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Preface

In this book, we address the problem of how to design compliant mechanisms which are stat-
ically balanced. This is, how to design mechanisms that work by elastic deformation of their
constitutive elements, and require virtually no forces to induce static deflections in them.

Static balancing eliminates the need for actuation forces besides those required to overcome the
inertia and friction of the system. Static balancing is an intuitive notion with which we are famil-
iarized. When we think of lifting a heavy weight a common solution is to use a counterweight.
When the counterweight makes the lifting of the weight effortless, then we have statically bal-
anced the system. But weights can also be statically balanced by springs and furthermore, springs
can be statically balanced by other springs.

This work has its origins in the work of Prof. Just L. Herder. During his work on the static bal-
ancing of rigid body mechanisms using precisely “springs”, he came with the idea of applying the
same design notion on compliant mechanisms since the flexible elements in this type of mech-
anisms can be considered as springs. If a spring can be used to statically balance other springs,
then it should be possible to design compliant mechanisms that statically balance themselves.

These thoughts resonated with the idea that compliant mechanisms are mechanically inefficient
due to the storage of the input work as strain energy during actuation. This latter notion that has
been considered as a necessary evil could be overthrown through the use static balancing.

Thus, with these issues in mind we embarked on this journey in which we found ourselves
plunging into the junction where the classical theory of mechanisms meets structural analysis,
design optimization, non-linear theory of elasticity, MEMS, non-linear finite element analysis,
and many more fascinating disciplines.

This book covers from the synthesis methods of compliant mechanisms and the theory of static
balancing to the introduction of a design methodology for static balancing of compliant mecha-
nisms and the initial results of topology optimization applied into this field.

For those interested in design theories of technical systems and artifacts, the book also presents
a brief discussion about the author’s view of compliant mechanisms and static balancing under
the perspective of technical system representation.

Along four years of work, people come and go, but their contributions stay. I wish to thank to
all the persons that contributed to the development of this work with their creativity and sharp
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insights. To Nima, Gert, Volkert, Karin, Ditske, Elko, Jet, Mark, Giuseppe, Toon, and Sergio.
To my wife Elizabeth, for her acute observation, her ideas, thoughts and hours of discourse and
talks.
To Prof. Dr. G. K. Ananthasuresh, Prof. Dr. A. Saxena and Dr.Ir M. Langelaar for their
comments and support, without their help it would not have been possible to develop the analysis
tools.
Special gratitude to Prof. Dr. Just L. Herder and Prof. Dr. Frans van der Helm for their guidance
and counsel; for the confidence placed in me.
To the Lord for giving me the chance to live a life in which I can wonder why.



1 Introduction

Bend and be straight; The stiff and unbending is the dis-

ciple of death. The gentle and yielding is the disciple of

life.
Lao Tse

To introduce statically balanced compliant mechanisms, it is desirable to understand individually
three basic concepts: “mechanisms”, “compliance” and “static balancing”.
For a comprehensive definition of mechanisms it is useful to observe the relation between mech-
anisms and machines. Machines are built with an intended use or purpose so they perform some
kind of work. As defined by Pahl et al. [94] they are technical systems consisting of assemblies
and components whose main flow is energy-based. Using this definition we can say that mecha-
nisms are then assemblies and components used in the machines, and more specific as defined by
Howell [40] mechanisms are mechanical devices used to transmit or transform motion, force or
energy. But keep in mind that differentiating between mechanisms and machines is not always
clear as mentioned by Norton [93] where in some cases their difference is just defined by the
magnitude of the transmitted or transformed motions, forces and energies.
Conventionally, mechanisms are collections of rigid body elements connected by overlapping
joints, gaining their functionality by the relative motion among these elements. An advantage
of rigid-body-based mechanisms is that the overlapping joints —neglecting friction— do not
introduce stiffness in the actuation of the mechanisms.
Mechanisms based on rigid bodies can be replaced by compliant mechanisms that achieve to
some extent the same function, see Fig. 1.1. Compliant mechanisms are monolithic structures
that gain their motion due to deformation of their constitutive elements. If the motion comes only
from deformation then it is said that compliant mechanisms are fully compliant, but if motion
comes from a combination of deformation and relative motion between elements, then it is said
that compliant mechanisms are partially compliant [40]. If we assume a traditional view where
structures are designed to withstand forces with a minimum of deflection, then we can say that
compliant mechanisms are structures that fail under the action of a load, and they are designed
to deflect the most in a desired way with the least force.
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(a) (b)

Figure 1.1: A rigid body mechanism can be replaced by its compliant version. (a) A gripper
constructed from rigid links. (b) A gripper constructed from as monolithic compliant structure.

Compliant mechanisms rely on the idea of compliance which is defined as “the ability of an ob-
ject to yield elastically when a force is applied” [19]. Compliance can be lumped or distributed
depending on how deformation is localized along the deforming elements in compliant mech-
anisms. Compliance is one of nature’s favorite design principles. It can be seen from cells to
plants and from the tiniest insects to the biggest mammals. For instance, compliance in trees
allows them to move with the breeze to disperse their progeny. It also allow them to resist the
weight of the leaves and in some cases as in the willows compliance allows the branches to yield
under the weight of the snow to keep the leaves clear during winter [50]. Compliance can be also
traced back to earliest human designs. Take for instance bows and arrows. Bows are designed
compliant to store the energy provided by the archer as strain energy which is later transferred to
the arrow during the release. The arrow itself is compliant to bend and oscillate during flight to
correct its trajectory.

Compliant mechanisms are not a recent idea in engineering, they have been used in the design
of scientific precision instruments for more than a century. The design of precision instruments
makes extensive use of compliant joints and flexures as a way to implement the principles of exact
constraint design [14]. The use of compliant mechanisms introduces performance benefits like
the absence of sliding friction, wear, noise, vibration and the need for lubrication. Furthermore,
backlash is eliminated so positioning error is reduced and precision is increased [4]. However, the
monolithic nature of compliant mechanisms brings some drawbacks. Potential energy is stored
in the compliant segments as strain energy, introducing stiffness that affects the input-output
relationship. In particular the energy efficiency is challenged, see Fig. 1.2a.

It would be desirable to have compliant mechanisms and all their benefits together with the
energy efficiency of rigid body mechanisms. However, a question arises: how to overcome
the energy inefficiency of compliant mechanisms? An answer is by reintroducing into the energy
stream between input and output, the stored strain energy from another source of potential energy,
see Fig. 1.2b. This energy compensation to keep the total potential energy constant is referred to
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Input
energy

Output
energy

Strain energy from
deforming elements

(a)

Input
energy

Output
energy

Strain energy

(b)

Figure 1.2: Flow of the energy stream during actuation. (a) In compliant mechanisms, some of
the actuation energy is stored as strain energy in the deforming elements. The energy efficiency
is less than 100%. (b) In statically balanced compliant mechanisms, some energy is still stored
as strain energy in some deforming elements while the same amount of energy is released into
the energy stream by another source of potential energy. Ideally, the energy efficiency is now
equal to 100%.

as static balancing.

Static balancing is a conservative state of motion where all the internal forces are kept in static
equilibrium. A mechanism in such a state does not require any force for its actuation besides
those to overcome the inertial loads and non-conservative forces such as friction. Static balancing
is the working principle of weighing balances and it can be found from bascule bridges to kinetic
art. See for instance George Rickey’s Breaking Columns [33] and V. van der Wijk’s De Acrobaat
[140].

Static balancing is a familiar notion used in the solution of problems where heavy masses need to
be lifted repeatedly. Think for instance of the two systems shown in Fig. 1.3. In these examples
mass m1 is statically balanced by the mass m2 and vice versa. The conventional view of these
systems is that the moments exerted by both masses at the pivot point o cancel each other, keeping
the systems in static equilibrium. But a less intuitive view is that during motion the total potential
energy of both systems is kept constant, so the potential energy lost by one mass is gained by the
other mass and vice versa. This view is easier to observe in the system shown in Fig. 1.3a.

Static balancing has been used in problems related to gravity compensation, vibration isolation
and stiffness reduction. Although there is a body of literature on static balancing applied to the
stiffness reduction of compliant mechanisms, there are not many methods for their synthesis and
design. Currently, the design of Statically Balanced Compliant Mechanisms (SBCM’s) relies
greatly on the designer’s experience and it is based on modifications of a few typical configura-
tions. In a world with growing demands on miniaturization, design simplification, cost reduction,
and energy efficiency among others, the use of SBCM will potentially increase.

The aim of this work is the development of a methodology to provide methods for the design
of statically balanced compliant mechanisms. This in order to (i) improve the design quality,
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o

m1

m2

(a)

ϕ

m2g

m1g

y

xo

(b)

Figure 1.3: In these examples, during motion, the potential energy lost by one mass is gained by
the other mass, so one mass statically balance the other mass keeping the total potential energy
constant. (a) Two masses connected by a frictionless pulley. (b) Two masses connected by a rod.

(ii) structure the design process, and the most important, (iii) widen the solution space. It is
considered that the design quality is improved when the final design reflects the inclusion of
more design requirements during the design process and when the marginal values of the design
behavior and attributes expressed as requirement metrics are narrowed down. The solution space
is considered widen when for the same problem it is possible to obtain different solutions in
terms of their topologies, shapes and sizes.
Design methods for any mechanism have to be able to provide solutions inside a prescribed
design domain. Such design solutions should be defined in terms of a valid topology, shapes and
sizes of the mechanism’s constitutive elements. Topology can be thought of as the connectivity
between the elements. A topology is considered valid when it guarantees connectivity between
the essential ports, typically the input, the output, and the ground port.
To conceive a methodology that is able to provide design methods, we need a methodological
framework. In our case, we will use the elements of technical system representation, where
mechanisms are viewed as design objects that perform a function on a flow of energy, and their
behavior complies with a set of requirements.
To develop structured design methods for SBCM’s we need to answer in depth four critical
questions:

What is a design method?

How are compliant mechanisms designed?

What are the conditions that characterize a state of static balancing?

How to include a state of static balancing in the design of compliant mechanisms?

Answers to these questions are presented along the chapters of this work. Chapter 2 answers
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(c)

Figure 1.4: The design domain includes the essential ports (input, output, ground). A mechanism
is described by its topology, shapes and sizes. (a) and (b) have the same number of elements but
their topologies are different. (a) and (c) have the same topology but some of their elements have
different shape and size.

the first question by introducing the design framework and the design perspectives on which this
work is based. The chapter focuses on mechanisms viewed as design objects and discusses the
relations between requirements, characteristics, constraints and design variables as well as the
implications of static balancing and compliance in the conceptual and detailed design stage.

Chapter 3 gives answers to the question of how compliant mechanisms are designed. This is done
through a literature review on the design methods for compliant mechanisms. The review concen-
trates on the design methods reported in books, theses, journals, proceedings, and reports using
as search keywords combinations of the terms ‘compliant’, ‘mechanisms’, ‘micro-mechanisms’,
‘flexures’, ‘flexible’, ‘hinges’, ’notch hinges’. The body of knowledge gathered from the liter-
ature review is organized into a proposed new classification which expands the possibilities for
the allocation of new methods and literature. The chapter concentrates on the description of the
three main design approaches: (i) the rigid body replacement as a straight forward approach,
which takes a conventional rigid body mechanism and replaces the overlapping joints by mono-
lithic flexures, (ii) the building blocks which searches for simple blocks with simple functions
and then combine them to create complex functions, and (iii) structural optimization or automa-
tion of the design search which poses the design problem as a mathematical function that at its
minimum value attains the design solution by setting the design search space as the function’s
domain.

To answer the question about the conditions that characterize a state of static balancing, we re-
fer to chapters 4 and 5. These two chapters explore and synthesize the knowledge about static
balancing. Chapter 4 presents the results from the study based on virtual experimentation of
mathematical models of well-known statically balanced mechanisms. The intention of the chap-
ter is to show static balancing and its properties in the context of a simple mechanism.

Chapter 5 presents initially a review on static balancing. The review reports the literature re-
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trieved by combinations of the terms: ‘energy-free’, ‘static balancing’, ‘continuous equilibrium’,
‘zero stiffness’ and ‘force compensation’. This review is also expanded by the relevant articles
included in the reference lists. The presentation of the literature follows a proposed classifica-
tion based on applications and design approaches. The remainder of chapter 5 is devoted to the
generalization of the static balancing conditions in a physical and mathematical context. The
generalization of the conditions is presented using linear algebra in order to relate static balanc-
ing with the conventional description of elastic systems in terms of their stiffness matrices. The
generalization explains statically balanced compliant mechanisms as structures described by sin-
gular stiffness matrices as well as the relation among null spaces, buckling and vibration modes,
eigenvalues and eigenvectors, for these particular systems.
Chapter 6 explains how to include a state of static balancing in the design of compliant mecha-
nisms through the introduction of a novel design methodology for SBCM’s. The design method-
ology is derived by combining the two bodies of knowledge presented in chapters 3 and 5 —
the design methods for compliant mechanisms and the static balancing conditions. From the
proposed design methodology several design methods are derived through the development of
examples of SBCM’s.
Chapter 7 is fully dedicated to one of the methods derived from chapter 6. This chapter explores
the viability of a new design method based on structural optimization, specifically topology op-
timization. The method tests two different formulations for the solution of two benchmark ex-
amples common in literature, (i) the gripper and (ii) the inverter. The chapter introduces a mod-
ification of Warshall’s algorithm to identify disconnected nodes and/or elements on structures
represented by undirected graphs.
Final discussion and conclusions are presented in chapters 8 and 9, where we address many
unresolved issues and open questions as well as the final message of this work which is the view
of statically balanced compliant mechanisms as failed structures that do not require any force to
fail. This view is based on the fact that statically balanced compliant mechanisms are structures
that load themselves to the critical buckling load, with a finite and maximized range of motion
where the self-buckling load is kept critical.



2 The design framework

It’s not enough that we do our best; sometimes we have

to do what’s required.
Winston Churchill

To answer the question of what is a design method, first we need to understand what are design
requirements and their classification as well as the relation between design requirements and
design attributes. Understanding of this relation helps to interpret the attributes of compliant

and static balancing in terms of design requirements. The relation between requirements and
attributes is presented as the design problem from the view of technical system representation.

Once we understand design requirements and their relation with the design attributes we intro-
duce design methods as iterative design cycles in which design requirements are translated into
design attributes. The presentation of the design process is treated from the teleological perspec-
tive of design, that is to say from the end and purpose of the design.

2.1 Technical system representation of the design problem

This section will introduce a view of statically balanced compliant mechanisms through the prism
of technical systems. Under this view we give an answer to the questions of why compliant and
why static balancing, what means compliant and static balancing to mechanisms and what is the
relation of compliant and static balancing with the design requirements. Answering these ques-
tions helps the designer to understand when compliant and/or static balancing is the goal of the
design. The view used in this section is constructed on the analysis of a proposed categorization
of the design requirements, and tested through the grammatical logic of human language.

Mechanisms as machine components are designed for a purpose, and this purpose defines what
is called in representation of technical systems [94], the main function. The main function is the
fundamental reason for which the mechanism is designed. It is expressed as an action on a flow,
and defined in terms of the functional requirements. By flow we refer to any form of matter,
energy or information on which the design object acts, and without being part of this, it flows
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physically and/or functionally, across the design object.

In a conventional sense, mechanisms are designed to fulfill some functional requirements that
normally can be categorized as, (i) path generation, (ii) function generation, or (iii) motion gen-
eration. These allows to define the main function in a general way as transmit power or more
specific as either transform motion and/or transform force, depending if we give more relevance
to the displacement or force component of the power. Here transmit or transform is the ac-
tion, and power, motion or force is the flow —an energy flow. Figure 2.1 depicts the black box
representation of a mechanism with its main flow and function.

Notice that these two more specific functions —transform motion and transform force— are the
root of the two dimensions of the design of mechanisms, (i) mechanisms as mobile structures
and (ii) mechanisms as structures that coup with reaction forces. In the design of conventional
mechanisms, the second dimension is subrogated to the assumption of rigid bodies, but this is
not the case for compliant mechanisms.

Transmit
power

Mechanism

Power
Transmitted

power

Figure 2.1: Black box representation of a mechanism. Here the design object, the mechanism,
applies the function transmit onto a flow of energy, in this case power.

In essence, the functional requirements define the main function, what the mechanism should
do, but they are not the only requirements. In the design of mechanisms the non-functional
requirements are related to constraints and characteristics [113]. While the constraints are limits
to functional requirements and characteristics, the characteristics express what the mechanism
and its function should be. Certainly functional characteristics do not define but condition the
main function to when, where, or how it is accomplished, while product characteristics condition
or qualify the mechanism itself. At the end of the design process, all the requirements (functional
and non-functional) should be reflected by the behavior attributes and physical attributes of the
real and tangible design object. Figure 2.2 shows how requirements are classified and how they
relate to the function and attributes.

When we talk about a compliant mechanism, implicitly we are referring to a design object (here
the mechanism), that has been conditioned to bear the attribute compliant. If we translate back
this attribute into requirements, we find that it does not say anything about what the mecha-
nism does, but how it is. Compliant for a mechanism defines product characteristics such as
monolithic, predictable, precise, reliable, compact, noiseless, durable, as well as functional char-
acteristics like energetically inefficient and motion limited.

Conditioning the design object to be compliant has its advantages and disadvantages, but how to
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Requirements

Non-functional
requirements

Characteristics

Product
characteristics

Adjectives

functional
characteristics

Adverbs

Constraints

Limit the
characteristics

Limit the
function

Functional
requirements

Function
Verb + Adverb +
Verb complement

Concept Attributes

What

The problem

How

The solution

What it is

What it does

How it is
How it does it

Figure 2.2: Requirements and their relation with the function and attributes.

make use of the advantages while the disadvantages are minimized? Clearly the root of all the
characteristics for the attribute compliant is the monolithic nature imposed on the design object,
which means limited motion and motion implies strain energy storage.

For the limited motion, not too much has been done, but for the energetic inefficiency the im-
mediate answer has been maximize the deflection with the minimum strain energy storage, as
proposed in most of the literature on the subject [27]. But there is a problem with this approach,
if elements deflect, then the strain energy storage will never be zero, no matter how good the
strain energy is minimized.

Here in this work we intend to tackle the energetic inefficiency problem not by minimizing the
strain energy storage but making the strain energy constant. This is done by using the concepts
of self-principles [128], to reach a state of static balancing on which all the internal elastic forces
are balanced during motion, making the operation of the mechanism effortless. The idea is to
design a mechanism, that accomplish a function attaining the desirable characteristics related to
the attribute of compliant and remove the undesired energetic inefficiency using static balancing
(one functional characteristic cancels the other).

Static balancing is an attribute that when expressed as a requirement bears the functional char-
acteristic of energetically efficient and the product characteristic of prestressed, overconstrained,
and enlarged. Conditioning the design object to be compliant as well as statically balanced has
as a consequence the reduction of the search space in the design domain, making their design
complex (Fig. 2.3). To design a mechanism that is compliant as well as statically balanced, is to
talk about a design approach that is able to combine functional requirements with characteristics
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on both, the design object and its function.

Functional
requirement

Compliant Statically
balanced

SBCM

D

Figure 2.3: Reduction of the search space as a consequence of imposing functional requirements,
functional characteristics and design object attributes.

The design of SBCM’s could lead to the oversight of the characteristics that the design of such
mechanisms convey, this is the case when the designer tends to think in terms of how to do it,
instead of what to do. To see the latter, we relate in a grammatical sentence the existing logical
relation among the elements used in the representation of technical systems (the design object,
its given function and its characteristics) [109], in order to verify the coherence of the design
problem formulation (see Fig. 2.4).

System
representation Attribute

Design
object

Function Attribute Flow

Grammatical
representation

Adjective Noun Verb Adverb
Verb

complement (noun)
+ + +

Subject Predicate

Figure 2.4: The design problem and the equivalence between technical system representation
and grammatical representation.

The sentence expressing the design solution in terms of how to do it, would be something like:

Statically balanced compliant mechanisms transmit power.

