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PDFA Distillation with Error Bound
Guarantees

Robert Baumgartner(B) and Sicco Verwer

Technical University of Delft, Delft, Netherlands
{r.baumgartner-1,s.e.verwer}@tudelft.nl

Abstract. Active learning algorithms to infer probabilistic finite
automata (PFA) have gained interest recently, due to their ability to
provide surrogate models for some types of neural networks. However,
recent approaches either cannot guarantee determinism, which makes
the automaton harder to understand and compute, or they rely on tech-
niques that bound errors on individual transitions. In this work we pro-
pose a derivative of the recent L# algorithm to learn deterministic PFA
(PDFA) from systems returning a distribution over a set of tokens given
an input string. Along with determinism, we can give error bounds on
probabilities assigned to whole strings with an easy to understand app-
roach. We show formal correctness of our algorithm and test it on neural
networks trained to model three datasets from computer- and network-
systems respectively. We show that the algorithm can learn the network’s
behaviour closely, and provide an example application of how the model
can be used to interpret the network. We note that our approach is in the-
ory applicable in general to learn deterministic weighted finite automata.
We provide the source code of our algorithm and relevant scripts on our
public repository.

Keywords: Active Automata Learning · PDFA distillation ·
Explainable AI

1 Introduction

Active learning of automata has had its advent in the work of Dana Angluin,
who introduced the L∗ algorithm [1] to learn deterministic finite automata (DFA)
from an unknown target system. Multiple derivatives of the L∗ have come out
since then, optimizing one or more parts of the algorithm (for more details, see
e.g. [7]). Starting with the work of Weiss et al. [20] these algorithms have gained
interest again by distilling DFA from a neural network (NN) trained to recognize
an unknown target language. Follow up work constitutes e.g. of the work of Mayr
and Yovine [11], who introduce a derivative of the L∗ they call bounded L∗ and
show its properties to be PAC-bounded. Muškardin et al. [14] investigate the
effect of the counterexample search strategy on the resulting automata.

While training neural networks to recognize unknown (regular) languages
provides an interesting theoretical basis for deep learning, these types of networks
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Z. Fazekas (Ed.): CIAA 2024, LNCS 15015, pp. 51–65, 2024.
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are rarely found outside academic environments. More interesting networks are
language models: Given a set of possible tokens Σ, the network returns condi-
tional probabilities of the form P (a|x), where a ∈ Σ and x is a string in Σ∗,
the set of all possible strings over Σ. In words, P (a|x) models the probability of
a token a to occur after having seen the substring x. Weiss et al. [19] proposed
an adaptation of the L∗ algorithm to learn PDFA from such networks. A simi-
lar approach is taken by Eyraud and Ayache [4], which use a spectral approach
from [2] to extract weighted finite automata (WFA) from the real-valued matrix.
Okudono et al. [15] focus their work on the counterexample search. While pow-
erful, a drawback of the spectral approach is that the resulting automata are
not deterministic. A slightly new approach is taken in [13] and [12]. Unlike the
previous approaches these algorithms use an observation tree and minimize it
via merging states. To this end they quantize the distributions of the states and
define congruence over strings, which leads them to different notions of similarity
of states.

In our work we build on the recent L# algorithm (Vandraager et al., [18]), an
algorithm designed to learn Mealy-automata, similar to L∗. Unlike L∗ it builds a
tree of observations and identifies states by searching for distinguishing criteria.
We build an observation tree modeling probability distributions and introduce
a simple notion of state similarity to generalize the model. Unlike L# we do
not have to distinguish a state from the rest, but can use the numerical output
of PDFAs and choose states that minimize induced errors, thus relaxing the
strictness of our merge-requirements. Our similarity measure guarantees that,
given a parameter μ > 0 as input, for each string x that has been seen by the
algorithm that |P (x) − π(x)| ≤ μ, where P (x) is the assigned probability by
the network, and π(x) is the probability of x assigned by our inferred PDFA.
We further support this notion of proximity between the network’s output and
the PDFA’s output via our proposed equivalence test, giving us PDFAs that
mimic the network with intuitive requirements. We show the capability of our
algorithm on three datasets, namely the CTU-13 dataset, the BGL dataset,
and the HDFS dataset. We train a recurrent neural network (RNN) on each of
these respectively, and then distill PDFA varying μ to investigate the effect on
the distilled models, and show an example application of the surrogate model.
For reproducibility and verification purposes we provide the source code of our
method on our public repository1.

