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Abstract
Visualizing high-dimensional data is a key
challenge in modern data analysis. T-distributed
Stochastic Neighbor Embedding (t-SNE) is
a popular nonlinear dimensionality reduction
technique that maps such data into a low-
dimensional embedding while preserving local
relationships. A critical hyperparameter in t-SNE
is perplexity. Choosing an appropriate value of
perplexity for a particular use-case is non-trivial,
especially for large datasets, where repeated t-SNE
computations become computationally prohibitive.
To mitigate this, the sample-based approach runs
t-SNE twice: first on a downsampled subset of the
data and then on the full dataset. This introduces
two perplexity parameters: sample perplexity for
the first run and full perplexity for the second run.
In this work, we systematically investigate
the impact of varying combinations of sample
perplexity and full perplexity on the quality of
the final t-SNE embedding. Our findings show
that sample perplexity predominantly determines
the global layout of the embedding, while full
perplexity influences local refinement. We also
compare our approach with different approaches
to choosing perplexity values, and find that while
some offer better preservation of structural details,
they provide less flexibility.

1 Introduction
Humans are inherently limited to visualizing and interpreting
data up to a maximum of three dimensions. Yet, with
the increasing collection of high-dimensional datasets in
the modern era, particularly in fields like genomics and
neuroscience, it is crucial to develop methods that make
it possible to interpret high-dimensional data; for example,
obtaining gene expression data from thousands or even
millions of cells can help in identifying rare cell types
or discover disease markers. [3; 19]. A promising
technique introduced by [20], which is used to visualize
high-dimensional data, is known as t-distributed Stochastic
Neighbor Embedding (t-SNE); t-SNE aims to map high-
dimensional data into a lower-dimensional embedding by
preserving local similarities, such that points that are close
to each other in the high-dimensional space are most likely to
remain close in the embedding.

One of the most important parameters in t-SNE is
perplexity, which determines how much emphasis is placed
on nearby points when arranging the data, affecting whether
the resulting visualization highlights local details or broader
patterns in the data. Finding a suitable perplexity value for
a given dataset is not straight forward because the optimal
perplexity value depends on the structure of the dataset and
also on the use-case of the person who wants to create the
visualisations; it is a trial and error process of testing different
perplexity values.

When t-SNE is applied to datasets exhibiting hierarchical
structure, it presents two weaknesses: (i) t-SNE does

not always preserve the global structure [21; 9] because
it inherently preserves local neighborhoods; (ii) for very
large datasets, the first weakness becomes worse [7], and
running t-SNE multiple times to tune perplexity becomes
computationally expensive [7].

To address these challenges, Kobak and Berens [7] propose
the following techniques: PCA initialisation, use multi-
scale similarities [9; 4], and increasing the learning rate
parameter [2] in t-SNE; for very large data, in addition to the
previously mentioned techniques, use sample-based approach
and exaggeration. In the sample-based approach, t-SNE is
run twice: first on a sampled subset and then on the full
dataset. We refer to the perplexity used in the first step
as the sample perplexity, and in the second step as the full
perplexity. In [7], they use a combination of two values as
the sample perplexity: 30 and n/100 where n is the number
of data points, and use a fixed value of 30 as full perplexity.

As highlighted by a later study [17], the fixed sample
perplexity used in [7] “restricts the user to a given, fixed
perplexity”. Building on the same sample-based strategy,
[17] introduces flexibility in selecting the sample perplexity.
It then adjusts the full perplexity “based on the sampling
rate, leveraging the linear relationship between perplexity and
dataset size” [17].

In our work, we further extend this approach [17] by
making both sample perplexity and full perplexity tunable
rather than be a fixed value or be heuristically determined,
and aim to understand its effects on the quality of the
final embedding. To this end, we conduct a grid search
over a range of (sample perplexity, full perplexity) pairs
and evaluate the resulting embeddings. Moreover, we then
compare the outcome against the aforementioned approaches
both qualitatively and quantitatively.

In this paper, we find that:
• Sample perplexity primarily determines the global

structure of the embedding, serving as a foundation for
the overall layout whereas full perplexity acts as a local
refinement parameter where higher values smooth local
neighborhoods but can reduce local details.

• Compared to the multi-scale approach by [7], our
method significantly underperforms in preserving local
structure.