Transmit
power

Statically balanced compliant
mechanism

Power
Power

transmitted

Figure 2.5: Black box representation of the design solution. The design solution expresses how
the problem is solved.
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We observe a coherent sentence, but requirements have been diluted into the attributes, obscuring
the intention of the design. Now the sentence expressing the design problem in terms of what to

do, would be:

The monolithic, predictable, precise, reliable, compact, noiseless and durable mech-

anisms transmit power efficiently.

Transmit power
efficiently

Monolithic, predictable, precise, reliable
compact, noiseless, durable

mechanism

Power

Power
transmitted
efficiently

Figure 2.6: Black box representation of the design problem. The design problem expresses what
is the problem to be solved.

Certainly, this sentence reflects congruently what the design should do and should be. The design
of statically balanced compliant mechanisms then requires from the designer to keep in mind
that static balancing and the use of compliance are not the ultimate goals of the design but the
means to fulfill the requirements. It is to say that a nice design that is fully compliant and has
been statically balanced but which its motion does not satisfy any functional requirement is then
useless.

Compliant mechanisms and statically balanced mechanisms should not be designed for the sake

of compliance and balancing.

2.2 The design process

The development of a design methodology requires to (i) understand the design process, (ii)
understand how the problem is translated into solutions, and (iii) understand the complexities on
design derived from the selection of compliance and static balancing as the means to achieve the
requirements.

The design of statically balanced compliant mechanisms is certainly more complex with respect
to the design of what we call conventional mechanisms, or mechanisms based on rigid bodies.
This complexity arises from the association of the design variables with the requirements and at-
tributes, since this association defines the independence between design stages and design steps.

To get the idea, first we need to understand the design framework for conventional mechanisms
to later discern the design of statically balanced compliant mechanisms.
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Design as such is the act of finding useful solutions to a problem that arises from unsatisfied
needs. In the case of mechanisms, design arises from the need to transmit power or transform
motion and forces between actuating and effecting elements.
In the design of technical systems, such as mechanisms, the needs are translated into require-
ments which in turn, as explained in the previous section, will define the function, the charac-
teristics and the constraints of the design. But keep in mind that these definitions are intangible
abstractions. Therefore, the function, characteristics and constraints are associated to design
variables that later will frame the manifest attributes of the real design object. In the case of
mechanisms, the most important attributes are those related to topologies, shapes and sizes, since
they finally define the mechanism from a technical system view.

Requirements Design variables Attributes

Topology

Shape

Size

Figure 2.7: Attributes relate to requirements through the design variables.

The design of mechanisms in a broad view can be decomposed in two stages, (i) the conceptual
design, and (ii) the detailed design. Within each stage it is possible to identify the iterative design
cycle comprising four steps, (i) set requirements, (ii) synthesis, (iii) analysis, and (iv) evaluation
(see Fig. 2.8).

Conceptual
design

Detailed
design

Set
requirements

Synthesis

Analysis

Evaluation

Figure 2.8: Design of mechanisms decomposed in two stages, comprising the four iterative de-
sign steps.

In a general way, the design cycle consists of giving values to the design variables —the synthesis
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step— to later verify the behavior of the resultant concept —the analysis step— and compare
this behavior with the desired behavior expressed by the requirements —the evaluation step— to
finally, based on the evaluation, update the requirements if needed —the set requirements step.
How these four steps are performed is what gives birth to all sorts of design methods.

At stage level, the conceptual design stage provides solutions —concepts— considering only the
functional aspects, while the detailed design stage refines the concepts to comply with require-
ments that are not function related.

The conceptual design stage and the detailed design stage can or can not be carried out in-
dependently. The independence between stages is given by the interrelation degree between
requirements and design variables. That is to say if functional requirements, functional char-
acteristics and functional constraints are in function of a set of design variables, and this set
of design variables are fully independent from the set from which product characteristics and
product constraints are in function, then both design stages are fully independent. But once that
both groups of requirements share design variables in their domains, the design stages lose their
independence.

An example of independence between design stages is the design of a mechanism with a func-
tional requirement for path generation and the non-functional requirement of lightweight. As-
suming a linkage as the solution, then in the conceptual stage it is possible to find a solution
to the trajectory by only considering the topological variables and the length of the links, while
omitting the remaining variables that fully define the link shapes and their mass. The remaining
variables are defined later in the detailed design stage. In this kind of examples the independence
among design variables allows to define topologies, shapes and sizes individually.

The design of compliant mechanisms poses the problem of the intricate interrelation between
requirements and design variables due to their monolithic nature which intertwines the func-
tional and non-functional requirements. The execution of the design stages rather than being
stepwise becomes an evolutionary process. The design variables define the topology, shapes and
sizes simultaneously considering the mechanism as a whole. This is why the attribute compliant

encloses so many different requirements.

On the other hand, the design of statically balanced mechanisms is typically done in two phases,
each phase comprising the latter mentioned stages and steps. First the conventional mechanism
is designed through the selection of a design principle that introduces the functional character-
istic of energetic inefficiency, then the second phase or static balancing phase is defined by the
function balance the mechanism subject to a functional constraint imposed by the mechanism’s
kinematics.

The design of statically balanced (rigid body) mechanisms is a relocating and/or additive design
process, in which masses, elastic elements, charges, or fields are relocated and/or added to the
existing mechanism without modifying its kinematic behavior. Design variables for static balanc-
ing are then fully independent from the design variables defining the conventional mechanism.
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Mechanism
conceptual design

Mechanism
detailed design

SB Conceptual design

SB Detailed design

Set
requirements

Synthesis

Analysis

Evaluation

(a)

Conceptual and
detailed design of

compliant mechanism

Conceptual and
detailed design of
static balancing

Set
requirements

Synthesis

Analysis

Evaluation

(b)

Conceptual and
detailed design of
statically balanced
fully compliant
mechanisms

Set
requirements

Synthesis

Analysis

Evaluation

(c)

Figure 2.9: Stage independence in the design cycle for (a) statically balanced conventional mech-
anisms, (b) statically balanced partially compliant mechanisms, and (c) statically balanced fully
compliant mechanisms.

They do not belong even to the same design phase, see Fig. 2.9a.

Now, the design of statically balanced compliant mechanisms certainly carries all the difficulties
of the design of compliant mechanisms, but for static balancing two situations are observed if the
design is either (i) partially compliant or (ii) fully compliant.

Partially compliant designs are mechanisms with overlapping elements, where motion is a prod-
uct of rigid body motion and deformations, while fully compliant designs are monolithic mech-
anisms where motion is only product of deformations.

If the aim of the design allows the use partially compliant designs then the static balancing phase
can be carried out independently (Fig. 2.9b). This is the case when the balancing elements are
connected to the unbalanced design through the use of stiffness-free overlapping joints.

If the design must be fully compliant, the addition of the balancing elements is done by the
use of compliant joints which are sources of strain energy and stiffness, therefore disrupting the
action of the balancing elements and the kinematic behavior of the unbalanced design. The static
balancing phase is not independent, making the design of statically balanced fully compliant
mechanisms a one stage process (Fig. 2.9c) in which the conceptual and detailed design take
place simultaneously, and the definition of the topology, shapes and size are carried out at the
same time.

There is an exception to the above reasoning. It occurs when at the kinematic pair connecting
the compliant modules, (i) there are no overlapping pre-stressed sources of stiffness and (ii)
there is no relative motion between the balancing elements and the unbalanced design. In this
case the partially compliant design is transformed into a fully compliant design by replacing the
connecting kinematic pair by an inactive compliant joint.
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2.3 Summary

Combination of the framework for requirements and attributes illustrated in Fig. 2.2 and the
iterative design cycle illustrated in Fig. 2.8 provides the whole framework for the design of
mechanisms used in this work. This framework is illustrated in Fig. 2.10. The framework sum-
marizes the classification of the design requirements and their relation with the design attributes
through the iterative design cycle. Here, design requirements are divided into functional require-
ments and non-functional requirements —constraints and characteristics. The framework also
summarizes the relation of characteristics with the grammatical representation of technical sys-
tems, where functional characteristic are adverbs to the main function and product characteristics
are adjectives of the design object.
The iterative design cycle is shown as a process of two design stages —conceptual and de-
tailed design— comprising the four design steps —set requirements, synthesis, analysis, and
evaluation— from which the design variables define the design attributes in terms of topologies,
shapes and sizes.
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Figure 2.10: Complete design framework.



3 Synthesis of Compliant Mechanisms

Get the habit of analysis - analysis will in time enable

synthesis to become your habit of mind.
Frank Lloyd Wright

This chapter provides an answer to the question how compliant mechanisms are designed. The
chapter gives a glimpse of the state of the art on the synthesis methods for compliant mechanisms
and introduces a classification of the synthesis methods which serves as the structure for the
presentation. The main idea behind each synthesis approach is conceptually explained. At the
end of the chapter it is presented a final discussion of the main design approaches considering
benefits and disadvantages.

3.1 Introduction

Compliant mechanisms are those mechanisms that accomplish their function due to the defor-
mation of one or more slender segments of their members; they do not rely exclusively on the
relative motion between joints and the rigid links. From the referenced literature, advantages of
compliant mechanisms were collected, which may be summarized as follows.

Due to their monolithic nature compliant mechanisms possess two main benefits over conven-
tional rigid-link mechanisms, namely no relative motion among pieces and no overlapping pieces
(see Fig. 3.1a). The absence of relative motion implies the absence of sliding friction, which
eliminates wear, noise, vibration and the need for lubrication. Consequently, less maintenance
is required. Furthermore, backlash is eliminated, which leads to reduced positioning error and
therefore increased precision. The fact that there are no overlapping pieces allows fewer parts
and single piece production, which reduces the assembly and weight. Therefore, compactness
and miniaturization characteristics are enhanced while production costs are reduced.

All the benefits of compliant mechanisms help to create more innovative designs and actuation
arrangements which increase the solution search space. In the case of adaptive structures, com-
pliant mechanisms mean that fewer actuators are required.
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Apart from the above advantages, the monolithic nature of compliant mechanisms also gives rise
to some drawbacks (see Fig. 3.1b). Due to potential energy storage in the compliant segments,
the input-output relationship is affected. In particular, energy efficiency is challenged. As con-
sequence, synthesis and analysis cannot be done by separating kinematics and dynamics. The
design process is even more complicated if the compliant segments undergo large deflections, in
which case the governing stress and strain equations become non-linear. In the design process
of compliant mechanisms the stress and strain relationships must be considered because they
determine the deformed shape of the elements and therefore the input-output behavior of the
mechanism.
These disadvantages tend to turn the design into a trial and error process highly dependent on the
designer’s experience [42]. This prevents the wide use of compliant mechanisms and therefore
few examples are available to be used as inspiration for new developments [89].

Monolithic
nature

No relative motion
among pieces

No overlapping
pieces

Fewer parts

Single piece
production

Reduced assembly
and weight

Reduced wear

Reduced noise

Reduced vibration

No lubrication

No backlash
Compactness and
miniaturization

Cost reduction

Increased precision

(a)

Monolithic
nature

Strain energy
storage

Input-output
relation affected

Energy efficiency
is challenged

Design becomes trial and error

Dependent on designer experience

Fewer examples for inspiration

Kinematics and dynam-
ics can not be separated

Non-linearities

(b)

Figure 3.1: Features of compliant mechanisms due to their monolithic nature. (a) Advantages.
(b) Disadvantages.

Although compliant mechanisms have been used for more than a century, the last 20 years have
shown a proliferation of new methods for analysis and synthesis of such mechanisms.
Despite all the work that has been done in compliant mechanisms, there are only a few introduc-
tory documents and books available [12][40][125], but none of them present an accessible and
comprehensive introduction to the synthesis methods.
For those with little or no experience in the field of compliant mechanisms this poses a prob-
lem, which is finding a starting point from where they can be guided towards the solution of a
specific design problem. This problem is also enlarged by the amount of knowledge areas that
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converge here: compliant mechanisms involve kinematics of mechanisms, multi-body dynamics,
non-linear mechanics of materials, numerical optimization techniques, etc. This chapter aims
to present a comprehensive overview of the most common synthesis approaches for compliant
mechanisms. The chapter is also intended to provide the reader with a basic understanding of the
methods in a way that the reader acquires a sufficiently wide knowledge base to investigate partic-
ular methods or to find methods that are suitable for particular application. Three main different
design synthesis approaches for compliant mechanisms are distinguished; the kinematics based
approaches, the building blocks approaches and the structural optimization based approaches.
The organization of the individual methods within these main approaches is represented in Fig.
3.2.

Synthesis of compliant
mechanisms

Kinematic approach Building blocks approach Structural optimization

Rigid body
replacement

Freedom and
constraint

Design
parameterization Formulation

Fully compliant

Lumped compliant

PRB model (catilever beam)

Other beam’s representation
methods

Flexural joints

PRB model (small length
flexural pivot)

Parameterized curves

Graph

Discretized domains

Higher dimension driver
functions

Splines

Bezier and wide curves

Intrinsic functions

Mophological
representation of topology

Discrete ground structure

Continuum structure

Level set method

Basis functions

Functional and structural
requirements

Functional requirements

Artificial I/O spring

Characteristic stiffness

Energy efficiency

Mechanical and ge-
ometrical advantage

MSE/SE

Figure 3.2: Synthesis of compliant mechanisms

In the kinematics based approaches two methods are discussed: the rigid-body-replacement
method based on flexure joints and pseudo-rigid-body models, and the freedom and constraints
topologies. In the building blocks approaches two methods were identified: the instant center
approach and the flexible building blocks. In the topology and shape optimization approach the
optimization problem is presented as well as the most common parameterizations and objective
formulations found in the literature on the subject.
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3.2 Kinematic approaches

Two main methods can be found here; the Freedom and Constraints Topologies (FACT) and the
Rigid-Body-Replacement method. As the name suggest these methods aim to obtain designs by
focusing on kinematic requirements.

3.2.1 The FACT method

The FACT method [37][38][39] is based on mapping a set of geometric entities in the freedom
space onto a set of geometric entities in the constraint space where the topology solutions for the
design problem can be found.
Basically the designer translates the required motion of the mechanism into degrees of freedom
(DOF) which are used to find the geometric entities that describe the required motion in the
freedom space. Knowing these geometric entities, it is possible to find in the constraint space the
topologies of the flexure elements that provide the desired motion.
In the FACT method there are twelve sets of geometric entities, but only eight have importance in
flexure systems. The other four are still in the process of being correlated with flexure systems.
To give a clear idea of the method a simple example will be given. Imagine that some device is
needed having two DOFs; a displacement in the z axis and a rotation about the x axis, Fig. 3.3.

displacement

rotationx

y
z

Figure 3.3: Device with two DOFs.

The rotation can be represented by one of the twelve geometrical entities, the P-plane. The
P-plane represents a plane containing all co-planar and parallel rotation lines with a specific
orientation. In our case the P-plane is parallel to the xy plane, and the lines have the same
orientation of the rotation axis, see Fig. 3.4a.
The displacement can be represented by the geometrical entity, the Hoop. This entity represents
the displacement as a rotation in the infinite about any axis that lies in the xy plane, Fig. 3.4b.
Now that the DOFs have been translated into a set of two geometrical entities, a Hoop and a
P-plane, the mapping from the freedom space to the constraint space can be performed.
According to the FACT method the Hoop and P-plane together in the freedom space are mapped
in the constraint space with two other geometrical entities, the Box and the A-plane, see Fig. 3.5.
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P-plane

(a)

r =∞

r =∞

(b)

Figure 3.4: Geometrical entities representing the freedom space of the design problem shown in
Fig. 3.3. (a) The P-plane entity represents all the coplanar rotation axes with the same orientation.
(b) The Hoop entity represents displacements as rotations pivoting at infinity.

From these geometrical entities the constraints will be obtained.
The Box represents the constraint lines inside this box, which are parallel in the direction speci-
fied by the P-plane in the freedom space. The A-plane represents any constraint line that lies on
this plane, which is parallel or coincident with the lines in the Box.

P-plane

Hoop A-plane

Box

Freedom space Constraint space

Figure 3.5: Mapping between the freedom space and the constraint space.

Because the problem has two DOF it means that it needs four non-redundant constraints. The
constraints can be thought of as truss elements (a bar between ground and the object, connected
by spherical joints). A solution to the example can be seen in Fig. 3.6a. Notice that the three
lower constraints lie in the A-plane, while the three parallel constraints lie in the Box. Now the
constraints are replaced by beam elements designed in such a way that they provide the proper
flexibility and stiffness in the required directions to replace the constraints, see Fig. 3.6b.
In the FACT method the mapping is done by searching in a table the case and the type that
better suit the concerning problem. In the example, the problem requires four non-redundant
constraints which match with Case 4 and the geometrical entities in the freedom space (hoop and
P-plane) match with a Type 2 problem.
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(a) (b)

Figure 3.6: Possible solution for the FACT example. (a) Selected constraints, (b) possible solu-
tion, here the compliant beam replaces three of the constraints.

The FACT method is a type synthesis method that only provides topologies for the mechanisms.
The FACT method requires the use of some complementary dimensional synthesis to complete
the design process. The method not only considers the rotational and translational displacements
but also the screw movement, which is a coupled rotation and translation movement.

3.2.2 The Rigid-Body-Replacement

The Rigid-Body-Replacement method consists of finding a rigid body mechanism that accom-
plishes the desired function and then converting it into a compliant version. The conversion is
performed by replacing the joints using a Pseudo-Rigid-Body model or beam deflection model,
or by simply replacing the conventional joints with flexure joints. The Rigid-Body-Replacement
method [12][42] as presented in literature makes extensive use of the Pseudo-Rigid-Body (PRB)
model [40] but it is not limited to it.

In the classification of compliant mechanisms two main types of compliance can be distin-
guished, lumped compliance and distributed compliance. In the case of a lumped compliant
mechanism the deformation takes place in a concentrated part of the constitutive elements while
in a distributed compliant mechanism the deformation occurs along a broader part on the consti-
tutive elements, Fig. 3.7.

(a) (b)

Figure 3.7: (a) Lumped compliance, (b) distributed compliance.
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Based on the mentioned distinctions, the synthesis approaches in the rigid-body-replacement
can be divided in design based on flexure joints (either with lumped compliance or distributed
compliance) and design based on PRB model (either for lumped compliance or distributed com-
pliance).

Flexure joints

A flexure joint is a region which can undergo large deflections relative to stiffer adjacent regions
in the same element. Normally these stiffness differences are attained through the geometrical
characteristics of the deflection regions. Depending on these characteristics, the flexure joint can
show single or multiple deflection axes which can be rotational or translational axes.

Flexure joints can be categorized as primitive and complex flexures [148]. Flexural joints with
rotational axes are also known as flexure hinges or flexure pivots.

Flexure joints for lumped compliance Among primitive flexures there are the small length
flexures and the notch-type flexure hinges were the notch profile can be a rectangular section, cor-
ner filleted, circular, parabolic, hyperbolic, elliptical, inverse parabolic, secant or hybrid sections
[69, 70, 71, 149], some of which are shown in Fig. 3.8.

(a) (b) (c) (d)

Figure 3.8: Notch-type flexure hinges. (a) Corner filet, (b) circular, (c) parabolic, (d) hybrid.

Flexure joints for lumped compliance have the advantage of a low variation in the locus of the
axis of rotation since deflections tend to be localized at the thinnest section of the notch hinge.
This advantage have as a consequence high stress concentration that limits the range of motion.
Therefore the design of the notch-type flexure hinges is normally confined to small displace-
ments, however they can be designed to undergo large deformations as presented in [85, 52] if
stress concentrations are properly handle.

Flexure joints for distributed compliance Flexure joints for distributed compliance can be
both primitive and complex flexures. The primitive flexures can be shaped as ellipses, four-bars,
chevron, etc. See Fig. 3.9.

Complex flexures are combinations of more simple flexures which can be design to act as revolute
joints, prismatic joints or as universal joints [87, 138], Fig. 3.10.
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(a) (b) (c)

Figure 3.9: Primitive flexures for distributed compliance. (a) ellipse, (b) chevron, (c) four-bar.

(a) (b) (c) (d)

Figure 3.10: Complex flexural joints, reproduced from [138]. (a) universal joint, (b) revolution
joint, (c) and (d) prismatic joints.

