5, . . . , 25

Then we test whether W depends on the absolute weights or just on the di↵erence between
them. Therefore, let a = 10b and consider b = 0.001, b = 0.01,b = 0.1, b = 1, b = 10. Define
the gain factor as the outcome of the unweighted divided by the weighted results. This is shown
in Table 6.2. As is clear, the number of iterations increases as b increases. So we should pick b

as small as possible. However, as we see for b = 0.001, the weighted distance has not increased,
but the total distance is worse. So the interval for the weighting entries is wi,i 2 (0, 1], where we
assign 1 to the entries which we have the most confidence in.

b = 0.001 b = 0.01 b = 0.1 b = 1 b = 10

Unweight Distance 0.66 0.79 0.83 0.84 0.84

Weight Distance 1.00 1.20 1.26 1.26 1.26

Iterations 2 7 15 26 36

Table 6.2: Gain factors from the Weighted and Unweighted Iterative Spectral method with
a = 10b

Remark: As we see, we can increase the speed of the Iterative Spectral method of Section
4.1 by using a weighting matrix W with all entries equal to a positive value b < 1. However, the

35

method is still slower than the Gradients Methods are and it is even less accurate, so we do not
include this adjustment.

Now, let a = 1. Then the question raises what value to assign to b, the rows which we have
less faith in. This is shown in Figure 6.2. We see that the gain factor on the weighted distance
decreases as b increases, so therefore we want b to be as low as possible. However, the total
distance and the number of iterations increases as b decreases.

0 0.2 0.4 0.6 0.8 1
3.5

4

4.5

5

5.5

6

b

D
is

ta
n
ce

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

b
W

e
ig

h
te

d
 D

is
ta

n
ce

Comparing weights for the Iterative Spectral Method

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

b

It
e
ra

tio
n
s

Unweight It. Spectral
Weight It. Spectral

Unweight It. Spectral
Weight It. Spectral

Unweight It. Spectral
Weight It. Spectral

Figure 6.2: n = 25 invalid correlation matrix example. Assigned 1 to the first three weights, and
b to the others.

6.2 Weighting the Scaled Spectral Method

We can apply the same weighting to the Scaled Spectral method. This is exactly analog with
the Iterative Spectral method, so we only mention the algorithm.

Algorithm 9 (Weighted Scaled Spectral method). Let C be an n ⇥ n (non-positive definite)
correlation matrix and W be a positive definite diagonal matrix. Then

1. Spectral decompose W

1/2
CW

1/2 as in Theorem 1, with L the diagonal matrix with eigen-
values and S the orthogonal matrix with eigenvectors as columns.

2. Let L+ be L with negative eigenvalues changed to a small positive value a.

36

3. Denote the entries of S by si,j . Calculate the scaling matrix T with entries ti,j given by

T ⌘

8
<

:
ti,j =

hP
j s

2
i,j�j

i�1
, i = j

ti,j = 0, i 6= j

4. Set C2 = W

�1/2
p

TSL

+
S

T
p

TW

�1/2.

The implementation of the Weighted Scaled Spectral method is given in Section 11.12. We
illustrate the addition of weighting on the scaled method in the following example.

Example 6.2. As in Example 6.1, we add more weights to the first three rows and columns.
This results in Figure 6.3. From this figure we see the overall distance has increased. This is
indeed correct, the Unweight Scaled Spectral method has a distance of 4.8, the Weighted has a
distance of 5.7. The computation time is almost the same for both methods, since it only di↵ers
by 4 times the multiplication of a diagonal matrix.

And the good part is, the weighted distance has decreased, but only slightly, from 0.28 to
0.17.

Distance per matrix entry c
i,j

 for the Scaled Spectral method

j

i

5 10 15 20 25

5

10

15

20

25

Distance per matrix entry c
i,j

 for the Weighted Scaled Spectral method

j

i

5 10 15 20 25

5

10

15

20

25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.3: Distance of both the unweighted and weighted Scaled Spectral method per matrix
entry.

4

37

7 Other Methods

There are a number of other methods around which are not discussed in the comparison. In this
section those methods are shortly discussed and the advantages and disadvantages are listed.

7.1 Hypersphere Method

This method is first introduced in [15] and is based on spherical coordinates. We parameterize
a matrix B such that BB

T has unit diagonal. This can by done by spherical coordinates with
unit diagonal. These are given by

bi,j =

8
>>>><

>>>>:

cos ✓i,j

j�1Y

k=1

sin ✓i,k, for j = 1..n� 1

j�1Y

k=1

sin ✓i,k. for j = n

(7.1)

Because all entries of B are products of cosine and sine functions, their values will be between
-1 and 1 and so are all values of BB

T . We prove that BB

T has unit diagonal.

Theorem 8 (Hypersphere unit diagonal). View matrix B as a projection on a unit hypersphere,

which coordinate system is given by Equation (7.1). Then the diagonal entries of BB

T
are equal

to 1.

Proof. Let B be given by Equation (7.1). Then i

th diagonal element of BB

T is given by

Pn
j=1 b

2
i,j =

Pn�1
j=1

⇣
cos ✓i,j ·

Qj�1
k=1 sin ✓i,k

⌘2
+
⇣Qn�1

k=1 sin ✓i,k
⌘2

,

=
Pn�1

j=1 cos2 ✓i,j ·
Qj�1

k=1 sin
2
✓i,k +

Qn�1
k=1 sin

2
✓i,k.

Now we have an expression for the diagonal entries, we show by induction that it equals one
by taking the last item from the sum, and compare it with the term bin. We note we can write
cos2 +sin2 = 1 out of the brackets, and reduce the summation by one step:

Pn
j=1 b

2
i,j =

Pn�2
j=1 cos2 ✓i,j ·

Qj�1
k=1 sin

2
✓i, + cos2 ✓i(n�1) ·

Qn�2
k=1 sin

2
✓i, +

Qn�1
k=1 sin

2
✓i,k,

=
Pn�2

j=1 cos2 ✓i,j ·
Qj�1

k=1 sin
2
✓i,k + (cos2 ✓i(n�1) + sin2 ✓i(n�1))

⇣Qn�2
k=1 sin

2
✓i,

⌘
,

=
Pn�2

j=1 cos2 ✓i,j ·
Qj�1

k=1 sin
2
✓i,k +

Qn�2
k=1 sin

2
✓i,k.

If we iterate over the above steps n� 1 times, we get the result

nX

j=1

b

2
i,j = cos2 ✓i,1 + sin2 ✓i,1 = 1.

We now have an unconstrained parameterization of a valid correlation matrix. However, it
introduces n(n-1) parameters ✓ for only n(n�1)/2 matrix entries, since the diagonal is fixed and
the matrix is symmetric. As is shown by Brigo en Mercurio in [15], the resulting matrix depends
only on the di↵erence between parameters. We show this in the next example.

38

Example 7.1 (Hypersphere decomposition for a 2⇥ 2 matrix). Consider the 2⇥ 2 case hyper-
sphere coordinates system, then B is given by

B =

cos ✓1,1 sin ✓1,1

cos ✓2,1 sin ✓2,1

!
and BB

T =

1 cos(✓1,1 � ✓2,1)

cos(✓1,1 � ✓2,1) 1

!
.

We note we only have one missing value, which depends on the di↵erence between two parameters
✓1,1 and ✓2,1.

4

Because all correlations depend on the di↵erence between vectors, and not on the coordinates
of a vector itself, we parameterize the di↵erence between angles, as in [15]. Consider vi as the
i

th column of BT . Take the first column v1 as the reference column, so let it be the unit vector
e1

3.
Now, consider the second vector v2 such that it forms an angle ✓2,1 = arccos(c1,2) with the

first vector in the (x1, x2) plane, such that v1v2 = c1,2 follows. Note that we only allow ✓2,1 to

be in [0,⇡]. Each ✓̂2,1 = 2⇡ � ✓2,1 also complies, but we only use the first solution, such that it
is unique.

Then the third vector v3 must satisfy c1,3 = v3v1 and c2,3 = v2v1. This can be fulfilled by
rotating e1 through two angles, ✓3,1 in the (x1, x2) plane and ✓3,2 in the (x2, x3) plane, as shown
in Figure 7.1.

Figure 7.1: The first three columns of BT . v1 lies along the x1 axis, v2 rotated over ✓2,1 radians
in the (x1, x2) plane and v3 is a rotation of ✓3,1 radians in the (x1, x2) plane (w3) and a rotation
of ✓3,2 in the (x2, x3) plane.

The mathematical interpretation of rotating vectors in di↵erent dimensions is given by Jacobi
Rotations.

3The ith unit vector is a vector consisting of all zeros but a one on the ith position, denoted by ei.