2 Background
This section will contain the required knowledge and relevant
concepts on which our research is based upon. In section
2.1 we will discuss the t-distributed Stochastic Neighbor
embedding (t-SNE) algorithm. In section 2.2, we will
discuss the role of hyperparameter: perplexity in the t-SNE
algorithm. In section 2.3 we discuss the sampling-based
approach in detail.

2.1 T-distributed Stochastic Neighbor Embedding
(t-SNE)

The T-distributed Stochastic Neighbor Embedding (t-SNE)
algorithm is a popular method for visualizing high-
dimensional data in two or three dimensions. It operates by
minimizing the Kullback-Leibler (KL) divergence between



two probability distributions: one defined over pairs of points
in the original high-dimensional space, and the other over
the corresponding points in the low-dimensional embedding
space [20].

In high dimensions, the similarity between points is
modeled using a Gaussian distribution. The similarity
between two points xi and xj in the high-dimensional space
is computed using

pj|i =
exp

(
−∥xi − xj∥2/2σ2

i

)∑
k ̸=i exp (−∥xi − xk∥2/2σ2

i )
(1)

where pi|i = 0 and σ2
i is the variance of the Gaussian

centered on the point xi.
These conditional probabilities are then symmetrized to

form joint probabilities using

pij =
pj|i + pi|j

2n
(2)

where n is the total number of data points in the dataset.
In the low-dimensional space, the similarity between

points yi and yj is modeled using a Student-t distribution as

qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥2)−1

. (3)

In t-SNE, an initial embedding is obtained by principal
component Analysis (PCA) to compute the positions yi of
the low-dimensional embedding [8]; this low-dimensional
embedding is then altered by gradient-descent optimization
of the Kullback-Leibler (KL) divergence between the high-
dimensional and low-dimensional similarity distributions, P
and Q given by

KL(P∥Q) =
∑
i ̸=j

pij log

(
pij
qij

)
(4)

with the gradient

∂KL(P∥Q)

∂yi
= 4

∑
j

(pij−qij)
(
1 + ∥yi − yj∥2

)−1
(yi−yj).

(5)

2.2 Hyperparameter: Perplexity
A key hyperparameter in t-SNE is perplexity, which
determines the effective number of neighbors considered for
each point during the computation of similarities. Formally,
for each data point xi, t-SNE fits a Gaussian distribution
centered at xi and adjusts its variance σ2

i such that the
Shannon entropy of the resulting conditional similarity
distribution Pi =

{
pj|i | j ∈ [n]

}
matches a target perplexity

value. This is done via binary search on σi [20] to solve:

Perplexity(Pi) = 2H(Pi) (6)

where H is the Shannon entropy of a discrete distribution
given by:

H(Pi) = −
∑
j

pj|i log2 pj|i. (7)

Figure 1: Kobak and Berens approach for the standard case and very
large data sets

As a result, lower perplexities, w.r.t. the dataset size lead
to smaller σ2

i , producing narrow Gaussian that emphasize
nearby points yielding embeddings that capture fine-grained,
local structure. Conversely, higher perplexities, w.r.t. the
dataset size increase σ2

i spreading the Gaussian wider and
incorporating more distant neighbors which helps emphasize
broader, global relationships among clusters [7]. Hence,
perplexity acts as a smooth control over the local versus
global tradeoff in the structure of the embedding.

2.3 Sampling-Based approach
Selecting an perplexity value which is suitable for
a particular use-case is non-trivial and often dataset
dependent. Evaluating multiple perplexity values to explore
the embedding space becomes computationally expensive,
particularly for large datasets, due to t-SNE quadratic
complexity in both time and memory [20]. A sample-
based approach introduced by [7] mitigates the issues which
employs the following pipeline:

(i) Downsample the dataset to a manageable size.

(ii) Apply t-SNE on the sample using a specified sample
perplexity.

(iii) Position all the remaining unsampled data points on the
resulting t-SNE embedding using nearest neighbours.

(iv) Use the result as initialization to run t-SNE on the whole
dataset using a specified full perplexity.