Complex flexures can be combined to create even more complex elements. Moon and Kota [86]
for instance present the design of Compliant Parallel Kinematic Machines (CPKMs) using a set
of constraining legs. Their design is based on a set of three complex flexure joints, see Fig. 3.11.

Figure 3.11: Flexural joints for the design of constraining legs for compliant parallel kinematic
machines. Reproduced from [86].

Examples of other complex flexures are the Compliant Contact-Aided Revolute (CCAR) joint
[16] and the Compliant Rolling-contact Element (CORE) [17], which can act as a combination
of bearings and springs, see Fig. 3.12.
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Figure 3.12: Contact-based joints. (a) The CCAR joint [16], (b) The CORE joint [17].

Pseudo-Rigid-Body model (PRB)

The pseudo-rigid-body model is an approach that allows to find a rigid-body mechanism that
emulates the behavior of a compliant member that undergoes large, nonlinear deflections. The
deflection path is given by the kinematics of the rigid-body mechanism whilst the force-deflection
relation is approximated by springs that represent the member’s stiffness.
During the design of a compliant mechanism, the pseudo-rigid-body model has its main role in
the conceptual design stage in the transition from the type synthesis to the dimensional synthesis.
Analyses based on kinematics are simpler, so the use of pseudo-rigid-body model provides with
a quick way to test concepts and therefore reduces efforts to obtain final concepts, just before
proceeding with the detailed design.
The pseudo-rigid-body models vary depending on the boundary conditions applied at both ends
of the beam, these conditions can be fixed-fixed, fixed-pinned and pinned-pinned; they deter-
mined how the loads are applied.
When two compliant members interact it is important to determine which condition better suits
this interaction.

PRB model for lumped compliance The design of compliant mechanisms with lumped com-
pliance using pseudo-rigid-body models is based on the pseudo-rigid-body model for small-
length flexural pivots [42, 40]. Here the compliant member to be designed shows two segments,
one large and stiff and the other short and flexible. The short one and flexible is known as the
small-length flexural pivot.
The idea is to find the position of the characteristic pivot and the characteristic stiffness for the
torsion spring in the pseudo-rigid-body model. Figure 3.13 shows a member with a small-length
flexural pivot and its pseudo-rigid-body model.
The pivot is placed in the middle of the short segment and the stiffness constant of the spring is
given by

K =
(EI)l
l

(3.1)
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Figure 3.13: pseudo-rigid-body for a beam with small-length flexural pivot, reproduced from
[40]. (a) Deflected beam, (b) equivalent pseudo-rigid-body model.

Where l is the length of the small-length flexure pivot, E and I are the Young’s modulus and
cross-section second moment of inertia respectively for this segment.

An accurate use of the pseudo-rigid-body model requires that: L� l (L ten times or more larger
then l), and EIL � EIl, also the member must be subjected to pure bending.

PRB model for distributed compliance In this approach the compliant member is assumed
to have a constant cross-section.

The most important pseudo-rigid-body model for distributed compliance is the model for a fixed-
pinned cantilever beam (no moments at the free end of the beam) with a force acting at the free
end [43, 40], see Fig. 3.14.

l

b

a Θ0

F

(a)

b

a

γl

l

Θ0
F

(b)

Figure 3.14: Pseudo-rigid-body for a cantilever beam with force at free end, reproduced from
[40]. (a) Deflected beam, (b) Equivalent pseudo-rigid-body model
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The position of the characteristic pivot is given by the value of characteristic radius γ. The
characteristic stiffness for the spring is given by a stiffness coefficient kθ and γ, see Eq. 3.2.

K =
γKθEI

l
(3.2)

Both, kθ and γ, are function of the n parameter which sets the orientation of the applied force at
the free end as a proportion of its components, see Fig. 3.15. The equation to compute γ(n) can
be found in [41, 43, 44, 40]. The equation to compute kθ(n) can be found in [41, 44, 40].

F

Ft

Fn

F
P

−nP
φ

θ0

Figure 3.15: Applied force at the free end of the beam.

When the applied force at the free end has an orientation angle ranging 63.4 ≤ φ ≤ 135 or
−0.5 ≤ n ≤ 1, a constant value of γ=0.85 and kθ=2.65 can be assumed for rough calculations,
otherwise the equations for γ(n) and kθ(n) must be used . These values provide an accuracy of
0.5% on the deflection path for deflection angles below 77◦.

In literature, there are many other pseudo-rigid-body models for beams with different boundary
and load conditions. For instance Saxena and Kramer [118] present a pseudo-rigid-body model
for combined end loads with positive end moments, while Edwards at al. [25] present a pseudo-
rigid-body model for compliant members that are initially-curved with pinned-pinned boundary
condition (no moments at both ends of the beam). Kimball and Tsai [63] present a pseudo-rigid-
body model for a cantilever beam with an end moment acting opposite to an end force. Lyon and
Howell [80] present a pseudo-rigid-body model for a beam with boundary conditions fixed-fixed,
while Su [132] presents a pseudo-rigid-body model for deflection angles larger than 77◦. Here the
deflection of a cantilever beam is approximated by a pseudo-rigid-body model composed of four
rigid segments which are connected by three revolute joints with their respective characteristic
springs. This model allows the use of combined force and moment at the free end of the cantilever
beam.
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3.3 Building block approaches

In the building block approach the idea is to concatenate multiple compliant mechanisms that
perform simple functions to create compliant mechanisms that can perform more complex func-
tions. There are two main building block approaches; one based on instant centers and compli-
ance ellipsoids and the other one based on flexible building blocks and optimization.

3.3.1 Building blocks by instant centers

The building block approach based on instant centers [58, 57, 59, 60, 61, 62] is a conceptual
design procedure. The idea is to find a mechanism that provides for a given input displacement
an output with a desired displacement direction and geometric advantage (GA). The mechanism
is found by concatenating two different basic blocks, the compliant dyad building block (CDB)
illustrated in Fig. 3.16a and the compliant fourbar building block (C4B) illustrated in Fig. 3.16b.
These two blocks can be used to form combinations, like those presented in Fig. 3.17a and 3.17b

(a) (b)

Figure 3.16: Basic compliant building blocks (reproduced from [60]). (a) A compliant dyad
building block (CDB). (b) A compliant fourbar building block (C4B).

(a) (b)

Figure 3.17: Building blocks concatenation (reproduced from [60]). (a) Combination of two
C4B. (b) Combination of C4B and CDB.
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This synthesis process is called the dual stage synthesis. Before explaining how the dual stage
synthesis is used, three concepts are introduced: the principal compliance vector, the instant
center and the decomposition point.
The principal compliance vector (PCV) is a unit vector that points in the direction of the major
compliance at the output port of a mechanism. By intuition it can be seen that a cantilever
beam like the one in Fig. 3.18a is more compliant in the vertical direction than in the horizontal
one, then the PCV for the tip of the beam points in the vertical direction. Another example is
presented on Fig. 3.18b, at the input port the PCV shows that the displacement will be vertical
due to the input force, while at the output port the PCV indicates that the mechanism will move
in the horizontal direction.

Principal
Compliance
Vector

(a)

output
port

PCV

input port

PCV

input
force

(b)

Figure 3.18: Principal compliance vector. (a) PCV of a Cantilever beam, (b) PCV of a compliant
mechanism at the input and output port.

The instant center is defined as the point around which a rigid body with plane motion seems
to rotate in a particular instant. For the case of a C4B the instant center can be identified by
projecting the perpendicular lines from the PCV at the input and output port and finding the
intersection point of these lines as shown in Fig. 3.19.
The decomposition point (DP) is the point inside the design space where two building blocks are
concatenated. At this point the output port of the first building block coincides with input port of
the second one.
In the dual stage synthesis, two building blocks are concatenated by finding the proper decom-
position point, and by finding at this point the direction of the principal compliance vector that
ensures the desired GA (Fig. 3.20).
Basically any point in the design space can act as a decomposition point, and for any decom-
position point there is a PCV that ensures the geometrical advantage. Now, what distinguishes
one decomposition point from another one is the way that the total GA is generated by the two
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Figure 3.19: Instant center of a C4B is the point at which the rigid body (the coupler link) seems
to rotate when at the given configuration the C4B undergo small deflections.

blocks, meaning that one building block could contribute more to the total GA than the other
one. This is reflected in the expression for the GA:

GAtotal = GA1 ·GA2 (3.3)

where GA1 and GA2 are the geometrical advantages generated by block 1 and block 2 respec-
tively. These geometrical advantages are equal to the ratio of the distance between the output port
and the instant center over the distance between the input port and the instant center. The fitness
of the decomposition point that provides a proper GA is measured by the geometric advantage

index (nGA) [60].

nGA = logGAtarget
(GA2) (3.4)

The GA index normalizes the GA for block 2 in the range [0, 1]. Ideally, decomposition points
are selected to yield a GA index of 0.5, which means that block 1 and 2 generate equal GA.

Another important issue in the design process is the selection of the position for the moving
junctions. Moving junction are the elements that connect the floating links with the ground. A
proper selection gives less error between the desired and the real GA. In Fig. 3.21 it can be seen
how the same decomposition point and PCV’s can have different arrangements for the moving
junctions.
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Figure 3.20: Example of the dual stage synthesis using one C4B and one CDB. (a) After setting
the PCV at the input and output port, it is searched for the DP and its PCV that provides the
desired GA. Then it is possible to find the instant centers. (b) Once the instant centers are known,
it is possible to define the moving junctions.
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Figure 3.21: Two designs with the same DP, PCV and desired GA but different moving junctions,
therefore different GA error between the desired GA and the final GA.

3.3.2 Flexible building blocks and optimization

In this design method, a compliant mechanism is considered as an assembly of multiple flexible
building blocks [13]. The idea behind the method consists of searching for an optimal distribution
of these flexible building blocks inside a mesh that acts as the design domain. The size of the
design domain is defined by the number of building blocks and their size (height and width).

The building blocks are elementary units that are formed by joining two, three or more nodes
with beam elements inside a mesh, see Fig. 3.22. Each building block has its own characteris-
tic stiffness matrix which is created by assembling the stiffness matrices of all beam elements
that form the building block. The stiffness matrix of the compliant mechanism is calculated by
assembling the stiffness matrices of all the building blocks in the design domain.
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Figure 3.22: Building blocks as elementary units. Reproduce from [13].

After the user manually defines blocks in the design domain as well as inputs, outputs, ground
ports, contacts and loading conditions, a multi-objective genetic algorithm generates a set of pos-
sible topologies by finding optimal distributions of the building blocks inside the design domain
(see Fig. 3.23).
The solutions are found by optimizing the balance between stiffness and compliance, and dis-
placement and force, using different objective formulations, like mutual potential energy, strain
energy, geometrical advantage, the mechanical advantage, etc.

design domain
mesh

Dof 1

Dof 2 output port

full block

triangular block

beam block

input port
ground port input port

ground port

Figure 3.23: Building blocks assembling a two DOF compliant mechanism in the mesh design
domain. Reproduce from [13].

Grossard et al. [31] took the approach one step further by adding blocks with integrated piezo-
electric actuators. They introduced the finite element formulation for the active building blocks
as well as their implementation into the genetic algorithm.
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3.4 Structural optimization approaches

Structural optimization as the name suggests is the search for the most favorable (optimum)
arrangement of the parts (structure) under specific conditions. The structural optimization ap-
proaches are based on the use of optimization and search techniques to obtain the design of a
compliant mechanism (its topology, shapes and dimensions) that satisfies an objective function
for a set of parameters and constraints.
When a synthesis problem for compliant mechanisms is solved by using either topology, shape
or size optimization, three main aspects need to be considered: the objective function formula-
tion, the design parameterization and the solution method. But first it is essential to understand
optimization and the concepts behind topology, shape and size optimization. These concepts are
treated in section 3.4.1. The objective formulation and the design parametrization are discussed
in sections 3.4.2 and 3.4.3, respectively. The solution methods are not discussed, since they are
outside the scope of this work.

3.4.1 Optimization

In general, an optimization problem is a procedure to minimize or maximize a function, while
a set of constraint functions (equalities and inequalities) are satisfied. Maximizing a function is
equal to minimizing its opposite function, for this reason optimization problems are often set as
minimization problems.
The function that is being minimized is called the objective function, the variables in the function
are called the design variables and the domain of the design variables is called the search space.
The formulation of an optimization problem (see Eq. 3.5) contains the objective function f (x),
the p equalities hi, the m inequalities gj , the n design variables x and the search space Ω. Nor-
mally, the design variables x1,x2,...,xn are clustered into the design vector x.

minimize
x∈Ω

f(x)

subject to

hi(x) = 0 i = 1, 2, ..., p

gj(x) ≤ 0 j = 1, 2, ...,m

where

x =
[
x1 x2 . . . xn

]

(3.5)

Topology, shape and size

In the structural optimization of compliant mechanisms the goal is to obtain three main charac-
teristics: the topology, the shapes and the sizes of the constitutive elements. When the topology,
the shapes and the sizes of a structure are defined, then the structure is entirely defined from a
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geometrical point of view. If a parallel is done between compliant mechanisms and rigid body
mechanisms, finding the topology is equivalent to the number synthesis, while finding the shapes
and sizes is equivalent to the dimensional synthesis.

Topology optimization To understand topology optimization, first we need to understand the
meaning of the word topology. Topology is a branch of mathematics that studies how the prop-
erties of a space are preserved or change when this space is subjected to deformations. If an
object is imagined to be composed of small elements connected to their neighbors, then this
connectivity is said to define the topology. Deformation does not affect the topology as long
as the connections between the elements remain. However if a hole is made, it requires some
connections to be broken, in which case the topology is modified.

In the case of mechanisms and structures the topology refers to the connectivity among their
constitutive elements, even if they are small discrete elements. Constitutive elements also include
the input ports (where input loads and movements are applied), the output ports, ground ports,
etc.

Topology optimization then refers to the process of finding the topology (connectivity among
constitutive elements) that satisfies in the best way the objective function.

Shape optimization In the shape optimization problem, the word shape refers to the shape of
the constitutive elements, if topology forms the skeleton, then the shape is the contour appear-
ance of every bone in the skeleton. Figure 3.24 shows two examples (continuum and discrete
representation) , with the same topology but with different shape.

Shape optimization then refers to the process of finding the optimal shape of the contour or
surface that satisfies in the best way the objective function in a fixed topology.

Size optimization In the size optimization problem the idea is to find the optimal set of sizing
variables that satisfies in the best way the objective function. The design variables are the sizing
variables or in other words the variables that define the dimensional properties of a model, i.e.,
thickness, cross sections, diameters, radii, etc.

In a typical size optimization problem the shape and topology of the model have been already
defined, for example think on a plate like the one in Fig. 3.25, where the topology is defined
and also the shape of the contours, now the problem is to find the proper dimensions of the two
semi-axis (keeping constant their ratio) for the elliptical outer contour and the radius for circular
inner contour as well as the thickness of the cross section.

The last example highlights the fact that size variables can define sometimes the shape and even
the topology, for example by changing the ratio between the semi-axis, or by making zero the
radius of the circular inner contour. Topology optimization using gradient based algorithms
typically formulates the problem in this way, using size variables as design variables.
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Figure 3.24: Example of same topology, different shape. (a) and (b) continuum structures, (c)
and (d) Discrete structures.

3.4.2 The objective function formulation

Deepak et al. [22] present a comparative study about the five dominant objective formulations
for the structural optimization of compliant mechanisms that are found in literature. These for-
mulations are:

- Mutual potential energy (MPE) and strain energy (SE)

- Mechanical and geometrical advantage

- Energy efficiency

- Characteristic stiffness

- Artificial I/O spring formulation

Reference [22] provides a thorough overview; therefore they are explained here only briefly.
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Figure 3.25: Size optimization.

Mutual Potetial Energy (MPE) and Strain Energy (SE)

In this formulation the compliant mechanism is seen as a structure which is stiff enough to resist
the applied loads while at the same time it is compliant enough to allow the desired deflec-
tion. The Mutual Potential Energy and Strain Energy formulation seeks to conciliate these two
requirements.

The Mutual Potential Energy or MPE accounts for the deflection requirements, while the Strain
Energy or SE ensures the structural requirements. From this premise Ananthasuresh [3] presents
an objective function based on a weighted linear combination of these two parameters.

minimize : −wMPE + (1− w)SE, 0 ≤ w ≤ 1 (3.6)

Where w, which is problem dependent, is the control variable for the relation compliance-
stiffness. Frecker et al. [27], present an objective formulation that overcomes this dependency,
namely the ratio between these two quantities.s

minimize : − (MPE/SE) (3.7)

Saxena and Ananthasuresh [115, 116] present a generalization of this objective formulation as a
power ratio of MPE and SE.

Frecker et al. [30] present the use of ratio between MPE and SE for the design of compliant
mechanisms with multiple outputs.

Observation of the MPE as a form of the reciprocal theorem [135] tell us that maximization of
MPE ensures the maximization of compliance as long as the actuation force is constant and the
dummy displacement at the output is not predefined. The latter means, in the context of finite
elements analysis, that the solution must be found by using load control. The use of displace-
ment control during maximization of the MPE could lead to maximization of stiffness instead of
maximization of the compliance.
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Mechanical Advantage (MA), Geometrical Advantage (GA) and Mechanical Efficiency
(ME)

These formulations are related to the functional specifications of the compliant mechanism rather
than their structural requirements as in MPE and SE formulations. In other words, these formu-
lations are more focused on “what” the mechanism should do than “how” it should do it.

The idea in these objective formulations is to maximize the ratio of a parameter between the
output and the input port. Table 3.1 shows the maximized ratio (Mechanical Advantage, Ge-
ometrical Advantage and Mechanical Efficiency) depending on which parameter is considered
between the input and output port.

Table 3.1: Objective formulation depending the parameter at I\O port

I\O Parameter Maximized Ratio Expression
Force MA fo/fi

Displacement GA ∆o/∆i

Work ME fo∆o/fi∆i

Normally, the output force is modeled as the force fo at the output port exerted by a virtual spring
whose stiffness ks is the stiffness of the workpiece and undergoes a deflection equal to the output
port deflection ∆o.

fo = ks∆o (3.8)

Sigmund [126] presents an objective function for the maximization of the mechanism’s MA
considering an initial gap between the mechanism and the workpiece.

minimize : −R (ρ)

fin
(3.9)

R(ρ) is the reaction force at the output port, ρ is the vector containing the design variables and
fin is the force at the input port.

Canfield and Frecker [15] compare the GA and the ME through the design of an amplifier for
piezoelectric actuators. Frecker and Bharti [28] present a similar work using GA for a given
force and stroke in the actuator.

Lau et al. [68] compile the objective formulations for MA, GA and ME and show the result of
two examples using the three formulations.

Pedersen et al. [97] propose an objective formulation based on [126] for large-displacements
mechanisms by maximizing the work of a virtual spring (a spring that simulates the workpiece’s
stiffness) at the output port, which allows to emphasize on force generation or displacement
generation.

Jung and Gea [55] present an objective formulation based on GA for non-linear materials.
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Characteristic stiffness

Chen and Wang [18] propose an objective formulation that combines strength and functional
requirements.

minimize : −e−(GA−GA∗)kinkout (3.10)

The term e−(GA−GA∗) accounts for the functional requirements by specifying a desired GA∗.
The term kin and kout account for the strength requirements and represent the characteristic
stiffness at the input and output port, respectively.
The characteristic stiffness can be thought of as the stiffness kp of an equivalent spring that allows
the same deflection ∆p of a cantilever beam when force f is applied at point p, see Fig. 3.26.

∆p
f

p
f

p

kp∆p

Figure 3.26: Characteristic stiffness of a point p on a cantilever beam.

