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Ab initio prediction of vacancy properties in concentrated alloys: The case of fcc Cu-Ni
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Vacancy properties in concentrated alloys continue to be of great interest because nowadays ab initio supercell
simulations reach a scale where even defect properties in disordered alloys appear to be within reach. We
show that vacancy properties cannot generally be extracted from supercell total energies in a consistent manner
without a statistical model. Essential features of such a model are knowledge of the chemical potential and
imposition of invariants. In the present work, we derive the simplest model that satisfies these requirements and
we compare it with models in the literature. As illustration we compute ab initio vacancy properties of fcc Cu-Ni
alloys as a function of composition and temperature. Ab initio density functional calculations were performed
for SQS supercells at various compositions with and without vacancies. Various methods of extracting alloy
vacancy properties were examined. A ternary cluster expansion yielded effective cluster interactions (ECIs) for
the Cu-Ni-Vac system. Composition and temperature dependent alloy vacancy concentrations were obtained
using statistical thermodynamic models with the ab initio ECIs. An Arrhenius analysis showed that the heat of
vacancy formation was well represented by a linear function of temperature. The positive slope of the temperature
dependence implies a negative configurational entropy contribution to the vacancy formation free energy in the
alloy. These findings can be understood by considering local coordination effects.
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I. INTRODUCTION

Nowadays, ab initio prediction of point defects and diffu-
sivities in pure metals have become commonplace. Especially
for self-diffusion and for impurity diffusion in dilute alloys,
generally good agreement has been found with experimental
data [1–8]. For point defects in pure metals, generally excellent
agreement with high temperature experimental data can be
achieved provided that sufficient thermal excitation effects are
included [9–11]. Point defects in alloys are more complicated
than point defects in pure metals due to the multiple local
environments. In so far alloys have been considered, it is
usually in the low-point defect concentration limit so that point
defects can be assumed to be noninteracting. Within these
limitations, point defect properties in ordered structures such
as B2-AlNi [12–16], B2-FeAl [12,17,18], and L12-Ni3Al [19]
have been theoretically studied. As described in Refs. [14,19],
special attention should be paid to the definition of the single
defect formation energy for ordered alloys because it is
nontrivial to define and compute supercell energy differences
under the constraints of a constant number of atoms and
constant degree of order. Therefore, the common strategy to
solve this problem is to minimize a grand canonical potential
(i.e., fixed number of lattice sites and varying number of
atomic species). In this approach chemical potentials are used
as Lagrange multipliers to preserve composition. Oftentimes
in energy considerations little thought is given then to the
requirement of preservation of, e.g., volume, as atoms in the
reservoir are exchanged with the supercell. Likewise other
parameters are oftentimes not clearly defined with respect
to what state variables are held fixed (pressure or volume;
entropy or temperature, order parameter, or ordering energy).
Nevertheless, this method has found widespread use when
dealing with ordered structures.
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In disordered crystalline materials, such as substitutional
alloys, experimental information on vacancies and diffusivities
is scarce (see, e.g., Refs. [20,21]), and from the theoretical
side also, there have been rather few studies that deal with
specific alloy systems. Initially using empirical potentials [22–
25], and later through ab initio approaches, both through
supercell calculations [26–29] and ab initio based cluster
expansions [30–33], it has been established that the local
atomic environment around a vacancy plays a significant role.
While the influence of vacancies on phase stability [30,34]
and kinetics [31–33] received some attention for Al-Ni [30],
Sc-S [34], and Al-Li [31–33] alloys, the actual vacancy
properties in specific alloys were mostly neglected with the
exception of an empirical potential study of Cu-Ni alloys
by Zhao et al. [24]. In the latter study [24] vacancies were
studied with an embedded atom method (EAM) potential and
structural relaxation, vibrational, and configurational effects
were included. This very comprehensive approach did not lead
to a clear identification of how the structural, configurational,
and vibrational effects individually contributed to vacancy
properties, and the complexity of the treatment did not allow
one to extract rules of thumb that might be extrapolated to
other alloy systems. On the other hand, there are various
lattice gas models that treat vacancies through Bragg-Williams
or quasichemical approaches [14,35–41] that are transparent
enough to extract rules of thumb. But these studies suffer from
a too simple representation of the energetics, such as including
pairwise nearest neighbor interactions only, that are applicable
to very few actual alloys. Vacancy properties in disordered
alloys were investigated also by studying vacancies embedded
in an effective medium, such as that defined by the coherent po-
tential approximation (CPA). CPA implementations such as the
locally self-consistent Green’s function (LSGF) method [42]
or exact muffin-tin orbital (EMTO) method [43] were shown
to give composition dependent vacancy properties in alloys at
T = 0 K. However, the CPA based methods consider the local
vacancy environment only in an averaged way, and tend to
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neglect the temperature dependence of the local environment
and oftentimes neglect local structural relaxations or limit
relaxation to the nearest neighbor shell.

Therefore, in the current work we will consider structural
relaxation and configurational effects realistically, and attempt
to describe the alloy-vacancy system in a simple enough
model so that vacancy properties emerge as a function of
a small number of intuitive parameters. As the vacancy
concentration in disordered alloys is generally very low, we
neglect intravacancy interactions and do not concern ourselves
with vacancy clusters. In the following, we introduce a
formalism to extract vacancy properties from supercell and
cluster expansion approaches. We show how a simple cluster
expansion can give rise to nontrivial vacancy properties in
the alloy, such as negative configurational vacancy formation
entropies and vacancy induced short range order. Finally, we
give some general tendencies for vacancies in alloys based
on phase separation and ordering tendencies in substitutional
alloys.

II. THEORY

We consider the problem of vacancy formation energies
in disordered alloys, a problem that recently is receiving
increased attention [27,28,31,33]. We limit ourselves initially
to configurationally random alloys, i.e., the reference state is
the configurationally random state without vacancies. This is
not only for simplicity, but also because it uniformly applies
to all substitutional alloys far enough above the transition
temperature. The extension to alloys with short range order is
briefly discussed later. To describe a defect formation energy,
it is good to make a brief sojourn to the basic definition via the
first law of thermodynamics:

dE =
∑

YdX

= T dS − PdV +
∑

i

μidNi + εSROdηSRO

+�EddNd + · · · , (1)

where Y represents intensive variables that are system size
independent, while X represents extensive variables that are
proportional to system size. A matching pair of Y and X are
usually referred to as conjugates. Subscript i refers to an atomic
species, εSRO is an effective interaction energy associated with
short range order (SRO). ηSRO is an extensive short range order
parameter, which could simply be a combination of the number
of like atom pairs and of unlike atom pairs, while �Ed is the
energy and Nd is the number of a particular kind of defect. It
then follows that the defect energy may be defined as

�Ed = dE

dNd

∣∣∣∣
S,V,Ni ,ηSRO,...

, (2)

where the interest lies in the parameters that are held constant,
the “invariants.” As we generally are more apt to work at
constant pressure this equation can be conveniently rewritten
in terms of the enthalpy. At finite temperatures Eq. (2)
needs a modification because the configurational entropy is
nonanalytic in the low (defect) concentration limit. Then, the
configurational entropy contribution due to the defect species

under consideration must be explicitly excluded. In the case
of substitutional point defects this gives

�G̃d = dG̃

dNd

∣∣∣∣
T ,P,Ni ,ηSRO,...

, (3)

where the excess Gibbs energy is defined in the usual way,
namely by excluding the ideal mixing contribution

G̃ = G − NkBT [xd ln(xd ) + (1 − xd )ln(1 − xd )], (4)

with N representing the total number of atomic positions,
and xd = Nd/N being the fraction of atomic positions that is
occupied by the point defects.

