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Stellingen

behorende bij het proefschrift
“The spins of resonances in reactions of neutrons with 238y and 13¢q”
Frank Gunsing

De kennis van de spins van neutronenresonanties is noodzakelijk voor een correcte
interpretatie van zowel metingen van de schending van pariteit als van de schending van
tijdsomkeerbaarheid invariantie.

dit proefschrift

Hoewel men voor het zogenaamde "sign effect” in de metingen van schending van pariteit
in atoomkernen heeft gezocht naar fysische oorzaken, kan niet worden uitgesloten dat het
effect op statistische gronden berust.

C. M. Frankle et. al. Phys. Rev. Letr. 67(5) (1991) 564

Bij experimenten voor schending van pariteit door meting van de voorwaarts-
achterwaarts asymmetrie na neutronvangst dient rekening gehouden te worden met de
door terugstoot veroorzaakte anisotropie in de hoekverdeling.

De moeilijkheid om de invloed van wolken in klimaatmodellen te betrekken lijkt
gerelateerd aan de problemen om het weer te voorspellen.
J. T. Kiehl, Physics Today, (nov. 1994) 36

Het is mogelijk dat een vrij, niet-relativistisch elektron zich met uniforme snelheid
voortbeweegt en daarbij elektromagnetische straling uitzendt.
J. M. Vigoureux, Pure Appl. Opt. 2 (1993) 189

De kennis van de resonante werkzame doorsnede van de ®Be+ o reactie is van
levensbelang aangezien die het hoge stellaire voorkomen van 12€C verklaart.
C. Rolfs and W. Rodney, Cauldrons in the Cosmos, University of Chicago Press (1988)
H. Oberhummer et. al., Proc. 7th Workshop on Nuclear Astrophysics, Ringberg Castle,
Germany (1993) 119

De mate van alignering van begintoestanden van secondaire gammastraling na
neutronvangst in een kern met een spin ongelijk aan nul, is te berekenen binnen het kader
van het statistische model en vormt een methode om p-golf resonantiespins te bepalen.

dit proefschrift

Men zou verwachten dat de bestuurbaarheid van een land omgekeerd evenredig is met het
aantal regeringen dat het heeft. De Belgische staatshervorming, die dat aantal op zes heeft
gebracht, lijkt echter goed te functioneren.

Bij de ontwikkeling van de elektronische snelweg moet niet over het hoofd worden gezien
het publiek over een auto en een rijbewijs te laten beschikken.

Transmutatie van langlevend kernafval is een variatie op het principe van de Steen der
Wijzen die echter grondig onderzocht moet worden alvorens ze met scepsis van de hand te
wijzen.

De meest interessante delen van opnamen van een muziekgezelschap zijn vaak de
opmerkingen tussen de nummers door.
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Summary

In this thesis experiments are described that have lead to the assignments of spins to a
large number of resonances in reactions of epithermal neutrons with the nuclei 38U and
13Cd. When a neutron is captured by an atomic nucleus, a compound nucleus is formed
which is in a highly excited state with an energy of the order of the neutron binding
energy. If the kinetic neutron energy is varied around a state of the compound nucleus, one
observes a peak in the cross section. This is called a resonance in the reaction. Dependent
on the amount of orbital momentum ¢ that the neutron adds to the system, the resonances
are indicated with spectroscopic notations as s- and p-waves for £ = 0 and 1 respectively.
The purpose of this thesis is to determine the spins of such resonances.

It appears that the population of certain states by gamma radiation from the decaying
compound nucleus is dependent on the spin of the resonance. The resonance spin can be
determined by measuring the relative intensity of specific gamma rays. The spin
dependence can be enlarged by taking the ratio of two gamma transitions having opposite
spin effects. Therefore it is no more necessary to normalize the intensities. Also by means
of the detection of primary gamma transitions information about the resonance spins can
be obtained.

Since the decay of compound nuclear resonances to the groundstate by gamma radiation is
a statistical process for heavy nuclei, it is possible with the help of numerical simulations
to calculate the populations of low-lying states assuming that the low-energy level scheme
is known well enough. This provides a means to predict the size of the spin effect and to
select the gamma-ray transitions that are most sensitive to the resonance spin. Simulations
have been carried out for the above mentioned nuclei. The results are in agreement with
measured values of ratios of gamma-ray intensities.

The experiments have been performed at the pulsed neutron source GELINA in Geel
(Belgium). Use was made of gamma spectroscopy in combination with measurements of
neutron time-of-flight. As the p-wave resonances in the epithermal energy range are
relatively weak, it is necessary to make long-lasting measurements in the order of 1000
hours. The spins of 19 p-wave resonances of 2381 and of 23 s-wave and 21 p-wave
resonances of 1>Cd have been assigned.

The knowledge of the resonance spins is important for a correct interpretation of recent
measurements of parity nonconservation in neutron p-wave resonances. Determination of
the spins of s- and p-wave resonances has made it possible to make a more accurate
estimate of the strength of parity nonconservation in the mentioned nuclei which has given
a more precise value of the weak interaction in nuclear matter. Resonance spin
assignments are also of importance for possible measurements of time reversal
nonconservation in neutron resonances.







Samenvatting

In dit proefschrift worden experimenten beschreven die geleid hebben tot het toekennen
van spins aan een groot aantal resonanties in reacties van epithermische neutronen met de
kernen 238U en '1°Cd. Wanneer een neutron wordt ingevangen in een atoomkern wordt
een samengestelde kern gevormd die zich in een hoog aangeslagen toestand bevindt met
een energie in de orde van de bindingsenergie van het neutron. Indien de kinetische
neutronenergie wordt gevarieerd rond een toestand van de samengestelde kern, dan ziet
men in de werkzame doorsnede een piek. Men spreekt dan van een resonantie in de
reactie. Afhankelijk van de hoeveelheid baanimpulsmoment ¢ dat het neutron toevoegt
aan het systeem worden de resonanties aangeduid met spectroscopische notaties als s- en
p-golven voor £ = 0 respectievelijk 1. Het is de bedoeling van dit proefschrift de spins van
de resonanties vast te stellen.

Het blijkt dat de bezetting van bepaalde niveautoestanden door gammastraling van de
vervallende samengestelde kern afhankelijk is van de spin van de resonantie. Door nu de
relatieve intensiteit van specificke gammastralen te meten, kan de resonantiespin worden
vastgesteld. De spinafhankelijkheid kan nog vergroot worden door de verhouding te
bepalen van twee gamma-overgangen die een tegengesteld spineffect hebben. Hierdoor is
het ook niet meer nodig de intensiteiten te normaliseren. Ook door middel van de detectie
van de primaire gamma-overgangen kan informatie over resonantiespins verkregen
worden.

Doordat het verval van samengestelde kern-resonanties naar de grondtoestand door
gammastraling een statistisch proces is voor zware kernen, is het mogelijk met behulp van
numerieke simulaties de bezetting van laagliggende niveautoestanden te berekenen,
aangenomen dat het niveauschema voldoende bekend is. Dit verschaft een middel om de
mate van het spineffect te voorspellen en om de meest spingevoelige gamma-overgangen
te selecteren. Simulaties zijn uitgevoerd voor de hiervoor genoemde kernen. De resultaten
zijn in overeenstemming met gemeten waarden van verhoudingen van gamma-
intensiteiten.

De experimenten zijn uitgevoerd bij de gepulseerde neutronenbron GELINA te Geel
(Belgié). Hierbij werd gebruik gemaakt van een combinatie van gammaspectroscopie en
de meting van de neutronenvluchttijd. Doordat de p-golf resonanties in het epithermische
energiegebied relatief zwak zijn, is het noodzakelijk om langdurige metingen uit te
voeren, in de orde van 1000 uur. Uiteindelijk zijn de spins van 19 p-golf resonanties van
238 en van 23 s- en 21 p-golf resonanties van Mg bepaald.

De kennis van resonantiespins is belangrijk voor een juiste interpretatie van recente
metingen van de schending van pariteit in neutron p-golf resonanties. Bepaling van de
spins van de s- en p-golf resonanties heeft het mogelijk gemaakt een meer precieze
schatting te maken van de sterkte van de schending van pariteit in bovengenoemde kernen




hetgeen een nauwkeuriger waarde van de zwakke wisselwerking in kernmaterie heeft
gegeven. Ook voor de interpretatic van mogelijke metingen van schending van
tijdsomkeerbaarheid invariantie in neutronenresonanties is de bepaling van resonantie-
spins van belang.




Introduction

After the discovery in the late 1950s that parity is not conserved in B -decay, which is due
to the weak interaction in nuclei, searches were made for parity nonconservation in all
kinds of nuclear and atomic processes. Three of the four fundamental forces, the
gravitational, electromagnetic and the strong force, are believed to conserve parity whilst
the weak interaction does not. The weak interaction has been studied extensively through
the past decades in leptonic processes but also the interaction between hadrons possesses a
weak component. The ratio of the strength of the weak to that of the strong interaction is
about 107/ in the nucleon-nucleon interaction. It was therefore a surprise in 1963 when
parity nonconservation (PNC) was discovered in the neutron-nucleus interaction with an
effect of 10> times larger than expected. Later on, PNC effects were measured in neutron
p-wave resonances with even an enhancement factor of 10°.

Although the nucleus seems to be a system completely governed by the strong and the
electromagnetic force, it favours under suitable conditions a large enhancement of the
weak interaction in the highly excited compound nucleus region, giving rise to the above
mentioned parity nonconservation effects in neutron p-wave resonances. This
phenomenon has been explained by the admixing of nearby s-wave resonances and by the
large difference of their neutron entrance channel widths. In the epithermal neutron energy
range the widths of p-wave resonances are typically a factor 10° smaller than the widths of
s-wave resonances. Consequently, PNC effects are particularly prominent in neutron
p-wave resonances of heavy and medium mass nuclei. Often PNC is measured as the
relative difference of the total cross section of longitudinally polarized neutrons with
positive and negative helicity through an unpolarized target. This parity nonconserving
asymmetry can have values ranging up to several percents, which is quite large compared
to the usually obtained asymmetries in the order of 10~ in other PNC measurements.

In the past, hadronic parity nonconservation was usually found in only a single resonance
per nucleus until recently PNC has been observed in several neutron resonances of the
zero spin target nuclei 2381 and 232Th in the very successful TRIPLE experiments at Los
Alamos. This made it possible for the first time to estimate the root mean squared parity
nonconserving matrix element in nuclear matter. This quantity is a general nuclear
property that reveals the overall strength of the weak interaction in the nucleus. After the
success for these heavy mass nuclei, a number of nonzero spin nuclei of lower mass have
been investigated, among which 13Cd, This is near a maximum in the neutron p-wave
strength function.




It is supposed that the PNC matrix elements form a random variable with a Gaussian
distribution within the ensemble of the p-wave resonances. To extract the width of this
distribution from the measured PNC asymmetries, it is important to know which p-wave
resonances can be admixed by which s-wave resonances. In a zero spin target nucleus, the
s-wave resonances have a spin 1/2 while the p-wave resonances can have spin 1/2 or spin
3/2. Only the spin 1/2 p-wave resonances can show PNC effects while the asymmetry
measured for spin 3/2 p-wave resonances should be consistent with zero. Therefore the
knowledge of the spins of the resonances is of great importance for a proper analysis of
the measured PNC asymmetries and for a check of the TRIPLE experiments. For a target
nucleus with spin larger than zero, there are more possible values of the spin for both s-
and p-wave resonances and the parity nonconserving mixing is somewhat more involved.

It is believed that the same amplification mechanisms that enhance parity violation in
compound nuclei hold also for the possible violation of time reversal invariance. This
symmetry violation has not yet been detected directly but until now it has been observed
only indirectly in the decay of neutral kaons. The compound nucleus may provide a means
for direct observation of the violation of time reversal invariance. Experiments that are
able to reveal this asymmetry require a thorough knowledge of especially the neutron
resonance parameters and therefore resonance spin assignments are also important in this
context.

This thesis describes the experiments at the GELINA pulsed neutron facility in Geel,
Belgium, that have lead to the determination of resonance spins in 2387 and ''3Cd. This
was achieved by using the low-level population method, based on the gamma decay of the
compound nucleus formed after neutron capture. This method takes advantage of the fact
that the intensity of specific low-energy gamma-ray transitions of the decaying compound
nucleus resonance depends significantly on its spin. The method has already successfully
been applied to assign the spins of s-wave resonances in several nuclei but prior to this
work, not for p-waves. In the case of p-wave resonances, of which the strength in the
epithermal neutron energy range is smaller than that of s-waves by a factor of 103, the
application of the method is less apparent. Measurements at the GELINA neutron source
need typically 1000 hours for data acquisition in order to collect sufficient statistically
significant data for unambiguous spin assignment. In addition to the low-level population
method, the observation of the occurrence of high energy primary gamma rays, emitted
directly from the capturing state, to specific low-lying levels with known spins and parities
has given information about resonance spins.

In chapter 1 the background of the parity nonconservation measurements is discussed,
notably PNC in neutron resonances, and the spin determinations for the analysis of PNC
data is demonstrated to be necessary in order to extract the PNC strength correctly. Several
methods of spin assignment are treated and the low-level population method is dealt with
in some more detail. Additionally, some basic notions concerning neutron resonance
theory and neutron capture in particular are considered.




In order to cover a large range of neutron energies, the time-of-flight method has been
applied at the GELINA pulsed neutron facility. This approach makes it possible to collect
gamma-ray spectra, measured with germanium detectors, of many neutron resonances
simultaneously using a multiparameter data acquisition system. Chapter 2 describes the
experimental techniques concerning the time-of-flight method and gamma-ray
spectroscopy in detail. Essential parts of the experimental setup, notably the
target-detector arrangement, the radiation shielding and the electronic signal and data flow
handling, are also considered in this chapter. In addition, the experimental environment
related to neutron measurements at GELINA is portrayed giving the nominal accelerator
characteristics and a typical neutron flux.

In chapter 3, Monte Carlo simulations of the statistical gamma decay of the excited
compound nuclei 23°U and 1*Cd, supporting the spin assignment method, are described.
Experimental and calculated data are in good agreement, qualitatively for 2>°U and also
quantitatively for 1'*Cd. Numerical simulations are in this case a useful tool to evaluate
the feasibility of a time consuming spin assignment experiment beforehand and their
results can be helpful in the analysis of experimental data.

Chapters 4 and 5 of this thesis describe the results obtained from the spin assignment
experiments for 222U and !'Cd respectively. The spins of 19 p-wave resonances in the
spin zero nucleus 2381 and of 23 s-wave and 21 p-wave resonances in the spin 1/2 nucleus
13C4d have been unambiguously assigned. In both cases it was also possible to deduce as a
by-product the absolute intensities of several primary gamma-ray transitions in neutron
resonances using a normalization to thermal capture gamma rays.

Moreover, an attempt has been made to assign the spins of neutron resonances of 227,
Because of the high natural activity of the decay chain of thorium, it was not possible to
use the low-level population method. It was decided to measure the angular distribution of
the high-energy primary gamma rays. However, from this measurement no satisfactory
results could be deduced so far. In addition, the few high-energy primary transitions to
low-lying levels with suitable spins did not form conclusive evidence for the value of the
spins of the 23*Th neutron p-wave resonances. Therefore the results of this experiment
have not been included in this thesis.

Finally in chapter 6 the estimation procedure for the root mean squared (rms) PNC matrix
element is elucidated. It is demonstrated that a specific maximum likelihood estimation
procedure for this quantity can be derived under some general assumptions. This estimate
is based on the PNC asymmetries of those resonances that can show PNC, thus assuming
the knowledge of the spins. If the spins of the resonances are not known, it may still be
possible to derive an estimate but then several procedures can be applied but the resulting
root mean squared PNC matrix element will be less precise. Two of these methods have
been used in the case of 28U, The difference between them arises from the treatment of
the unknown resonance spins. When the spins are known, both methods converge to each




other. There is a perfect match of the PNC measurements of 223U in Los Alamos and the
spin assignments in Geel. The results for the spin assignments of 2381 are incorporated in
a more accurate estimate for the rms PNC matrix element. In the case of !!3Cd the overlap
is somewhat less complete. No analysis of PNC effects observed for !13Cd has been given
in this thesis since the PNC data were not yet fully analysed by the TRIPLE team.




Chapter 1
Theoretical considerations

1.1. Parity nonconservation

1.1.1 introduction

Symmetry plays an important role in physics. It has been believed for a long time that all
physical laws are invariant under the parity operation. The parity operation or space inver-
sion P reverses the sign of all the spatial coordinates: » — —r . If the mirror system gives
again a situation that obeys the same physical laws as the original system, then it is said to
be invariant under parity. In fact, the gravitational, the electromagnetic and the strong
interactions are all believed to be invariant under parity. The principle of parity invariance
was thought to be a general symmetry in nature, until Lee and Yang showed in 1956 that
for the weak interaction no evidence for parity conservation existed and that there were
reasons to believe that parity may not be conserved in the weak nuclear interaction
because of the so-called O-1 puzzle [1]. Indeed, Wu and her co-workers found in their
famous experiment on the spatial asymmetry of the P~ -decay of polarized 80Co nuclei
that parity was not conserved in the weak interaction [2]. Many other experiments since
then have confirmed the nonconservation of parity in leptonic weak interactions (see also
ref. [3]). A recent review considers the theoretical and experimental aspects of parity non-
conserving scattering from nucleons and nuclei [4]. Moreover, also a hadronic weak inter-
action exists in nuclear matter.

There are two more basic symmetry operations, namely charge conjugation C and time
reversal T . The operation C consists of replacing each particle by its antiparticie and the
operation T reverses the time ¢ — —¢ and replaces in quantum mechanics the wave func-
tion by its complex conjugate: W — y*. On the basis of very fundamental arguments
nature is assumed to be invariant under the combined operations of P, C and T, which is
known as the CPT-theorem. A test for CPT-invariance is the equality of the masses and
lifetimes of a particle and its antiparticle. So far, no indications for the violation of
CPT-invariance have been found [5,6]. The CPT-theorem implies that if one of the opera-
tors is violated, at least one of the other operators must also be not conserved. In the case
of the weak process of ordinary nuclear {3-decay, where parity is not conserved, also
charge conjugation is not conserved. In the case of B+ -decay, the asymmetry of 3 -emis-
sion of polarized nuclei is opposite to that of $~-decay as was shown for 38Co and 3Mn
[7-9]. The combined operation CP preserves here the symmetry.
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However, not in all weak processes CP is conserved. A small (0.3%) CP-violating part in
the decay of neutral kaons has been observed [10,11] and has been confirmed several
times and is still subject to investigation [12]. One of these experiments is carried out by
the CPLEAR-collaboration [13]. Until now, the kaon decay is the only known process vio-
lating CP. The consequence of the theorem is that if CP is violated, also T should be
violated. Thus far T-violation has not been observed directly.

Due to the weakness of the parity nonconserving interaction with respect to the strong
nuclear parity conserving force, one expects under normal conditions only very small par-
ity admixtures in nuclear levels. The Hamiltonian of the nuclear system is composed of a
strong and electromagnetic parity conserving (PC) part and a weak parity nonconserving
(PNC) part '

+H

H =H +H

nucleus strong, PC e.m., PC weak, PNC~ M

In several spectroscopy and reaction experiments it was found that parity nonconservation
occurs up to about 107>, Examples in spectroscopy are the 8~ level of 80Hf [14] and the
17/2% level of **Tc [15,16]. In reactions, parity nonconservation may occur also in com-
pound nucleus formation. It has been shown that parity nonconservation occurs exten-
sively in compound nucleus formation by neutron capture due to specific enhancement
factors, notably in epithermal neutron p-wave resonances. Since it is believed that the
same amplification mechanisms may also hold for the violation of time reversal invari-
ance, a thorough study of parity nonconservation in neutron p-wave resonances is, apart
from its specific interest for the investigation of the weak interaction, essential for the pos-
sible direct observation of the violation of time reversal invariance.

A programme has been started at the GELINA pulsed neutron source facility in Geel (Bel-
gium) for studying neutron p-wave resonances that have recently been investigated in par-
ity nonconservation experiments in Los Alamos (USA). The present thesis describes the
results of our measurements which strengthen the conclusions of parity nonconserving
experiments in epithermal neutron reactions.

1.1.2 parity nonconservation in nuclei

Immediately after parity nonconservation was discovered in B -decay, searches were made
for parity nonconserving (PNC) processes in the nucleon-nucleon interaction. Feynman
and Gell-Mann [17] predicted that there should be a first order weak, and therefore parity
violating, interaction between two nucleons. This nonleptonic parity violating weak inter-
action between hadrons has a small strength relative to the strong interaction. This small
amount is experimentally difficult to observe. The weak hadronic PNC interaction acts as
to add to the nuclear wave function a small fraction F of a wave function with opposite
parity

v =y™ e ry @

6 Chapter 1: Theoretical considerations



where F is of the order 107 Adelberger and Haxton [18] review the field of parity non-
conservation in the nucleon-nucleon interaction. Low-energy PNC experiments concern-
ing strongly interacting systems can be divided into the following three classes.

The first type of observations involves processes that would vanish completely if F were
zero. These processes are only known in alpha decay. An example is the decay of a 2~
excited state of 1°0. The PNC process '°0(27) — '2C(0%) + «., strictly forbidden if parity
were conserved, competes with the normal parity conserving gamma decay to the ground
state 190(27) — 180(0*) + . The selection rules for alpha decay forbida 2™ — 0" transi-
tion but when the 2 state includes a small part of 2", the decay is permitted with a small
intensity proportional to F2. Neubeck et al. [19] found evidence for this weak branch with
intensity of order 10714, This kind of experiments involving alpha decay have been
applied to several light nuclei (see also [18]).

A second class of experiments involves the interference of parity conserving and noncon-
serving interactions leading to a pseudoscalar (the scalar product of an axial vector and
polar vector, for example s -k or I - k) in the total cross section, measured in transmis-
sion and capture experiments with polarized neutrons, This may also give rise to a cos®
term in the angular distribution of the reaction products if either the incoming particle or
target nucleus are polarized. Without parity mixing only even powers of cos® exist, the
odd ones vanish. For example Gonnenwein ef al. [20] have found a parity nonconserving
cos® dependence in the angular correlation between the incoming neutron spin s and the
momenta k of binary and ternary fragments in the fission process following polarized
thermal neutron capture.

The third category of experiments concerns the determination of polarization observables
in the outgoing channel. Examples are the circular polarization of gamma rays emitted by
an unpolarized nucleus, the spin rotation caused by the PNC interaction of the spin of a
particle oriented perpendicularly to its motion and the longitudinal analysing power. These
experiments need special analysing equipment for the detection of the polarization of the
emitted radiation or of the neutron spin rotation.

The work of Abov er al. [21] demonstrated for the first time parity nonconservation in the
neutron-nucleus system by detecting the asymmetry in the gamma-ray yield from an
unpolarized el sample using polarized thermal neutrons. These experiments have been
confirmed several times [22-25]. Alberi et al. [26] measured the circular polarization of
gamma rays from unpolarized neutron capture in 3¢d. In the experiment of Forte et al.
[27], a PNC effect was measured in 17Sn by the spin rotation of transversely polarized
neutrons. Hereafter, spin rotation was observed in a number of nuclei [28]. Kolomensky
et al. [29] used the helicity dependence of the total cross section for longitudinally polar-
ized thermal neutrons in 117Sn and in '*La. These experiments pointed out that the PNC
effects are associated to the compound nuclear levels. New investigations started looking
for parity nonconservation in individual compound nucleus levels in the resonance region.
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At the JINR in Dubna Alfimenkov ef al. [30] performed pioneering experiments and
detected PNC asymmetries for p-wave resonances in 2! Br, g, 178 and 13°La meas-
uring the dependence of the total cross section on the neutron helicity. Very large effects
were found, up to several percent, which is about 103 times more than in the earlier exper-
iments with thermal neutrons and demonstrating an enhancement of the order 10° for the
weak component compared to that of the nucleon-nucleon interaction. In these experi-
ments at Dubna parity nonconservation could be observed for at most one resonance per
nucleus.

More recently, a breakthrough was obtained by the TRIPLE collaboration in similar experi-
ments at Los Alamos in which parity nonconservation was observed in a considerable
number of p-wave neutron resonances of nuclei like 238U, 232y, 3¢y, 107Ag, 1OgAg,
1310 and In [31]. Parity nonconservation effects in low-energy neutron resonances of
heavy nuclei exhibit a large enhancement and have been observed using experiments with
polarized neutrons and unpolarized target nuclei.

1.1.3 parity nonconservation observables

The part of the total cross section in neutron transmission experiments that is sensitive to
symmetry violation involves three orientations of angular momenta: the spin of the neu-
tron s, the spin of the target nucleus I, and the direction of the neutron beam, the neutron
momentum k . Several combinations of these three vectors can reveal one of the asymme-
try components P-odd/T-even, P-even/T-odd or P-odd/T-odd in the total cross section.
These three components can be observed depending on the type of experiment. Complete
expressions for the symmetry violating cross section of the several possible experiments
are given by Vanhoy et al. [32] and by Gould et al. [33]. They contain some basic observ-
ables whose properties under the parity and time reversal operation are given in table 1.

Table 1: The effect of the P- and T-operation on several observables.

