
Earthquake Detection in Zeerijp
A Study on the Usage of Template Matching and Neural
Networks for Detection of Small Earthquakes in Zeerijp

by

Julia van Deventer - 4393929

in partial fulfilment of the requirements for the degree of
Master of Science in Applied Earth Sciences

Committee:
Dr.ir. Femke Vossepoel

Dr.ir. Elmer Ruigrok
Dr.ir. Guy drijkoningen

Dr. Kees Weemstra
ir. Hamed Diab Montero

Faculty of Civil Engineering & Geosciences,
Delft University of Technology



Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Earthquake Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Similar Research and State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Induced Seismicity 5

2.1 Earthquake Monitoring Network Groningen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Estimation of Missed Events using Gutenberg-Richter . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Earthquake Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Template Matching Theory 9

3.1 How Does Template Matching Make a Detection? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Determining Which Events to Use as Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Determining Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Determining Template Length, Interval and Threshold . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Theory Neural Networks 14

4.1 Introduction to Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 The Multilayer Perceptron Network or Feedforward Neural Network . . . . . . . . . . . . . . . . . 15

4.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 How to Train a Neural Network? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Development of Neural Networks for Earthquake Detection 23

5.1 Architectures Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Generating Synthetic Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Training Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Comparing Different Architectures and Training Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Comparison Template Matching and Neural Network 32

6.1 Comparison Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Conclusion Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Detecting Events in Continuous Seismic Data 35

7.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.3 Overview of All Detections and Estimated Magnitudes . . . . . . . . . . . . . . . . . . . . . . . . . 37

8 Discussion and Outlook 40

8.1 Forward Modelling Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8.2 Training Sets Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8.3 Used Neural Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8.4 Size of Noise Test Set Template Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8.5 Categorizing Detections Made by Template Matching . . . . . . . . . . . . . . . . . . . . . . . . . 41

i



Contents ii

8.6 Improving False Positive Rate Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9 Conclusion 42

Bibliography 43

I Appendices 45
A Appendix A 46

A.1 Overview noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.2 Overview of events recorded in Zeerijp between 2015-2019 . . . . . . . . . . . . . . . . . . . . . . 47

B Appendix B 49

B.1 ERZSOL 3 Input Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

C Appendix C 50

C.1 Results Test Template Lenght and Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

D Appendix D 52

D.1 Training Curves and Confusion Matrixes of Tested Architectures . . . . . . . . . . . . . . . . . . . 52

E Appendix E 59

E.1 Results Template Matching on Continous Seismic Recordings . . . . . . . . . . . . . . . . . . . . 59



Abstract

In this thesis, we discuss two pattern recognition techniques, template matching, and neural networks. We
discuss how these techniques have been used for the development of two earthquake detection algorithms.
The first algorithm is based on template matching and the second is based on deep learning. The algorithms
are designed for the detection of small <0.5M events in the subsurface of Zeerijp, Groningen. These two algo-
rithms have been compared to assess their earthquake detectability and practicality. The systems have been
compared using field data from Zeerijp. The algorithm based on deep learning (a neural network) produced
too many false positives considering the amount of seismic data we would like to use it for. The algorithm
based on template matching did not produce any false positives during testing. The template matching sys-
tem has been fed six months of continuous seismic data from Zeerijp. This resulted in the detection of at least
22 new events.
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1
Introduction

The Netherlands is home to the largest gas field in Europe. The field is located in the province of Groningen
and has been in production since 1963 [1]. Since 1991 induced seismicity is observed in Groningen. Until
2003 seismicity was stable and earthquakes had magnitudes around 1.5M. After a production increase in 2003
seismic activity increased and multiple earthquakes with magnitudes >3M have been registered [2]. Even
though the earthquakes are relatively weak (maximum 3.6M) they have caused significant structural damages
to buildings given that their designs did not consider seismicity. It is still unclear how many houses have been
affected. Estimates suggest that at least a hundred thousand homes have been affected [3]. Figure 1.1 shows
the location of the gas fields including a buffer zone (grey and yellow) and the areas affected by the two largest
earthquakes (green and pink circles).

Figure 1.1: Overview of gasfields and area affected by induced seismicity [4]

Because of the increase in seismicity and conflicts about damage payments the Dutch government has de-
cided to slow down and eventually stop production in 2022. It is expected that after gas production has
stopped induced seismicity will keep on occurring for some time.
By monitoring the occurrence and characteristics of earthquakes in Groningen the seismic hazard can be es-
timated accurately as described by Dost et al. [2]. Every year a Seismic Hazard and Risk Assessment (SHRA)
on Groningen is published. This document quantifies the seismic risks, analyzes which risks are acceptable
and what mitigation strategy should be used. In the case of Groningen, the SHRA determines which houses
need to be reinforced and what reservoir pressures should be kept to keep risks at an acceptable level. The
latest SHRA of Groningen has been performed by the NAM [5](the company which produces the field).

1
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1.1. Earthquake Detection
To monitor the seismicity the KNMI (the Dutch institution responsible for monitoring seismicity) has set up
a dense network of geophones and accelerometers. The network has been expanded since the occurrence of
a 3.6M earthquake in 2012. The area is quite noisy due to waves hitting the coastline as well as due to traffic.
Therefore the geophones are installed in boreholes to increase signal-to-noise ratios. Figure 1.2 shows an
overview of all geophone stations and accelerometers. With this set up all earthquakes above a magnitude
of 0.5M are detected. The current detection algorithm (the STA/LTA algorithm) uses the amplitude of the
incoming seismic signals to detect earthquakes. Small events (<0.5M) often have the same amplitude as
noise and are often missed by this system.

Figure 1.2: Overview of locations seismic stations (A) and location of accelerometers (B) [2]

1.1.1. Detecting Small Earthquakes
Small undetected earthquakes can not be felt at the surface but do contain valuable information. Monitoring
the occurrence of even the tiniest earthquakes indicates how seismically active the region is. Low-magnitude
events occur significantly more often than high ones. Being able to detect these small earthquakes enables us
to monitor the seismicity more accurately. In this way, we can see early on what effect a decrease or increase in
production has on the seismicity. Therefore it would be of great value to develop and implement techniques
that can detect these low-magnitude events.

1.2. This Thesis
In this thesis, we explore if and how we can detect these small events. The research focuses on an area near
the city of Zeerijp (Figure 1.3), one of the seismically most active zones in Groningen.
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Figure 1.3: Our study area, with an area of 56km2

The goal is to develop an algorithm that can detect low-magnitude events. Instead of focussing on optimizing
one method, it has been chosen to compare two techniques; template matching and neural networks. Tem-
plate matching and neural networks are both pattern recognition techniques. The research question is
Is it possible to create a practical detection system for low magnitude events(< 0.5M) using template match-
ing or a neural network for the Zeerijp area?
This thesis also looks into how the methods compare. The subquestion is :
How do the developed algorithms compare when used for low magnitude events recorded in the Zeerijp
area?
In the end, the best method is used on six months of seismic recordings from Zeerijp to test the algorithm’s
earthquake detection capability.

1.2.1. Why Template Matching and Neural Networks?
Both template matching and neural networks are promising because they use pattern recognition to make
a detection. These techniques don’t look at one feature of the seismic signal (like amplitude) but at the
complete waveform. Template matching uses previously recorded events and classifies similar waveforms
as earthquakes. Neural networks are trained with examples of earthquakes and with examples of seismic
noise. By training the network it ’learns’ the specifics of an earthquake and classifies signals that match its
concept of an event as such.
Jagt et al. [6] have researched clusters of similar earthquakes (using cross-correlation) for events recorded
between 2010-2014. The Zeerijp area corresponds to the location of Cluster 2 as shown in Figure 1.4. This
indicates that several earthquakes have similar waveforms, making the area suitable for pattern recognition
techniques.
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Figure 1.4: Overwiew of different earthquake clusters in Groningen. Our study area is the square given by y 594-602km and x 242-249km
[6]

1.3. Similar Research and State of the Art
Template matching is a known technique for earthquake detection. It has been proven an effective tool
for detecting and monitoring reoccurring low-magnitude events. Gibbons and Ringdal [7] show how tem-
plate matching can outperform the LTA/STA algorithm for detecting such events. Vasterling et al. [8] and
Goertz-Allmann et al. [9] demonstrate how template matching is used for detection and monitoring of in-
duced seismicity in geothermal and carbon capture and storage projects. Dodge and Harris [10] show how
a combination of template matching, cross-correlation, and the STA/LTA algorithm is used to detect and lo-
cate earthquakes worldwide. Cross-correlation (the mathematical operation on which template matching is
based), has been used in the Groningen region to relocate and identify earthquake clusters based on wave-
form similarity by Jagt et al. [6]. However, template matching has not yet been used for the detection of small
earthquakes.
Methods based on artificial intelligence such as neural networks are a newer technique. Recent studies show
that neural networks can be used as an effective earthquake detection and location tool. Zhang et al. [11]
discuss how a fully convolutional neural network can be used for accurate epicentre location of small >0.5M
earthquakes, for a large area in Oklahoma. Perol et al. [12] have developed a 1D convolutional neural net-
work for earthquake detection and location, for a small area in Oklahoma. The research presented in this
thesis shows similarities to the work done by Perol et al. [12]. They also compare their neural network, Con-
vNetQuake, to template matching. A modified version of ConvNetqauke is one of the networks which earth-
quake detection potential is investigated in this thesis.
The networks found in Zhang et al. [11] and Perol et al. [12] are both trained with real earthquake data. Even
though in this thesis, we also use neural networks, our networks are fully trained on synthetic earthquake
data. In addition, we try to detect events with worse signal-to-noise ratios and of lower magnitude. The com-
parison between template matching and neural networks presented in this thesis differs from Perol et al. [12],
in that we used real earthquake data for the comparison. Perol et al. [12] compare the 2 methods based on
experiments done with synthetic data.
If we manage to detect any previously undetected earthquakes with either template matching or a neural
network these events would be new additions to the earthquake catalogue. In this way, we would contribute
new information on the seismicity in Groningen.

1.4. Thesis Outline
We start by discussing the current earthquake detection system and most relevant features of seismicity in
the region in chapter 2. Next, we discuss the theory and development of the template matching algorithm in
chapter 3 and subsection 3.0.2. Followed by 2 similar chapters on Neural networks, chapter 4 and chapter 5.
In chapter 6, a comparison of the 2 systems is presented. The most suitable system is fed 5 months of seismic
recordings, the results and set-up are presented chapter 7. The results are followed by the discussion and
conclusion (chapter 8 and chapter 9).



2
Induced Seismicity

In this chapter, the current detection system is discussed. We discuss both the setup and the STA/LTA algo-
rithm. We present a Gutenberg-Richter analysis to get an idea of the number of missed earthquakes and their
magnitudes. We also show how similar earthquakes in the Zeerijp area are, and whether there are unique
events.

