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Abstract—Hybrid classification services are online services that
combine machine learning (ML) and humans - either crowd
workers or experts - to achieve a classification objective, from
relatively simple ones such as deriving the sentiment of a text
to more complex ones such as medical diagnoses. This paper
takes the first steps toward a science for hybrid classification
services, discussing key concepts, challenges, and architectures,
and then focusing on a central aspect, that of ML calibration
and how it can be achieved with crowdsourced labels.

1. Introduction and Motivations

Hybrid classification refers to the process of solving
classification problems by leveraging both humans and ML
[1]. Hybrid classification services have received little atten-
tion in the literature but, in our experience are by far the
most common form of classification, especially in enterprise
context. Almost invariably, when ML is adopted in the
enterprise as well as in domains from medical to automotive,
ML attempts an inference and a decision on whether to
accept the inference or ask a human ensues, based on the
prediction confidence.

Model calibration refers to the process of adjusting
model parameters so that the prediction confidence is an
accurate estimation of the probability of the prediction to
be correct [2]. Calibration is extremely important in all
cases where failures are costly and a fallback option to
delegate decisions to human exists, from self-driving cars to
automated medical diagnosis and even in work automation.
For example, in enterprise workflow companies, a well-
calibrated model is central to the adoption of AI as it gives
customers the peace of mind to know that they have a model
that knows when it doesn’t know. Thus, the platform can de-
cide, for each inference, when to trust it (because it has high
confidence) and when instead to route the decision problem
to a person. More generally, we argue that any time asking
humans is an option, that possibility needs to be factored in
as a first-class citizen and design variable, when training and
using ML services, along with its cost (effort, money) and
benefits (possibly, a more accurate classification, especially
in cases where ML is undecided).

This paper proposes a crowd-powered hybrid classifi-
cation service. Our goal is to take a step in the direction

of developing a science for services that, automatically or
semi-automatically, combine ML, crowd and experts in a
cost-efficient and effective way to solve batch (finite item
pool) or online (infinite pool) classification problems.

Specifically, the classes of problems we tackle are those
with the following characteristics1:

• We have the option of asking humans for each clas-
sification, though at a cost. “Humans” can be experts
and/or can be “crowd worker”, accessed through a
crowdsourcing platform, such as Mechanical Turk
or Toloka.

• We have access to ML classification services, at a
cost per classification that we assume negligible with
respect to the cost of asking humans.

• The cost of asking humans is significantly less than
the “cost” of either a false positive or a false nega-
tive.

In this very common scenario, given a budget, a crowd of
labelers available at a price, a cost function for errors, and a
finite or infinite pool of items to classify, we aim at defining
a service and a policy to efficiently classify items. Again for
ease of expositions (especially for where ML and validation
are involved), we focus on tasks that require understanding
of text documents, but the concepts are generally applicable.

In this paper, we show that such a service has a few key
characteristics.

1) The service must combine the crowdsourcing as-
pects (with the well known challenges around it)
and the efficient use of ML. As we will see there are
several ways to do this, and in general the decision
on how to process each item to classify depends
on many factors, such as the quality of ML for that
item, the expected accuracy and cost of the crowd,
and the error cost structure [3]. What is common
to different strategies is that the ML inference on
an item, coupled with the estimated crowd accu-
racy in the task, may dynamically determine if we
ask for crowd votes on an item, and how many
(redundancy). None of this is supported by crowd
platforms today.

1. For simplicity of exposition we limit here to binary classification
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2) At the start of a task, we neither know how well
ML performs on that task, nor how well crowd
workers perform. We also do not know how “fast”
(how cheaply, how many labeled examples) ML
can learn, something that is particularly important
in finite pool context, where there is a trade-off
between what the best strategy (ordering) for se-
lecting items to label from the pool if our goal is
to train a model versus if our goal is to classify as
many items as possible given a fixed budget. The
ability to train a model efficiently as part of hybrid
classification services, be it via the recent “few
shots learning” approaches or the more “traditional”
active learning.