Observable P-operation T-operation
k -k -k
I 1 -1
N s —5
s-k —s -k s-k
I-k -1k Ik
(s-1) (I-k) —(s-D)(Ik) (s-1)(I-k)
s - (Ixk) -5 - (Ixk) —s - (Ixk)
s (Ixk) (I-k) s (Ixk) (I-k) —s - (Ixk) (I-k)

For parity nonconservation (P-odd/T-even) in the mixing of s- and p-waves the parity vio-
lating cross section Gpy- is composed of three terms [33]
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The term G, corresponds to experiments with a polarized neutron beam and an unpolar-
ized target and depends on the factor s - k. The term 6, corresponds to a situation with
an unpolarized beam but a polarized target and is related to the factor I - k. Finally, the
term G,, corresponds to a polarized beam and an aligned target and is dependent on
(s-I) (I-k) . Until now, experimental results are available only for polarized beam,
unpolarized target measurements, thus depending on the s - k factor.

Experiments on time reversal invariance are much more complicated because they involve
an odd number of vectors and contain at least one vector product, for example the
three-fold correlation s - (Ixk) or the five-fold correlation s - (Ixk) (I-k) . These
experiments require therefore both a polarized beam and an oriented target. Several
approaches are possible to study time reversal invariance and various schemes have been
developed to circumvent experimental problems, see for example refs. [34-36].

1.1.4 parity nonconservation in neutron p-wave resonances

Nuclear states of the same spin but opposite parity can mix and show PNC. In neutron
transmission experiments, PNC is expressed as the relative difference of the reaction cross
sections for a system and its P-mirror system. In the case of an experiment concerning the
transmission of longitudinally polarized neutrons through an unpolarized target, the longi-
tudinal asymmetry P is defined from

6" = o,(1|f,|P) @

where c, (o +6 ) /2 is the unpolarized resonance part of the p-wave cross section
and where 0" and 6 are the observed resonance cross sections for a neutron beam hav—
ing a positive and negative polarization respectively. The neutron polarization f B
defined as

3
o

fn = 37 &)

A

I

with 7’ and ‘% denoting the number of neutrons with positive and negative helicity, i.e.
with their spins paralle] respectively antiparallel to the neutron direction. With eq. 4 the
longitudinal asymmetry can be written as

+ -
1 o -0
P = Fl == ®)
fd 6" 40
assuming that the degree of neutron polarization f, has the same absolute value for the
two neutron spin polarizations along the beam.
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From the experimental data one can fit the cross sections ¢, accounting for the various
experimental influences. This is to be preferred compared to deriving P directly from the
transmission asymmetry € with

c-c
c+C

€

= tanh (—Nop|fn|P) 5—Ncp|fn{P. )

Here C* are the detector counts for the neutron polarizations parallel, respectively
antiparallel to the beam and N is the sample thickness in atoms per barn. The approxima-
tion of the hyperbolic tangent is allowed if its argument is small.

It can be shown (see for example refs. [30,37]) that an expression for P can be derived on
the basis of first order pertubation theory. Considering only the two-level approximation,
i.e. the mixing of one p-wave resonance of energy E_ with one s-wave resonance of
energy E_ with the same spin and opposite parity, the longitudinal asymmetry P is then

given by
s\1/2
2Vsp r,
5| — X; 6

where V= =(s|H PNCIp) is the mamx element of the weak interaction between the s- and
p-wave resonanccs F and F are the neutron widths of the s- and the p-wave reso-
nances. The factor x. the fractlon with total neutron spin j = 1/2 at the entrance channel,
will be explained in the next section. Penetration factors for entering the nucleus are much
larger for s-wave than for p-wave resonances, i.e. I“i » 1“5 in the epithermal resolved res-
onance region. Of course there is also a mixing of p-waves into s-wave resonances but as
the difference in neutron widths is large, this has a negligible effect. The factor
(Fi/ Ff ) 25 usually called kinematic enhancement.

The ratio Vsp/ (E,—E)) ineq. 8 is usually referred to as dynamic enhancement and has
been discussed by several authors [37-40]. In the complicated compound nuclear system
this enhancement is a factor N1/2 compared to the nucleon-nucleon system, where N is
the number of components in the compound nuclear wave function. Together, the dynamic
and kinematic enhancement form an amplification of the PNC effect in the compound
nucleus compared to the nucleon-nucleon interaction that can be in the order of 10%-108.
Indeed, PNC effects have been found in p-wave resonances of several nuclei with effects
of percents and in two nuclei as large as 10 percent.

1.1.5 spin coupling and total neutron angular momentum

Like normal discrete bound states, also the neutron resonances have a definite spin and
parity J" . The possible values of T depend on the spin / and parity n, of the target
nucleus and the angular momentum ¢ with which the neutron has been captured. The res-
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onance spin is the vector addition of the three angular momenta involved, and the parity is
the product of the parities of the neutron, the nucleus and the orbital momentum. The neu-
tron has the intrinsic spin s = 1/2 and parity T, = +1, the resonance spin and parity are

J=IT+2L+s 9
n=mn -1n - (-1). (10)

Parity nonconservation can occur in p-wave resonances by admixing of an s-wave reso-
nance with the same spin. However, in the recent transmission experiments with polarized
beams and unpolarized targets, only the part of the p-wave resonance having at the
entrance channel a total neutron angular momentum j = £+ s equal to 1/2 is contributing
[30,41]. The amplitude fraction of the entrance channel with j = 1/2 is accounted for in
eq. 8 by the factor x; defined as

x2 =T

P Jj=1/2
J n

P
/T, (1

In most cases, the spin J of the p-wave resonance is not known and the fraction of the
neutron width I', with j = 1/2 even less.

However, this is not always a problem. Let us consider the easiest situation, when the tar-
get spin / is zero as in the case of the even-even nucleus 2>8U. In that case there is only
one way to combine the involved angular momenta to form an s-wave resonance which
must have spin I = 1/2. For the p-waves there are two possibilities, as can be seen in
table 2, a spin 7 = 1/2 and a spin I = 3/2. Because the target spin / = 0, the total neutron
angular momentum equals the resonance spin: j = J. So in this case, parity nonconserva-
tion can occur by mixing of the J = 1/2 s-wave into the J = 1/2 p-wave resonance. The
J =3/2 p-wave cannot show a PNC effect. The several possible combinations for this
I =0 case are shown in table 2. In addition the channel spin S is defined by § = I +5.

Table 2: The possible combinations to form the resonance spin J with the neutron spin
s = 1/2, the target spin / = 0 and the angular momentum together with the intermediate
neutron entrance spin j and channel spin S.

s I ¢ j s J
12 0 0 12 12 12
ST 0 1 12 2 12
12 0 1 n 12 32

The situation is different when we have a target spin 7 = 1/2, as in the case of '13Cd. Now
there are two ways to form an s-wave resonance, one having spin J = 0 and one having
J =1. The p-wave resonances can have spins J =0, 1 or 2. From the different combina-
tions, listed in table 3, one may notice that for the J = 0 p-wave resonances the total neu-
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tron angular momentum at the entrance channel is j = 1/2, therefore these resonances can
fully contribute to PNC effects by mixing with J = 0 s-wave resonances. Different is the
situation for the J = 1 p-wave resonances since both j = 1/2 and 3/2 are possible. In this
case only the usually unknown amplitude fraction x y corresponding to j = 1/2 contributes
to the mixing with s-wave resonances.

Table 3: The possible combinations to form the resonance spin J with the neutron spin
s = 1/2, the target spin / = 1/2 and the angular momentum together with the intermediate
neutron entrance spin j and channel spin S.

s I ¢ | S J
12 12 0 12 0 0
12 12 0 12 1 1
12 12 1 12 1 0
12 12 1 12 0,1 1
12 12 1 3n 0,1 1
12 12 1 3n 1 2

1.1.6 information contained in PNC data

Before 1988, experiments on parity nonconservation in neutron resonances have been per-
formed with the observation of PNC effects in at most a single resonance in various nuclei
like 8'Br [30], 1'Cd [30], '13Cd [30], 1'7Sn [30,44] and '*La [30,44] in which the last
case showed the largest effect close to 10%. These PNC effects have recently been con-
firmed and extended in 8'Br [42,43], 111Cd [42], 1'3Cd [31] and !!7Sn [45]. The 0.73 eV
resonance of '3?La became a calibration standard for PNC experiments [46,47,48]. After
1988, the TRIPLE collaboration, making use of the intense pulsed neutron source LANSCE
in Los Alamos, started to study PNC in a large number of resonances in a single nucleus,
notably for the zero spin nuclei 2381y [49,50] and 23?Th [51] but also for nonzero spin
nuclei like !13Cd [31] and more recently for 107Ag, 109Ag, 131n and In [52]. PNC
effects have been found in several resonances per nucleus.

For the analysis of the PNC data, the two-level approximation of eq. 8 must be general-
ized. The longitudinal analysing power P, in a p-wave resonance labelled i can be
expressed in terms of not only one but several admixing s-waves labelled j as

12
] (12)

P. = Z_EV’J_[ n
i jEs,j_Ep,i I-’p;,x

which is valid for spin zero nuclei. In this expression V, is the PNC matrix element
between the state i and j, which is considered to have a Gaussian distribution with mean
zero and variance M2 . When the spins of the concerned resonances are not known, one
ignores which values have to be included in the estimation procedure. Obviously, for a 0*
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target nucleus the resonances that show a large longitudinal asymmetry with a small error,
indicating a clear PNC effect, must have a spin 1/2. The contrary is not true however.

Because of the random distribution, there should be many resonances present with a small
PNC effect. The measurements are rather complicated and the relative errors, especially
for small P ; values, can be considerable. In these cases, it is not clear whether the
observed asymmetry is due to a PNC effect in a J = 1/2 p-wave resonance, or due to
measurement fluctuations around zero asymmetry for a J = 3/2 p-wave resonance. There-
fore, spin assignment of the resonances is necessary for a correct interpretation of the PNC
data and a reliable estimate of the rms PNC matrix element /M2 . More about this estima-
tion procedure can be found in chapter 6.

It is expected that M2 is proportional to the level spacing D and therefore it is convenient
to introduce the parity nonconserving spreading width [53]

[PNC — 2nM?

1
D (13)

a quantity that is presumably roughly independent of the mass number within the statisti-
cal nuclear model. Many considerations about modelling the parity nonconservation
effects exist (see e.g. [53-61]). More PNC data of nuclei in other mass ranges are neces-
sary to find a possible mass dependence of M. The concern is to connect the compound
nuclear property M to the nucleon-nucleon interaction for a better understanding of the
weak interaction in nuclear matter.

On the analogy of the connection between symmetry breaking in the compound nucleus
system and in the nucleon-nucleon system for time reversal invariance violation as
explained by French et al. [62], one can define the parameter o, which is the ratio of the
parity nonconserving strength to the parity conserving strength in the effective
nucleon-nucleon interaction. The relation between o, and the parity nonconserving
spreading width T'PNC is given by

TPNC = 2mx10 [eV] - od. (14)
The value of the parameter o P is expected to be in the order of G mer/ Go~ 10-7, with

G the Fermi weak interaction constant, G the strong coupling constant and m_ the
pion mass. Johnson et al. [54] deal in more detail with this matter.

1.2. Spin assignment methods

There are several methods to assign the spins of neutron resonances. Some of them can be
applied only in special cases. We briefly discuss several methods and then describe in
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more detail those used in the experiments presented in this thesis. Some of the spin assign-
ment methods have been reviewed by Mughabghab [63]. Recently, Postma [41] proposed
experiments to determine spins and neutron-channel spin mixing in p-wave resonances in
relation to parity nonconservation measurements. We will discuss here several ways to get
information about resonance spins from the characteristics of gamma-ray spectra follow-
ing resonance neutron capture. Also some other spin assignment methods, not based on
gamma rays, will be mentioned.

1.2.1 primary gamma rays

A first indicator for the resonance spin are the primary transitions feeding well known lev-
els of the excitation spectrum. Because the observed transitions have usually a dipole
character, knowing the final spin 7, limits the resonance spin to be 7, or / 7 + 1. This has
been used in the determination of ﬂge spins of resonances in 238y and)hSCd, as will be dis-
cussed in chapter 4 and chapter 5. To use this method, low-lying states with known spin
must be available. Moreover, due to Porter-Thomas fluctuations the intensities of individ-
ual primary transitions can largely differ from the average strength expected for a given
multipolarity. Another limitation is that such transitions are an indicator for only one spe-
cific resonance spin state.

1.2.2 gamma-ray multiplicity

One can also exploit the spin dependence of the average number of gamma decay steps
after neutron capture necessary to reach the ground state, the gamma multiplicity. This
method has been applied for spin determination by Coceva et al. [66] for about 150
s-wave resonances in several / = 5/2 and I = 7/2 nuclei. Georgiev et al. assigned s-wave
resonance spins of I79Hf [67]. However, the difference in multiplicity can sometimes be
quite small and the related errors can be large for resonances with adjacent spin values. It
was found that this method is applicable only to even-even compound nuclei and that the
spin effect is much smaller than that of the low-level population method (section 1.2.4).
This is partially compensated by the much larger efficiency of the used scintillator detec-
tors instead of germanium detectors.

1.2.3 angular distribution of gamma rays

In s-wave resonances an anisotropic angular distribution of gamma radiation can only
occur if the capturing nuclei are aligned or if the capturing nuclei and the neutrons are
both polarized [68]. In p-wave resonances the gamma radiation may have an anisotropic
angular distribution due to the orbital momentum ¢ # 0, producing a preferred direction of
the spins of the compound nucleus. In the case of /> 1 resonances the angular distribu-
tion W(18) of primary gamma-ray transitions can be written as follows

K
W) = Y a, - P, (cost) (15)
k=0
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where ¥ is the angle of emission with respect to the neutron beam and where P,, denotes
the Legendre polynomial of order 2k . The maximum order K of the angular distribution
coefficients a,, is restricted by the minimum value of the compound state spin J, £ and
L, where L is the multipolarity of the gamma transition. With p-wave resonances only the
second order can occur, that is a,#* 0ifJ>1/2.

Also secondary gamma-ray transitions may show an angular distribution [41], which for
p-wave resonances can be written as

W(8) = 1+ G,a,P,(cosD) (16)

where G, is related to the preceding gamma transitions. The nuclear alignment in capture
due to the orbital momentum perpendicular to the neutron beam is lost only partially dur-
ing the gamma-ray cascade. This factor can be estimated by statistical modelling of the
gamma cascade [69]. A thorough treatment of angular correlation methods in gamma-ray
spectroscopy together with tabulated values related to the coefficients a,, can be found in
Ferguson [70].

For I =0 target nuclei, the s-wave resonances (¢ = (), have an isotropic gamma-ray dis-
tribution. This is also the case for the J = 1/2 p-wave resonances, in contrast to the
J = 3/2 p-wave resonances. So if anisotropy is found in the angular distribution of pri-
mary gamma-rays from a p-wave resonance, this indicates a state J = 3/2. In this specific
case the angular distribution is proportional to the angle ¥ as follows

W1/2—>J(ﬁ) =1 (17
1 .
W3/2__>1/2(ﬂ) = ﬁ(2+3smzﬁ) as)
1 .
Wi 3@ = m(?’—f&smzﬂ) (19)
w ) = 3 6 + sin2®
325520 = g5 (6+sin*0) . 20)

The largest difference in radiation intensity is found for the angles at ¥ = 0° and
¥ = 90°. In general it is not a problem to detect gamma radiation at 90°, but the angle at
0° implies that a gamma-ray detector has to be placed in the neutron beam, which is
experimentally not feasible. Therefore, an optimum angle should be chosen considering
the reduced anisotropy for ¥ >0° and the counting efficiency. The largest effect can be
found in transitions from a J = 3/2 to a J = 1/2 state given by eq. 18. In figure 1 the ratio
Win 1200/ Wy 1 2(8,) of the effect is shown as a function of the two angles ¥,
and ®, for both detectors. One can detect single gamma-ray transitions (with germanium
detectf)rs) for which the distribution is exactly known, or an average over several primary
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Figure 1: The ratio of the gamma-ray intensities of a transition froma J = 3/2 to a J = 1/2 state
observed at two angles ¥, and 3, .

gamma-ray transitions (with scintillator detectors) which shows a gross distribution effect.
We have applied this method to the case of 2Thina preliminary experiment, of which
the limited results will not be discussed in this thesis.

1.2.4 population of low-lying states

The compound nucleus decays after neutron capture to its groundstate by emitting one or
several gamma rays in cascade. For nuclei of medium and heavy weight there are many
possible ways for cascading gamma rays to the groundstate since the level density is high.
For this reason, the decay of the nucleus can be treated within the statistical model. During
the decay, the nucleus passes through several intermediate states and the gamma-ray cas-
cade is different when the resonance spin is different. Therefore, the population of nuclear
states close to the ground state, may depend significantly on the spin of the capture state.
In the past years the method has been applied to a number of nuclei to determine the reso-
nance spins of s-waves [71-75]. The extension to the case of p-wave resonances is
straightforward though experimentally much more difficult because of the very weak
strength of most p-wave compared to s-wave resonances at epithermal neutron energies.

The method can be illustrated with a simple example. We consider the decay of a capture
state with spin  and take into account only gamma rays with or multipolarity, so
that each step has a spin change =-1, 0 or +1. In fact, the statistical gamma decay
after neutron capture has mainly a dipole character [76]. From figure 2, showing the sev-
eral possible cascades with three steps, it is clear that the number of ways to reach states
with spin or is much smaller than for states where the difference in spin
between the capture state and the final state is smaller. The cascade in figure 2 can be mod-
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Figure 2: The number of possible spin changes and states reached from the initial capture state
after three steps.

elled by using only the spin information to obtain a first idea of the difference in popula-
tion of final levels. For each step the branching ratio B, , ; to a state with given spin
J ext» DEING ONE Of the spins J — 1, J or J + 1, is taken proportional to their density and is
expressed as
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where f(J) is the spin dependent part of the level density function, given by eq. 62 on
page 52 which is for low spin values about f(J)= (2J+ 1) . A simple straightforward
calculation gives the population of spin states after a certain number of steps. In figure 3
the population of final spin states is shown for the decay in four steps of two resonance
states having a spin J; =1 and J; =2. Of course, this way of proceeding is only a very
crude approximation but it illustrates clearly the possibility of different populations start-
ing from different capture spins. More realistic and detailed calculations, involving the
simulated decay of a specific excited nucleus, are described in chapter 3.

We see that the difference in population for the different initial spin states is large and that
the effect increases with the difference between the initial and final state spin }J i~ f{ .
For a small value of ‘J ;—J 4, the final population is large. Obviously, one has to select to
select Jevels with spins J . differing from the initial spin J;, but the difference should not
be too large because of the population intensity. The spin effect can be increased by calcu-
lating the ratio of the populations of two final states with a spin respectively larger and
smaller than the initial spins.

An additional advantage of this ratio is that it does not need any normalization to the total
capture rate. The value of the ratio is only dependent on the resonance spin and should, for
a set of resonances, split up in different groups for the various possible resonance spins. In
an experiment, the populations of the levels are measured by investigating the intensities
of the gamma rays deexciting them.
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Figure 3: The population of final spin states after the decay of a spin 1 and a spin 2 state in four
steps, using branching ratios based on the spin level density.

1.2.5 other spin determination methods

polarization measurements

The cross section of the transmission of polarized neutrons through a polarized target is
dependent on the fact whether the spins are parallel or antiparalle] with respect to each
other. From the difference in the cross section, the spin of the resonances can be deter-
mined. Of course, this method cannot be applied to nuclei with spin / = 0. This method
has been successfully applied for s-wave resonances in, for example, the case of B3y
[64,65]. It has been demonstrated that this should work also in the case of p-waves and
that both the spin and the channel spin mixing can be determined [41]. For the application
of parity nonconservation measurements this is an attractive method. Unfortunately, this
type of experiments is technically very difficult to achieve because of the complicated cry-
ogenic setup. Also the nuclear moments of the targets should be fairly large to achieve a
sufficient degree of nuclear polarization.

determination of the spin statistical factor

In the mass range A < 60 where the s-wave resonance width is dominated by the neutron
width, [, » T, , the peak cross section at the resonance energy is directly proportional to
the statistical factor g. This can be used to determine the spins of resonances of light
nuclei. For heavy nuclei, the neutron width becomes smaller than the radiation width and
this method cannot be applied. One could then determine gI", and I" from a transmission
experiment and gl“f,/ I' from a scattering measurement. In that case g, and therefore the
resonance spin, can be derived by combining these results. This works well for s-wave
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resonances with small 7, but low-energy p-wave resonances in the heavy mass region
have such small neutron widths, that it becomes practically impossible to derive spins in
this way.

angular distribution of scattered neutrons

For ¢2>1 resonances one could observe the angular distribution of elastically scattered
neutrons and determine the spins from the distribution parameters [41]. However, this is
also very difficult for p-wave resonances for intensity reasons.

1.3. The radiative neutron capture process

1.3.1 the reaction mechanism

As the neutron is not, unlike the proton, affected by the Coulomb barrier, it can penetrate
the nucleus with low kinetic energies and initiate nuclear reactions. In a first stage of the
reaction, the system of the incident neutron and the target nucleus with mass number A
may form a so-called compound nucleus with mass A + 1. Due to the separation energy of
the neutron, ranging roughly from 4 to 9 MeV, this compound nucleus is in a highly
excited state and has several modes of decay, or channels, available to it. In general at low
neutron energies for non-fissile nuclei, two decay modes are energetically allowed. First
there is the re-emission of the incident neutron. This is elastic scattering if the nucleus
returns to its ground state, while the scattering is inelastic when the nucleus returns to an
excited state. The second possibility is that the compound system decays through one or
several gamma-ray cascades to its ground state. The latter process is called radiative neu-
tron capture and the reaction can be written as

A A+1 A+1
n+ X— Xt +ZX+y(+y+...). 22)

Although the compound system has an energy above the neutron threshold, and since
therefore no bound states exist, there are quasibound states with a relatively long lifetime,
called resonances. These are the discrete levels in the compound nucleus region. The
structure of resonances is characteristic for a many-body system and corresponds to a very
complicated wave function. In figure 4 the schematic process of neutron capture is shown.
From the compound nucleus, the neutron may be re-emitted without passing energy to the
target, which is indicated in the figure as the elastic scattering channels. If the energy in
the center-of-mass system exceeds the energy of the first excited state in the target
nucleus, also inelastic scattering becomes possible. In reality, the level density at the neu-
tron threshold, the statistical region, may be about a factor of 10° larger than the level den-
sity near the groundstate. The relative level distribution in the figure does not correspond
with a realistic situation. The cross section in the region of the capturing state is also
shown in figure 4 starting in the thermal region at the neutron threshold.
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Figure 4: Schematic view of the neutron capture process and the scattering channels.

The high energy gamma rays following immediately the capturing state are called primary
gamma rays, while the gamma rays of the further decay are called secondary. In medium
and heavy weight nuclei there are usually many primary gamma transitions due to the
many available levels.

The neutron incident to the nucleus is described by a plane wave which can be decom-
posed into a sum of spherical waves, the partial wave expansion, where the sum is running
over the orbital momentum £¢. The neutron of momentum p = hA/A is related to an
impact parameter & such that ¢4 = pb. Here the momentum of the neutron is expressed
in the reduced de Broglie wavelength A = A/27%. Because the orbital momentum is
quantized, the plane of interaction can be divided into zones with a large interaction prob-
ability for a specific orbital momentum. The area of a zone (cross section) for a value of /
equals m( (£ +1)X)2—n(fX)” = (2£/+ 1) nk2. This is the maximum possible cross
section if A » R, the radius of the nucleus. This is the case for slow neutrons.

We can now derive the cross section for potential scattering, the process where the inci-
dent neutron scatters from the potential of the whole nucleus without forming a compound
nucleus. The maximum impact parameter is about the sum of the radii of the target
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nucleus and the incident neutron, so the maximum / is about R/A . The potential scatter-
ing cross section is then

R/%
Op = 2, (2£+ DARZ=m(R+1)2. 23)
/

In the case of resonant neutron capture, this approach is not sufficient. The energy depend-
ence of the capture cross section of a resonance at energy E, with width I has the gen-
eral Breit-Wigner form for a decaying quantum mechanical state with lifetime © = A/T
and can be expressed as [63]

E

o (5) - RXZ(FR)I/2

anFY
(E-Ep)?+T%/4

(24

The total width I is the sum of all the partial widths corresponding to the entrance and
exit channels. For radiative neutron capture, these channels are the neutron channel corre-
sponding to I', and the gamma decay channel corresponding to I" . The contribution of
the different angular momenta channels, dependent on the neutron spin s, the target spin /
and /, coupled to form the compound spin J, is taken into account by the statistical factor
g, defined as

27 +1

T s+ I+ @3

g
In particular nuclei the neutron might be captured directly into a specific shell configura-
tion without perturbing the core, which is called valence capture. It is also possible that the

non-resonant interaction resonant interaction

n potential n resonance
scattering \ / scattering
ip - Oh

1p = Oh grect oY valence v

A ! A
+ \
2p — th semi-direct VY 2p — 1h doorway =Y
A
\J |
mp - nh statistical oY

Figure 5: Schematic view of the several resonant and non-resonant neutron scattering and
capture mechanisms, after ref. [77].
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Figure 6: Various neutron capture processes over ten decades of energy, after ref. [77].
Statistical capture relative to direct capture is shown in the upper curves together with the
relative strengths of s-, p- and d-wave capture.

directly captured neutron gives rise to a doorway state, a somewhat more complicated par-
ticle-hole configuration. These two processes are called channel capture.