2.1. Earthquake Monitoring Network Groningen
This section covers how earthquakes are monitored in the Zeerijp area. The monitoring network in Zeerijp is
part of the G network set up by the KNMI between 2014 and 2016. This network consists out of 69 stations,
with an average spacing of 4-5km. Figure 1.2 and Figure 2.1 show the monitoring network for the whole of
Groningen and the Zeerijp region in particular. The three station in Zeerijp are G09,G14 and G18. These
stations have been fully operational since 2015[2].

Figure 2.1: Overview of stations in the Zeerijp area

All G-stations are borehole stations. Each station is equipped with 4 geophones at different depths and an
accelerometer at the surface. Figure 2.2 shows the set-up of the stations. Borehole stations are used in this
region to increase signal-to-noise ratios. Multiple levels of receivers are used to discriminate between P and
S arrivals and also for redundancy in case of an instrument failure [2]. The deepest receivers have the best
signal-to-noise ratio. These are most suitable for small event detections, therefore only the recordings made
by level 4 receivers are used. We refer to these receivers as G094, G144, and G184 to emphasize that we are
using the 4th level of each station. Each geophone records seismograms for 3 directions (channels); 1 oriented
vertically (HHZ), 2 oriented in the horizontal plane (HH1 and HH2).

5
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Figure 2.2: Borehole receiver set up Groningen earthquake monitoring system [2]

The current setup in Groningen enables the KNMI to locate all earthquakes up to 0.5M with an accuracy of
0.1-0.3km [2]. The current catalogue is complete up to 0.5M. The smallest earthquake recorded in the Zeerijp
area has a magnitude of 0.12M.

2.1.1. STA/LTA Algorithm
In Groningen, the STA/LTA detection algorithm is used. This algorithm is the standard for weak motion seis-
mology [13]. STA/LTA is an abbreviation of short-time-average through long-time-average. The STA/LTA
algorithm continuously calculates the average absolute amplitude of the incoming seismic signal. It does
this for two-time windows. For a short time window (STA) and for a long time window (LTA). The STA is sensi-
tive to seismic activity while the LTA provides information about the temporal amplitude of local noise. Once
the ratio between STA and LTA exceeds a threshold it triggers the system. When multiple seismic stations are
triggered within a certain time frame the signal is declared an event and the signal is flagged as such. The
signal is flagged as an event until the STA/LTA reaches the de-triggering threshold.
The problem with very small events is that the amplitudes of these events are so low that they often have
similar amplitudes as noise. This is especially true for the Groningen area where signal-to-noise ratios are
low due to the proximity of the coast and urban activity.

2.2. Estimation of Missed Events using Gutenberg-Richter
The Gutenberg-Richter equation is used to estimate the number of missed earthquakes in Zeerijp. The Guten-
berg Richter equation gives the number of events above a certain magnitude that statistically should occur
within a specified time frame. For the parameters found in this section, a time frame of a year is used.

2.2.1. Gutenberg-Richter equation
The Gutenberg-Richter equation is given by the equation below [13]:

N = 10a−bM (2.2.1)

Parameter a indicates how seismic active an area is. The total number of expected events above 0M is equal
to 10a . Parameter b indicates the proportion between the occurrence of small and large earthquakes.

2.2.2. Estimating the a and b Parameters
Information on all recorded events in Groningen is publicly available at www.knmi.nl/kennis-en-datacentrum/
dataset/aardbevingscatalogus. For the Gutenberg-Richter analysis, we have used all events between 2015
and 2019 as can be found in Appendix A. From this data, a histogram has been constructed. By using a
least-square fit we can estimate the a and b parameters.
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Figure 2.3: Histogram based on events recorded between 2015-2019 and their magnitude,the fit represents the Gutenberg-Richter rela-
tion

For parameters a and b we found values of 1.53 and 0.61. Based on these values we expect 138.38 events per
year above a magnitude of -1M. Currently, 17.2 events above 0M are detected. This means that 121.6 events
between -1 and 0.5M go unnoticed per year or 2.3 events per week. The table below shows how many events
are expected to have gone unnoticed for different magnitude ranges.

Undetected events
expected per year

Undetected events
expected per 6 months

Undetected events
expected per week

0 - 0.5M 16.60 8.30 0.32
-0.5 - 0M 34.51 17.16 0.66
-1 - -0.5M 69.65 34.82 1.34

Table 2.1: Undetected events expected based on Gutenberg Richter for different magnitude ranges

2.3. Earthquake Similarity
If we want to use a pattern recognition system we first need to establish there exists a recognizable pattern.
Especially for template matching, the undetected earthquakes must be similar to previously recorded events.
Since it can only detect patterns/wave-forms which are similar to its templates.
In chapter 1 we already discussed that the KNMI has established that a cluster is present using data from 2010
and 2014 before the network was updated(Figure 1.4).
We perform the same type of analysis as done by Jagt et al. [6] for all earthquakes recorded in Zeerijp be-
tween 2015-2019. In order to assess how similar the earthquakes in the region are, all earthquakes are cross-
correlated with each other. This is done for all stations and all channels separately. The result of this operation
is a symmetric cross-correlation matrix. In this matrix, every value corresponds to the cross-correlation co-
efficient (ccc) of two events[6]. See chapter 3 for a detailed explanation on how cross-correlation works. The
length of the events are set to 10 seconds and are filtered with a 3-22Hz bandpass filter. Figure 2.4 shows
the cross-correlation matrices of channel HH1 for all 3 stations. For this channel the cross-correlation coeffi-
cients are highest.
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(a) Cross-correlation matrix G094 HH1 (b) Cross-correlation matrix G144 HH1 (c) Cross-correlation matrix G184 HH1

Figure 2.4: Cross-correlation matrices HH1

When we use a ccc of 0.6 we don’t find any unique events. A unique event would be an event that wouldn’t
have a cross-correlation coefficient with at least one other event above the ccc threshold. Since we have found
no unique events we can have established that the earthquakes in this region produce recognizable signals.
Figure 2.5 shows that there are two main clusters of earthquakes present in the Zeerijp area. From this, we can
conclude that there are two main source areas. Within these source areas, the events likely have the same focal
mechanisms since we observe very high ccc’s. When earthquakes have similar focal mechanisms (movement
along the fault), they produce similar waveforms [13]. Undetected events are therefore most likely related to
one of the clusters. This makes the area suitable for template matching. The question remains whether or
not template matching will be able to recognize small earthquake signals when they are buried in noise. This
is explored in chapter 6.

Figure 2.5: Cross-correlation matrix sorted for G144 HH1



3
Template Matching Theory

In this chapter, we discuss the theory behind template matching. Template matching is a technique used for
pattern recognition. Template matching uses cross-correlation to find patterns similar to its templates. In
the case of this thesis, we use template matching to find patterns in time-series data, but it is most frequently
used for pattern recognition in images.

3.0.1. Cross-correlation
Cross-correlation is defined as the summation of the dot product of 2 functions, where one function ‘slides’
over the other. We illustrate this with functions f (t ) and g (t ). At the start f (0) is multiplied with g (0) after-
ward, f (1) is multiplied with g (1). This process is repeated for n steps. After n steps, all multiplications are
summed together. Then g (t ) is shifted with time step τ and the process is repeated. The result of this opera-
tion is a function of τ. Equation 3.0.1 shows the definition of cross-correlation [13].

c(τ) =∑
f (t )g (t +τ) (3.0.1)

The highest cross-correlation coefficient (ccc) is observed for the shift where the signals are most similar.
Cross-correlation is often used for determining the time shift between time series. However, for template
matching the time-shift is irrelevant. We want to find similar patterns in the data. When using Equation 3.0.1
the cross-correlation coefficient is dependent on the amplitudes of the correlated signals. For template
matching, we want a measure of similarity which is universal. By introducing normalization, the function
becomes independent of amplitudes. Equation 3.0.2 shows the normalized cross-correlation function[13].

cn(τ) = c(τ)∑
f (t )2 ∑

g (t )2 (3.0.2)

Using Equation 3.0.2 the ccc can vary between 1 and -1. A ccc of 1 indicates that the signals are precisely the
same and a ccc of -1 indicates perfect antithesis. The ccc is a measure of similarity. It indicates to what extent
two signals go up and down in the same pattern, independent of amplitude.

3.0.2. Templates
Template matching works by cross-correlating templates with target data. The templates consist out of pat-
terns one wants to locate in the target data. By setting a certain ccc as threshold, one can find the location
of the similar pattern in the data stream. In the case of this thesis the templates are parts of event recordings
and the target data is seismic data recorded in Zeerijp. chapterDevelopment of Template Matching for Earth-
quake Detection Template matching uses cross-correlation to find patterns similar to its templates. In the
case of this thesis, we use high energy intervals of selected previously detected events as templates. The tem-
plates are cross-correlated with seismic data. Once an interval with a ccc above a threshold value is found, an
event is detected. The intervals with a ccc under the threshold are classified as noise.
To develop template matching we first choose which events to use as templates. This is described in sec-
tion 3.2.To increase the signal-to-noise ratio the data is filtered.section 3.3 explains how the filter setting is
determined. Once the templates and the filter have been chosen. The templates are fine-tuned. The interval

9
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for the templates is specified, the template length is optimized and the detection threshold value is deter-
mined. During fine-tuning, we test how well different settings perform on earthquake and noise data. All of
this is described in section 3.4. In Appendix A the noise and events used in this section can be found. Please
note that the unit of amplitude for all seismic recordings shown in this chapter should be m/s instead of m.

3.1. How Does Template Matching Make a Detection?
For most of this chapter (except for section 3.2), the seismic input data is presented in the form of screens.
These screens are 10-20 second intervals of seismic data. Every event is recorded by three stations, and each
station records three channels. Therefore every event is recorded on 9 screens. When a template has a ccc
value above the threshold with one of the screens, an event has been detected. The more confident the tem-
plate is about a detection the more screens it classifies as event. If the template is very confident it classifies
all screens 9/9 as an event. If it’s not confident it classifies 1/9 screens. If none of the screens is classified as
an event, the time interval is classified as noise. ?? shows a visualization of this process with three screens. In
practice, nine screens are used.

Figure 3.1: Visualisation of how template matching makes an event detection

In section 3.2 we use whole days of data instead of screens. In that case, the system returns indexes of intervals
with a ccc above the threshold.

3.2. Determining Which Events to Use as Templates
Low magnitude events have bad signal-to-noise ratios. This can cause high ccc values with noise. In this
section, we explore what magnitudes are suitable. Ten-second intervals of all events are cross-correlated with
seismic recordings. The recordings are from the 7th, 8th, and 9th of January 2018. These recordings contain
two event recordings (events 47 and 48). All events have been cross-correlated with these recordings. We
have looked at the behaviour of events above 1M, between 0.5-1M, and below 0.5M. Events <1M generate too
many false positives and are therefore not used as templates.