39

Definition 8 (Jacobi Rotations). Denote xi the i

th
coordinate in Rn

The Jacobi rotation by

clockwise angle ✓ of a vector w 2 Rn
in the (xi, xk) plane by applying the following n⇥n matrix

G

4

G(i, k; ✓) =

0

BBBBBBBBBBBBBB@

1 · · · 0 · · · 0 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · cos ✓ · · · sin ✓ · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · � sin ✓ · · · cos ✓ · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · 0 · · · 0 · · · 1

1

CCCCCCCCCCCCCCA

.

We show how to derive the mentioned rotations of the vectors vi above by multiplying it by
the Jacobi rotation matrix G in the following example.

Example 7.2 (Applying Jacobi Rotations). Rotate e1 over ✓2,1 counterclockwise in the (x1, x2)
plane.

G(1, 2;�✓2,1)e1 =

0

BBBBBBB@

cos ✓2,1 � sin ✓2,1 0 · · · 0

sin ✓2,1 cos ✓2,1 0 · · · 0

0 0 1 . . . 0
...

... 0
. . . 0

0 0 0 . . . 1

1

CCCCCCCA

0

BBBBBBB@

1

0

0
...

0

1

CCCCCCCA

=

0

BBBBBBB@

cos ✓2,1

sin ✓2,1

0
...

0

1

CCCCCCCA

.

4

Applying those rotations for each vi as column of BT gives us B̂, with its entries b̂i,j given
by

b̂i,j =

8
>>>>>>><

>>>>>>>:

cos ✓i,j

j�1Y

k=1

sin ✓i,k, for j = 1..n� 1,

j�1Y

k=1

sin ✓i,k, for j = n,

0, for i+ 1  j  n,

(7.2)

with ✓ 2 [0,⇡]. As we note, this is the same as de hypersphere coordinates, but only the lower
diagonal part. To get rid of the bounded region for ✓, we introduce

✓k,j =
⇡

2
� arctanxk,j , for j = 1, . . . , k � 1

which maps the function from ✓ 2 [0,⇡] to x 2 [�1,1]. This changes (7.2) with the fact that

cos
⇣
⇡

2
� arctanxi,j

⌘
=

xi,jq
x

2
i,j + 1

and sin
⇣
⇡

2
� arctanxi,j

⌘
=

1q
x

2
i,j + 1

,

4Matrix G only di↵ers from the identity matrix in the entries (i, k), (k, i), (i, i), (k, k).

40

and some simple algebra to

b̂i,j =

8
>>>>>>>><

>>>>>>>>:

xi,j

jY

k=1

(x2
i,k + 1)

!� 1
2

, for j = 1..i� 1

j�1Y

k=1

(x2
i,k + 1)

!� 1
2

, for j = i

0, for i+ 1  j  n

(7.3)

with x 2 Rn⇥n�1, where xi,j = 0 for j � i.
Now, we use this parameterization to iterate from a starting vector x0 to a vector x̂ which

results in the nearest valid correlation matrix BB

T to the invalid correlation matrix C.
Therefore, we need to derive a starting vector x0. We show how to find this vector using the

Scaled Spectral decomposition in the next example.

Example 7.3 (Inverse Triangular Angle Parameterization). Let C be as in Example 3.1. After
applying spectral decomposition (with a = 10�13), we get a valid correlation matrix Ĉ as in
Equation (4.8). Now we apply a Cholesky decomposition to get an upper triangular matrix B

T ,
which satisfies Ĉ = BB

T .

B =

0

BB@

1.0000 0 0

0.8932 0.4496 0

0.6958 �0.7126 0.0895

1

CCA

By inverting Equation (7.3), we get

xi,j =

8
>>>>><

>>>>>:

bi,j

�
1� b

2
i,j

�� 1
2
, for j = 1

bi,j

0

@
nX

k=j+1

b

2
i,k

1

A
� 1

2

, for j = 2..i� 1

0. for i+ 1  j  n

(7.4)

Here x is a matrix containing zeros for i+ 1  j  n, To remove all unused entries, we redefine
coordinate the vector x corresponding to a valid correlation matrix Ĉ as

x = (x2,1, x3,1, x3,2, x4,1, . . . , xn,n�1).

with xi,j defined as in equation 7.4. And use it as the starting vector x0 for the algorithm. For
the example, this means,

x0 = (1.9866, 0.9688,�7.9643).

4

The Matlab functions tap(x), which is an implementation in Matlab of Equation (7.3), and
the function arctap(B), which is the implementation of Equation (7.4) are included in Section
11.13.

41

7.1.1 Results for the Hypersphere method

We described how to parameterize B in a way BB

T always has unit diagonal. This is a property
none of the other methods have. However, we have not found a fast way to implement the
parameterization in Matlab, since it cannot be expressed easily as matrix multiplication.

Also, as soon as we have an input matrix, we need to minimize the distance. The build-in
matlab-function fminsearch could do this, but it is very slow (> 30 seconds for a 50⇥50 matrix).
An improvement is the function fminunc, which takes about 10 seconds for the same matrix.
But this is still far to slow, since the Iterative Spectral method takes about 0.007 seconds to
calculate the nearest valid correlation matrix to the same matrix.

We could speed up the process by calculating the gradient of the target function with respect
to the input vector x. But since we have no nice way of writing B as a function of x We did not
succeed in calculating the gradient of B with respect to x, if this is even possible.

The Hypersphere Decomposition method could only be a fast method if it the gradient of the
distance with respect to x is calculated and an e�cient implementation of the parameterization
is found.

7.2 Vines Method

The method of vines is discussed in [12] by Kurowicka and Cooke and is based on the partial
correlation of random variables. We demonstrate how the method works, but do not cover the
full theory behind it. More on vines in [4].

Definition 9 (Partial Correlation). Let X1, . . . , Xn be random variables, and let {i, j, k} be a set

of distinct indices and let S be a set of indices disjoint from {i, j, k}. Then the partial correlation

of Xi and Xj given {Xk,
S
{Xh|h 2 S}} is

⇢ij;kS =
⇢ij;S � ⇢ik;S⇢jk;Sq
1� ⇢2ik;S

q
1� ⇢2jk;S

.

Where ⇢ij is the correlation between Xi and Xj. If ⇢

2
ik;S = 1 or ⇢

2
jk;S = 1, then the partial

correlation is undefined.

We illustrate this by the use of an example.

Example 7.4. Since the example matrix of size 3⇥3 we used before in the examples is not very
illustrative in this application, let

C =

0

BBBBBBB@

1 �0.6 �0.8 0.5 0.9

�0.6 1 0.6 �0.4 �0.4

�0.8 0.6 1 0.1 �0.5

0.5 �0.4 0.1 1 0.7

0.9 �0.4 �0.5 0.7 1

1

CCCCCCCA

.

Then we calculate the partial correlation

⇢2,3;1 =
⇢2,3 � ⇢1,2⇢1,3q
1� ⇢21,2

q
1� ⇢21,2

=
0.6� (�0.6)(�0.8)p

1� (�0.6)2
p

1� (�0.8)2
= 0.25

In the above partial correlation, we call 1 the root-node, and since it is only one variable, X1,
we call this a partial correlation of order one.

42

By this formula we can calculate all partial correlations with root one, which are

⇢2,3;1 ⇢2,4;1 ⇢2,5;1

⇢3,4;1 ⇢3,5;1 ⇢4,5;1

!
=

0.25 �0.14 0.40

0.96 0.84 0.66

!
.

Using all partial correlations of order one, we calculate all second order partial correlations and
also the third order partial correlation.

⇣
⇢3,4;12 ⇢3,5;12 ⇢45;12

⌘
=
⇣
1.04 0.84 0.79

⌘
,

⇣
⇢4,5;123

⌘
=
⇣
0.47i

⌘
.

4

The reason the last partial correlation ⇢4,5;123 is complex, is since ⇢3,4;12 /2 (�1, 1). This is
also the criterion for positive definiteness. A estimated correlation matrix C is positive definite
if all partial correlations are contained in (�1, 1) [12, Thrm. 3.2]. This is implemented in the
next algorithm.

Algorithm 10 (Checking Positive definiteness by Vines). Let C0 be an n⇥ n estimated corre-
lation matrix, then calculate all partial correlations by repeating for k = 1, 2, . . . (n� 2),

1. Write Ck =

Xk Yk

Y

T
k Zk

!
, where Xk is a 1 ⇥ 1 matrix, Yk a 1 ⇥ (n � 1) matrix and Zk a

(n� 1)⇥ (n� 1) matrix,

2. Compute Ck+1 = Zk � Y

T
k Yk.

3. Create a scaling matrix T , with entries ti,j given by

ti,j =

(
c

�1
i,j if i = j,

0 if i 6= j.

4. Scale Ck+1 =
p

TCk+1

p

T .