At neutron energies higher than about 5 MeV, non-resonant interactions become domi-
nant. In direct capture, the neutron undergoes a single particle transition to a low-lying
excited state. In semi-direct capture, the giant dipole resonance, a collective vibrational
motion of all neutrons and protons, of the compound nucleus is excited.

In figure 5 the several capture processes are represented and divided into resonant and
non-resonant contributions. Also potential scattering is shown as an incoming neutron that
is deflected from the potential well of the nucleus without exchanging energy. The statisti-
cal decay, which is important in this context, can in fact be considered as a complex exci-
tation of a many-particle many-hole state (mp-nh). All the capture processes, if not
followed by elastic scattering of the neutron, decay by gamma-ray emission.

A view of the different capture mechanisms for a broad neutron energy range is given in
figure 6. The main curve shows the total cross section in the statistical region and at higher
energies a collective semi-direct capture mechanism in the giant resonance region is visi-
ble. The resolved resonance region for heavy mass nuclei with unpaired neutrons is gener-
ally in the eV neutron energy range, while for lighter nuclei and nuclei with closed or
nearly closed shells the resonances start only in the keV region. The dashed curve in
figure 6 shows the direct capture as a slowly decreasing cross section which is not impor-
tant at lower energies. The vertical scale gives an indication of the expected values of the
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cross section. Also in figure 6 the relative strengths of s-, p- and d-wave capture are repre-
sented. Due to the orbital momentum barrier, the larger £ -values become important only
at higher energies.

1.3.2 statistical behaviour

According to the Bohr assumption the decay of the compound nucleus is independent of
the way it has been formed. The essential idea of the compound nucleus is that the energy
of the incident particle is shared amongst the nucleons in a time which is short compared
to the lifetime of the compound state. In this way the decay depends only on the energy,
spin and parity of the compound state. The compound nucleus is a highly excited system
with a large number of degrees of freedom. The wave function is extremely complex and
may contain 104108 components in heavy nuclei [78]. The density of levels in this region
is consequently very high, a factor of 10° higher than the region just above the ground
state. Due to extreme configuration mixing, the nuclear system at the neutron threshold
has a statistical behaviour. This is expressed by the fact that the matrix elements relating
two nuclear states have a random character, governed by a Gaussian distribution with zero
mean.

Porter-Thomas and Wigner distributions

The observed distribution of the resonance neutron decay width has been explained by
Porter and Thomas [79]. The reduced amplitudes of the several channels have a Gaussian
distribution in the statistical model. The neutron width, being the square of the amplitude
has therefore the so-called Porter-Thomas distribution

P(x) = exp(—g) (26)

1
21X
with the parameter x representing the neutron width divided by the average neutron width
x = I',/(T',). This distribution is valid for the widths of any compound reaction with a
single exit channel, i.e. for the neutron widths 1"" as well as for the partial radiative widths
I' ., from an initial state / to a final state f in which case we have x = I'__./(T .. The

i R . . TR A ('
Porter-Thomas distribution is a special case of the chi-square distribution

2
P(2v) = (D)2 Texp(-K) @7

2¥/2T(v/2)

with one degree of freedom v = 1. In this expression I' represents the gamma function.

Because of the Porter-Thomas fluctuations to which all statistical gamma rays are subject,
the high-energy primary gamma-ray spectrum in radiative neutron capture varies from res-
onance to resonance. Fits of measurements of partial gamma widths to the chi-square dis-
tribution have sometimes led to values of v differing from one, but this is generally
ascribed to a lack of sufficient resonance data or to nonstatistical effects.
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The distribution of the spacing D of compound levels of the same spin and parity has
been explained by Wigner, who treated the problem using random matrices and derived
the so-called Wigner frequency function of level spacings

P(D) = gﬁexp(-n( %]2). 28)

The Wigner distribution describes the observed effect of level repulsion, the fact that small
spacings are unlikely to occur. Of course, also large spacings have a small probability.

neutron strength functions

For the systematic study of the neutron reactions, the reduced neutron width has been
introduced as a quan}ity from which the energy and ¢-dependence have been removed.
The reduced width I is defined as

¢ 1ev T,
‘- |28 . _r 29
. E, TV, 29)

where the penetrability V, accounts for the angular momentum barrier. Factors V, have
been derived for a square well potential. These quantities are for s- and p-waves reso-
nances:

V, =1
(30)
Vv, = KR/ (1+K°RY

where k = 1/X is the neutron wave number, and R the interaction radius, usually taken
as R = 1.35A173 fm.

In the extreme application of the statistical model, the neutron strength function is con-
stant for all nuclei. The neutron strength function S, is a dimensionless quantity related to
the reduced average neutron width and is defined for a partial wave with orbital momen-
tum £ as:

el 1
¢ = @i+ 1)D, GD
where D, is the average level spacing of resonances with orbital momentum ¢ . Although
the statistical model provides a good description for a given nucleus, the overall behaviour
of the strength function is not constant with mass A. Nuclear shell structure effects
become apparent in the overall view of the strength function as a function of A . Calcula-
tions within the optical model do agree well with the experimental data [80].
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1.3.3 Doppler broadening

The natural shape of a resonance does not correspond with the cross section that is
observed in an experiment. Apart from the various experimental influences on the meas-
urements of cross sections, introduced among others by the specific way of production of
the neutrons (see e.g. [81]) and detector resolution, one more basic component is added to
the width. The thermal motion of the atoms in the target bulk matter at an effective tem-
perature T, gives rise to a Doppler broadening. The Lorentzian or Breit-Wigner form of
the resonance is supplementarily broadened with a Gaussian distribution having a width
Ap, . For a resonance at energy E this width is given by:

4k, T
e o

where & is the Boltzmann constant and A the mass number of the target nucleus [82,83].
To arrive at this expression the nuclear motion in the bulk matter is represented by the
Maxwell distribution of motion in a gas. The Doppler broadening is often more important
than the natural width of a resonance but in many cases it is largely overshadowed by the
experimental loss of resolution. For high precision cross section measurements it can
therefore be advantageous to cool the target sample.
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Figure 7: The energy uncertainties that can be expected for 238 resonances at the 12.85 m flight
path with the sample under an angle of 30°. At lower energies the Doppler broadening becomes
important.

Chapter 1: Theoretical considerations 25



In figure 7 the contributions of the spatial width as explained in section 2.2. on page 33
and the Doppler broadening are shown for the case of the measurement of 2381 at the
12.85 m flight path with the sample under an angle of 30°. The observed width at a certain
energy is the convolution of these components with the natural width. At low energies the
Doppler broadening forms a large contribution while at higher energies the experimental
broadening becomes more important.
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Chapter 2
Experimental techniques

2.1. Pulsed neutron sources

2.1.1 introduction

For high-resolution neutron spectroscopy and for measurements of nuclear reactions
involving neutrons of various energies, a neutron source covering a large energy range
must be available. Accelerator-based pulsed white neutron sources are for this purpose
very suitable. If a moderator is used, such machines can provide a neutron energy spec-
trum ranging from thermal energies (25 meV) up to several tens or hundreds of MeV. It is
necessary that the source is pulsed because the selection of the neutron energy is deter-
mined by the time-of-flight (TOF) method. Such pulsed neutron sources are realized using
electron- and proton-based accelerators.

The proton-based machines produce neutrons as secondary particles in reactions in the
MeV region up to about 100 MeV. At higher energies the spallation process becomes
important with a very high yield of neutrons per proton striking a target of heavy nuclei.
The electron-based sources produce neutrons via Bremsstrahlung. The cross section for
this process is approximately proportional to Z2, thus advantageous for heavy mass
nuclei. The photons induce photonuclear reactions (y,n) and, if the target is fissionable,
photofission reactions (y,f) . Around about 10-20 MeV the cross section for photodisinte-
gration reactions increases considerably due to the giant resonance and is approximately
proportional to NZ/A, thus again favouring targets of heavy mass nuclei. The neutron
yield is for electrons above 30 MeV nearly proportional to the electron energy. The energy
distribution of the source neutrons constitute an evaporation spectrum, centred around
several MeV. A moderator of a material rich in hydrogen is usually applied in order to
obtain low-energy neutrons.

A review covering the topic of neutron sources can be found in refs. [84,85]. We will dis-
cuss here the neutron source GELINA, based on the linear electron accelerator located in
Geel, Belgium. Apart from GELINA, several other pulsed neutron sources are presently in
operation and used for nuclear physics experiments. Other important pulsed-neutron facil-
ities are given in the following list.
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« the LANSCE facility at Los Alamos, based on LAMPF, a 800 MeV proton linear acceler-
ator with storage ring,

» the ORELA facility at Oak Ridge, based on a 178 MeV L-band electron linac,
« the electron linac at RPI, Troy (USA),
« the spallation source at the synchrocyclotron at Kk, Tokyo,

» the IBR-30 in Dubna, consisting of a 32 MeV electron linac, coupled with a U-Pu
booster.

» the 46 MeV electron linac at KURRI, Kyoto.

2.1.2 GELINA pulsed neutron source

The Geel Linear Accelerator pulsed neutron facility is based on an S-band linear electron
accelerator built in 1965 and successively upgraded in 1976, 1984 and 1994. It produces
an electron beam with a maximum energy of 140 MeV. The maximum beam power is
12 kW at an average energy of about 100 MeV. A detailed description of the machine can
be found in refs. [86,87].

The pulse duration of the electron beam can be optionally reduced to less than one nano-
second due to the unique compressing magnet system [88]. The 10 ns pulse of the linac
consists after acceleration of a series of 30 microbunches spaced 0.33 ns, each bunch hav-
ing a sequentially decreasing average energy ranging from 140 to 70 MeV. The micro-
bunches pass through a 360° bending magnet of special design, so that electrons with
higher energies have a longer trajectory than the less energetic ones, in this way reducing
the space between the microbunches and compressing the total pulse into about 1 ns, as
illustrated in figure 8. The outer trajectory through the bending magnet corresponds to the
track of the electrons with 140 MeV while the smallest circular path corresponds to the
70 MeV electrons.

The electron beam hits a rotating uranium target, cooled by a flow of mercury. The
induced Bremsstrahlung produces neutrons by (y,n) and (y,f) reactions. The energy

360° bending magnet

10 ns pulse 1 ns pulse

e beam

Figure 8: The principle of the compression magnet. The 30 microbunches of the 10 ns pulse are
tightened up in time by means of the 360° compression magnet, after ref. [88].

28 Chapter 2: Experimental techniques



centre line —
~—

l |

L1 ]

e

HJ - electron
i : beam

stainless steel I

mercury flow

S R r

aluminium __ |72

~10em

Figure 9: Cross view of the mercury cooled rotating uranium target with the water moderator. The
neutron flight paths are positioned perpendicular to the centre line.

distribution of the neutrons emitted by this target is peaked at 1-2 MeV with a small
intensity of low-energy neutrons.

In order to have a significant number of neutrons in the energy range below 100 keV, a
moderator consisting of material with a very high proportion of hydrogen atoms has to be
used. Under and above the target, two slabs of 4 cm thick water canned in beryllium are
placed. Neutrons emiited from the target loose their kinetic energy by scattering at the
hydrogen nuclei. The partially moderated neutrons have an approximate 1/E energy
dependence plus a Maxwellian peak at thermal energy (see also figure 12 on page 33).

In figure 9 a cross view of the rotating uranium target with the water moderator is shown.
A large number of flight paths are oriented to the neutron centre line and the ones at 90°
with respect to the electron beam view the smallest amount of moderator material. The
scattered neutrons are collimated into the flight paths leading to the experimental areas.
Each flight path can be individually shielded against gamma rays and neutrons coming
directly from the production target with a lead plus copper shadow bar of 30 cm total
thickness, screening the target and placed at about 1 m from it.

Chapter 2: Experimental techniques 29



In the case of very short electron bursts (1 ns wide), the moderation process provides the
largest contribution to the resolution of the time-of-flight spectrometer. This is due to the
fact that one ignores the position of the last scattering of a given slow neutron inside the
moderator. The contribution to the timing uncertainty is expressed in the form of an aver-
age moderation distance (d) = vt that a neutron with velocity v will travel through the
moderator in a time ¢. This uncertainty should not exceed the thickness of the water slab,
in this case 4 cm, or the corresponding thickness when the moderator is seen under an
angle. The average moderation distance (d) is a function of the neutron energy and is a
specific parameter for each flight path in several energy ranges for different types of mod-
erators. These parameters are documented and regularly experimentally verified [89]. The
final characteristics of the neutron beams are accounted for by the resolution function,
relating the observed neutron flight time to the spread in neutron energy. Extensive model-
ling with numerical simulations have been performed to obtain resolution functions [90].

The undermoderated neutron flux as coming from the moderator has in the thermal energy
region an approximate Maxwellian distribution related to the temperature of the modera-
tor. For measurements at thermal and subthermal energies the water moderator can be
replaced by a cryogenic moderator of liquid methane cooled with liquid nitrogen in order
to increase the subthermal neutron flux.

In figure 10 an overview of the target hall is given. It shows the path of the accelerated
electron beam going through a 12 m long beam line, provided with quadrupole magnets
and steering coils. In view of future experiments, the electron beam may continue into the
0° direction (through beam pipe number 9), with removal of the uranium target, for the
need of radiation physics experiments, concerning especially optical transition [91] and
Smith-Purcell radiation [92]. For neutron experiments, the electron beam passes through
the compression magnet and strikes the neutron producing target. A 3.5 m thick concrete
wall provides a biological shielding. The flight path identification number is also given in
the figure. In fact, not all the beamlines are in use (see also figure 11).

After scattering through the moderators the neutrons enter the flight paths, which are evac-
uated aluminium pipes of 50 cm diameter with collimators consisting either of borated
wax or of copper, placed at appropriate distances in order to confine the beam inside the
pipe. The lengths of the flight paths range up to 400 m. At specific points each flight path
passes through a station where experiments can be installed. The long flight paths can pro-
vide an extremely high energy resolution but of course the neutron flux at large distances
is rather low.

In figure 11 the neutron flight paths in use are shown together with the linac building con-
taining the target hall as sketched in figure 10. The angles of the several neutron beam
lines differ mutually by 9° or 18° and are oriented around the 90° line with respect to the
electron beam of the accelerator.
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Figure 10: The linac target hall of the GELINA pulsed neutron facility.
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Figure 11: An overview of the neutron flight paths and stations located around the linac building.

Linac parameters and neutron flux

The linac can be operated with various parameters set according to the request of the
users. Some of the most common operation parameters for neutron production are summa-
rized in table 4. Although the maximum neutron flux produced in the compressed mode is
about 70% of the uncompressed mode, a great improvement is obtained in time resolution.
Therefore, for neutron physics experiments nowadays the machine is nearly always oper-
ated using the electron pulse compression. The GELINA neutron facility is one of the best
pulsed white neutron sources available in the world for neutron spectroscopy measure-
ments due to the combination of long flight paths, short neutron pulse duration and flexi-
ble operation of the linac machine.

Table 4: Nominal operation parameters of GELINA

pulse peak mean mean neutron av. neutron
length frequency current current power burst rate
(ns) (Hz) A) (uA) kW) (n/s) (n/s)
without pulse compression
5 800 12 48 5.3 6410 250103
10 800 12 96 9.6 561018 4.40 10%3
10 200 12 24 24 5.610'8 1.10 103
10 100 12 12 1.2 56108 0551053
2000 50 0.22 2 2.2 0.110'8 1.00 1013

with pulse compression
0.6 800 >100 75 7.5 4.6 1019 3.40 1013
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Figure 12: The absolute neutron flux at 12.85 m on beamline no. 5 with the linac operating at a
power of 7 kW.

High precision neutron flux measurements performed at GELINA have shown that the flux
®(E) as a function of the energy in the region above thermal energies can be described by
the general form

®E) = KE*P (33)

the exponent o(E) being a function of the energy expressed as

UE) = ay+a EV? +a,E. (34

The constant K depends on the operating power of the linac and the flight distance. The
absolute neutron flux at a flight distance of 12.85 m with the linac functioning at 7 kW is
plotted as a function of the energy in figure 12. The flux in flight path no. 5 for this large
neutron energy range is obtained from measurements in the thermal region [93] and above
thermal [94] and converted to the mentioned flight distance and operating power by apply-
ing the appropriate factor K.

2.2. The time-of-flight method

To perform measurements involving neutrons in a broad energy range, the time-of-flight
method is very suitable. The principle is that the time that the neutron takes to travel along
a known distance, is measured. From the flight time the velocity is deduced and therefore
the kinetic energy of the neutron. For the work reported in this thesis we are dealing with
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non-relativistic neutrons with energies below 1 keV and therefore the relation between the
neutron energy, the flight time 7 and the flight distance L is just the expression for kinetic
energy

2
E, = 1mn(5) 35)

where m, is the neutron mass. When we give the length in meters and the time in micro-
seconds, the expression becomes in numerical form

L[m] )2
E [eV] = . = .
L [eV] = 5227 039( Tins] (36)
The very precise value of the proportionality constant is related to the recommended accu-
rate value of the neutron mass from ref. [95].

neutron energy resolution

The experimental uncertainty in the measurement of the neutron energy comes from sev-
eral factors, accounted for as uncertainties in the flight distance and flight time from which
the spread in the energy follows

8E, SLY2 [oT\2
E G’ -5 D

There are several factors that affect the energy resolution, related to the uncertainty in time
or in flight length. The flight time T is measured as the difference between the moment of
production of the neutron, marked by a start signal T,, supplied by the accelerator, and
the arrival of the neutron at the target, marked by the detection of a reaction product, giv-
ing a stop signal T, . The reaction product may be a neutron in scattering and transmission
experiments, or a photon in the case of (n,y) reactions. The time scale of the reactions is
extremely small compared to the neutron flight time and does not contribute perceptibly to
the uncertainty in flight time. The detector responses, however, can be in the order of
nanoseconds for germanium detectors and can affect the time resolution, notably for short
flight times.

Also the neutron burst is not instantaneous but it has a finite duration and thus it contrib-
utes to the timing error. Another factor is the effect of the neutron moderator near the neu-
tron production target. As already mentioned before, the moderator causes the major
uncertainty in the flight time. It is customary to express this rather in the form of an uncer-
tainty in the flight length (d,%w 4 - For flight path number 5 where the experiments
described in this thesis were performed, this quantity is in the energy range from thermal
to 400 eV on the average [89]
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(42, ) =295 cm2. (38)

A further contribution is the flight length and timing uncertainty due to the sample which
has a finite thickness. Moreover, a thick sample causes multiple scattering: the neutron
arriving at the target nucleus is not captured immediately, but may first scatter at another
nucleus losing energy before it is captured. Neutrons at the high-energy side of a reso-
nance may in this way fall into the peak region of the cross section. Therefore multiple
scattering is visible in the cross section as a protuberance on the high-energy side of a res-
onance.

In the case of a heavy target of finite thickness a substantial part of the low energy gamma
rays are absorbed due to the self-absorption in the sample if the detector views the sample
at 90°. This might be resolved by using a thinner sample, which increases the measuring
time, or by inclining the sample angle, and so decreasing the spatial resolution. To get an
optimal efficiency for the gamma rays without losing too much time-of-flight resolution, a
compromise must be found. For a sample of zero thickness in the form of a disc with
radius R, with the normal of the disc making an angle 3 with respect to the neutron beam,
the mean squared distance to the centre of the sample is given by

J.R (xsin®) 2 (RZ - x2) dx |
<d§ngle> =0 - = -RZ%sin2® (39)
jo (R% - x2) dx 4

which should be added to the uncertainty in flight length. For an angle ¢ = 30° and a sam-
ple diameter of 11.1 cm (***U experiment) this gives (d2, ) = 1.93 cm’. The combina-
tion of this uncertainty and that due to the moderator forms the spatial uncertainty. Its
contribution relative to the Doppler broadening is shown in figure 7 on page 25. At the
used flight path of 12.85 m the spatial resolution corresponds to about 0.3% in the energy

resolution.

2.3. Experimental setup

2.3.1 geometrical setup

The neutron beam coming from the moderator and travelling through an evacuated alu-
minium pipe 1s collimated to a diameter of 10 cm by a series of borated wax collimators,
placed at appropriate distances. At the end of the flight path a 10 cm thick lead wall colli-
mates the neutron beam once more before it enters into the experimental area where the
target to be studied is placed in the beam. A schematic overview of the experimental setup
together with the neutron beamline used in the 2381 measurement is shown in figure 13.
The sample is viewed by one high purity intrinsic p-type germanium detector in the case
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of the 238U measurement and by two detectors in the case of the 13¢d (see also page 75
and page 89).

The sample and the germanium detectors are surrounded by a considerable amount of
shielding, consisting of a mixture of Li,CO5 and wax lined with a sleeve of 6Li in an alu-
minium canning, in order to moderate and absorb the neutrons scattered from the sample.
The detectors are shielded against scattered neutrons by an aluminium protection cover
filled with SLi and an additional 3.5 cm of Li,CO; on top. The whole assembly is placed
inside a large shielding with walls made out of lead and a mixture of boric acid and wax,
each 10 cm thick, to protect against outside radiation.

2.3.2 electronics

The pulses from the preamplifier of the detector are lead to two different chains of elec-
tronics: one determines the pulse height according to the energy absorbed in the detector
and the second consists of fast electronics to determine the time of arrival of the pulse rel-
ative to the start time of the neutrons 7|,. These two signals originating from the detection
event are complementary and have to be related to each other in the data acquisition sys-
tem.

One signal of the preamplifier of the detector is fed into a special spectroscopic amplifier
and then led to an analog to digital converter (ADC), converting the pulse height into a
channel number. The ADC is connected to a digital stabilizer that corrects the gain and
zero offset by means of two very stable pulses. These pulses have to be set at the high and
the low sides of the energy range of interest. The pulse at the high side is usually obtained
from a very stable pulse generator, which is sent to the input of the preamplifier of the
detector. Also the zero offset correction pulse can be obtained from a pulse generator but
sometimes it is also possible to use a pronounced low-energy gamma ray of the capture
spectrum. The pulse generators are triggered by the linac T, signal after an appropriate
delay so that the stabilizing pulses fall outside the neutron time-of-flight region of interest.

The second output of the preamplifier is fed into a timing filter and shaper and then to a
constant fraction discriminator to create a fast logic signal 7, which is then sent to a
25-bit multiple shot fast time digitizer (FTD) with a minimum channel width of 0.5 ns.
The FTD has as inputs the T, signal from the linac and the 7, signal coming from the
detector. The FTD is initialized each cycle by the signal P,, supplied by the accelerator
and preceding the 7, signal. The time difference between the 7, and the T signals is
then converted into a channel number and sent to the data acquisition system. The FTD
provides also a logic signal to gate the ADC in order to ensure a coincidence. Whenever
the time coder converts a T, pulse, this signal, after being delayed to match the ADC
pulse, enables the ADC so that there is a coincidence between the ADC pulse and the T,
pulse. The data acquisition system can now take both ADC and FTD values and store them
as an event. This way of storing each event is called listmode. Together with the listmode
data, other circumstantial data is taken amongst which the values of counters, proportional
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Figure 14

one detector.
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one cycle of 1250 ps (800 Hz)
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Figure 15: The several timing signals in one machine cycle of 1250 s, the real and observed
gamma flash and the filtered and unfiltered neutron flux.

to the neutron flux for normalization purposes. The electronic setup for one detector is
drawn schematically in figure 14, showing the distinction between the part of the electron-
ics that is at the experimental site where the sample is located and the part that is situated
off site in the data acquisition area. Only the basic items are given in the figure, omitting
the various counters and control signals.

The several timing signals in one cycle of the linac are shown in figure 15. The logic sig-
nal T, is preceded by the signal P, to reset the time coder which is able to convert several
signals in one cycle. The intense gamma radiation from the neutron producing target at
time T, the gamma flash, is observed with a time delay AT in the detector. In order to
know the precise time-of-flight of the observed neutron resonances, and therefore their
energies, one needs to know the zero time. This is determined by observing the position of
the gamma-flash peak in the TOF spectrum after correction for the delay AT = L/c
introduced by the finite speed of light.

In the 800 Hz operation, one needs to eliminate the neutrons that have a flight time larger
than the cycle time. In order to avoid the overlapping of slow neutrons from previous
cycles a B filter of suitable thickness is introduced. Also in figure 15 two neutron fluxes
are shown. One shows the unfiltered neutron flux as it comes from the moderator. The
Maxwellian peak of the spectrum at 0.025 eV is situated outside the 1250 us region and
overlaps with the next cycle. A boron filter absorbs the thermal neutrons, modifying the
neutron energy spectrum so that approximately the whole spectrum fits within one cycle.
It should be noted that the curves are just for illustration purposes and do not correspond
to realistic fluxes.

The time region of interest must cover the neutron energy range to be measured. To cover
the region from 3 to 1000 eV at L = 12.85 m, event signals 7, between 25 and 470 us
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must be included. This falls comfortably within the 1250 ps cycle time corresponding to
the linac pulse repetition frequency of 800 Hz. For measurements at thermal energies
(0.025 eV) the linac cycle should last longer and a frequency of 50 Hz is used.

2.4. Data acquisition system

The maximum time resolution of the FTD is 0.5 ns, much smaller than the width of neu-
tron resonances at low energy. The coding into 25 bits provides about 30x10" channels,
which is too much for practical purposes. The number of channels is compressed into a
32k channels TOF spectrum by means of a so-called “accordion”. This is a part of the
acquisition software that allows to specify several time regions in which the time part of
the events will be binned into channels of a specific time width. After the compression, the
TOF channels have a, not everywhere equal, width that is sufficiently large to map the
TOF spectrum with acceptable resolution.