A. Problematic supercell calculations

In order to facilitate the link with ab initio supercell
calculations, we consider how the defect formation enthalpy
�Hd might be extracted from periodic supercell calculations
by replacing a derivative with a finite difference. Moreover,
the T = 0 K case will be considered here which is typical for
ab initio calculations. It should be emphasized that the result
of this exercise is that vacancy properties in disordered, or less
than perfectly ordered, alloys cannot be derived from supercell
calculations alone. An additional statistical thermodynamic
model is essential. At T = 0 K the entropy contribution
vanishes so that H takes the same value as the free energies G

and G̃:

�Hd = dH

dNd

∣∣∣∣
T =0,P ,Ni ,ηSRO,...

= [Hsc+d − Hsc]T =0,P ,Ni ,ηSRO,....

(5)

Below, the invariants will be omitted for brevity. When
the defect is a vacancy, the requirement of keeping the
number of atoms constant means that an appropriate term for
compensating the energy loss of the vacated atom must be
included:

�Hvac = [Hsc+vac − Hsc + μ], (6)

where μ is the chemical potential of the vacated atom. For a
pure metal μ is simply the energy of the supercell divided by
the number of atoms in the supercell. However, in a disordered
alloy, say with atomic species A and B, the μ term depends on
the type of atom removed to make the vacancy. Moreover, μi

is the chemical potential of atomic species i (i = A or B) in
the alloy, which generally differs from μi in the pure element,
as was erroneously assumed in Eq. (5) in Ref. [27]. It is now
apparent also why an enthalpy formulation is preferable over
an energy formulation because maintaining equal pressure is
much easier than maintaining equal volume in the supercell
with vacancy plus that of the i atom vis-a-vis the supercell
without the vacancy.

In binary A-B random alloys, vacancies can be surrounded
by various numbers of A and B atoms unlike the pure element
case. In the nearest neighbor shell of an fcc alloy the 12 nearest
neighbors of a vacancy can range from 12 A and 0 B atoms
all the way to 0 A and 12 B atoms. The composition of the
nearest neighbor shell, and of more distant neighbor shells,
affects the vacancy formation enthalpy. It is then apparent
that “the vacancy formation enthalpy” in a disordered alloy
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requires a careful definition because the vacancy formation
enthalpy must be a function of the atomic neighborhood of
the vacancy, the composition of the alloy, and other factors.
In order to preserve the composition of the alloy, A and B
atoms need to be removed according to their composition, that
is xA times an A atom and xB times a B atom. It follows that
a weighted average over A and B removed supercells must be
considered,

�Hvac(xA,xB) = xA[Hsc+vacA
+ μA − Hsc]

+ xB [Hsc+vacB
+ μB − Hsc]

= xA[Hsc+vacA
− Hsc]

+ xB [Hsc+vacB
− Hsc] + Hsc/N

=
[
xAHsc+vacA

+ xBHsc+vacB
− N − 1

N
Hsc

]
,

(7)

where N is the number of atoms in the supercell without
vacancy. Of course actual supercells contain small numbers of
atoms only, and therefore they poorly satisfy the invariants.
Removing a certain atom from a supercell changes the
composition and the state of order. For solid solutions without
any short or long range order, the most configurationally
representative supercells are constructed as special quasiran-
dom structures (SQSs) which, for all presupposed important
correlation functions in the alloy, reproduce the values for
truly random structures [44]. In such a supercell one can then
remove one atom at a time, and define the vacancy formation
enthalpy as an appropriate average:

�Hvac(xA,xB) = 1

N

N∑
i=1

[
HSQS−atomi

− N − 1

N
HSQS

]
. (8)

However, the above equation is actually not physically relevant
because it averages over vacancy neighborhoods. In an actual
alloy vacancies would occur where favorable local neighbor-
hoods exist, so that the effective vacancy formation enthalpy
should be tilted towards the lowest enthalpy neighborhoods.
In a random alloy with low A concentration, it is improbable
to find neighborhoods with exclusively A atoms, even if
that type of neighborhood were to give the lowest vacancy
formation enthalpy. Therefore, the tilting towards the lowest
enthalpy configurations is limited by combinatorial factors. If
the effective interactions between vacancies and A or B atoms
are limited to the near neighbors, the sum in Eq. (8) could
be limited to those atomic positions which have a particular
neighborhood α only,

�Hα
vac(xA,xB) = 1

Nα

Nα∑
iα=1

[HSQS−atomiα
+ μi − HSQS]. (9)

Where Nα refers to the number of sites in the SQS su-
percells with neighborhood α. This definition is akin to
Refs. [24,43,45,46]. The chemical potentials of the A and
B atomic species in the solid solution (at T = 0 K) can be
obtained by fitting an interpolation formula, usually some
low-order polynomial in the composition, to the solid solution
enthalpy. In the earlier work [45,46] the chemical potential was
obtained by averaging over various ordered structures, which

for disordered alloys is likely to be less reliable than using
SQSs.

In practice, it is rather cumbersome to generate SQS super-
cells that contain all types of neighborhoods. Just considering
the nearest neighbor shell in fcc solid solutions alone gives
144 distinct configurations [47] in a binary alloy. Therefore, it
is usually more efficient to compute neighborhood dependent
vacancy formation enthalpies through cluster expansions [31–
33].

B. Cluster expansion

In the cluster expansion approach the A-B alloy with va-
cancies is treated as a ternary with the vacancy as an additional
species [30–33,48,49]. As the vacancy concentration in actual
disordered alloys is usually very low, and vacancy clusters in
thermally equilibrated alloys are rare, such cluster expansions
typically do not require determination of vacancy-vacancy
interaction terms. This significantly reduces the number of
effective cluster interactions (ECIs) that are needed for a good
representation of the energetics of alloys with vacancies.

Here we follow the site occupation variable definition p
as in Refs. [50–52], where the site occupation is represented
as a vector with as many components as there are species
in the alloy, here vacancy, A, and B atoms. For convenience
the vacancy could be designated as a type “C” atom, an idea
already expressed earlier in Refs. [30,34,48,49,53,54]. The
occupation variable for every site i thus has vector components
p(C), p(B), and p(A). p(Q) is the probability that a site is
occupied by the species Q. For a particular site i, p(Q) takes
the value zero, except when the actual occupancy at that site
is “Q” in which case it equals unity.

As every site is occupied by one and only one of these three
species, it follows that for every site there exists a “sumrule”:
p(C) + p(B) + p(A) = 1. Therefore, one of the components is
redundant. Specifying p(C) and p(B) fully determines the value
of p(A) through p(A) = 1 − p(C) − p(B).

Sumrules apply not just to individual sites but to clusters
also. In a cluster each site is occupied by one of the
species in the alloy, giving rise to the concept of a “cluster
decoration” where each site in a cluster is decorated with
an atomic species. The sum of the probabilities for all the
cluster decorations is unity for each cluster in the alloy. For
instance, the sum of probabilities for pair decorations, here
for a ternary alloy: p(AA) + p(AB) + p(AC) + p(BA) + p(BB) +
p(BC) + p(CA) + p(CB) + p(CC) = 1.

