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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
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Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
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So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
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ABSTRACT

We investigate creeping flow of a viscoelastic fluid through a
three dimensional random porous medium using computational
fluid dynamics. The simulations are performed using a finite
volume methodology with a staggered grid. The no slip
boundary condition on the fluid-solid interface is implemented
using a second order finite volume immersed boundary (FVM-
IBM) methodology [1]. The viscoelastic fluid is modelled using
a FENE-P type constitutive relation. The simulations reveal a
transition of flow structure from a laminar Newtonian regime
to a nonstationary non-Newtonian regime with increasing
viscoelasticity. We find that the flow profiles are mainly
governed by the porous microstructure. By choosing a proper
length scale a universal curve for the flow transition can be
obtained. A study of the flow topology shows how in such
disordered porous media shear, extensional and rotational
contributions to the flow evolve with increased viscoelasticity.

Keywords: CFD, IBM, Viscoelastic, Porous Media.

NOMENCLATURE
Greek Symbols

p Fluid density, [kg/m?].
7. Solvent viscosity, [kg/m.s].

77, Polymer zero shear viscosity, [kg/m.s].

1 Total viscosity, [kg/m.s].

Latin Symbols

p Pressure, [Pa].

u Velocity, [m/s].

T Viscoelastic Stress tensor, [Pa].

A Relaxation time, [sec].

L Maximum dumbbell extensibility.
[ Viscosity ratio (7]\, / 77) .

«a Solid fraction.

¢ Void fraction.

d , Particle diameter, [m].

R Particle radius, [m].
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N, Particle Number

k Permeability, [m?].
@, Fluid variable.

De Deborah number.

Re Reynolds number.
Sub/superscripts

v Second rank tensor.
VE Viscoelastic fluids.
N Newtonian fluids.

INTRODUCTION

The flow of complex fluids through porous media is a field of
considerable research due to its wide range of practical
applications including enhanced oil recovery, blood flow,
polymer processing, catalytic polymerization, bioprocessing,
geology [2—4]. The flow of Newtonian fluids though porous
media is relatively well understood in the framework of Darcy’s
law [2]. Also, a significant effort has been made to understand
flow through porous media of non-Newtonian fluids with a
viscosity that depends on the instantaneous local shear-rate
(inelastic non-Newtonian fluids, or quasi-Newtonian fluids), as
reviewed by Chhabra et. al. [5] and Savins [6]. However, flow
through disordered porous media of viscoelastic fluids, i.e. non-
Newtonian fluids displaying elasticity, is far from being
understood [5,7,8]. This is due to the complex interplay
between the nonlinear fluid rheology and the porous geometry.
Several types of numerical frameworks have been used to
model flow of non-Newtonian fluids through porous media,
including extensions of Darcy’s law [9], capillary based models
[10], and direct numerical simulations based on computational
fluid dynamics. Unfortunately, extensions of Darcy’s law and
capillary based models are found to be inadequate to capture the
complete physics of pore scale viscoelastic flow through porous
media [11-13].

Many numerical studies focus on relatively simple geometries
to learn about the essentials of non-Newtonian fluid flow
through porous media [14-17]. Sometimes a full three-
dimensional random porous medium is studied, which is
already closer to a realistic pore geometry, but such studies are
then usually limited to power-law fluids, which are the most
commonly applied quasi-Newtonian fluids [11,18-20]. For
example, Morais et al. [ 18] applied direct numerical simulations
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to investigate the flow of power-law fluids through a disordered
porous medium. Simulations of fully viscoelastic fluid flows
are limited to two dimensional pore geometries [21-25]. It is
now commonly agreed that including viscoelasticity is
important: both numerically and experimentally, viscoelasticity
is found to lead to profound effects such as enhanced pressure
drop and elastic instabilities (sometimes referred to as elastic
turbulence) [5,26-28]. So, although it is known that viscoelastic
fluids behave more complex than inelastic non-Newtonian
fluids, the current literatures shows a lack of detailed
simulations of fully three dimensional flows of viscoelastic
fluids through random porous media.

In this paper, we report on a numerical study of the flow of
viscoelastic fluids through three dimensional random porous
media consisting of packed arrangements of monodispersed
spherical particles using a combined finite volume immersed
boundary (FVM-IBM) methodology. Four different porosities
are studied for a range of low to high Deborah numbers (defined
later). We measure in detail the viscoelastic fluid flow structure
and stress development in the porous medium. We will show a
transition from a laminar Newtonian flow profile to an instable
flow configuration, and will relate it to a strong increase in
pressure drop. An analysis of the flow topology will show how
shear, extensional and rotational dominated flow regimes
change with increasing viscoelasticity for different porous
structures. Finally, we will show how the distribution of energy
dissipation in the porous medium changes with increasing
viscoelasticity and correlate this with the flow topology. This
analysis will help us to understand the interplay of pore
structure and fluid rheology in three dimensional porous
microstructures.