3) The key metric for the ML service component is
not the accuracy but calibration [4]. Calibration has
been largely neglected in ML literature compared
to accuracy, but in hybrid classification where the
cost for one type of error is high (and also high
with respect to the cost of asking humans), knowing
if we can trust the ML service is key, just like
it is important that experts tell us, whenever they
make a statement, if they are sure or or not. As
a consequence, the ability to estimate what crowd
and ML can do and which kind of items they can
or cannot classify accurately becomes central to the
effectiveness of the service.

In this paper, we present the concepts and architecture
of an hybrid classification service and then dig deeper on
understanding how the ML service component, when used
in a crowdsourcing context, can be trained to achieve model
calibration and reduce the calibration error.

2. Problem Statement, Approach and Service
Architecture

2.1. Problem Statement

We formulate the problem as follows. Given a set I of
items to classify2, a cost function λ (that includes cost of
false positives, false negatives, and cost of asking humans),
an ML algorithm m and a crowd of human labelers h ∈
HL, we aim at devising a hybrid classification policy (and
a supporting system architecture) that classify the items with
minimal loss.

While the problem statement is general, the interesting
cases - which corresponds to many real-life situations - are
those where the cost of machine classification is low, the
cost of errors (at least one among false positive and false
negative) is high or very high, and the cost of asking humans
sits in between. In other words, if Ch is the cost for a human
label, Cm is the cost for a machine inference, Cfp is the cost
for a false positive and Cfn the cost for a false negative,
we expect that:

Cm << Ch << max(Cfp, Cfn) (1)

2. Again, for simplicity we assume binary classification but the concepts
are generally applicable

And in fact in most cases it is safe to assume that Cm
is very small so that for practical purposes we can consider
it negligible. Assuming that to classify an item i we ask for
n crowd votes on that item, then our loss function is:

λ = Cm+n ·Ch+

 0 correct classification
Cfp false positive
Cfn false negative

(2)

Notice that this is a more general form of the problem
we stated in the introduction, where we do not assume that
humans are perfect oracles, which is why we may need
multiple opinions. Instead, for simplicity, we assume all
persons have the same costs, while in real settings different
levels of competences may command different prices.

Given the loss function above, then if we are able to
compute, for each item i, the probability P (i ∈ pos) of an
item belonging to the positive class, then we can estimate the
expected loss E[λ] if we classify the item as positive (and
similarly do the same if we classify the item as negative).
This is simply the cost independent of our classification
decision (Cm + n · Ch, which is not a random variable)
plus the loss due to a possible classification error E[λe]
which is Cfp · (1 − P (i ∈ pos)). For each item, we then
choose the classification that minimizes such expected loss.
As P (i ∈ pos) gets close to either 0 or 1, the part of
the expected loss due to classification errors gets closer to
zero. In a hybrid classification service, the way we get such
probability closer to the extremes is to either train “better”
models or ask for more crowd votes.

As an example, consider Figure 1, that shows (center
of the figure) a crowd task aiming at classifying if papers
satisfy a search criterion - and in fact, in this case, if they
satisfy all of a set of search criteria. Here we can assume
a cost for asking a scientist or set of crowd workers to do
the filtering, a cost for a false positive (including the paper
in our search results) or false negative, that is, missing the
paper while it is, instead, relevant.

2.2. Approach and Architecture

Figure 2 shows how we envision a hybrid classifica-
tion service. A crowdsourcing platform (CP) provides basic
access to users and manages payment. There are several
such platforms3, with fairly similar features, and we do not
discuss them further here. While in most cases the CP is
also responsible for “serving” the specific items to label to
users (workers), here we need to take control and override
that logic because we want hybrid classification to come into
play. Specifically, we want to be able to decide for which
items we ask crowd labels for, and to how many persons. We
also want to dynamically stop asking if the combination of
ML and the votes obtained so far gives us enough confidence
to take a decision. Therefore, the items are loaded externally
to the CP, into an item pool (on the right in the figure).

3. E.g., https://www.mturk.com or https://toloka.ai/
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Figure 1: Example task workflow, modeled for a crowdsourced systematic literature review task. On the left column, the
task designer writes the classification questions they want workers to answer, and point to the informed consent URL,

along with other crowd task parameters. The center column shows what the worker would see in a task and the
instructions given to them. The right side shows cost estimates that a platform can provide to the task designers after an

initial crowdsourcing run. Details are provided in the technical report [5]
.