Using these sum rules, it can be trivially shown that redun-
dancy can be removed by eliminating the cluster decoration
probabilities involving one of the species in the alloy. In
other words, all cluster decoration probabilities in a ternary
A-B-C alloy can be completely determined by specifying the
probabilities of decorations involving the species C and B only.
Generally, in an alloy with Nsp species, the cluster decoration
probabilities involving Nsp − 1 species can be used as a basis
set of nonredundant variables, i.e., as correlation functions, to
fully describe the probabilities, i.e., the configuration [55]. In
the case of a binary alloy, this means that the cluster decoration
probabilities of pure B cluster decorations pγ (where we have
eliminated the B superscripts for brevity) fully describes the
configurational order, so that the enthalpy of a binary alloy
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with structure σ can be given as

Hσ =
∑

γ

Jγ pσ
γ , (10)

where γ indicates a cluster and Jγ is an effective interaction
enthalpy associated with a pure B cluster decoration, as
was formally proven in Ref. [55]. Considering vacancies as
a ternary species, and considering isolated vacancies only,
Eq. (10) can be adapted to include vacancies in alloys,

Hσ =
∑

γ

Jγ pγ +
∑
γ ′

Jγ ′pγ ′ , (11)

where the second term involves cluster decorations γ ′ in which
one B species is substituted by a vacancy. The single site
term in the second sum, γ ′ = C (vacancy), pertains to the
vacancy formation enthalpy in pure A JC and the probability
of finding a vacancy pC . Of course Eqs. (10) and (11) can be
written equally well in terms of the Gibbs energy excluding the
configurational entropy part in terms of temperature dependent
effective interactions [56].

The enthalpy of the random binary alloy is easily obtained
from the cluster expansion because all the cluster decoration
probabilities are products of single site decoration probabili-
ties, that is, atomic concentrations. On the fcc lattice, consid-
ering nearest neighbor pair and nearest neighbor equilateral
triangle ECIs only, this gives

Hrnd(xB) = J0 + xBJ
(B)
1 + x2

Bn2,1J
(BB)
2,1 + x3

Bn3,1J
(BBB)
3,1 ,

(12)

where J0 is a so-called empty cluster “interaction” which
serves to define the enthalpy of pure A and nγ is the number
of clusters of type γ per lattice site; γ indicates the number of
sites in a cluster, followed by a type, e.g., (2,1) for a nearest
neighbor pair, (2,2) for a second nearest neighbor pair [57]. For
the fcc lattice, n2,1 = 6 and n3,1 = 8. The enthalpy of mixing
and the formation energy of any structure σ is obtained by
subtracting the enthalpy from the pure end members HA(HB),

Hmix(xB) = Hrnd(xB) − xBHB − xAHA, (13)

Hform,σ (xB) = Hσ (xB) − xBHB − xAHA. (14)

The T = 0 K chemical potentials of A and of B are extracted
from the random enthalpy,

μA(xB) = J0 − 6x2
BJ

(BB)
2,1 − 16x3

BJ
(BBB)
3,1 , (15)

μB(xB) = J0 + J
(B)
1 + 6xB (2 − xB)J (BB)

2,1

+ 8x2
B (3 − 2xB )J (BBB)

3,1 . (16)

If the solid solution is not random, one can generate configu-
rations that satisfy predefined degrees of long or short range
order [58], e.g., through Monte Carlo algorithms. The ECIs are
obtained by inverting Eq. (10) through the so-called structure
inversion method, described in detail elsewhere [57,59,60].
An expression for the formation enthalpy of a vacancy in an
alloy is derived from Eq. (11) by considering which bonds are
broken and which bonds are created when an A or B atom
is replaced by a vacancy while imposing the requirement of
keeping the number of atoms constant. To include the effect

of the neighborhood, we consider an atom surrounded by a
particular neighborhood α formed by first, and optionally more
distant neighbor shells, embedded in the alloy. Considering the
nearest neighbor shell only as a neighborhood, this gives

�H
(α)
vac(A)(xB) = J

(C)
1 + n

(α)
1 J

(BC)
2,1 + n

(α)
2 J

(BBC)
3,1

+μA(xB) − J0,
(17)

�H
(α)
vac(B)(xB) = J

(C)
1 + n

(α)
1 J

(BC)
2,1 + n

(α)
2 J

(BBC)
3,1 + μB(xB)

− (
J0 + J

(B)
1 + n

(α)
1 J

(BB)
2,1 + n

(α)
2 J

(BBB)
3,1

)
,

where the subscript vac(i) (i = A or B) indicates whether
the vacated central atom is A (or B), J

(C)
1 is the enthalpy

needed for forming a vacancy in pure A, J
(PQ)
2,1 is the effective

nearest neighbor pair interaction per PQ atom pair, J
(PQR)
3,1 is

the effective nearest neighbor equilateral triangle interaction
per PQR atom triangle, and n

(α)
1 (n(α)

2 ) is the number of B
atoms (BB nearest neighbor pairs) in the nearest neighbor
shell around the vacancy with neighborhood α. It is trivial to
include more neighbor shells, and clusters with more sites.
The 144 distinct nearest neighbor shell configurations [47]
in fcc solid solutions in a binary alloy in this approximation
are actually energetically distinguished by the numbers n

(α)
1

and n
(α)
2 only. Therefore, just 41 distinct vacancy formation

enthalpies emerge for each central vacated atom A (or B) from
Eqs. (17), see Table I. Of course Eqs. (17) can be generalized to
the Gibbs energy of vacancy formation by using temperature
dependent ECIs that account for thermal excitation effects
provided that the contribution from the ideal configurational
entropy is excluded. Moreover, within the cluster expansion
approach the effect of short range order can be incorporated by
using the cluster expansion within a lattice gas model, which
can be solved using Monte Carlo [31,32] or cluster variation
methods [30,48].

C. Vacancy concentration

As seen above in Eqs. (17), the enthalpy of a vacancy defect
depends on the environment α, and on which atom species i
is removed, A or B. The vacancy formation enthalpy in the
alloy is therefore a weighted sum over environments and over
removed atom species,

�Hvac =
∑
α,i

x
(α)
vac(i)�H

(α)
vac(i), (18)

where xα
vac(i) is the concentration of each type of vacancy.

It is now evident also that the removed atom species index
i is really needed, because the likelihood of finding an A
or a B atom in environment α is not the same for the two
atom species. Of course, after the atom i is removed, it is
no longer possible to determine what species originally was
there. The concentration of vacancy types xα

vac(i) is a product

of concentration (or probability) x
(α)
i of finding an i atom in

an α environment and of the probability of removing that i
atom from that environment f

(α)
vac(i). Naturally f

(α)
vac(i) should

be a function of �H
(α)
vac(i) because if the latter is large the

corresponding probability should be low. There must also be
an entropy associated with f

(α)
vac(i). As the vacancy defects are
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TABLE I. Types of nearest neighbor shells (α) in an fcc A-B alloy:
corresponding indices k from Table XIII in Ref. [47], degeneracy
(m(α)), number of B atoms, and BB pair (n(α)

1 and n
(α)
2 ) in the nearest

neighbor shell.

α Index k [47] m(α) n
(α)
1 n

(α)
2

1 1 1 0 0
2 2 12 1 0
3 3–5 42 2 0
4 6 24 2 1
5 7–9 44 3 0
6 10–12 120 3 1
7 13, 14 48 3 2
8 15 8 3 3
9 16, 17 9 4 0
10 18, 19 96 4 1
11 20–28 240 4 2
12 29–31 96 4 3
13 32, 33 54 4 4
14 34–38 108 5 2
15 39–44 264 5 3
16 45–52 264 5 4
17 53–55 120 5 5
18 56, 57 36 5 6
19 58–66 216 6 4
20 67–72 240 6 5
21 73–83 336 6 6
22 84, 85 96 6 7
23 86, 87 36 6 8
24 34–38 108 7 6
25 39–44 264 7 7
26 45–52 264 7 8
27 53–55 120 7 9
28 56, 57 36 7 10
29 16, 17 9 8 8
30 18, 19 96 8 9
31 20–28 240 8 10
32 29–31 96 8 11
33 32, 33 54 8 12
34 7–9 44 9 12
35 10–12 120 9 13
36 13, 14 48 9 14
37 15 8 9 15
38 3–5 42 10 16
39 6 24 10 17
40 2 12 11 20
41 1 1 12 24

few and generally far apart, the entropy can be represented by
an ideal entropy,

�Svac = −
∑
α,i

kBx
(α)
i �

(
f

(α)
vac(i)

)
, (19)

with

�
(
f

(α)
vac(i)

) = f
(α)
vac(i) ln

(
f

(α)
vac(i)

) + (
1 − f

(α)
vac(i)

)
ln

(
1 − f

(α)
vac(i)

)
.