2 Background

2.1 PDFA

A PDFA is an automaton defined over a tuple A = {q0, Q,Σ, τ, π}. In this tuple,
Q denotes a set of states, and q0 is a special initial state. The alphabet Σ is a
finite set of tokens that the PDFA can accept as input. We denote a as an
individual token in Σ, and x is an arbitrary string from the set of all possible
1 https://github.com/tudelft-cda-lab/FlexFringe.

https://github.com/tudelft-cda-lab/FlexFringe
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strings over Σ, denoted by Σ∗. We write in short |x| for the length of string x,
and λ is the special empty string with length |λ| = 0.

An input string x = a0a1...an traverses A via the transition function τ :
Q × Σ → Q recursively: τ(q, λ) = q and τ(q, ax) = τ(τ(q, a), x).... Note that
we introduced shorthand notation for τ(q, x) as the recursive traversal through
A with a string x. A state q′ is reachable from state q iff ∃x : q′ = τ(q, x). We
write shorthand Qτ(q) to denote the set of all states that are reachable from state
q, and we denote by Xτ(q) the set of strings needed to reach them starting in
state q. Traversing the automaton with a string x results in a sequence of states
q0q1...qn−1 being visited. We call this sequence of states the trace of x and write
T (x).

Lastly, the mapping π : Q×Σ → [0, 1], π : Q → [0, 1] maps state-symbol pairs
and states to probabilities. A PDFA requires ∀q ∈ Q:

∑
a∈Σ π(q, a) + π(q) = 1.

We call π(q) the stopping probability of state q, modeling the probability of a
string to reach state q and end there. Given an input string x = a0a1...am−1

and its associated trace of states T (x) = q0q1...qm−1qm we can compute the
probability of string x to occur via π(x) =

∏m−1
i=0 π(qi, ai) · π(qm). Figure 1

depicts an observation tree and its minimal PDFA.

2.2 Observation Tree, Closed PDFA, and State Merging

We say that a PDFA is an observation tree OT if for each state q ∈ OT there
exists a unique string xA

q s.t. q = τ(xA
q ), and q is only reachable from q0 by

this string. We call xA
q the access string of q, and xA

q0 = λ. Contrary to the
observation tree, we call a PDFA A consisting of state set Q closed iff ∀q ∈
Q, ∀a ∈ Σ: τ(q, a) ∈ Q.

In this work we build observation trees and minimize them via state merging
techniques [7]. Building deterministic models furthermore requires a determiniza-
tion process whenever two states are merged, subsequently merging state pairs
such that τ(q, a) is uniquely identified ∀q ∈ Q,∀a ∈ Σ. State merging induces a
mapping in between the observation tree and the PDFA A. In Fig. 1 we show an
observation tree along with a related closed PDFA obtained via 1. Merge q1 into
q0, which merges q2 into q3 as part of the determinization procedure. 2. Merge
q4 and q5 into q3, in arbitrary order.

3 Learning Algorithm

Our algorithm leans heavily on the works of Vandraager et al. [18]. We define
a teacher, which is an abstraction of the system-under-learning (SUL), and a
learner, an abstraction of the learning algorithm. The learner can ask the teacher
two question: Firstly a membership query MQ(xa) for string xa, to which the
teacher replies with a conditional probability P (a|x), a ∈ Σξ. Here, we enhanced
the set Σ with a unique stopping symbol ξ indicating the end of a sequence2.
2 The presence of such a symbol is a reasonable assumption. E.g. in natural language

processing this is commonly referred to as the <EOS> (end-of-sentence) symbol.
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Fig. 1. An observation tree (above) and a corresponding (closed) PDFA.

Secondly, the learner can ask an equivalence query EQ(T ,H) between the
target SUL T and the current hypothesis H. The teacher will respond with
either a ‘yes’, meaning the systems are behaving similar enough, or a ‘no’ along
with a counterexample string xcex which violates the error bound.