Kobak and Berens approach
Kobak and Berens [7] proposed several practical
improvements to classical t-SNE with a focus on
preserving global structure in single-cell transcriptomic
datasets which is hierarchical in nature. However,
these improvements are applicable to any dataset
with hierarchical structure [16]. [7] introduces three



key improvements: (i) multi-scale similarities [9;
4], (ii) PCA initialisation, (iii) high learning-rate [2].

This work highlights the issue that “as large perplexity
yields longer-ranging attractive forces during t-SNE
optimisation, the visualisation loses some fine detail
but pulls larger structures together” [7].. To curb this
issue, this work proposes a multi-scale approach [9;
4]. Specifically, for each data point i, similarities to other
points are computed using two Gaussian kernels with
different variances, corresponding to two perplexities e.g. 30
and n/100. The resulting multi-scale kernel is defined as

1

σi
exp

(
− d2

2σ2
i

)
+

1

τi
exp

(
− d2

2τ2i

)
(8)

where d is is the Euclidean distance between points, and
σ2
i , τ2i are selected such that the perplexity of the first

Gaussian corresponds to the lower scale e.g. 30, and the
second to the higher scale e.g. n/100. This formulation
effectively averages over neighborhood sizes at different
scales.

[7] also includes the use of PCA initialisation and a higher
learning rate. PCA initialisation “injects the global structure
into the t-SNE embedding which is then preserved during
the course of t-SNE optimisation” [7]. Moreover, a high
learning rate helps preserve the local structure by allowing the
optimisation to escape poor local minima and converge more
quickly to a configuration that better reflects neighborhood
relationships; it uses the learning rate η = n/12 as suggested
by [2].

For very large datasets (n >> 100, 000), in addition
to the above recommendations, Kobak and Berens uses
exaggeration and the sampling-based approach. Exaggeration
is applied at two key steps: in Step (ii), a high exaggeration
coefficient (typically 12 [13]) is used; in Step (iv), a constant
exaggeration factor (between 1 and 10 [11]) is applied when
refining the full dataset embedding.

Figure 1 provides an overview of the steps involved in[7],
illustrating both the case of very large datasets and the
standard case. The purple blocks gives the description of
each step; the red blocks represent the perplexities used at
different steps, and the orange blocks represent the method
and the parameters used in that step.

3 Related Work
Similar to [7], there exist several recent works which
address the challenge of applying t-SNE to large datasets,
and the choice of perplexity value. In this section, we first
review techniques designed to reduce the computational cost
of t-SNE (Section 3.1), followed by methods that explore
strategies for selecting perplexity values (Section 3.2).

3.1 Accelerating t-SNE
One of the techniques to accelerate t-SNE is FIt-SNE [12].
It addresses the computational cost involved in estimating
gradients, especially due to the quadratic complexity of
computing repulsive forces between all pairs of points; it does
so by interpolating the expensive repulsive-force computation
onto an equispaced grid and using the Fast Fourier Transform

on this grid to speed up convolution, which approximates
the repulsive forces. This makes gradient descent orders
of magnitude faster for millions of points. FIt-SNE also
proposes a late-exaggeration variant and an out-of-core PCA
implementation to sharpen cluster boundaries and enable
embedding of data sets that do not fit in memory. FIt-SNE
also accelerates the computation of high-dimensional input
similarities by using multi-threaded approximate nearest
neighbor search.

Another related technique to accelerate t-SNE is opt-
SNE [2]; this technique focuses on automating key parameter
choices in t-SNE to improve its performance on large
datasets. Essentially, opt-SNE monitors the Kullback
Leibler divergence (equation 4) in real time to tailor early-
exaggeration, learning rate and the number of iterations in the
gradient-descent. Combined with a more adaptive iteration
schedule and multi-threaded implementation, opt-SNE
produces high-quality visualizations with fewer iterations
and less manual tuning. These optimisations overcomes
the limitations of hard-coded parameters which produce low
quality and misleading embeddings of mass cytometry data.

3.2 Choice of perplexity
Other related work focus on the choice of perplexity rather
than speed. One recent work [17] follows the sampling-
based approach mentioned in section 2.3, and proposes
that “embedding remain structurally similar when scaling
perplexity linearly with sample sizes”’ [17] which preserves
the embedding’s key visual characteristics across different
sample sizes; this proposition is motivated by the intuition
that “the optimal perplexity parameter increased as the total
number of data points increased” [5]. Formally,

full perplexity =
sample perplexity

ρ
(9)

where ρ is the sampling rate.
This approach [17], unlike [7], makes the sample

perplexity tunable for the user while deriving the full
perplexity using a linear scaling rule (Equation 9). However,
this still limits the exploration of how different combinations
of sample and full perplexities affect the embedding quality.