(20)

It then follows that at finite temperature, the Gibbs energy due
to the formation of vacancies can be written as

�Gvac =
∑
α,i

[
x

(α)
vac(i)�H

(α)
vac(i) + kBT x

(α)
i �

(
f

(α)
vac(i)

)]
. (21)

Once �H
(α)
vac(i) and the short range order as given by x

(α)
i are

known, the concentration of each type of vacancy xα
vac(i) can be

computed by minimizing Eq. (21). However, the minimization
of �Gvac with respect to x

(α)
vac(i) does not generally satisfy

preservation of both A and B atoms. The apparent number
of vacated A atoms might differ from what is to be expected
on the basis of the composition. Hence, a constraint must be
imposed: ∑

α x
(α)
vac(B)∑

α x
(α)
vac(A)

= xB

xA

. (22)

Using a Lagrange multiplier λ this gives a Lagrangian


 = �Gvac + λ

[
xA

∑
α

x
(α)
vac(B) − xB

∑
α

x
(α)
vac(A)

]
, (23)

and the values of xα
vac(i) are then found by solving

∂


∂x
(α)
vac(i)

= �H
(α)
vac(i) − λ[δiAxB − δiBxA]

+ kBT ln

(
f

(α)
vac(i)

1 − f
(α)
vac(i)

)
= 0, (24)

where δ is the Kronecker delta. When vacancy concentrations
are small, the denominators inside the logarithm can be
neglected, yielding

x
(α)
vac(i) = x

(α)
i exp

(− β
{
�H

(α)
vac(i) − λ[δiAxB − δiBxA]

})
, (25)

where β = (kBT )−1. By substituting Eq. (25) into (22) an
analytical solution for λ is obtained,

λ = 1

β
ln

(
xA

∑
α x

(α)
B e−β�H

(α)
vac(B)

xB

∑
α x

(α)
A e−β�H

(α)
vac(A)

)
. (26)

In the random alloy case, x
(α)
i is a simple function of the

composition

x
(α)
i = m(α)xix

12−n
(α)
1

A x
n

(α)
1

B , (27)

where m(α) is the degeneracy of a particular neighborhood, see
Table I. In nonrandom alloys, a Monte Carlo method can be
used to impose a certain degree of short or long range order
on the probabilities x

(α)
i . Of course the sum of x

(α)
i over all α

yields the concentration xi . The total vacancy concentration is
obtained from

xvac(xB,T ) =
∑
α,i

x
(α)
vac(i). (28)

It is evident that the total vacancy concentration does not
necessarily follow a simple Arrhenius equation because each
neighborhood has its own vacancy formation enthalpy, see
Eq. (25). At low temperature, only those α with the lowest
formation enthalpies contribute, while at high temperature α

with higher formation enthalpies contribute also. Therefore,
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when the total vacancy concentration is fit to an Arrhenius
equation, it is to be expected that the effective vacancy for-
mation energy shifts towards higher values as the temperature
increases. Although �H

(α)
vac(A) is in this derivation temperature

independent, the effective energy for vacancy formation is
better represented as a temperature dependent Gibbs energy

�Geff
vac(xB,T ) =−kBT ln[xvac(xB,T )]. (29)

The temperature dependence of �Geff
vac can be used to

determine an effective vacancy formation entropy �Seff
vac and

enthalpy �H eff
vac,

�Seff
vac(xB) =−[

�Geff
vac(xB,T1) − �Geff

vac(xB,T2)
]
/[T1 − T2],

(30)

�H eff
vac(xB) = �Geff

vac(xB,T1) + T1�Seff
vac(xB), (31)

where T1 and T2 indicate the temperature range of interest.
Another vacancy property of interest is the average number of
B neighbors around a vacancy,

〈nB〉 = 1

xvac

∑
α,i

x
(α)
vac(i)n

(α)
1 . (32)

In the above derivation, it is assumed that the fraction of
neighborhoods x

(α)
i is not affected by the vacancy concen-

trations xα
vac(i). This should be true as long as xα

vac(i) is much

smaller than x
(α)
i , i.e., f α

vac(i) � 1. It breaks down when, e.g.,
the lowest energy neighborhood α′ is very rare. Say if an all
A surrounded vacancy is strongly favored in an almost pure B
alloy. In such a case we must expect a coupling of short or long
range ordering with the occurrence of vacancies. Fortunately
one can explicitly verify whether f α

vac(i) is small.

III. METHOD

The thermodynamics of fcc Cu-Ni solid solutions was
investigated by means of SQSs with 16 atoms per cell with
compositions Cu4Ni12, Cu12Ni4 (both structures listed as
SQS-1 in Ref. [61]), and Cu8Ni8 (two variants listed as SQS-2
and SQS-3 in Ref. [61]). The pure Cu and Ni phases are
considered also using the same type cell as for the Cu4Ni12

and Cu12Ni4 compositions. Generalized gradient approxima-
tion [62,63] projector augmented wave pseudopotentials as
implemented in VASP [64–66], version 4.6, are used with
collinear spin polarization. Integrations in reciprocal space use
a �-centered Monkhorst-Pack grid with the number of k points
determined through NatomNk point ≈ 10 000 in the first Brillouin
zone. Precision was set to “accurate.” In all calculations,
the electronic wave functions were expanded in terms of
plane waves up to a cutoff kinetic energy of 320 eV. The
Hermite-Gauss smearing method of Methfessel and Paxton of
order 1 has been used, with a smearing parameter of 0.1 eV.
All structures are fully relaxed. The convergence criteria for
energy, force magnitude, and stress component were 0.1 meV,
10 meV/nm, and 1 kbar, respectively. Structural optimizations
were reinitiated at least twice. With these convergence settings
energy changes between the last ionic iterations are a few
μeV/atom only. All ab initio calculations pertain to T = 0 K
with zero-point vibrational corrections being neglected. In the

four types of SQSs every site was once replaced by a vacancy,
giving rise to 4 × 16 = 64 supercells with a single vacancy.
A cluster expansion using point, nearest neighbor pair, and
nearest neighbor equilateral triangle clusters was fit to in total
71 structures; 2 pure elements, vacuum, 4 SQSs, and 64 single
vacancy SQS derived structures. The ECIs were used in a
ternary cluster variation method (CVM) [67,68] calculation
in the tetrahedron approximation to determine the Cu-Ni
phase diagram, and the vacancy concentration as a function
of composition and temperature. In the CVM calculations the
ratio of Cu to Ni atoms is held constant, but the concentration of
the vacancy species is freely varied. The equilibrium vacancy
concentration is determined by minimizing the Gibbs energy
with respect to the vacancy concentration.

IV. RESULTS AND DISCUSSION

Vacancy properties in concentrated Cu-Ni alloys are re-
ported and discussed. Next, we seek to generalize our findings
to other alloy types, where we consider alloys that are of
ordering type, unlike Cu-Ni, and alloys in which the vacancy
formation enthalpy in the end members differs even more, or
significantly less than for Cu-Ni.