Error formulations

Objective functions based on error calculation are commonly used for designs where path, func-
tion or motion generation is required. Error formulation are normaly found on the design of
compliant mechanisms undergoing large deflections.
The main idea is that the behavior of the mechanism during the optimization is fitted to a pre-
scribed behavior. This is done by minimizing the difference between the actual behavior and
the prescribed one. The difference between behaviors is calculated by using some form of error
function, such as least squares error (LSE).
An example of the aforementioned can be found in Larsen et al. [67] where they present an objec-
tive formulation to achieve a desired mechanical advantage combined with a desired geometrical
advantage using the error calculation shown in Eq. 3.11.

minimize :
(MA−MA∗)2

(MA∗)2 +
(GA−GA∗)2

(GA∗)2 (3.11)

More examples developed by using error formulations can be found in [74, 73, 97, 72, 114, 117].
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3.4.3 The design parameterization

The design parameterization refers to the model that is used to represent the topology, the shape
or the size in order to create a proper set of design variables.

In the case of topology some common design parameterization are the representation of the
connectivity by using finite elements like discrete ground structures or by means of graph theory
like the load-path and spanning tree representations.

In shape optimization the design parameterization uses two main approaches [7]: The shape op-
timization based on finite element (FE) models, and the shape optimization based on geometry
models. In the shape optimization based on FE, the design variables are the coordinates of the
nodes on the contours and surfaces on 2D and 3D models respectively. In the shape optimiza-
tion based on geometry models, the geometry of the model is described in terms of geometrical
parameters which are used as the design variables. For instance, the shape could be given by
the values of the parameters r and s that represent the radius of curvature and the arc length of
consecutive contour segments or by the coordinates of a set of control points defining a parame-
terized curve or surface.

In the following sections, the synthesis approaches based on parameterized curves, graphs, dis-
cretized domains and higher dimension driver functions (level sets) are discussed.

Parameterized curves

Parameterized curves are those curves that outline a given path by defining the position of every
point of the curve as a function of one or more variables called parameters.

Spline Parkinson et al. [96] present a design strategy in which they combine optimization and
analysis tools. Their method starts by creating from the design requirements an initial design,
which comprises two parametric models; a model for optimization and a model for analysis.

The parameterization means that the mechanism is defined by using parameters like width, thick-
ness, material properties or even the position of control points, in cases when shape is given by
spline curves, Bezier, etc.

After the two models are created, an iterative solution process is followed. First an optimization
over the optimization model is performed and the new parameters values feed the analysis model
which is used in a finite element analysis. If the finite element analysis shows that the design
behavior is the desired one, the process ends, otherwise, a new design is selected and the new
optimization model is optimized and so on until the desired behavior is achieved.

In [96] the authors develop two examples, one for a constant force mechanism and another for a
path generation mechanism by using as the objective function an error formulation between the
desired and the actual design.
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Vehar-Jutte and Kota [141][56] propose a method based on optimization that provides the topol-
ogy, shape and size of springs that can achieve a desired nonlinear load-displacement function.
The method uses a parametric model that represents the spring as a planar fractal-like network
of splines. This design parameterization makes use of cubic B-splines of five control points.
The nonlinear behavior is achieved by incorporating geometric nonlinearities while material is
considered linear elastic.

The objective function is to minimize the error relative to a prescribed curve at a number of
target points (see Fig. 3.27) while displacement and buckling penalties are taken into account.
The search for the optimum is performed using genetic algorithms.
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Figure 3.27: Relative error to the prescribed load-displacement curve.

The splines form a ground topology created by three branches joined at the input port. Each
branch is formed by one primary spline and two secondary splines (see Fig. 3.28a). All the ends
points are ground ports (the input port is also the output port and is called the applied input).
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Figure 3.28: (a) Ground topology for the plane-fractal-like network of splines, (b) Pictorial rep-
resentation of a result using splines in [141][56].
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The set of design variables is formed by topology variables, shape variables and size variables.
Topology variables are the variables defining the existence or not of a spline, the connection
points between primary and secondary splines and the boundary conditions at the end points.
The shape variables are the position of all the control points. Finally, size variables are the
in-plane height of each spline bounded between a lower and upper limit.
Figure 3.28b presents an example of a possible result after the optimization. In this example, the
second branch has been completely removed as well as one of the secondary splines in branch
one and three, also the out-of-plane height and the position of the control points and ground ports
have been changed.

Bezier Xu and Ananthasuresh proposed a method for shape optimization where the parameter-
ization is based on cubic Bezier curves to represent the compliant segments in a given topology
[147]. The design variables in the optimization process are the coordinates of the Bezier’s control
points, while the points of the Bezier curve are used as nodes in the finite element beam model.
This simplifies the re-meshing process after every iteration during the optimization.
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Figure 3.29: Example of design parameterization of a compliant mechanism with Bezier curves.

Figure 3.29 shows a design parameterization example, where the mechanism is composed of one
rigid element and three compliant segments which have been parameterized with cubic Bezier
curves where only the coordinates of the two middle control points are used as design variables.

Wide curves Zhou and Ting present a design approach where in a given topology the shape
and size of the compliant segments are optimized by parameterizing these segments using wide
Bezier curves [152][153]. A wide curve is a curve that possesses a variable width or cross section,
see Fig. 3.30a. The resulting curve can be thought of as the contour that is left by a moving circle
of variable radius.
A wide Bezier curve is then a Bezier curve where its width can vary; to do this the control points
are replaced by control circles where the centers of these circles define the control polygon and
their radii define the variation of the width along the curve, see Fig. 3.30b. The design variables
are the radii and the center positions of the control circles.
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Figure 3.30: (a) Wide curve, (b) Wide Bezier curve.

Morphological representation of topology Tai and Chee [133, 1, 134] present an approach
where the topology and shape of a compliant mechanism are optimized by using a parameteriza-
tion that is inspired by the morphology of vertebrate creatures.

A valid structure for a mechanism is the one that presents a connection among the input, output
and ground ports. These connections are made by Bezier curves, which are used to define the
structure’s skeleton.

The structure of the mechanism is formed by a skeleton which is surrounded or covered by flesh.
The skeleton is formed by the elements in the design domain that follow the contour of the
Bezier’s curves as shown in Fig. 3.31a.

The amount of flesh that is added to the skeleton defines the shape, as well as potentially the
topology. This amount of flesh or thickness is added considering each skeleton element and is
not constant; it can vary along the curve’s segments. The segments are defined every two control
points, so if the curve has four control points, it is divided in three segments.

In Fig. 3.31b, 3.31c and 3.31d three examples are shown in which different topologies can be
created with the same skeleton by changing the surrounding flesh.

In this example the parameterization variables are the position of the control points of the Bezier
curve and the segment’s thicknesses along the curves. The optimization procedure is based on a
genetic algorithm.

Intrinsic functions Lan and Cheng [65] introduce a parameterization for the shape optimiza-
tion of a compliant link using intrinsic functions. Intrinsic function parameterization means that
the parameterization is made by using essential functions, for instance trigonometric functions.

In this parameterization the shape of a single compliant link is given by an angle function η(u)
and the lateral thickness function w(u), where u∈[0 1] is the non-dimensional length of the link
along the neutral axis (see Fig. 3.32); the link is assumed to have constant out-of-plane thickness.

Both intrinsic functions are represented as polynomials (Eq. 3.12) and their coefficients are the



3.4 Structural optimization approaches 43

curve 1

curve 2

curve 3

port 1

port 2

port 3

Discretized design domain

Bezier’s curve

Skeleton following the
contour of the curves

(a)

(b) (c) (d)

Figure 3.31: Different topologies by adding flesh to the same skeleton structure. (a) Skeleton
following the contour of the Bezier’s curves. (b) Topology with two holes created by thickness
equal to one along all segments at the three curves. (c) Topology with one hole created by
thickness equal to two at the final segments on curves 2 and 3. (d) Topology with three holes
created by thickness equal to two and zero at the initial and final segments on curve 1 and at the
middle and initial segments of curve 2.

design variables for the optimization procedure.

η(u) =
m∑
i=0

ciu
i

w(u) =
k∑
j=0

dju
j

(3.12)

In their work, the authors present the equations necessary for the calculation of the Cartesian
coordinates for the points on the neutral axis and lateral surfaces as well as the constraints that
are required for a correct formulation and to avoid for example self-intersections or loops in the
compliant link.

Graph based parameterizations

Load-path representation and the spanning tree based topologies are methods based on graph
theory to represent the topology of a mechanism, but they differ on how topologies are obtained
during the optimization procedure.
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Figure 3.32: Compliant link representation using intrinsic functions (reproduced from [65]).

Load-path representation The load-path representation [64, 74, 75, 76, 77, 84] is a design
method that integrates topology, size and geometry synthesis by implementing a design-space
parameterization that solves some of the ambiguities in the topology, i.e., gray areas or discon-
nected structures.

The method treats the mechanism’s topology as a graph, where vertices in the graph represent
rigid connections with no degrees of freedom and the edges represent the beams where the de-
grees of freedom occur.

The basic requirement of a valid compliant mechanism is that there must be a physical connection
between the input port, output port and the ground port; in other words, there must be a path in
the graph connecting every pair of these ports. Those vertices that are not input, output or ground
ports are called intermediate connection ports.

The design variables in the load-path representation method are grouped in four sets: variables
for the path sequence, variables for the presence of a path, variables for the cross-section dimen-
sion of the segments and variables for the location of the intermediate connection ports. The first
two sets define the topology, the third set defines the size and the fourth defines the shape.
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Figure 3.33: Load-path representation.

The optimization is performed by a genetic algorithm, so during the procedure the variables for
path sequence and the variables for presence of a path are modified, creating different graphs
which mean different topologies.
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Spanning tree based topologies In the spanning tree based topologies [150][151], the opti-
mization is performed by a genetic algorithm using as design variables the position of the inter-
mediate nodes and the segment’s cross-section dimensions.

The final topology is not defined exclusively by the design variables. The optimum topology is
the optimum candidate provided by the optimization algorithm under the condition that it is also
a spanning tree from the structural universal. A structural universal can be thought of as a ground
structure containing all possible connections among vertices. The edges represent segments (Fig.
3.34).
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Figure 3.34: Structural universal, reproduced from [151].

The presence or absence of a segment is given by the segments’ cross-sectional design variables.
A zero value means absence of the segment. When the optimization algorithm finds a candidate
topology inside the structural universal, it must be checked for being a spanning tree.

A spanning tree is a tree on a graph that connects all vertices without creating cycles or loops. A
spanning tree guaranties the connection among all vertices with a minimum number of edges.

If the candidate topology is a spanning tree, it is a valid topology. Figure 3.35 shows two exam-
ples of spanning trees from the structural universal shown in Fig. 3.34

So in other words, every time that the optimization algorithm proposes a new set of design
variables, this new set creates a new candidate topology from the structural universal which must
be evaluated to be a valid topology using the spanning tree criterion.

Discretized domains

Parameterizations based on discreatized domains refer to design domains where the design vari-
ables define the structure in terms of discrete elements. This means that the details of the solution
in terms of the topology, shapes and sizes are limited by the resolution of the discrete elements.
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Figure 3.35: Two different spanning trees from the same structural universal. Reproduced from
[151].

Unit truss cell The unit truss cell method is a design approach for cellular structures presented
by Wang and Rosen [142][143]. A unit truss is a central node surrounded by n half-struts. A
common strut connects neighboring unit truss cells.

unit truss 1 unit truss 2 unit truss 3

central
node

half
strut

half
strut

Figure 3.36: Neighboring unit truss cells.

The idea is to create a starting structure topology of unit truss cells and modify the strut diameters
by optimization. When a diameter becomes zero, that strut is removed.

The design variables are the struts’ diameters. From this point of view, the parameterization
works in a similar way as a ground truss structure but according to the authors their method
presents the advantage of better accuracy due to the simultaneous analysis of multiple-degree-
of-freedom deformations and by considering non-linearities.

The mathematical formulation for the constitutive equations of a unit truss cell, is derived from
beam theory.
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Discrete structure - Truss, frame, beam ground structures A ground structure is said to be
discrete when the design domain has been discretized using common one-dimensional finite ele-
ments (elements where one of whose dimensions is larger than the other two) like truss or frames.
This implies that not the entire design domain space is represented or mapped by structural finite
elements.

The discrete ground structures can be divided in full ground structures and partial or modular
ground structures. Hetrick and Kota present in [35] a comparison between the full ground struc-
ture and the modular ground structure by developing the design of a compliant gripper and a
compliant wrench using both parameterizations. In addition they present a more extensive dis-
cussion about both ground structures and their advantages and disadvantages.

When discrete structures are used, the design variables for the optimization procedure are nor-
mally variables that describe the geometric characteristics of the finite elements like cross sec-
tional areas, node positions or elements lengths, out-of-plane thickness, in-plane widths, slopes,
etc.

The discrete ground structure can be modeled by using truss or frame elements. Examples using
frame elements can be found in [15, 28, 29, 104, 103, 117]; examples using truss elements can
be found in [27] and [29].

Joo et al. [54] and Joo and Kota [53] present specifically the development of discrete ground
structures using linear and nonlinear beam elements, respectively, while Ramrkahyani et al. [105]
introduce a model for a hinged beam element that can have a pin connection on one or both ends
in contrast to a conventional beam element where both ends are clamped.
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line elements
truss,frame or beam

design doamin

(a)

Node

line elements
truss,frame or beam

design doamin

(b)

Figure 3.37: Discrete ground structure using one-dimensional finite elements. (a) Full ground
structure. (b) Partial ground structure.
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Full ground structure In a full ground structure, each node in the design domain is connected
with all the other nodes through one-dimensional finite elements as shown in Fig. 3.37a.

The number of elements e in a full ground structure is given by the expression,

e =
n (n− 1)

2
(3.13)

where n is the number of nodes in the mesh.

Dziedzic and Frecker [24] present two design examples of a scissor-grasper mechanism by using
three-dimensional full ground structures. Frecker et al. [27] in the presentation of the multi-
criteria objective function make use of a two-dimensional full ground structure of truss elements
for the design of a compliant gripper.

Partial or modular ground structure It is said that a ground structure is modular when the
nodes are connected to neighboring nodes rather than to all the nodes in the design domain. An
example of this can be seen in Fig. 3.37b.

The number of elements e in a rectangular partial ground structure is given by the expression,

e = 4nxny − 3nx − 3ny + 2 (3.14)

where nx and ny are the respective number of nodes in the horizontal and vertical direction in
the mesh.

Frecker and Bharti [28] and Mankame and Ananthasuresh [82] make use of the modular ground
structure in the development of their examples.

Continuum structure A ground structure is said to be a continuum structure when the entire
design domain has been discretized and every discrete sub-domain is modeled by some math-
ematical representation of the macro-microstructure, see Fig. 3.38. Consequently, the entire
design domain is mapped to some structural model representation.

The basic idea behind the use of continuum structures is to start with a design domain which is
full of elements while gradually, during the optimization, those elements that are not effectively
used are removed, so that at the end, only the essential elements remain to achieve the design
requirements.

The Evolutionary Structural Optimization or ESO also known as Sequential Element Rejections
and Admissions or SERA method [110] is representative of this approach. Other approaches can
remove or add elements during the optimization like the BESO (Bidirectional ESO) method.

Ansola et al. [5] show an additive version of the ESO method applied to compliant mechanisms.
In this method the ground structure is a fully compliant structure which is an empty design
domain and gradually, during the optimization, the elements are added where required, instead
of being removed.
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Figure 3.38: Continuum structure.

When continuum structures are used in the design of compliant mechanisms, two parameteri-
zation models are highlighted: the SIMP method and artificial density, and the homogenization
method or hole-in-cell.

SIMP method and artificial density Normally when a topology optimization is performed,
it is desired that the design variables express the existence or inexistence of an element in the
design domain. This is done by assuming a value of either 1, the element exists, or 0, the element
is removed from the domain.

In the optimization algorithms based on gradients whose variables can range in the [0, 1] interval,
a problem arises, namely that the algorithm can not deal with Boolean variables. The SIMP
(Solid Isotropic Material Penalization) method helps to overcome this problem by penalizing the
design variables, so intermediate values can be assumed as 0 or 1.

When SIMP is used, the design variables are the density of the elements. Here density can be
thought as the material density or as some kind of artificial density or cost variable. Sigmund
[126] presents an optimization procedure for maximizing the mechanical advantage in compliant
mechanisms using artificial density by modifying the Young’s modulus for every element in a
continuum structure.

Ee = (xe)
η
E0, e = 1, . . . , N (3.15)

Here E0 is the Young’s modulus of solid material, Ee is the Young’s modulus of a single element,η
is a penalty factor and xe is the design variable for a single element.

When the optimization procedure ends, the design variables modify the Young’s modulus in all
the elements inside the design domain. If xe is close to zero (not zero to avoid singularities on the
stiffness matrix) it means a low Young’s modulus Ee thus low stiffness and therefore the element
is removed. Contrarily, values close to one mean that Young’s modulus is equal to the modulus
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of solid material E0 thus high stiffness and therefore the element remains.
For a more extensive description of the SIMP method see [110][11]. Examples applied to the
design of compliant mechanisms can be found in [67] and [97].

Honeycomb representation Checkerboard patterns are a common problem found in topology
optimization due to the use of squared elements for the structural representation of the design
domain. These patterns consist of a sequence of void elements and solid elements where the
solid elements are joined by their nodes instead of their edges (see Fig. 3.39a), therefore creating
areas of zero stiffness.

void elementsolid element

(a)

input
port

output
port

ground port

(b)

Figure 3.39: A solution to the problem of checkerboard pattern is the use of parameterization
using honeycomb patterns. (a) checkerboard pattern. (b) Honeycomb parameterization.

To overcome this problem R.Saxena and A.Saxena [119] and Mankame and A.Saxena [83]
present a parameterization using hexagonal elements which discretize the design domain into
a honeycomb pattern, see Fig. 3.39b.
This type of discretization avoids the zero stiffness areas by ensuring edge-to-edge contact among
the elements. The stiffness matrix for a hexagonal element is derived by considering it as the
junction of two four-node finite elements as shown in Fig. 3.40.

Node

Figure 3.40: Hexagonal cell represented as two four-nodes finite element.

The design variables in this approach can be the artificial densities used in the SIMP method. For
each hexagonal element, there is one design variable meaning that the two four-node elements
share the design variable to define their material properties.
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Homogenization method (Hole-in-cell) The homogenization method allows to obtain a rela-
tion between stiffness and density by representing the microstructure as a unit cell where the
amount of material can change by modifying the geometry of a hole that is inside the unit cell.
The unit cell is defined by the height a and width b of the inner hole and the rotation of the cell
θ, see Fig. 3.41. Depending on the values for these variables the unit cell can be completely
void (a=b=1) which means no material, completely full (a=b=0) which means solid structure; or
something in between.

design domain

Ω

1

1

a

b

micro-structure

θ

Figure 3.41: Representation of the microstructure by homogenization.

The variables from all the unit cells in the design domain are the design variables. When their
optimal values are found, they define the material distribution along the entire design domain.
More about the fundamentals of the homogenization method can be found in [10] [9] and [11].
Frecker et al. [27] and Nishiwaki et al.[92] apply the homogenization method to the design of
compliant mechanisms.

Control meshes and subdivision In the parameterization based on control meshes and sub-
division [45][46], the design variables are the existence state of the control meshes. A single
control mesh is a squared subregion in the design domain defined by four control points. This
mesh must not be confused with a mesh for an analysis with finite elements. The control mesh
is just a geometrical division of the design domain.
During the optimization process, which is performed by a genetic algorithm, the state of the
control mesh assumes values of 0 or 1 (existence or inexistence of the control mesh). After
the algorithm proposes a new arrangement for the control meshes, a subdivision process is per-
formed.
The subdivision provides a more detailed and smooth design which is used for the meshing in
the FEA and then for the evaluation of the objective function. An example of subdivision can be
seen in Fig. 3.42.
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(a) (b)

Figure 3.42: Subdivision process. (a) Initial control meshes and control points, (b) Refined
geometry after subdivision.

Subdivision is a process that creates more control points from the initial control points that define
the control meshes. In this way the optimization variables are fewer, because they do not describe
the entire detail of the mechanism’s shape and topology but they can be used to recreate them.
An important feature of subdivision is the reduction in the formation of lumped compliance.
Subdivision relies on the fact that there is a unique mapping from the initial model with few
control points to the denser final model.

Figure 3.43, shows three steps during the optimization procedure: the initial control meshes, a
proposed control meshes arrangement after some iterations and the arrangement just after sub-
division and before meshing for FEA. Notice that using a few design variables it is possible to
obtain a more complex geometry by subdivision.