Event detection false positives
Templates >1M 2/2 4
Templates 0.5-1M 2/2 100000+
Templates <0.5M 2/2 1000000+

Table 3.1: Test templates of different M
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3.3. Determining Filter
We are only interested in the frequencies which are dominant during events. The rest of the frequencies can
be filtered out, increasing the signal-to-noise ratio. To determine the dominant frequency we have looked
at all events >1M in the frequency domain. Events <1M are left out because they contain too much noise.
The interval we look at corresponds to the 6-11 second interval of event 19. During this interval, the signal
is strongest. Figure 3.2 shows the recording of event 19. To properly analyze the frequency spectrum of the
events, a high-pass filter of 1.5Hz is used. These lower frequencies belong to noise, so filtering them out won’t
cause trouble.
From here on if we refer to recordings of events we simply refer to it by using its number followed by event.
On the y axis, we find the amplitude of the recording which has as unit m/s. Seismic activity is measured by
a sensor containing a magnet in a coil. Due to seismic activity, the magnet moves and creates a current. The
strength of this current is linear to the velocity of the magnet relative to the coil, hence the unit of amplitude
is m/s. The x-axis shows time, so the recording shows how amplitude changes over time.

Figure 3.2: Event 19 G184 HHZ not filtered

The lowest dominant frequency is 3Hz (event 56)(Figure 3.3) and the highest dominant frequency is 22Hz
(event 76) (Figure 3.5). Therefore a 3-22Hz bandpass filter is used for template matching.

Figure 3.3: Frequency spectrum event 56 Figure 3.4: Event 56 interval filtered
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Figure 3.5: Frequency spectrum event 75 Figure 3.6: Event 75 interval filtered

3.4. Determining Template Length, Interval and Threshold
The template length, interval, and detection threshold values are determined with the same test. Several
lengths and intervals are tested with events <1M and noise for different threshold values. Two intervals are
tested. The first interval only contains the first part of an event. The second interval starts with a second of
noise. The idea is that with introducing an extra second of noise, we make the template more random and
reduce the chance of it being similar to noise. Figure 3.7 and Figure 3.8 show examples of the 2 different
intervals .

Figure 3.7: Example of a template with a length of 15 seconds
without noise

Figure 3.8: Example of a template with a length of 15 seconds
including 1 second of noise included

The templates are cross-correlated with 18 events (162 screens) <1M. These events have not been used as
templates. The templates are also cross-correlated with 700 instances of noise (6300 screens). We look at
the number of correct detections for threshold values between 0.4 and 0.9. We are looking for the template
interval and length combination which can detect all events while producing a minimum amount of false
positives. For noise instead of the number of false-positive instances, we have chosen to show the number of
false-positive screens. This is done to be able to see the difference in performance for the lower thresholds.
If instances would be used here instead parameters settings would seem to perform the same but in reality,
one produces significantly more false-positive screens than the other.
We only discuss the results of the settings which showed the most promise, the full results can be found in
Appendix C. We observe that above a threshold of 0.6 not a single false-positive detection has been made by
any of the tested settings. Therefore 0.6 is chosen as the threshold value. A template length of 12.5 seconds
including 1 second of noise gave the best result averaged over all the thresholds. It detects most of the events
and produces almost no false positives. It isn’t the best noise classifier. That would be a template length of 15
seconds with one second of noise, but above a threshold of 0.6, both settings perform the same noise-wise. In
Figure 3.9 a graph is seen plotting the data from the tables as percentages to better visualize the differences
between the settings.
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Templat 12.5
seconds with 1
second of noise
included

0.4 0.5 0.6 0.7 0.8 0.9
Average
correct
percentage

number of
events detected

18/18 18/18 18/18 17/18 13/18 3/18 81%

Screens of noise
classified as
events

204/6300 4/6300 0/6300 0/6300 0/6300 0/6300 99%

Table 3.2: Results using a templates of 12.5 seconds with one second of noise included

Template 15
seconds with 1
second of noise
included

0.4 0.5 0.6 0.7 0.8 0.9
Average
correct
percentage

number of
events detected

18/18 18/18 18/18 10/18 1/18 0/18 60%

Screens of noise
classified as
events

828/6300 11/6300 0/6300 0/6300 0/6300 0/6300 99.6%

Table 3.3: Results using a templates of 15 seconds with one second of noise included

Figure 3.9: The two best template matching systems



4
Theory Neural Networks

In this chapter, the inner workings of neural networks are explained. We begin with the easiest type of net-
work, the multi-layer perceptron network or Feedforward Neural Network (FNN). Later the workings of the
convolutional neural network (CNN) are also discussed.

4.1. Introduction to Neural Networks
Artificial neural networks (from now on referred to as neural networks) are computing systems vaguely in-
spired by biological neural networks that make up brains. Computers struggle with tasks such as recognizing
handwritten text which humans have little difficulties with. This is where neural networks come in.
Neural networks aim to ’learn’ a computer to recognize certain ideas like cats, for example. Most people are
familiar with the idea of a cat. Therefore we recognize cats in pictures. We can even recognize abstracted
images of cats, like cartoons or paintings. By feeding neural network examples of both cats and none cats we
can ’teach’ the concept of a cat to a neural net. There is a neural network publicly available that is trained just
for this purpose. On www.isthisacat.com you can upload images that a neural network then classifies.

Figure 4.1: Apparently I am not a cat and neither is Garfield

Neural networks can be used for a big range of tasks. There are 2 types of problems they are good at solving;
classification problems, and non-linear regression problems. The premise of www.isthisacat.com is a good

14
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example of a classification problem. Making financial forecasts is a good example of a non-linear regression
problem. Neural networks could in theory solve linear regression problems too, but there exist more efficient
mathematical methods for these problems.

4.2. The Multilayer Perceptron Network or Feedforward Neural Network
The multilayer perceptron network is often referred to as Feedforward Neural Networks (FNN). We first look
into how neurons are assigned values and how activation functions work. Then we look at how we can mini-
mize the cost function by using gradient descent. Finally, we discuss how backpropagation is used to calculate
the gradient of all the neurons in the network.

4.2.1. Structure
Neural networks of this type consist out of layers of neurons (perceptrons). Neurons are entities within the
network that hold values. In some networks, for example, each neuron can only hold values between 0 and 1.
The layered structure enables the network to find patterns. If certain neurons in the first layer have a high
value this triggers neurons in the next layer to have a high value until the output layer is reached and an
outcome is produced. These networks always have an input layer, a number of hidden layers, and an output
layer. Figure 4.2 shows an example of a typical multilayer perceptron network.

Figure 4.2: A hypothetical example of a multi-layer perceptron network [14]

The first layer is the input layer and has as many neurons as input variables. If the input data consists out
of black and white photographs, the number of input neurons is equal to the number of pixels. Each input
neuron would contain the greyscale value of a pixel.
All of the learning takes place in the hidden layers. In subsection 4.2.3 and Equation 4.2.15, the workings of
hidden layers is clarified. A neural network with more than two hidden layers is called a deep neural network.
How the number of hidden layers is chosen differs per problem but is partly a trial and error procedure.
The last layer is the output layer and answers the question which the network was supposed to solve. For
a regression problem involving a financial forecast, the answer will be a single number such as a price. In
those cases, the output layer contains only one neuron. Binary classification problems also have one output
neuron. A single neuron suffices because the answer is either a 1 (yes) or 0 (no). For non-binary classification
problems, one needs as many neurons as categories in the output layer.

4.2.2. Activation
Neurons are assigned values (activations) by activation functions. Every neuron, except for the neurons in
the input layer, has an activation function. The activation functions used for the input and hidden layers are
non-linear and enable the network to solve for non-linearity. The activation function used for the last layer
can be linear depending on the problem. The range of values the neuron can contain depends on the type of
activation function. Activations are calculated using weights and biases. Every connection within the network
has a weight. And every neuron, except for the neurons in the input layer, has a bias. Weights indicate how
much a certain activation from a previous layer should count. Biases are used as a threshold value.
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Figure 4.3: A representation of the activations (a) weights (w) and biases (b) within a simple multilayer perceptron network

The input of the activation function is given by a variable denoted as z. z is given by Equation 4.2.12[14]. For
the neuron with activation a3(Figure 4.3) z is thus given by Equation 4.2.2

z =∑
w ∗a −b. (4.2.1)

2∑
n=0

wn ∗an −b0 (4.2.2)

The activation functions in hidden layers are non-linear. The 2 most commonly used activation functions are
the Sigmoid and ReLu (rectified linear unit) functions. The Sigmoid function ’squeezes’ whatever input it gets
between zero and one (Figure 4.4, Equation 4.2.3[14]). Relu is partly linear, for z>0 the function is linear but
equals 0 for z<0 (Figure 4.5, Equation 4.2.4[14]).
For the output layer, different activation functions can be used depending on the type of problem. For re-
gression problems that output number(s) a linear activation function is used. For classification problems, a
Sigmoid function is used. For these problems, the output value of the neuron corresponds to how certain the
network is about its decision. An output activation of 0.93 means that the network is very confident about its
classification.

σ= 1

1−e−z (4.2.3)

R(z) =
{

z if z > 0

0 if z <= 0
(4.2.4)

Figure 4.4: Sigmoid function for z between -100 and 100 Figure 4.5: ReLU function for z between -100 and 100

4.2.3. Cost Functions and Gradient Descent
A neural net learns by adjusting its weights and biases based on training input. The network learns via train-
ing. We feed the network training inputs and we want the network to adjust its weights and biases in such a
way that the output of the network corresponds to the answer belonging to the training input. We measure
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the performance of the network using a cost function. With performance, we mean how well the network’s
output corresponds to the actual (desired) answer belonging to the training input. Multiple types of cost
functions can be used depending on the problem. For this explanation, we use the simplest one, the mean
squared error Equation 4.2.5 [14].In Equation 4.2.5 w and b denote all the weights and biases of the network,
n is the total number of training examples, a is the vector of outputs (activation(s) from the last layer) from
the network when x is given as training input, and y is the desired output for training input x. The output a
is dependent on x, w and b, but to keep the notation simple this has not been indicated explicitly [14].

C (w,b) = 1

2n

∑
x

(y(x)−a)2 (4.2.5)

By using a cost function we obtain a single number that represents how well the network performs. If the
outcome of the cost function is low it means that the network often finds an output value that matches the
desired outcome for the training input. The lower the outcome of the cost function the better the network
works. Figure 4.6 and Figure 4.7 show plots of cost function dependable on 1 and 2 variables respectively.
For these functions, it is easy to find the minimum. The cost function of a neural network depends on all the
weights and biases. Neural networks can obtain millions of these, creating very complex cost functions. We
can’t plot them or calculate their minimum directly. Instead, we use an algorithm called gradient descent.
This algorithm is often referred to as optimizer.

Figure 4.6: Cost function with 1 variable Figure 4.7: Cost function with 2 variables

Gradient descent uses the gradient of the cost function to descent down the slope of the cost function towards
a (local) minimum. We want to find how we should change v, a vector consisting out of all weights and biases,
to lower C(v), the cost function. The relation between v and (v) is given by Equation 4.2.6[14]. The gradient of
C(v)[14] is defined as Equation 4.2.7.