A. Alloy with phase separation: The case of fcc Cu-Ni

The ab initio computed supercell properties are listed in
Table II. In the supercells with vacancies, the letters following
the structure indicate which atom has been vacated, “a” (“p”)
indicates that the first (16th) atom in the structure is vacated.
Enthalpy of formation of the SQS, computed as described in
Ref. [61], is used as a proxy for the mixing enthalpy �Hmix.
Figure 1 illustrates that the compositional dependence of the
mixing enthalpy can be approximated by a subregular solution
model. The chemical potential of Cu and Ni is extracted from
the mixing enthalpy as a function of the alloy composition.
It should be remarked that small 16 atom supercells do
not give very accurate vacancy formation energies, but the
objective here is not high accuracy but insight in vacancy
properties in alloys. For the pure elements a comparison with
literature values is given in Table III. It is evident that the
results are comparable to other PBE-GGA [62,63] calculations
with small supercells. We chose the PBE implementation
of the GGA because a recent study [69] suggests that the
PBE-GGA xc potential performs at least as well as the newer
AM05-GGA [70] xc potential in describing vacancy formation
energies.

In the SQSs single vacancies were introduced by removing
a single atom at a time, followed by a structural relaxation.
The computed enthalpies are used in Eq. (6) to extract vacancy
formation enthalpies for various vacancy neighborhoods, see
Fig. 2. It is evident that the greater the number of Cu atoms in
the nearest neighbor shell, the smaller the vacancy formation
enthalpy. This is in keeping with the greater vacancy formation
enthalpy in pure Ni in comparison with that in pure Cu.

The SQS calculations with, and without vacancies, are
used also for obtaining a cluster expansion. The computed
ECIs, shown in Table IV, have been extracted in terms of
n-body clusters(n = 1,2,3). Although a much smaller number
of ECIs is used than there are structural energies to be
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TABLE II. Computed enthalpies (H ) and magnetic moments (M) for supercells as described in the text, the number of Cu atoms in the
nearest neighbor shell around the vacant site, the chemical potentials, and the vacancy formation enthalpy according to Eq. (6).

Structure Formula H (eV/cell) M(μB /cell) n
(Cu)
1 μNi(eV/atom) μCu(eV/atom) Hα

vac(eV)

SQS-1 Ni16Cu0 −89.167 10.031 −5.573 −3.538
SQS-1 Ni15Cu0 −82.185 9.499 0 −5.573 1.409
SQS-1 Ni0Cu16 −59.563 0.000 −5.585 −3.723
SQS-1 Ni0Cu15 −54.781 0.000 12 −3.723 1.059
SQS-1 Ni12Cu4 −81.381 6.054 −5.555 −3.674
SQS-1a Ni11Cu4 −74.489 5.529 3 −5.555 1.337
SQS-1b Ni11Cu4 −74.438 5.658 1 −5.555 1.388
SQS-1c Ni11Cu4 −74.388 5.531 1 −5.555 1.437
SQS-1d Ni11Cu4 −74.588 5.613 4 −5.555 1.237
SQS-1e Ni11Cu4 −74.607 5.688 6 −5.555 1.219
SQS-1f Ni11Cu4 −74.534 5.680 5 −5.555 1.292
SQS-1g Ni11Cu4 −74.430 5.623 3 −5.555 1.395
SQS-1h Ni11Cu4 −74.342 5.741 1 −5.555 1.483
SQS-1i Ni11Cu4 −74.424 5.635 2 −5.555 1.402
SQS-1j Ni11Cu4 −74.410 5.680 2 −5.555 1.415
SQS-1k Ni11Cu4 −74.392 5.664 3 −5.555 1.434
SQS-1l Ni11Cu4 −74.536 5.736 5 −5.555 1.289
SQS-1m Ni12Cu3 −76.343 6.588 2 −3.674 1.363
SQS-1n Ni12Cu3 −76.352 6.580 3 −3.674 1.354
SQS-1o Ni12Cu3 −76.359 6.537 4 −3.674 1.347
SQS-1p Ni12Cu3 −76.304 6.606 3 −3.674 1.402

SQS-1 Ni4Cu12 −66.873 0.000 12 −5.524 −3.730
SQS-1a Ni4Cu11 −61.879 0.000 9 −3.730 1.264
SQS-1b Ni4Cu11 −62.044 0.001 11 −3.730 1.099
SQS-1c Ni4Cu11 −62.032 0.000 11 −3.730 1.111
SQS-1d Ni4Cu11 −61.842 0.000 8 −3.730 1.301
SQS-1e Ni4Cu11 −61.777 0.054 6 −3.730 1.366
SQS-1f Ni4Cu11 −61.859 0.000 7 −3.730 1.283
SQS-1g Ni4Cu11 −61.959 0.000 9 −3.730 1.184
SQS-1h Ni4Cu11 −62.113 0.000 11 −3.730 1.030
SQS-1i Ni4Cu11 −61.987 0.000 10 −3.730 1.156
SQS-1j Ni4Cu11 −62.023 0.000 10 −3.730 1.120
SQS-1k Ni4Cu11 −61.968 0.000 9 −3.730 1.175
SQS-1l Ni4Cu11 −61.866 0.000 7 −3.730 1.277
SQS-1m Ni3Cu12 −60.160 0.000 10 −5.524 1.188
SQS-1n Ni3Cu12 −60.113 0.000 9 −5.524 1.235
SQS-1o Ni3Cu12 −60.043 0.000 8 −5.524 1.305
SQS-1p Ni3Cu12 −60.192 0.000 9 −5.524 1.157

SQS-2 Ni8Cu8 −73.990 2.243 −5.527 −3.726 1.297
SQS-2a Ni8Cu7 −68.865 3.081 3 −3.726 1.400
SQS-2b Ni8Cu7 −68.864 3.081 3 −3.726 1.400
SQS-2c Ni8Cu7 −68.989 2.801 7 −3.726 1.275
SQS-2d Ni8Cu7 −69.013 2.834 7 −3.726 1.252
SQS-2e Ni8Cu7 −68.973 2.764 7 −3.726 1.291
SQS-2f Ni8Cu7 −68.989 2.810 7 −3.726 1.275
SQS-2g Ni8Cu7 −68.974 2.760 7 −3.726 1.290
SQS-2h Ni8Cu7 −69.013 2.827 7 −3.726 1.251
SQS-2i Ni7Cu8 −67.081 1.886 5 −5.527 1.382
SQS-2j Ni7Cu8 −67.116 2.117 5 −5.527 1.347
SQS-2k Ni7Cu8 −67.125 1.990 5 −5.527 1.338
SQS-2l Ni7Cu8 −67.081 1.876 5 −5.527 1.382
SQS-2m Ni7Cu8 −67.127 1.980 5 −5.527 1.336
SQS-2n Ni7Cu8 −67.117 2.108 5 −5.527 1.347
SQS-2o Ni7Cu8 −67.368 2.124 9 −5.527 1.095
SQS-2p Ni7Cu8 −67.368 2.124 9 −5.527 1.095
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TABLE II. (Continued.)