5. if all entries of Ck+1 are contained in (�1, 1), continue. If one entry is outside the interval,
C is non positive definite.

The Matlab implementation of Algorithm 10 is given in Section 11.14. This algorithm is
derived in [12, section 4]. Using this algorithm, we develop a method of correcting non positive
definite correlation matrices.

If by applying Algorithm 10, we find a partial correlation not in (�1, 1), we replace it with
a close value inside that interval. For example if a partial correlation is �1.4, we replace it by
�0.9, if it was originally 1.4, we replace it by 0.9. The closer we stay to the original value, the
less will the distance of the resulting matrix to the original one [12, Thrm 5.1]. We illustrate this
by continuing the previous example.

Example 7.5. We continue with the results of Example 7.4. As we saw, ⇢3,4;12 > 1, so we
replace it by V (⇢3,4;12) = 0.9, but now, we have to change ⇢3,4;1 and ⇢3, 4 by inverting the
definition of partial correlations to

⇢3,4;1 = ⇢3,4;12

q
1� ⇢22,3;1

q
1� ⇢22,4;1 + ⇢2,3;1⇢2,4;1 = 0.96,

43

and

⇢3,4 = ⇢3,4;1

q
1� ⇢21,3

q
1� ⇢21,4 + ⇢1,3⇢1,4 = 0.03.

Now, we have only changed ⇢3,4 in the estimated correlation matrix and by recalculating all
partial correlations with this changed value, we see C is positive definite now with

C =

0

BBBBBBB@

1 �0.6 �0.8 0.5 0.9

�0.6 1 0.6 �0.4 �0.4

�0.8 0.6 1 0.029 �0.5

0.5 �0.4 0.029 1 0.7

0.9 �0.4 �0.5 0.7 1

1

CCCCCCCA

.

Note that only cell (3,4) is altered. This results into a distance of 0.1. For comparison, the
Iterative Spectral method results into a distance of 0.015 which is about seven times more
accurate. 4

The implementation in Matlab of the method described in Example 7.5 is given in Section
11.15.

7.2.1 Results for the Vines Method

The Vines method only changes wrong values of an estimated correlation matrices, and therefore,
it loses accuracy. So in general, it is not accurate and also, it is quite slow since for an n ⇥ n

matrix, we need to calculate
(n� 2)(n� 1)n

6


n

3

6
,

partial correlations. And if one of the partial correlations has to be adjusted, we have to recal-
culate most of the previously done calculations.

Also, we ran into numerical roundo↵ errors, since we adjust only the wrong correlations, the
matrices balances on the edge of non positive definiteness, and there is no solution yet to fix this.

So for the unweighted problem this method is not fast and accurate enough. But since the
method changes only specific wrong correlations, we might use it for the weighting problem.

7.2.2 Weighting Correlations with the Vines Method

The vines method favors the first row of the correlation matrix. These entries are not changed.
The changes are greater the further we go from the first row. Hence, we should rearrange variables
to have to most reliable entries in the first row [12, Remark 5.2].

We create a diagonal matrix W with diagonal entries wi,i which denote the confidence we
have in the estimated correlations of Xi. This confidence is a relative number, which is used to
reorder the rows and columns of the correlation matrix.

For a randomly generated invalid correlation matrix with n = 25 and entries ci,j 2 [�1, 1],
we compare both the weighted and unweighted versions. The results are shown in Table 7.1 and
Figure 7.2. We see the re-ordering allows us to reduce the weighted distance, but if we compare
this to weighting the same matrix with the Iterative Spectral method, we see the distance is 9.4
and the weighted distance is 6.6, so the Vines method is also for applying weighted not accurate
enough.

The implementation of the Weighted Vines method is given in Section 11.16.

44

Unweighted Weight

Vines Vines

Iterations 299 299

Unweight Distance 17.7 18.6

Weight Distance 16.8 15.0

CPU time (ms) 26 22

Table 7.1: Results from the Weighted and Unweighted Vines method for an n = 25 matrix with
entries ci,j 2 [�1, 1].

Distance per matrix entry c
i,j

 for the Vines method

j

i

5 10 15 20 25

5

10

15

20

25

Distance per matrix entry c
i,j

 for the Weighted Vines method

j

i

5 10 15 20 25

5

10

15

20

250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 7.2: Comparing the Vines method with (left) and without (right) reordering the rows. We
no confidence in the first three rows (wi,i = 0.01) and full confidence in the other rows (wi,i = 1).

7.3 Quadratically Convergent Newton Method

This method is introduced by Qi and Sun in [14], and is based on the dual of the problem. An
improved version is derived by Borsdorf and Higham in [5]. The dual of the problem of finding
the nearest correlation matrix is given by minimizing

1

2
||(A+ diag(y))+||

2
F � e

T
y,

where the operator (·)+ is the projection of a matrix on the set of positive definite matrices.
This projection is the same as the projection PS described by Higham in Section 4.1.1. Spectral
decompose the invalid correlation matrix and replace the negative eigenvalues by a small positive
value a. Then put the matrix back together like in the Spectral methods.

However, the gradient is not explicitly available and needs to be approximated, but this
results in a much slower algorithm than the Gradient Updating method.

45

8 Conclusion

In this report, we have discussed di↵erent methods of correcting non positive definite correlation
matrices. As we have seen in Section 3, the fastest way to check if a matrix is positive definite
is by applying the Cholesky decomposition. If this method fails to compute the Cholesky factor
M of a matrix C, then C is non positive definite.

When we have computed a valid correlation matrix, we want to know how close it is to its
original one. Therefore, we use the Frobenius norm to measure accuracy. The Frobenius norm
for matrices sums over the absolute di↵erence of all matrix entries.

The most accurate method is the Iterative Spectral method of Section 4.1 with Dykstra’s
corerction (Algorithm 3). For matrices up to 25⇥ 25 the Iterative Spectral method is about four
times slower than the Adjusted Gradients method. Since the Iterative Spectral method uses an
eigenvalue decomposition each iteration, it is extremely slow for large matrices. For a matrix of
size 500⇥ 500, it is about 50 times slower than the Adjusted Gradients method.

To correct a non positive definite correlation matrix, the best method appears to be the Ad-
justed Gradients method with an Scaled initial matrix. This method is discussed in Section 4.4.
It is nearly as accurate as the Iterative Spectral method, and is very fast. (Table 5.1). Also, since
this method produces a valid correlation matrix every iteration, we can specify what distance
is acceptable for us. Of course, by increasing the accuracy we also increase the computational
time.

The Adjusted Gradient Updating method with Scaled initial matrix is flexible, fast and has
with a good accuracy. Therefore, this method is the winning method.

We have also looked at weighing correlations. This is done in Section 6. It can be implemented
for the Spectral methods, and has most e↵ect for the Iterative Spectral method. We can add
weights per matrix row (or column, since a correlation matrix is symmetric). We can decrease
the weighed distance with a factor three, but then the unweighted distance doubles. Also, the
number of iterations increases when adding weights. Since the Iterative Spectral method was
was already slow, this weighting can only be applied to small matrices, up to about size 25⇥ 25.

Weighting can also be applied to the Scaled Spectral method, but its not very e↵ective.
Two other methods which are not yet fast enough are the Quadratically convergent Newton

method of Section 7.3 and the Vines method of Section 7.2. If the quadratically convergent
Newton method can be implemented e�ciently, it would be useful for large matrices of size
1000⇥ 1000 and higher.

The Vines method is a di↵erent method than all others since it only changes those correlations
which it determines are wrong. However, is it not very fast and is a↵ected by numerical round-o↵
errors, for which no solution was found.

46

9 Recommendations and Discussion

As mentioned in the conclusion of Section 8, the winning method is the Adjusted Gradient
Updating method with scaled initial matrices.

However, we have only measured it’s accuracy in terms of the Frobenius norm. To use this
method in a real life financial environment, it is advisable to first check the impact of the changes
to asset prices, as we do not measure that.

All of the matrices are only tested in Matlab. Since Matlab if very e�cient in making calcu-
lations with matrices, we have reformulated the algorithms in terms of matrix multiplications.
However, when using another programming environment, results may di↵er.

For testing the methods, we have generated invalid correlation matrices of size n⇥n using the
Matlab function generate cor(n) of Section 11.2. These random invalid correlation matrices
might not be a good representation of real financial correlation matrices, and therefore the
converging speed and the resulting distance may di↵er from the results shown in this paper.
However, the results for the randomly generated matrices are promising.

47

10 References

[1] R Adams. Calculus : a complete course. Pearson Addison Wesley, 7th edition, 2010.

[2] L Armijo. Minimization of functions having Lipschitz continious first partial derivatives.
Pacific Journal of Math., 16(1):1–3, 1966.