∆C (v) =∇C (v)∗v (4.2.6)

∇C (v) = (
∂C (v)

∂w1
,
∂C (v)

∂b1
)T (4.2.7)

If ∆C (v) is negative we descent down the function onto a (local) minimum. By choosing (v) as the gradient of
C(v) times some negative constant (Equation 4.2.8[14]), ∆C (v) will always be negative. By combining Equa-
tion 4.2.6 and Equation 4.2.8 we get Equation 4.2.9 [14]. Equation 4.2.9 is the most basic form of gradient
descent. The constant epsilon is called the learning rate. It acts as the step size by which the function de-
scends towards the (local) minimum. By setting the learning rate too low, the process will take a lot of time.
But if the step size is chosen too large you risk missing the local minimum (overshoot).

v =−ε∗∇C (v) (4.2.8)

∆C (v) =−ε∗∇C (v)2 (4.2.9)

Computing the gradient for every training example is computationally heavy. To speed up the process mini-
batch stochastic gradient descent is often used [14]. This means that the cost function is not calculated sepa-
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rately for every training example. The average value of the cost function for a small group of training examples
is taken instead. This small group is called the mini-batch and is chosen at random.
Every time the weights and biases are updated for one batch is called an iteration. Once the parameters have
been updated for all training examples it’s called an epoch. When using mini-batches one epoch consists out
of multiple iterations.
Another method to speed up gradient descent is to have an adjustable learning rate. In the beginning, the
learning rate can be higher without the risk of overshooting since the cost function is far from a minimum.
Near a minimum, the learning rate should be low to prevent overshooting. Some optimizers use an adjustable
learning rate and increase or decrease the learning rate based on recent gradient values.
Popular optimizers such as the ADAM algorithm combine both of the aforementioned techniques[15].

4.2.4. Backpropegation
The algorithm which calculates the gradient is called backpropagation. The algorithm finds how sensitive the
cost function is to the changes of each particular weight and bias. The backpropagation algorithm consists
out of 5 steps.

• Step 1: Set the activations for the input layer

• Step 2: Calculate all the activations, using the initial weights and biases

• Step 3: Calculate the error for the final layer

• Step 4: Calculate the error back for all layers

• Step 5: Calculate the gradient of the cost function using the error

In the following paragraphs we explain how steps 3 to 5 are calculated. In subsection 4.2.2 and subsec-
tion 4.2.1 we have discussed how steps 1 and 2 are performed.
Calculating Step 3
Initially we have no idea how a single weight or bias influences the cost function. Instead, we start with the
error, a partial derivative described by Equation 4.2.10[14].Equation 4.2.11[14] is a vectorized form of Equa-
tion 4.2.10, and ◦ represents the Hadamard product.

δL
j =

∂Cx

∂zL
j

= ∂Cx

∂aL
j

σ′(z l
j ) (4.2.10)

δL =∇aCx ◦σ′(zL) = (aL − y)◦σ′(zL) (4.2.11)

zL
j =

∑
n=k

w j
L
k ∗aL−1

k −bL
j (4.2.12)

In the equations above the superscript L refers to the layer. The subscript j and k stand for the neuron in
layers L and L-1 (fig.4.8).

Figure 4.8: Visual representation of the sub and superscripts [14]
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The quadratic cost function is given by Equation 4.2.13[14]. Since a =σ(z) andσ= 1
1−e−z the errorδ as defined

in 4.2.10 can be calculated easily. This also holds true for other activation and cost functions.

= 1

2n
∗∑

n
(a − y)2 (4.2.13)

σ= 1

1−e−z (4.2.14)

Calculating Step 4
Using the chain rule Equation 4.2.10 can be rewritten as Equation 4.2.15[14].Equation 4.2.15 shows how the
error δL can be calculated back, starting from the output layer.

δL = ((wL+1)TδL+1)◦σ′(zL) (4.2.15)

Calculating Step 5
After Step 4, the error of each layer is known. By combining the chain-rule, some clever algebra, and Equa-
tion 4.2.10 we find expressions for the partial derivative of the cost function. (Equation 4.2.16 and Equa-
tion 4.2.17 [14]).The error is known, and thus we can easily solve for the gradient.

∂C

∂w j kL
= δL

j aL−1
j (4.2.16)

∂C

∂bL
j

= δL
j (4.2.17)

4.3. Convolutional Neural Networks
CNNs work a little differently than FNNs. CNNs make use of convolutional layers in addition to fully con-
nected layers (the type of layers used in an FNN). The name convolutional layer is a bit misleading. Most ma-
chine learning libraries use cross-correlation rather than convolution. The results are practically the same.
Performing a convolution is the same as performing a cross-correlation with a flipped filter. Within machine
learning, the operation is called convolution and we do the same in this section.
Convolutional neural networks in general consist out of convolutional layer(s), pooling layer(s), and fully
connected layer(s).Figure 4.9 shows an example of an CNN architecture.

Figure 4.9: an example of the architecture of a CNN [16]) [15]

4.3.1. How Do Convolutional Networks Work?
In contrast to an FNN, the first layer of a convolutional network takes a tensor as input (1,2 or 3D). A convolu-
tional layer then convolves the input with filters. These filters are also referred to as kernels. Figure 4.10 shows
an example of a 2D convolution. In the case of Figure 4.10, the output is restricted to positions where the filter
lies entirely within the matrix. In Figure 4.10 the filter moves over the matrix one block at a time, meaning the
stride is one. The output of the convolution is called a feature map. All of the values in this feature map are
put through an activation function. A single convolutional layer generally has more than one filter, and thus
produces several of these feature maps.
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Figure 4.10: An example of how cross-correlation is performed using a filter(kernel) [15]

Convolutional layers learn filters. Every value in the filter acts as a weight and each filter also has one bias.
Every value of the feature map has the same weights and the same bias. Since every feature map shares the
same weights and bias, it is computationally efficient. The weights and biases of convolutional layers are
learned through backpropagation and gradient descent.
A convolutional layer is often followed by a pooling layer. A pooling layer compresses the feature map. It does
this by replacing a region of values with one number. For example, this number can be the highest or the
average of all the values in the region. The size of this pooled region is denoted as the filter size.Figure 4.11
shows an example of both max and average pooling. Pooling makes the network more efficient and helps
prevent overfitting by discarding values.

Figure 4.11: Example of max and average pooling, note the stride is 2 so the filter moves 2 blocks at a time [17]

To transition from the convolutional or pooling layers into the fully connected layers it is necessary to perform
an operation called flattening. Flattening reshapes the feature maps into a 1D shape to make the transition
possible. From here on the CNN works the same as an FNN.
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4.4. How to Train a Neural Network?
For this thesis, we train our network with examples of earthquakes and seismic noise. These examples need to
be labelled and normalized. The next step would be to divide this data into three subsets: training, validation,
and test. We use the training data to train the network. The validation data is used to check if the performance
achieved with the training data is reproducible. Learning curves show the accuracy and/or loss of the network
per epoch. The accuracy corresponds to how accurate the outcomes of the network are compared to the
desired output of the training input. The loss refers to how much the value of the cost function has dropped.
the Learning curves show both the training and validation data.Figure 4.12 Shows the learning curve of a
properly functioning network; the training and validation data show the same behaviour across the epochs.

Figure 4.12: Example of a learning curve, the validation and test data show the same behaviour indicating that the network is trained
well[18]

The training and validation data are used during fine-tuning of the hyperparameters. Hyperparameters are
all the network parameters that can not be learned but are chosen by a person instead. Such as the number of
layers and neurons in the network. To prevent choosing settings that prefer the training and validation data
over new data a final check is done using the test set. After the network has been fully trained, we ask the
network to classify the test set. When the network works properly the test set yields similar results.

4.4.1. What Can Go Wrong During Training?
It’s odd that neural networks perform well in the first place, and there isn’t a definitive answer to why this is
either [15]. Since neural networks can have up to millions of parameters, it is no wonder that they can fit any
function. But neural networks surprisingly often find the fit it’s supposed to. Based only on the training data
the network often finds a fit representing the concept we wanted the network to learn. The concept of finding
a fit that represents the concept we want the network to learn is called generalization.

4.4.2. Overfitting
Sometimes a network does not generalize well because it has learned the training data too well. This is called
overfitting, meaning that the neural net fitted the training data in a very specific manner. This fit only fits
the training data well. Causes of overfitting can be that one has run too many epochs. This can encourage
the network to learn the particularities of the training data (like noise) instead of learning the general idea.
Overfitting can be prevented by increasing the number of training examples. Using fewer parameters in the
network like reducing the number of neurons, layers, filters, etc. also prevents overfitting. However, some-
times it is hard/impossible to gather more training data, and bigger neural networks are more powerful. There
are other techniques to prevent the network from overfitting. These are called regularization techniques.
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Figure 4.13: Example of what overfitting looks like, the loss on the training data keeps decreasing while the loss on the validation data
stays the same after epoch 50 [18]

4.4.3. Regularization: Drop-out Layers
Regularization techniques are techniques that prevent overfitting. Making use of drop-out layers is a popular
regularization technique that is also used for this thesis. When using a drop-out layer a random part of the
neurons in the layer is not trained for an iteration. Every iteration a different subset of neurons is left out.
Using drop-out layers you essentially train multiple networks. These networks are not likely to over-fit in the
same way since they have been trained with different data. Therefore the network as a whole won’t overfit
easily.

4.4.4. Underfitting
The opposite of overfitting is underfitting. When a network is underfitted it has not been able to learn the
training data properly. Solutions for underfitting can be either more training (train for more epochs) or by
using less regularization.

Figure 4.14: Example of what under fitting looks like, the loss on the training data seems to be flat[18]



5
Development of Neural Networks for

Earthquake Detection

In this chapter, we discuss the development of a neural network for earthquake detection. We first need to
find a suitable architecture. Several architectures have been tried, section 5.1 describes these architectures.
Secondly, we need training data. There is not enough field data available to train the networks. Therefore
synthetics are used instead. Using the ERZSOL3 software we have forward modelled synthetic events. This
process is explained in section 5.2. The architectures have been fully trained with synthetics using different
synthetic datasets. The real events have been kept apart for later testing. Finally, we compare the different
architectures and training sets by using real events and seismic noise. In Appendix A an overview of all seismic
noise and events used in this chapter can be found. Please note that the unit of amplitude for all seismic
recordings shown in this chapter should be m/s instead of m.

5.1. Architectures Used
As explained in chapter 4 designing a properly working neural network from scratch, especially a deep neural
network, can take up a lot of time and involves trial and error. To speed up the process it was chosen to start
with existing networks and modify if needed. These networks were originally designed to solve problems
similar to earthquake detection. Three architectures have been tried.

5.1.1. Network 1
The first network is an FNN, originally designed to find a signal buried in different levels of noise. This makes
it also suitable for finding earthquakes. Since we are looking for a signal produced by an earthquake buried
in seismic noise.Figure 5.1 shows a visualisation of the network.

Figure 5.1: Visualisation of architecture network 1

23
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This FNN consists out of three layers. Every layer is followed by a drop-out layer. The activation function used
for the first two dense layers is ReLu and Sigmoid for the last. As gradient optimizer, Adam has been used,
with a mini-batch size of 50. Figure 5.2 shows the details of the network.