In our work, we generalize the flexibility of the t-
SNE framework by making both sample perplexity and full
perplexity independently tunable. This allows us to explore
the extent to which the change in the sample perplexity
and full perplexity has on the resulting embeddings more
deeply which has not been explored in the aforementioned
work. Moreover, we thoroughly compare quality and
structure of the embeddings with the previous approaches [7;
17]. Table 1 gives an overview of the choice of perplexity
for each approach, highlighting the unique flexibility and
experimental scope of our work.

4 Methodology
In Section 4.1, we mention the methodology used to analyse
our approach. Section 4.2 outlines the methodology used to
compare the different approaches.



Dataset Size Kobak and Berens Linear scale Our approach

n ≫ 100,000
combined sample perplexity = 30 & n

100 sample perplexity = s sample perplexity = s

full perplexity = 30 full perplexity = s/ρ full perplexity = f

n < 100,000
combined perplexity = 30 & n

100 sample perplexity = s sample perplexity = s

full perplexity = s/ρ full perplexity = f

Table 1: Comparison of sample and full perplexity settings across different approaches. Here, n denotes the number of data points, s and
f represent the sample and full perplexity values, respectively, which are tunable. In the linear scale method, ρ is the sampling rate used to
derive full perplexity from the sample perplexity.

4.1 Analysis of our approach
To systematically investigate the effect of varying sample
and full perplexity values, we perform a grid search across a
defined range of (sample perplexity, full perplexity) pairs. For
each pair, we compute the corresponding t-SNE embedding.

Then these embeddings are qualitatively analysed by visual
inspection of their cluster structure. Specifically, we assess
how well clusters are separated, whether any fragmentation
occurs within clusters; we also analyse structure preservation
i.e. how well are the local and global structures preserved,
and also consider the overall interpretability of the embedding
layout. We also analyse quantitatively using the following
metrics:

• KNN (k-Nearest Neighbor): Measures local structure
preservation by computing the fraction of each point’s
k-nearest neighbors in the high-dimensional space
that remain among its k-nearest neighbors after
embedding [10]. We use k = 10 and average over all
n points.

• KNC (k-Nearest Class Means): Evaluates preservation
of inter-class relationships by checking whether each
class’s k-nearest class means in the original space
remain the same in the embedding. Captures
mesoscopic structure; we set k = 4.

• CPD (Cross-Pairwise Distance Correlation):
Quantifies global structure preservation via Spearman
rank correlation between pairwise distances in the
original and embedded spaces [1]. Computed on
499,500 pairs from 1,000 randomly selected points.

4.2 Comparing different approaches
To compare the resulting embeddings from our approach
with Kobak and Berens approach, we use data sets of
varying sizes, including those with fewer than 100,000 points
and those with significantly more since [7] uses different
perplexity settings for different dataset sizes as mentioned
in Table 1. Most importantly, we replicate the perplexity
settings in their work while keeping all other parameters fixed
to ensure a fair evaluation of the effect of perplexity.

A core challenge is comparing our grid of embeddings
with a single embedding produced by [7]. Besides visual
inspection, to enable a controlled comparison, we manually
generate embeddings using our approach by setting the
sample and full perplexities to match the smaller and
larger perplexity values, respectively, used in their combined

perplexity. This enables a direct comparison of whether
combined or separate handling of perplexities leads to better
structural preservation and embedding quality.

Finally, to incorporate comparisons with [17], for each
sample perplexity, we select full perplexity values that
follows the scaling (equation 9).

5 Experimental Setup
The experimental setup used is closely related to [17]. For
all the experiments mentioned, we will be using the FIt-SNE
implementation of t-SNE [12]. Prior to applying t-SNE, we
perform a preprocessing step for each dataset. If the input
dimensionality exceeds 50, we first reduce it to 50 using
Principal Component Analysis (PCA) [8].