Structure Formula H (eV/cell) M(μB /cell) n
(Cu)
1 μNi(eV/atom) μCu(eV/atom) Hα

vac(eV)

SQS-3 Ni8Cu8 −73.995 2.208 −5.527 −3.726
SQS-3a Ni8Cu7 −68.849 3.071 3 −3.726 1.420
SQS-3b Ni8Cu7 −68.848 3.070 3 −3.726 1.422
SQS-3c Ni8Cu7 −69.045 2.847 7 −3.726 1.225
SQS-3d Ni8Cu7 −69.045 2.838 7 −3.726 1.224
SQS-3e Ni8Cu7 −69.043 2.882 7 −3.726 1.226
SQS-3f Ni8Cu7 −69.044 2.844 7 −3.726 1.225
SQS-3g Ni8Cu7 −69.043 2.882 7 −3.726 1.226
SQS-3h Ni8Cu7 −69.044 2.841 7 −3.726 1.225
SQS-3i Ni7Cu8 −67.149 2.010 5 −5.527 1.319
SQS-3j Ni7Cu8 −67.149 1.991 5 −5.527 1.319
SQS-3k Ni7Cu8 −67.155 2.206 5 −5.527 1.314
SQS-3l Ni7Cu8 −67.149 2.010 5 −5.527 1.320
SQS-3m Ni7Cu8 −67.154 2.206 5 −5.527 1.314
SQS-3n Ni7Cu8 −67.149 1.989 5 −5.527 1.320
SQS-3o Ni7Cu8 −67.422 1.993 9 −5.527 1.047
SQS-3p Ni7Cu8 −67.420 1.978 9 −5.527 1.049

fitted to, nevertheless a rather good fit is obtained with a
predictive error [67] or cross-validation score [71] of less than
4.5 meV/atom. The good performance of the CE is apparent
also when the formation energies are computed from the ECIs,
listed in Table IV, using Eq. (11) and plotted versus the ab
initio computed formation energies from Eq. (14), as shown in
Fig. 3. The CE reproduces the ab initio data with a root mean
square error of less than 4 meV/atom.

The mixing enthalpy of Cu-Ni alloys as a function of
composition is computed using the ECIs with Eq. (13).
Figure 4 illustrates that the mixing enthalpy as estimated
through Fig. 1, as computed through the formation energy
of SQS, and as obtained by a phase diagram assessment using

FIG. 1. (Color online) �Hmix/[xCu(1 − xCu)] as a function of the
atomic concentration Cu: (a) as computed with Eq. (14) using SQS
formation enthalpies (diamond symbols) and (b) as interpolated
through a least squares linear fit (solid line).

experimental data [72], are all in fair agreement. The tendency
towards phase separation is strongest at about xCu = 0.4.

The ECIs can be used also in a cluster variation method
calculation of the phase diagram, see Fig. 5. The ab initio
computed phase diagram displays a miscibility gap with a
maximum temperature of 680 K at Cu0.35Ni0.65 in excellent
agreement with the assessment of experimental data by an Mey
in Fig. 7 of Ref. [72], which gives a maximum temperature of
640 K at Cu0.4Ni0.6, and as assessed by Chakrabarti et al. [73]
which gives a maximum temperature of 628 K at Cu0.33Ni0.67.
It should be remarked that the concentration of vacancies is so
low, that even when the phase diagram was computed strictly
as a binary Cu-Ni alloy without considering vacancies, the
changes would have been completely imperceptible.

Local environment dependent vacancy formation enthalpies
�H

(α)
vac(i)(xCu) at T = 0 K can be obtained by substituting the

ECIs into Eqs. (17), see Fig. 6. It is evident that two energy

TABLE III. Vacancy formation enthalpy in fcc Cu and fcc Ni as
computed with Eq. (9), and as reported in the literature.

H Cu
vac HNi

vac

Method (eV) (eV) Reference

LDA 1.26 [69]
PW91 0.99 [69]
PBE [62,63] 1.06 1.41 this work
PBE [62,63] 16-atom cell 1.03 1.46 [78]
PBE [62,63] 32-atom cell 1.02 1.46 [78]
PBE [62,63] 32-atom cell 1.04 1.44 [79]
PBE [62,63] 108-atom cell 1.06 [69]
AM05 [70] 32-atom cell 1.28 1.75 [78]
AM05 [70] 32-atom cell 1.26 1.69 [79]
AM05 [70] 108-atom cell 1.29 [69]
Experiment 0.92–1.27 1.45–1.8 [20]
Experiment 1.04–1.49 [80]
Experiment 1.2–1.68 [81]
Experiment (LGT DD+PAS) 1.06 [69]
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FIG. 2. (Color online) Vacancy formation enthalpy �Hα
vac as a

function of the number of Cu atoms in the nearest neighbor shell
(nCu) as computed with Eq. (6) at various compositions; solid circles:
in pure Cu and Ni; squares: in SQS-1 at xCu = 0.25; crosses: in
SQS-2 at xCu = 0.5; diamonds: in SQS-3 at xCu = 0.5; open circles:
in SQS-1 at xCu = 0.75.

terms contribute to the formation enthalpy of a vacancy: (a)
the energy to break the bonds between the vacated atom and its
neighbor atoms and (b) the chemical potential of the vacated
atom. The chemical potential represents the energy for putting
the vacated atom back into the alloy, and this term makes
the vacancy formation enthalpy composition dependent, see
Eqs. (17). As the mixing enthalpy is concave with respect to
composition in Cu-Ni, it follows that the chemical potential of
Cu (Ni) decreases as the composition gets richer in Cu (Ni),
see Fig. 7. In other words, putting back a Cu (Ni) atom in
a Cu-rich alloy is less (more) costly than putting it back in
a Ni-rich alloy. For this reason all the Cu-vacated vacancy
formation enthalpies are rigidly shifted higher in Cu0.25Ni0.75

in comparison to Cu0.75Ni0.25.
Of course the distinction between Cu and Ni vacancies

is artificial: In the alloy one cannot know what atom has
previously occupied the position of the vacancy site. Therefore,
the λ Lagrange multiplier must be considered. Considering
Cu0.50Ni0.50 [Fig. 6(b)] it is clear that vacancies are most
favorable at Ni occupied sites surrounded by many Cu atoms.
The λ parameter makes sure that just as many Ni atoms get

TABLE IV. Effective cluster interactions (ECIs) in Cu-Ni system
from cluster expansion.

Cluster ECI (meV/cluster)

Jv 1505.5
JCu 166.7
Jv-Cu − 53.5
JCu-Cu − 50.0
Jv-Cu-Cu 4.08
JCu-Cu-Cu 16.3

FIG. 3. (Color online) A comparison of formation energies cal-
culated ab initio through Eq. (14) and as calculated with the cluster
expansion.

vacated as Cu atoms (in an equiatomic alloy). Therefore, the λ

parameter should make the Cu-vacated vacancies energetically
a little less costly, and the Ni-vacated ones a little more costly.
Equation (25) shows that this occurs when λ takes a negative
value. At very high temperature, the Boltzmann factor for all
vacancy types moves towards unity. Then, the combinatorial
factor x

(α)
i [Eq. (27)] plays a dominant role. For the random

alloys this implies that λ moves towards zero, as is seen in
Fig. 8. The λ parameter is a function of composition also. At

FIG. 4. (Color online) Mixing enthalpy of fcc Cu-Ni alloys as
a function of the atomic fraction Cu; using the cluster expansion
through Eq. (13) (solid line), using the SQS formation enthalpies
from Eq. (14) (circles), and the mixing enthalpy at T = 298 K as
assessed on the basis of experimental data by an Mey [72] (dashed
line).