Figure 5.2: Details on architecture network 1 FNN

5.1.2. Network 2
The second network is a 1D convolutional neural network (1D CNN), Figure 5.3 is a visualization of the archi-
tecture. Network 2 is a modified version of a network created to recognize human activity (walking, running,
playing soccer, etc.) based on 1D time series. Test subjects were given a bracelet that recorded their move-
ment in the form of 1D time-series data while performing different physical activities. This study is described
in [19]. This network was considered suitable for earthquake detection since it showed to be good at differ-
entiating between different types of 1D time series. For earthquake detection we want the network to be able
to differentiate between seismic noise and earthquakes. The network has been altered to make it suitable for
a binary classification problem. Originally the convolutional layers contained 64 filters. However, this led to
overfitting. To reduce overfitting the number of filters was set to 10.

Figure 5.3: Visualization of architecture network 2

This network consists out of two convolutional layers, one max-pooling layer, and two dense layers. Each
convolutional layer contains 10 filters of size 3, with stride 1. The last convolutional layer is followed by a
drop-out layer. The max-pooling layer has filter size 2. The first dense layer contains 100 neurons and the
second contains one neuron. Relu is used as activation throughout the network except for the final layer
where Sigmoid is used. Adam is used as an optimizer, with a mini-batch size of 50. Figure 5.4 shows the
details of the architecture.
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Figure 5.4: Details on architecture network 2 1D CNN

5.1.3. Network 3
The third network is also a 1D CNN. This network is an altered version of the ConvetNetquake network as
described in [12]. This network is designed to detect and locate earthquakes. The network has been modified
to fit a binary classification problem. The original network contained eight convolutional layers and required
input data with a length of 1000 time steps. For the recordings made in Zeerijp, this would correspond to
5-second intervals. This interval was too small to do much learning. In the end, a 10-second interval has
been used. Adding an extra layer, so that we end up with the same number of neurons in the dense part as
the original network, gave the best results. Figure 5.5 shows the network architecture.

Figure 5.5: Visualization of architecture network 3 1D CNN

The required input shape of the data differs from the previous CNN. This CNN requires all three channels
from one station together as input. The input is a 2D tensor, with shape 3 X 2000. This network has 9 convo-
lutional layers with 32 filters each. These filters have size 3, and stride 2. Meaning that after every convolution
the size of the data is halved. The first fully connected layer uses a ReLU activation function, and the output
layer a Sigmoid function. The optimizer used was ADAM, with a mini-batch size of 20.Figure 5.6 shows an
overview of the details of this architecture.
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Figure 5.6: Details on architecture network 3 1D CNN

5.2. Generating Synthetic Events
A neural network needs a lot of train examples to learn a concept. However, there have only been 83 earth-
quakes in Zeerijp between 2015 and 2019. This is too little data to train a network with. Therfor we use
synthetic data instead. We have used software to forward model events. We used the software routine ERZ-
SOL3. ERZSOL3 only models clean traces without noise. To make the synthetics look more like real events,
seismic noise was added on top of these traces.

5.2.1. ERZSOL3
The software ERZSOL3 is written by Brian Kennettin Fortran. The algorithm makes use of the reflectivity
method. The formulas given by Equation 5.2.1 [20] and Equation 5.2.2[20] form the basis of the reflectivity
method. In these equations, ρ1 represent the density of the underlying layer and ρ2 the density of the upper
layer. v1 and v2 represent the velocity of the underlying and upper layer. w(t ) is the wavelet generated by
the earthquake and n(t ) represents seismic noise. ERZSOL3 only models a trace without noise. The noise is
added afterwards.

T (t ) = R0 ∗w(t )+n(t ) (5.2.1)

R0 = (ρ2v2 −ρ1v1)

(ρ2v2 +ρ1v1)
(5.2.2)

ERZSOL3 is designed to calculate the seismic response from a set of stratified uniform layers generated by a
point source moment tensor. A detailed explanation of the inner workings of the ERZSOL 3 routine can be
found in[20].
ERZSOL3 requires three input files; a model file, a cmd file, and a dst file. Examples of these files can be found
in Appendix B. The model file consists out of a 1D velocity and density model. The cmd file contains infor-
mation about the source mechanism; moment tensor components, dominant frequency, type of wavelet, and
depth of the source. The cmd files also contain information on the slowness, desired sampling frequency, and
length of the output signal. The dst file contains information on the number of receivers and the location of
the receivers relative to the source.

5.2.2. Velocity Model
There is a detailed 3D velocity and density model available for Groningen. We have used a 1D section of this
model cut at RDx=253km and RDy=569km (Figure 5.7). However ERZSOL3 requires only 1 value per layer.
Therefore the average values for each layer have been used. Figure 5.8.
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Figure 5.7: 1D velocity and density model for the Zeer-
ijp area

Figure 5.8: 1D velocity and density model for the Zeer-
ijp are with averaged values for vp and vs

5.2.3. Source Mechanism and Wavelet
[21] Describes the results of probabilistic moment tensor inversion for earthquakes in Groningen. The events
indicated by numbers 4,7,8,9 and 11 in Figure 5.9 are located in Zeerijp.

Figure 5.9: Table containing moment tensor parameters for earthquake in Groningen[21]

Using Figure 5.9, the values found in the table below have been used to describe the moment tensor. The
source mechanism is modelled as only having a double coupled component. The isotropic and compensated
linear vector dipole components have not been taken into account.

Moment tensor
parameters
Strike 140° - 340°
Dip 45° - 65°
Rake -115° - -90°

Table 5.1: Moment tensor parameters

A Ricker wavelet has been. The wavelets are generated with a frequency between and 3 and 22Hz, the same
as the dominant frequencies of real events. The events are generated for magnitudes between 0 and 4M. The
sampling frequency is 200Hz, the same as the sampling frequency used in Zeerijp. The length of the produced
wavelet is 10 seconds.
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5.2.4. Source and Receiver Locations
Most of the earthquakes in the Groningen area happen at depths between 2.8 and 3km [21]. The Zeerijp area
is 7 by 8km. The source locations are chosen as random points within a cube based on these dimensions
(Figure 5.10). There are many faults in the area, therefore it is realistic to pick source locations as random
points within this volume. The stations used as receivers are G184, G144, and G094.Figure 5.11 shows the
locations of these stations.

Figure 5.10: Example of random distribution of source loca-
tions Figure 5.11: Location of receivers

5.2.5. Adding Noise to Synthetics
To make the synthetics more realistic, noise is added on top of the generated events. The noise added on top
of the synthetic was from a different recording, then the noise used to train the neural network. On Figure 5.13
you can see the result of the forward modeling, the final result with added noise can be seen in Figure 5.14.
Figure 5.14 and Figure 5.15 show how the synthetic looks next to a real event.

Figure 5.12: Noise
Figure 5.13: Synthetic seismogram without noise HHZ com-
ponent.
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Figure 5.14: Synthetic seismogram with noise. Figure 5.15: Event 17 HHZ component

5.3. Training Sets
We use three different training sets. These sets contain screens; 10-second intervals of seismic data. The
training sets contain 36000 or 72000 screens. Half of the screens belong to synthetic events and half of the
screens belong to seismic noise. We use different sizes to investigate if increasing the amount of data can
improve the results. We use 2 dominant frequency ranges 3-22Hz and 3-15Hz. The 3-22Hz range is based on
the dominant frequency observed in real events. However high frequencies are very sensitive to small-scale
heterogeneities, small disturbances in ray path and source location[22] [6]. Therefore a frequency range of
3-15Hz is also considered. The table below shows the specifics of each set.

Size Dominant frequnecies
Set 1 36000 screens 3-22 Hz
Set 2 72000 screens 3-22 Hz
Set 3 36000 screens 3-15 Hz

Table 5.2: Different training sets

5.4. Comparing Different Architectures and Training Sets
The trained networks are tested with 47 real events (423 screens) and 4000 instances of noise (36000 screens).
The best network is found by comparing the number of correct detections made by each setup. We are look-
ing for an architecture and training set combination that produces a high number of true positives and a
low number of false positives.Figure 5.16 and Figure 5.17 show flowcharts illustrating the difference between
training and testing of the networks.

Figure 5.16: Flowchart training network Figure 5.17: Flowchart testing network

5.4.1. How Does a Neural Network Make a Detection?
Each event is recorded on 3 stations, and these stations record 3 channels. This means that every event has 9
screens. Once the network recognizes one of the screens as an event, the event is detected. The more screens
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per event it recognizes the more confident the network is about its detection. On average the network only
classifies 2/9 screens as an event. The number of correctly classified events can thus differ from the number
of screens that have been correctly classified. If none of the screens is classified as an event, the time interval
is classified as noise. Figure 5.18 shows a visualisation of this process with 3 screens, in reality, 9 screens are
used.

Figure 5.18: Visualisation of detection

5.4.2. Result Comparison
We observe significant differences in classification accuracy between the different architectures. Training
set 2 produces the least amount of false positives for all the architectures. The best performing network is
network 2, trained with set 2. Network 2 shows the best combination between the amount of true and false
positives. Network 2 correctly classified 45/47 events and 3885/4000 instances of noise. We use a confusion
matrix to visualise the performance of the networks. Figure 5.19 illustrates how a confusion matrix works; FN
stances for False Negative, TN for True Negative etc.

Figure 5.19: Confusion matrix explained [23] Figure 5.20: Confusion matrix CNN 1 training set 2

Figure 5.21,Figure 5.22 and Figure 5.23 shows how network 2 performed compared to the other networks.
Network 3 produced less false-positives. However, this network missed most of the events. The confusion
matrixes and training curves for all tested architectures can be found in Appendix D.
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Figure 5.21: Confusion matrix FNN training
set 2

Figure 5.22: Confusion matrix CNN 1 train-
ing set 2

Figure 5.23: Confusion matrix CNN 2 train-
ing set 2



6
Comparison Template Matching and

Neural Network

In this section,the setup and results of the comparison between template matching and the neural network
are presented. Both systems are tested with 18 events <1M and 700 instances of noise. These 18 events have
been buried in 4 different noise levels. The systems are compared based on the number of correct detections.
An overview of seismic noise and events used in this chapter can be found in Appendix A. Please note that
the unit of amplitude for all seismic recordings shown in this chapter should be m/s instead of m.

6.0.1. Noise Levels
Undetected events have bad signal-to-noise ratios. To mimic these ratios, the events are buried in different
levels of noise. For the purpose of adding different levels of noise, the events recordings are regarded as
consisting out of 100 percent signal. In reality, part of the event recording consists out of noise. However we
can’t filter the noise out since it has the same frequencies as the earthquake signal. The following definition
of signal to noise ratio (SNR) is used [13]:

SN R = P 2
si g nal /P 2

noi se (6.0.1)

The following signal to noise ratios are used 0.75,0.5,0.25 and 0.125. In order to illustrate the effect of adding
noise event 16 (M=0.68), Figure 6.1, is used to illustrate this process.