[3] F Beauregard. Linear Algebra. Addison-Wesley, 3th edition, 1995.

[4] T Bedford and R Cooke. Vines - a new graphical model for dependent random variables.
Ann. Statist., 30(4):1031–1068, 2002.

[5] R Borsdorf and N Higham. A preconditioned Newton algorithm for the nearest correlation
matrix. IMA J. Numer. Anal., 30(1):94–107, 2010.

[6] F Deutsch. The method of alternating orthogonal projections. In Approximation theory,

spline functions and applications. Kluwer Acad. Publ., 105-121, 1992.

[7] R Dykstra. An algorithm for restriced least squares regression. J. Amer. Stat. Assoc.,
78(384):837–842, 1983.

[8] S Han. A successive projection method. Math. Prog., 40:1–14, 1988.

[9] N Higham. Accuracy and Stability of Numerical Algorithms. Philadelphia: Soc. Industrial
and Appl. Math., 1996.

[10] N Higham. Computing the nearest correlation matrx - a problem from finance. Numer.

Anal., 22:329–343, 2001.

[11] N Higham. Cholesky factorization. Wiley Interdisciplinary Reviews: Computational Statis-

tics, 1(2):251–254, 2008.

[12] D Kurowicka and R Cooke. A parameterization of positive definite matrices in terms of
partial correlation vines. Lin. Alg. Appl., 372:225–251, 2003.

[13] D Lay. Linear Algebra and its Applications. Addison Wesley, New York, 1993.

[14] H Qui and D Sun. A quadratically convergent newton method for computing the nearest
correlation matrix. Siam J. Matrix Anal. Appl., 28(2):360–385, 2005.

[15] F Rapisarda, D Brigo, and F Mercurio. Parameterizing correlations: a geometric interpre-
tation. IMA J Management Math, 1:55–73, 2007.

[16] R Rebonato and P Jäckel. The most general methodology to create a valid correlation
matrix for risk management and option pricing purposes. J. Risk, 2(2):17–27, 1999.

[17] K Schöttle and R Werner. Improving “the most general methodology to create a valid
correlation matrix”. 2004.

[18] S Schreve. Stochastic calculus for finance. Springer Finance, 2004.

[19] P Wolfe. Convergence conditions for ascend methods. SIAM Rev., 11(2):226–235, 1969.

[20] Y Zhang and J Yin. Modified alternative gradients algorithm for computing the nearest
correlation matrix. Internal paper of the Tongji University, Shanghai.

48

11 Matlab-files

Here are the Matlab files listed used in this report.

11.1 Test Correlation

The function test cor(C) is used to test is a matrix C is a valid correlation matrix.

0 f unc t i on [varargout] = t e s t c o r (C)
%TestCor Test i f the matrix C i s a va l i d c o r r e l a t i o n matrix
t o l l = 1e�14; % e r r o r t o l l e r a n c e
varargout {1} = f a l s e ;

5 % te s t i f M i s square
i f (s i z e (C, 1) ˜= s i z e (C, 2))

i f (nargout == 0)
d i sp (’E : Matrix i s not square ’)

end
10 r e turn

end

% t e s t f o r ones on the d iagona l
i f (f i nd (abs (diag (C)�1)>t o l l , 1))

15 i f (nargout == 0)
d i sp (’E : Not j u s t ones on the d iagona l ’)

end
return

end
20

% te s t f o r va lue s between �1 and 1
i f (f i nd (C>1+t o l l))

i f (nargout == 0)
d i sp (’E : Matrix e n t r i e s ou t s i d e [�1 ,1] ’) ;

25 end
return

end
i f (f i nd (C<�1� t o l l))

i f (nargout == 0)
30 di sp (’E : Matrix e n t r i e s ou t s i d e [�1 ,1] ’) ;

end
return

end

35 % te s t f o r symmetry
i f (max(max(abs (C�C’)))>=t o l l)

i f (nargout == 0)
d i sp (’E : Matrix i s not symetr i c ’) ;

end
40 r e turn

end

% t e s t f o r p o s i t i v e d e f i n i t e n e s s
[˜ , p] = cho l (C) ;

45 i f (p>0)
i f (nargout == 0)

d i sp (’E : Matrix non p o s i t i v e d e f i n i t e ! ’) ;
end
return

50 end

varargout {1} = true ;

49

end

11.2 Generate Invalid Correlation Matrix

To generate a random invalid correlation matrix of size n we use

0 f unc t i on [C] = gene r a t e c o r (vararg in)
% This gene ra t e s a random inv a l i d c o r r e l a t i o n layout matrix
% Input matrix dimension , lower entry bound , upper entry bound
% Output C: i n v a l i d co r r . matrix

5 % Defau l t parameters
n = 25 ;
lower = �1;
upper = 1 ;

10 % input parameters
i f (narg in > 0) n = vararg in {1} ; end
i f (narg in > 1) lower = vararg in {2} ; end
i f (narg in > 2) upper = vararg in {3} ; end

15

f o r i = 1:1000

% sampleuniform from [lower , upper]
C = lower + rand (n , n) ⇤(upper�lower) ;

20

% take only the upper t r i a n gu l a r and
% the d iagona l 1 ’ s
C = t r i u (C, 1) + eye (n) + t r i u (C, 1) ’ ;

25 % repeat u n t i l l matrix i s non p o s i t i v e d e f i n i t e
[˜ , p] = cho l (C) ;
i f (p ˜= 0)

re turn
end

30 end

end

11.3 Cholesky decomposition

Given a symmetric positive definite matrix A, we calculate the Cholesky factor M as in Section
3.2.

0 f unc t i on [M] = cho le sky (A)
%CHOLESKY computes the cho l e sky f a c t o r M of symmetric input matrix A

n = length (A) ;
M = ze ro s (n) ;

5 % per row
f o r i = 1 : n

% lower d iagona l e n t r i e s
f o r j = 1 : i�1

10 M(i , j) = (A(i , j) � M(i , :) ⇤M(j , :) ’) /M(j , j) ;
end

50

% diagona l e n t r i e s
M(i , i) = sq r t (A(i , i)�M(i , :) ⇤M(i , :) ’) ;

15

%check f o r p o s i t i v e d e f i n i t e n e s s
i f (imag (M(i , i)) ˜= 0)

M = f a l s e ;
r e turn

20 end
end

end

11.4 Iterative Spectral Method

0 f unc t i on [output] = p o s d e f i t e r a t i v e s p e c t r a l (vara rg in)
% I t e r a t i v e Spec t r a l Method , input i n v a l i d c o r r e l a t i o n matrix C

%%%%%%%% Defau l t Parameters
a = 1e�3; % 1e�3 i s in l i n e with my repor t .

5

%%%%%%%% Input parameters
% Input at l e a s t a matrix M
i f (narg in <1)

d i sp (’ Naive Method : Not enough input arguments . ’) ;
10 di sp (’ Input : C , [a] . Die now . . ’) ;

r e turn
end

% This i s our t a r g e t matrix
15 C = vararg in {1} ; % This i s our t a r g e t matrix

n = length (C) ; % matrix dimension
Cold = C; % save the o ld matrix f o r comparison

% accuary , s e t e i g enva lu e s to t h i s va lue .
20 i f (narg in >= 2 && vararg in {2}>=0)

a = vararg in {2} ;
end

t i c
25

f o r i = 1:200

% Step 5 � Set the d iagona l e lements o f C to 1 and go to step 1
C(eye (n) ˜=0) = 1 ;

30

% Step 1 � Decompose C = SLSˆT, where S i s
% the e i genspace cor re spond ing to e i g enva lue matrix L .
[S , L] = e i g (C) ;

35 % Step 2 � I f a l l e i g enva lu e s are po s i t i v e , then stop . Else , cont inue .
i f (d iag (L)>0)

break
end

40 % Step 3 � r ep l a c e the negat ive e i g enva lu e s o f L with
% smal l po s t i v e va lue a .
L = diag (max(diag (L) , a)) ;

% Step 4 � c a l c u l a t e C = SLSˆ{T}$
45 C = S⇤L⇤S ’ ;

51

end

% exeeded the number o f i t e r a t i o n s , qu i t .
50 % disp (’ Ex i t ing : Po s i t i v e d e f i n i t e n e s s not reached ’) ;

output . method = ’ Naive ’ ;
output .C = C;
output .M = C;
output . i t e r a t i o n s = i �1;

55 output . d i s t = norm(output .C�Cold , ’ f r o ’) ;
output . time = toc ;
output . a = a ;
output . v a l i d = t e s t c o r (output .C) ;

end

11.5 Alternating Projections Method

0 f unc t i on [output] = po sd e f a l t e r n a t i n g (vara rg in)
%POSDEFALTERNATE Alte rnat ing Pro j e c t i on s by Higham

%%%%%%%% Defau l t Parameters
a = 1e�3; % 1e�3 i s in l i n e with my repor t .