174107-9



XI ZHANG AND MARCEL H. F. SLUITER PHYSICAL REVIEW B 91, 174107 (2015)

FIG. 5. (Color online) Low temperature part of Ni-Cu phase
diagram as computed with the ECI in Table IV in the tetrahedron
approximation of the CVM (solid line), as assessed by an Mey [72]
(dashed line), and as assessed by Chakrabarti et al. [73] (dash-dotted
line).

a given, not too high, temperature, λ is strongly negative at
Ni-rich compositions while λ is weakly positive at Cu-rich
compositions. Looking at Fig. 6(a), it is evident that the high
Cu coordinated Ni sites are much more likely to be vacated in
Cu0.25Ni0.75 than in the equiatomic alloy, so that an even more
negative λ value is required to balance Ni and Cu vacated sites.
Figure 6(c), on the other hand, shows that for Cu-rich alloys
the favorable high Cu coordinated Ni and Cu sites have about
equal vacancy formation enthalpies. Therefore, λ must take
very small values, and it needs to be slightly positive because
the majority of vacancies must derive from Cu vacated sites.

Now that λ behavior has been rationalized, the total
vacancy concentration xvac(xB,T ) is examined. Figure 9
displays the Cu- and Ni-vacated vacancy concentrations xvac(i)

summed over all neighborhoods α, and it shows the total
vacancy concentration xvac = xvac(Ni) + xvac(Cu), as a function
of the composition. Clearly, in the equiatomic alloy xvac(Ni) =
xvac(Cu), as imposed by the Lagrange multiplier λ. It is also
obvious that at higher Cu content, the vacancy concentration is
much larger because the vacancy formation energies decrease
as the number of Cu nearest neighbors around a vacancy
increases.

Fitting the total vacancy concentrations to an Arrhenius
equation [Eq. (29)] yields the effective vacancy formation
Gibbs energy �Geff

vac, see Fig. 10. It should be emphasized that
only configurational excitations have been considered here
so that for the pure elements (xCu = 0, xCu = 1) �Geff

vac is
found to be temperature independent. �Geff

vac is not well rep-
resented by a linear interpolation with respect to composition
between the pure element values because it takes significantly
lower values in concentrated alloys than the concentration
weighted average. This is explained by the multitude of local
neighborhoods that exist within an alloy, so that vacancies
will be formed in the most favorable locations. Moreover, the
deviation of �Geff

vac from the linear interpolated value �Geff-xs
vac

(a)

(b)

(c)

FIG. 6. (Color online) Vacancy formation enthalpy �H
(α)
vac(i) at

T = 0 K as a function of the number of Cu atoms in the
nearest neighbor shell nCu, Ni-vacated (open circles), Cu-vacated
(open squares): (a) in Cu0.25Ni0.75, (b) in Cu0.50Ni0.50, and (c) in
Cu0.75Ni0.25.
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FIG. 7. (Color online) Chemical potential of Cu (solid line) and
Ni (dashed line) as a function of composition at T = 0 K.

gets smaller when temperature increases because there is then
a weaker preference for low energy neighborhood vacancies.
Nevertheless, �Geff-xs

vac remains negative for alloys with phase
separation tendency. The high temperature limit of �Geff

vac is
the statistical average of the vacancy formation enthalpy of
all types of vacancies

∑
α,i x

(α)
i �H

(α)
vac(i)(xCu), which may be

above the linear interpolation value for Cu-rich alloys.
In concentrated alloys, �Geff

vac increases with temperature
which suggests a negative effective vacancy formation entropy
�Seff

vac. �Seff
vac is computed with Eq. (30) using T1 = 600 K

and T2 = 1200 K. The negative value of �Seff
vac too is a

consequence of the multitude of local vacancy neighborhoods
in concentrated alloys. At low temperature vacancies occur
in the most favorable neighborhoods only, while at elevated
temperature less favorable neighborhoods also provide va-
cancies. Of course this concerns the configurational aspect
only. Nonconfigurational excitations, such as the vibrational

FIG. 8. (Color online) Lagrange multiplier λ in Cu0.50Ni0.50 as
given by Eq. (26) as a function of the inverse temperature β.

FIG. 9. (Color online) Vacancy concentration xvac(i) (dashed line:
Cu-vacated; dash-dotted line: Ni-vacated) and xvac (solid line) at T =
1200 K as given by Eq. (28) as a function of the Cu concentration
xCu.

contribution to the entropy of vacancy formation, tend to
give significantly positive effective vacancy formation entropy
contributions, see, e.g., Table II in Ref. [11]. Nevertheless, the
configurational contribution to �Seff

vac is quite large at about
0.4kB in Cu0.25Ni0.75, see Fig. 11. The magnitude of �Seff

vac is
decided by the formation energy difference between vacancies
at most and least favorable positions. For this reason, �Seff

vac
increases when the vacancy formation energy in the pure end
member elements differ strongly or when the SRO tendency
gets stronger.

The effective vacancy formation enthalpy, as computed
with Eq. (31), is displayed in Fig. 10. Like �Geff

vac, it shows

FIG. 10. (Color online) Effective vacancy formation enthalpy at
T = 0 K (solid line) and Gibbs energies at T = 600 K (dashed line)
and at T = 1200 K (dash-dotted line) as a function of composition.
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FIG. 11. (Color online) Effective vacancy formation entropy as a
function of composition as computed with Eq. (30).

the strongest deviation from a linear composition dependence
near xCu = 0.25 because at the Ni-rich side the strongest
shift of vacancy neighborhood occurs when the temperature
is changed. At low temperature only high Cu coordinated
vacancies can occur because they are energetically favored,
but in a Cu-poor alloy such neighborhoods are rare. At
high temperature also energetically much less favorable, but
combinatorially much more prevalent, high Ni-coordinated
vacancies occur. Thus in Ni-rich alloys the largest change
in vacancy formation energies occurs as the temperature
increases. This is illustrated in Fig. 12 where the average
number of Cu nearest neighbors around a vacancy 〈nCu〉 in
Cu0.25Ni0.75, as computed with Eq. (32), is shown as a function
of the inverse temperature β. In the vicinity of β = 0, the
number of Cu neighbors converges to the random value of

FIG. 12. (Color online) The average number of Cu neighbors
around a vacancy 〈nCu〉 in Cu0.25Ni0.75 as a function of the inverse
temperature β.

FIG. 13. (Color online) The average number of Cu neighbors
around a vacancy 〈nCu〉 at T = 200 K (dash-dotted line), at T = 800 K
(solid line), and as extrapolated to infinite temperature (dashed line),
as a function of the composition. The results predicted by Zhao
et al. [24] are indicated as symbols: T = 200 K data (circles);
T = 800 K data (squares).

12 × 0.25 = 3, but at large values of β vacancies occur only
there where they are exclusively surrounded by 12 Cu atoms,
in spite of Cu atoms being in the minority.

The strong preference of vacancies for Cu coordination
occurs across the whole composition range, as is shown in
Fig. 13. Our findings agree very well with an earlier embedded
atom method (EAM) study [24], which included vibrational
effects also. Apparently the vibrational effects play a minor
role.

Instead of using the model introduced here, the CVM can be
used to compute the vacancy concentration. The CVM in the
tetrahedron approximation was used in conjunction with the
CE listed in Table IV. The computed vacancy concentrations

FIG. 14. Vacancy concentration Crnd
v as computed with the

current model as a function of inverse temperature β in Cu0.25Ni0.75

(solid line), Cu0.5Ni0.5 (dotted line), and Cu0.75Ni0.25 (dashed line).
Comparison between current model and CVM is indicated with sym-
bols with reference to the axis on the right: Cu0.25Ni0.75 (diamonds),
Cu0.5Ni0.5 (squares), and Cu0.75Ni0.25 (triangles).
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TABLE V. Effective cluster interactions (ECIs) in a hypothetical
ordering A-B alloy.