MODEL DESCRIPTION

The fundamental equations for an isothermal incompressible
viscoelastic flow are the equations of continuity and
momentum, and a constitutive equation for the non-Newtonian
stress components. The first two are as follows:

V-u=0 1)
Ou

pl —+u-Vu |=-Vp+2pV-D+V.1 )
ot ‘

The Newtonian solvent contribution is explicitly added to the

stress and defined as ZT]SD, where the rate of strain is

D = (Vu+(Vu)") /2. The solvent viscosity 7, is assumed

to be constant. In this work the viscoelastic polymer stress is
modeled through the constitutive FENE-P model, which is
based on the finitely extensible non—linear elastic dumbbell for
polymeric materials, as explained in detail by Bird et al. [29].
The equation is derived from molecular theory, where a
polymer chain is represented as a dumbbell consisting of two
beads connected by an entropic spring. Other basic rheological
models, such as the Maxwell model and Oldroyd—B model, take
the elastic force between the beads to be proportional to the
separation between the beads. The main disadvantage of such
models is that the dumbbell can be stretched indefinitely,
leading to divergent behavior and associated numerical
instabilities in strong extensional flows. These problems are
prevented by the use of a finitely extensible spring. The basic
form of the FENE-P constitutive equation is:
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f(‘r)r+/’t‘r =2an D,

A
with: /(1) =1+ M’ )

L2

a= 2
L-3

In equation (3) the operator v represents the upper-convected

time derivative, defined as

v

T=—+u-Vi-vu -7-1-Vu
ot

In equation (3) tr(T) denotes the trace of the stress tensor. The

“)

parameter L equals the maximum length of a FENE dumbbell

normalized by its equilibrium length. When L' >0 the
Oldroyd-B model is recovered.

We simulate an unsteady viscoelastic flow through a static array
of randomly arranged monodisperse spheres, constituting a
model porous medium, using computational fluid dynamics
(CFD). The primitive variables used in the formulation of the
model are velocity, pressure and polymer stress. All the mass
and momentum equations are considered and discretised in
space and time. A coupled finite volume — immersed boundary
methodology [1] (FVM - IBM) with a Cartesian staggered grid
is applied. In the FVM, the computational domain is divided
into small control volumes AV and the primitive variables are
solved in the control volumes in an integral form over a time

interval At .
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Figure 1. Location of primitive variables in a 3D control
volume (fluid cell).

The location of all the primitive variables in a 3D cell are
indicated in figure 1.

We apply the discrete elastic viscous stress splitting scheme
(DEVSS), originally proposed by Guénette and Fortin [30], to
introduce the viscoelastic stress terms in the Navier-Stokes
equation because it stabilizes the momentum equation, which is
especially important at larger polymer stresses. A uniform grid
spacing is used in all directions. The temporal discretization for
the momentum equation (2) is as follows,



n+l

= pu" + At {-Vp

-L[¢'+(c-¢)]

+|:(775 +17P)V2u"+] +V'T"]—EZ}

ou

®)
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Here 77!)V2u"+ and E; = anzun are the extra variables we

introduce to obtain numerical stability, where » indicates the
time index. C represents the net convective momentum flux
given by:

Czp(V-uu) (6)

Here the first order upwind scheme is used for the implicit
evaluation of the convection term (called C ; ). In the

calculation of the convective term we have implemented a
deferred correction method. The deferred correction
contribution that is used to achieve second order spatial

accuracy while maintaining stability is (C:Y -C /.) and is

treated explicitly. In this expression Cm indicates the

convective term evaluated by the total variation diminishing
min-mod scheme. A second order central difference (CD)
scheme is used for the discretization of diffusive terms.

In equation (5) the viscoelastic stress part T is calculated by
solving equation (3). The viscoelastic stress tensors are all
located in the center of a fluid cell, and interpolated
appropriately during the velocity updates. The convective part
of equation (3) is solved by using the higher order upwind
scheme.

Equation (5) is solved by a fractional step method, where the
tentative velocity field in the first step is computed from:

—vp"! _[C*f* +(C:} -C ):I 4
[(n,+7,)Vu" +V-7" ]+ pg-E
@)

pu’ = pu’ + At

In equation (7) we need to solve a set of linear equations.