(a) (b)

(c)

Figure 3.43: Three steps during optimization, reproduced from [45]. (a) Initial control meshes.
(b) Proposed control meshes arrangement. (c) Proposed arrangement after subdivision.
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Higher dimension driver functions (Level sets)

In this approach the shape and topology of the compliant mechanism is embedded as a level set
of a higher-dimension scalar function Φ, called the level set function.
A level set of a function is defined as the set of points where the function has a constant value.

{(x1 . . . xn) |Φ (x1 . . . xn) = c} c = constant (3.16)

If the function domain is defined in R2, the level sets represent level curves (Fig. 3.44) for do-
mains in R3 and higher, the level sets represent level surfaces and level hyper-planes respectively.

Figure 3.44: Higher dimension function ϕ and its level set at value c

The idea behind level sets is to modify the shape and topology of the design region Ω by mod-
ifying the function Φ. During the optimization procedure the design variables do not control
directly the topology and shape of the design, instead they outline the function Φ which in turn
defines the design’s topology and shape through its level sets. The level set defines the boundary
∂Ω of the design region Ω, thus bounding the void and material regions.
The formulation of an optimization based on a level set parameterization is written as the problem
of finding the function Φ where one of its level sets defines the shape and topology that minimizes
the objective function f . For simplicity the most common value used for the level sets is the zero
level set (Φ = 0).
Most of the design approaches based on level sets can be categorized in two main methods, (i)
The level set method and moving interfaces, and (ii) level set using basis functions.

Level set method and moving interfaces Sethian and Osher are among the first to propose a
method for tracking moving interfaces based on level sets.
In the level set method the function Φ is defined initially as a signed distance function [120]. It
means that Φ(x) is the distance between a point x and the closest point on the design region’s
boundary ∂Ω, with the sign of Φ depending of x being inside or outside of the region Ω, see Fig.
3.45.
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Figure 3.45: (a) The distance function Φ in this example is the euclidean norm between points in
the domain D and the boundary ∂Ω. (b) The higher dimension scalar function Φ where Φ > 0 is
the material region Ω, Φ < 0 is void and Φ = 0 is the boundary of the material region ∂Ω

.

The boundary ∂Ω which is also called the moving interface will always be the zero level set of
the function Φ, this is why a distance function is used to define the function Φ (the zero level set
has distance value of zero).

The zero level set equation for a function Φ(x, t), with x ∈ Rn is expressed as

Φ(x, t) = 0 (3.17)

To see the evolution in time of the zero level set, the chain rule for differentiation is applied to
Eq. 3.17

dΦ
dt + ∂Φ

∂xi

dxi

dt = 0 i = 1 . . . n

simplifying

dΦ

dt
+ F · ∇Φ = 0 (3.18)

Here F is what is called the velocity field, which is given by the kind of problem with moving
interfaces that is being analyzed, e.g., a shockwave propagation or a moving flame.

From the optimization point of view the velocity field gives the optimization conditions, this
is what drives the moving interface. For example Sethian and Wiegmann in [122] used as the
velocity field what they called the removal rate, which is a percentage of the maximal stress in
the design region. In other words the evolution of the boundary ∂Ω was determined by some
value of the stress distribution.

When the velocity field is assumed to be normal to the level sets for every point in the design
domain D, then Eq. 3.18 simplifies into what is known as the level set equation
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dΦ

dt
+ F |∇Φ| = 0 (3.19)

This is an initial value Partial Differential Equation (PDE), where the initial value is the distance
function mentioned before (Φ(x, t) when t = 0). The evolution of the zero level set or moving
interface is then driven by the velocity field F and given by the solution to this PDE.

level set using basis functions Here the level set function Φ is defined as the superposition of
basis functions ϕi (Eq.3.20) which can be parameterized by a few set of variables, Fig. 3.46.

Φ =
∑

i

ϕi (x) (3.20)

(a) (b)

Figure 3.46: (a) Higher dimension scalar function Φ. (b) Constitutive basis functions ϕi

De Ruiter and Van Keulen present in [112] an approach called Topology Description Functions
or TDF’s. In this approach the basis functions are 2D Gaussian distributions, where every base
function is parameterized by its center position, height and width which is defined similar to
the standard deviation in the Gaussian probability distribution. This transforms the shape and
topology optimization problem into a size optimization problem, where the design variables are
the parameters defining all the TDF’s. In some cases the value of the level set is not confined to
be the zero level set, this value can be also used as a design variable.

Luo and Tong [78] present the use of Radial Basis Functions (RBF’s) for the interpolation of the
level set function which in this case include a time dependent term αi(t).

Φ =
∑

i

ϕi (x)αi (t) (3.21)

Here the function Φ evolves by reformulating the level set equation, replacing the distance func-
tion from the level set method with the interpolated function with radial basis functions. This



56 3 Synthesis of compliant mechanisms

implies a separation between the space and time in the Hamilton-Jacobi PDE allowing to trans-
form the problem into an ordinary differential equation.
The problem is not anymore to find a function Φ(x, t) that solves the Hamilton-Jacobi PDE but
to find the function α(t) that solves an Ordinary Differential Equation (ODE) [146]. Basically
the level set function still acts like a moving interface driven by a velocity field, where the vector
of design variables is formed by the set of αi(t).

3.5 Discussion

It can be observed that most of the design methods rely on one or more of the following three
basic ideas:

- Design of compliant mechanisms can be done using the well known kinematics of Rigid-
Body mechanisms. The conventional joints obtained in this way are replaced by compliant
joints to obtain a compliant mechanism.

- Design of compliant mechanisms can be done under the premise ”divide and conquer”,
where the design problem is divided in smaller subproblems and where the final design
is obtained by composing the solutions to the subproblems into a complete design. The
subsolutions can be obtained either by some automate process or using the well known
kinematics from Rigid-Body mechanisms.

- Design of compliant mechanisms can be done by automating the search of a solution that
fulfills a desired function and constraints. It is required an appropriate way to describe the
topology, shape and size (parameterization), as well as the criteria which define a design
as optimal (objective function).

Most of the methods were developed for the synthesis of planar compliant mechanisms based on
structural requirements rather than functional requirements like path, function or motion genera-
tion. In structural optimization, the majority of the design methods are tested through the design
of the one DOF benchmark examples: the motion inverter and the gripper. Very few examples
with more than one DOF can be found, and those with more than one DOF, fulfill their functional
requirements without coupling their DOF’s.
Analysis methods for compliant mechanisms is still an area open to study. Basically, analysis is
confined to the use of finite elements or Pseudo-Rigid-Body models and simplified beam models.
Their convenience as tools for control is still unexplored, just a few examples in this direction
exists, like Arango et al. [6].
Compliant spatial joints, underactuated grippers, compliant differentials, statically balanced com-
pliant mechanisms, compliant robotic manipulators and compliant embedded actuation; just to
mention a few, are potential applications still to be developed.
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3.5.1 Kinematic approaches

The FACT approach is a rule-based method for type synthesis of spatial or planar compliant
mechanisms comprising multiple DOFs. The approach is a fast synthesis method based on the
kinematic principles of exact constraining and suited for designs where the ranges of motion are
small. It can provide with concepts that are out of the experience of the designer, e.g., over-
constrained mechanisms, and at the same time allows incorporating this experience into more
complex designs.

The rigid-body-replacement method has the advantage of being a rule-based method that exploits
the knowledge on rigid body kinematics and the designer’s experience to obtain feasible designs.
It is a simple approach that allows to easily obtain the dynamics by modeling the elastic fea-
tures with simple springs using either PRBM or standard flexure joints, avoiding the solution of
complex elasticity equations. The design based on rigid-body-replacement is an iterative process
dependent on the initially chosen rigid-body mechanism, making the approach suited for opti-
mization procedures, but as such the design procedure could require multiple initial rigid-body
guesses for a proper design, making it a time-consuming approach. The method is not useful
to find designs outside the designer’s experience and final compliant results will resemble the
rigid-body mechanism as long as the compliance tends to be lumped.

The Pseudo-Rigid-Body models are suited for modeling large deflections of large beams with
constant cross-section by simplifying calculations. It is a tool that can be used for both analysis
and dimensional synthesis. There are several PRBM’s, some can be use to model initially straight
beams or initially curved beams, single load or combined end forces and moments, one DOF
PRBM for end tip rotations below 77◦ or 3 DOF SRBM allowing 360◦ rotations. As more
features are added to the PRBM, its use and calculation become more complex. The PRBM’s
not only do not consider cases with changing loads but also do not consider neither the bending
on short beams nor the shearing and bending effects due to axial loads. PRBM are mostly limited
to planar compliant mechanisms, some exceptions are Jagirdar et al. [48] and Rasmussen et al.
[106].

Flexure joints are the conventional way to design compliant mechanisms. Trease et al. [138]
propose a set of criteria to evaluate flexure joints, the range of motion, the amount of axis drift,
the ratio of off-axis stiffness to axial stiffness, and the stress concentration effects.

Notch-type flexure joints promote lumped compliance and they are the most commonly used va-
riety, for which ample knowledge and experience is available. They are widely used in industrial
and precision engineering applications where small displacements are the rule. They are rarely
of constant cross-section and therefore highly sensitive to temperature and geometrical changes.
The main drawback is the deviation of pure rotation when deflection is increased, due to out-
of-plane and axial deflections which shift the rotation axis and introduce shearing, torsion and
bending effects in undesired motion planes complicating the kinematic analysis.
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Table 3.2: characteristics summary of kinematic based approaches, (+)yes (0)neutral (-)not

rule
based

use designer’s
experience

Simplicity Fast large
deflection

distributed
compliance

dimensional
synthesis

FACT method + 0 + + 0 0 -

Rigid body
replacement

PRBM + + + 0 + + +
Notch-type flexures + + 0 0 - - +

Complex flexures - 0 - - + + 0
Building block by instant centers + + + 0 + + 0

Complex flexures tend to improve the performance of flexure joints. Their complexity allows
to constrain motion into the desired directions, but also increase their size and complicate their
analysis and manufacturing.

3.5.2 Building blocks

Building blocks is a useful approach for the conceptual synthesis of Single-Input-Single-Output
(SISO), Dual-Input-Single-Output (DISO) and Single-Input-Multiple-Output (SIMO) compliant
mechanisms. It provides the topology and dimensioning in a systematic way while allowing a
role for the intuition of the designer to drive the design process. This approach is suited for the
design of realistic planar compliant mechanisms with small displacements in a linear regime.
Blocks can be made of different materials. The use of optimization procedures is reserved for
dimensioning and combinatorial exploration of blocks which in some sense is a topology opti-
mization.

The building block approach based on instant centers is focused on fulfilling kinematic require-
ments by characterizing the kinematics through the use of compliance ellipsoids. Multiple so-
lutions can be obtained by changing the orientation and shape of these compliance ellipsoids,
thus providing a tool for kinematic inversions. Multiple building blocks with linear input-output
relations can be combined to create mechanisms with highly nonlinear input-output relations as
a solution for complex problems, but combining blocks transforms the search for solutions in
an iterative procedure. Another drawback is the shift in position of the instant center during the
operation which for precision applications requires the use of size and shape optimization pro-
cedures to correct the behavior. There is a point where the design of flexure joints and building
blocks merge together, namely when building blocks are used to accomplish simple function like
allowing planar rotation or displacement, acting like kinematic pairs. While this approach is
mainly used for planar designs, there is no objection for it to be extended to spatial designs.

The above discussion is summarized in Table 3.2. Due to the fact that building blocks based on
instant centers can be also considered as a kinematic approach, it is included in this comparison
table. Precision is not considered as a criterion because some methods allow dimensioning while
others are just conceptual approaches.
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3.5.3 Structural optimization

Performing a structural optimization incorporates the appropriate selection of an objective func-
tion, constraints, a parameterization, and a solution method.

Objective function

There is no consensus about which objective function is most suited for the design of compli-
ant mechanisms. There are two kinds of requirements to be fulfilled by any kind of objective
function. One is kinematic and the other structural. Kinematic requirements are related with the
functional requirements of the mechanisms. When only kinematic requirements are considered,
most likely a least square error function would be the objective function. Structural require-
ments are related with the ability of the mechanisms to withstand the reaction forces. Objective
functions considering structural requirements make use of concepts like mean compliance and
mutual compliance. Design of compliant mechanisms by structural optimization has two unre-
solved issues which are the creation of low stiffness areas or lumped compliance and the need for
a spring or load at the output port [22]. The latter unresolved issue is a result from the structural
requirements.

Constraints

Normally two constraints are considered, stress constraints and deflection constraints. Stress
constraints can not be included directly in the formulation, hence they are controlled by deflection
constraints. Depending on the parameterization some other constraints need to be considered
like volume, shape or connectivity in domain discretization, parameterized curves and graph
parameterization, respectively.

Parameterization

All the design domain parameterizations described in this work can be classified in four groups,
based on (i) parameterized curves, (ii) graphs (graph theory), (iii) design domain discretization,
and (iv) higher dimension driving functions.

Parameterized curves The use of parameterized curves has the advantage of providing valid
topologies connecting all the ports in the design domain. It is required to use additional con-
straints (shape constraints) to avoid cusps and intersecting loops [65]. The use of large deflection
and nonlinear analysis is almost a necessity. The design variables are not directly related with
the analysis variables. This kind of parameterization is suited for the design of compliant mech-
anisms with predefined force-deflection relations at the output port (stiffness functions) and can
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be easily extended to the design of spatial compliant mechanisms given the proper spatial param-
eterized curve.

Graphs based The use of parameterizations based on graphs makes use of the idea that a
correct topology is the one where any two ports in the design domain are connected at least
through one path (sequence of alternating vertices and edges, where all vertices and edges are
distinct). Therefore design results from this kind of parameterization tend to be realistic and
feasible since invalid topologies are discarded. Due to its network nature this parameterization
is susceptible to be combined with parameterizations based on trusses, frames and beams like
parameterized curves or ground structures. Unless combined with other parameterizations, the
solution method for the graph parameterization is likely to be a search algorithm due to the
discrete nature of the resulting design variables.

Domain discretization Structural optimization using domain discretization is inherently a ma-
terial distribution problem. It involves the removal or addition of material for every element in
the discretized domain by transforming the topology optimization problem into a size optimiza-
tion problem. This implies that the design variables can take intermediate values, which can lead
to unfeasible designs and requires an interpretation of the final result.

Most of the methods keep a relation one-to-one between the elements in the domain, design
variables and the elements in the finite element mesh, but this is not always the case. For instance,
in homogenization every element in the domain has three variables whilst in the subdivision
method, the number of elements in the domain is less than the number of elements in the finite
element mesh. When the elements in domain discretization are also used as the finite element
mesh, this may lead to the creation of flexural pivots (local stress concentration and low stiffness
areas) or checkboard patterns (areas with high artificial stiffness).

The large number of design variables involved in optimization using domain discretization sug-
gests that emphasis must be placed on calculating the sensitivities to achieve efficiency. Domain
discretization approaches are not limited to the design of planar mechanisms, but their use in
spatial synthesis of mechanisms due to the large number of design variables and complexity of
the finite element models, currently is prohibited from computational cost point of view.

Smooth designs depend on the resolution of the domain discretization, increased resolution and
more design variables tend to yield smoother results, however a fine mesh does not implies the
same topology result as with a coarse mesh, or in other words the optimal solution depends on
the initial discretization resolution [74].

Higher dimension driving functions The use of higher dimension driving function decouples
the design variables from the analysis variables. As a consequence, topology can easily evolve
to include or remove material, like the creation of new holes, since the topology is not defined
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by finite elements and their connectivity. The decoupling between design and analysis variables
also makes this kind of approaches suitable for the spatial synthesis of compliant mechanisms.

At the start of an optimization procedure, the initial design is not necessarily empty or full of
material, it could be a design with some intermediate material distribution.

Two major approaches can be distinguished, the level set method with moving boundaries and
level sets using basis functions.

From an optimization point of view, the numerical implementation of the level set method with
moving boundaries is difficult and its efficiency is low (the level set PDE is solved in every
iteration during optimization) but gives high accuracy and a smooth evolution of the interface.
The fact that the implementation is normally based on the use of upwind schemes and higher
efficiency algorithms limits the solution of the level set equation to the region close to the zero
level set, this is known as the narrow band level set method [121]. One of the drawbacks in the
numerical implementation of the level set method is the need for re-initialization which is the re-
calculation of the level set function to keep function Φ as a distance function —distance between
a point x and the closest design region’s boundary— since the solution to the PDE drifts away
[79].

Some other solution approaches to the level equation commute smoothness for accuracy and
speed which are the requirements for an optimization scheme. In general the use of the level set
method and moving boundaries poses as negative factors the high dependency between the final
design and the initial guess, this tends to drive the optimization to local minimums.

Level sets methods using basis function like the Topology Description Functions or TDF’s ap-
proach have the advantage that the global character of the function Φ is modified by the local
character of the basis function, giving more insight in the local changes [111]. The use of ba-
sis functions in the definition by interpolation of the function Φ to transform the problem from
a Hamilton-Jacobi PDE into ODE, avoids the numerical difficulties related with the level set
method like the re-initialization procedure and the velocity extension algorithm and reduce the
result’s dependency on the initial guess.

Solution method

No study on the solution methods for structural optimization of compliant mechanisms was
found. Basically the use of solution method goes in two directions depending on the nature
of the design variables, namely search algorithms for discrete variables and mathematical pro-
gramming for continuum variables.

The nature of the design variables depends on the kind of parameterization being used but some
discrete problems can be relaxed into continuum problems.

Search algorithms in optimization of compliant mechanisms are basically confined to evolu-
tionary structural optimization (ESO and BESO), genetic algorithms, particle swarm, simulated
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annealing and tabu search. They are mainly used with parameterized curves and graphs and in
some cases with domain discretization.

Typical mathematical programming algorithms in optimization of compliant mechanisms are se-
quential linear programming (SLP), sequential quadratic programming (SQP), simplex method,
quasi-Newton, optimal criteria and moving asymptotes (GMMA) among others. They are mainly
used in domain discretization, parameterized curves and level sets using basis functions.

3.6 Summary

The chapter presents an introduction to some of the methods for the design and synthesis of
compliant mechanisms. The methods are presented from a conceptual perspective, pointing the
reader to the references for detailed information. The idea of the chapter is to serve as a starting
reference point for the inexperience designer and help him to make his way in the field. Therefore
the presentation of the methods follows a proposed classification of the synthesis methods.

Advantages and disadvantages of compliance mechanisms have their root in the monolithic na-
ture of such mechanisms. Since compliant mechanisms are monolithic, they exhibit three main
features from which all the characteristics can be derived: (i) no relative motion among pieces,
(ii) no overlapping pieces, and (iii) strain energy storage.

The design methods presented in this work can be categorized in three main groups:

- Kinematic approaches: design of compliant mechanisms is based on known kinematics of
Rigid-Body mechanisms. Use what is already known and get rid of the joints.

- Building blocks: design of compliant mechanisms is based on division and simplification
of the problem. ”divide and conquer”, find simpler solutions, then combine them.

- Structural optimization: design of compliant mechanisms is based on automation of the
search for solutions. Use proper functions to define the problem (the objective function)
and use proper variables to describe the solution (the parameterization).

In the kinematic approaches we find two synthesis methods: (i) the FACT method, and (ii)
the Rigid-Body-Replacement method. The FACT method is based on the principles of exact
constraining while the RBR method relies on the ability of model the elastic deflection of flexible
elements as the deflection of rigid bodies connected by kinematic pairs. These pseudo-rigid-body
models are classified as models for lumped or distributed compliance. Typical pseudo-rigid-body
models are those modeling the behavior of notch-hinges and slender beams with different initial
shape and under different load cases and boundary conditions.