The events, consisting of an ADC and an uncompressed FTD value are taken in by the
buffer derandomizer of the data acquisition system from the trademark FAST [96]. The
buffer acts as to average large instantaneous counting rates so that the deadtime of this part
of the system stays rather constant. The buffer is connected to a personal computer, storing
the data, taking scaler values, keeping administration and making it possible to view the
total TOF and ADC spectra on line. The ADC values and the compressed FTD values are
stored together as an event on the 1 Gb hard disk of the computer in listmode. After having
collected a certain amount of listmode events, the data are transferred to an Exabyte tape
unit, for off-line analysis on another computer system. This system allows to handle the
large amounts of incoming data which was for example about 600 Mb a day during
10 weeks in the case of the '13Cd experiment. In figure 16 we show the schematic view of
the flow of data in the data acquisition and analysis system. The advantage of storing list-

data acquisition
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| B = R = P
L=E Wy
|

data sorting

detector TOF
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gamma-ray
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L

Exabyte unit Exabyte unit

Figure 16: Schematic view of the flow of data for handling large data amounts.
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mode data is that a re-analysis of the original data is always possible. This is often of inter-
est because some structures may become visible only after a long period of measuring.

2.5. Data analysis

2.5.1 data reduction

The listmode data from the data acquisition system consist of a large number of events,
each buiit up of four bytes. The first two bytes represent the ADC value while the second
two bytes represent the corresponding TOF value. In a typical situation with 8192 ADC
channels and 4096 TOF channels this means that each event can be placed in one of the 32
million bins on the two dimensional ADCxTOF grid.

The listmode data have to be sorted out in order to study the gamma-ray spectra corre-
sponding to TOF intervals of interest, the neutron resonance- and background regions.
This means that all the events in such an interval have to be taken together to form charac-
teristic gamma-ray spectra as illustrated in figure 17. A computer program, taking care of
the reading and sorting of the large amount of listmode data from an Exabyte tape unit into
spectra has been developed [97]. Typically, a maximum of 200 gamma-ray spectra corre-
sponding to as many TOF intervals can be built up in one pass.

A gamma ray spectrum S, corresponding to a resonance interval, contains also the back-
ground gamma rays due to capture not related to this resonance. A pure spectrum Sp can

gamma-ray
spectra

Figure 17: Gamma spectra corresponding to different TOF regions.
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be obtained by subtracting the gamma ray spectrum S, from a nearby background region.
A scaling factor & has to be included to account for the different time widths of both inter-
vals where k is the ratio of the time width of the background interval and the time width
of the resonance interval. So the spectrum § » corresponding only to the resonant part can
be constructed by

Sp =8 -k Sb (40)
and the variance of each channel in S » is, using Poisson statistics
Var(Sp) =8, +k%-8,. (41)

This applies to a single, well isolated resonance. For resonances that are overlapping with
nearby ones, the procedure to extract the correct spectra is somewhat more involved. In
that case, advanced computer codes for the parametrization of neutron spectra, like the
multilevel program REFIT [81], have to be used. This has been the case for the measure-
ments of 233U, described in more detail in section 4.4. on page 75.

2.5.2 gamma spectrum analysis

Next the corrected gamma ray spectra corresponding to individual resonance capture
regions have to be analysed in order to determine the positions and the areas of the
gamma-ray peaks of interest. The response of semiconductor detectors allows that the
shape of the detected gamma peaks can be adequately fitted by a Gaussian function com-
bined with some function describing the low-energy tail. Effects of pile-up and properties
of the electronics may also cause a tail at the high-energy side, but this can often be
avoided with careful experimental design. Tailing effects on the low-energy side arise
from a variety of causes like imperfect charge collection in the detector due to radiation
damage.

The most appropriate mathematical form for the peak shape has to be determined for each
individual detector. Several mathematical forms of low- and high-energy tails are given in
refs. [98,99]. Good results for spectra with only a minor low-energy tail can be obtained
by modelling the tail by a fifth order term [100]. The function f(x) describing the peak as
a function of the channel x is then split into two parts f(x) = f,(x) + f(x), at the low-
and high-energy side of the peak position u. The high-energy part is a standard Gaussian
function while the low-energy part is a Gaussian modified by a tail governed by the asym-
metry parameter X

(x—u)z)

= =) (1 =% (x—1)5) - A
R R

(42)

A (x-w?
Ful® = ulx—p) mexp( )
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where u(x) is the unit step function. The parameters ¢ and A are respectively the width
and the area of the ordinary Gaussian. In figure 18 the asymmetric Gaussian for two
nonzero values of the asymmetry parameter x is given. The area of the modified Gaussian
equals no longer A but is given by

off(x)dx = A(l +4K62ﬁ). (43)

Algorithms for least-squares minimization of nonlinear functions are stil} further devel-
oped [101,102]. In our case the obtained gamma-ray spectra were in most cases well fitted
by an unmodified Gaussian using the Levenberg-Marquardt nonlinear least squares fitting
algorithm [103]. However, in some cases the spectra showed a low-energy tail presumably
due to radiation damage of the detector. In these cases the asymmetric peak shape of
eq. 42 was adopted.

A well known phenomenon is that the full width at half maximum (FWHM) of the Gaus-
sian peaks, related to ¢ as FWHM = ¢./8In2, is increasing with the gamma-ray energy.
In a short energy range however, this may be considered as a constant and one can use
well isolated peaks in order to derive ¢ and keep this as a fixed parameter in the fitting for
neighbouring overlapping peaks.

The FWHM of a peak is also related to the neutron energy of the resonance to which it
belongs (see also figure 34 on page 77). For a gamma ray with a specific energy, the
FWHM increases with neutron energy. This is due to the increase of the instantaneous
counting rate at short flight times and to the influence of the tail of the saturated peak cor-
responding to the gamma flash. If one wants to fix ¢ or the peak position in a gamma-ray
spectrum of a weak p-wave resonance, one should find these parameters in spectra of a
nearby s-wave resonance having good statistics.

1 i L 5 1 L 1

f(x)

Figure 18: The asymmetric Gaussian shape for several values of the asymmetry parameter K with
o = 1, used in the fitting of gamma-ray peaks.
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2.5.3 estimate of the count rate

The count rate C in the detector, expressed in gamma rays per second, for a specific
gamma-ray energy EY of a resonance at neutron energy E is the product of the number
of captured neutrons per second and the number of photons per capture I , multiplied by
the detection efficiency &,

C(E,Ep) = efE) I, [SOE)Y(E,)E, (@4)

where S is the area of the sample and @ the neutron flux. The radiative capture yield
Y(E,) is the probability for an incident neutron of energy E, to be captured in a sample of
thickness N in atoms per barn, giving a gamma ray

E
YE) = (1-¢) YEE ; =No(E,) (45)

where G is the total cross section and ©,, the radiative capture cross section. The approx-
imation holds for thin samples, i.e. No, «1, which is certainly the case for the weak
p-wave resonances. With a considerable background cross section underneath a p-wave
resonance, the flux decreases over target thickness. If the flux is considered to be constant
over the resonance, the count rate can be written as

C(E,Ep) = efE) - L-S-D(Ep)-N- A, (46)

where AY is the capture area given by

2 2g1"n I‘Y = 22%2
Ay = 2n?k —I-,——=21t Rgl, é4n
ifI' =T, +T =T, asis the case for p-wave resonances m the heavy mass nuclei 238U
and 113Cd We can put in some typical numbers for the 2 By experiment: § =100 cm?,
N =6x10" atoms/bamn and assuming /, = 0.1 photons / capture. The total efﬁcnency
€, is the product of the reduction due to the self-absorption of gamma rays in the sample,
about 0.6 for 600 keV gamma rays, and the measured photopeak efficiency € = 1.2x10
for a 662 keV gamma ray of a calibrated B3¢ point source with the detector placed at
15 cm as in the actual experimental conditions. The neutron flux of eq. 33 should be mod-
ified by the transmissions T = 0.58 of the U-filter and 7, ., = 0.57 of the B-filter
placed in the neutron beam. The capture area is AY = 4.1x10 E;l gl’, barn-eV, giving

C=42x10°-E;19. gT', counts/s. “8)

For example for the resonance at 10.2 eV in 233U with gl = 1.65 peV, this gives an
expected count rate of about 30 counts / hour for 600 keV gamma rays.
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_ Chapter 3
Simulations of the gamma-ray spectra of
radiative capture

3.1. Introduction

When a neutron is captured by a target nucleus, it forms a compound nucleus and decays
through gamma-ray emission to its ground state (or any metastable state). The low-level
resonance spin assignment method is based on the fact that the intensity ratio for specific
gamma rays in the decay of a compound state depends on its spin. Within the statistical
model, the probability of decay to a particular state is dependent on several parameters
like the density of levels and the energy and multipolarity of the emitted radiation. Besides
that, the probability of each transition is also subject to random fluctuations following a
Porter-Thomas distribution.

Because the low-level population method is based on the statistical principles of the
gamma decay of the compound nucleus, this process is suitable to be modelled in a
numerical way using a Monte Carlo algorithm. For that purpose the compound nucleus
has to be parametrized using the information about, among others, the spin and parity of
the resonance state, the level density, the photon strength functions and the spectral data in
the low-level region. We have used the FORTRAN computer code DICEBOX, which has
been developed by Becvar and Ulbig [104], in order to simulate the gamma-ray spectra of
the reactions 238U(n,W/)239U and 113Cd(n,y)”"’Cd.

Numerical simulations support the spin assignment experiments in the way that they can
select the gamma rays that are most sensitive to the resonance spin and reproduce the
splitting of the ratio of the intensities of two specific gamma rays according to the reso-
nance spin groups when compared to experimental data. Our purpose was to study the
population of the low lying discrete levels. We have customized the program on a few
points to meet our needs. In this chapter the program DICEBOX is described and also some
models for the photon strength and level density functions. Subsequently, the decay of the
statistically populated levels to the ground state, which is not a statistical process but is
based on known branching ratios in the low-level region, is discussed. Finally, the results
of the simulations for the decay of the compound nuclei 2390 and '*Cd, formed by neu-
tron capture, are described and compared to experimental results.
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3.2. The program DICEBOX

The computer code DICEBOX simulates the process of statistical gamma cascade
deexcitation of medium and heavy nuclei in a highly excited state, using a Monte Carlo
algorithm. The program can be used in a variety of applications. The statistical model is
believed to be valid in the excitation region several MeV above the ground state where the
compound nuclear states are present. The lower levels just above the ground state do not
behave statistically but transitions among these states are often known from measure-
ments. Therefore, the excitation spectrum is divided into two parts: a low-lying part con-
taining the discrete levels with known energies, spins and parities and a quasi-continuum
part where the individual levels are not known any more. The levels in the quasi-contin-
uum are very closely spaced and their energies and decay properties are assumed to obey
the extreme statistical model of the nucleus. The program sets up a what we will call
“nuclear realization” for the quasi-continuum part of the excitation spectrum. A nuclear
realization is obtained by

» aprocess of random discretization of a chosen level density formula of which the result
is a large set of levels forming the quasi-continuum, each level being represented by its
excitation energy, spin and parity

« and a random generation of a full set of partial radiative widths that are responsible for
the gamma decays of individual levels to all possible final levels.

The total number of levels is in the order of 10°, so the number of partial widths for each
level to all the lower levels is in the order of 1012, making it impossible to store these
quantities in the computer memory with current means. This problem has been solved by
the introduction of so-called “precursors”. These precursors are represented by randomly
chosen seeds for a random generator function of the type RAN(/), generating values dis-
tributed uniformly on the interval (0,1). Each individual level has its own ascribed precur-
sor. The random generator is a constituent part of a subroutine that provides random
selections from the chi-square distribution with one degree of freedom. Whenever the
need for generating partial radiation widths of a given level occurs, the random generator
is initialized with the precursor of the level after which generating the partial radiation
widths may start. The ascribed precursor is thus used to set the computer random genera-
tor into a specific, a priori adjusted status to initiate the process of generating widths, each
level having its own fixed status within a given nuclear realization. So the partial widths of
not all the levels are calculated, but only those of the accessed levels during the decay.
This ensures that the decay of a level will proceed in exactly the same way any time the
level is encountered in a cascade within a fixed realization. In this way the full set of
strongly fluctuating partial radiation widths involved in a nuclear realization is kept con-
stant, like the set of widths of a real nucleus. In a new realization, a different set of widths
is calculated.

As the partial radiation widths for statistical transitions between two nuclear levels can be
calculated, also the intensity branching ratios for each level can be calculated. Having this
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possibility, the process of statistical gamma-decay cascade can be simulated by the Monte
Carlo technique. In such a simulation the cascade decay stops at the first discrete level that
is reached, obtaining the populations of the low lying states. Also the number of gamma
decay steps needed to reach the first level is recorded for the calculation of the gamma-ray
multiplicity. To obtain a measure of the spread in the populations, several nuclear realiza-
tions, each one with a large number of events, are calculated as well as the mean and
standard deviation for the population of each level. The whole calculation results in a set
of fractions of the number of events terminating at each discrete level together with the
associated errors. As a by-product, for each discrete level a multiplicity spectrum of the
statistical part of the cascade decay is obtained.

With an infinite number of events within one nuclear realization the population of a spe-
cific discrete level will tend to its particular expectation value. For another nuclear realiza-
tion, with another set of levels and radiation widths, this asymptotic value is different. By
taking many nuclear realizations, the mean value of the populations should represent the
expectation value for the nucleus. The spread in the populations is merely a result of
approaching the structure of the real nucleus by the different calculated realizations and
has therefore no physical meaning. In practice, one uses a finite number of events for one
realization and the expectation value for one nuclear realization is not reached. In this case
the errors in the populations reflect also this fact.

The gamma-ray transitions are subject to Porter-Thomas fluctuations which means that the
radiation intensities follow a chi-square distribution with one degree of freedom. As these
fluctuations are responsible for a large part of the spread in the calculated populations, it is
important that they are properly taken into account in the above-mentioned procedure for
generating partial radiation widths. However, It should be noted that the inclusion of Por-
ter-Thomas fluctuations drastically increases the necessary computation time. Neverthe-
less, the calculations have shown that for this specific application, deriving the population
of the discrete levels, the use of Porter-Thomas fluctuations affects the final value only a
little.

The initial state, observed as a resonance in the neutron capture reaction, is characterized
by the spin, parity and the energy excitation above the ground state. In the simulations, the
excitation of the initial state is taken equal to the neutron separation energy since the ener-
gies of the neutron resonances, which are in the eV range, can be neglected. Because of
the assumed parity independent high level density in the quasi-continuum and the gener-
ally large average gamma multiplicity, the resonance parity should not appreciably affect
the low-level populations. Indeed the simulations for resonances with the same spin but
opposite parity give values that overlap within their errors.

In fact, up to this point a population of any discrete level was understood to be the result of
the cascade decay of the quasi-continuum to that particular discrete level without any
other intermediate level belonging to the discrete region involved. However, in order to
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compare the simulated results with those from experiment it is necessary to take into
account also the successive decay of the discrete levels. For this reason in our calculations
the resulting populations of the individual discrete levels include as well additional contri-
butions originating from cascades that proceed via discrete levels. The transition probabil-
ities between low lying states are not governed by statistical tramsitions as their
corresponding matrix elements often result from a combined overlapping of a multipole
projection of the initial state wave function with single-particle and collective components
of the final state wave function. However, these transitions have mostly been measured for
thermal capture gamma rays and information about the branching ratios is generally avail-
able, for example in Nuclear Data Sheets. We take these branching ratios, which are a
property of the nucleus and not unique to thermal capture and use them for the resonance
capture gamma rays. The fraction, corresponding to the branching ratios, of the statistical
populations and their errors are carried over to the lower states in the decay calculation
where the appropriate error propagation has been used in adding the intensities.

The output of our version of DICEBOX consists of a text file, containing some general
information, the input parameters, general calculated data and a list of the discrete levels
with their mean population and standard deviation resulting from several nuclear realiza-
tions.

random numbers

An essential aspect in Monte Carlo simulations is the random number generator. This is
the algorithm to produce a sequence of numbers which are pseudo-stochastic, usually uni-
formly distributed. Because of the method of its production, a numerical algorithm, such a
sequence can never be fully random. There are always correlations in the sequence and the
distribution is not exactly uniform. It depends on the type of simulation to what extend the
random numbers should be uncorrelated.

The program DICEBOX uses a random number function of the form RAN(/). This type
returns a random number from a uniform distribution by supplying a seed number 7, and
uses the random number as the new seed. Many types of random generator algorithms
exits and new ones are still developed [105-107]. For a review see for example refs.
[108-110]. Instead of using the random number function supplied by the computer system,
we have implemented a machine independent portable multiplicative linear congruential
generator (MLCG) with recommended parameters from ref. [108]. The parameters of this
type of random number generators influence the length of the repetition period of the gen-
erator. However, the drawback of this type of generators is that there exists a correlation
between consecutive values. As a matter of fact, also most computer systems use MLCG
generators but the parameters may vary from one system to another and therewith the rep-
etition period and degree of correlation. Once a uniform deviate is obtained, various algo-
rithms can transform it into samples of other distributions [103].
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3.3. Photon strength functions

The radiative transition strength of the nucleus between two states can be accounted for by
the multipole operators. This enables us to derive expressions for the transition probabili-
ties of multipole radiation [78,111]. Rather than the decay rate per second A, the radiative
width T’y = hA is used. These widths have been calculated and are known as the
Weisskopf estimates. For electric and magnetic dipole and quadrupole radiation the widths
(in V) as a function of the gamma ray of energy E (in MeV) and the mass number A
can be expressed as [112]

| 6.8x10'2A2/3E$ (49)
Ty, gy = 4.9x10 °A*/3ES (50)

Ty oyt = 21x107E3 1)
Ty, 42 = 1510 "A23ES 52)

where the numerical constants are based on the nuclear radius parameter R, here taken as
1.20 fm. Although these estimates are not meant to be realistic predictions, they provide a
good relative comparison. The lower multipoles are stronger than the higher ones and for a
given multipole, the electric one is stronger than the magnetic one. Blatt and Weisskopf
[113] have first modelled the average partial widths for electromagnetic radiation in com-
pound nuclear states within the frame of the single-particle model. The expressions for the
radiative widths in eV are related to the Weisskopf estimates as

=T D 10°° (53)

Txe W.XL' D

where D = 1/ p(J ) (in V) is the spacing of the initial levels with the same spin and par-
ity and D, expressed in MeV and therefore introducing the factor 107°, is the spacing of
the single particle states, originally taken as 0.5 MeV but mostly taken as an adjustable
parameter.

The average partial radiative width (I'y,) for a transition of the type X (E for electric,
M for magnetic transitions) and multipolarity L, from an initial state i, has the general
form

XL E;{2L+1
(Typ = ——— (54)
P(U;, EY
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where p(]?, E}) is the density of levels having spin and parity J* and where § x1 18 the
photon strength which is a constant in the single particle model. Usually, (I'y,) and 1/p
have the same units and are expressed in eV, while E_ is expressed in MeV. The unit of
Sy, is then MeV~2L+D The strength S, is often expressed in terms of Weisskopf units
(W.u.) per MeV to reveal the deviation from the single particle strength. While doing so,
one should specify the used value of D,,.

Unlike the neutron strength function, which has a unique definition, a lot of photon
strength functions exist in the literature. To analyse and compare experimental data, the
reduced photon strength functions &, , as defined by Bartholomew [116] for dipole radia-
tion, are often used

XL>

(TP (U} E)

kpy = F3A2/3 G3)
Y
(T2 U E)
_ YM1
le = —E3-‘——‘ (56)
Y

where the units are as before so that &, is expressed in MeV~3, In the same way, one can
define k, etcetera. In the single particle model, the quantities k,, are constants.

Experimental data on photon strength functions have been obtained by neutron-capture
spectroscopy, mostly by considering primary transitions. A method to gather information
on strength functions is the use of sum-coincidence measurements of two-step cascades
[114,115]. This method is not only sensitive to primary, but also to secondary transitions.

The single particle model agrees quite well with experimental data for M1 transitions (see
for example also ref. [117]). But in particular for E1 radiation other models, more ade-
quately describing the experimental data on gamma-ray transitions, have been developed.
In this respect we have used the Lorentzian shape of the giant dipole resonance and also
the Kadmenskii model. For M1 and E2 radiation we have used the single particle
strengths.

E1 radiation: Lorentzian shape of the Giant Dipole Resonance

Cross sections of photonuclear reactions showed the existence of E1 giant dipole reso-
nances (GDR), explained as collective dipole vibrations of the protons and neutrons in the
nucleus. These excitations are for heavy and medium mass nuclei far above the neutron
threshold energy. The assumption is that this collective motion is independent from the
internal nuclear motion and that a GDR is built not only on the ground state, but also on
any excited state. This makes it possible to express the average partial radiation width
[ g, in terms of the experimental photoabsorption cross section & ;. The strength func-
tion S, as defined in eq. 54 is now no longer a constant, but depends on the energy.
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Assuming the standard Lorentzian shape for photoabsorption (see for example ref. [77]),
the strength function is

2
O E, TG
3(nhe)® (Ey - EZ)*+E - Eg

Sp(E) = 57

expressed in MeV~3, where O is the giant dipole peak cross section, E; the resonance
energy and I, the GDR damping width. For deformed nuclei, like for example 29U, the
strength function is well described by two Lorentzians, each one associated with one of
the two independent collective vibrational electric dipole modes of the ellipsoid. Some
modifications of the expression of the Lorentzian exist, see for example Kopecky and Uhl
[118], introducing a temperature dependent damping width as in the Kadmenskii model.
In the present simulations we have used the standard Lorentzian with parameters taken
from Berman etal [119]. For 1404 these are E,=158MeV, T'; = =6.3MeV and
GG =0.226 barn, while for 23°U the parameters of the two Lorentzlans are respectively
=10.92 and 13.98 MeV, I' ; = 2.6 and 4.72 MeV and 6, = 0.291 and 0.383 barn.

E1 radiation: Kadmenskii model

Kadmenskii et al. [120] developed a model based on an approx1mat10n from the Fermi
theory of liquids valid for E «Eg

0.76, EgTGT(E,, T)

S(E,T) = (58)
Ep D 3(nhc)? (E%—Eé)z
where the damping width is given by
I
- _G(p2 272
I"(Ey, T = Eé (EY+41t T4) (59)

T being the nuclear temperature. This model gives generally good agreement with experi-
mental results for spherical nuclei, like 'Cd.

M1 radiation

The single particle model for the M1 photon strength assumes a constant, mass independ-
ent value for the magnetic strengths S,,, . In the collection of photon strength functions
derived from neutron resonance data of McCullagh etal. [117], this value has a global
average of 3x10° MeV‘B' or 1.4 Wu. MeV™! assuming a single particle level spacing
Dy =1MeV. This is just an average value and for specific nuclei this value might differ,
but it is always in this order of magnitude, see for example results of Coceva [121] who
found a strength of 0.6x10~ ¥ Mev=3in 33Cr, also found in '%Pd by Kopecky et al. [122]
and used by Cejnar et al. [123] in other calculations. In the model calculations we use the
single particle model for M1 radiation with parameter §,,, = 0.6x107° MeV™.
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E2 radiation
In the single particle model the E2 strength function depends on the mass A as

Spy = kgy- AY3 (60)

where the constant k., is the reduced photon strength function. Due to its weak strength,
not much experimental information is available for the E2 strength function. Data from
Prestwich [124] and Kopecky [125] suggest a value around S , = 5x 107 t MeV3.
Since the E2 strength is much weaker than for £1 and M1 radiatlon it has very little
influence on the simulated data. We have used k, = §,,/A%/3 = 4.8x10 " MeVS in
the simulations.

3.4. Level density functions

The density p of levels having spin and parity J, is a function of the energy E, the spin
J and the parity n. The topic of level densities has been treated by many authors, see for
example refs. [126-129]. The positive and negative parities are taken throughout this work
to be equally distributed in the quasi-continuum, independently of energy and spin,
although also models exists with a parity dependence [130]. We discuss here two models
which have been parametrized for many nuclei: the constant temperature formula and the
backshifted Fermi gas model.

constant temperature formula (CTF)

Experimental data show an exponential increase of the cumulative number of levels
N(E, J) with energy at low excitation energies. The density of levels p = dN/JE can be
described reasonably well by the constant temperature formula

E-E
0) (61)

£ ) = - Lexp[ =
where 7, the nuclear temperature, and the parameter Eo have to be fitted from available
data. At higher energies, this model does not correspond with the experimental level den-
sities. We tested this model with the parameters E; =-0.94 MeV and T = 0.419 MeV for
23%U and E,, = -0.40 MeV and T = 0.615 MeV for P14Cq [131],

The level density contains the spin distribution factor f(J) which is described by [127]

0 = o2 enf AL

often approximated by

52 Chapter 3: Simulations of the gamma-ray spectra of radiative capture



21 + 1 —J(J+1
1= e L) )
207
or slightly more correct by
1)2
— J+=
2J+1 ( 2)
= ex 64)
10255 T (

Von Egidy ef al. [131] have compiled experimental data on nuclear level densities and
have given a mass dependent form for o,

6, = (0.98+023) 4P+ (65)

We used a constant value for the spin cutoff factor 6, = 4.80 in our calculations for 239y

and 0, = 3. 87 in the case of 114Cd.

backshifted Fermi gas model (BSF)

Bethe calculated the level density within the Fermi gas model where free nucleons are
confined to the nuclear volume. This model is often used in a slightly modified form, the
Bethe formula for the back shifted Fermi-gas model [132], introducing a backshift £,

1 Jmexp(2,/a(E-E,))

P(E,J) = f(J)GCﬁ;t 1201/4(E—E1)5/4

(66)

This model takes into account all the levels: each state with spin J is (2J + 1) -fold
degenerate, so the total number of levels is z 27+ 1) f(N/ Z S = o, J2m times
larger than the observable level density. In eq. 66 this factor has been taken mto account.