Figure 6.1: Event 16 before additional noise is added

From 6.2 we can observe how event 16 is slowly buried in noise.
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Figure 6.2: Event 16 buried in increasing amounts of noise

6.1. Comparison Results
The system have been tested with 18 events <1M, buried in different noise levels and with 700 instances of
noise. The template matching detects more events and has a higher number of average detected screens
per event for low levels of noise. But when more noise is added both the number of total detections and
the average number of detected screens decreases quickly. The neural network on the other hand is more
consistent. As noise levels increase it does get worse but not much. Template matching doesn’t produce any
false-positives, but the neural network produces 2.

Template matching
No added
noise

SNR 0.75 SNR 0.5 SNR 0.25 SNR 0.125

Number of detected
events

18/18 15/18 15/18 13/18 13/18

Average number of
screens per detection

4.8 3.2 2.4 2 1.7

Table 6.1: Results on events template matching

Neural network
No added
noise

SNR 0.75 SNR 0.5 SNR 0.25 SNR 0.125

Number of detected
events

16/18 16/18 16/18 16/18 15/18

Average number of
screens per detection

2.1 2 1.9 1.6 1.5

Table 6.2: Results on events neural network

Number of
false positives

Neural network 2/700
Template matching 0/700

Table 6.3: Results on noise classification

6.2. Conclusion Comparison
We see that the performance of the neural network is less influenced by adding extra noise. It outperformed
template matching on the detection of events buried in noise. However, the neural network performed worse
than template matching when classifying noise. Meaning that we expect the neural network to find more
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events, but also more false positives. Considering the underlying principles of template matching and neural
networks, these results are not surprising. Template matching can only look for very specific patterns (its
templates) while the neural network uses a broader definition. Therefore The neural network is more ver-
satile/flexible than the rigid template matching. This flexibility is a double-edged sword. When it comes to
noise classification this flexibility causes the neural network to make mistakes.
In this chapter, we find a false-positive rate of 0.29 percent for the neural network. This rate is too high from
a practical point of view. This low rate is still problematic because of the size of the seismic data. A single day
of seismic recordings would consist out of 17.279.998 instances. When we use the found false-positive rate
this would result in 50112 false-positive instances. Even one day would produce an unworkable amount of
false positives, let alone six months of data. Template matching didn’t produce a single false-positive and is
the technique we use on six months of data from Zeerijp.
The neural network did show a lot of potential. Apart from more event detection, another advantage of the
neural network is its computational efficiency. It’s significantly more efficient than template matching. Some
techniques could reduce the number of false positives of the neural net. We could use template matching
with a low ccc threshold or make use of other cross-correlation techniques. However, exploring whether
these techniques can reduce the false positive rate (enough) is out of scope for this thesis. In chapter 8 we
discuss several techniques which could improve the false positive rate of the network.



7
Detecting Events in Continuous Seismic

Data

In the previous chapter, it has been concluded that template matching is the best option to use for the detec-
tion of missed earthquakes. In this chapter, the setup and results of the experiment on real seismic recordings
from Zeerijp are discussed. The results are presented in four categories: known events, strong new detections,
weak new detections, and false positives. First, a summary of all detections is given, and some examples for
each of the categories is presented. We also compare the magnitudes of strong new event detections to our
Gutenberg-Richter analysis. In this way, we can say something about the completeness of the detections.
This chapter closes with a detailed overview of all detections and their estimated magnitudes. Please note
that the unit of amplitude for all seismic recordings shown in this chapter should be m/s instead of m.

7.1. Set-up
To increase computational efficiency two changes have been made to the set-up of template matching. There
have been no changes to the templates themselves or the threshold value.
In the previous experiments, all templates were used on every screen presented to the system. For the test on
continuous data, we have changed this. Now only the templates which share the same station and channel
as the presented seismic data are used. This speeds up the process significantly and takes up less working
memory.
During the past experiments, small screens were used to compare template matching with the neural net-
work. We now use complete days instead of small screens to increase computational efficiency. The new
system no longer returns screen numbers but returns all indexes which have a ccc above 0.6 instead. These
indexes are later translated into the date and time of the detection.
The data consists out of 6 months of continuous seismic data, recorded by stations G184, G144, and G094.
We used recordings of all channels (HH1, HH2, and HHZ). The data has been recorded between January 1st
and June 30th, 2018. The system is fed complete days, with no overlap between the days. The seismic data
has been filtered with a 3-22Hz bandpass filter.

7.2. Results
The results are presented in four categories: known events, strong new detections, weak new detections, and
false positives. Known events are the events that are already in the catalogue. All of these events have been
detected indicating that our set-up works properly. The new event detections are split into two categories,
strong and weak. The strong detections resemble previous events well (ccc<0.65). These events are visible on
at least two stations. In total, we detected 22 strong new event detections. The weak category shows detec-
tions that don’t resemble previous events well (ccc>0.65). These detections are only visible on 1 station. Some
of the weak detections require more investigation to determine if they are actual detections. We have found
18 weak event detections False positives are the detections generated by the system which after inspection
don’t resemble events at all. In total, we have found 5 false positives. In the sections below we show examples
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of each category. In Figure 7.3.1 a complete overview of all detection can be found. Plots of all detections can
be found in Appendix E.

Known detections 12
Strong event detections 22
Weak event detections 18
False positives 5
Total number of detections 57

Table 7.1: Summary of detections

7.2.1. Known Events
Events 47-58 occurred between January and June 2018 and all of them have been detected. As an example,
we show events 47 and 56. Both of these events had very clear pre-shocks hidden in the seismic data. These
pre shocks are found in the strong event section. Event 47 and 56 are also the largest events in the set, with
magnitudes of 3.40 and 2.81 respectively.

Figure 7.1: Event 47 Figure 7.2: Event 56

7.2.2. Strong New Events
Looking at these two detections, one can see the resemblance to events 47 and 56. The pre-shock belonging
to event 56 occurred only six hours before event 56.

Figure 7.3: Pre shock event 47 Figure 7.4: Pre shock event 56

7.2.3. Weak New Events
For weak detections, it’s sometimes hard to determine whether or not something is an event. For example,
two weak detections are shown.
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Figure 7.5: Weak event detection March 2nd Figure 7.6: Weak event detection March 28th

7.2.4. False Positives
Very few false positives have been found. Two examples can be found here.

Figure 7.7: False positive January 10th Figure 7.8: False positive February 3rd

7.2.5. How Do these Results Compare to the Gutenberg-Richter Analysis?
Based on the Gutenberg-Richter analysis we expect 60 undetected events between -1 and 0.5M in six months
of seismic recordings. We have found 22 strong detections with estimated magnitudes between 0.56 and -
0.74M. In the table below, the number of new strong detections for different magnitude ranges and the num-
ber of expected events based on Gutenberg-Richter can be found. The catalogue should be complete up to
0.5M, so it seems like the estimated magnitudes are too high. It looks like the estimated magnitudes are too
high for the 0-0.5M range as well. We assume that the observed surplus belongs to lower magnitude tranches.
This leads to the following conclusions: all events expected between 0 and 0.5M have been found, we found
around half of the events between -0.5 and 0M (between 7/17 and 11/17) and for events under -0.5M we only
found between 10 and 20 percent(ranging between 3/35 and 7/35).

Magnitude range
Number of new strong
event detections

Number of expected events
based on Gutenberg Richter

>0.5M 3 0
0 - 0.5 12 8
-0.5 - 0 4 17
-1 - -0.5 3 35

Table 7.2: Comparison new strong event detections and Gutenberg-Richter

7.3. Overview of All Detections and Estimated Magnitudes
At the end of this section, a large table listing all detections in order of occurrence is presented. We also
provided the new detections with an estimated magnitude based on the magnitudes of known events. We
also indicated how many windows have been detected, and how many windows the earthquake was visible.
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7.3.1. Magnitude Estimation
We have estimated the magnitude of the detected events by looking at the maximum amplitudes of known
events. We used the maximum amplitude of all events above 1M for the HH1 component. We made a scatter-
plot of the relation between maximum amplitude and magnitude. We fitted this scatter plot to find the rela-
tion between magnitude and maximum amplitude. We fit Equation 7.3.1 where m represents the magnitude
and a amplitude. We solved for b using least squares, b was found to be 8.23∗10−7. Using this relation and
the amplitudes of the new detections it was possible to estimate their magnitude.

a = b ∗10m (7.3.1)

Figure 7.9: Fit for maximum amplitudes
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Detection # Date Time Type Magnitude
Estimated
magnitude

Screens
detected

Screens
visible

Max ccc

1 1/2/18 9:34:31 New strong event 0.23 6 9 0.827
2 1/8/18 14:00:52 Event 47 3.4 9 9 1
3 1/8/18 16:58:16 New strong event 0.56 7 9 0.795
4 1/9/18 15:46:49 Event 48 0.68 8 9 0.848
5 1/10/18 23:59:46 False positive 1 0.921
6 1/17/18 0:38:44 False positive 1 0.626
7 1/21/18 6:06:27 False positive 1 0.712
8 2/3/18 12:02:56 False positive 1 0.619
9 2/5/18 23:49:59 Event 49 0.44 3 9 0.835
10 2/8/18 15:25:30 Event 50 2.04 9 9 1
11 2/12/18 0:05:19 New strong event 0.56 3 9 0.889
12 2/12/18 1:15:22 New strong event -0.31 1 6 0.651
13 2/12/18 10:44:53 Event 51 0.92 5 9 0.782
14 2/16/18 14:56:49 New strong event 0.39 6 6 0.962
15 2/17/18 15:30:23 New weak event 0.73 1 3 0.601
16 2/18/18 1:26:54 Event 52 1 9 9 1
17 2/20/18 21:58:25 New strong event 0.39 2 3 0.752
18 2/22/18 11:20:23 New weak event -0.91 1 3 0.627
19 2/25/18 7:13:07 New strong event -0.61 2 6 0.725
20 2/28/18 5:14:17 New strong event 0.08 1 6 0.672
21 2/28/18 5:47:23 New weak event 0.39 1 3 0.657
22 2/28/18 16:22:59 New weak event 0.69 1 3 0.636
23 2/28/18 18:03:49 New weak event 0.23 1 3 0.646
24 3/1/18 18:16:33 New weak event 0.26 1 3 0.603
25 3/1/18 21:34:26 Event 53 0.92 2 9 0.702
26 3/2/18 0:02:12 New weak event -1.52 1 3 0.621
27 3/2/18 2:33:17 New weak event 0.78 1 3 0.619
28 3/2/18 21:33:07 New weak event 0.18 1 3 0.631
29 3/3/18 2:38:23 New weak event 0.26 1 3 0.603
30 3/3/18 19:57:57 New strong event 0.26 1 6 0.655
31 3/18/18 17:02:08 New strong event -0.012 2 6 0.662
32 3/25/18 14:29:28 New strong event 0.26 1 7 0.623
33 3/26/18 8:31:21 New weak event 0.48 1 1 0.634
34 3/28/18 15:18:24 New weak event 0.39 1 3 0.618
35 3/30/18 4:18:06 New weak event 0.26 1 3 0.634
36 3/31/18 0:12:05 New weak event -0.61 1 2 0.602
37 4/1/18 3:13:08 Event 54 0.61 4 9 0.856
38 4/3/18 18:46:00 New strong event 0.18 2 6 0.804
39 4/4/18 3:35:41 Event 55 0.9 6 9 0.874
40 4/13/18 15:12:55 New strong event 0.69 9 9 0.834
41 4/13/18 21:31:35 Event 56 2.81 9 9 1
42 4/26/18 0:04:08 New weak event -1.43 2 3 0.628
43 4/27/18 6:02:54 New strong event -0.012 2 3 0.789
44 5/12/18 16:06:47 Event 57 0.72 5 9 0.948
45 5/13/18 17:35:12 New strong event -0.012 3 6 0.918
46 5/17/18 6:11:24 New strong event 0.52 3 9 0.724
47 5/18/18 16:29:54 New weak event -0.43 1 2 0.616
48 5/21/18 23:27:49 Event 58 1.63 9 9 1
49 5/22/18 0:19:44 New strong event -0.14 1 4 0.701
50 5/25/18 12:10:46 New weak event 0.39 1 3 0.614
51 5/25/18 23:02:55 New strong event 0.39 2 6 0.668
52 5/26/19 4:22:42 New weak event -0.61 1 3 0.625
53 5/27/19 3:01:48 New strong event -0.56 1 6 0.745
54 5/29/18 20:36:54 New strong event 0.39 2 9 0.804
55 6/4/18 23:36:11 New strong event -0.74 3 6 0.795
56 6/19/18 4:46:44 New strong event 0.18 2 6 0.75
57 6/28/18 18:44:30 False positive 1 0.626