The velocity at the new time step n +1 is related to the tentative
velocity is as follows:

A
un+] — u** ——tv(é‘p) (8)
P

+1 . . n+l
where O P= pn - pn is the pressure correction. As U

should satisfy the equation of continuity, the pressure Poisson
equation is calculated as:

At "
V-{—V(é‘p)}:Vu )
Yol
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We use a robust and efficient block — incomplete Cholesky
conjugate gradient (B-ICCG) algorithm to solve the resulting
sparse matrix for each velocity component in a parallel
computational environment. The solver iterations are
performed until the norm of the residual matrix is less than the
convergence criteria, which is set at 10" for our simulations.

As the viscoelastic stress tensor components are coupled
amongst themselves and with the momentum equation, the

. . n+l |
velocity at the new time level U is used to calculate the
stress value accordingly.

No-slip velocity boundary conditions at the interface between
the viscoelastic fluid and solid objects are imposed through the
immersed boundary method (IBM) at the level of the
discretized momentum equations by extrapolating the velocity
field along each Cartesian direction towards the body surface
using a second order polynomial. To ensure a relatively high
accuracy, we use a coupling method which works directly at the
level of the discretized momentum equation (5). The discrete
representation of the momentum equation is given by

ag +Y a,p,=b

nb

(10)

Where ¢, is a fluid phase variable (in this case a component of

the fluid velocity). This equation indicates that the value of ¢,

for a fluid node “c” outside of the immersed object can be
related to the values of its neighboring nodes “nb”, some of
which may lie inside the immersed object.

A schematic representation of this situation is shown in Figure
2.

P

Figure 2. Immersed boundary method implementation strategy

for a fluid variable ¢,

We use a second order interpolation to describe the value of ¢,

as a function of the local coordinate (see Figure 2).

This procedure is carried out for all solid nodes to ensure that
the boundary condition is properly satisfied for all the solid
nodes. The main advantage of using the immersed boundary
method is that it requires no conformal meshing near the fluid-
solid interface, and the method is computationally robust and
cheap.



RESULTS

We employ our method to investigate the flow of viscoelastic
fluid through a static array of randomly arranged spherical
particles in a 3D periodic domain (figure 3). The domain size is
set by the solids volume fraction @ , the diameter of each

particle dp and number of particles Np. To generate the

random packing for & <0.45, a standard hard sphere Monte-
Carlo (MC) method [31] is used. However, such a MC method
does not provide sufficiently random configurations in highly
dense packings [32]. Thus, to generate random configurations
at « > 0.45, an event driven method combined with a particle
swelling procedure is applied [33]. This ensures the particles
are randomly distributed. The same approach was followed by
Tang et al. for Newtonian fluid simulations for a range of low
to intermediate Reynolds numbers [34].

In all simulations the flow is driven by a constant body force
exerted on the fluid in the x-direction, while maintaining
periodic boundary conditions in all three directions.

Simulations of random arrays are carried out with Np =108
spheres arranged in different configurations. The particle
diameter dp is always kept constant. The solid fractions &

investigated are 0.3, 0.4, 0.5 and 0.6, respectively. Porosities
therefore range from 0.7 to 0.4.

Figure 3. Particle configuration at solid fraction & =0.4 ofa
random array of monodisperse spheres. Note that the particles
are scaled by 50% for better visualization.

For the FENE-P viscoelastic fluid we use a constant extensional
parameter (L?) of 100. The viscosity ratio is kept at 0.33. The A
is kept constant at 40 sec. As we want to study the interaction
between the viscoelastic fluid and solid for different flow
configurations we keep a constant value of L? = 100. For
reference, we also simulate a Newtonian fluid with the same
zero-shear viscosity as the polymer solution. In all our
simulations we keep the Reynolds number low, below a value
of 0.01, ensuring we are always in the creeping flow regime and
any type of inertial effects will be insignificant. Deborah

numbed is defined as De, = AU / R , based on the sphere

radius and mean flow velocity U.
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We have performed simulations for three different mesh sizes

AZRC/?)O, AZRC/40 andAZRC/SO. The results for

A=R / 40 and A= R / 50 were virtually indistinguishable,
even for Der > 1 (not shown). Thus all results in this paper are
based on the mesh size A = R / 40 . 1t should be noted that we

need to keep the CFL number lower than 0.01 in all our
simulations, leading to considerable computational costs. At

Der < 1 a larger time step can be utilized but atDe, 21, a

small time step is required for smooth convergence.

Figure 4 shows viscoelastic flow streamlines through the
random sphere packings at Der=1 for solid fractions 0.3 and
0.5. The flow direction is indicated by the arrow and selected
planes are colored with the normalized averaged flow velocity.

(b)

Figure 4. Viscoelastic flow streamlines through a random
array of monodisperse spheres at Der = 1.0 for solid fractions
(a) ¢ =03 and (b) & =0.5. The planes are colored with
normalized averaged flow velocity (arrows showing the flow
direction).