We have used here the compiled values of ref. [132] and took the values E, =-0.14 MeV
and a =258 MeV~! as parameters for 2% and E, =121MeV and a = 14.48 Mev!
for 14Cd.

3.5. Decay of low-lying states

The obtained populations of discrete levels are in fact the result of the statistical decay of
the continuum part to the first discrete level reached. It is necessary to account also for the
decay between the discrete levels to the ground state in order to compare the simulated
results with experimental results. We have developed a separate program reading the out-
put of DICEBOX and calculating all the transitions in the discrete level region. The transi-
tion probabilities between low lying states are not any more, like in the highly excited
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states, governed by statistical transitions but by specific transition rates between the
low-lying levels. We have taken the branching ratios from Nuclear Data Sheets for 23°U
[133,134] and 4Cd [135].

We have a set of N discrete levels labelled i that have a population S, coming only from
the statistical decay from the quasi-continuum region. What we observe in an experiment
are gamma rays deexciting these states, so we have to calculate the intensities of these
gamma rays. The population of a level i decays to all the lower levels according to the
branching ratios b, _, ., taken from the thermal neutron capture gamma ray spectra. When
we count the N levels, the ground state is i = 1 and the highest discrete level has i = N.
There are no metastable states present so the sum of the branching ratios from one level to

all the lower levels equals 1

i-1

Zbi_)k=1. (67
k=1

The total population of a level P, is composed of a part §; from statistical feeding and a

part originating from the decay of the higher discrete levels, so we can write for the popu-
lation P; of alevel i

N
P,= 5+ Z by Pr- (68)
K=i+1
It is clear that the highest discrete level in this way is fed only by statistical decay so
Py = S, . The intensity of a gamma ray / deexciting the state / to a state k is then
simply

Y. ik

feeding from | S, feeding from
discrete levels i i quasi continuum
¢ P.
J i
Yoioi-1 bi——)i—]Pi

. Y,

SR i-1

Figure 19: The modelling of the calculation of the transitions between low-lying discrete levels
with the feeding and decay.
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Iy,i—)k = b, P (69)
expressed in photons per captured neutron. The above mentioned quantities are illustrated
in figure 19. In this way we can, starting at the highest level N, let the populations decay
until the ground state is reached and in the meanwhile recording the intensity of the transi-
tions 7, _, i The fraction of the errors in the statistical populations S, corresponding to
the branching ratio, is carried to the lower states in the decay calculation, using the appro-

priate error propagation in adding intensities.

gamma-ray multiplicity

The multiplicity of a decay process in the compound nucleus is the average number of
gamma radiations emitted to reach the ground state. The program DICEBOX calculates for
each event in how many steps it has reached the first discrete level, resulting in the frac-
tion of the number of events for each step size. This can be considered as the distribution
function P, (v) of a partial multiplicity v . associated with the statistical decay.

When calculating the decay of the discrete levels, track is taken of the number of steps
needed for the decay of the fractions to the ground state. This can be considered as the dis-
tribution function P, (v) of a partial multiplicity v, connected to the decay of
low-lying levels. A consequence is that this distribution has also a nonzero value for zero
steps, because some events have already reached the ground state in the statistical decay.
The real multiplicity is the sum of the two partial multiplicities

v = Vszar + Vlow (70)
and its distribution function P(v) can be found, under the assumption that the two partial
multiplicities are independent, by the convolution of the two previous distribution func-
tions.

Pv) = Pstat*Plow = zpstat(v —k)- Plow(k)‘ 1)
k

The shape of P(v) is different depending on the resonance spin. In a gamma-ray multi-
plicity experiment one can find the distribution and then compare experimental and simu-
lated spectra to assign the spins {67]. One could also measure the average multiplicity

(v) = D VPW)/ Y P(V) (72)

and make a distinction between the spin groups on such a basis. The present simulations
for the cases 2>°U and ''*Cd do indeed show different multiplicity spectra for different
spins but the calculated average multiplicities are very similar and do not allow to make
spin assignments. As an average value over all p-wave resonance sgins and several
employed models we obtained (v) =4.8 for '13Cd and (v) =4.7 for *U. The differ-
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ence in this value for the possible resonance spins within the same model of the nucleus is
in the order of several percent.

3.6. Simulations of 238U (n,y) 2%

The p-wave resonances of 238U have spins J = 1/2 and 3/2. We have simulated the gamma
decay of the excited 290 nucleus from p-wave resonances at the neutron separation
energy at 4.8 MeV to the ground state. The region between 1.265 and 4.8 MeV was taken
as the statistical region and the program DICEBOX generated here levels according to the
chosen level density function. In the region between the ground state and 1.265 MeV,
38 levels with known or assumed energies, spins and parities from the literature [134]
were introduced into the program. Due to the very complicated structure of the spectrum
of 2°U, it is not probable that these represent all levels. In figure 20 the spectrum is shown
with the 25 positive and 13 negative parity (indicated with dots) states. Several levels with
known energies but unknown spins or parities have been left out of the model. Levels with
known energies, spin and parities but of which no transitions to lower-lying levels are
known, have been included in the simulations. In total 64 transitions between levels in the

1/2+,1/2= 3/2- resonances

]
)
1
4
—_ : statistical decay region
% 3-
E -
&
b -
o |
c 2-
.
]
1 [ discrete level region
4 —
1 f——m
0- _—— T S

1/2 3/2 5/2 712 9/2 11/2 13/2 15/2
spin

Figure 20: A schematic view of the nuclear realization of 22°U. The gray region between 1.3 and
4.8 MeV indicates the statistical region while below the discrete states are given for each spin.
These levels have all positive parity except the 13 levels with dots.
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low-energy region are known and have been used to obtain the gamma-ray spectrum in the
low-energy part. As mentioned, of some levels no branching ratios to other levels were
known, and therefore a small percentage, lower than 5%, of the events could not decay to
the ground state in the simulations.

We have simulated several models of which a selection will be given here. A simulation
consists of typically 100 nuclear realizations with each typically 100 000 events. We per-
formed the simulations using two models for the level density and the E1 photon strength
function. The results are presented in three steps. First the calculated populations of the
discrete levels below 1.3 MeV are shown, then the intensities of the gamma-rays depopu-
lating them, and finally the ratio of the intensity of specific gamma rays, in comparison
with experimental data.

statistical populations of 2390 levels

In figure 21 the populations of the discrete levels due to the statistical feeding from the
quasi-continuum are shown. In fact, the four plots give the statistical populations of the
1/2%, 1/27, 3/2” and 5/2* levels using the standard Lorentzian shape and the Kadmenskii
shape for the E1 photon strength. In both cases the BSF level density formula was
employed while other models for the level density gave only slightly different results. The
relative positions of the curves corresponding to a resonance spin 1/2 or 3/2 are denoted
by the positions of the indications 1/2 and 3/2 in figure 21. From the figure it can be seen
that the spin separation is present for the population of levels of all four spins and parities
but the strongest effect occurs at the 1/2¥ and 1/27 levels. In the other cases the difference
due to the two photon strengths is larger than due to the difference in resonance spin.

When the Kadmenskii model is used, the statistical populations are very similar for the
1/2* s-waves and the 1/2” p-waves. Only for the 1/2* and 1/2" discrete levels the differ-
ence is somewhat larger using the Lorentzian shape. The results given here come from ini-
tial states with negative parity. To compare these statistical intensities with the
experimental values, the gamma transitions from the levels should be calculated.

gamma-ray intensities of %y

The transitions between the low-lying states involve 64 known gamma transitions. Only
those were taken which show in thermal capture an intensity of more than 5% and those of
interest for the experimental spin determination. The gamma ray of 537 keV is observed
in the experiment but the spin and parity of its parent state are not known and therefore it
has not been included in the simulations. We have also included two gamma transitions of
554 keV. The strongest of them is from a 1/2" state at 688 keV while the other component
of the doublet depopulates a 3/2” state from the 1242 keV level. The latter (the second 554
line in figure 22) has an intensity of only 20% of the former in thermal capture.
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for the two resonance spins and for the Lorentzian and Kadmenskii photon strength functions.
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In figure 22 the intensities of the 8 selected gamma rays are shown for the two p-wave res-
onance spins and for several models, using the Kadmenskii model and the simplest form
of the Lorentzian model, both with the BSF level density. For the Lorentzian, also the
results including Porter-Thomas fluctuations are given which do very much resemble the
results without fluctuations.

For comparison also the intensities of the gamma rays for thermal neutron capture are
given in figure 22. Especially for the 552 and the 612 keV lines the disagreement between
the intensities coming from the thermal 1/2* state and the 1/2” state is remarkable. Both
gamma rays deexcite a 3/2" state which is strongly fed by the 1/2* thermal capture state.
This might also indicate the possible existence of a nonstatistical component in the decay,
while in the simulations only the average primary gamma-ray strength was used.

The gamma rays deexciting levels with spin J = 3/2 show a small spin dependence while
the gamma rays of J = 1/2 levels reveal a stronger effect. Also the gamma ray of 539 keV
from a 5/27 state exhibits a large effect which is opposite to the two previous cases. A ratio
of gamma-ray intensities containing the two strongest lines at 539 and 554 keV has there-
fore an increased spin dependence. In the experiment described in the next chapter, these
gamma lines were overlapping with neighbouring lines due to the resolution of the meas-
ured spectra.

comparison with experimental data of By

In the experiment described in chapter 4 the spins of p-wave resonances are determined
using the ratio of the gamma lines of 537, 539 keV and 552, 554 keV. However, the
gamma transition of 537 keV deexcites a level at 1361 keV with unknown spin and parity.
Therefore we could not include this level in the simulations, although it is important for
the comparison with experimental data. But we still can compare the ratio of simulated
intensities without the 537 keV line in the numerator of the ratio. Accordingly, the experi-
mental ratio will be higher than the simulated one.

In figure 23 the simulated ratios are summarized for several employed models together
with the values of the experiment. The numerical values are given in table 5 with an indi-
cation for the used models for the photon strength: the standard Lorentzian (L) and the
Kadmenskii model (K). For the level density we used the constant temperature model
(CTF) and the backshifted Fermi gas model (BSF). Also is specified whether Porter-Tho-
mas fluctuations (PT) are included or not.

The correspondence between experimental and simulated values is quantitatively not
completely in agreement which is due to the lack of knowledge of the detailed level
scheme of 23°U. However, qualitatively the values show a clear spin dependence for all
employed models and the difference in the ratios for the simulated values corresponds
well with the experimental ones. The observed large difference in the ratios for the spin
1/2 s-wave resonances and p-wave resonances provides evidence that the E1 photon
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Figure 22: The intensities of selected gamma rays of 239y with an intensity of more than 0.05 per
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text and the numerical values are given in table 5.

strength function has a Lorentzian form since the results of the simulations also show a
difference in the statistical populations when this strength function is used.

Table 5: The employed models and the numerical values for the simulations of the
decay of 29,

category employed models  ratio J =1/2 ratio J = 3/2
El P PT

a L CTF no 0.532+0.036 0.822+0.046

b L BSF no 0.510+0.035 0.806+0.043

c K CTF no 0.442+0.024 0.724+0.035

d K BSF no 0.425+0.024 0.720+0.033

e L BSF yes 0.447£0.062 0.72610.085

f K BSF yes 0.418+0.058 0.670+0.077
exp. p-waves 0.680+0.047 1.080+0.033
exp. s-waves 0.510£0.064
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3.7. Simulations of '3¢cd (n,y) 1%Cd

The '3Cd neutron p-wave resonances have spins J =0, 1 or 2. We have performed simu-
lations for these three spins and both parities in order to calculate the dependence on the
resonance spin of the gamma-ray transitions in the low energy region. The region from
2.8 MeV until the neutron threshold at 9.04 MeV was taken as the statistical region. This
part has been filled with levels according to the chosen level density function and the sta-
tistical decay was governed by the photon strength functions. For the energy spectrum
from the ground state up to 2.8 MeV we used 23 discrete levels with energy, spin and par-
ity taken from the Nuclear Data Sheets [135]. These levels should represent quite com-
pletely the spectrum of the nucleus in this low excitation region. A schematic
representation of the nuclear realization of 14¢4 is shown in figure 24. The decay of the
discrete region to the ground state is well known from thermal neutron capture gamma
rays. We have used the involved 99 gamma-ray transitions.

A simulation consists of typically 50 nuclear realizations, each one consisting of typically
50 000 histories. We performed the simulations using two models for the level density and
two for the E1 photon strength function. The results are presented in three steps. First the

9- 0+, 0~ 14, 1° 2~ resonances
8-
77
_ B _:| statistical decay region
> 1
CRE
= 3
> ]
) ]
@ 44
p ]
[ 1
3
2] — e —
1 1 discrete level region
o-
0 1 2 3 4
spin

Figure 24: A schematic representation of the nuclear realization of U4cq, The gray region
between 2.8 and 9.0 MeV indicates the statistical region while below the discrete states are
given for each spin. These levels have all positive parity except the four levels with dots.
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Figure 25: The Populations of low-lying levels in 1:4Cd of spin 0* and 4* for the resonance spins
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and 17 using the Lorentzian and Kadmenskii £1 photon strength functions.
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calculated statistical populations of the discrete levels below 2.8 MeV are shown, then the
intensities of the gamma-rays depopulating them, and finally the ratio of the intensities of
specific gamma rays, in comparison with experimental data.

statistical populations of M4cq Jevels

The statistical populations of the discrete levels may depend on the parity of the resonance
since a substantial part of it consists of feeding by one- and two-step cascades for which
the parity dependence is still considerable. This is related to the difference in strength for

_various multipole radiations. A comparison of the simulated populations for resonances
with the same spin but opposite parity showed that there is a noticeable parity dependence
for the population of the J = 0% states only if the Lorentzian model for the £1 gamma
strength function is used. When the Kadmenskii model is used, the parity dependence is
negligible. The latter model favours M1 transitions and therefore the difference between
E1 and M1 radiation strength is smaller which results in a decrease in the parity depend-
ence of the statistical populations.

In figure 25 we show the simulated statistical populations of 0" and 4 states from s-wave
resonances having spin and parity J " =0" and 1* and from p-wave resonances with
J" =0 and 1™. The backshifted Fermi gas model was employed for the level density and
the Lorentzian and Kadmenskii models for the E1 strength. This figure illustrates the con-
clusion that the resonance parity does not substantially influence the statistical population
except for the above mentioned case.

The populations due to the statistical decay to the low-lying levels are given for the three
p-wave resonances as a function of the level energy in figure 26. We see a clear depend-
ence on the resonance spin for the populations of the 0%, 3~ and 4* states. The populations
of these levels are split into three groups according to the spin of the initial resonance
state. This is the case for both models used for the E1 photon strength function. This
dependence on the resonance spin is expected because of the relatively large difference in
spin between the initial and final state. In figure 26 the population of levels is shown for
the two models of the photon strength function. For a given resonance spin group, a small
difference between the two models is visible, except for the 3™ states, where the difference
is large. However, for a given photon strength model, the splitting is apparent. This is also
the case for the other combinations of models that we have used and for the two 3% states,
not shown in the figure.

On the contrary, the 2* states are much less sensitive to the resonance spins, which is
expected due to the smaller difference in spin. In fact, the first excited level at 558 keV is
a 27 state, and its transition to the ground state is the most intense gamma ray (74% in
thermal capture). The statistical population of this level is not dependent on the resonance
spin but the feeding by other discrete levels makes the intensity of the gamma ray slightly
spin dependent as can be seen in figure 27. Due to its large intensity, this gamma ray con-
tributes very little to the error of a ratio in which it is present. To compare the simulated
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populations with experimental capture gamma data, it is necessary to calculate the intensi-
ties of the gamma rays that depopulate the low-lying states.

gamma-ray intensities of 114Cd

From the 99 gamma transitions coming from the decay between the low-lying states, only
those showing a large enough intensity to be observed experimentally, are interesting. We
consider therefore only the calculated gamma-ray transitions with an intensity of more
than 0.03 photons per neutron capture. With this criterion we have selected 10 gamma
rays, of which the calculated intensities are shown in figure 27 for several employed mod-
els. The gamma transitions that are most suited for a spin assignment experiment are those
showing a large difference between the three spin groups and having a large enough inten-
sity to be observed. But one should in fact also consider the absorption effects of the lower
gamma rays and the decreasing detector efficiency for increasing gamma energy. For this
reason, the large spin dependence of the gamma transitions of 96 keV, deexciting a 0"
level and the gamma rays at 1400 and 2456 keV, deexciting a 3™ and a 1~ level respec-
tively, are less suited for experimental spin determination. On the contrary, the gamma
rays of 576 and 725 keV, coming from a 0% and a 4* level respectively, show a large effect
and therefore seem to be very well suited. The intensity of the 96 keV gamma ray in ther-
mal capture in figure 27 has been corrected for its internal conversion coefficient o = 1.76
in order to make the value comparable with the simulated values.

Also, the employed models for level density and photon strength function affect the abso-
lute intensities of the gamma rays while the relative intensity for a gamma ray originating
from different resonance spins stays rather constant as illustrated by the three examples in
figure 27.

comparison with experimental data of |

In the spin assignment experiment it is more complicated to obtain absolute gamma-ray
intensities expressed in photons per capture. To avoid this problem of normalization, the
ratio of two gamma-ray intensities has been taken. It is shown that for the p-wave reso-
nances the ratio between the gamma rays at 725 and at 558 keV split unambiguously into
three groups, each one corresponding to a different spin. Also from the simulated data, the
725 keV line showed the largest spin effect. The 558 keV gamma ray, nearly not depend-
ent on the resonance spin, can be considered proportional to the total capture rate and can
be used as a normalization, making the ratio between the intensities of the 725 and the
558 keV line an indicator for the resonance spin.

As a consequence of the extreme statistical model, this ratio should, within a small varia-
tion due to Porter-Thomas fluctuations of the primary gamma-rays, be a constant for reso-
nances with the same spin. The experimental ratio (see chapter 5) shows indeed three
groups for the spins of the p-wave resonances 07, 1~ and 2™ and two groups for the s-wave
resonances 0" and 17. Also, differences in the ratio have been observed for s- and p-wave
resonances of the same spin. However, all these differences within a spin group are much
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Figure 28: Comparison between experimental ratios and simulated values for 14¢d. The employed
models corresponding with each of the categories (a) through (e) are explained in the text and the
numerical values are given in table 6.

smaller than the difference in the ratios between spin groups. In figure 28 these experi-
mental values are compared with the simulated cases for several employed models. The
numerical values for the various models are given in table 6. The used models for the pho-
ton strength are a Lorentzian with a fixed width (L) and the Kadmenskii model (K). For
the level density we used the constant temperature model (CTF) and the backshifted Fermi

Table 6: The employed models and the numerical values for the simulations of the decay of

a0y
category employed models Ratio I,Y(725) / MSSS)
EL p PT  J;=0 Ji=1 I
a L CTF no 00114100018  0.0446+0.0048 0.1205+0.0119
b L BSF no  0.0159+0.0022 0.0507+0.0049 0.1249+0.0112
c K CTF no  0.0180+0.0022 0.0518+0.0046 0.1265+0.0093
d K BSF no  0.0233+0.0027 0.0580£0.0048 0.1321+0.0086
e K BSF yes 0.0253£0.0053 0.0599+0.0087 0.1315+0.0166
€xp. p-waves 0.024610.0018 0.048410.0048 0.1355+0.0062
exp. s-waves 0.0216£0.0055  0.0580+0.0025
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gas model (BSF). Also it is specified whether Porter-Thomas fluctuations (PT) are
included or not. For the experimental values we have taken the weighted mean of the
recently measured ratios [144], while the error bar indicates the spread among the reso-
nances with the same spin and parity. In fact we have chosen only those well separated
p-wave resonances that are not contaminated by nearby s-wave resonances. We see the
excellent agreement between experiment and simulation. The error bars on the simulated
ratios are due to the process of simulation using a finite number of events per nuclear real-
ization. Therefore, the expectation values of the populations for a specific model are not
achieved.

It is rather difficult to say which of the models are realistic approaches of the gamma
decay in H4¢d. The application of a normalization makes that differences in population,
as seen in figure 26, become rather invisible in the ratio. On the other hand, this makes a
prediction of experimental values independent on an exact knowledge of the models.

3.8. Concluding remarks

The intensities of the gamma rays, depopulating low-lying states that are fed by the decay
of a highly excited nucleus after neutron capture in a resonance, are dependent on the spin
of the resonance. Simulations of these gamma-ray intensities reproduce this resonance
spin dependence and in addition give excellent qualitative agreement with experimental
data, the several employed models giving slightly different results. For the 238U(n,y) sim-
ulations the spin splitting appears clearly but due to a lack of detailed knowledge of the
discrete spectrum the calculated ratio of the specific gamma-ray intensities could not
exactly be compared with the experimental results. In the case of 113Cd(n,*{) simulations
do not only reproduce this spin dependence but also the quantitative agreement with
experiment is excellent.

Simulations of this type seem to be a powerful method to test the possibility of a spin
assignment experiment with the low-level population method. Since such experiments are
long-lasting, it is worthwhile to perform simulations beforehand in order to test the feasi-
bility of the experiment. For the analysis of the gamma-ray spectra, the simulated gamma
spectra can very well indicate those gamma transitions which are sensitive to the reso-
nance spins.

The error in the statistical populations reflects the use of a finite number of events and the
discretization of the statistical level region rather than that it has a physical meaning.
Although the errors of the populations are not very large, due to the decay in the discrete
level region and due to taking the ratio of two gamma-ray intensities, the error propagation
causes quite considerable errors in the intensity ratio. One could decrease the error some-
what by calculating the decay of each event to the ground state instead of first calculating
the statistical populations and then calculating their decay to the ground state, in this way
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avoiding correlations due to the calculation in two steps. Hence also the spectra of the cal-
culated gamma-ray multiplicity are calculated in a direct way.

It would also be interesting to calculate the spread in the intensities of specific gamma
transitions within the ensemble of resonances with the same spin and parity. For this pur-
pose one has to produce a “resonance realization”, which is a set of nuclear realizations
making an approach of a realistic nucleus. For each one of the nuclear realizations a sam-
ple of primary intensities, chosen from the Porter-Thomas distribution, should be kept
fixed. For a new resonance realization, exactly the same set of nuclear realizations should
be taken and only the primary gamma-ray intensities are replaced by another random sam-
ple.
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Chapter 4
The spins of neutron p-wave resonances
in 238U(n,y)

4.1. Introduction

The p-wave resonances of the 0 target nucleus 2381J can have J" = 1/2” or 3/2" while the
s-wave resonances have J© = 1/2*. Only the J = 1/2 p-wave resonances can be admixed
with s-wave resonances, while there is no admixing for the J = 3/2 p-wave resonances.
By the time that PNC values for 228U were measured, the spins of the p-wave resonances
were not known and a maximum likelihood procedure with some additional assumptions
has been applied to obtain the rms PNC matrix element M in which the data for p-wave
resonances of both spins had to be used [49,50]. It is clear that if the spins were known, a
more precise value could have been obtained. This will be discussed in chapter 6. To
check the interpretation of the TRIPLE results [S0] and to strengthen the conclusions of
more precise measurements in the future, it is important to know the resonance spins.

The nucleus 28U has been extensively studied and the energies and widths for the neutron
s-wave and p-wave resonances in the energy region of interest, up to about 400 eV, are
quite well known. In this chapter the experiment to determine the spins of the 238y p-wave
resonances is described. The results have been published [136-138].

4.2. Resonance spin assignment method

The method which we have applied to determine the p-wave resonance spins concerns the
low-level population method. This technique has been described in section 1.2.4 on
page 16 and has been proved to work very well with s-wave resonances. However, the
strength of most p-waves in the low neutron energy range is very weak compared to that
of s-waves, typically a factor 1000, so that the application of this method in the case of
p-wave resonances is quite straightforward though experimentally much more difficult.
An adventitious difficulty is the natural activity of 238y apparent in the spectra together
with the (n,y) gamma rays.

The natural activity spectrum of 2380 is shown in figure 29 together with the spectrum of
232Th. Both gamma-ray spectra were accumulated during 50 000 seconds with the sample
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Figure 29: The natural activity spectrum of 28y (upper) and 2Th (lower) decay chain up to an
energy of 3 MeV.

and detector in the same position as during the (n,y) experiment. The uranium sample has
a weight of 694 grams while the thorium sample weighs 443 grams. The figure shows that
the gamma activity below 1 MeV of the decay chain of thorium, with an average count
rate of 10 000 counts per second, is relatively large compared to that of uranium, with an
average count rate of 1 500 counts per second. This natural activity appears as a back-
ground in the time-of-flight measurements. As also in thorium large PNC have been
found, this is a candidate for resonance spin assignment. The large activity makes the
application of the low-level population method to 2>2Th very troublesome.