Table 7.3: Overview all detections in chronically order
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Discussion and Outlook

In this section, we discuss some of the simplifications and uncertainties surrounding parts of the work pre-
sented in this thesis. We also discuss how the results can be improved.

8.1. Forward Modelling Events
During forward modelling, two big simplifications were made. First of all, it was chosen to use average values
for the velocity model. It would have been more realistic to divide layers without constant velocities into
small layers with constant velocity. It was expected that this simplification would not have a big influence on
the performance of the neural network, since it does not learn the training data by heart.
The second simplification is that we modelled the earthquakes as if their moment tensor only consisted out
of a Double Coupled (DC) component. In reality, they also had Isotropic and Compensated Linear Vector
Dipole (CLVD) components. These were omitted to make it easier to model the synthetic events. Again we
justified this simplification because the network only has to ’learn’ the general concept of an event. The
double coupled component was the strongest component for the Zeerijp earthquakes. We have seen that the
main weakness of the neural network is the number of false positives it produces. We might be able to reduce
this by using more realistic synthetics so that the network can ’learn’ more features that set events apart from
seismic noise.

8.2. Training Sets Neural Network
We have used three different training sets for the neural networks. These sets either differed in what dom-
inant frequency was used for generating synthetic events or in size. However, we haven’t looked at optimal
screen length. We started with a length of 10 seconds, and this worked well. These 10 seconds were based on
template matching. There we saw that 10 seconds provided a high cross-correlation coefficient without hav-
ing too many false positives. It would be interesting to see what would happen when using different interval
lengths, so we can determine which part of the earthquake best describes its essence.

8.3. Used Neural Network Architectures
We have tried more architectures than presented in this thesis, however, we haven’t tried every single architec-
ture that showed potential. For example, we haven’t tried a recurrent neural network which on paper should
have been a good option for this type of problem.The network presented in this thesis as the best network for
earthquake detection is by no means the absolute best network for this problem. It is the best relative to the
other networks presented in this thesis.

8.4. Size of Noise Test Set Template Matching
Because of memory problems the noise sets on which template matching was tested only contained 6300
screens of noise. These memory problems were caused by using all templates on every input screen. Instead
of using only the templates belonging to the same station and channel as the input screen. In a later stage,
this was changed.
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8.5. Categorizing Detections Made by Template Matching
The way the detections made by template matching are categorized is partly subjective, since we look at visi-
bility. The goal of presenting them like this is for the reader to get a clear overview of what kind of detections
the algorithm can make.

8.6. Improving False Positive Rate Neural Network
We could improve the false positive rate by using cross-correlation. We could use the template matching
algorithm with a lower threshold value on all of the detections made by the neural network. By first screening
the detections with template matching, we hopefully can reduce the number of false positives. We could
do the same as Perol et al. [12] and cross-correlate all the detections made by the neural network with each
other. The idea is that the undetected events are similar to each other because they are from the same area
and probably have the same focal mechanism. We then would need to find a suitable threshold value, which
produces a selection with few false positives.
A different approach would be to train two networks instead of one. We could have one network for the
horizontal components (HH1 and HH2) and one for the horizontal component(HHZ). Due to the nature of
P and S waves, the recordings made for the horizontal and vertical components of the same event are quite
different. By combining both components in one network we might have confused the network with these
different representations. The idea is when we have separate networks the concept will be easier to grasp. In
this way, we can reduce the number of false positives.
Finally one could try and improve the training data. We could try using a bigger set. We have seen that
using a bigger training set reduced the number of false positives. In this chapter, we already mentioned that
improving the forward modelling process could improve results and changing the screen length might also
help. These proposals could also be used in combination which each other.



9
Conclusion

We started this thesis with the following questions:

• Is it possible to create a practical detection system for low magnitude events(< 0.5M) using template
matching or a neural network for the Zeerijp area?

• How do the developed algorithms compare when used for low magnitude events recorded in the Zeerijp
area?

We have tried to answer these questions by developing algorithms based on template matching and neural
networks. We assessed these algorithms by testing the ability of each system to differentiate between events
of different noise levels and actual seismic noise. It was concluded that template matching was the most
practical method to look for earthquakes in continuous seismic data. Finally, six months of seismic record-
ings were fed to the template matching algorithm.

Is it possible to create a practical detection system for low magnitude events(< 0.5M) using template match-
ing or a neural network for the Zeerijp area?
The short answer is yes, it was possible to create such a system using template matching. The developed algo-
rithm was able to detect at least 22 previously undetected events. We have found that template-matching has
detected all expected events for magnitudes between 0 and 0.5M. For magnitudes <-0.5M template matching
did not detect all expected events. For events between -0.5 and 0M template matching found around half of
the expected events. For magnitudes between -1 and -0.5M, the algorithm only detected between 10 and 20
percent of expected events. We have used a Gutenberg-Richter analysis to calculate the number of expected
events.
Whether it is possible to create a practical detection system using Neural networks is more complicated. As
far as this thesis goes the answer is no. The neural network presented in this thesis produces too many false
positives from a practical point of view. The false-positive rate is only 0.29 percent but is still too high for
using it on months of seismic recordings. We have proposed several ways to improve the network. One could
combine the neural network with template matching or other cross-correlation techniques. You could also
create two different neural networks one trained for the horizontal channels (HH1 and HH2) and another
trained for the vertical channel (HHZ). Or one could try to create better training data by improving the real-
ism of the data or by experimenting with input length.

How do the developed algorithms compare when used for low magnitude events recorded in the Zeerijp
area? Template matching was found to be affected more by noise than the neural network. However, it does
make very few false positives. On the other hand it is very computational heavy. The Neural-network is less
sensitive to noise. This indicates that it can detect lower magnitude events than template matching. It is also
more computationally efficient than template matching. Its only drawback is that it produces too many false
positives.
It’s worth trying to reduce the number of false positives if one is interested in detecting events below -0.5M or
wants a method that is less computational heavy. If you are only interested in detecting events up to -0.5M
and don’t care about computational costs the template matching algorithm discussed in this thesis will do
nicely.
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Appendix A

In this appendix an overview of seismic noise and events used for the development of the algorithms is shown.
Please note that the dates are American (mm/dd/yy).

Usage Recorded on
Noise used for fine tuning templates 9/2/17
Noise added to syntehtic seismics 1/7/19
Noise used for training architecures 8/6/17
Noise used for testing architecures and training sets 9/6/19
Noise used for comparing template matching and neural net 11/20/17

Table A.1: Noise usage
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A.1. Overview noise
A.2. Overview of events recorded in Zeerijp between 2015-2019

eventno eventID originTime(UTC) latitude longitude depth magnitude description
1 event_1 2/10/15 53.3487 6.72833 3 0.911213 Loppersum
2 event_2 5/7/15 53.3468 6.74333 3 1.01505 Zeerijp
3 event_3 6/7/15 53.34 6.75 3 1.91405 Zeerijp
4 event_4 6/10/15 53.344 6.753 3 1.75534 Zeerijp
5 event_5 6/10/15 53.343 6.713 3 0.41634 Westeremden
6 event_6 6/10/15 53.345 6.713 3 0.800359 Westeremden
7 event_7 7/4/15 53.351 6.694 3 1.07698 Westeremden
8 event_8 7/16/15 53.341 6.715 3 0.428682 Westeremden
9 event_9 8/7/15 53.339 6.759 3 0.802166 Loppersum
10 event_10 8/17/15 53.35 6.761 3 0.600928 Zeerijp
11 event_11 9/10/15 53.372 6.713 3 0.844236 Startenhuizen Lopp
12 event_12 11/16/15 53.357 6.743 3 0.856557 Zeerijp
13 event_13 1/19/16 53.362 6.77 3 0.611921 ’t Zandt
14 event_14 2/21/16 53.358 6.739 3 0.197729 Zeerijp
15 event_15 3/1/16 53.328 6.714 3 0.334155 Loppersum
16 event_16 5/6/16 53.342 6.694 3 0.68065 Westeremden
17 event_17 6/1/16 53.361 6.75 3 1.24217 Zeerijp
18 event_18 6/18/16 53.345 6.799 3 0.127466 Leermens
19 event_19 7/18/16 53.378 6.709 3 1.6623 Eppenhuizen
20 event_20 8/24/16 53.372 6.724 3 0.597877 Garsthuizen
21 event_21 10/2/16 53.328 6.779 3 0.32784 Wirdum
22 event_22 11/8/16 53.331 6.795 3 1.44056 Eenum
23 event_23 11/8/16 53.329 6.794 3 0.853776 Eenum
24 event_24 12/7/16 53.333 6.774 3 1.79145 Loppersum
25 event_25 1/19/17 53.327 6.774 3 0.92482 Wirdum
26 event_26 2/4/17 53.371 6.739 3 0.90378 Garsthuizen
27 event_27 2/4/17 53.371 6.736 3 0.603355 Garsthuizen
28 event_28 2/12/17 53.381 6.713 3 1.26969 Startenhuizen
29 event_29 2/14/17 53.371 6.718 3 0.825201 Garsthuizen
30 event_30 2/15/17 53.377 6.714 3 1.58658 Startenhuizen
31 event_31 2/19/17 53.393 6.758 3 1.41208 Zijldijk
32 event_32 2/26/17 53.328 6.778 3 1.44401 Wirdum
33 event_33 3/11/17 53.35 6.761 3 2.08334 Zeerijp
34 event_34 7/10/17 53.332 6.741 3 0.666265 Loppersum
35 event_35 7/25/17 53.352 6.737 3 0.960307 Loppersum
36 event_36 8/13/17 53.358 6.743 3 0.465839 Zeerijp
37 event_37 8/14/17 53.367 6.742 3 1.23084 Garsthuizen
38 event_38 8/14/17 53.36 6.742 3 0.274475 Zeerijp
39 event_39 9/14/17 53.344 6.741 3 0.549283 Zeerijp
40 event_40 12/1/17 53.36 6.736 3 1.67847 Zeerijp
41 event_41 12/1/17 53.357 6.757 3 1.27785 Zeerijp
42 event_42 12/7/17 53.386 6.784 3 1.82144 ’t Zandt
43 event_43 12/10/17 53.37 6.765 3 2.06669 ’t Zandt
44 event_44 12/22/17 53.366 6.752 3 1.66058 Zeerijp
45 event_45 12/22/17 53.357 6.75 3 0.358491 Zeerijp
46 event_46 12/30/17 53.357 6.756 3 1.43183 Zeerijp
47 event_47 1/8/18 53.363 6.751 3 3.43469 Zeerijp
48 event_48 1/9/18 53.355 6.752 3 0.680083 Zeerijp
49 event_49 2/6/18 53.336 6.762 3 0.437586 Loppersum