Processing proceeds in batch (also because we typically
need to show batches of items to workers who label them in
quick succession - making crowd workers wait is not really
a viable option). The optimal batch can be selected via an
“active learning” component which is peculiar in this case
because we have two sometimes conflicting optimization
objectives, that of asking votes with the goal to classify
items in the pool vs asking votes based on what is best
for training an ML model that can then help us. This is
somewhat more nuanced than traditional active learning
approaches and we discuss details in the report [3].

Once we do have a batch of votes, we then classify
items, through a combination of humans and ML. As widely
done in crowdsourcing, we can leverage the many existing
techniques that compute workers’ accuracy and aggregate
votes on an item, using a variation of Expectation Maxi-
mization algorithm, such as DawidSkene [6]. However, the
approach we take is to consider the classifier as a “voter”,
much like human workers, that is, characterized by its own
“accuracy”, where the accuracy (unlike workers) varies per
item and corresponds to the prediction confidence on that
item. Once we have the votes and accuracy we predict
the class probability for each item, by first computing the

probability that an item is positive (or negative) via simple
application of Bayes rule:

Pcrowd(i ∈ pos|Vi) =
P (Vi|i ∈ pos) · P (i ∈ pos)

P (Vi)
(3)

Where Vi is the set of labels given by crowd workers
on item i. Given the workers accuracy (and therefore the
probability that each worker is correct given that the item is
positive or negative), these quantities can be easily computed
as shown for example in equation 4 of [7]. The same paper
also estimates how probability changes if we ask for more
crowd labels on i. A hybrid classification service also has the
benefit of machine prediction confidence (or, analogously, of
having the classification service return the probability of the
item being positive). We denote this with Pml(i ∈ pos). At
this point, the probability of interest P (i ∈ pos) can be
computed as the average of Pcrowd and Pml4

Notice that in some cases the classifier may be so
confident that its vote is sufficient and we do not need to
resort to any crowd vote. Notice also that while workers’

4. Possibly weighted, though this requires determining the appropriate
weights which is part of our future work.
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Figure 2: Hybrid classification service.

accuracy is independent of the items (we do not assume
the crowdsourcing tasks ask for probabilities, as that is
not commonly done and it would raise a whole set of
challenges), ML classifiers typically do output a per-item
probability and we make use of that here.

Figure 1 shows an example task workflow. This example
shows a crowd task that performs a systematic literature
review and where the strategy for selecting items to offer
crowd workers is part of the task definition and controlled
by the hybrid service rather than by the CP, because whether
we need more labels for an item depends on whether the
confidence we have thus far based on ML and current votes
and on the consequent expected loss. The interface also
shows a component that aims at estimating the cost for
classifying items in the pool.

As it is now apparent, the correct estimation of the classi-
fier confidence for each prediction is central to minimizing
classification loss. Doing so requires going into the how
ML algorithms can train well-calibrated classifiers in the
presence of crowdsourced label. What is interesting - and
difficult - here is that in such a service we have a complex
interplay between the information we obtain for crowd
(which is the only source of “truth”, although imperfect
- we do not assume crowds are oracles), the training of
the ML model, and the calibration error. This interplay in
hybrid classification services is the focus of the reminder
of the paper. We analyze and discuss this topic in the next
sections.

3. A Recap of Calibration

Hybrid classification is progressively gaining traction
with more and more papers now starting to focus on combin-
ing human and ML inputs in classification problems. Initial
work focused on very interesting ways to do this, from
learning crowd vote aggregation models from “features” of
the crowd task [8], to leveraging crowd to learn features

of ML models, as in the brilliant paper by Bernstein and
colleagues as well as others [9], [10]. In other works,
automation is used to support crowd in a variety of task-
specific ways. For example, Lasecki and colleagues show an
effective approach to support the crowd in speech captioning
by determining speech segment lengths optimal for each
worker and merging partial input of each worker [11]. These
efforts are complementary to our work since we do not aim
at finding features or assisting workers in performing a task.
Both tasks and ML algorithms are black boxes.