5

%%%%%%%% Input parameters
% Input at l e a s t a matrix C
i f (narg in <1)

d i sp (’ Sca led Spec t r a l Method : Not enough input arguments . ’) ;
10 di sp (’ Input : C , [a] . Die now . . ’) ;

r e turn
end
C = vararg in {1} ;

15 % accuary , s e t e i g enva lu e s to t h i s va lue .
i f (narg in >= 2 && vararg in {2}>=0)

a = vararg in {2} ;
end

20 t i c

n = length (C) ;
de l taS = ze ro s (n) ;

25 % s t a r t i n g va lues
Cold = C;

f o r k=1:200
R = C � de l taS ;

30

% pro j e c t i o n S
[S ,L] = e i g (R) ;

% s e t e i g enva lu e s to p o s i t i v e ones
35 L = diag (max(diag (L) , a)) ;

% put C back toge the r
C = S⇤L⇤S ’ ;

40 % ca l c u l a t e de l t a S
de l taS = C � R;

% pro j e c t i o n U
C(eye (n) ˜=0) = 1 ;

45

52

% check i f C i s p o s i t i v e d e f i n i t e .
[˜ , p] = cho l (C) ;

% break i f posde f .
50 i f (p == 0)

break ;
end

end

55 output . method = ’ Al t e rnat ing Pro j e c t i on s ’ ;
output .C = C;
output . i t e r a t i o n s = k ;
output . d i s t = norm(output .C�Cold , ’ f r o ’) ;
output . a = a ;

60 output . time = toc ;
output . v a l i d = t e s t c o r (output .C) ;

end

11.6 Scaled Spectral Decomposition

0 f unc t i on [output] = p o s d e f s c a l e d s p e c t r a l (vara rg in)
% Scaled Spec t r a l Method

%%%%%%%% Defau l t parameters
a = 1e�13;

5

%%%%%%%% Input parameters
% Input at l e a s t a matrix C
i f (narg in <1)

d i sp (’ Sca led Spec t r a l Method : Not enough input arguments . ’) ;
10 di sp (’ Input : C , [a] . Die now . . ’) ;

r e turn
end

% This i s our t a r g e t matrix
15 C = vararg in {1} ;

% s t a r t i n g po s i t i o n f o r e i g enva lue value . a >= 0
i f (narg in >= 2 && vararg in {2}>=0)

a = vararg in {2} ;
20 end

%%% Star t Algoritme
t i c

25 % Step 1
[S ,L] = e i g (C) ;

% Step 2
L = diag (max(diag (L) , a)) ;

30

% Step 3 (i n c l ud ing the r i g h t mu l t i p l i c a t i o n o f S
T = sq r t (diag (1 . / (S .ˆ2⇤ diag (L)))) ⇤S ;

% Output
35 output . method = ’ Sca led Spec t r a l ’ ;

% Step 4
output .C = T⇤L⇤T’ ;
output . d i s t = norm(output .C�C, ’ f r o ’) ;

40 output . time = toc ;
output . a = a ;

53

output . v a l i d = t e s t c o r (output .C) ;

end

11.7 Gradient Updating Method, Starting Scaled

0 f unc t i on [output] = po sde f g r ad i en t (vararg in)
% Gradients Updating Algorithm

%%%%%%%% Defau l t parameters
s = 0 . 5 ; % sigma , balance between speed and accuracy

5 t o l = 1e�2; % stopping c r i t e r i a
s t ep s = 2 : 1 0 0 ; % number o f i t e r a t i o n s .

%%%%%%%% Input parameters
% Input at l e a s t a matrix C

10 i f (narg in <1)
d i sp (’ Gradient Method : Not enough input arguments . ’) ;
d i sp (’ Input : C , [s , to l , s t ep s] . Die now . . ’) ;
r e turn

end
15

% This i s our t a r g e t matrix
C = vararg in {1} ;

% speed vs . accuracy in g rad i en t updating . s \ in [0 , 1)
20 i f (narg in >= 2 && vararg in{2}>=0 && vararg in {2}<1)

s = vararg in {2} ;
end

% to l e r an c e
25 i f (narg in >= 3 && vararg in {3}>0)

t o l = vararg in {3} ;
end

% maximum number o f i t e r a t i o n s . S ta r t from 2 !
30 i f (narg in >= 4 && vararg in {4}>=1)

s t ep s = 2 : (vararg in {4}+1) ;
end

%%%%%%%% Algorithm %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %%% th i s i s where the a lgor i thm s t a r t s

t i c

n = length (C) ;

40 % Choosing the input matrix B
B = C;
B(eye (n) ˜=0) = sq r t (n) /2 ;
B = repmat (1 . / sq r t (sum(B. ˆ2 , 2)) ,1 , n) .⇤B;
A = B’ ;

45

% Matrix Distance .
d i s t = ze ro s (l ength (s t ep s) , 1) ;
d i s t (1) = norm(B⇤A�C, ’ f r o ’) ;

50

mStart = 1 ;

% Star t I t e r a t i o n
f o r k = s t ep s

55

54

% step 1
gradA = B’ ⇤ (B⇤A�C) ;

f o r m = mStart : 5
60 % step 2

n1 = 2⇤(s ˆm) ⇤norm(gradA , ’ f r o ’) ˆ2/(norm(B⇤gradA , ’ f r o ’) ˆ2) ;

% step 3
A2 = A � n1⇤gradA ;

65

% step 4
gradB = (B⇤A2�C) ⇤A2 ’ ;

% step 5
70 n2 = 2⇤(s ˆm) ⇤norm(gradB , ’ f r o ’) ˆ2/(norm(gradB⇤A2 , ’ f r o ’) ˆ2) ;

% step 6 (Al l t ransposed removed)
B2 = B � n2⇤gradB ;

75 % step 7
B2 = (B2+A2 ’) /2 ;

% step 8 & 9
B2 = repmat (1 . / sq r t (sum(B2 . ˆ 2 , 2)) ,1 , n) .⇤B2 ;

80

% step 10
d i s t (k) = norm(B2⇤B2’�C, ’ f r o ’) ;

% step 11
85 i f (d i s t (k)�d i s t (k�1) < 0)

mStart = m;
B = B2 ;
A = B’ ;
break

90 end
end

% step 12 � s topping c r i t e r i a
i f (abs (d i s t (k)�d i s t (k�1)) / d i s t (k�1) < t o l)

95 break
end

end

100 % Output
output . method = ’ Gradient , Sca led ’ ;
output .C = B⇤B’ ;
output . d i s t = norm(output .C�C, ’ f r o ’) ;
output . time = toc ;

105 output . i t e r a t i o n s = k+1�s t ep s (1) ;
output . s = s ;
output . t o l = t o l ;
output . v a l i d = t e s t c o r (output .C) ;

end

11.8 Gradient Updating Method, Starting Cholesky

0 f unc t i on [output] = po sd e f g r ad i e n t c ho l (vara rg in)
% Gradients Updating Algorithm

%%%%%%%% Defau l t parameters
s = 0 . 5 ; % sigma , balance between speed and accuracy

55

5 t o l = 1e�2; % stopping c r i t e r i a
s t ep s = 2 : 1 0 0 ; % number o f i t e r a t i o n s .

%%%%%%%% Input parameters
% Input at l e a s t a matrix C

10 i f (narg in <1)
d i sp (’ Gradient Method : Not enough input arguments . ’) ;
d i sp (’ Input : C , [s , to l , s t ep s] . Die now . . ’) ;
r e turn

end
15

% This i s our t a r g e t matrix
C = vararg in {1} ;

% speed vs . accuracy in g rad i en t updating . s \ in [0 , 1)
20 i f (narg in >= 2 && vararg in{2}>=0 && vararg in {2}<1)

s = vararg in {2} ;
end

% to l e r an c e
25 i f (narg in >= 3 && vararg in {3}>0)

t o l = vararg in {3} ;
end

% maximum number o f i t e r a t i o n s . S ta r t from 2 !
30 i f (narg in >= 4 && vararg in {4}>=1)

s t ep s = 2 : (vararg in {4}+1) ;
end

%%%%%%%% Algorithm %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %%% th i s i s where the a lgor i thm s t a r t s

t i c

n = length (C) ;

40

% Cholesk ly approach input matrix
C = max(�0.99/(n�1) , (sum(sum(M))�n) /(nˆ2�n)) ⇤ ones (n , n) ;
C(eye (n) ˜=0) = 1 ;
C = cho l (C) ;

45 B = C’ ;

% Matrix Distance .
d i s t = ze ro s (l ength (s t ep s) , 1) ;
d i s t (1) = norm(B⇤A�C, ’ f r o ’) ;