Unless explicitly stated otherwise, all experiments use
the following t-SNE parameters: the first optimisation stage
begins with an early exaggeration phase, where gradient
descent is run for 250 iterations using an exaggeration factor
of 12 [2], a momentum of 0.5 [6; 20], and a learning rate
of η = n/12 as suggested by [2]; this is followed by the
normal regime phase, which continues for 750 iterations with
the exaggeration factor reduced to 1 and the momentum
increased to 0.8 [6; 20]. In the case of sampling-based
approach, a second optimisation stage is required which
follows the prolongation step; it runs for 750 iterations
with an exaggeration factor of 1 and momentum set to 0.5.
Moreover, we will use the sampling rate ρ = 0.1, and a fixed
seed of value 42 to ensure the reproducibility of the results.
To make sure that the choice of seed does not affect the
outcome of our experiments, we tested different seed values.
Hence, for every combination of sample perplexity and full
perplexity, the same subset of points are sampled to ensure
fair comparison.

Datasets
It is important to select the correct datasets which cover
both cases of [7] as shown in Figure 1, and also exhibit
Hierarchical structure to examine the property of local and
global structure preservation. To this end, we use the
following datasets: MNIST dataset is a widely used dataset
to test dimensionality reduction algorithms. The Tasic et
al. 2018 dataset [19] and the Wong dataset are both single-
cell transcriptomic datasets from the mouse brain, but they
differ in scope, resolution, and biological context. Tasic et al.
dataset is widely used to benchmark clustering, visualization,
and embedding algorithms due to its hierarchical structure



sample perplexity full perplexities MNIST full perplexities Tasic et al. full perplexities Wong
10 10 30 300 500 1000 10 30 100 300 10 30 100 300 500
30 10 30 300 500 1000 10 30 100 300 10 30 100 300 500
100 - - - - - 10 30 100 300 10 30 100 300 500
300 10 30 300 500 1000 10 30 100 300 10 30 100 300 500
500 10 30 300 500 1000 - - - - 10 30 100 300 500

1000 10 30 300 500 1000 - - - - N/A N/A N/A N/A N/A

Table 2: Sample perplexity and full perplexity values used for the embeddings in Figure 7. N/A denotes combinations which could not be
supported by the hardware used for these experiments.

and fine-grained annotations; Wong dataset has a broader
resolution, and is a relatively large dataset. A summary of the
data sets used and their properties can be found in Table 3.

Name Data Type # Pts. # Dim. # Cl.
MNIST images 70,000 784 10
Tasic et al. single-cell 23,822 30000 133
Wong single-cell 372,674 11 6

Table 3: Data sets used for experiments in Section 5. For each data
set, the size, dimension of data points and the number of classes are
given.

Perplexity values
It is important to mention the choice of perplexity values we
have used for the grid. To simulate the tuning of sample
perplexity and full perplexity and analyse the extent to which
the change in these values affect the embeddings, we will
choose the maximum value our hardware could support.
Since “perplexity values in the common range (e.g. 20, 50,
80) yield similar results” [7], we will choose values which
are not in the common range. Table 2 gives a summary of the
sample perplexity and full perplexity used in our experiment.
Lastly, to make sure that we also plot the embeddings from
the approach mentioned in [17], we use combinations such as
(10, 100) and (30, 300) with the sampling rate ρ = 0.1.

6 Results
In the Section, we discuss the results from the experiments
in detail. In Section 6.1, we will analyse both qualitatively
and quantitatively. In Section 6.2, we will compare the
approaches.

6.1 Analysis of our approach
We made several key observations regarding the visual
appearance of the embeddings in the grid (Figure 7). For
a fixed sample perplexity, increasing the full perplexity
does not substantially alter the overall visual structure of
the embeddings. The clusters retain a similar shape and
arrangement. At the same time we notice that as the full
perplexity increases, the clusters begin to overlap more; for
example, in the second row of the MNIST dataset, the blue
and purple clusters are highlighted across the row to visualise
how the structures remain visually very similar. Specifically,
highlight 1 and 2 (4a), and highlight 5 and 6 (Figure 4b) show
the overlapping of the clusters with increasing full perplexity
for the MNIST dataset and Tasic et al. dataset respectively.