The learner has two main routines: In the first routine it tries to find a hypoth-
esis candidate for target T . Whenever it finds a valid hypothesis candidate H
the second routine starts, either validating H and terminating or processing the
counterexample returned by the teacher. The learner repeats these two routines
until it has found a hypothesis that can pass EQ(T ,H). We describe the two
routines in the following.3

3.1 Finding a Hypothesis

In order to find a hypothesis we employ the red-blue-framework [9], which distin-
guishes a core of red states, which are considered states of the final automaton,
blue states and white states. Blue states are states q′ who have a transition
q′ = τ(q, a) s.t. q′ is not red but q is. States that are neither red nor blue are

3 Because we describe our algorithm at all stages, it was not always clear on how we
should refer to the individual states and nodes of the automaton. For simplicity we
decided to stick to the word ‘state’ meaning both state and node from here on, as
they are mostly interchangeable for us.
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Algorithm 1. Extend fringe
Input: State q, alphabet Σ

for all a ∈ Σ do
Create state q′ satisfying q′ = τ(q, a)
InitializeState(q′) � Algorithm 2
Fn ← Fn ∪ {q′}

end for

Algorithm 2. Initialize state
Input: State q, access to target T via teacher

Save P (xA
q ) in state

π(q) ← MQ(xA
q ξ)

for all a ∈ Σ do
π(q, a) ← MQ(xA

q a)
end for

white. Initially, the observation tree OT consists only of one red state q0. The
learner initializes q0 via Algorithm 2 and creates a set of blue states around q0
via Algorithm 1. Then the learner attempts to minimize OT via state merging.

We call a pair of a red state qr and a blue state qb consistent under μ ∈ [0, 1)
iff it holds that

d(qr, qb) =

∣
∣
∣
∣
∣

π(xA
qb
)

π(qb)
· π(qr) − P (xA

qb
)

∣
∣
∣
∣
∣
≤ μ. (1)

Note that we introduced a distance between qr and qb here, written d(qr, qb)

in short. The term
π(xA

qb
)

π(qb)
· π(qr) represents π(xA

qb
) if the merge were to happen.

We call qr and qb mergeable iff ∀q′
b ∈ Qτ(qb) and their respective set of strings

Xτ(qb) it holds that either τ(qr, x
′), x′ ∈ Xτ(qb) is not defined, or q′

r = τ(qr, x
′)

and d(q′
r, q

′
b) ≤ μ. In words: When we want to merge two states the inequality

(1) needs to hold for all states that are merged through determinization as
well. However, with these merge requirements we are able to guarantee that
|P (x)− π(x)| ≤ μ for each string x for which τ(x) is defined on the observation
tree.

In order to find a hypothesis the learner continues growing the hypothesis
until it has found a set of red nodes that form a closed PDFA. In every step the
learner fixes C, the current set of red states, and F , the current set of blue states,
and compares each of the blue states with each of the red states. If a blue state
is consistent with a red state, the blue state will be merged into the red state.
If a blue state qb can be merged with multiple red states, it will be merged into
the red state qr satisfying qr = argminq′

r∈C{d(q′
r, qb)}. A blue state that cannot

be merged with any red state will turn red at the end of the iteration, and will
be extended via Algorithm 1. If during an iteration all blue states were able to
merge into a red state, then the learner has found a closed PDFA. The entire
subroutine is depicted in Algorithm 3.
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Algorithm 3. Find hypothesis
Input: Unmerged observation tree with root state q0, alphabet Σ, threshold μ
Output: Hypothesis H

Initialize H with root state q0
while Hypothesis not found do

Fix red states in set C, blue states in set F
R ← ∅
for all Blue states qb ∈ F do

smin ← 1, m ← NULL � m is placeholder for best merge
for all Red states qr ∈ C do

if Consistent(qr, qb) and Score(qr, qb) < smin then � See Section 3.1
smin ← Score(qr, qb)
m ← (qr, qb)

end if
end for
if m not NULL then

Merge qb into qr
else � No merge found for qb

R ← R ∪ {qb}
end if

end for
if R is not empty then

for all qb ∈ R do
Mark qb red
ExtendFringe(qb) � Algorithm 1

end for
else

Return H
end if

end while

3.2 Counterexample Search and Processing

Once the learner found a valid hypothesis, it asks the teacher for an equivalence
query EQ(T ,H). The query can have two possible outcomes: Either the teacher
deems T and H sufficiently close, or it rejects H and provides a counterexample
string xcex for which the following requirement does not hold. In accordance
with our merging procedure we require closeness for T , modeling P (x), and H,
modeling π(x), via |P (x) − π(x)| ≤ μ.