Table A.2: Overview of events 2015-2019
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eventno eventID originTime(UTC) latitude longitude depth magnitude description
50 event_50 2/8/18 53.335 6.751 3 2.03768 Loppersum
51 event_51 2/12/18 53.371 6.714 3 0.922629 Garsthuizen
52 event_52 2/18/18 53.335 6.763 3 1.00086 Loppersum
53 event_53 3/1/18 53.326 6.76 3 0.916779 Loppersum
54 event_54 4/1/18 53.35 6.741 3 0.619502 Zeerijp
55 event_55 4/4/18 53.334 6.75 3 0.901809 Loppersum
56 event_56 4/13/18 53.371 6.75 3 2.81124 Garsthuizen
57 event_57 5/12/18 53.355 6.764 3 0.7164 Zeerijp
58 event_58 5/22/18 53.374 6.795 3 1.63178 ’t Zandt
59 event_59 7/14/18 53.361 6.744 3 0.272782 Zeerijp
60 event_60 7/29/18 53.373 6.793 3 0.883042 ’t Zandt
61 event_61 8/22/18 53.378 6.754 3 0.502138 ’t Zandt
62 event_62 9/17/18 53.381 6.713 3 0.59096 Startenhuizen
63 event_63 10/10/18 53.347 6.734 3 0.53691 Loppersum
64 event_64 10/10/18 53.347 6.732 3 0.538023 Loppersum
65 event_65 11/25/18 53.385 6.716 3 1.57888 Eppenhuizen
66 event_66 2/7/19 53.35 6.714 3 0.698895 Westeremden
67 event_67 2/9/19 53.38 6.754 3 0.882142 ’t Zandt
68 event_68 2/16/19 53.36 6.743 3 1.37385 Zeerijp
69 event_69 2/24/19 53.339 6.761 3 0.396396 Loppersum
70 event_70 3/12/19 53.367 6.765 3 0.390296 ’t Zandt
71 event_71 4/21/19 53.341 6.757 3 0.901397 Zeerijp
72 event_72 5/3/19 53.33 6.711 3 1.00545 Loppersum
73 event_73 5/28/19 53.351 6.738 3 1.14094 Zeerijp
74 event_74 9/9/19 53.343 6.754 3 1.52814 Zeerijp
75 event_75 3/17/20 53.371 6.73 3 1.35541 Garsthuizen
76 event_76 4/28/20 53.356 6.762 3 1.533 Zeerijp
77 event_77 5/2/20 53.388 6.762 3 2.50787 Zijldijk
78 event_78 5/31/20 53.372 6.734 3 0.643497 Garsthuizen
79 event_79 7/3/20 53.335 6.749 3 0.675347 Loppersum
80 event_80 7/14/20 53.342 6.729 3 2.74944 Loppersum
81 event_81 7/15/20 53.342 6.731 3 0.559852 Loppersum
82 event_82 7/19/20 53.376 6.713 3 2.33607 Startenhuizen
83 event_83 7/19/20 53.376 6.712 3 0.901401 Startenhuizen
84 event_84 9/3/20 53.338 6.703 3 1.96237 Westeremden
85 event_85 10/16/20 53.328 6.767 3 1.03638 Loppersum
86 event_86 11/16/20 53.371 6.731 3 1.08549 Garsthuizen

Table A.3: Overview events 2015-2019
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In this appendix one can find an exmaple of a cmd and dst file. These files contain the input information for
the ERZSOL3 software routine.

B.1. ERZSOL 3 Input Files

Figure B.1: An example of a .cmd file.

Figure B.2: An example of a .dst file.

49



C
Appendix C

C.1. Results Test Template Lenght and Threshold
In this appendix, all of the test results of different parameter settings for template matching can be found.
Please note that we use false-positive screens instead of false-positive instances to better show the differences
in performance for the different settings.

Template
10 seconds

0.4 0.5 0.6 0.7 0.8 0.9
Average
correct
percentage

number of
events detected

18/18 18/18 18/18 17/18 13/18 3/18 81%

Screens of noise
classified as
events

1071/6300 12/6300 0/6300 0/6300 0/6300 0/6300 97%

Table C.1: Results templates 10 seconds

Template 10
seconds with
1 second of
noise included

0.4 0.5 0.6 0.7 0.8 0.9
Average
correct
percentage

number of
events detected

18/18 18/18 18/18 16/18 12/18 3/18 79%

Screens of noise
classified as
events

720/6300 8/6300 0/6300 0/6300 0/6300 0/6300 98%

Table C.2: Results templates 10 seconds including 1 sec of noise

Template 12.5
seconds

0.4 0.5 0.6 0.7 0.8 0.9
Average
correct
percentage

number of
events detected

18/18 18/18 18/18 15/18 12/18 3/18 78%

Screens of noise
classified as
events

859/6300 8/6300 0/6300 0/6300 0/6300 0/6300 98%

Table C.3: Results templates 12.5 seconds
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Templat 12.5
seconds with 1
second of noise
included

0.4 0.5 0.6 0.7 0.8 0.9
Average
correct
percentage

number of
events detected

18/18 18/18 18/18 17/18 13/18 3/18 81%

Screens of noise
classified as
events

204/6300 4/6300 0/6300 0/6300 0/6300 0/6300 99%

Table C.4: Results using a templates of 12.5 seconds with one second of noise included

Template 15
seconds

0.4 0.5 0.6 0.7 0.8 0.9
Average
correct
percentage

number of
events detected

18/18 18/18 18/18 17/18 13/18 3/18 81%

Screens of noise
classified as
events

828/6300 11/6300 0/6300 0/6300 0/6300 0/6300 98%

Table C.5: Results templates 15 seconds

Template 15
seconds with 1
second of noise
included

0.4 0.5 0.6 0.7 0.8 0.9
Average
correct
percentage

number of
events detected

18/18 18/18 18/18 10/18 1/18 0/18 60%

Screens of noise
classified as
events

828/6300 11/6300 0/6300 0/6300 0/6300 0/6300 99.6%

Table C.6: Results using a templates of 15 seconds with one second of noise included
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D.1. Training Curves and Confusion Matrixes of Tested Architectures
In this section, all confusion matrixes and training curves can be found. Please note that the networks have
been trained on synthetics, for which they have high accuracy scores. The networks have been trained using
screens but in the confusion matrixes, we show the performance on instances.

D.1.1. Network 1
Test set 1

Figure D.1: Confusion matrix FNN training set 1

Figure D.2: Training curve FNN training set 1
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Test set 2

Figure D.3: Confusion matrix FNN training set 2

Figure D.4: Learning curve FNN training set 2

Test set 3

Figure D.5: Confusion matrix FNN training set 3
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Figure D.6: Learning curve FNN training set 3

D.1.2. Network 2
Test set 1

Figure D.7: Confusion matrix network 2 training set 1

Figure D.8: Learning curve network 2 training set 1
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Test set 2

Figure D.9: Confusion matrix CNN 1 training set 2

Figure D.10: Learning curve CNN 1 training set 2

Test set 3

Figure D.11: Confusion matrix CNN 1 training set 3
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Figure D.12: Learning curve CNN 1 training set 3

D.1.3. Network 3
Test set 1

Figure D.13: Confusion matrix CNN 2 training set 1

Figure D.14: Learning curve CNN 2 training set 1
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Test set 2

Figure D.15: Confusion matrix CNN 2 training set 2

Figure D.16: Learning curve CNN 2 training set 2

Test set 3

Figure D.17: Confusion matrix CNN 2 training set 2
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Figure D.18: Learning curve CNN 2 training set 2



E
Appendix E

E.1. Results Template Matching on Continous Seismic Recordings
Most of the detections are plotted for the same station channel combination. In this way, one can easily spot
similarities. The default is station G144 channel HH1. We chose this pare based on the observations made
in chapter 2. For some detections, this channel station combination doesn’t show clear depictions of events.
For those cases, another station channel combination has been used to show the detection. Please note that
the unit of amplitude should be m/s and not m.

E.1.1. Strong Event Detections

Figure E.1: New event January 2nd Figure E.2: New event January 8th Figure E.3: New event February 12th

Figure E.4: New event February 12th 2 Figure E.5: New event February 16th Figure E.6: New event February 20th
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Figure E.7: New event February 25th Figure E.8: New event February 28th Figure E.9: New event March 3rd

Figure E.10: New event March 18th Figure E.11: New event March 25th Figure E.12: New event April 3th

Figure E.13: New event April 13th Figure E.14: New event April 27th Figure E.15: New event May 13th

Figure E.16: New event May 17th Figure E.17: New event May 22nd Figure E.18: New event May 25th
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Figure E.19: New event May 27th Figure E.20: New event May 29th Figure E.21: New event June 4th

Figure E.22: New event June 29th

E.1.2. Weak event detections

Figure E.23: New event February 17th Figure E.24: New event February 22th Figure E.25: New event February 28th (1)

Figure E.26: New event February 28th (2) Figure E.27: New event February 28th(3) Figure E.28: New event March 1st
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Figure E.29: New event March 2nd (2) Figure E.30: New event March 2nd(3) Figure E.31: New event March 2nd

Figure E.32: New event March 3th Figure E.33: New event March 26th Figure E.34: New event March 28th

Figure E.35: New event March 30th Figure E.36: New event March 31st Figure E.37: New event April 26th

Figure E.38: New event May 18th Figure E.39: New event May 25th Figure E.40: New event May 26th
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E.1.3. False positives

Figure E.41: False positive January 10th Figure E.42: False positive January 17th Figure E.43: False positive January 21st

Figure E.44: False positive February 3rd Figure E.45: False positive June 28th
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