These streamlines provide an idea about the complex flow
heterogeneity in the porous media. For solid fraction 0.3, the
flow is rather homogeneous. However for solid fraction 0.5, the
pore structure triggers more tortuous flow paths and more
preferential pathways.

To quantify the viscoelastic effects we use the Darcy law for
flow through porous media. The volume averaged fluid velocity
<u> in porous media is controlled by the pressure drop across

the sample. According to Darcy’s law, for a Newtonian fluid



the relation between the average pressure gradient —ap / Ox

and the average fluid velocity across the porous medium is:

(_ dp ) _n{y)

dx k
Here k is the permeability (units: m?), which is related to the
porosity, pore size distribution and tortuosity of the porous
medium. Eq. (12) presents an operational way of measuring the
permeability £ by flowing a Newtonian fluid of known viscosity
through the porous medium. For a viscoelastic fluid, the

viscosity is not a constant but generally depends on the flow
conditions. However, if we assume & is constant for a specific

(12)

porous medium, we can still define an apparent viscosity by
using Darcy’s law. Dividing the apparent viscosity by its
corresponding flow rate limit gives us insight in the effective
flow-induced thinning or thickening of the fluid in the porous

medium. In detail, the apparent relative viscosity 77, op of a

viscoelastic fluid flowing with a volumetric flow rate ¢ and

pressure drop AP through a porous medium is given by:

(AP)
77 — q VE
q ),

Figure 5 depicts how the apparent relative viscosity changes
with an in viscoelasticity for flow through
configurations with different solid fractions. With increasing
Der we initially observe a (relatively weak) flow-induced
thinning. Then beyond a certain flow rate we observe a strong
flow-induced thickening, which means a sharp increase in flow
resistance. With increasing solid fraction (decreasing porosity),
the onset of this increased flow resistance shifts to a lower De
number. This shows that the increased fluid-solid interaction
facilitates the onset of such a flow resistance. Experimental
evidence of this increase in apparent relative viscosity was
previously reported in literature [5], especially for packed bed
systems.

(13)

increase
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Figure 5. Apparent relative viscosity versus Der number for
different porosity ¢. Here Der is based on the radius R. of the
sphere.
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The pore porosity and pore geometry are very important for the
increase in apparent relative viscosity, but this is not reflected
in the Deg number based on the radius of the spheres. Therefore,

we next try to use the square root of the permeability, Vk
obtained from Newtonian flow simulations, as the characteristic
length scale. This altered Deborah number is defined as

AU
De, =—=

Ji
versus Dey for different solid fractions. We find a collapse of all
data sets of figure 4 to a single curve for the entire range of Dex
numbers. This is remarkable considering the fact that, despite
the different arrangement of pore structures for the different
porosities, the resulting increase in flow resistance follows the
same universal thickening behaviour. However, we should keep
in mind that these results are strictly only valid for a FENE-P
type of fluid with L?> = 100 flowing through a random array of
monodisperse spheres.

. Figure 6 shows the apparent relative viscosity
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Figure 6. Apparent relative viscosity versus altered Dex, using

\/; as the characteristic length scale, for different solid

fractions. Neglecting the slight flow-induced thinning around
Der = 0.1, most data can be fitted through the correlation

n,, =1+032De,"”.

CONCLUSION

We have employed a finite volume - immersed boundary
methodology to study the flow of viscoelastic fluids through an
array of randomly arranged equal-sized spheres representing a
three dimensional disordered porous medium, for a range of
solid fractions (or porosities). Irrespective of the solid fraction,
we found a strong increase in flow resistance after a critical De
number is reached. The increase in apparent relative viscosities
measured for different solid fractions overlap with each other if
the Deborah number is chosen with a length scale based on the

AU
permeability of the pore space (more precisely, De =-—=,
ko Jk

with k£ the permeability of the medium for a Newtonian fluid.
The flow profile suggest that with increasing viscoelasticity the
flow become more asymmetric, and increasingly preferential
flow paths are found.

A more detailed study of the flow topology (not given here)
shows that for the porous media investigated in our study, shear



flow becomes more important than extensional or rotational
flow at higher De number. So, even though the flow is shear
dominated and the shear rheology is shear thinning, the
apparent viscosity from a porous medium can be flow
thickening. The likely cause of this thickening is the increased
heterogeneity of the flow pattern, which is related to so-called
elastic turbulence, and causes more energy dissipation.

More generally, simulations such as shown here help us to
understand the complex interplay between the fluid rheology
and pore structure in porous media. In our future work we will
study flow through three dimensional realistic porous media
which have a larger distribution in pore and throat sizes.
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