Finding a counterexample can mean one of two possible cases: In the first
case the string xcex has been seen before. In this case a merge between a red
state qr and a blue state qb has been performed, and after the merge one or more
states q′ have been added s.t. q′ was reachable by q at the time q′ was created.
In this case the merge of qr and qb has been wrong. In the second scenario xcex

has not been seen yet. Thus H does not have sufficient information, yet.
We opted for a simple strategy that can deal with both scenarios: Our learner

remembers an inverse mapping from H to OT . To deal with counterexamples we
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first reset H to OT , and then parse xcex via τ(xcex). Whenever transitions are
not defined on τ the learner creates the missing states, and initializes any new
state q′ through subroutines 1 and 2. Once the counterexample is processed the
algorithm returns to finding a valid hypothesis. We show the counterexample
processing subroutine in Algorithm 4, and the main loop of our algorithm in
Algorithm 5.

Algorithm 4. Process Counterexample
Input: Observation tree starting in root node q0, counterexample string xcex

q′ ← q0
m ← |xcex| − 1
for i in 0...m do � xcex = a0a1...am

if τ(q′, ai) not defined then
ExtendFringe(q′)

end if
q′ ← τ(q′, ai)

end for

Algorithm 5. Main routine
Input: Access to target T via teacher, alphabet Σ, error bound μ
Output: Hypothesis H

Initialize(q0)
ExtendFringe(q0) � Algorithm 1
while Hypothesis not found do

H ← FindHypothesis(q0, Σ, μ)
Perform EQ(T , H)
if Counterexample xcex returned by EQ(T , H) then

Reset H � q0 holds observation tree again
ProcessCounterexample(q0, xcex)

else
Return H

end if
end while

3.3 Practival Considerations

Equivalence Oracle. While practical in theory, in reality it is impossible to
check H for each possible string x. Multiple search strategies exist to find coun-
terexamples [14]. Here we opted for a simple solution, generating random strings
over Σ∗ assuming a uniform distribution over one and the maximum string
length, and a uniform distribution over Σ for each token a of x. If a maxi-
mum number of strings has been suggested without finding a counterexample
the oracle deems H and T equivalent.

Early Stopping. Depending on the complexity of the underlying problem the
hypothesis H can grow to a very large model. In these cases it is desirable to
have early stopping criteria. We set a limit nmax on the number of red states.
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The first time the number of red states reaches nmax we force-merge the set
of remaining blue states into the set of current red states: For each of the blue
states qb, find a red state qr that minimizes qr = argminq′

r∈Cd(q′
r, qb) and merge

qb into qr.

4 Correctness

Lemma 1. Every iteration of FindHypothesis (Algorithm 3) over the current
set of blue states, comparing them with the set of red states, either results in a
complete basis B, or it identifies a new red state, growing H by at least one new
state.

The proof of this Lemma is by design of the algorithm. It is important
to note that every new red state qr accepts at least its access string xA

qr s.t.
P (xA

qr ) = π(xA
qr ). Therefore, each identified red state increases the number of

strings satisfying |P (x) − π(x)| ≤ μ by at least one and therefore the quality of
the result.

Lemma 2. Every identified red state in the observation tree q directly corre-
sponds to a state q′ in target T s.t. π(q, a) = π(q′, a), ∀a ∈ Σ and π(q) = π(q′).

Proof. We prove by contradiction: Assume the learner identified a red state q′

that is not part of T . We further assume that no states of OT have been merged
yet, i.e. H is an observation tree still. Then, ∃a ∈ Σξ: P (xA

q′a) �= π(xA
q′a). By

design however on OT models probabilities precisely, therefore this event cannot
happen. The case for H with performed merges follows from the fact that our
merge routine holds error bounds ∀μ ∈ [0, 1).