50

mStart = 1 ;

% Star t I t e r a t i o n
f o r k = s t ep s

55

% step 1
gradA = B’ ⇤ (B⇤A�C) ;

f o r m = mStart : 5
60 % step 2

n1 = 2⇤(s ˆm) ⇤norm(gradA , ’ f r o ’) ˆ2/(norm(B⇤gradA , ’ f r o ’) ˆ2) ;

% step 3
A2 = A � n1⇤gradA ;

65

% step 4

56

gradB = (B⇤A2�C) ⇤A2 ’ ;

% step 5
70 n2 = 2⇤(s ˆm) ⇤norm(gradB , ’ f r o ’) ˆ2/(norm(gradB⇤A2 , ’ f r o ’) ˆ2) ;

% step 6 (Al l t ransposed removed)
B2 = B � n2⇤gradB ;

75 % step 7
B2 = (B2+A2 ’) /2 ;

% step 8 & 9
B2 = repmat (1 . / sq r t (sum(B2 . ˆ 2 , 2)) ,1 , n) .⇤B2 ;

80

% step 10
d i s t (k) = norm(B2⇤B2’�C, ’ f r o ’) ;

% step 11
85 i f (d i s t (k)�d i s t (k�1) < 0)

mStart = m;
B = B2 ;
A = B’ ;
break

90 end
end

% step 12 � s topping c r i t e r i a
i f (abs (d i s t (k)�d i s t (k�1)) / d i s t (k�1) < t o l)

95 break
end

end

100 % Output
output . method = ’ Gradient , Cholesky ’ ;
output .C = B⇤B’ ;
output . d i s t = norm(output .C�C, ’ f r o ’) ;
output . time = toc ;

105 output . i t e r a t i o n s = k+1�s t ep s (1) ;
output . s = s ;
output . t o l = t o l ;
output . v a l i d = t e s t c o r (output .C) ;

end

11.9 Adjusted Gradient Updating Method, Starting Scaled

0 f unc t i on [output] = po sd e f ad j u s t ed g r ad i en t (vara rg in)
% Adjusted Gradients Updating Algorithm

%%%%%%%% Defau l t parameters
s = 0 . 5 ; % sigma , balance between speed and accuracy

5 t o l = 1e�2; % stopping c r i t e r i a
s t ep s = 2 : 1 0 0 ; % number o f i t e r a t i o n s .

%%%%%%%% Input parameters
% Input at l e a s t a matrix C

10 i f (narg in <1)
d i sp (’ Adjusted Gradient Method : Not enough input arguments . ’) ;
d i sp (’ Input : C , [s , to l , s t ep s] . Die now . . ’) ;
r e turn

end
15

57

% This i s our t a r g e t matrix
C = vararg in {1} ;

% speed vs . accuracy in g rad i en t updating . s \ in [0 , 1)
20 i f (narg in >= 2 && vararg in{2}>=0 && vararg in {2}<1)

s = vararg in {2} ;
end

% to l e r an c e
25 i f (narg in >= 3 && vararg in {3}>0)

t o l = vararg in {3} ;
end

% maximum number o f i t e r a t i o n s . S ta r t from 2 !
30 i f (narg in >= 4 && vararg in {4}>=1)

s t ep s = 2 : (vararg in {4}+1) ;
end

%%%%%%%% Algorithm
35 % th i s i s where the a lgor i thm s t a r t s

t i c

% al so , d e f i n e the non�zero e lements o f the d iagona l s c a l i n g matrix T
% with r e sp e c t to the e igen�system S .

40 n = length (C) ;

% Input matrix , Sca led
B = C;
B(eye (n) ˜=0) = sq r t (n) /2 ;

45 B = repmat (1 . / sq r t (sum(B. ˆ2 , 2)) ,1 , n) .⇤B;
BB = B⇤B’ ;

% r i s the d i s t anc e
r = ze ro s (l ength (s t ep s) , 1) ;

50 r (1) = norm(BB�C, ’ f r o ’) ;
mStart = 1 ;

% i t e r a t e
f o r k = s t ep s

55

% Step 1
gradB = 2⇤(BB�C) ⇤B;

f o r m = mStart : 10
60

% Step 2
theta = . 5⇤ (s ˆm) ⇤(norm(gradB , ’ f r o ’) /(norm(gradB⇤B’ , ’ f r o ’))) ˆ2 ;

% Step 3
65 B2 = B � theta ⇤gradB ;

% Step 4 and 5
B2 = repmat (1 . / sq r t (sum(B2 . ˆ 2 , 2)) ,1 , n) .⇤B2 ;
BB = B2⇤B2 ’ ;

70

% Step 6 .
r (k) = norm(BB�C, ’ f r o ’) ;

% Step 7 .
75 i f (r (k)�r (k�1) < 0)

mStart = m;
B = B2 ;

58

break
end

80 end

% Step 8 .
i f (abs (r (k)�r (k�1)) / r (k) < t o l)

break ;
85 end

end

output . method = ’ Gradient Fast Sca led ’ ;
90 output .C = B⇤B’ ;

output . d i s t = norm(output .C�C, ’ f r o ’) ;
output . time = toc ;
output . i t e r a t i o n s = k+1�s t ep s (1) ;
output . s = s ;

95 output . t o l = t o l ;
output . v a l i d = t e s t c o r (output .C) ;

end

11.10 Adjusted Gradient Updating Method, Starting Cholesky

0 f unc t i on [output] = po sd e f ad j u s t e d g r ad i e n t ch o l (vara rg in)
% Adjusted Gradients Updating Algorithm

%%%%%%%% Defau l t parameters
s = 0 . 5 ; % sigma , balance between speed and accuracy

5 t o l = 1e�2; % stopping c r i t e r i a
s t ep s = 2 : 1 0 0 ; % number o f i t e r a t i o n s .

%%%%%%%% Input parameters
% Input at l e a s t a matrix C

10 i f (narg in <1)
d i sp (’ Adjusted Gradient Method : Not enough input arguments . ’) ;
d i sp (’ Input : C , [s , to l , s t ep s] . Die now . . ’) ;
r e turn

end
15

% This i s our t a r g e t matrix
C = vararg in {1} ;

% speed vs . accuracy in g rad i en t updating . s \ in [0 , 1)
20 i f (narg in >= 2 && vararg in{2}>=0 && vararg in {2}<1)

s = vararg in {2} ;
end

% to l e r an c e
25 i f (narg in >= 3 && vararg in {3}>0)

t o l = vararg in {3} ;
end

% maximum number o f i t e r a t i o n s . S ta r t from 2 !
30 i f (narg in >= 4 && vararg in {4}>=1)

s t ep s = 2 : (vararg in {4}+1) ;
end

%%%%%%%% Algorithm
35 % th i s i s where the a lgor i thm s t a r t s

t i c

% al so , d e f i n e the non�zero e lements o f the d iagona l s c a l i n g matrix T

59

% with r e sp e c t to the e igen�system S .
40 n = length (C) ;

% Input matrix , Cholesky
B = max(�0.99/(n�1) , (sum(sum(M))�n) /(nˆ2�n)) ⇤ ones (n , n) ;
B(eye (n) ˜=0) = 1 ;

45 B = cho l (B) ’ ;
BB = B⇤B’ ;

% r i s the d i s t anc e
r = ze ro s (l ength (s t ep s) , 1) ;

50 r (1) = norm(BB�C, ’ f r o ’) ;
mStart = 1 ;

% i t e r a t e
f o r k = s t ep s

55

% Step 1
gradB = 2⇤(BB�C) ⇤B;

f o r m = mStart : 10
60

% Step 2
theta = . 5⇤ (s ˆm) ⇤(norm(gradB , ’ f r o ’) /(norm(gradB⇤B’ , ’ f r o ’))) ˆ2 ;

% Step 3
65 B2 = B � theta ⇤gradB ;

% Step 4 and 5
B2 = repmat (1 . / sq r t (sum(B2 . ˆ 2 , 2)) ,1 , n) .⇤B2 ;
BB = B2⇤B2 ’ ;

70

% Step 6 .
r (k) = norm(BB�C, ’ f r o ’) ;

% Step 7 .
75 i f (r (k)�r (k�1) < 0)

mStart = m;
B = B2 ;
break

end
80 end

% Step 8 .
i f (abs (r (k)�r (k�1)) / r (k) < t o l)

break ;
85 end

end

output . method = ’ Gradient Fast Cholesky ’ ;
90 output .C = B⇤B’ ;

output . d i s t = norm(output .C�C, ’ f r o ’) ;
output . time = toc ;
output . i t e r a t i o n s = k+1�s t ep s (1) ;
output . s = s ;

95 output . t o l = t o l ;
output . v a l i d = t e s t c o r (output .C) ;

end

11.11 Iterative Spectral Weighted

60

0 f unc t i on [output] = p o s d e f i t e r a t i v e s p e c t r a l w e i g h t e d (vara rg in)
% The i t e r a t i v e s p e c t r a l method , weighted ve r s i on

%%%%%%%% Defau l t Parameters
a = 1e�3; % 1e�3 i s in l i n e with my repor t .