In the building block approaches we find two synthesis methods: (i) building blocks by instant
centers, and (ii) flexible building blocks and optimization.
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In the synthesis of compliant mechanisms based on structural optimization three elements need
to be considered: (i) the objective function, (ii) the parameterization, and (iii) the solution al-
gorithm. The objective function answers to design requirements which are either kinematic or
structural. Objective functions toward kinematic design requirements are based on some form
of error minimization while five major objective functions considering structural design require-
ments can be found: (i) functions based on combinations of the mutual potential and strain
energy, (ii) functions based on mechanical and geometrical advantage, (iii) functions based on
mechanical efficiency, (iv) the characteristic stiffness, and (v) the artificial input/output spring
formulation. Most of the parameterizations can be classified into four groups: (i) parameterized
curves, (ii) structures as graphs or networks, (iii) discretized design domains, and (iv) parame-
terization based on higher dimension driving functions.
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4 The spring-to-spring basic
balancer

Nothing has such power to broaden the mind as the abil-

ity to investigate systematically and truly all that comes

under thy observation in life.
Marcus Aurelius

Static balancing so far has been defined as a conservative state of motion where all the internal
forces are kept in static equilibrium. However, this definition is not enough from a design point
of view. It is desired to know what are the conditions that characterize a state of static balancing.
The importance of identifying such conditions lies on the fact that these conditions later will
become the design criteria that will ensure a state of static balancing.

We propose to derive the characteristics and properties of statically balanced mechanisms by
experimenting with actual and well known statically balanced mechanisms. The idea is to obtain
from these mechanisms general mathematical expressions for a set of statical, kinematical and
dynamical functions, such as the potential energy, the reaction force, the stiffness, the stability,
the internal work, the speed, the natural frequency and the virtual work. Once these general
mathematical expressions are obtained, the condition for static balancing is applied into these
expressions and then we observe the resultant behavior of such functions in a state of static
balancing.

We also explore the existing relation between the variables chosen to describe the deflection
of the strain energy sources (the deflection space) and the variables chosen to describe the real
physical statically balanced motion (the workspace).

The aforementioned setup was applied into three well known statically balanced mechanisms, the
spring-to-spring balancer, the gravity balancer and the sliding balancer [33], see Fig. 4.1. Here
in this chapter we only present the development and results applied to the spring-to-spring basic
balancer. The results for the other two balancers were conceptually equal to those presented in
the following.
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Figure 4.1: Three well known statically balanced mechanisms. (a) The spring-to-spring balancer.
(b) The gravity balancer. (c) The sliding balancer

The spring-to-spring zero stiffness balancer is a 1-DOF linkage composed of one rigid link
hinged at one end, with two springs attached along its other end. In this configuration it is
required collinearity among the three grounded ends as well as collinearity between the springs’
moving ends and the grounded end of the link, see Fig. 4.2. The springs used in the balancer are
zero-free-length springs, meaning that their elongations are equal to their lengths, see Fig. 4.3.
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Figure 4.2: Depiction of the spring-to-spring basic balancer.

A state of static balancing on this linkage is guaranteed when the following condition is satisfied,

k1l1p1 = −k2l2p2 (4.1)

In the following sections we present the development and results of applying the spring-to-spring
balancer’s static balancing condition into the general mathematical expressions for the potential
energy, reaction force, stiffness, stability, internal work, speed, natural frequency and virtual
work.
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Figure 4.3: A zero-free-length spring is a spring that exerts zero force when the length between
its end points is zero. (a) Physically coil springs do not have a zero-free-length, but they can be
built such at their initial length they exert a force equal to the initial length times the spring rate.
(b) A spring with a pulley can act as a zero-free-length spring.

4.1 The potential energy

The total elastic potential energy u stored by spring 1 and 2 in the mechanism is given by

u =
1

2
k1(l1 − p1)

2
+

1

2
k2(l2 − p2)

2 (4.2)

Replacing vectors l and p by their coordinates in terms of the rotation angle ϕ, yields

u =
1

2
k1

(
l21 − 2l1p1 cosϕ+ p2

1

)
+

1

2
k2

(
l22 − 2l2p2 cosϕ+ p2

2

)
(4.3)

If we apply to this expression the condition for static balancing (Eq. 4.1) with k1 as the dependent
variable, we get

u =
1

2
k1

(
l21 − 2l1p1 cosϕ+ p2

1

)
− 1

2

k1l1p1

l2p2

(
l22 − 2l2p2 cosϕ+ p2

2

)
(4.4)

Collecting terms yields

u =
1

2
k1

(
l21 + p2

1 −
l1l2p1

p2
− l1p1p2

l2

)
(4.5)

This result evidences that the total potential energy is constant, and it does not depend on the
link’s orientation angle ϕ.
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4.2 The force

Now, let’s compute the derivative of Eq. 4.3 with respect to ϕ. This derivative represents the
external moment required to keep the link in static equilibrium.

fϕ =
du

dϕ
= k1l1p1 sinϕ+ k2l2p2 sinϕ (4.6)

After applying the condition for static balancing (Eq. 4.1) we get

fϕ =
du

dϕ
= k1l1p1 sinϕ− k1l1p1 sinϕ = 0 (4.7)

This shows that no external force is required to keep the mechanism in static equilibrium at any
point in its range of motion. Because the potential energy is constant along the entire range of
motion, the internal forces are continuously kept in static equilibrium.

4.3 The stiffness

To evaluate the stiffness of the system we compute the second derivative of Eq. 4.3 with respect
to ϕ

k =
d2u

dϕ2
= k1l1p1 cosϕ+ k2l2p2 cosϕ (4.8)

Once again by applying the condition for static balancing we get

k =
d2u

dϕ2
= k1l1p1 cosϕ− k1l1p1 cosϕ = 0 (4.9)

The stiffness of the mechanism becomes zero. Notice that under the same condition the mecha-
nism is also in static equilibrium, Eq. 4.7, then the mechanism has not only zero stiffness but it
is also neutrally stable.

4.4 Buckling at critical load

So far, we have seen the expected results from having a constant potential energy, but let’s move
further and decompose the force of one spring into two forces using the parallelogram law. Here,
one component is always parallel to the link, while the other is kept horizontal.

The magnitudes of the two force components as function of the spring’s stiffness are given by
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Figure 4.4: Decomposition of the force exerted by spring 2. The decomposition follows the
parallelogram method on which one component is always parallel to the link and the other is
always horizontal

f2h = k2p2 (4.10)

f2l = k2l2 (4.11)

Notice that f2h is a constant force in both magnitude and direction. Now let’s remove one spring,
let’s say k2. The remaining spring k1 will exert a restoring force moving the link to a stable
equilibrium point around ϕ = 0. If a horizontal force is applied at point l2 on the link, see Fig.
4.5, then there is a value of fc at which the stability of the link-spring system around ϕ = 0 is
lost. To find such critical value, we use equilibrium of moments at the pivot point of the link.

fcl2 sinϕ = −k1p1l1 sinϕ (4.12)

fc = −k1l1p1

l2
(4.13)

by combining Eq. 4.1 and 4.13, we see that

fc = k2p2 (4.14)

which is equal to Eq. 4.10. This means that when the mechanism is in a state of static balancing,
the constant horizontal component of one spring is the buckling critical load of the other spring
at which stability is lost for the whole range of motion [−∞ < ϕ < ∞]. In other words if the
mechanism is in a state of static balancing, then the mechanism is in a state of self-buckling at
critical load.
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Figure 4.5: The restoring moment at the pivot point exerted by spring k1 is balanced by the
moment exerted by force fc. In this case the stability of the equilibrium point at ϕ = 0 that was
previously induced by spring k1 is lost.

4.5 Linear behavior of internal energies

The elastic energies from the springs u1 and u2 are square function of the springs’ elongations,
and these elongations are coupled by the link’s rotation angle ϕ.

u1 =
1

2
k1

(
l21 − 2l1p1 cosϕ+ p2

1

)
(4.15)

u2 =
1

2
k2

(
l22 − 2l2p2 cosϕ+ p2

2

)
(4.16)

u = u1 + u2 (4.17)

If we plot the springs’ energies (see Fig. 4.6a) assuming a state of static balancing, we see the
cosine behavior of each spring energy with respect to the rotation angle ϕ, together with the
constant behavior of the total potential energy.

But let’s return to Fig. 4.4. We can see that the work done by the force component f2l acting
along the link is zero and the work done by the horizontal component f2h (the constant force) is

w2h = f2hδ (4.18)

where δ is the horizontal displacement of the force application point l2 on the link. The work
done by force f2h is equal to the energy stored by spring 1, while the link is rotating under the
action of this force. It is evident that the work is a linear function of the deflection δ, therefore
the energy function of the spring is also a linear function of the deflection δ. To see this, let’s
express δ as a function of the angle ϕ,

δ = l2 − l2 cosϕ (4.19)
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Figure 4.6: The behavior of the springs’ energy functions vary with respect to the generalized
coordinate that is used. (a) Springs’ energies show cosine behavior when they are function of the
link’s rotation angle ϕ. (b) Springs’ energies show linear behavior when they are function of the
link’s deflection δ.

Replacing Eq. 4.19 into Eq. 4.16 we get,

u2 =
1

2
k2(l2 − p2)

2
+ k2p2δ (4.20)

which is clearly a linear function of δ. Figure 4.6b shows the energy functions of the combined
and individual springs as function of the deflection δ.

4.6 The speed

Now let’s obtain the equation of motion for the linkage by using the LaGrange’s equation in the
following form,

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂U

∂qi
= fi (4.21)

To use LaGrange’s equation we need to set the kinetic and potential energy functions.

T =
1

2
Iϕ̇2 (4.22)

U =
1

2
k1

(
l21 − 2l1p1 cosϕ+ p2

1

)
+

1

2
k2

(
l22 − 2l2p2 cosϕ+ p2

2

)
(4.23)

(4.24)

Here I is the mass moment of inertia of the link with respect to the pivot point. Computing each
term of Eq. 4.21 we get
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d

dt

(
∂T

∂ϕ̇i

)
= Iϕ̈ (4.25)

∂T

∂ϕi
= 0 (4.26)

∂U

∂ϕi
= (k1l1p1 + k2l2p2) sinϕ (4.27)

fi = 0 (4.28)

(4.29)

Replacing the terms into Eq. 4.21, we get the equation of motion

Iϕ̈+ (k1l1p1 + k2l2p2) sinϕ = 0 (4.30)

Applying the condition for static balancing k1l1p1 = −k2l2p2 to the above equation yields,

Iϕ̈ = 0 (4.31)

Now, let’s solve this equation for velocity,

I
dϕ̇

dt
= 0 (4.32)

I

ϕ̇t∫

ϕ̇0

dϕ̇ =

t∫

t0

0dt (4.33)

I (ϕ̇t − ϕ̇0) = 0 (t− t0) (4.34)

ϕ̇t = ϕ̇0 (4.35)

Equation 4.35 express that the speed at any time is equal to the initial speed of the mechanism, or
in other words, the speed of the mechanism in a state of static balancing is constant. The motion
of the link is driven only by its inertial properties.

4.7 The frequency

Let’s compute the natural frequency of the system. Assuming that the system is in equilibrium
at ϕ(t) = ϕ0, the equation of motion for small disturbances ∆ϕ around ϕ0 is,

ϕ(t) = ϕ0 + dϕ
dt ∆t

ϕ(t) = ϕ0 + ∆ϕ(t)
(4.36)
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The time dependent term ∆ϕ(t) is the solution of the linear differential equation,

I∆ϕ̈+ k∆ϕ = 0 (4.37)

Where I is the link’s moment of inertia with respect to its pivot point and k is the system’s
stiffness given by Eq. 4.8. Solution to Eq. 4.37 can be found by using an assumed solution,

∆ϕ(t) = ∆ϕ0e
λt (4.38)

Taking the second derivative of the assumed solution yields,

∆ϕ̈(t) = ∆ϕ0λ
2eλt (4.39)

where ∆ϕ0 is the initial amplitude of the equilibrium disturbance. To find the value of λ we
replace Eq. 4.38 and 4.39 into Eq. 4.37,

(
Iλ2 + k

)
∆ϕ0e

λt = 0 (4.40)

Here, the exponential term is never zero and by ignoring the trivial solution ∆ϕ0 = 0 we are left
with,

Iλ2 + k = 0 (4.41)

Re-arranging the terms we find,

λ = ±
√
k

I
i = ±ω0i (4.42)

Here, ω0 is the harmonic natural frequency for small deflections around the equilibrium point
ϕ0. Replacing the mechanism’s stiffness given by Eq. 4.8 into Eq. 4.42, we get the harmonic
natural frequency of the basic balancer,

ω0 =

√
k1l1p1 cosϕ+ k2l2p2 cosϕ

I
(4.43)

By applying the condition for static balancing k1l1p1 = −k2l2p2 to this equation, we see that
the harmonic natural frequency is zero,

ω0 =

√
k1l1p1 cosϕ− k2l2p2 cosϕ

I
= 0 (4.44)

It was assumed that the perturbation was taking place around the equilibrium point ϕ0, but for
the balancer on a state of static balancing all the points ϕ(t) are equilibrium points. Therefore,
at any point the basic balancer on a state of static balancing exhibits zero natural frequency.
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So far we have assumed small perturbations around an equilibrium point in order to set the prob-
lem as a linear differential equation, but it is also possible to prove from the nonlinear problem
that the natural frequency of the basic balancer in a state of static balancing is zero.

Simpson [127], Neto [91] and Belendez et al. [8] developed the solution for a nonlinear pendu-
lum in the form,

ϕ̈+ ω0
2 sinϕ = 0 (4.45)

They showed for the nonlinear pendulum that the natural frequency ω is a function of the har-
monic natural frequency ω0 and the initial conditions ϕ0 and ϕ̇0.

ω =
πω0

2K(m)
(4.46)

Where K(m) is the complete elliptical integral of the first kind, and m is equal to,

m = sin

(
arccos

(
cosϕ0 − 1

2 ϕ̇
2
0

)

2

)
(4.47)

The complete elliptical integral of the first kind expanded into an infinite series is,

K(m) =

∞∑

n=0

(
(2n)!

22n(n!)
2m

2n

)
(4.48)

Then, replacing Eq. 4.47 and Eq. 4.48 into Eq. 4.46, we get the expression for the natural
frequency,

ω(ϕ0, ϕ̇0) =
ω0

∞∑
n=0

(
(2n)!

22n(n!)2
sin2n

(
arccos

(
cosϕ0− 1

2 ϕ̇
2
0

)
2

)) (4.49)

We can apply this result for the basic balancer by noticing that the equation of motion, Eq. 4.30,
has the same form of Eq. 4.45,

ϕ̈+
k1l1p1 + k2l2p2

I
sinϕ = 0 (4.50)

where the harmonic natural frequency ω0 is the same as in Eq. 4.43. Then is clear from Eq. 4.49
that when the harmonic natural frequency ω0 is zero, the natural frequency for large deflections
is also zero, regardless of the initial conditions ϕ0 and ϕ̇0.
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4.8 The virtual work

Let’s compute the virtual work of the basic balancer. To do so, first we compute the virtual
displacements of the springs’ anchor points on the link, l1 and l2. To do this, first we compute the
position of the point and then we compute the position differential as a function of the generalized
DOF.

The position vector of point l1 is,

l1 = l1 cos (ϕ) î + l1 sin (ϕ) ĵ (4.51)

Differentiating this expression we get,

δl1 = −l1 sin (ϕ) δϕ̂i + l1 cos (ϕ) δϕ̂j (4.52)

The position vector of point l2 is,

l2 = l2 cos (ϕ) î + l2 sin (ϕ) ĵ (4.53)

Differentiating we get,

δl2 = −l2 sin (ϕ) δϕ̂i + l2 cos (ϕ) δϕ̂j (4.54)

Now we calculate the forces exerted by the springs at points l1 and l2. The force exerted by
spring 1 is,

f1 = −k1 (l1 − p1) (4.55)

Replacing terms and developing the expression we get,

f1 = (k1p1 − k1l1 cos (ϕ)) î− k1l1 sin (ϕ) ĵ (4.56)

The force exerted by spring 2 is,

f2 = −k2 (l2 − p2) (4.57)

Again, replacing terms and developing the expression we get,

f2 = (k2p2 − k2l2 cos (ϕ)) î− k2l2 sin (ϕ) ĵ (4.58)

The virtual work of each spring is the dot product between the force from the spring and the
virtual displacement of its application point. For the first spring we have,
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δw1 = f1 · δl1 (4.59)

Replacing Eq. 4.52 and Eq. 4.56 into Eq. 4.59 we get,

δw1 =
(

(k1p1 − k1l1 cos (ϕ)) î− k1l1 sin (ϕ) ĵ
)
·
(
−l1 sin (ϕ) δϕ̂i + l1 cos (ϕ) δϕ̂j

)
(4.60)

Collecting terms we have,

δw1 = −k1p1l1 sin (ϕ) δϕ (4.61)

The virtual work of spring 2 is,

δw2 = f2 · δl2 (4.62)

Replacing Eq. 4.54 and Eq. 4.58 into Eq. 4.60 we get,

δw2 =
(

(k2p2 − k2l2 cos (ϕ)) î− k2l2 sin (ϕ) ĵ
)
·
(
−l2 sin (ϕ) δϕ̂i + l2 cos (ϕ) δϕ̂j

)
(4.63)

Collecting terms we have,

δw2 = −k2p2l2 sin (ϕ) δϕ (4.64)

The total virtual work of the basic balancer is the addition of the individual virtual works of the
two springs,

δw = δw1 + δw2 (4.65)

Replacing Eq. 4.61 and Eq. 4.64 into Eq. 4.65 and collecting terms we get,

δw = − (k1p1l1 + k2p2l2) sin (ϕ) δϕ (4.66)

For a system that is in static equilibrium the virtual work must be zero,

0 = (k1p1l1 + k2p2l2) sin (ϕ) (4.67)

This expression provides the orientation at which the mechanism is in equilibrium for a given
set of values of k1, p1, l1, k2, p2 and l2. But also notice that if we apply the condition for static
balancing k1l1p1 = −k2l2p2, the expression is equal to zero regardless the orientation angle ϕ
of the link. The basic balancer on a state of static balancing must exhibit a virtual work equal
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to zero for any orientation angle ϕ. This result once again indicates that the basic balancer is in
static equilibrium for all the points of its range of motion.

4.9 The workspace and deflection space

Let’s assume for the moment a synthesis perspective rather than an analysis perspective. We want
to find the way to configure two zero-free-length springs, so they can create a statically balanced
system.

Taking away the link as shown in Fig. 4.7, we get a system of two springs, where the springs’
configuration is given by the deflection vector q,

q =
[
x1 y1 x2 y2

]T
(4.68)

p1p2

l1

l2

k1
k2

(p1, 0)(p2, 0)
x

y

(x1, y1)

(x2, y2)

Figure 4.7

The total strain energy of the system as a function of the four deflection variables is,

u(q) = u1(q) + u2(q)

u(q) = 1
2k1

(
x2

1 − 2p1x1 + p2
1 + y2

1

)
+ 1

2k2

(
x2

2 − 2p2x2 + p2
2 + y2

2

) (4.69)

To obtain the external reaction force vector in this four-dimensional deflection space we compute
the partial derivatives of Eq. 4.69 with respect to the deflection variables,

f(q) =




k1x1 − k1p1

k1y1

k2x2 − k2p2

k2y2




(4.70)

The system’s stiffness in the deflection space is the Hessian of the total strain energy,
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K(q) =




k1 0 0 0

0 k1 0 0

0 0 k2 0

0 0 0 k2




(4.71)

If we try to find the way to configure these two springs in order to get a system with zero force
and zero stiffness, we find that (i) the force is zero only if there is no deflection, q = 0, and (ii)
the change in force is zero (∆f = 0) only if there is no change in deflection ∆q = 0, hence no
zero stiffness. The latter comes from the fact that the stiffness matrix expressed in the deflection
space is always positive definite, so the only solution for Eq. 4.72 is ∆q = 0.

K∆q = 0 (4.72)

We already know that these two springs can be configured in a way that they create a statically
balanced system with zero force and zero stiffness motion, so let’s define in the four dimensional
deflection space a position vector r, and let’s express this vector as a function of a parameter, in
this case a rotation angle ϕ,

r(ϕ) = x1ê1 + y1ê2 + x2ê3 + y2ê4

r(ϕ) = l1 cosϕê1 + l1 sinϕê2 + l2 cosϕê3 + l2 sinϕê4

(4.73)

Notice that vector r is imposing a deflection constraint between the deflection variables, thus
mapping the deflection space into what we call the workspace. The workspace is the real physical
space in which the mechanism acts. In this case is a one dimensional space defined in terms of
the variable ϕ.