Dataset Sample Perp Full Perp CPD

MNIST
30 30 0.990
30 500 0.959
30 1000 0.954

Tasic et al.
30 30 0.992
30 100 0.977
30 300 0.939

Table 4: CPD values calculated to quantify similarity between
embeddings in a row for the MNIST and Tasic et al. dataset, where
the reference embedding for both dataset has sample perplexity 30
and full perplexity 30.

Dataset Sample Perp Full Perp CPD

MNIST
300 500 0.861
500 500 0.782

1000 500 0.643

Tasic et al.
30 100 0.920

100 100 0.397
300 100 0.546

Table 5: CPD values calculated to quantify similarity between
embeddings in a column for the MNIST and Tasic et al. dataset,
where the reference embedding for the MNIST dataset has has
sample perplexity 10 and full perplexity 500, and the Tasic et al.
dataset has has sample perplexity 10 and full perplexity 100

The trends mentioned are corroborated by quantitative
metrics as well. We compute the CPD between the first
embedding in each row and all subsequent embeddings in the
same row to quantify the structural similarity across different
full perplexity values; in Table 4, we see very similar values
for same sample perplexity value and different full perplexity
values. Moreover, the overlapping of clusters with increasing
full perplexity suggest loss of local details [7]; when plotting
the KNN for embeddings across the row, we observe a decline
in KNN value across all datasets in Figure 2.

In contrast, for a fixed full perplexity, varying the
sample perplexity does not keep the visual structure of the
embeddings similar. This is evident from the embeddings
of the MNIST dataset (Figure 4a) where in highlight 3, the
brown cluster is not fragmented; however, in highlight 4, the
brown cluster is fragmented into 3 separate parts. Table 5
shows the CPD values calculated across the column where
the reference embedding is the first embedding in the column;
the table shows different values for each embedding which
confirms that embeddings in a column are not structurally
similar. Moreover, we also observe that, unlike fixed
sample perplexity, the arrangement of the clusters can change



(a) MNIST (b) Tasic et al. (c) Wong: Sample perplexity 30

Figure 2: Quality metrics (KNN, KNC, CPD) plotted for each dataset for fixed sample perplexity and varying full perplexity. For all three
datasets, sample perplexity is 30.

(a) MNIST (b) Tasic et al. (c) Wong: full perp 300

Figure 3: Quality metrics (KNN, KNC, CPD) plotted for each dataset for fixed full perplexity and varying sample perplexity. The full
perplexity values are 500, 100, 300 for MNIST, Tasic et al., and Wong dataset respectively.

significantly; for example, in the embedding of the Tasic et al.
dataset (Figure 4b), in highlight 7, the red cluster is above the
yellow cluster, but in highlight 8, the red cluster is on the left
side of cluster 8. This signifies that the local structure stays
the same, but the global structure can vary; this observation
is also evident in the graphs in Figure 3 in which the KNN
value remains relatively constant, but the CPD (between the
high-dimensional data and the low-dimensional embedding)
and the KNC value vary.

It is evident from the results that sample perplexity
is responsible for defining the global structure of the
embeddding and full perplexity whereas full perplexity is
responsible for applying local refinements.

6.2 Comparing different approaches
Following the methodology described in Section 4.2, we align
the perplexity configurations of both approaches by setting
our sample perplexity to the lower perplexity used in [7], and
the full perplexity to the higher one.

We first compare the embeddings produced for MNIST
dataset by both approaches. [7] uses a combined perplexity
of 30 and 700; hence, for our approach we set the sample
perplexity to 30 and full perplexity to 700. The MNIST
embedding by [7] (Figure 6a) exhibits distinct and well-
separated clusters with enough white space between them
to be distinguishable. Although the blue and purple clusters
overlap creating fragmentation, there is enough white space
to be distinguishable compared to the embedding produced
by our approach (Figure 5a) in which the blue and purple
clusters overlap more hence losing the local refinements; this

is also evident from the lower KNN value of the embedding
produced by our approach than the other approach. Our
embedding also has a lower CPD value compared to [7]
embedding which means that [7] also preserves global
structure better.