5

%%%%%%%% Input parameters
% Input at l e a s t a matrix C
i f (narg in <1)

d i sp (’ Naive Method : Not enough input arguments . ’) ;
10 di sp (’ Input : C , [a ,W] . Die now . . ’) ;

r e turn
end

% This i s our t a r g e t matrix
15 C = vararg in {1} ; % This i s our t a r g e t matrix

n = length (C) ; % matrix dimension
Cold = C; % save the o ld matrix f o r comparison

% accuary , s e t e i g enva lu e s to t h i s va lue .
20 i f (narg in >= 2 && vararg in {2}>=0)

a = vararg in {2} ;
end

% Weights
25 W = eye (n) ;

i f (narg in >= 3 & s i z e (vara rg in {3}) == s i z e (M))
W = vararg in {3} ;

end

30 t i c

f o r i = 1:400

% Step 5 � Set the d iagona l e lements o f C to 1 and go to step 1
35 C(eye (n) ˜=0) = 1 ;

% Step 1 � Decompose C = SLSˆT, where S i s
% the e i genspace cor re spond ing to e i g enva lue matrix L .

40 [S , L] = e i g (diag (sq r t (d iag (W))) ⇤C⇤diag (sq r t (d iag (W)))) ;

% Step 2 � I f a l l e i g enva lu e s are po s i t i v e , then stop . Else , cont inue .
i f (d iag (L)>0)

break
45 end

% Step 3 � r ep l a c e the negat ive e i g enva lu e s o f L with
% smal l po s t i v e va lue a .
L = diag (max(diag (L) , a)) ;

50

% Step 4 � c a l c u l a t e C = SLSˆ{T}$
C = diag (sq r t (1 . / diag (W))) ⇤S⇤L⇤S ’⇤ diag (sq r t (1 . / diag (W))) ;

end
55

% exeeded the number o f i t e r a t i o n s , qu i t .
% di sp (’ Ex i t ing : Po s i t i v e d e f i n i t e n e s s not reached ’) ;
output . method = ’ Naive weights ’ ;
output .C = C;

60 output . i t e r a t i o n s = i �1;
output . d i s t = norm(output .C�Cold , ’ f r o ’) ;

61

output . we ightsDi s t = norm(diag (sq r t (d iag (W))) ⇤(output .C�Cold) ⇤diag (sq r t (diag (W
))) , ’ f r o ’) ;

output . time = toc ;
output . a = a ;

65 output .W = W;
output . v a l i d = t e s t c o r (output .C) ;

end

11.12 Scaled Spectral Weighted

0 f unc t i on [output] = po sd e f s c a l e d s p e c t r a l w e i g h t e d (vara rg in)
% Scaled Spec t r a l Method , Weighted

%%%%%%%% Defau l t parameters
a = 1e�13;

5

%%%%%%%% Input parameters
% Input at l e a s t a matrix C
i f (narg in <1)

d i sp (’ Sca led Spec t r a l Method , Weighted : Not enough input arguments . ’) ;
10 di sp (’ Input : C , [a] . Die now . . ’) ;

r e turn
end

% This i s our t a r g e t matrix
15 C = vararg in {1} ;

% s t a r t i n g po s i t i o n f o r e i g enva lue value . a >= 0
i f (narg in >= 2 && vararg in {2}>=0)

a = vararg in {2} ;
20 end

% Weights
W = eye (l ength (C)) ;
i f (narg in >= 3 & s i z e (vara rg in {3}) == s i z e (C))

25 W = vararg in {3} ;
end

%%% Star t Algoritme
t i c

30

% Step 1
[S ,L] = e i g (diag (sq r t (d iag (W))) ⇤C⇤diag (sq r t (diag (W)))) ;

% Step 2
35 L = diag (max(diag (L) , a)) ;

% Step 3
output .C = diag (1 . / sq r t (d iag (W))) ⇤S⇤L⇤S ’⇤ diag (1 . / sq r t (d iag (W))) ;
T = sq r t (diag (1 . / (diag (output .C)))) ;

40

output . method = ’ Sca led Spect ra l , Weighted ’ ;

% Step 4
output .C = T⇤(output .C) ⇤T’ ;

45 output . d i s t = norm(output .C�C, ’ f r o ’) ;
output . we ightsDi s t = norm(diag (sq r t (d iag (W))) ⇤(output .C�C) ⇤diag (sq r t (diag (W)))

, ’ f r o ’) ;
output . time = toc ;
output . a = a ;
output . v a l i d = t e s t c o r (output .C) ;

50

62

end

11.13 Hypersphere Decomposition

To compose a matrix from a coordinate vector x, we use

0 f unc t i on [C] = tap (x)
%TAP Compose matrix M from coord inate vec to r x .

% matrix dimensions
n = (sq r t (8⇤ l ength (x)+1)+1) /2 ;

5

% matrix B:
B = ze ro s (n) ;

% Loop over e n t r i e s to c a l c u l a t e B.
10 f o r i = 1 : n

f o r j = 1 : (i �1)
B(i , j) = x (((i �1)⇤(i �2)/2)+j) / sq r t (prod (x (((i �1)⇤(i �2)/2) +1:((i �1)⇤(i

�2)/2)+j) .ˆ2+1)) ;
end
j = i ;

15 B(i , j) = 1/ sq r t (prod (x (((i �1)⇤(i �2)/2) +1:((i �1)⇤(i �2)/2)+j�1) .ˆ2+1)) ;
end
C = B⇤B’ ;

end

To decompose a positive definite matrix to a coordinate vector x, we use

0 f unc t i on [x] = arctap (M)
%ARCTAP Compose coo rd ina t e s x from matrix .

b = cho l (M) ’ ;

5 % our parameter vec to r x :
n = s i z e (M, 2) ;
x = ze ro s (1 , n⇤(n�1)/2) ;

f o r i = 2 : n
10

j = 1 ;
x ((i �1)⇤(i �2)/2+ j) = b(i , j) / sq r t (1�b(i , j) ˆ2) ;

f o r j = 2 : i�1
15 % x(i , j) = b(i , j) / sq r t (sum(b(i , j +1:n) . ˆ 2)) ;

x ((i �1)⇤(i �2)/2+ j) = b(i , j) / sq r t (sum(b(i , j +1:n) . ˆ 2)) ;
end

end
end

11.14 Positive Definite Check by Vines

0 f unc t i on [varargout] = t e s t c o r v i n e (M)
% Test i f a matrix i s p o s i t i v e d e f i n i t e us ing v ine s

% Use the v ine method as de s c r ibed by Kurowicka and Cooke in
% theorem 4 .1 and 4 .2

5 t o l l = 1e�14; % e r r o r t o l l e r a n c e
varargout {1} = f a l s e ;

% t e s t i f M i s square

63

i f (s i z e (M, 1) ˜= s i z e (M, 2))
10 i f (nargout == 0)

d i sp (’E : Matrix i s not square ’)
end
return

end
15

% te s t f o r ones on the d iagona l
i f (f i nd (abs (diag (M)�1)>t o l l , 1))

i f (nargout == 0)
d i sp (’E : Not j u s t ones on the d iagona l ’)

20 end
return

end

% t e s t f o r va lue s between �1 and 1
25 i f (f i nd (M>1+t o l l))

i f (nargout == 0)
d i sp (’E : Matrix e n t r i e s ou t s i d e [�1 ,1] ’) ;

end
return

30 end

i f (f i nd (M<�1� t o l l))
i f (nargout == 0)

d i sp (’E : Matrix e n t r i e s ou t s i d e [�1 ,1] ’) ;
35 end

return
end

40 % te s t f o r symmetry
i f (max(max(abs (M�M’)))>=t o l l)

i f (nargout == 0)
d i sp (’E : Matrix i s not symetr i c ’)

end
45 r e turn

end

% Test f o r p o s i t i v e d e f i n i t e n e s s
% Create a c e l l array

50 A = c e l l (1 , l ength (M)�2) ;
A{1} = M;

% Def ine matrix par t s X,Y,Z .
f o r i = 1 : (l ength (M)�2)

55

% Actual ly , we c a l l t h i s A k in s t ead o f M
Y = A{ i } (1 , 2 : end) ;
Z = A{ i } (2 : end , 2 : end) ;