Now, if we compute again the external reaction force of the system but this time taking derivatives
with respect to variable ϕ (this is the external force required to keep a state of static equilibrium
along the workspace), we get

f(ϕ) = f(q) · r′ (4.74)

Where r′ is the derivative of vector r with respect to ϕ,

r′(ϕ) = −l1 sinϕê1 + l1 cosϕê2 − l2 sinϕê3 + l2 cosϕê4 (4.75)

Replacing Eq. 4.70 and 4.75 into Eq. 4.74, and collecting terms we get,

f (ϕ) = (k1p1l1 + k2p2l2) sinϕ (4.76)

Now, if we compute again the stiffness of the system as a function of the variable ϕ we get,



4.10 Discussion 79

k(ϕ) = r′TK(q)r′ + f(q) · r′′ (4.77)

Where r′′ is the second derivative of vector r with respect to ϕ,

r′′(ϕ) = −l1 cosϕê1 − l1 sinϕê2 − l2 cosϕê3 − l2 sinϕê4 (4.78)

Replacing Eq. 4.70, 4.71, 4.75 and 4.78 into Eq. 4.77, and collecting terms we get,

k (ϕ) = (k1p1l1 + k2p2l2) cosϕ (4.79)

Notice that both, Eq. 4.76 and Eq. 4.79 are exactly the same expressions obtained in sections 4.2
and 4.3. Remember that if we apply the condition for static balancing (Eq. 4.1) into these two
expressions we get the zero force and zero stiffness.

The interesting result from this exercise is to notice that when the system is constrained to move
in the workspace defined by vector r, in fact the system is being constrained to move along subset
of configurations in the deflection space. But once the system is statically balanced, this subset of
configurations corresponds to a level set of the potential energy function in the deflection space.

The level set of a function is the set of points where the function has a constant value. Certainly
a level set of the potential energy function is a set of points with constant potential energy. A
statically balanced mechanism is then a system that has been constrained to move along a level
set of the potential energy function in the deflection space. This constrained motion along a
level set is reflected as a statically balanced state of motion in the real physical workspace of the
system.

The aforementioned in the context of design means that the deflection of a system defined in
terms of a set of variables q may not reflect the possibility to statically balance the system, but
this apparent reflection does not mean that the system can not be statically balanced.

4.10 Discussion

The spring-to-spring zero stiffness balancer although mechanically simple exhibits quite ele-
gantly all the characteristics and properties of statically balanced systems. We can observe for
instance that the balancer has two springs which can be defined as two clearly distinct elements
storing potential energy. This is a common feature in statically balanced systems required to keep
the potential energy constant during motion. There must be at least one potential energy storing
element losing energy during motion, while at least another storing element is gaining this lost
energy.

The classical view of static balancing describes such systems in terms of their constant potential
energy, continuous zero force, continuous zero stiffness and neutral stability. Experimentation
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with the spring-to-spring balancer allowed the observation of new features that helps to create a
more complete view of statically balanced systems.
From a dynamic point of view the spring-to-spring balancer allow to observe that motion in
statically balanced systems is driven by the system’s inertia so in the absence of external dis-
turbances and non-conservative forces the speed across the workspace is constant. The latter
imply that statically balanced systems do not oscillate, so both natural frequency and harmonic
natural frequency are zero. The absence of external disturbances and restoring forces implies
that statically balanced systems exhibit continuous zero virtual work for all the points along their
workspace.
From a stability point of view the spring-to-spring balancer allows to observe that statically bal-
anced systems are pre-stressed systems —potential energy is pre-stored in the elastic elements—
on which the pre-stressed areas induce a loss of structural stability so the systems are in a state
of self-buckling at critical load, with the addition that if the buckling critical load is constant
then statically balanced systems exhibit linear behavior on their internal energies. This view of
statically balanced systems gets relevance when self-buckling is viewed as a conceptual design
approach towards static balancing.
The spring-to-spring balancer helps to observe in context how statically balanced systems are
systems where their workspace is a projection of a level set of the potential energy function
which is defined in the deflection space of the systems.

4.11 Summary

The chapter presents the spring-to-spring balancer as an object of study for the observation of
the properties in statically balanced systems. We describe the static balancing properties of the
spring-to-spring balancer in terms of the potential energy, the force, the stiffness, the stability,
the natural frequency. We also introduce four novel descriptions, (i) the spring-to-spring balancer
as a self-buckled system at critical load, (ii) the spring-to-spring balancer as a system moving at
constant speed and driven by its inertial properties, (iii) the spring-to-spring balancer as a system
with continuous zero virtual work along its workspace and (iv) the spring-to-spring balancer as
a system that projects a level set of the its potential energy into its workspace.
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It is not knowledge, but the act of learning, ... which

grants the greatest enjoyment. When I have clarified and

exhausted a subject, then I turn away from it, in order to

go into darkness again,
Johann Carl Friedrich Gauss

This chapter introduces the theory and foundations for the static balancing of mechanisms. Here,
the design criteria that can be used to define and identify a state of static balancing are derived
from the concepts of stability and equilibrium on which the theory of static balancing is based.

Identification and understanding of static balancing criteria serves as the angular stone for the
development of a synthesis method on a framework that should allow the generation of design
concepts.

Literature on the theoretical aspects of equilibrium and stability is focused on how to identify
unstable behavior in a structure and how to avoid it in order to ensure a stable state of equilib-
rium. But static balancing is a special case of equilibrium called neutrally stable equilibrium,
for which not too much literature is devoted, therefore here it is attempted to compile most of
the ideas about static balancing, in order to provide with a consistent mathematical framework
and elucidate the implications of this singular state of equilibrium. The presentation of most of
the ideas is done from the perspective of linear algebra, to keep in mind their implementation by
numerical schemes towards the analysis of compliant mechanisms.

The theory presented here, although is a general perspective exhibited from several angles, is far
from exhaustive and complete.

The chapter presents at the introduction a literature review organized in a proposed classification
based on applications and design approaches. Then in the following section the static balancing
criteria are developed and explained. The final section presents the mathematical generalization
of static balancing problem. The generalization explains static balancing as a transformation
problem in which the statically balanced workspace of the compliant mechanisms is a projection
of a level set of the potential energy function.
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5.1 Introduction

Statically balanced mechanisms (SBM’s), also known as energy-free systems, are those mecha-
nisms where the acting forces are balanced or in a state of static equilibrium for all the points of
a given range of motion, thus making the quasistatic operation of the mechanisms effortless.
Typical applications of static balancing are gravity compensation of mechanisms, vibration iso-
lation and stiffness reduction in compliant mechanisms.

Applications of
static balancing

Gravity
compensation

Vibration
isolation

Stiffness
reduction

Stationary
center of gravity

Compensating
by springs

Function
decomposition

Buckling

Oposite stiffness
functions

Constant force
mechanisms

Figure 5.1: Typical applications of static balancing and their design methods

5.1.1 Gravity compensation

The use of static balancing for gravity compensation can be found in applications such as bal-
ancing of linkages and parallel manipulators. Typically, the idea is to compensate the weight of
a mechanism in order to achieve an effortless actuation when no payload is present.
Design methods for gravity compensation are based on the use of springs and/or stationary cen-
ters of gravity. On the use of springs, it can be found the work of Streit and Shin [131], where
they present a design method for gravity compensation of planar linkages by extending the meth-
ods proposed by Nathan et al. [90] and Pracht et al. [101] where prismatic and revolute joints
are included and applied to both, open and close loop linkages. The idea behind the method is
the use of two basic 2DOF’s linkages —the vertical link system and the parallel link system—
which are able to generate a vertical constant force to compensate the weight of every link in the
linkage to be balanced.
Further on the use of springs is the work of Herder [33][32], who introduces a design method
for static balancing of mechanisms dealing with gravity potentials and elastic potentials from
zero-free-length springs. Here, a basic statically balanced mechanism is modified following a
set of seven modification rules to obtain new designs. These rules modify the type, shape and
topology of the mechanism while the statically balanced state of the mechanism is kept.
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Among methods based on stationary centers of gravity is the work of Jean and Gosselin [49],
who proposed a method for gravity compensation of one, two and three DOF’s planar linkages.
They demonstrated that it is possible to find a vertically stationary center of gravity for all the
linkage configurations by properly locating the individual link’s center of mass. This idea is
later extended by Wang and Gosselin to spatial parallel mechanisms of three and four DOF’s
[144][145] in which the stationary centers of gravity are combined with the use of springs based
on the method proposed by Streit and Shin.

5.1.2 Vibration isolation

Another application of static balancing is vibration isolation. Theoretically speaking, statically
balanced mechanisms have a natural frequency equal to zero, meaning that when they are per-
turbed they do not oscillate, thus, making them ideal for passive systems in vibration isolation.
The design of vibration isolators is mainly based on two ideas, building blocks and buckling.
Both design approaches rely on frequency reduction by reducing the stiffness of the system.

In the building blocks, stiffness reduction is achieved in two ways. The first way is combining
two blocks with opposite stiffness functions, one positive and the other negative. Alabuzhev et
al. [2] provide with a collection of designs for vibration isolation using this idea, while Park and
Luu [95] present the analysis of four different types of isolators based on building blocks in order
to identify those that can provide with perfect zero natural frequency.

The second way is using constant force mechanisms. A system which exerts a force of constant
value along a range of motion is used, therefore exhibiting zero stiffness. Rivin [107] shows a few
designs based in this idea. It should be noted that constant force mechanisms are not statically
balance mechanisms but they serve as designing building blocks as it will be shown in chapter 6.

In the buckling approach stiffness reduction is obtained by designing the isolation mounts in a
way that when loaded, the load is close to the critical load. Freakley [26] shows the design of
rubber mounts for vibration isolation based on buckling, while Rivin [108] describes buckling as
a form of vibration isolation and shows the operation of Platus’ design [99]. The basic operation
of Platus’ design can be found in [98] where Platus explains a vibration isolation system for six
degrees of freedom using buckling.

5.1.3 Stiffness reduction

There are situations where it is desirable a reduction in the operational stiffness of compliant
mechanisms, like increasing energy efficiency or the ability to keep the force feedback between
the input and output of a compliant tool.

Imagine a mechanism where its actuator can not exert high forces, in this case it is desired that all
the energy from the actuator goes to the payload and it is not wasted deforming the mechanism
just to achieve motion. Or imagine a situation where a set of compliant pliers are used and what
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is felt at the handle is the reaction force coming from the deformed tool plus the reaction from
the workpiece, how can you tell if the applied force is causing damage to the workpiece or is
enough to hold it.

Work in these directions were taken by Herder and Van den Berg [34] who presented the static
balancing of a compliant surgical forceps by using a rolling mechanism with coil springs. Al-
though the final design was not a fully compliant design, it showed the possibility to statically
balance compliant mechanisms. Later Stapel and Herder [129] published a feasibility study for
a fully compliant statically balanced mechanism, from where Lange et al. [66], Hoetmer et al.
[36], Powell and Frecker [100] and Tolou and Herder [137] presented designs of a grasper by
compensating the gripper positive stiffness with a negative stiffness compliant balancer. The
first two approaches were fully compliant designs based on topology optimization and building
blocks respectively, while the remaining two designs were partially compliant, based on size
optimization.

Dede and Trease [21] showed the design of a statically balance gravity compensator by using
torsion springs. The balancer consisted of a partially compliant fourbar linkage where two of its
joints were replaced by compliant cross-section revolute joints. Radaelli et al. [102] proposed a
method for the search of the conditions that guarantees a statically balanced configuration. Here
the search space is formed by the energy function of the system. The approach can only be used
in the design of compliant mechanisms with flexures or that can be modeled using the Pseudo
Rigid Body Model (PRBM).

Tolou et al. [136] introduced two designs of statically balance fully compliant mechanisms with
direct application in micro-mechanisms while Morsch and Herder [88] presented the design of a
statically balanced fully compliant joint based on a cross-axis flexural pivot [51].

5.2 Theory on static balance

The theory presented in the following sections is defined in the context of isolated and conserva-
tive mechanical systems. In the subsequent, references to external forces does not mean that the
isolation condition is violated, but that the system is composed at least of two subsystems where
one of the subsystems has no more functionality than exert forces onto the main subsystem.

We present for the first time static balancing as a state of motion in the context of compliant
mechanisms. The presentation includes three main criteria based on potential energy, force, and
stability, as well as a novel criteria based on virtual work, speed, natural frequency, and buckling.

5.2.1 The potential energy

Potential energy can be defined as the capacity of a mechanical system to do a work in virtue
of its position or configuration. In the case of a system form by deformable bodies the potential
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energy due to the deformed configuration is referred as the strain energy.

Statically balanced mechanisms were previously defined as those mechanical systems where no
effort is required for their operation, meaning that the required actuation force is zero. This
implies that no acceleration is present and that the motion is driven by the inertial properties of
the system or in other words the system’s speed is constant.

For isolated and conservative mechanical systems, the law of conservation of energy states that
the sum of the potential and kinetic energy is a constant, meaning that no energy is entering or
leaving the system.

Emech = T + U = constant (5.1)

Where T and U are the kinetic and potential energy respectively and Emech the total mechanical
energy. During motion these energies can transform from one form of energy into the other one.
The foregoing implies that if the potential energy increases then the kinetic energy decreases as
well as the speed and vice versa, but when the speed of the system is constant along a motion
described by DOF’s qi, no change occur in the kinetic energy and therefore the system’s potential
energy is constant. This mechanical state is here referred to as statically balanced.

U(q) = constant (5.2)

Definition 5.1. A mechanical system with constant potential energy along a certain range of

motion is a statically balanced system along such of range of motion.

The constant potential energy criterion is a necessary and sufficient condition to guarantee a state
of static balance.

Notice that definition 5.1 states that in statically balanced system there is no change in the po-
tential energy, but it does not mention if the potential energy can be zero or some other value.
In the case of deformable structures, if the zero reference level for the strain energy is chosen at
undeformed and unstressed configurations, then it is clear that for a structure undergoing motion
the strain energy can not be zero (the structure is deforming).

Proposition 5.1. Deformable structures undergoing motion in a statically balanced state are

prestressed structures.

5.2.2 The force equilibrium

It is said that a mechanical system is in static equilibrium, if the resultant of the internal and
external forces in the isolated system are zero. From the mechanics of conservative systems, it is
known that the infinitesimal change in the potential energy dU is equal to minus the work done
by the mechanical system along a differential of trajectory ds
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dU = −f · ds (5.3)

From equation 5.2 it is clear that dU is equal to zero (potential energy is constant then no change),
so Eq. 5.3 becomes

0 = −f · ds (5.4)

One could be tempted to integrate along the trajectory s to get

0 = −
∫

s

f · ds (5.5)

But that would be wrong, Eq. 5.5 is a necessary but not sufficient condition to guarantee static
balancing along a trajectory. Observe that if we apply the fundamental theorem for line integrals

[130], Eq. 5.5 can be written as

0 = Ub − Ua = −
sb∫

sa

f · ds (5.6)

which is saying that Eq. 5.5 holds for systems with equal potential energy at the limits of the line
integral. A typical example of such situation can be seen in Fig. 5.2.
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Figure 5.2: When the truss is deflected from point a to e, the force along the deflection is not
zero but clearly there is no change in the potential energy between points a and e. (a) Bistable
truss structure. (b) Energy function of the bistable structure while it moves from point a to e.

To integrate Eq. 5.4 we need to ensure that each (f · ds) along the line integral is in fact zero,
and also we need to guarantee that the system is moving along the trajectory.

0 = −
∫

s

|f · ds| where

∫

s

ds > 0 (5.7)
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Equation 5.7 is a necessary and sufficient condition to guarantee motion without change in the
potential energy. Notice that the dot product in Eq. 5.7 indicates that only the force components
tangent to the trajectory are the ones that contribute to the change in potential energy. If the
trajectory s is a function r of the DOF’s qi that define the trajectory

s = r (q) and ds =
∂r

∂qi
dqi (5.8)

and by only taken the force components fi tangent to the trajectory, equation 5.7, dropping the
minus sign, can be written as

0 =

∫

s

∣∣∣∣fi
∂r

∂qi
dqi

∣∣∣∣ where

∫

s

∂r

∂qi
dqi > 0 (5.9)

Equation 5.9 is expressing that the force components fi tangent to the trajectory are zero,

0 = fi = −∂U
∂qi

(5.10)

The latter implies that for a statically balanced system in a given range of motion, all the deriva-
tives of the potential energy with respect to the DOF’s defining this motion must be zero.

Definition 5.2. A mechanical system with no tangential forces along a trajectory is a statically

balanced system along such trajectory.

Statically balanced systems are in a continuous state of static equilibrium along a trajectory,
rather than in punctual configurations. Continuous equilibrium is a necessary and sufficient
condition to guarantee a state of static balancing.

Equation 5.9 shows that in statically balanced systems, the tangential forces to the motion must
be zero, but this does not imply that all the forces are zero. In fact equation 5.3 states that normal
forces to the trajectory are not necessarily zero. Therefore, if the prestressing of the structure
(according to proposition 5.1) is achieved using preloading forces, then, two conclusions arise:
Preloading forces must be normal to the motion of their application points (if they move) or
preloading forces have any orientation but their application points do not move.

Proposition 5.2. In deformable structures undergoing motion in a statically balanced state,

either the points where prestressing forces are applied do not move or move normal to their

respective presstresing forces.

5.2.3 Virtual work

The principle of virtual work states that a conservative system is in static equilibrium, if the
virtual work in such configuration is zero.
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0 = f · δs (5.11)

Observe that Eq. 5.11 is the same Eq. 5.4, in terms of virtual displacements rather than infinites-
imal displacements. Then, by replacing the infinitesimal displacements on Eq. 5.7 for virtual
displacements we obtain

0 =

∫

s

|f · δs| (5.12)

This equation in fact states that the virtual work of a statically balanced system evaluated at any
point of the trajectory must be zero.

Definition 5.3. A mechanical system in which the virtual work of the system is always zero,

regardless the value of the DOF’s qi defining the motion, is said to be in a state of static balance

along such of motion.

Although Eq. 5.12 is similar to Eq. 5.7, they imply different things from a design perspective.
For instance, Eq. 5.7 is telling us that the conditions for a statically balanced behavior can be
found by obtaining the force expression of the system under design and then searching for the
conditions for which forces are zero along some range of motion, but Eq. 5.12 is telling us that
the same can be accomplished by obtaining the virtual work expression and then searching for
the condition where the DOF’s variables vanish.

5.2.4 Stability

To define stability in a simple way to our purpose, let’s imagine a mechanical system that remains
in a state of static equilibrium for a given configuration, and apply a small disturbance to the
system. If the system after the disturbance returns to its original equilibrium configuration, it
is said that the equilibrium configuration is stable and it implies the presence of a restoring
force. But if the systems moves away, then the equilibrium configuration is referred as unstable,
in which case the force points away from the equilibrium configuration. Now, there is a third
possibility. If the disturbance takes the system into a new equilibrium configuration next to the
previous one then the original equilibrium configurations is defined as neutrally stable and clearly
there is no change in the force.

Now, definition 5.2 states that tangential forces along a statically balanced trajectory are zero and
consequently there are no changes in these forces, then is clear that statically balanced trajectories
are neutrally stable.

Definition 5.4. A mechanical system with neutral stability for all the points in a range of motion

is a statically balanced system along such of range of motion.
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For systems where the potential energy comes from elastic deformations, the differentiation of
the force with respect to a set of DOF’s (or second derivative of the potential energy), represents
the stiffness of the system, therefore is the stiffness function who provides the information about
the stability behavior of an elastic structure.

Here the second differentiation is performed on the external force and not in the system’s internal
force (Eq. 5.10). In this way we assumed the existence of an equilibrating external force that
could or could not be zero, covering in this way both possibilities, balancing due to external
forces or self-balancing of the internal forces.