ECI (meV/cluster)

Cluster Case (a) Case (b)

Jv 2000 1200
JB −1200 −1200
Jv-B 16.7 83.3
JB-B 200 200

differ a few percent only from those computed with the
current random model over a wide range of temperatures
and compositions, see Fig. 14, in spite of the fact that the
CVM includes the effect of short range order. The current
model can be compared also with the quasichemical model as
studied in much detail by Schapink [38]. The quasichemical
approach too, like the CVM, yields vacancy concentrations
that differ by a few percent from the values obtained with the
current model. Other properties differ little between current
and quasichemical, in the case of the vacancy formation
free energy the difference is just 5 meV or less. In contrast
to the earlier work [24,30,36,38], the current model can
be implemented using a spreadsheet, no special software
required.

B. Alloy with ordering tendency

It is of interest to examine whether the trends revealed for
vacancy formation in phase separating alloys, such as Cu-Ni,
also apply to alloys with ordering tendencies. Therefore, we ex-
amine an alloy with nearest neighbor pair interactions between
A and B atoms such that the enthalpy of mixing at equiatomic
composition is −300 meV/atom. These interactions, listed
in Table V, are not ab initio and do not pertain to any real
alloy system. They are selected to serve as illustration only.
The interactions give the classical fcc phase diagram [74–77]
for the solid state A-B alloy with a critical order-disorder

temperature of about 1100 K at equiatomic composition.
Concerning the vacancy formation energies in pure A and
B, we consider two cases: (a) the strong asymmetric case with
vacancy formation energies in pure A (B) of 2 (1) eV and (b)
the weak asymmetric case with vacancy formation energies in
pure A (B) of 1.2 (1) eV.

The vacancy formation enthalpies �H
(α)
vac(i) at equiatomic

composition as computed with Eqs. (17) are shown in Fig. 15.
Due to the elimination of nearest neighbor equilateral triangle
ECIs, �H

(α)
vac(i) of A-vacated and B-vacated vacancies for

different α have become linear functions of the number of
B atoms in the nearest neighbor shell nB , crossing at nB = 6.
Unlike a phase separating system like Cu-Ni, for a specific
shell, �H

(α)
vac(i) of A-vacated vacancies is higher (lower) than

that of B-vacated vacancies in B-rich (A-rich) shells because
A-B bonds require more energy to be broken than the weighted
average of A-A and B-B bonds. Furthermore, as expected, in
case (b) the A and B vacated energies are much more similar
than in case (a).

The effective Gibbs energy of vacancy formation, �Geff
vac

[Eq. (29)] as function of the composition is curved upward,
quite unlike the phase separating case, from the linear
interpolation between the pure A and B end members. The
deviation is rather similar in magnitude to the negative of
the mixing enthalpy, −�Hmix, both for case (a) and for case
(b) (Fig. 16). As in the phase separating Cu-Ni alloy, the
configurational contribution to the vacancy formation entropy
[Eq. (30)] is negative. The reason for this is entirely the same
as in the case of phase separation, at higher temperatures
energetically less favorable configurations come into play.

The asymmetry in the end member vacancy formation
energy does have a very pronounced effect on the short
range order around a vacancy. Vacancy properties such as
the configurational contribution to the entropy shift to a more
negative value when the pure end member difference is larger
(see Fig. 17).

Ordering systems, with interactions of the same magnitude
as phase separating systems, develop vacancy-vacancy pairs

FIG. 15. (Color online) Vacancy formation enthalpy �H
(α)
vac(i)(xB = 0.5) at T = 0 K according to Eqs. (17) as a function of the number of

B atoms in the nearest neighbor shell nB , A-vacated (open circles), B-vacated (open squares) vacancy. Panels correspond to cases (a) and (b)
described in the text.
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FIG. 16. (Color online) Effective vacancy formation Gibbs energy in an A-B ordering alloy as a function of the composition at T = 4000 K
(solid line) and T = 2000 K (dashed line). Dotted line is the linear interpolation between the pure elements. Panels correspond to cases
(a) and (b) described in the text.

already at a lower temperature. Therefore, the comparison
between the current model and a more accurate methodology
such as the cluster variation method or lattice Monte Carlo
begins to break down at a lower temperature than was the
case for phase separating systems. For alloys with ordering
tendencies vacancy-vacancy pairs begin to play a role above
about twice the highest order-disorder temperature.

V. CONCLUSIONS

A formalism for the computation of vacancy formation
energies in substitutional alloys has been presented. It is
shown that composition and temperature play an important
role in the thermodynamics of vacancies in alloys. The current
approach, consisting of a cluster expansion coupled with a
simple statistical thermodynamics model, has been shown

FIG. 17. (Color online) Effective vacancy formation entropy of
an A-B ordering alloy as a function of composition: case (a) (solid
line) and case (b) (dashed line).

to reproduce accurately the features of more sophisticated
lattice gas models such a the quasichemical or cluster variation
methods. The effective vacancy formation free energy deviates
from the linear interpolation between that of the terminal
pure phases in a manner opposite to the mixing enthalpy
between those end members. Therefore, phase separating
alloys have vacancy formation free energies that are less
than the composition-weighted average of the end members,
while the opposite holds in ordering type alloys. At low
temperatures, the configurational contribution to the vacancy
formation entropy is negative. This is caused by the fact that at
low temperature vacancies will occur only in the energetically
most favorable local neighborhoods in the alloy, while at higher
temperatures also less energetically favorable neighborhoods
come into play. In addition to ordering and phase separating
tendencies, the asymmetry in the vacancy formation energy in
the pure end members plays a significant role also. When
the vacancy formation energies of the pure end members
differ more strongly from one another, the excess vacancy
properties in the alloy become more significant. Particularly,
the configurational contribution to the entropy of vacancy
formation becomes more negative, and the vacancy coordi-
nation departs stronger from the average, as the asymmetry
in vacancy formation energies between the pure end members
increases. In the current model pure vacancy clusters are not
considered, so that at high temperature deviations from more
accurate lattice gas models occur. These deviations are more
significant for ordering type alloys than for phase separating
alloys. It must be noted that in order to understand vacancy
formation in substitutional alloys a few arbitrarily selected ab
initio calculations on alloy supercells with vacancies generally
will not suffice. A proper statistical thermodynamic analysis
is required. As this work has shown, such a thermodynamic
analysis need not be very complex fortunately.

Vacancies in the Cu-Ni system were shown to prefer Cu
neighbors, regardless of the composition of the alloy. The
vacancy formation free energy was shown to be strongly
composition dependent, with lower values towards the Cu-rich
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side. Since the vacancy formation energy in binary disordered
alloys strongly depends on local environment, a cluster
expansion was shown to be the optimal approach. Effective
cluster interactions (ECIs) in terms of point, nearest neighbor
pair, and nearest neighbor equilateral triangle clusters were
extracted from a ternary cluster expansion by fitting the
energies of 71 structures. The ECIs were used also to calculate
the mixing enthalpy of the solid solution and the solid portion
of the Cu-Ni phase diagram, which both agreed well with
previous assessments. The CE approach coupled with a simple
thermodynamic model made it possible to compute vacancy
concentrations as a continuous function of temperature and
composition. Fitting the vacancy concentration to an Arrhenius
equation allowed us to extract the effective Gibbs energy
of vacancy formation as a function of temperature and
composition. The effective Gibbs energy of vacancy formation

was found to be a nonlinear function of composition with a
deviation from linearity between the end members that was
roughly equal to the negative value of the mixing enthalpy.
The effective configurational entropy of vacancy formation
was found to be composition dependent and negative with
values ranging from about 0 to −0.5kB .
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