The level scheme of 2>°U [133, 134] is very complicated; a simplified version, including
all transitions with intensities larger than 5% in thermal neutron capture, is shown in
figure 30. Several relatively strong gamma-ray transitions in the energy range of about
500 to 625 keV are available in the capture spectrum. This energy range is free from
strong gamma transitions in the 238y decay chain. These secondary gamma rays deexcite
levels with spin 1/2, 3/2 and 5/2 and are suitable for determining resonance spins using the
low-level population method. This has been verified by simulations described in chapter 3.
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Figure 30: A simplified partial level scheme of 29y showing the levels and transitions of
interest for the spin assignment methods.

Additional information on the resonance spins was obtained by looking at primary transi-
tions after neutron capture ending at J* =5/2* states. In fact, these transitions have E1
multipolarity for initial states with J* =3/2" and M2 multipolarity for a J" =1/2" reso-
nance. In this second case the transitions are expected to be several orders of magnitude
weaker and therefore not observable. In this way we can identify only 3/2” states, because
the absence of such transitions is not a guarantee for a 1/27 state, due to the Porter-Thomas
fluctuations of the gamma transitions.
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In the low-energy part of the 239 level scheme [133,134,139,140], many of the levels
below 1 MeV have been assigned as Nilsson states, some of them combined with the
B -vibration (0) or the y-vibration (2*) and all of them with several rotational excitations.
As a consequence, many low-lying 5/2% levels of 239U are available. This improves the
statistical probability to observe the 3/2 resonances through primary transitions to 5/2*
states. The six low-lying states, including the ground state of 23°U, known as J =50
levels from the literature, are also shown in figure 30.

4.3. Description of the experiment

The measurements were performed at the GELINA pulsed neutron facility using the
time-of-flight technique. The Geel Linac and associated compressing magnet were oper-
ated to provide electron bursts of 100 MeV average energy and 1 ns width at a repetition
frequency of 800 Hz and an average beam current of 60 pA. For the 238U experiment the
neutron beam was filtered by a natural B,C sample of thickness 0.335 g/cm2 to absorb
slow neutrons. In addition, a 1 cm thick depleted uranium disc was placed in the neutron
beam. Both filters were mounted between the concrete shielding of the linac and the wall
of the flight station (see figure 13 on page 36). The latter filter served the double purpose
of decreasing the intensity of the gamma flash as well as strongly reducing the count rate
in s-wave resonances. Since the total cross section for the s-wave resonances in this
energy region is much larger than that for the p-wave resonances, the transmission for
neutrons with energies corresponding to s-waves is very much reduced. This technique of
“self-indication” results in a dip in the observed peak of a strong resonance in the capture
spectrum, as can be seen in the low-energy s-wave resonances in the TOF-spectrum in
figure 32.

A 4 mm thick highly enriched 2381 metal disc (9 ppm 235Uy of 11.1 cm diameter and
694 g total weight, on loan from Oak Ridge National Laboratory, was used as target. Its
thickness was 7.17 g/ cm? or 0.0181 atoms / barn. The sample was placed at a 12.85 m
flight distance. At this distance the unfiltered neutron flux ®(E) is approximately

®(E) = 7.0x10° - EO9  peutrons / (cm?-s-eV). (73)

In order to avoid a substantial absorption of gamma rays, the sample has been positioned
in such a way that the plane of the sample was making an angle of 60° with the neutron
beam direction while the germanium detector was placed under an angle of 120°, as is
shown in figure 31. The sample was viewed by a coaxial intrinsic germanium detector of
70% efficiency relative to the 80co gamma lines. In order to absorb neutrons scattered
from the sample, a considerable amount of shielding was used. Details can be found in
section 2.3 on page 35.

For each event, the amplitude (ADC) information, measured for the gamma energy range
0.3-5 MeV, and the time-of-flight (TOF) information, digitized into bins with a width of
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Figure 31: Schematic layout of the sample and detector with respect to the neutron beam for
the >%U experiment.

32 up to 256 ns, were recorded in listing mode. The sorting of the listmode data provided
the gamma-ray spectra of 79 different TOF-intervals.

4.4. Data analysis

The TOF-spectrum, obtained with the total number of gamma-ray pulses in the energy
range 0.3-5 MeV, is plotted versus the neutron energy in figure 32 on a logarithmic scale
in order to make the small p-wave resonances more clearly visible. One should note the
absence of any isotopic structure other than due to 238U(n, ), thanks to the extremely low
content of 2>°U in the sample (9 ppm) and to the efficient absorption of scattered neutrons.
The arrows indicate the position of the s- and p-wave resonances. At the higher energies in
this figure the resonances start to overlap seriously.

Only one resonance that is known not to be from 2380 is present in this TOF spectrum.
The resonance at 11.9 eV could be identified as an s-wave resonance of '%°Pt due to the
characteristic gamma rays of 333 and 358 keV of the spectrum of 196p( The amount could
be roughly estimated to be due to about 90 ppm natural Pt. Probably this impurity has
been introduced into the sample during its preparation in a Pt crucible.

A comparison with a previous measurement using a sample containing much more By

(2000 ppm), shows that a small resonance at 57.9 eV, listed as a 28y p-wave resonance in
ref. [63], is in fact belonging to 250U, In figure 33 a part of the time-of-flight spectrum in
the vicinity of 57.9 eV is shown for the 9 ppm sample and the 2000 ppm sample. The
structure at 57.9 eV is not present or much weaker in the measurement with the very pure
238y sample, so justifying the assumption that it is due to 235y,

On the whole, we sorted out 79 gamma-ray spectra of 8192 channels corresponding to as
many TOF intervals, each one being associated with an s-wave resonance, a p-wave reso-
nance or a “‘background” region in between resonances. In order to obtain the pure capture
vield of a given resonance, the gamma-spectrum corresponding to one or more nearby
background regions was subtracted from the raw data after proper normalization. For
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belonging to 2380 but to

some p-wave resonances which are located on the shoulder of a nearby s-wave resonance,
the yield was fitted with the program REFIT [81]. The fraction of s-wave capture in the
given TOF-interval was determined whereafter the appropriate s-wave spectrum was sub-
tracted. In this way the gamma-ray spectrum corresponding only to the p-wave resonance
can be derived. This procedure was applied to the p-wave resonances at 63.52, 83.68,

08.20, 124.97, 242.73 and 351.86 eV.

The FWHM of gamma-ray peaks is not only a function of the gamma-ray energy but also
of the time-of-flight. This effect is due to the electronic signal handling in response of the
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Figure 34: The FWHM and shift in the position of the 1001 keV gamma ray of natural B8 asa

function of the time-of-flight.
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Figure 35: Two examples of a fit of the capture gamma-ray spectrum in the 515-575 keV energy
range for two p-waves of different spin. On the right is shown the region around the 4806 keV
transition to the 5/2* ground state, observed only in the J = 3/2 resonance.

gamma flash. In the same way also the position of the gamma-ray peaks change as a func-
tion of the flight time. The natural activity of the 238y decay chain provides a means to
determine these variations since these gamma rays are independent from the
time-of-flight. In figure 34 the FWHM and the shift in the position of the 1001 keV natural
gamma ray is plotted as a function of the flight time.

For the gamma-ray spectra an accurate energy calibration as well as a determination of the
FWHM of the peaks was obtained from nearby resolved peaks belonging to spectra with
high counting statistics, typically s-wave resonances. Then both peak positions as well as
their widths were kept fixed in the fitting of the gamma-ray spectra of the p-wave reso-
nances. The gamma-ray peaks have been fitted with a standard Gaussian peak shape. The
width of the channels of the gamma-ray spectra was approximately 0.6 keV per channel.
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4.5. Results from low-energy gamma rays

Sections of the spectra of the two most intense p-wave resonances at 10.24 eV and
89.24 eV are shown in figure 35. The data in the region 515-575 keV are fitted with eight
known transitions. At the top of each peak the energy and the spin and parity of the deex-
cited state, taken from the literature, are shown. Since the effective FWHM resolution at
these lines is about 2.7 keV, it is not possible to resolve all transitions. One may notice that
in the upper part of figure 35 the doublet dominated by the 539 keV line, from a J =50
state, is higher than the multiplet at 552-554 keV, deexciting states with J* = 172%,3/27. In
the lower part it is the opposite. Because it is clear from section 1.2.4 on page 16 that a 5/2
state is populated more by a 3/2 capture state than by a 1/2 state, we assigned T =312 to
the 10.24 eV resonance and J" = 1/2" to the 89.24 eV resonance.

Table 7: Values of the ratio R = (/537 + I530) / (55, + I5s,) for 17 238y s-wave and
14 p-wave resonances.

s-waves ratio p-waves ratio
Eq (eV) R Eq (eV) R
20.9 0.464+0.008 10.24 0.749+0.028
36.7 0.480+0.008 11.31 0.571+0.059
66.0 0.540+0.008 4517 0.672+0.069
80.7 0.52310.012 63.52 0.621£0.020
102.5 0.494+0.010 83.68 0.527+0.036
116.9 0.593+0.014 89.24 0.560+0.012
145.6 0.534+0.017 93.14 0.619+0.077
165.3 0.555+0.019 124.97 0.785+0.069
189.7 0.578+0.027 152.42 0.770+0.042
208.5 0.457+0.015 158.98 0.83040.111
237.3 0.464+0.018 173.18 0.599+0.038
273.6 0.682+0.027 24273 0.553+0.020
290.9 0.445+0.021 253.90 0.715+0.059
311.3 0.557£0.033 263.94 0.878+0.035
347.8 0.561+0.043
376.9 0.492+0.037
434.0 0.598+0.051 |

More quantitatively, we computed the ratio R of the intensities of the two doublets
R = (Is3;+ I539) / (1555 +1ss,) for those resonances having sufficient statistics. In fact,
also the gamma ray at 554 keV is a doublet as can be seen from figure 30. In table 7 the
values of this ratio is given for 17 s-wave and 14 p-wave resonances. In figure 36 the
ratios are plotted as a function of the resonance energy for both the s-wave and the p-wave
resonances. This figure shows a splitting of the ratios into two groups for the p-wave reso-

Chapter 4: The spins of neutron p-wave resonances in 238un, Vi 79



nances. The weighted averages of the ratios for each group are shown by the two horizon-
tal lines which can be associated to the J = 1/2 and 3/2 p-wave resonances. For the s-wave
resonances, all having spin J = 1/2, there is not such a splitting, as is expected. The ratios
for these 1/2* s-wave resonances are slightly lower than those for the 1/2” p-wave reso-
nances, suggesting a small parity dependence, but considerably below the values of the
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Figure 36: The ratios R between the sums of the intensities of the indicated gamma lines plotted
versus the energy for 17 s-wave (upper) and 14 p-wave resonances (lower).
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3/2” p-wave resonances. The large difference between the ratios for the spin 1/2 and spin
3/2 resonances is in accordance with the model simulations discussed in chapter 3.

4.6. Results from high-energy gamma rays

High-energy gamma-ray spectra were also investigated in p-wave resonances and four pri-
mary transitions at 4806.4, 4612.5, 4049.7 and 3744.0 keV, leading to J" = 5/27 states,
were observed in some of them. One can derive the approximate relative intensities of the
primary gamma rays by assuming that the experimentally measured resonance capture
area is proportional to the capture cross section. This assumption is justified because the
gamma energy range covers the whole spectrum except for the first 300 keV and because
the sample is thin. Thus the area of a primary gamma ray divided by the total number of
counts in the resonance is in good approximation proportional to the intensity. To obtain
the absolute intensities one can find the normalization constant using well known intensi-
ties from the literature. The areas of the mentioned peaks were fitted and the correspond-
ing intensities normalized to those given in ref. [141] for the 20.87 eV s-wave resonance.
A list of these intensities, in units of photons per 100 neutrons captured, is given in table 8
for nine p-wave resonances which were on this basis assigned as J = 3/2 p-wave reso-
nances. For two resonances which were not corrected for the strong contamination of
s-wave capture, we give only a lower limit of the intensities. On the right hand side of
figure 35 the 4806.4 keV transition to the 5/2% ground state for the 10.24 eV p-wave reso-
nance is shown. This transition is not visible in the case of the 89.24 eV p-wave reso-
nance.

Table 8: Experimental intensities, in photons per 100 neutron captures, of primary gamma-ray
transitions leading to J* = 5/2* states.

Ey | e EneV)

(keV) | 1024 1953 9314 9820 2539 2639 2825 3519 4397
43064 | 041+ 5045 163+ 134+ 181¢ 544+ 5089
0.08 033 025 033 093
46125 219+ 360+ 081= 168+ 265+ 071

045 065 018 033 059
4049.7 >0.70 0.61 £
0.15
37440 | 0.19+
0.04

In figure 37 the high-energy gamma-ray spectra without background correction are shown
for the nine resonances listed in table 8. The spectra of the resonances at 19.53 and at
439.7 eV contain a large part of the gamma rays of nearby s-wave resonances. The lines
indicated with arrows are transitions to 5/2% states. The admixing of s-wave spectra does
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Figure 37: The high-energy gamma-ray spectra for 9 238y p-wave resonances showing a primary
transition to a 5/2% state and therefore indicating a 3/2” resonance spin.
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not influence the conclusions because in the case of an s-wave resonance, these transitions
have E2 character and their contribution can therefore be neglected.

4.7. Concluding remarks

The results of the spin determinations are summarized in table 7. The assignments based
on both the low-level population method and on information from primary transitions are
shown and are in complete agreement with each other. The assigned p-wave resonances
contain all the p-wave resonances of which PNC effects have been measured [50]. The
knowledge of these p-wave resonance spins allows to make a more accurate estimate of
the root-mean-square PNC matrix element. This will be treated in chapter 6.

Table 9: List of the present spin assignments for 19 238y p-waves.

Eg (eV) low level primary adopted
population transitions
10.24 32 32 3R
11.31 172 172
19.53 32 32
45.17 172 172
63.52 172 172
83.68 172 172
89.24 172 172
93.14 372 32 32
98.20 32 32
124.97 32 312
152.42 372 32
158.98 32 32
173.18 12 12
242.73 172 12
253.90 372 32 32
263.94 372 32 32
282.46 32 32
351.86 372 32
439.75 32 32

The present spin assignments can be used to derive the average level spacing of the
J =1/2 p-wave resonances. Taking the seven J" =1/2" resonances between 11.31 and
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242.73 eV, we can calculate the average spacing D, ,_,,, =39¢eV. This should be
compared with the average spacing of s-wave resonances D, = 21 eV given in ref. [63].
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Chapter 5
The spins of neutron s- and p-wave
resonances in 113Cd(n,7)

5.1. Introduction

After the detection of PNC in a large number of p-wave resonances of 238y [49,50] and in
232Th (51}, nuclei near the mass region A = 100 have been investigated by the TRIPLE
group. One of these nuclei is 113¢d [31]. The helicity dependence of the absorption cross
section of this nucleus was studied using a capture gamma-ray detector, in contrast with
the 23%U and 232Th experiments, in which the helicity dependence of the total cross sec-
tion was measured using a neutron detector in a transmission experiment.

The situation in 113Cd is also different in the way that both 23817 and 23°Th have a ground

. . T P . . £ + o ..
state spin and parity J = 07, giving rise to s-waves with J = 1/2" which admix into the
1727 p-waves. Neutron capture in the even-odd nucleus 13¢d with ground state spin and
parity Jt=1/2F gives rise to s-wave resonances with J"=0"or 1" and p-wave reso-
nances having spin and parity 0~, 1 or 2". Parity nonconservation may occur at the 0~ and
1~ p-wave resonances and is related to the j = 1/2 parts of their total neutron widths in
experiments with polarized beams and unpolarized targets. For 0~ resonances this is equal
to the total neutron width but for the 17 resonances the j = 1/2 parts are unknown fractions
of the neutron widths. For a complete analysis in fact not only the p-wave resonance spins
but also the channel spin fractions must be known [41]. Because in the case of 113¢4 the
s-wave resonances have two possible spins, it is not only important to know the p-wave
resonance spins but it is also necessary to know the spins of the s-wave resonances of
U3Cd in order to be able to analyse the PNC-effects.

Also for historical reasons !'3Cd is interesting because it was this nucleus where Abov
et al. discovered for the first time parity nonconservation in the neutron-nucleus system
[21]. The Dubna group thereafter investigated PNC in the 3¢q p-wave resonances at 7
and 22 eV [142] and found considerable PNC effects in the 7 €V resonance.

In fact, the s-wave resonances of 1>Cd in the epithermal energy region are quite well
known and even some of the s-wave spins are already known from the literature [63].
Information about the p-wave resonances was not yet available until recently, Frankle
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et al. [143] identified 23 p-wave resonances in the neutron energy range up to 500 V. In
this chapter we will discuss the experiments that have lead to the spin assignments of
23 s-wave and 21 p-wave resonances. The results have been published [138,144].

5.2. Resonance spin assignment method

Also in this experiment we have applied the low-level population spin assignment method
to determine the spin of the neutron s- and p-wave resonances. The relative populations of
the excited states are determined by measuring the intensities of gamma transitions
deexciting them. In order to increase the spin effect and also to avoid any problem of nor-
malization to the total neutron capture rate in the individual resonances, it is convenient to
measure the intensity ratio of two transitions depopulating levels of different spin. Usu-
ally, the larger the spin difference, the larger the effect. The transitions to be chosen should
conform to this rule and at the same time should be strong enough to be observed in most
p-wave resonances.

The structure of !14Cd is quite well known [135,145,146] and its level structure, which
resembles to some extent a vibrational character, is adequately understood [147]. A sim-
plified partial level scheme of 14¢4 is shown in figure 38. The gamma-ray and level ener-
gies are taken from ref. [135] for low energy and from ref. [146] for high energy primaries
when available. Several gamma rays with an intensity of more than 4% in thermal capture
are present in the energy range between 500-1000 keV with initial levels having spin and
parity 0%, 2% and 4*. The explicitly indicated transitions in figure 38 are the most promi-
nent ones and as such good candidates for the spin assignment method. Especially the
gamma rays of 576 and 725 keV, deexciting a 0* and a 4™ state respectively, exhibit a large
spin dependence according to the simulations described in chapter 3 as well as confirmed
by this experiment.

Also shown in figure 38 are high-energy primary gamma rays which can give useful infor-
mation about the spin in the case of a p-wave resonance. A primary transition to a 0* state
indicates an E1 transition from a 1~ resonance state. Transitions to 0% states from 0~ reso-
nances are forbidden and those from 27 initial states have M2 multipolarity, which is sev-
eral orders of magnitude weaker than an E1 transition. However, the absence of strong
transitions to 0* states does not rule out the possibility of an initial 1~ state due to the Por-
ter-Thomas fluctuations, which can reduce the intensity of E1 transitions significantly,
making its detection impossible in practise. Similarly, a strong transition to a 3" state must
be an E1 transition coming from an initial 2~ resonance state. For 0~ resonances, there are
no such indicative transitions. In total five primary transitions to 0" states and two to 3*
states are known and are indicated in figure 38.
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Figure 38: A simplified level scheme of !'*Cd showing the levels and transitions of interest
for the spin assignment method. The gamma-ray energies are taken from ref. [135] for low
energy and from ref. {146] for high energy transitions. The level energies are from ref. [135].

5.3. Description of the experiment

The linac was operating at similar conditions as during the 238y experiment described in
chapter 4. In order to absorb slow neutrons, a filter of natural B,C of 0.335 g/cm2 thick-
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ness was used. Also a 1 cm thick lead disc was placed in the beam in order to decrease the
intensity of the gamma-flash. However, the count rate in the s-wave resonances was not
reduced as in the uranium experiment. Since 13¢4 is a stable isotope there is no addi-
tional background radiation. Therefore, a larger activity due to s-wave capture from the
sample, which was also smaller compared to the 28y sample, could be accepted.

We used a highly enriched 13Cd metal disc (93.35%) of 90 mm diameter, about 1.65 mm
thick and a total weight of 91.2 g. The sample was obtained from the Russian State Pool of
Isotopes via the Joint Institute of Nuclear Research in Dubna. The thickness of the sample
was 1.434 g/cm2 or 0.00764 atoms/barn. The isotopic abundance and the chemical com-
position have been analysed in the originating institute and the results are shown in
table 10.

Table 10: Isotopic and chemical composition of the enriched Cd sample

Cd isotope contents element contents
(%) (%)
106 <0.010 Fe <0.003
108 <0.010 Al <0.004
110 0.138 Si <0.004
111 0.264 Cr <0.001
112 2.930 Ni <0.001
113 93.350 £ 0.090 | Cu 0.006
114 3.110 : Pb <0.0005
116 0.208 Sb 0.003
; Sn <0.0005
Zn 0.008

The sample was placed at a 12.85 m flight distance, perpendicular to the neutron beam and
was viewed by two coaxial intrinsic germanium detectors of 70% efficiency, both placed
at opposite sides of the sample perpendicular to the neutron beam, as is schematically
shown in figure 39. The whole assembly was shielded with lead and paraffin as described
in paragraph 2.3.1 on page 35.

The amplitude information from the two germanium detectors was processed with two 8k
fast ADCs for the gamma energy range 0.3-9 MeV, in coincidence with the time-of-flight
(TOF) information, measured with a 25 bit multiple shot time digitizer. The converted val-
ues of the ADCs were merged together resulting in a 16k ADC value. The events were
recorded in listmode on the 1 Gbyte hard disk of the PC-based data acquisition system.
The listmode data were stored on an Exabyte tape unit. In total an amount of 20 Gbyte of
raw data was collected during 700 hours of effective beam time.
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Figure 39: Schematic layout of the sample and the detectors with respect to the neutron beam
for the 113Cd experiment.

5.4. Data analysis

The total number of gamma-ray pulses corresponding to 0.3 <E_<9.0 MeV and col-
lected in 32 ns wide TOF channels, is plotted versus neutron energy in figure 40 on a loga-
rithmic scale to show the p-wave resonances more clearly. In a first analysis we have
sorted out about 150 8k gamma-ray spectra corresponding to TOF intervals associated
with resonances and “‘background” regions in between resonances for both detectors.

Several weak peaks were observed in the TOF spectrum of which some were not men-
tioned in ref. [63]. Characteristic gamma rays made clear that some of these structures
were belonging to other Cd isotopes. Resonances of the even-odd nucleus Hled could be
distinguished by their 617 keV gamma-ray, while resonances from the even-even isotopes
119¢d, "2Cd and 1'*Cd were identified by means of characteristic gamma rays in the
energy range 300-500 keV.

When a small resonance was not from a Cd isotope other than 13¢q, and not recognized
as an impurity, then it was believed to be a new p-wave resonance since the g sample
is very pure. This was the case for small peaks at 33, 125, 146, 178, 203, 299, 312, 351,
385, and 422 eV. The resonance at 312 eV coincides with a listed s-wave resonance of
e, but the gamma ray spectrum is dominated by lines from 13¢4 so there is certainly
a p-wave resonance of 13¢d at this energy.

Conversely, we did not observe evidence for resonances at 106.1, 194.8 and 210.9 eV,
mentioned in ref. [143], but it should be noted that these resonances fall on tails of strong
s-wave resonances. The peaks at 125 and 146 eV were already mentioned in ref. [63] as
unassigned resonances of Cd. From the peaks above 500 eV, we determined the spins of

Chapter 5: The spins of neutron s- and p-wave resonances in ”3Cd(n,'n' 89



counts /32 ns

10

107

10°

107

106

10°

10°

107

10°

10°

:. :
b 184 :
B (s) -
] ]
wea
] :
i 7.1 ¢ .
| Ia)
J | M\ .
3 A
2 — E— o ‘ T
5 10 15 20 30

30 40 50 60 70 80 90 100
2154
| 1085 143.2 ’fS)"’ 1?;")‘9 (s)
v @ ) ¢ ¢ C
H 4 Mang E
3 I‘l f fi c
<1064 i i N 232.4 L
4 A \J h Il / nzgy F
= li }ﬁ‘ N i Mgy ‘ v o
102_5,,' \ \‘ 125 “‘Cd“ 146 ! “ . A ///\ 2379 E
2 | P (\¢ i Iy / \\' 166.8 178 \ ! ,l'\: ; | -
v ;o I iy ;o\ \ / RN | i
\ Vg Y / A
VAN AN N NV S
100 150 200 250
H L " | L L | L 1 n 1 L L
| H
3 261.2 :
1 -
: ®) 260.6 “::)'5 4318 501.3 -
3 i) 2918 (s) oy (s) E
b ) ‘(s) e M E
10 /\ 11 Cd
| [1)i2820) 8124 ast7 ©d 3770
2527, 1 (H 200 343.9] 359.5 355"4
T vy ! i | !
ER i \ Aot i 2 A /
Y Y h y vy /i N
j/ v ay \]\J/ _— “\//\AL,// \\/!/ \_
E T g T Ay B s T T T :
250 300 350 400 450 500
E, (eV)

Figure 40: The TOF spectrum for “3Cd(n,y)“4Cd on a logarithmic scale with the s- and p-wave
resonances indicated. Also some s-wave resonances of other Cd isotopes are visible.
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Figure 41: Part of the time-of-flight spectrum around 600 eV. An s-wave resonance is located at
624 eV while no evidence for a resonance at 634.9 eV [63] is found.

the resonances listed in ref. [63], assuming them to be s-wave resonances because of their
large neutron widths. We found no evidence for an s-wave resonance in 13¢d at 634.9 eV,
as mentioned in ref. [63], but a nearby large s-wave resonance is located at 624 eV, as is
shown in figure 41. This resonance is related to 1134 since the characteristic secondary
H4cq gamma transitions are observed.