We have to note that assuming the target T to be a PDFA provides value
by helping us in showing correctness of our algorithm. Many real-world applica-
tions however have underlying systems of higher complexity. In those cases the
number of states to model the target system cannot easily be bound by a fixed
number of states, but we know that the probability assigned to strings decreases
monotonically in length: P (x) ≥ P (xa). Therefore it does make sense to define
an upper bound on the length of the strings we want T to model, and then have
the algorithm cover those cases. We now focus on the ProcessCounterexample
routine.

Lemma 3. Assuming the teacher rejected H along with counterexample string
xcex, there are only two possible reasons:

1. xcex has been seen before by the learner, in which case the learner merged two
inconsistent states.

2. xcex or a substring of it have not yet been seen by the learner. In this case
there exist states in T that are not yet part of H and its observation tree.
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As explained in Sect. 3.1, our merge routine ensures that ∀x ∈ Σ∗ s.t. τ(x) is
well defined on the unmerged observation tree OT it is |P (x)−π(x)| ≤ μ at the
time of a merge. Therefore, case 1 of Lemma 3 can only happen on states the
learner added to H after a merge has happened. Resetting H to the observation
tree will solve this problem, since the merge check will ensure that this merge
will not happen again. In case 2 of Lemma 3 resetting to the observation tree and
adding xcex will create the unknown states necessary to accept xcex. In this case
we either add new states to the automaton, or we remove one or more wrongly
performed merges on H. Either case is going to increase the number of accepted
traces x by the automaton by a minimum of one, namely xcex will be accepted
from there on.

Theorem 1. Assuming T is a PDFA with n states, and the membership queries
MQ(x) be noise free. Then the algorithm will terminate after a finite number of
iterations and output a hypothesis H with n′ ≤ n states s.t. ∀x ∈ Σ∗ : |P (x) −
π(x)| ≤ μ.

Proof. The proof follows from the previous lemmas. The idea is that in each
turn, one of the two main routines will increase the number of identified states
by at least one. Since the target has a finite number of states the algorithm must
terminate.

5 Experiments and Results

To test our algorithm we applied it to three datasets, namely the CTU-13
dataset, the HDFS dataset, and the BGL dataset. We extracted sliding win-
dows and trained a language model of the form P (a|σ), a ∈ Σξ for each of them.
We then distilled PDFA from the networks.

To test how well the distilled models approximate the underlying neural
networks we did the following: We set the threshold μ to the values of 1e−3,
1e−5, 1e−7, and 1e−10 respectively. We report for each tested value of μ the
values minx(|P (x)−π(x)|), maxx(|P (x)−π(x)|), MSE =

√∑
x(P (x) − π(x))2,

as well as the number of states. In all these instances, x is over the corresponding
test-set of the respective dataset. Our test sets were all limited to a size of 20, 000,
due to the slow prediction of the neural networks.

Additionally, we made sure that the neural networks learned the under-
lying datasets correctly in the following manner: All selected datasets con-
sist of normal and anomalous data. We consider an extracted sliding win-
dow malign if it contains one or more malign tokens, else it is benign. After
training the models, we can assign labels: Given a sequence of length |x| =
m and x = a0a1...am−1, we obtain predicted probabilities P1 = P (a0|λ),
P2(a1|a0), ..., Pm = P (am−1|a0...am−2) from the network. We assign a score
of 1−minPi,i∈{0...m} to each sequence, over which we compute an receiver oper-
ating characteristic (ROC) curve and report the area-under-curve (AUC). The
closer the AUC to a value of 1, the better the classification works. Because the
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inferred PDFAs behave similar to the underlying neural network in their input-
output-behavior, we can use the same method to assign anomaly scores as we
did with the networks.

5.1 Datasets

CTU-13. The CTU-13 dataset [5] consists of captured network traffic grouped
together in Netflow format [8] called flows, and each flow is labeled as either back-
ground or malicious. The dataset comes in 13 individual scenarios. We picked
scenario 10 and used the algorithm of Pellegrino et al. [17] to encode the netflows
into an alphabet of size |Σ| = 92 with 10 even percentiles. To create sequences
we sorted via time stamp and grouped by connection, and then extracting sliding
windows of size 10 over the connections. Connections with fewer flows resulted
in a single window.