More recently, proposals have emerged based on training
an ML model for a task and then first using that model to
classify, then ask humans if that model’s confidence is not
high enough. For example, Callaghan et al [12] combine ML
and crowd by automatically labeling items for which the ML
confidence is above a defined threshold, and by polling the
crowd for the remaining ones. Variations of this approach
are applied in various fields, even in fashion 5.

This belief informs their crowd classification strategy
by progressively adjusting the number of votes requested
on each item based on whether the crowd confirms or
negates such belief. No prior assumption is made on ML
classifiers accuracy, and the hybrid algorithms are designed
to be robust to weak classifiers. Finally, Nguyen et al. [13]
leverage ML to identify which items to ask votes for, and
who to ask to (experts or crowd). Each time their hybrid
algorithm needs to pick up an item to classify and a type
of human classifier (crowd or expert), it computes the value
of each (item, classifier type) alternative by estimating the
reduction in overall classification loss due to the new votes
obtained divided by the cost of obtaining that loss reduction
(experts are more expensive). The reduction in loss is due
to two reasons: items become classified by crowd or expert
(both assumed to be more precise than ML, which is not
used to take classification decisions once expert or crowd

5. https://multithreaded.stitchfix.com/blog/2016/03/29/hcomp1
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opinions are provided), and the additional information is
used to train ML which in turn should ideally reduce the
uncertainty and error on the items yet to be classified.

From this prior work we borrow the general idea of
hybrid classifiers and the specific mechanisms to use ML
output in crowd classification, but our contribution lies in
how to leverage the per-item prediction confidence within a
service and on how to support model calibration in crowd-
sourcing contexts.

To tackle model calibration, [14] propose to adopt label
smoothing, where “hard” (1-0) class labels used in cross-
entropy loss are smoothed into a probability distribution
across classes. Such an approach has shown to be effective
[2], [15], [16], [17], particularly for NLP, speech, and vision
tasks [18], [19], [20], [21]. However, label smoothing and
its effectiveness is still to be studied and understood, since
probability amortization in output targets can bring extra
noises [22] and prior art does not provide insights in how
to set label smoothing hyper-parameters.

The remainder of this paper studies the effect of label
smoothing on model calibration in NLP tasks when training
labels are crowdsourced. The typical approach to deal with
crowdsourced data is to aggregate votes for each item into
a “gold” label, often using majority voting or expectation
maximization methods [23], [24]. An alternative approach
is that of creating an empirical distribution over crowd
votes. This has been referred to as the soft target approach,
[25], [26] and has shown to be effective in improving
model performance in image classification [27] and emotion
recognition from audio [28], [29].

While existing work has found that model performance
is sensitive to noise in soft targets [30], none has inves-
tigated the effect of label fusion methods (widely used in
crowdsourcing to aggregate human answers into one label,
e.g., D&S [31] and GLAD [32]) on model training.

4. Label Smoothing

The crowdsourcing-label fusion-training pipeline is a
commonly used pipeline and addressing the impact on cali-
bration is therefore crucial to being able to generate “trust-
worthy” models. Specifically, in this work, we propose soft
target methods that can incorporate any label fusion method:
we present label fusion methods that accept raw crowd votes
and output label probability distributions for every sample
in the dataset, and where these label distributions are then
used as soft targets to train well-calibrated neural models.

We evaluate our approach on 13 crowdsourced datasets
and evaluate the effect of both soft targets and label smooth-
ing in training the multi-layer perceptron and DistilBERT,
a deep transformer model [33]. Our results show that soft
targets are more effective for model calibration than label
smoothing. We further demonstrate that our proposed soft
target methods substantially improve both model perfor-
mance and probability calibration across datasets of different
noise levels, and this improvement is more obvious when
they are used to train the deep transformer model.

We consider multi-class text classification task with L
classes {1, 2, .., L} where a classifier predicts p(l|x), the
probability that document x belongs to class l. We assume
that, as commonly done, training aims at minimizing cross-
entropy loss loss = −

∑L
l log(p(l|x)) ·π(l|x), where π(l|x)

here takes 1 if l is equal to the true label l∗ and 0 otherwise,
i. e., π(l|x) here is the hard target.