Next, we compare the Tasic et al. embeddings;
this dataset [19] has three well-separated group of
clusters: excitatory neurons (cold colors), inhibitory neurons
(warm colors), and non-neural cells (grey/brown colors).
Embedding from our approach (Figure 5b) and [7] (Figure
6b), both preserve the global structure well where the three
group of clusters are well-separated; this is also evident from
the similar value of the CPD metric. However, our embedding
has clusters which start to overlap losing the local refinements
hence a lower KNN value. Similarly, the embeddings for the
Wong dataset from our approach (Figure 5c) exhibits more
fragmentation in the green cluster than the other approach [7]
hence a lower KNN value.

To compare our grid of embeddings with the embedding
produced by [7], we adopt a structured two-step methodology
based on our observations from Section 6.1: sample
perplexity primarily determines the global layout, while
full perplexity acts as a local refinement mechanism.
Accordingly, we first identify the embedding in our grid,
specifically from the first column of Figure 7, where full
perplexity is minimal, whose global structure most closely
resembles that of the embedding by [7]. This step ensures
a fair comparison by aligning on global structure, which in
our method is governed by sample perplexity. Once the
global layout is matched, we analyse how the change in full



(a) Embeddings of the MNIST dataset

(b) Embeddings of the Tasic et al. dataset

Figure 4: Embeddings resulting from our approach on MNIST (a) and Tasic et al. (b).



(a) MNIST (b) Tasic (c) Wong

Figure 5: Embeddings produced by our approach. Metrics shown: KNN, KNC, and CPD.

(a) MNIST (b) Tasic (c) Wong

Figure 6: Embeddings produced by the method of Kobak and Berens [7]. Metrics shown: KNN, KNC, and CPD.

perplexity modifies this layout. This allows us to isolate and
compare the refinement behavior of our method against that
of [7] ensuring that the observed differences are attributed to
local refinement mechanisms rather than differences in global
layout.

For instance, in the MNIST embeddings (Figure 4a), the
closest embedding visually matching the global layout of
Figure 6a is highlighted a which has the sample perplexity
30. We observe that as full perplexity increases, the KNN
value declines. Following the approach of [17], if we scale
the sample perplexity accordingly, we get the embeddings
highlighted as b; this embedding has a KNN value of 0.25,
notably lower than that of [7]. We observe a similar trend
in the Tasic et al. embeddings, confirming that our method
exhibits a decline in local neighborhood preservation with the
increase in full perplexity than that of [7].

7 Responsible Research
Responsible research is important to ensure that scientific
advancements are developed in ethical and trustworthy
manner. We discuss the steps we have taken to ensure
reproducibility in 7.1. The ethical considerations that should

be taken into account are mentioned in Section 7.2. Finally,
we discuss the use of LLM tools for this research in Section
7.3.

7.1 Reproducibility
Reproducibility is important for another group of researchers
to achieve the same result with the original data if they want
to expand on this work or get a better understanding of
the topic, enabling both verification and further exploration.
For this paper, we have taken the required steps for not
only transparency but also reproducibility for the future as
mentioned in [18]. The code used in this research paper can
be found in https://github.com/mearslanbhatti/sample-based-
tsne, and a digital copy of this paper is also available at
respository.tudelft.nl.

Our research builds upon the prior open-source work
developed in previous researches; we have mentioned the
open source repositories and also the corresponding papers
in the README file of our github repository to ensure
proper credit and transparency. Moreover, the repository also
contains datasets used in the experiments.

The datasets used in this study are all publicly available and
also widely used in the research community which supports



reproducibility and transparency. The MNIST dataset
(https://yann.lecun.com/exdb/mnist/) is available under the
Creative Commons Attribution-Share Alike 3.0 license. The
Tasic et al. dataset (https://portal.brain-map.org/atlases-and-
data/rnaseq) is publicly released by the Allen Institute for
Brain Science under their open data sharing policy. Lastly,
the Wong dataset (http://flowrepository.org/id/FR-FCM-
ZZTM) is similarly available through public repositories.