We considered a sequence as malign if it contained a malicious data packet,
else benign. We counted both the number of benign nbenign and malign sequences
nmalign, and computed f = nmalign

nbenign
. Malign sequences were automatically

assigned to the test-set. Benign sequences were randomly assigned to the test-set
with a uniform probability of f , and else to the train-set. This way, the number
of benign and malign sequences in the test-set was roughly even, and the train-
set consisted only of benign sequences, making sure the network learned only
the normal behavior of the network. Because the train-set was too large for our
machine, we randomly sampled 400, 000 sequences.

HDFS. Another dataset that we tested our algorithm on is the HDFS dataset
[21], which represents logs generated from the Hadoop File System run on Ama-
zon’s Elastic Compute cloud. Because the system logs come semi-structured,
they first have to be tokenized. We used the already preprocessed dataset as
made available by [3].

BGL. The last dataset we tested on was the BGL dataset [16]. The dataset
consists of log-data collected on the Blue Gene/L supercomputer as of 2006,
which has been labelled by alerts or normal activity. To obtain tokens we applied
the DRAIN algorithm [6] implemented by Zhu et al. [22], giving us an alphabet
of size |Σ| = 321. We then grouped the templates by node and rolled a sliding
window of size 10 the obtained tokens, and then split the resulting sequences
into train- and a test-set. We split the dataset into train- and test-set the same
way we did on the CTU-13 dataset. Due to the large size of the test-set, we
further randomly sampled 100, 000 sequences from the test-set for evaluation.

5.2 Results and Discussion

Approximation Results. The initial results of the experiments can be taken
from Table 1. We omitted the entries for μ = 1e−5 on the HDFS dataset, because
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Table 1. Results of the experiments. We show the approximation errors on the respec-
tive test-sets, as well as the resulting number of states that the PDFA has.

Dataset Metric μ = 1e−3 μ = 1e−5 μ = 1e−7 μ = 1e−10

CTU-13 minx(|P (x)− π(x)|) 1.27e{−78} 1.27e{−78} 1.27e{−78} 1.27e{−78}
maxx(|P (x)− π(x)|) 4.08e{−4} 9.69e{−5} 7.20e{−5} 1.40e{−4}
MSE 1.71e{−10} 4.56e{−12} 2.43e{−12} 5.27e{−12}
# States 14 121 1493 3644

HDFS minx(|P (x)− π(x)|) 5.16e{−256} – 5.16e{−256} 5.16e{−256}
maxx(|P (x)− π(x)|) 1.15e{−6} – 1.28e{−7} 7.44e{−8}
MSE 2.00e{−13} – 1.55e{−15} 7.65e{−16}
# States 1 1 14 798

BGL minx(|P (x)− π(x)|) 6.70e{−177} 6.59e{−190} 3.62e{−193} 3.91e{−186}
maxx(|P (x)− π(x)|) 3.02e{−3} 3.02e{−3} 6.47e{−4} 3.02e{−3}
MSE 8.90e{−8} 8.90e{−8} 7.09e{−9} 8.90{e − 08}
# States 16 165 918 3500

the distilled model is the same as for μ = 1e−3. Because of the increased com-
plexity of the BGL dataset we had to use our early-stop criterion at 3500 states,
as the machine became too large for our hardware with 16GB RAM memory.

Obviously, the HDFS dataset was the easiest to learn. We can see from the
results that the model could be represented with a single state and self loops
even for a value of μ = 1e−5, and only 14 states for μ = 1e−7. Compared with
the HDFS dataset the CTU-13 and the BGL datasets learned larger models.
This is likely due to their larger alphabet sizes, which increases the number of
possible search paths exponentially.