In deep learning, label smoothing can be considered as a
regularization technique for preventing the model from over-
fitting and from becoming overconfident in the classification
decisions [14]. Thus, the ground-truth label distribution can
be smoothed by adjusting π(l|x) as follows:

πls(l|x) =

{
(1− α) + α

L , l = l∗,
α
L , l 6= l∗;

(4)

where α ∈ [0, 1] is a hyper-parameter determining the
amount of smoothing.
Soft Targets. We now introduce our approaches for soft
targets leveraging crowd labels. When a requester crowd-
sources a dataset, it is common to collect several crowd
labels per sample that allow us to infer the probability dis-
tribution over classes. For each pair (x, l), we can compute
probabilistic confidence of sample x has ground-truth label
l using a label fusion technique F that aims to map crowd
votes into a class decision or a probability distribution πf
across classes, typically based on trying to estimate workers’
accuracy A and factor it in while aggregating crowd votes.
Formally, F is a function that takes crowd labels as input,
and outputs a set of workers’ accuracies A and a probability
assignment πf over the classes for every sample:

F : crowd labels→ 〈πf , A〉, (5)

Common examples of fusion methods are, e.,g.,
GLAD [32], or D&S [31]. By doing so, we can create soft
targets according to Eq. 5 and incorporate them in the loss
function. Note that now πf (l|x) comes from the ‘natural’
distribution of crowd-contributed labels as well as fusion
methods, rather than from arbitrary smoothing with pre-
selected hyper-parameters as in label smoothing methods.
Furthermore, each data point is smoothed differently, ac-
cording to the ambiguity as perceived by the crowd.

5. Experimental Setup

5.1. Datasets

Our study relies on 5 binary and 8 multi-class crowd-
sourced datasets. As finding public crowdsourced datasets
with individual crowd votes is challenging, we chose ten
datasets6 (Table 1) provided by Appen for different text
classification tasks. These datasets come from text-based
crowdsourcing tasks (mainly classification), but the only
”ground truth” information available comes from aggregat-
ing workers’ votes. Neither the individual votes, nor the
details on how the crowd experiment was run are available.

6. https://appen.com/resources/datasets/
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TABLE 1: Dataset properties.
Dataset Class Train/val/test Noise ratio

1. First GOP debate sentiment analysis (GOP2-sentiment) 2 6195/ 576/ 628 0.07
2. Disasters on social media (Disaster-relevance) 2 7557/ 740/ 684 0.09
3. Do these chemicals contribute to a disease? (Chemicals&Disease) 2 3088/ 186/ 162 0.16
4. Economic news article tone and relevance (News-relevance) 2 5098/ 452/ 526 0.13
5. Corporate messaging (Corporate-messaging) 3 2615/ 120/ 117 0.08
6. First GOP debate sentiment analysis-Sentiment (GOP3-sentiment) 3 11669/ 540/ 348 0.19
7. Twitter sentiment analysis: Self-driving cars (Self-driving-cars) 3 5399/ 150/ 147 0.04
8. Drug relation database (Drug-relation) 3 1866/ 75/ 72 0.01
9. Indian terrorism deaths database (Deaths-in-India) 3 25622/ 300/ 237 0.20
10. GOP tweets subject categorization (debate-subject) 5 1206/ 150/ 135 0.04

TABLE 2: Macro F1 and ECE results in % for NN1 and D-BERT with smoothed and soft targets.
1.GOP2-sentiment 2.Disaster 3.Chemicals&Disease 4.News 5.Corporate Messaging 6.GOP3-sentiment 7.Self-driving cars 8.Drug Relation 9.Deaths in India 10.Debate-subject
F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE

NN1-Hard labels 78,5 11,0 82,4 9,8 74,5 20,4 75,1 13,9 89,8 3,2 65,3 6,4 66,7 6,3 66,0 7,3 83,2 7,4 88,2 4,0
NN1-Soft 79,7 18,3 82,9 20,2 70,4 6,4 75,8 15,3 86,4 5,4 66,6 4,9 66,8 5,8 71,1 3,6 82,1 5,8 88,9 2,1
NN1 (α = 0.05) 73,4 14,3 82,5 17,6 76,5 18,6 73,4 14,3 90,6 5,2 64,9 7,5 70,4 5,0 73,7 3,0 80,5 4,8 88,1 7,4
NN1 (α = 0.1) 73,7 13,2 82,3 19,0 68,7 13,6 73,7 13,2 90,6 9,8 65,5 8,6 70,8 7,8 69,8 8,5 82,3 4,8 88,1 6,0