The gamma-ray spectra corresponding to the resonance regions have been corrected for
the background influence. The areas of several peaks of interest have been fitted with both
a symmetric Gaussian peak shape and with an asymmetric peak shape for the two detec-
tors. Low-energy capture gamma-ray spectra in the 525-850 keV region are plotted on a
logarithmic scale in figure 42 for three p-wave resonances of different spin. The energies
of the five transitions quoted in figure 38 and the J® values of the corresponding deexcited
states are given above each peak. The intensity of the strong 558 keV transition depopulat-
ing the first excited (2*) state, which is presumably little affected by the initial spin value,
can be considered in first approximation as a measure of the number of neutrons captured
in a given resonance. Compared to that, the intensity of the 725 keV transition, from a 4*
level, shows an increase with the resonance spin. On the contrary, the 576 keV line, from a
0% level, decreases with increasing value of the spin of the resonance state. This behaviour
is in agreement with the basic assumption of the present spin assignment method, namely
that the population of a given low-lying state increases when the difference between its
spin and that of the resonance decreases. The corresponding spectra for the 0" and 17
s-waves are very similar to those of the 0~ and 1~ p-waves.

5.5. Results from low-energy gamma rays

Several possible ratios of the intensities of gamma rays have been calculated for each
group of resonances. We have tried the ratios of gamma rays depopulating states with dif-
ferent spin, notably those of 576, 651, 725, 806 and 1400 keV. In the case of s-wave reso-
nances, due to the good statistics the values of each ratio split up clearly into two groups
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Figure 42: Three examples of the capture gamma-ray spectrum in the 525-850 keV energy
region for the first three p-wave resonances having different spins.

and the results of the spin assignments obtained by the various ratios are entirely consist-
ent amongst each other. Some of the examined s-wave resonance spins were already
known and given in the literature [63]; the current assignments confirm these values.

In the case of p-wave resonances, where, due to counting statistics, background and con-
tamination from nearby resonances are more important, not all these ratios gave a clear
splitting in three groups. We found that the ratio R = I,,,/I55; was the most useful. Val-
ues of this ratio are plotted in figure 43 for s-wave and p-wave resonances. To distinguish
the different groups of spins more clearly, we have plotted the ratios R in increasing order
so that a jump in two consecutive values on the y-axis indicates a change of spin. As the
number of groups into which the data will split is known a priori, this treatment is justi-
fied. There is still a spread in each spin group due to a complex variety of influences from
background corrections and other resonances and due to the fact that the gamma decay is
not an entirely statistical process but that still some structure effects may favour specific
gamma cascades. The 23 s-wave resonances in figure 43 split into two groups of four 0%
and nineteen 1% resonances while the 21 p-wave resonances can be divided into three
groups of three 07, ten 1™ and eight 2~ resonances. The numerical values of the ratio are
given in table 11 and the spin assignments resulting from them are summarized in table 14
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on page 100. The p-wave nature of resonances has been accepted on basis of ref. [143].
The energies are based on the energy calibration of this experiment.

In figure 43 also the ratio as calculated by the model simulations, described in section 3.7.
on page 62, is shown. The gray regions represent the spread (one standard deviation) of
the simulated ratio using the Kadmenskii photon strength function and the backshifted

Fermi gas level density. The simulated ratios are in good agreement with the experimental
data.
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Figure 43: The ratio of the intensities of the 725 keV and the 558 keV gamma-rays, for both s- and
p-wave resonances, in increasing order. The dotted lines indicate the weighted mean of each spin
group. The gray regions represent the results of the numerical simulations.

Chapter 5: The spins of neutron s- and p-wave resonances in H3cdm, b7l 93



Table 11: Values of the ratio I;55 / Issg for 23 s-waves and 21 p-waves in Wcq

s-waves ratio p-waves ratio
Ey (eV) I725/ Lssg Eg (eV) In2s / Issg

18.41 0.0121+0.0021 7.08 0.0215+0.0053
63.82 0.0197+0.0002 21.91 0.024710.0050
85.13 0.0198+0.0002 . 43.50 0.02471+0.0012
108.5 0.0254+0.0002 49.81 0.0410£0.0014
143.2 0.0550+£0.0007 56.32 0.0413£0.0013
158.8 0.0554+0.0002 98.7 0.0415+0.0046
192.9 0.0559+0.0001 102.5 0.0439+0.0027
215.4 0.0567+0.0004 203.6 0.0440+0.0066
261.2 0.0570+0.0002 2324 0.0467+0.0017
269.6 0.0578+0.0006 2379 0.0546+0.0008
291.8 0.0583+0.0001 2527 0.0570+0.0027
414.5 0.058310.0001 282.0 0.0689+0.0042
4325 0.0585+0.0003 312.4 0.0698+0.0018
501.3 0.0586+0.0009 343.9 0.1030+0.0015
525.3 0.0592£0.0001 351.7 0.1059+0.0093
552.2 0.0597+0.0004 359.5 0.1209+0.0029
624.3 0.0602+0.0002 377.0 0.1296+0.0029
724.8 0.0609+0.0009 4223 0.1320+0.0010
842.4 0.0613+0.0004 447.3 0.135040.0040
851.9 0.0619+0.0011 457.9 0.1419+0.0019
1089.9 0.0622+0.0011 490.1 0.1437+0.0018
1120.9 0.0638+0.0015

1268.4 0.0672+0.0012

5.6. Results from high-energy gamma rays

Strong primary gamma transitions to 0" and to 3" states have been observed in several
p-wave resonances, indicating E1 transitions from respectively 17 and 27 resonances.
Because the low-lying states in 14¢d are well separated, also the primary transitions pop-
ulating them are distinctly spaced and therefore adequately identifiable. Indications for 2~
p-wave resonances were obtained from the gamma rays of 7179 and 6838 keV, leading to
3* states. This is shown in figure 44 for the three resonances at 22, 56 and 312 eV. Gamma
rays of 9043, 7908, 7737, 7183 and 6605 keV, transitions to 0" states, indicate 1~ p-wave
resonances. They were observed in the case for the 8 p-wave resonances of which the
spectra are shown in figure 45. The spins of p-wave resonances that are obtained by detec-
tion of primary gamma rays are also listed in table 14. These data are consistent with the
assignments from the low-level population method.
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Figure 44: The high-energy gamma-ray spectra for three 14¢q p-wave resonances showing primary
transitions to 3" states (arrows), therefore indicating a 2~ resonance state.

5.6.1 determining the absolute intensity of primary gamma rays

In order to derive the absolute intensities in photons per neutron capture, it is necessary to
normalize the intensities to the total capture rate. One method, described by Coceva [121],
is to use the fact that every gamma cascade will, in absence of metastable states, end at the
ground state. So for many capture events, the sum of the intensities ZA o Of the gamma
rays going from any state j to the ground state, equals the number of oéserved captured
neutrons and is directly proportional to the total radiation width I',. Not all the gamma
rays are observed because of the energy dependent efficiency E(EY) of the detector, which
has to be taken into account. This means that the total number of captured neutrons C, in
aresonance I is

C, = ZAjO/e(Eij), (74)
J

In general, the sum is rapidly converging with increasing gamma energy and in practise it
is sufficient to incorporate only gamma transitions from the first few lowest levels to the
ground state. The total number of photons per captured neutron / y for a gamma ray, which
is also the fraction of the total radiation width, is then in the same way proportional to the
capture rate. So the intensity IYI. of a (primary) transition i — f is related to the partial
width ryif and total radiation width l"yi as

I = r:ﬂ = A/ EEyp) 75)

Yif 7T :
yi ZAJO/E(EwO)
J

Chapter 5: The spins of neutron s- and p-wave resonances in B, ¥/ 95



7eV E

R ORI R

3007

L i i)

232 eV

400 L L

200 v ' v —— 458 eV i

200 "‘N} H’ \LJ ﬁ I V v

102_' ‘ W MM H w‘u " J\ 3
6000 5500 7000 E, (keV) 8000 8500 9000 9500

Figure 45: The high-energy gamma-ray spectra for eight Hdcy p-wave resonances showing primary
transitions to 0% states (arrows), therefore indicating a 1™ resonance state.
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One of the main advantages is that the quantities used in eq. 75 are included in one single
capture experiment, except for the efficiency curve £(EY) of the detector. Therefore there
is no need to measure the neutron flux separately for normalization purposes. It is also not
necessary to know the absolute efficiency but only a quantity proportional to it because it
appears in both the numerator and denominator in eq. 75.

However, one needs to be able to detect the gamma-ray transitions to the ground state for
the first few states because they contain the main part of the sum of eq. 74. In the case of
H4cy, up to an energy of about 2500 keV, six gamma transitions decay directly to the
ground state. These are the gamma-ray transitions from the levels at 558 (2%), 1209 (2*%),
1364 (27), 1841 (2%), (2047 (2™)) 2456 (17) and (2525 (2*)) keV. Also the 0" levels at
1134, 1306, 1859 and 2437 keV, shown in figure 38, decay to the 0* ground state but these
are internal conversion and internal pair production transitions and are therefore not
observed. The observed gamma ray of 1306 keV is not originating from the 1306 keV
level but from the 1864 keV level.

5.6.2 detector efficiency

To determine the efficiency of our germanium detectors as a function of energy, it is possi-
ble to use the gamma rays of thermal neutron capture. This has the advantage that the geo-
metrical distribution and attenuation of the gamma source is exactly the same as in the
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Figure 46: The relative efficiency of a germanium detector, measured with gamma rays form
thermal neutron capture in 1 Cd(n,y).

Chapter 5: The spins of neutron s- and p-wave resonances in ey ny 97



resonance capture experiment. The intensities of these thermal capture gamma rays are
rather well known from ref. [146].

We performed a separate measurement of the gamma-ray spectrum of 113Cd(n,y) selecting
the events having the neutron energy within the thermal energy range. The linac was oper-
ating at 100 Hz so that the long flight times could be measured. From this thermal spec-
trum 33 isolated and relatively strong gamma rays with energies ranging from the first
excited state at 558 keV up to the neutron threshold at 9043 keV were taken. Next the
areas of these peaks were determined and each area was divided by the intensity known
from ref. [146]. The quantity obtained in this way is proportional to the detection effi-
ciency. In figure 46 this relative efficiency is plotted against the gamma-ray energy. The
error bars correspond only to the determination of the area, because for the published
gamma-ray intensities from thermal capture no errors are given. These errors are likely to
be small. The obtained data appear at high energy as a nearly constant nonzero value, and
the data can be fitted well by the sum of a constant and an exponentially decaying curve.
The fitted curve is used as the efficiency curve €(Ey) in the determination of the
gamma-ray strengths in the resonances.

5.6.3 theoretical estimates of primary gamma-ray intensities

One can use the models for photon strength functions of section paragraph 3.3 on page 49
in order to obtain an estimate for the strength of the gamma rays. The absolute intensity
expressed in photons per capture is obtained by dividing the partial widths by the total
radiation width. We assume here a constant radiation width of 0.16 eV [63,143] for all res-
onances. The intensity expressed in photons per 10 000 neutrons are listed in table 12 for
primary gamma rays of 7, 8 and 9 MeV with a resonance spin J =0, 1 and 2.

Table 12: The theoretical predictions of the intensities of primary gamma rays in 113Cd(n,’*{).

E L, (/10000 n) (/10000 n) (/10000 n)
(M&) YJ=0 LYJ=1 IYJ=2

E1(L) E1(K) M1 El1(L) E1(K) Ml El (L) E1(K) Ml

7.0 352 18.6 20 12.5 6.6 0.7 8.6 45 0.5
8.0 62.4 399 3.0 222 14.2 .11 152 9.7 0.7
9.0 1037 83.8 43 ' 369 298 1.5 253 20.4 1.1

For these estimates both the Lorentzian shape (L) and the Kadmenskii model (K) was used
for the E1 radiation while for the M1 radiation the single particle model was used. For
the level density in all cases the backshifted Fermi gas model was employed. We see from
the table that the E'1 intensity is always at least about a factor 10 larger than the M1 radi-
ation. Of course these values are average intensities and the intensity of individual
gamma-ray transitions fluctuates with a Porter-Thomas distribution around these values.
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5.6.4 fits of primary gamma rays of resonances
The intensities of several pronounced primary gamma rays of p-wave resonances were
derived using the above mentioned procedure. The following table gives these intensities.

Table 13: Experimental absolute intensities (per 10 000 neutrons) of primary gamma rays from 1~ and
2" resonances, populating respectively 0" and 37 states.

. I’Y (/10000 neutquns) o N
Ey (keV)
9043 7908 7737 7179 7183 6838
E, (eV) -0t - 0* -0 -3t -0t —3*
7.1 42,2487 29.5£10.4 24.5£9.7
21.9 43.845.0
49.8 96.1+5.9 48.6£5.4
56.3 32,3432
102.5 18.0+£6.0 32.7+£12.7
232.4 6.8+1.8
282.0 104.859.4
3124 39.4+13.0
359.5 . 36.6128.3
377.0 42.8+18.4
4579 94.3+8.1 94.4+7.8 148.5%10.2 759+£15.2

One can see that for most of these gamma rays the intensity is in the same order of magni-
tude as the theoretical estimates for £1 radiation. The only exception seems to be the res-
onance at 232 eV, for which the intensity is found to be lower than the other gamma rays,
hence being either a weak E1 or a strong M1 transition. But in figure 45 it can be seen
that nearly the entire radiation width for the primary gamma rays is concentrated in the
gamma ray of 7908 keV, strongly suggesting an £1 transition. The normalization constant
of eq. 74 is likely to contain a large part of the underlying wing of the s-wave resonance at
215 eV, in this way reducing the deduced intensity for the p-wave resonance.

5.7. Concluding remarks

The spin determinations obtained in this way are summarized in table 14 for 23 s-wave
and 21 p-wave resonances. The spins of the s-wave resonances indicated with an * were
already known from ref. [63]. The spins for the p-wave resonances obtained with the
low-level population method and with the use of primary gamma rays, are completely
consistent with each other.
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The low-level population method could be successfully applied to the case of 3¢ in
order to determine the spins of both s- and p-wave resonances. Numerical simulations
have supported these assignments and confirmed the application of the method. Addition-
ally, it was possible to determine the absolute intensities of several primary gamma rays
and use the strength of specific primary transitions to derive several of the resonance
spins.

Table 14: spin assignments for 23 s-wave and 21 p-wave resonances in !'>Cd

s-waves J | p-waves J" J T
Eg (eV) adopted Egy (eV) low lev. pop. primary adopted
18.41% 1" 7.08 1 1 r
63.82% 1 21.91 2 2 2
85.13* 1 43.50 0 0
108.5% 1* | 4981 . 1~ -
1432 ot 56.32 2 2 2
158.8 1* 987 2" 2
192.9% o0+ 102.5 1" 1~ 1
215.4% 1* 203.6 i 1~
261.2* 1 2324 1~ 1~ 1
269.6* o* 237.9 2 2
2918 1 252.7 2 2
414.5+ 1 282.0 1~ - 1"
432.5% 1* 312.4 2 7 2
501.3 1* 343.9 0 0
525.3* 1t 351.7 2" 2
552.2% 1* 359.5 - 1~ -
624.3 1% 377.0 1 i 1-
724.8 1* 4223 2 2
842.4 1 4473 0 0
851.9* 1* 457.9 1~ - i
1089.9 o* 490.1 1~ 1~
1120.9 1
1268 4% 1+
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Chapter 6
Estimation of the root mean squared
parity nonconserving matrix element

6.1. Introduction

In the investigation of parity nonconservation in neutron p-wave resonances the longitudi-
nal asymmetries are measured as explained in section 1.1.4 on page 9. From the measured
longitudinal asymmetries PiiSPi , one wants to extract information about the expectation
value of the root-mean-squared parity nonconserving matrix element M. This quantity
contains the overall information about the strength of the weak interaction in the com-
pound nucleus considering that the individual matrix elements of the parity nonconserving
interaction are supposed to be samples from a Gaussian distribution with mean zero and
variance M2 .

In the case of target nucleus spin 7 = 0, like 238U and 232Th, the s-wave resonances have
spin J = 1/2 while the p-wave resonances may have spin J = 1/2 or 3/2; only the former
can be admixed by the J = 1/2 s-wave resonances. Therefore, in the estimation procedure
of M only the data for the J = 1/2 p-wave resonances should be included. The measured
asymmetries for the J = 3/2 p-wave resonances must be consistent with zero and can pos-
sibly be used to derive information about systematic errors. Additionally, the effects can
only be measured in a limited number of resonances (in the hitherto published data 16 for
2381 [50] and 23 for 232Th [511). Although the experimental data might seem to be some-
what indigent, the statements derived from it are quite far-reaching, and the subject
deserves a careful statistical analysis.

The parity nonconservation measurements are experimentally difficult and require a atten-
tive analysis, especially to extract the smaller effects. The p-wave resonances showing
small asymmetries and large relative errors can have either spin 1/2 or spin 3/2, the latter
of course with a theoretical longitudinal asymmetry equal to zero. Even with a measured
asymmetry of the order of twice the quoted error there is a fair possibility that it is not a
spin 1/2 p-resonance. This generates an uncertainty in the analysis of the PNC data. The
best way to get around this problem is knowing the resonance spins.
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In the following the procedure of estimating M from the PNC data for a spin zero nucleus
will be described. PNC data concerning the zero spin target nucleus 2381 have been pub-
lished [49,50]. The spin assignments of this thesis make in this case a more accurate esti-
mate of M possible. If the target nucleus has a nonzero spin the problem is more
complicated because the s-wave resonances can have different spins and also the unknown
J = 1/2 fraction of the neutron width at the entrance channel comes into play as explained
in section 1.1.5 on page 10. This case will not be discussed here, notably the PNC data of
3¢ have not yet been published by the TRIPLE group.

When the spins of the resonances are not known, a somewhat ad hoc procedure concern-
ing the spins has been applied to derive an estimate of M. Two approaches have been
developed for this situation and will be discussed here. One is from the TRIPLE group, as
used in the analysis of the 2381 [50] and 232Th [51] data, and another one has been first
proposed by Bunakov [152,153] and is applied in this thesis to the case of 238y,

The estimation of M, described in this chapter, is based on the maximum likelihood
method. The theory for maximum likelihood estimation is well established and can be
found in many textbooks on statistics, for example Kendall and Stuart [154]. Also the
Baysian approach has been described extensively in the literature and good examples can
be found in Eadie et al. [155] and Barlow [156]. A brief outline of the maximum likeli-
hood method will be given in the section 6.3.

6.2. The distribution of the reduced asymmetries

6.2.1 the longitudinal asymmetries

The hypothetical error-free longitudinal asymmetries R; in a p-wave resonance labelled i
are related to the PNC mixing matrix elements V. relating this p-wave resonance and the
s-wave resonance labelled j as (see also eq. 12 on page 12)

v,y
K= Sp—g— = ALY o
7

5, J Pl ’Y J

where the matrix elements V. are assumed to be samples of a Gaussian distribution with
zero mean and variance M2, denoted by N(O, M 2y, All terms other than Vv, are encapsu-
lated into the factors A, . The energy difference as well as the neutron channel amplitudes
Y, in eq. 76 are supposed to have a random sign and to be independent of each other and
of the considered resonance i . In fact, the neutron channel amplitudes vy, are not known,
but the neutron widths ') = y are. Because of the assumption of random sign of the
amplitudes, F” 2 is used mstead of y,. In the absence of any observational errors the
expectation values E{R;} and E{ RZ} are given by
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E{R} = E{ZAUVU} = ZAUE{VU} =0 a7
J J

and

E{R?} = E{(ZAUVUJ(ZAUVU)} = YA2E{V2} = AZM? (78)
; : 7

J

where the quantity A; is defined by
A? = ZAfj (79)
J

and the elements A,; are calculated from the resonance energies and neutron widths

2
Aij = _2.__[ n j . (80)
Esrj_ EP’i FZJ

Usually, this quantity can be determined quite well from known resonance parameters.
The influence on the p-wave resonance of more distant s-wave resonances is very limited.

6.2.2 random variables

Now consider the quantities R, to be samples of a random variable (RV) r with distribu-
tion N(0, M?). What will be observed in a measurement are the observations P, that can
be regarded as samples from the random variable p defined as

p=r+d (81)

where d is the observational error, also a RV. In fact, for each observation i an individual
standard deviation D, is derived from the measurements and the actual error is a sample
from the RV d;, supposed to be normally distributed as N(0, D;’.")‘ In this context, the
observational variances Di2 are not supposed to have a common distribution. Therefore,
the observations do not form a single RV, but a set of RVs p,

p; = r+d1.A (82)

Assuming that r and d; are independent of each other and that r is independent of 7, the
probability density function of p; is the convolution of r and d,

Fopd = f(n*f,d) (83)
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where the symbol * denotes the convolution operation. In this case of Gaussian distribu-
tion we use the fact that the convolution of two Gaussians N, 0'12) and N(|.L2, C%) is
again a Gaussian function N(t, + I, 0']2 + 0%) [157]. For each RV p, holds

E{p} =0 (84)

E{p?} = A2M?>+D?. (85)

The observations P, and Di2 can be transformed into the new quantities X; = P,/A; and
el = D2/A?.The X, are then samples of the RVs x, with the properties

E{x;} =0 (86)

E{x}} = M2+e2. 87)

The probability density function of the RVs x; is then

fix) =

(88)

exp .
r(M2+e?) \2(M*+el)

The quantities X;, which we will call reduced asymmetries, are a sample from the Gaus-
sian distribution function eq. 88 with zero mean and variance M2 + eiz. The problem is
reduced to estimating the variance M? of the distribution N(0, M2 + e?) from a set of data
with errors X e, . At least, if it is known which PNC data from which resonances have to
be included. In fact, the quoted errors e, are the square roots of the measured variances.
The probability density function given by eq. 88 is the typical relation between the
observed values X; and the expectation value of the root-mean-squared parity noncon-
serving matrix element M [49,50,53].

In the case of a target nucleus spin with 7 = 0 and with the spins of the resonances known,
one can take the data from the J = 1/2 p-waves, determine the mixing factors Ai from all
the s-waves into the p-wave i and then aggly a maximum likelihood procedure to derive a
value for M. This will be discussed for 2**U in section 6.4.4.

6.3. Maximum likelihood method

An estimator 3 is the procedure applied to a given set of data X; in order to obtain a
numerical value for a parameter ¥ of the parent distribution function. Such a procedure
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can be of any kind and to distinguish between “good” and ‘“bad” estimators three basic
properties have to be considered: consistency, bias and efficiency.

An estimator is consistent if it tends to the true value ¥ when the number of data values N
goes to infinity

lim 9 = O (89)

N— oo

For finite N the estimator ¥ will in general not give the true value O . If the probability
density function of 9 is symmetric around 9, the estimator is said to be unbiased. This
means that the expectation value E {f)} equals the true value . Unbiasedness and con-
sistency do not imply each other.

The variance of an estimator gives a measure of how close 9 is to the true value 9. If one
estimator has a smaller variance than another, it is said to be more efficient. A lower limit
on the variance of an estimator exists, the Cramér-Rao lower bound (CRLB) on the vari-
ance. For an unbiased estimator the expression, known as the Cramér-Rao inequality, is

1

Var®) 2 ¢ [d2InL(9)/d o2}

(90)

where L(9) is the likelihood function defined as the joint probability density function,
which is the product of the probability density functions of the independent data X, as a
function of ¢

L(®) = P(8|x) = []P/(X,0). o1

The likelihood function is also the basis of a class of estimators that is widely used, the
maximum likelihood estimators. This estimator is the value of ¥ that maximizes L(9).
Standard statistical techniques as weighted mean and least squares minimization are based
on the maximum likelihood method.

The maximum likelihood estimator has some attractive properties that makes it so com-
monly used. It is a consistent estimator and for large N, the asymptotic limit, it becomes
unbiased. Again for N — oo, the variance reaches its lowest possible value, the CRLB.
Besides, the estimator is invariant under parameter transformations. This means that if we
do not want to estimate O but a function of it, f(1}), the estimator }'(13) will have a maxi-
mum in the likelihood function L(f(d)) at f (15) . This means that one can choose the most
suitable form of a parameter to find the maximum and the result is the same when the
parameter is for example 92 or /9.
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Although this is true for the value where the maximum of the likelihood function occurs,
this is not true for the biasedness of an estimator. For small N far from the asymptotic
limit, the maximum likelihood estimator is generally biased and even if ¥ is an unbiased
estimator, a related estimator f(§) is usually not.

This property makes it also easy to derive confidence intervals. Because there is always a
parameter transformation possible that turns the logarithm of the likelihood function
InL(¥9) into a parabola, like in the Gaussian case, one can derive a 68% or 16 and a
95.4% or 26 confidence interval from the points where InL() is 1/2 respectively 2 lower

than the maximum value InL(9,, )

InL(Y,,, ) - InL(®,,) = @)

N =

max)

InL(d,,,) - InL(d,,) = 2. 93)

max)
This is always true, also for finite N [155]. But it should be stressed that for small N the
likelihood can be highly non-Gaussian and the limits corresponding to the 95.4% confi-
dence interval may be much larger than twice the 16 limits although it is often referred to
as a 20 interval.