60 %then , t h i s i s t i l d e (A) , which i s equal to A a f t e r s c a l i n g .
A{ i +1} = Z�Y’⇤Y;
D = diag (1 . / sq r t (d iag (A{ i +1}))) ;
A{ i +1} = D⇤A{ i +1}⇤D;

65 i f ˜ isempty (f i nd ([t r i u (A{ i +1} ,1)>1 t r i u (A{ i +1} ,1)<�1], 1))
i f (nargout == 0)

d i sp (’E : Matrix not p o s i t i v e d e f i n i t e ! ’) ;
end
return

70 end

64

end

varargout {1} = 1 ;
75 end

11.15 Vines Method

0 f unc t i on [output] = po sd e f v i n e s (vara rg in)

%%%%%%%% Defau l t parameters
alpha = 0 . 9 ;

5 %%%%%%%% Input parameters
% Input at l e a s t a matrix C
i f (narg in <1)

d i sp (’ Vines Method : Not enough input arguments . ’) ;
d i sp (’ Input : C , [alpha] . Die now . . ’) ;

10 r e turn
end

% This i s our t a r g e t matrix
C = vararg in {1} ;

15

% speed vs . accuracy in g rad i en t updating . s \ in [0 , 1)
i f (narg in >= 2 && vararg in {2}>=0)

alpha = vararg in {2} ;
end

20

%%% Begin Algorithm
t i c

% Create a c e l l array
25 n = length (C) ;

A = c e l l (1 , n�2) ;
A{1} = C;

% count the number o f c a l c u l a t i o n s o f A;
30 counter = 0 ;

% walk from 1 to n�2
% s h i f t index by 1 , so wlk from 2 to n�1
f o r i = 2 : (n�1)

35

% Actual ly , we c a l l t h i s A k in s t ead o f C
Y = A{ i �1}(1 ,2 : end) ;
Z = A{ i �1}(2: end , 2 : end) ;

40 %then , t h i s i s t i l d e (A) , which i s equal to A a f t e r s c a l i n g .
counter = counter + 1 ;
A{ i } = Z�Y’⇤Y;
D = diag (1 . / sq r t (d iag (A{ i }))) ;
A{ i } = D⇤A{ i }⇤D;

45

% check f o r va lue s l a r g e r then 1 .
% but do not check the d iagona l
V = f i nd (t r i u (A{ i } , 1) >0.90 | t r i u (A{ i } , 1)<�0.90 | t r i l (A{ i } ,�1)>0.90 |

t r i l (A{ i } ,�1)<�0.9) ;

50 % i f we have va lue s ou t s i d e (�1 ,1)
% then
i f ˜ isempty (V)

65

% change them to + or � 0 . 9 ;
55 A{ i }(V) = s i gn (A{ i }(V)) ⇤ alpha ;

% change the preced ing va lue s
f o r j = i :�1:2

60 counter = counter +1;
D = sq r t (diag (diag (A{ j �1}(2: end , 2 : end)�A{ j �1}(1 ,2 : end) ’⇤A{ j

�1}(1 ,2 : end)))) ;
A{ j �1}(2: end , 2 : end) = D⇤A{ j }⇤D + A{ j �1}(1 ,2 : end) ’ ⇤ A{ j �1}(1 ,2 : end

) ;
end

65 end

end

output . method = ’ Vines ’ ;
70 output .C = A{1} ;

output . p = A;
output . time = toc ;
output . v a l i d = t e s t c o r (output .C) ;
output . d i s t = norm(output .C�C, ’ f r o ’) ;

75 output . alpha = alpha ;
output . i t e r a t i o n s = counter ;

end

11.16 Vines Method, Weighted

0 f unc t i on [output] = posde f v in e s we i gh t ed (vara rg in)

%%%%%%%% Defau l t parameters
alpha = 0 . 9 ;

5 %%%%%%%% Input parameters
% Input at l e a s t a matrix C
i f (narg in <1)

d i sp (’ Vines Method : Not enough input arguments . ’) ;
d i sp (’ Input : C , [alpha] . Die now . . ’) ;

10 r e turn
end

% This i s our t a r g e t matrix
C = vararg in {1} ;

15

% speed vs . accuracy in g rad i en t updating . s \ in [0 , 1)
i f (narg in >= 2 && vararg in {2}>=0)

alpha = vararg in {2} ;
end

20

% Weights
W = eye (l ength (C)) ;
i f (narg in >= 3 & s i z e (vara rg in {3}) == s i z e (C))

W = vararg in {3} ;
25 end

%%% Begin Algorithm
t i c

30 % Create a c e l l array
n = length (C) ;

66

A = c e l l (1 , n�2) ;

% Sort M
35 [˜ , Order] = so r t (diag (W) , ’ descend ’)

A{1} = C(: , Order) ;
A{1} = A{1}(Order , :) ;

% walk from 1 to n�2
40 % s h i f t index by 1 , so wlk from 2 to n�1

% count the number o f c a l c u l a t i o n s o f A;
counter = 0 ;

45 f o r i = 2 : (n�1)

% Actual ly , we c a l l t h i s A k in s t ead o f M
Y = A{ i �1}(1 ,2 : end) ;
Z = A{ i �1}(2: end , 2 : end) ;

50

%then , t h i s i s t i l d e (A) , which i s equal to A a f t e r s c a l i n g .

counter = counter + 1 ;
A{ i } = Z�Y’⇤Y;

55 D = diag (1 . / sq r t (d iag (A{ i }))) ;
A{ i } = D⇤A{ i }⇤D;

% check f o r va lue s l a r g e r then 1 .
% but do not check the d iagona l

60 V = f ind (t r i u (A{ i } , 1) >0.90 | t r i u (A{ i } , 1)<�0.90 | t r i l (A{ i } ,�1)>0.90 |
t r i l (A{ i } ,�1)<�0.9) ;

% i f we have va lue s ou t s i d e (�1 ,1)
% then
i f ˜ isempty (V)

65

% change them to + or � 0 . 9 ;
A{ i }(V) = s i gn (A{ i }(V)) ⇤ alpha ;

% change the preced ing va lue s
70 f o r j = i :�1:2

counter = counter +1;
D = sq r t (diag (diag (A{ j �1}(2: end , 2 : end)�A{ j �1}(1 ,2 : end) ’⇤A{ j

�1}(1 ,2 : end)))) ;
A{ j �1}(2: end , 2 : end) = D⇤A{ j }⇤D + A{ j �1}(1 ,2 : end) ’ ⇤ A{ j �1}(1 ,2 : end

) ;
75 end

end

end
80

output . method = ’ Vines Weighted ’ ;
output .C = A{1} ;

85 % reorden M back
[˜ , Order] = so r t (Order) ;
output .C = output .C(: , Order) ;
output .C = output .C(Order , :) ;

90 output . p = A;

67

output . time = toc ;
output . v a l i d = t e s t c o r (output .C) ;
output . d i s t = norm(output .C�C, ’ f r o ’) ;
output . we ightsDi s t = norm(diag (sq r t (d iag (W))) ⇤(output .C�C) ⇤diag (sq r t (diag (W)))

, ’ f r o ’) ;
95 output . alpha = alpha ;

output . i t e r a t i o n s = counter ;
end

68

	Introduction
	Motivation
	Literature
	Background Knowledge
	Problem Statement

	Measure Of Distance
	Checking for Positive Definiteness
	Eigenvalue Criteria
	Cholesky Decomposition

	Correcting Non Positive Definite Matrices
	Iterative Spectral Method
	Dykstra's Correction

	Scaled Spectral Method
	Gradient Updating Method
	Input Matrix: Cholesky Form
	Input Matrix: Scaled Form
	Input Matrix: Scaled Spectral Form
	Stopping Criteria
	Numerical Calibration

	Adjusted Gradient Updating Method

	Comparing Methods
	Weighting Correlations
	Weighting the Iterative Spectral Method
	Choosing Weights

	Weighting the Scaled Spectral Method

	Other Methods
	Hypersphere Method
	Results for the Hypersphere method

	Vines Method
	Results for the Vines Method
	Weighting Correlations with the Vines Method

	Quadratically Convergent Newton Method

	Conclusion
	Recommendations and Discussion
	References
	Matlab-files
	Test Correlation
	Generate Invalid Correlation Matrix
	Cholesky decomposition
	Iterative Spectral Method
	Alternating Projections Method
	Scaled Spectral Decomposition
	Gradient Updating Method, Starting Scaled
	Gradient Updating Method, Starting Cholesky
	Adjusted Gradient Updating Method, Starting Scaled
	Adjusted Gradient Updating Method, Starting Cholesky
	Iterative Spectral Weighted
	Scaled Spectral Weighted
	Hypersphere Decomposition
	Positive Definite Check by Vines
	Vines Method
	Vines Method, Weighted