D-BERT-Hard labels 78,2 8,4 78,5 13,6 75,2 22,3 72,0 21,4 89,7 9,0 59,3 31,8 59,0 25,5 80,7 13,7 81,4 13,3 80,7 18,1
D-BERT-Soft 78,2 11,2 82,3 10,7 71,4 16,4 72,7 18,9 87,9 4,1 63,1 11,1 55,0 17,7 79,4 4,9 84,0 6,0 83,7 3,8
D-BERT (α = 0.05) 59,2 18,2 79,9 12,8 65,6 25,8 72,6 17,5 87,1 6,7 59,9 25,3 52,3 25,2 80,7 8,9 81,2 10,3 80,0 15,4
D-BERT (α = 0.1) 76,6 3,3 81,0 3,5 73,3 26,3 70,3 24,6 89,7 2,3 63,3 18,2 56,0 21,3 79,1 8,0 81,6 5,1 80,7 12,5

This situation required us to examine the ground-truth
we had and assess how noisy are the aggregated labels. Two
authors manually re-annotated each dataset to analyze how
accurate the labels are. We checked the content (eg., tweets)
and annotated it. We observed that on average, we do not
agree with 10% of the aggregated crowd labels (and up to
20% for some datasets!). This indicates that crowdsourced
labels can be noisy even after collecting multiple votes
per sample. Our manual annotations of test datasets are
presented in the (anonymized) project repository7.

The aforementioned datasets give us only one statistic
(i.e., confidence) about the distribution of labels8; however,
we wanted to explore if having individual crowd votes
rather than the aggregated ones and employing different
label fusion algorithms might give us more insights. To
this end, we use three additional textual datasets with ac-
tual crowd labels as well as the ground truths: i) Movie-
Reviews (3-classes) [34], ii) Reuters-21578 (8-classes) [35],
iii) Amazon-Reviews (binary)9.

5.2. Configurations and Training

We evaluated: i) a simple one-layer neural network
(NN1) with text vectorized via tf-idf, and ii) fine-tuned the
DistilBERT model D-BERT [33] (6 layers, 768 hidden dim,
12 heads, 65M parameters) to compare the behavior on
different models. We trained them with the cross-entropy
loss using: i) hard targets (one-hot encoded labels), ii) label
smoothing (Eq. 4), and iii) the proposed soft (Eq. 5) targets.
We tested the impact of three label fusion methods: i)
Majority Voting (MV), ii) D&S [31], which models worker
reliability, and iii) GLAD [32], which further considers the
task difficulty. Following [15], [36], we considered α = 0.05
and α = 0.1 for label smoothing.

7. https://github.com/Evgeneus/Label-Smoothing-in-Text-Classification
8. https://tinyurl.com/Calculate-a-Confidence-Score
9. https://github.com/TrentoCrowdAI/crowdsourced-datasets

TABLE 3: Performance of NN1 and D-BERT with targets
obtained from different fusion methods.

Model Movie-Reviews Reuters-21578 Amazon-Reviews
ECE F1 ECE F1 ECE F1

NN1-Hard labels (MV) 4,2 58,5 4,7 63,6 11,0 95,8
NN1-Soft (MV) 3,1 59,8 5,3 65,1 12,6 95,8
NN1 (α=0.05, MV) 8,2 53,5 6,1 64,6 17,3 95,7
NN1 (α=0.1, MV) 10,4 55,3 5,4 65,5 20,8 95,8
NN1-Hard labels (DS) 14,3 57,6 3,6 72,4 11,0 95,8
NN1-Soft (DS) 8,7 58,5 4,5 70,9 10,6 95,7
NN1 (α=0.05, DS) 9,5 56,1 2,9 70,8 17,3 95,8
NN1 (α=0.1, DS) 8,7 55,2 4,7 69,7 20,8 95,8
NN1-Hard labels (GLAD) 4,5 57,7 3,1 67,1 10,5 96,0
NN1-Soft (GLAD) 6,6 56,9 4,1 70,6 10,9 95,7
NN1 (α=0.05, GLAD) 9,3 52,5 3,7 68,6 17,1 95,8
NN1 (α=0.1, GLAD) 7,0 55,7 4,4 69,6 20,6 95,8