Decreasing the μ parameter greatly increased the number of states of the
distilled models, and in the end many more states have to be added for less
gain. Interestingly, on the CTU-13 and BGL datasets the performance in terms
of maximum error and MSE decreased slightly in the model with the largest
number of states compared with a smaller one. We again attribute this to the
fact that larger models are harder to check. An example: In the example of the
BGL dataset, we identified the sequence consisting of template 314 repeated ten
times. The probabilities are predicted precise until after seven applications of
τ the distilled model suddenly underestimates the real probability by several
orders of magnitude, caused by a wrong merge. Due to the size of the model
this wrong merge is much harder to detect by the counterexample search and
remains in the final model. Due to the fact that this string appears a lot in the
test-set the MSE of the model becomes larger again. The model with 918 states
does not make this wrong merge and predicts the same sequence better. This
is a problem common to all active learning algorithms, but can be improved
with better search strategies. For a more elaborate discussion of this we refer
the reader to the work of Marzouk and de la Higuera [10].
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Fig. 2. ROC curves obtained on the datasets. On the left are the ROC curves of the
neural network, contrasted with a respective distilled PDFA to the right.

Anomaly Detection Results. We show some results for the anomaly detec-
tion, a proxy for how well the networks approximated the dataset, as well as an
example for a distilled in Fig. 2. We can see that the networks performed very
strong on the CTU-13 dataset and the HDFS dataset, with an AUC of 0.97 and
0.99 respectively. The BGL dataset proved to be more challenging with an AUC
of 0.89 for the network. This has to do with the underlying dataset, which is
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harder to learn than the other two, as well as with how we chose to extract tokens
from it. However, the network is still capable of detecting anomalies significantly
above random guesses, showing that it learned the data it was given.

Not very surprising the distilled models did not match the underlying net-
work’s performances perfectly: The model with 14 states on the CTU-13 dataset
obtained an AUC of 0.96, just very slightly below the neural network. On the
HDFS dataset however the model with 14 states has an AUC of just 0.92, 0.07
below the neural network, and the distilled model with 15 states on the BGL
dataset has an AUC of just 0.76, 0.13 below the neural network. Interestingly,
on most of the datasets the smaller models were the better ones, and in most
cases the detection performance decreased with larger models. We attribute this
to the following: Larger models do have more paths to cover. Therefore, ensur-
ing consistency with the error bound becomes much harder with smaller μ. An
exception to this was posed by the HDFS dataset, where the model with 1 state
had an AUC of 0.4 only, indicating that an error of 1e−5 is not sufficient for any
anomaly detection on this problem.

Use Case Example. In this subsection we want to demonstrate how the models
can be used. We take the distilled model with 14 states we extracted from the
on the HDFS data trained network. Figure 3 shows the model. For simplicity
we omitted all transitions with a probability less than π(q, a) ≤ 1e−4, marked
all transitions with probabilities larger than 0.01 blue, and all with probabilities
larger than 0.1 green. The following is a malign string from our test-set: 17, 26,
26, 28, 16. In our model we can see that the first three transitions were highly

Fig. 3. Visual representation of the 14-state PDFA extracted from the NN trained on
the HDFS dataset.
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probable. However, the transition after the second 26 is very low according to
our model. In fact the substring 17, 26, 26, 28 does not appear in our training
set at all. We can thus use our distilled model to get a clean visual representation
of our network, helping us to predict low probability strings.

6 Conclusion and Future Work

In this work we introduced a new algorithm that actively learns PDFAs and
demonstrated its capabilities learning simple models that can still achieve good
detection results in anomaly detection examples. We also showed a simple use
case example of how the distilled PDFA can be used as a global explanation
for an underlying neural network. An advantage of our method is that bounds
are guaranteed to hold on every tested string. Other methods use merge criteria
such as the variation distance, which is a much less intuitive metric when parsing
whole strings. Compared with spectral methods and in accordance with some
other works we are also able to infer deterministic models.

Just as in the case of the original L# algorithm, the run-time of our algorithm
is a drawback. Even smaller machines can lead to a large observation tree, lead-
ing to many asked queries. We could pinpoint the bulk of the run-time to these
queries. Tackling this could for example include pruning the tree when predicted
probabilities become too small to violate the error bounds. Another possible opti-
mization of the algorithm is obviously a better counterexample search. We also
consider the further investigation of applications such as the anomaly detection
an interesting research direction.
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