7.2 Ethical considerations
In our research, we have used datasets such as Tasic et
al. [19] (single-cell transcriptomics from mouse cortex) and
the Wong dataset (neuronal recordings). Techniques such
as t-SNE are powerful tools to visualise high-dimensional
data, but if the original properties of this high-dimensional
data are not properly preserved in the lower dimensional
embeddings, such visualisations may lead to misleading
biological conclusions for instance in the case of datasets like
Tasic et al., these distortions could influence the classification
of neuronal subtypes, which in turn affects our understanding
of brain function or disease. As emphasized in [14; 15],
visualisations can be persuasive, even when their underlying
assumptions are misunderstood. Hence, the plots from our
research should be regarded as exploratory and not definitive.
Any interpretations or conclusions drawn from these plots
should be supported by domain expertise and additional
validation.

7.3 Use of LLM tools
Large Language Models (LLMs), particularly ChatGPT, were
used throughout the research process to support and enhance
understanding. Below we mention how it was used.

• Initially, it was used to understand the algorithms
introduced in previous work. The tool was always used
as a secondary source to enhance the understanding
while keeping the original work as the primary source
of understanding.

• Additionally, the tool was used to rephrase sentences for
improved clarity and articulation. We strictly refrained
from including any large body of texts generated from
LLM. It was also used to edit the equations for latex
format. It was also used to generate latex format tables.

• It has also been used in helping to write and understand
existing code; However, it was not used to generate
large portions of code, as the research heavily relies
on existing implementations. Its usage was limited to
writing small code snippets within methods or exploring
alternative approaches.

• It was used as a brainstorming partner for idea
generation, but all key decisions, implementations, and
interpretations were made independently by us after
thorough evaluation.

A list of key prompts can be found in the Appendix that
demonstrates the use of LLM tools in our research.

8 Conclusion and Future Work
In this paper, we investigate a sample-based approach of
running t-SNE in which the algorithm is run twice, first on the

downsampled subset and then on the full subset, introducing
two tunable perplexity parameters: sample perplexity and
full perplexity. Unlike previous approaches that fix one of
these values or derive it heuristically, our approach treats
both as independently tunable. To investigate the affect of
these perplexity values on the final embedding, we generate a
grid of embeddings across a range of (sample perplexity, full
perplexity) pairs.

Our results show that sample perplexity is the dominant
factor in determining the global structure of the embedding:
different sample perplexity values with fixed full perplexity
generate very different cluster layouts and inter-cluster
relationships as well. In contrast, once the global structure is
established, full perplexity primarily refines local structure.
We found that although increasing full perplexity smooths
neighborhood relationships, it can also lead to cluster overlap
and hence a loss of local structure which is also evident from
declining KNN values.

We also compared our approach with the multi-scale
approach of [7] in which we find that the multi-scale approach
achieved higher local structure preservation, as measured
by KNN, consistently across all tested datasets than any
full perplexity setting in our grid which shows its strength
of capturing fine-grained structure. Similarly, the multi-
scale approach also performed better in preserving the local
structure than the linear scaling heuristic proposed in the
Navigating paper [17], which ties full perplexity to sample
size.

Based on our findings, we recommend using our approach
in scenarios where interpretability and user control are
important, as it offers greater flexibility in shaping the
embedding through independent tuning of sample and full
perplexities. However, the user still has to select the values
manually. For future work, a strategy can be developed
to automatically suggest suitable values based on the use
case and dataset characteristics making our approach more
accessible.
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A Example of LLM Prompts
1. in t-SNE, how is the perplexity value calculated?
2. how does the perplexity value balances the local and

global structure?
3. Explain how is the Tasic et al. dataset hierarchical in

nature?
4. is the learning rate basically the iterations involved in

reducing the KL divergence?
5. When visually inspecting an embedding, what is the

checklist to go through for a good qualitative analysis?
6. after running experiments, it seems like for a given

sample perplexity, if we keep on increasing the full
perplexity, the structure of the clusters remains almost
stable and similar. What metrics can I use to plot a graph
of against some metric to show this.

7. given the subsections below, give an introductory
paragraph for this section.

8. which scientific paper first developed the sampling-
based approach for t-SNE?

9. how do I compare a grid of embeddings with only one
embedding?

10. Why is responsible research important?
11. For my reasearch, what are some key aspects to take care

of in terms of responsible research?
12. in the above given method to plot grids, how do I add a

title at the top of the embedding plot?
13. give me code to generate a csv file containing cpd values

for the sample perplexity and all full perplexities.

B Additional grid embedding



Figure 7: Embedding grid of the Wong dataset created by our approach.
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