D-BERT-Hard labels (MV) 36,5 56,3 - - 5,9 93,0
D-BERT-Soft (MV) 21,1 54,9 - - 5,3 92,4
D-BERT (α=0.05, MV) 25,7 57 - - 7,3 92,4
D-BERT (α=0.1, MV) 21,6 56,7 - - 11,5 93,0
D-BERT-Hard labels (DS) 34,2 56,5 - - 3,3 92,7
D-BERT-Soft (DS) 34,1 53,6 - - 2,0 93,1
D-BERT (α=0.05, DS) 23,0 58,5 - - 7,7 92,8
D-BERT (α=0.1, DS) 31,6 49,4 - - 10,3 93,1
D-BERT-Hard labels (GLAD) 36,1 56,6 - - 9,2 91,1
D-BERT-Soft (GLAD) 20,4 58,2 - - 2,1 94,1
D-BERT (α=0.05, GLAD) 29,5 54,9 - - 7,7 92,8
D-BERT (α=0.1, GLAD) 24,5 55,6 - - 12,8 93,4

For each (NN1, training target) configuration, we per-
formed grid search for the following hyperparameters on
validation set: min Document Frequency, num. TF-IDF fea-
tures, word n-gram range, learning rate, weight decay, and
class weights. For each (D-BERT, training target) config-
uration, using validation set we searched for learning rate
and a few options for class weights depending on the class
distribution; the rest of the parameters remained as default.
The networks were trained using ADAM optimizer iterated
up to 500 epochs for NN1 and 100 epochs for D-BERT with
early stopping. We set the batch size of 32 for D-BERT
and the sequence length of 512 WordPiece tokens. The
experiments details, datasets, and source code are available
online7.

Evaluation Metrics: To evaluate both prediction and confi-

47



TABLE 4: Macro F1 and ECE results in % with sHard targets; bold numbers shows sHard outperforms hard targets.
1.GOP2-sentiment 2.Disaster 3.Chemicals&Disease 4.News 5.Corporate Messaging 6.GOP3-sentiment 7.Self-driving cars 8.Drug Relation 9.Deaths in India 10.Debate-subject
F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE

NN1-sHard 79,8 6,8 82,9 9,2 71,3 15,4 74,9 11,1 90,6 2,0 66,0 5,8 66,0 4,2 66,0 5,6 82,9 4,6 88,9 3,4
D-BERT-sHard 76,8 5,5 80,5 12,4 77,1 20,3 72,6 15,9 90,6 7,6 60,1 28,1 57,0 27,0 80,7 11,9 86,2 9,3 78,7 20,7

dence quality for the classification models, we use two met-
rics: i) macro F1 score and ii) ECE, which measures the dif-
ference in expected accuracy and expected confidence [37].
The smaller the ECE score, the better the calibration of the
model.

6. Results

Table 2 reports the results of label smoothing and soft
targets with NN1 and D-BERT. Across the ten Appen
datasets, results are inconclusive: soft targets provided com-
parable results in terms of F1 while gave mixed results for
ECE across the datasets: in many cases label smoothing
collapsed ECE score in NN1 model (by 0.9% for α=0.05
and 1.5% for α=0.1 on average). The same applies inde-
pendently of how we encode text (eg, the cited additional
material report on LSTM encoding)7.

D-BERT is a more interesting case as we know that
calibration issues arise mainly with deep nets [2]. Train-
ing D-BERT model with soft labels from crowd gives an
improvement in ECE for nine datasets (7.2% of average
improvement across 10 datasets), and a boost in F1 for 6
out of 10 datasets. In contrast, label smoothing also can
improve ECE (from 1% to 9% depending on the chosen α
parameter) but always harm F1 score.