In fact, the full definition of the likelihood function originates from the Bayesian post
probability in Bayes theorem for conditional probabilities [155]

P(x|9)P()

L(%)=P(8|x) = P

(94

where P(x|0) is the probability density function of a random variable x given a parameter
¥ and where in contradistinction to eq. 91 also the two marginal distributions P(x) and
P(9) are involved.

So far this is all generally accepted. The point where the world of statisticians is divided
into two groups, the “Bayesians” and “Classicals”, is the interpretation of P(1}), the prior
knowledge on the parameter ¥ . “Classicals” will not accept any prior knowledge and say
that before an experiment nothing is known about ¥ and therefore P(®¥) should be uni-
form and constant (note that this concept of a probability function in the Bayesian context
is less strict than the mathematical probability). On the contrary, “Bayesians” will use any
information on ¥ that is available and put this into P(§) . If for example it is known that
¥ is always positive, then P(3) = u(d), the unit step function.

If 8 denotes a PNC root mean squared matrix element, it is clear that 3 cannot be nega-
tive. On the other hand, ¥ cannot be infinitely large, because of its limited strength. The
lower limit of zero is clear. One could also take an upper limit, but the chosen shape of
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P(®) will be completely subjective. This is the major drawback of the Bayesian approach.
Not everybody agrees on the prior information and this can be quite a subjective affair.

The marginal distribution P(x) in eq. 94, as it is independent of ¥, normalizes the likeli-
hood function and is defined as

P(x) = jP(xw) P(8)d9. 95)

In the Bayesian approach the likelihood function defined in eq. 94 becomes in this way a
probability distribution. There is not any more a true value % which can be estimated as in
the classical approach, but ¥ is a random variable whose distribution function is given by
eq. 94.

6.4. Estimation of M when the spins are known

It is an old and trivial problem to estimate the variance of the distribution from a set of
numbers X, ... X, sampled from a normal distribution N(p,Acz) . If the distribution has a
known mean y and an unknown variance G2, its estimator 62 is generally taken as

N
- 1
02=N2(Xi—u)2. (96)

i=1

This estimator is unbiased, the expectation value E {62} equals the true value 2. The
estimator is also consistent, i.e. 62 converges to 62 as N increases.

It is Iess trivial to estimate the variance of the distribution when the set of numbers are not
just numbers but observations having observational uncertainties: X,+te,...X te, asis
the case in data obtained from parity nonconservation experiments. The data X; are dis-
tributed as N(0, M?2), a Gaussian distribution with known mean zero and an unknown var-
iance M?.The way how to obtain an estimator for the quantity M is described next.

6.4.1 estimating M from data with errors.

Now we do not have a set of N observations X,...X, but a set of observations with
uncertainties X,te,...X, te, . The quantities ei2 are considered to be the variance of
the normally distributed error in observation labelled i. Each observation X, is a sample
of a random variable x; of which the distribution is given by eq. 88. The joint probability
density function f(x, ..., x,), assuming that the x; are independent, for the N random
variables x, is written as the product

N 2
—X7
e Xpy) = . 4 97
flp o xy) U z)exp[z(M2+ei2)} ©n
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The general construction of the maximum likelihood function is to take the joint probabil-
ity density function and substitute the observations. This is a function of only one parame-
ter, the parameter M to be estimated. So to estimate M using the maximum likelihood
method, we take eq. 97 and substitute the observations X,...X,, to obtain the likelihood
function of the parameter M

N 1 _Xi2
wo =l e exp(2(M2+e?>] -
or its logarithm, called the log likelihood function
1 1 Y Nooo_x2?
InL(M) = - SNIn2m -5 3" In(M? +e}) + Yy m 99)

i=1 i=1

Finding the maximum of a function is the same as finding the maximum of its logarithm.
We take the first derivative to M of the log likelihood function and put it equal to zero to
find the maximum, which is a necessary condition

d N 1 N X2
0 = —InLM) = — + L M 100
a0 [ZIMZH% ,E(M”e%)zj "

i=

which gives the trivial solution M =0 or

N M2+el-x?

2 )T = 0. (101)

i=1 !
Putting the first derivative of L(M?) to M? equal to zero gives the same result eq. 101.
The solution of this implicit equation gives the maximum likelihood value which has in
general to be solved numerically. For finite N, this value is in general biased. However,
the solution M? or M2 of this equation has not necessarily a positive value (note that M2
means the estimate of M2 and that #/% means the square of M ). Large values of el.2 com-
pared to Xi2 can give a negative solution M2, which has not a physical meaning. In this
case the other solution M = 0 of eq. 101 gives the correct value. In fact, this seems to be a
logical consequence: if the observations Xl,2 are small compared to their variances eiz,
they may be not a parity nonconserving matrix element, but values consistent with zero.
For a set of PNC data, all belonging to the Gaussian distribution and with not reasonably
small variances, eq. 101 can be directly applied because the maximum is certainly at a
positive value.
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variance

Although it may be convenient to transform the searched parameter in order to find the
maximum likelihood value, the invariance principle holds only for the maximum. As soon
as the variance or confidence limits for a parameter are derived, they can not be trans-
formed into limits for a transformed estimator.

One can derive the CRLB for an unbiased estimator M using eq. 90 which gives

N 2,2 N 2 24,2
. d2InL(M) { M= —e; xi(=3M +€i)}
Var >-1/E = -1/F + 102
0 ez d(M)? ' E'l (M2 +e?)? ) (M? +e2)3 o
N

2M2
/7y —=
El (M2 +e2)?

while taking the CRLB for the estimator M2 gives

N N 2
— d*InL(M?) { 1 i }
Var(M?)>-1/E - (103
o v d(M?)? b= i§’12(M2+ei2)2 E‘l (M2 +e2)3 )

N
1
=1/ —_— .
[ i§12(M2+ei2) Z\J

Given the set of variances e , the CRLB is the smallest possible variance of the unbiased
estimator, which is often not reached for small N. It can be beneficial to estimate the vari-
ance by numerical simulations while making some assumptions about the values of el.2 ,as
done in section 6.4.3. The inequality of eq. 90 on page 105 becomes an equality in the
asymptotic limit for N — e . In practice this limit can not be reached with a small sample
and the variance will be larger. Sometimes it is more convenient to quote the confidence
limits derived from eq. 92 or eq. 93, like in this case because of the asymmetric shape of L
due to one-side boundness of the parameter M2, Also then it is necessary to specify if they
have been derived from L(M) or from L(M?2).

6.4.2 behaviour of the solution of eq. 101

However, the solution of eq. 101 can give negative values for M2 if the e; are large. In
that case the maximum likelihood is found for the trivial solution M = 0. Apart from the
general case we can distinguish two special cases, namely the situation where the uncer-
tainties are zero and where they have all the same nonzero value ¢; = e.

the uncertainties are zero

Of course, in this case where e, =0,eq. 101 reduces to eq. 96, the usual estimate of the
variance with 1 =0
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N
— 1
M? = NZX,?. (104)

i=1

It is easy to show that the expectation of the estimator is

N

” 1 1

21 — 2 — 2 — 2

E{M?*} = E{N‘lei} = JNM> =M (105)
i =

so this is an unbiased estimator. The variance of this estimator can be shown to be [156]

— 4
Var(M?) = 2% (106)

If not M2 but M is used as an estimator, the variance becomes

N M?2
Var(M) = N (107)

These two variances are the CRLB from eq. 102 and eq. 103, corresponding to all values
of e, set to zero.

the uncertainties have all the same value
If all uncertainties are equal, e, = e, eq. 101 reduces to

N
— 1
2 _p,24 2 2
M2 = e +N2Xi' (108)
i=1
This shows the possibility of negative solutions if the X 12 are small compared to e2. Also
this estimator is unbiased as the expectation of the estimator is

N
E{M?} =E{-e2+1 Zx?} = —e?+M?*+e2 = M2 (109)

i=1

6.4.3 simulations to derive the bias and variance

However, the general case, and what happens in practice, is that all the uncertainties are
different. In that case eq. 101 has to be solved numerically to get a value for the estimator
and the bias cannot be calculated analytically. To have an idea of its magnitude it is possi-
ble to generate a data set of N values X * e, estimate M from it and repeat this many
times. The mean value of all these estimates is the expectation value of the estimator.

110 Chapter 6: Estimation of the root mean squared parity nonconserving matrix element



In the following simulations, we took a fixed value M . for M and a sample of N values
r, from the distribution N(0, M 2 ) - To each of these values we added an error €, . For the
51mulat10ns we assume that the errors have a Gaussian distribution N(O, 32) Normally,
there is no underlying distribution for the variances of these error dlstrlbutlons and we
have to make an assumption about it. Arbitrarily we have taken the variances ei2 chosen
from a normal distribution N(0, £%), with £ representing the average spread in the vari-
ances.

Then, from these generated values x; = r, +€; and the variances el.2 the most likely value
M has been calculated using the likelihood eq. 98. This procedure is repeated a large
number of times (here typically 50 000 times). The calculations have been performed for a
fixed value M fix = 1 and several values of £ while N was ranging from 2 to 40.

The average values of the estimates () and (Ajl\z) have been calculated as well as their
variances using

Var(M) = (M- (M) %) = (M*-(M)* (110)

and

Var(M2) = ((M2-(M%)?) = ((M?))—(M2)2, (111)

In figure 47 the average values (M) and (M2) are plotted as a function of the number of
observations N for 4 values of the parameter £, namely 0, 0.5, 1.0 and 2.0. We see the
general trend that the larger £ becomes, the larger the deviation from M . =1 is, so the
larger the bias is. This effect decreases as expected with increasing N. \{/hen N goes to
infinity, the expectation values of (M) and the square root of {M 2) tend to each other as
the invariance principle states. Both values tend also to the value M, , so the bias goes to
zero. However, for a small number N, there are considerable differences between the two
estimates, as can be seen from figure 47. In fact for T = 0 the estimator {M?2) is unbiased
while (M) has certainly a bias for finite N. So the bias is not the same for the two estima-
tors. There is not a simple relation connecting the two estimators when X differs from
Zero.

Also in figure 47 the variances defined by eq. 110 and eq. 111 are plotted as a function of
N. Of course, the larger Z is, the larger the variance becomes. The values for Z = 0 corre-
spond well to respectively eq. 106 and eq. 107, of which the curves (in solid lines) are also
shown in the figure. These results hold only in the hypothetical case that the variances
have the same underlying distribution. In the context of longitudinal asymmetry measure-
ments this is not necessarily the case and both estimators can be used but their bias may be
different. Assuming a Gaussian distribution in the 2380 case for the first seven values e ; of
the sixth column in table 15, we can deduce £ = 0.41.
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graphs represent the variances according to eq. 106 and eq. 107.
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6.4.4 application to the 238y case

The measurements of the TRIPLE collaboration concerning parity nonconservation in neu-
tron resonances in 25U should be interpreted in a different way now that the spins are
known. In table 15 the seven resonances having spin J = 1/2 and the nine having J = 3/2
together with the measured properties are given. We can apply the maximum likelihood

Table 15: The PNC parameters for the 16 measured resonances of 28y [50]. With the present spin
assignments a division in seven spin 1/2 and nine spin 3/2 p-wave resonances can be made.

E, (eV) P; (%) dP; 1A;l (1/eV)  Xj(meV) e;(meV) Xile;

113 0.67 0.37 47.13 0.14 0.08 1.75

452 131 2.10 34.82 -0.38 0.60 0.63

63.5 2.63 0.40 34.42 0.76 0.12 6.33

J=12" 827 1.96 0.86 13.58 1.44 0.63 229
892 0.24 0.11 470 052 0.24 2.17

| 1731 1.04 0.71 7.80 1.33 0.91 1.46

2427 0.61 0.63 487 -1.26 1.28 0.98

10.2 0.16 0.08 24.61 0.07 0.03 2.33

931 -0.03 2.30 24.59 0,01 0.94 0.01
980 218 1.30 54.21 0.40 0.24 1.67

| 1250 1.08 0.86 10.56 1.02 0.82 1.24
J=32" 1524 -0.14 0.56 4.38 0.32 1.29 0.25
| 1589 -0.36 1.37 8.57 041 1.59 0.26

| 2539 -0.16 0.65 3.25 0.49 2.00 0.25
2639 0.01 042 2.46 005 172 0.03
2824 0.41 1.40 4.95 0.82 2.82 0.29

method from eq. 98 and calculate the value for M together with the confidence limits from
eq. 92. Doing so results in

~ 4033 +0.88
M = 0.58 2020 OF g3 meV (112)

where the first and second error pairs correspond to the 68% and the 95.4% confidence
interval respectively, also referred to as 16 and 26 in the case of a Gaussian distributed
error. The CRLB from eq. 102 gives for the minimum possible variance

JVar(M) = 0.23. (113)

bias removal by means of the jackknife method
It must be stated that this estimate of eq. 112 is probably biased and that the unbiased esti-
mate may be somewhat larger as is suggested by the simulations. It is possible to remove
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Figure 48: The likelihood functions for the seven spin 1/2 p-waves, resulting in the estimate of
eq. 112 and for the nine spin 3/2 p-waves, resulting in the estimate of eq. 116.

the bias by using the method of the jackknife [154]. This consists of taking out at a time
one of the N observations to make an estimate #,, , with the remaining N — 1 values and
using the average value (#,, ) to obtain

'y =Nty— (N-1){ty_ ). (114)

This new estimate ¢’ is biased only to order 1/N 2, The variance remains practically the
same as the uncorrected estimated. We take here the CRLB for the variance because it is
very close to the asymmetric interval of the estimate of eq. 112. Applying this procedure
gives the new value

M =063+£023 meV. (115)

application to spin 3/2 data

It is interesting to apply the estimation to the data of the nine p-wave resonances with spin
J =3/2. There is no PNC effect in these resonances expected and M should be equal to
zero. The estimate M should therefore be consistent with zero. Using the values of the
nine spin 3/2 resonances gives

B = 007700 mev (116)

where the errors represent the 68% confidence limits. Both likelihood functions, normal-
ized to unity, are plotted in figure 48. Although the latter maximum likelihood value is
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nearly zero, the slow fall-off for increasing M might suggest the presence of some sys-
tematic errors.

6.5. Unknown spins: estimate according to TRIPLE

If the resonance spins are not known, only a part of the available data has a N(0, M?) dis-
tribution whereas the other part should be consistent with zero. Values X; which are much
larger than their errors, two or three standard deviations or more, are likely to indicate a
genuine PNC effect. But small values of X, cannot be accurately measured and might
have a value much less than two standard deviations. For these cases it is not clear
whether this is a PNC effect or not.

In order to estimate M2 from the 238U data, an assumption has to be made about the pos-
sibility of each of the two cases: one needs to know the occurrence of a spin 1/2 p-wave
resonance and a spin 3/2 p-wave resonance. It is known that for low spins the density of
levels with spin J is in good approximation proportional to 2J + 1. Therefore, one can say
that the occurrence of J = 1/2 p-wave resonances is 1/3 and the fraction of J = 3/2 p-wave
resonances is 2/3.

So the measured value X, has a probability of 1/3 to be distributed as N(0, M? + ¢?2) and
a probability of 2/3 to be consistent with zero. The error e; makes that the latter value has

L L L H . ' L I L n

|
y -
4 ——— 7 spin 1/2 p-waves
] /\ -------16 p-waves
1.2 [

P

T

L(M)

URIRI ]

3.0

Figure 49: The likelihood function for the sixteen p-waves with spin 1/2 and 3/2 p-waves, resulting
in the estimate of eq. 118, compared to the likelihood function for the seven spin 1/2 p-waves.
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Figure 50: The estimate of M using only fifteen of the sixteen resonances from table 15 with the
indicated resonance removed.

a distribution N(O, eiz) . Accepting this, we can write the likelihood function as the product
of the sum of the probability functions [49,50] as

N 2 2
1 1 -X; 2 1 -X;

LM) = II = exp( ]+— exp[—} . arn
i:1(3 hr(M>+el) \2(MP+e})) 3 hme2 | 2¢]

Calculating the maximum and the confidence intervals using all investigated sixteen reso-

nances of the 238U target nucleus gives
- 4039  +1.17
M = 057 5 or ;33 meV (118)

to be compared with the estimate when the spins are known. In figure 49 this likelihood
function of eq. 117 is plotted together with the case with known resonance spins for com-
parison. Because the function is not normalizable due to the constant term it contains, the
integral up to 10 meV [50] is used for normalization. Both curves give the maximum at
nearly the same value of M . This is likely due to the small relative error for the PNC effect
of the 63.5 eV resonance.
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Figure 51: The estimate of M as a function of the fraction J = 1/2 p-wave resonances.

6.5.1 sensitivity to one resonance

In fact, eq. 117 turns out to be insensitive to the measurements with small so-called statis-
tical significances X,/ e, . In that case the second term in eq. 117, independent of M, dom-
inates the sum. For the resonance at 63.5 eV listed in table 15 the statistical significance is
6.3, the largest one. It is in fact the value for this resonance that determines largely the
maximum of the likelihood function. We can illustrate this by making the estimate of M
but instead of taking all sixteen resonances, we take only fifteen of them, leaving out one
of the resonances at a time. In figure 50 these estimates together with their 68% confi-
dence interval are plotted. The x-axis shows the resonance for which the value was taken
out of the estimation. The first point corresponds with the estimate eq. 112, It is clear that
the resonance at 63.5 eV entirely dominates the estimate. As soon as it is excluded, the
value of M drops to a very low value. Also it seems not to make any difference whether
the data for a spin 1/2 or a spin 3/2 p-wave resonance is left out of the procedure.

6.5.2 sensitivity to the fraction of spin 1/2 resonances

The estimate derived from eq. 117 is not only sensitive to the accuracy of one measured
data point, also the factors 1/3 and 2/3 influence the estimate. Although they have been
included for good physical reasons, the ratio 1:2 of the numbers of J = 1/2 and 3/2 p-wave
resonances can not be taken for granted, especially not for such a small sample of reso-
nances in a narrow energy region. It is interesting to see how the estimate will change if
the factors are different. In figure 50 the estimate is plotted as a function of the fraction
spin 1/2 p-wave resonances, ranging from O to 1, together with the 1o intervals as error
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bars. In this case, the spin assignments have proven that the assumption about the 1:2 ratio
happens to be justified.

6.6. Unknown spins: estimate according to Bunakov

6.6.1 likelihood function with conditional probabilities

The treatment proposed by Bunakov [152,153] is completely based on conditional proba-
bilities, of which a summarized interpretation of the idea is given here. In the case that a
resonance has the right spin the conditional probability for an observed value X + ¢ and
the underlying M is again

P(x|M) = (119)

1 —x2
J2m (M2 + e?) CXP(Z (M2 +e?) )

The probability that a resonance has the right spin is given by p, whereas the probability
that a resonance has not the right spin is givenby g = 1 - p. The measurements in N res-
onances are therefore Bernoulli trials: one performs N measurements and each measure-
ment has a chance p to have the right spin in order to follow eq. 119. The likelihood
function has to be constructed by taking into account each of these probabilities that r out
of N resonances have the right spin for parity nonconservation.

The case with r = 0 means that all the resonances have spin 3/2 and cannot show PNC.
The prior information is then that M = 0. In the likelihood function the total probability is
concentrated at zero: P(M|x) = &(M), with 8(M) meaning the Dirac delta function. With
r# 0, one has to shuffle through all the possible combinations of a set X, containing the
N!/ (r' (N -r)!) equally probable combinations of r values, and weigh this set by the
normalized binomial factors P(K )

1 pr gV INY/ (#!(N-1r)!) _ prgN-r
NI/ (rl(N=7))) 1-gV T 1-gV’

PK) = (120)

This has to be repeated for all the sets K, with r ranging from 1 to N. Doing so this results
in the likelihood function

N

LMy = PM|{x})= Y (P(K,)Z (pPM|K) +q6(M))) a21)
KV

r=1

The term g&(M) contributes only at M = 0 and is further of little importance for the shape
of the likelihood function. So in order to calculate the L{M), one needs to know the func-
tions P(M|K ), the conditional probability for a particular subset of K. This is given by
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Figure 52: The likelihood function for the sixteen p-wave resonances with spin 1/2 and 3/2,
according to the likelihood function of eq. 121, compared to the likelihood function for the seven
p-wave resonances.

1 -}
PMIK) = = -

H 1 exp[ ?i .
CK, ie K, 2n(M2+ei2) 2(M* +ef)

including the unit step function «(M). The normalization constant €, for the subset is
given by ’

Ju(M) (122)

00 . _x?
Cp = dm. (123)

J. H exp 5
T i€k, /2Tc(m2+ei2) 2(m +ei2)

A data set of N values (X, e;) requires the calculation 2N — 1 of these normalization
integrals, needed for the evaluation of L(M).

A problem with eq. 123 is that the integrals of this type exist only for i > 2. For the ele-
ments i = 1 of the set K, the integral becomes infinite, corresponding to impossible situa-
tion of trying to estimate the variance out of one number. This problem can be avoided by
taking a finite interval for the possible range of M, so modifying the prior knowledge
about M from the unit step function u(M) into a function with a more subjective upper
limit. However, the larger N becomes, the smaller are the binomial factors P(K ) and the
smaller is the contribution of the i = 1 elements to the likelihood function eq. 121.
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6.6.2 application to the case of 238y

We have implemented this calculation in a recursive computer code, using standard inte-
gration algorithms [103] and applied this to the case of the measurements of 238y There
was no noticeable difference between the curve including the i = 1 elements with a nor-
malization and the one omitting them. In figure 52 this likelihood function for unknown
spins is shown again together with the likelihood function for the seven spin 1/2 p-wave
resonances.

An interesting detail is that this function shows two maxima, one at M = 0.091 and one at
M =0.43 meV. This is due to the fact that here the data of all resonances have a more
equal weight than in the case of the likelihood function of eq. 117. The first maximum
might be ascribed to the asymmetries of the spin 3/2 p-wave resonances which are not
entirely zero, as shown in figure 48. The second maximum can then be attributed to the
real asymmetries of the spin 1/2 p-wave resonances. The advantage of this method is that
it is not dominated by one data point with a small relative error.

6.7. Concluding remarks

The problem of estimating the expectation value of the root-mean-squared parity noncon-
serving matrix element M results in a maximum likelihood procedure in the case that the
spins of the p-wave resonances are known. We are dealing with a small sample of reso-
nances in the case of parity nonconserving measurements and therefore the estimates are
usually biased. Numerical simulations give an indication of the bias and variance of the
estimate in the small sample size region. A procedure of bias removal of order 1/N with
the jackknife method has been applied to the PNC data of spin 1/2 neutron p-wave reso-
nances of 238U which has given a new estimate M = 0.63 meV. This value can be used
together with eqgs. 13 and 14 on page 13 and D ;_ |, = 39 eV from page 84 to derive
for the ratio of the parity nonconserving and conserving strength in the effective
nucleon-nucleon potential o, = 3x107 .

When the spins are not known, additional assumptions have to be made, notably on the
distribution of the resonances that can and cannot show a PNC effect. Two procedures,
also based on maximum likelihood have been used until now for the estimation of M in
2381, One of them assigns very large weights to values with small relative errors and the
corresponding estimate coincides nearly with the case where the spins are known due to
one value. The other estimation procedure accords a more moderate weight resulting in
two maxima in the likelihood function, tentatively designated to the contribution of the
spin 1/2 and 3/2 p-wave resonance asymmetries. The latter method is quite attractive but a
disadvantage is the very long calculation time that is needed to evaluate the likelihood
function of eq. 121. This makes it also difficult to apply a bias removal. However, both
methods result in the same likelihood function when the spins of the resonances are
known.
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Conclusions

The knowledge of the spins of neutron resonances is important for the correct analysis of
parity nonconservation measurements. The spin assignment method applied in the experi-
ments described in this thesis is the low-level population method where the dependence of
the intensity of specific secondary gamma rays on the resonance spin of the compound
nucleus, formed by neutron capture, is investigated. This approach works very well for
those nuclei in which the gamma decay behaves in a statistical way. The method was
already known for its application in the case of s-wave resonances. It has now thoroughly
been established as a powerful method for spin assignment of p-wave resonances which
are on the average a factor 1000 weaker than s-wave resonances in the epithermal neutron
energy range. In addition the observation of primary gamma transitions to levels with
known spins has given information about resonance spins.

Spins have been successfully assigned to 19 neutron p-wave resonances of 238Q, of which
seven were found to be J* = 1/27, Using only the parity nonconservation data of this spin
group, it was possible to determine a more accurate estimate for the root mean squared
parity nonconserving matrix element, thus replacing the earlier estimated strength, derived
with a procedure containing some assumptions about the resonances.

In the case of '13Cd, spins of 23 neutron s-wave resonances as well as of 21 p-wave reso-
nances have been determined. Those are essential for the analysis of recently obtained
PNC data.

Numerical simulations confirm the resonance spin dependence of the low-level popula-
tions and are therefore an important tool for evaluating the feasibility of a spin assignment
experiment. However, to obtain reliable results from simulations, it is necessary to dispose
of detailed information about the excitation spectrum of the nucleus in the low-lying dis-
crete level region. On the basis of the experience gained in this thesis work, it is recom-
mended to perform first some numerical simulations before undertaking a time consuming
spin assignment experiment.

Spin assignment of neutron resonances is not only important for the study of parity non-
conservation, but also for future investigations in time reversal invariance in neutron reso-
nances, where the knowledge of resonance spins is required.
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