On datasets with individual crowd labels, we can also
experiment with different fusion methods. We show the
results in Table 3. Label smoothing here shows mixed results
(improves on ECE on Movie-Reviews data but does signifi-
cantly worse in ECE on Amazon-Reviews where the training
labels are very accurate - and we do not have results for D-
BERT on Reuters-21578 as the data did not contain raw
texts) In contrast, the proposed soft target method improved
ECE (up to 15.7%) across all datasets. Notably, for GLAD
fusion method, soft target method enhanced both F1 (up to
15.7%) and ECE (up to 7.1%) on D-BERT model across
the datasets with both high and low levels of label noise.
This is in part due to the better performance of GLAD in
truth inference and due to the fact that GLAD generates
less skewed label distributions allowing the soft method to
handle the noises.

7. Soft-Hard Targets

While the results from soft targets are promising, we
also consider a different approach that does the one-side
smoothing, that of the most likely label as identified by the
fusion method. We call this approach as soft-hard (sHard)
as it can be seen as a soft target approach but also as a
hard one where samples are weighted by the ground truth

probability of the most likely label (note that in this case
π(l|x) is no longer a valid distribution):

πsh(l|x) =

{
πf (l|votes,F), l = l∗,

0, l 6= l∗,
(6)

We tested sHard (Eq. 6) targets following the configura-
tions explained in Section 5.2. Results show that NN1 with
sHard targets always led to improvement of ECE (1.7%
on average), while F1 remained comparable to the models
trained on hard labels (Table 4). When we compare the
ECE performance of sHard to Soft and label smoothing, we
see that sHard outperforms label smoothing on 7 datasets
and Soft targets on 6 datasets. Training D-BERT model
with sHard targets provides an improvement of ECE for 8
datasets out of ten (1.8% of average improvement across 10
datasets), and improves F1 for 7 datasets as to using Hard
labels during the training. Finally, sHard improves ECE on
2 datasets that have individual crowd votes while remaining
comparable on 1 dataset (Table 5).

TABLE 5: Performance of NN1 and D-BERT with sHard
targets obtained from different fusion methods.

Model Movie-Reviews Reuters-21578 Amazon-Reviews
ECE F1 ECE F1 ECE F1

NN1-sHard (MV) 4,3 60,2 5,1 64,3 10,3 95,5
NN1-sHard (DS) 10,5 58,2 3,7 72,3 10,4 95,7
NN1-sHard (GLAD) 5,7 58,6 3,4 67,1 10,8 95,8

D-BERT-sHard (MV) 35,9 57,4 - - 4,9 92,5
D-BERT-sHard (DS) 30,0 57,9 - - 3,3 92,1
D-BERT-sHard (GLAD) 35,2 56,4 - - 5,1 93,3

TABLE 6: Avg. improvement in % to hard labels.
Model F1 ECE Model F1 ECE
NN1-sHard 0.04 -1.7 D-BERT-sHard 0.6 -1.8
NN1-Soft 0.1 -0.7 D-BERT-Soft 0.3 -7.2
NN1 (α=0.05) 0.3 0.9 D-BERT (α=0.05) -3.6 -1.1
NN1 (α=0.1) -0.4 1.5 D-BERT (α=0.1) -0.3 -5.2

Table 6 summarizes the results by showing the average
improvement of the models trained on sHard/Soft/Smoothed
targets to the models trained on hard targets (our baselines).
Results show that our proposed Soft and sHard target meth-
ods substantially improves the model calibration.

8. Limitations - and the Road Ahead

This work scratches the surfaces of hybrid classification
services and the science behind them. We have shown the
centrality of calibration in contexts where the loss function is
skewed and where the cost of errors is high compared to the
cost of asking humans. We have also shown the effect of soft
and soft-hard targets in text classification with crowdsourced
data, across several datasets and fusion methods. The ef-
fect on calibration error and the benefits of the proposed
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approach are manifest for deep models, that are known to
be more affected by calibration issues. While promising,
the initial work requires deeper investigations: we need to
expand experiment to other deep network architectures and
get a deeper understanding of what drives the behaviors
we are seeing. The same is true for label fusion methods
and related datasets and classification problems, including
especially the classification problems with a high number
of classes and varying degree of noise. Finally, we need to
integrate the modules into an hybrid classification service
and test it “end to end”, progressively building a science that
can eventually put classification tasks on autopilot so that
crowd and ML, and their integration, becomes a commodity
rather than an art and a hard challenge.
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