∂2U

∂qj∂qi
=
∂f

∂q
= K (5.13)

The stability of a system at a given equilibrium point can be evaluated by analyzing the changes
in the external force due to changes in a given parameter, which in our case would be the changes
in the DOF’s defining a trajectory.

∆f =
∂f

∂q
∆q (5.14)

Replacing Eq. 5.13 into Eq. 5.14 it is obtained an equation that resembles the equilibrium
equation for a finite element analysis, where ∆f is the external force balancing the internal
reactions.

∆f = K∆q (5.15)

To analyze the stability properties of the stiffness matrix, we multiply Eq. 5.15 by 1
2∆qT

1
2∆qT∆f = 1

2

(
∆qTK∆q

)
(5.16)

Notice that the left hand term is the work done by the change in the external force acting from
equilibrium and that the right hand term on parenthesis is the expression to define the definiteness
of the stiffness matrix. If K is positive definite, the entire term on the right must always be
positive no matter the motion around the equilibrium point, which implies that the external force
is doing a positive work. This means that the internal force oppose to the displacement, so it is a
restoring force and therefore the system is stable. On the other hand, if K is negative definite, the
term on the left side by definition is always negative, so the external force is doing negative work
which means that the internal force push away the system from the equilibrium point, therefore
the system is unstable.

Now, let’s return to Eq. 5.15 and rewrite it assuming that there is no change in force (this is for
statically balanced systems and constant force systems).
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K∆q = 0 (5.17)

This equation has two solutions, (i) the trivial solution ∆q = 0 in which we are not interested,
because it is expressing that no motion is occurring, and (ii) ∆q 6= 0 in which we assume
motion. This solution requires K to be singular with a null space composed not only by vector
0. If Eq. 5.17 is multiplied by ∆qT , then it is obtained an equation that express that matrix K is
semi-definite or semi-indefinite matrix.

∆qTK∆q = 0 (5.18)

Still it can not be said anything about statically balanced systems. In order to resolve this, let’s
express the left hand term of Eq. 5.16 as the work w done by the change in the external force

w = 1
2∆qT∆f (5.19)

and then eigen-decompose the stiffness matrix (notice that w is not the work done by the external
force but by its change).

w = 1
2

(
∆qTQΛQT∆q

)
(5.20)

Here Λ is the diagonal matrix of n eigenvalues and Q is the matrix of n linear independent
eigenvectors. Notice that the product QT∆q represents a rotation of the displacement vector
into a new displacement vector ∆q̃ expressed in the vector space spanned by the eigenvectors.

QT∆q = ∆q̃

Then, by rewriting Eq. 5.20 it is possible to observe that the eigenvalues determine the local
curvature of the energy function due to the changes in the force.

w = 1
2

(
∆q̃TΛ∆q̃

)
= 1

2λi∆q̃
2
i (5.21)

This equation expresses that motion in the direction of zero curvature λi = 0 (zero eigenvalue)
conveys no change in energy w and from Eq. 5.19, w is zero only if the change in force is zero
(∆f = 0). In other words, zero eigenvalues means zero change in force.

To illustrate the idea of eigenvalues as the curvature on the work function due to changes in force,
assume that the stiffness matrix is of size 2x2, then Eq. 5.21 takes the form

w = 1
2λ1∆q̃2

1 + 1
2λ2∆q̃2

2

If this function is plotted, there is the possibility for the eigenvalues to be positive, negative or
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Table 5.1: Relation between eigenvalues, energy function’s curvature and stability

λ1 λ2 Energy function
shape

Stability in λ1
direction

Stability in λ2
direction

Definiteness of the
stiffness matrix

positive positive paraboloid open up-
wards

stable stable positive definite

negative negative paraboloid open
downwards

unstable unstable negative definite

positive negative hyperbolic
paraboloid

unstable stable indefinite

zero positive parabolic cylinder
open upwards

neutrally
stable

stable positive semi-
definite

zero negative parabolic cylinder
open downwards

neutrally
stable

unstable negative semi-
definite

zero. All the possible results are listed in Tab. 5.1 and depicted in Fig. 5.3.

(a) (b) (c) (d) (e)

Figure 5.3: Local curvature of the energy function is given by the eigenvalues of the stiffness
matrix. x and y axes point in the direction of the eigenvectors. (a) Positive eigenvalues. (b)
Negative eigenvalues. (c) Positive and negative eigenvalues. (d) Positive and zero eigenvalues.
(e) Negative and zero eigenvalues.

The analysis of the eigenvalues provides another perspective for the observance of stability with
respect to the behavior of the energy function due to changes in force. Clearly, motion in the
direction of the eigenvector with positive eigenvalues is stable, motion in the direction of the
eigenvectors with negative eigenvalues is unstable and motion in the direction of the eigenvectors
with zero eigenvalues is neutrally stable.
For a statically balanced system that is discretized and described in terms of its stiffness matrix,
is clear that this matrix must be (i) singular and (ii) semi-definite or semi-indefinite for which its
null space elements besides the 0 vector, describe the statically balanced trajectory of the system.
The difference between the positive and negative semi-definiteness and semi-indefiniteness, is
that systems with positive semi-definite stiffness matrices are self-constrained to move only along
the statically balance trajectory, while negative semi-definite stiffness matrices or semi-indefinite
must be constrained in order to avoid motion on the unstable directions.

Proposition 5.3. A mechanical system moving along a trajectory in a state of self-constraint

static balancing, must exhibit at all points a singular positive semi-definite n×n stiffness matrix
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with n linear independent eigenvectors. The system’s change in configuration at each point of

the trajectory is defined by the eigenvectors that form the stiffness matrix’s null space.

At this point it is necessary to remark that the linear independence of the eigenvectors is conven-
tionally assumed if all eigenvalues are different, but it does not mean that for repeated eigenval-
ues, necessarily the eigenvectors are not linear independent. In this work it is assume the latter
possibility, which means that linear independence of all the eigenvectors must be guaranteed in
another way.
To illustrate the former in our context, take for example the case of a system for which the
statically balanced motion is a surface rather than a line. In this case the 2-D surface is generated
by two independent eigenvectors from the K matrix, with respective zero eigenvalues.
Now returning to the stability analysis of the stiffness matrix, let’s diagonalize the stiffness matrix
K in the form

Λ = QTKQ (5.22)

what we see in this equation, is that matrix Λ is a diagonal matrix for which its values are the
eigenvalues of matrix K, but these diagonal values also represent the stiffness values of the
system in the space spanned by the eigenvectors. In other words, this is expressing the expected
result: the system will exhibit zero stiffness in the direction of neutral stability behavior or zero
eigenvalues.

Definition 5.5. A mechanical system that is a statically balanced for all the points in a range of

motion, exhibits zero stiffness along such of range of motion

An interesting result from proposition 5.3 and definition 5.5, is that if the mechanical system is
an elastic system, then the linear independent eigenvectors associated with zero eigenvalues from
a singular positive-semidefinite stiffness matrix, (i) span the null space of the matrix that defines
the statically balanced motion space and (ii) they are in fact the buckling modes of the elastic
system.

Proposition 5.4. An elastic mechanical system that is statically balanced for all the points in a

range of motion is in fact a self-buckled elastic system at exactly the critical buckling load along

the range of motion.

At this point it is important to address an important issue in the definitions regarding zero stiffness
and neutral stability as conditions in static balancing. The difference between both definitions is
subtle but quite meaningful. Zero stiffness is a necessary but not sufficient condition to guarantee
a state of static balancing, since zero stiffness is also a necessary condition for systems with
constant force. Zero stiffness does not imply that a system is in equilibrium. On the other hand
neutral stability is a necessary and sufficient condition to guarantee a state of static balancing.
Neutral stability imply zero stiffness and equilibrium, which is a condition expressed in def. 5.2.
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Since constant force systems exhibit zero stiffness, they can be used in the modular design of
statically balanced systems. The constant force of one system is compensated by the opposite
constant force from another system. An example of this is the spring-to-spring balancer shown in
chapter 4, where in section 4.4 is shown that in fact this balancer is a composition of two constant
force mechanisms balancing each other. The use of constant force systems as a strategy for the
design of statically balanced compliant mechanisms is shown in sections 6.2.3 and 6.2.3.

In the case of statically balanced systems as compositions of constant force systems, it is pos-
sible to find a generalized coordinated where the two sources of potential energy exhibit linear
behavior. The observation of this energy linearization, specifically in balancers built with zero-
free-length springs, in combination with proposition 5.4 has led to the following proposition:

Proposition 5.5. A 1DOF statically balanced systems where it is possible to find a general-

ized coordinate in which the constant potential energy can be seen as the superposition of two

opposed linear potential energy functions, is a system where the self-buckling critical load is

constant along the entire range of motion.

This proposition relates to the idea of using buckling as a design strategy for statically balanced
compliant mechanisms.

5.2.5 The equation of motion

To this point, the characteristics for statically balanced mechanisms related to energy, force and
stability have been address. Now, it would be interesting to observe the behavior of these systems
from the perspective of their equation of motion.

In order to do so, the system’s motion function q (t) is linearized by assuming small disturbances
in the vicinity of point q0, and expanded in Taylor series

q (t) = q0 +
dq

dt
∆t (5.23)

= q0 + ∆q (t) (5.24)

Here the time dependent term ∆q (t) is the solution of the linear equation of motion

M∆q̈ (t) + K∆q (t) = 0 (5.25)

where M and K are the mass and stiffness matrices respectively. For this second order homoge-
neous equation, it is assumed a solution of the form
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∆q (t) = ∆q0e
ωt (5.26)

∆q̇ (t) = ω∆q0e
ωt (5.27)

∆q̈ (t) = ω2∆q0e
ωt (5.28)

By replacing this solution into Eq. 5.25, it is obtained the following expression

(
ω2M + K

)
∆q0e

ωt = 0

in which the exponential term is never zero. If the trivial solution ∆q0 = 0 is not considered,
then we end with a generalized eigenvalue problem of the form

(
ω2M + K

)
∆q0 = 0 (5.29)

This generalized problem can be transformed into a standard eigenvalue problem, assuming that
both matrices are constant at point q0, and matrix M is symmetric positive definite. Then, it is
possible to factorize matrix M using Cholesky decomposition [47],

M = LLT

where L is a lower triangular matrix. Now, by premultiplying Eq. 5.29 by L−1 and applying a
transformation on vector ∆q0 of the form

∆q0 =
(
LT
)−1

ũ (5.30)

it is obtained a standard eigenvalue problem, which is simpler to solve and from which it is
possible to obtain some useful insights

L−1
(
ω2M + K

) (
LT
)−1

ũ = 0
(
ω2L−1M

(
LT
)−1

+ L−1K
(
LT
)−1)

ũ = 0
((
−K̃

)
− λ̃I

)
ũ = 0

In this equation, the mass normalized stiffness matrix K̃ is

K̃ = L−1K
(
LT
)−1

(5.31)

and the system’s natural frequencies ωi are given by the square root of the eigenvalues λ̃i of
matrix K̃.
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ω2
i = λ̃i

The system’s vibration modes ∆q0 around point q0 correspond to the transformation of the
eigenvectors ũ through Eq. 5.30.

If the stiffness matrix K is singular as defined in Eq. 5.17, then matrix K̃ is also singular. This
is proven by realizing that, as previously mention, matrix M is assumed symmetric positive
definite. Then it is possible to take any vector ∆q in the null space of K expressed as a linear
combination of the eigenvectors u0i

with zero eigenvalues that span this null space

∆q = aiu0i
(5.32)

and apply a transformation of this vector by matrix LT (same transformation used in Eq. 5.30),

∆q̃ = LT∆q (5.33)

= LT (aiu0i
) (5.34)

if Eq. 5.31 is multiplied by vector ∆q̃, then it yields

K̃∆q̃ = L−1K
(
LT
)−1

∆q̃

= L−1K
(
LT
)−1

LT∆q

= L−1K∆q

= 0

Clearly, vector ∆q̃ is in the null space of K̃ and ∆q̃ 6= 0, since LT is not singular (see Eq. 5.33).
Even more, the size of the null space of K̃ is equal to the size of the null space of K, which can
be evidenced by multiplying Eq. 5.31 by Eq. 5.34, rather than Eq. 5.33.

All these considerations imply that the system’s motion described by matrix K̃ has as many zero
natural frequencies as matrix K has zero eigenvalues, which allows to define statically balance
mechanisms from the perspective of their natural frequencies.

Definition 5.6. A mechanical system exhibiting zero natural frequency at all the points in a range

of motion is a statically balanced system along such range of motion.

Definition 5.6 is just expressing the expected result for a system with zero stiffness, An even
more if the natural frequency on a statically balanced system is zero, then by replacing ω = 0

into Eq. 5.27 it is found that the change in speed of the system is zero.
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Definition 5.7. A mechanical system moving along a statically balanced trajectory, exhibits

constant speed along such trajectory in the absence of external forces.

Once again, definition 5.7 is the expected result from a system where all the forces are in equi-
librium along a trajectory.
Now notice that vector ∆q̃ is a linear combination of the eigenvectors ũ0 with zero eigenvalues

∆q̃ = biũ0i
(5.35)

if Eq. 5.35 is replaced into Eq. 5.34 it is possible to obtain the relation between the null spaces
of K̃ and K respectively.

biũ0i
= LT (aiu0i

) (5.36)

If we try to recover the system’s vibration mode related with zero frequency by applying the
transformation in Eq. 5.30 to Eq. 5.36

biL
T∆q0 = aiL

Tu0i
(5.37)

and noting that coefficients ai and bi are just random scaling values for the eigenvectors, we see
that the vibration modes with zero frequency are the same eigenvectors of matrix K with zero
eigenvalues.

∆q0 = u0i
(5.38)

These results at first seems not to be relevant but as it will be shown later, the eigenvectors with
zero eigenvalues from matrix K are the linearized buckling modes of the mechanism.

Proposition 5.6. Vibration modes related with zero frequencies on statically balanced mecha-

nisms are equal to the stiffness matrix’s eigenvectors with zero eigenvalues.

5.3 Theory generalization

In the preceding section some features from statically balanced mechanisms were identified from
the energy, force, stability and motion perspectives, which allowed the derivation of some defi-
nitions which later will serve to set the design criteria.
The configurations of these statically balanced mechanisms were described in terms of a set of
qi variables that represent not only the kinematic degrees of freedom, but also geometric and
mechanical variables defining the system. In this section a mathematical generalization of the
static balancing problem is developed. The system defined in terms of the qi variables is re-
expressed in terms of a set of ti variables defining its workspace as a statically balanced system.
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In order to make things easier, a generalization for systems on which their statically balanced
workspace is represented by curves is developed. Once concepts are more clear and understand-
able, a more complete generalization including complex workspaces is presented.

5.3.1 Workspace as a curve

Think on a system in which its potential energy is a function of its deformed configuration and
this configuration is determined by a set of variables q. It is desired to know the potential energy
function, force and stiffness of this system when it is moving along a curve, which is a function
of a parameter t. But by curve, we do not necessarily refer to a curve in the three dimensional
space. It could be a curve or linear trajectory in the vector space of the q variables. For instance,
the q variables could represent the nodal degrees of freedom (DOF’s) on a structure in which case
the trajectory is the set of all the values taken by the DOF’s defining the motion of the structure
while the parameter t, could be a displacement condition at a given node.

Recalling from the previous sections, the potential energy in terms of the q variables is

U (q) (5.39)

the external force is the gradient of the potential energy with respect to this set of variables q

f (q) =
∂U

∂qi
(5.40)

And the stiffness of the system is then the Hessian of the potential energy

K (q) =
∂2U

∂qj∂qi
(5.41)

Now, consider a statically balanced mechanism in motion describing a curve in some vectorial
space and let vector q to represent the configuration of the mechanism at any given point during
motion in this vectorial space. If the motion is function of the parameter t, and assuming that it
is possible to express each variable qi in terms of the parameter t

qi = fi (t) (5.42)

then it is possible to describe the motion of the system by the parametric function r (t).

r (t) = qi (t) êi (5.43)

Here, vector r (t) is a parametric curve in the space êi of the qi variables describing the motion
of the system. Calculating the derivative of this trajectory with respect to the parameter t we
obtain,
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r′ (t) =
dqi
dt

= J (5.44)

remember that the function r′ (t) is a tangent vector to the parametric curve r (t), and notice that
this derivative is also the Jacobian J of the systems of equations given in Eq. 5.42.

Now let’s say the potential energy of the system can be also expressed in terms of the parameter
t and knowing that for statically balanced systems this should be a constant (see def. 5.1) we got

U (t) = constant

If the external force of the system is calculated in terms of the parameter t, we have

f (t) = 0 =
∂U

∂qi

dqi
dt

= f (qi) · r′ (t) (5.45)

Notice that we have found a similar result to the one shown in sec 5.2.2, where it was stated that
for statically balanced systems, the forces along the trajectory must by zero.

Now, calculating the stiffness of the system in terms of parameter t yields

k (t) = 0 =
d

dt

(
∂U

∂qi

dqi
dt

)

=
d

dt

(
∂U

∂qi

)
dqi
dt

+
∂U

∂qi

d2qi
dt2

=

(
∂2U

∂qj∂qi

dqj
dt

)
dqi
dt

+
∂U

∂qi

d2qi
dt2

or in matrix notation

k (t) = 0 = r′T (t) K (qi) r′ (t) + f (qi) · r′′ (t) (5.46)

= JTK (qi) J + f (qi)
dJ

dt
(5.47)

In a general form, equation 5.46 allows to observe the stiffness behavior of a system on a given
trajectory or workspace. But when the expression is equated to zero it becomes an interesting
equation relating the stiffness and force properties of a system with a given trajectory in which
the system has zero stiffness and constant potential. In other words, the equation relates the
system’s stiffness and force properties to the level sets of its potential energy function.

A detail look at Eq.5.46 shows several ways on how stiffness on a trajectory can vanish. Each
way provides, from a synthesis perspective, with an insight on how a system can be statically
balanced or, from an analysis perspective, with the differences in the characteristics of the level
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sets.

Before going further, it is necessary to understand Eq.5.46. Clearly, it is composed of two terms,
where their physical meaning can be interpreted as follows:

- The first term is the projection of the stiffness at the given point on the trajectory, indicating
the change in the force on the tangential direction expressed by r′.

- The second term is the change of the force f(qi) due to the change in the trajectory direction
expressed by r′′.

Equation.5.46 indicates that to express the stiffness of a system on a new set of variables describ-
ing the workspace, we need to not only transform the stiffness in term of the new set variables
(first term in the equation) but also we need to take into account the variations of the new set of
variables with respect to the old set of variables (second term in the equation)

Now it is possible to analyze the different ways on how stiffness on a trajectory can vanish.

Compensation by trajectory changes

Equation 5.46 is equal to zero when both terms in the equation are equal, with opposite signs and
different from zero.

r′TKr′ = −f · r′′ (5.48)

It means that the change in force, along the tangent direction r′ due to stiffness K, is compensated
by changes in the force f due to changes in the trajectory direction r′′.

The use of this approach to design a statically balanced mechanism means that the mechanism
must be constrained somehow to follow the trajectory which corresponds to an equipotential line
in the potential energy function.

To understand this idea, remember that in section 5.2.2 it was said that a statically balanced
system is in equilibrium at any point of the trajectory and notice that the stiffness matrix in
this case is not semi-definite, (terms in Eq. 5.48 are different from zero) which implies that if
the mechanism is in equilibrium at a given point, this equilibrium will be either stable and/or
unstable but not neutrally stable, or in other words the system at the given equilibrium point in a
naturally way either will not move or it will move away from the equilibrium point. Therefore it
must be constrained or forced to follow the equipotential trajectory in order to be in a neutrally
stable state. We can call this approach as a form of forced static balancing.

See for example the system depicted in Fig. 5.4a in its unstressed configuration. This system has
two stable equilibrium configurations at p1 and p3 and one unstable equilibrium configuration at
p2. Now assume that the system is taken into a new equilibrium point p4 by a force f (Fig. 5.4b).
Here the whole system (springs plus force f ) at p4 exhibits and indefinite stiffness matrix and
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by simple observation it can be realized that the system is stable in the x-direction and unstable
in the y-direction. But if the force is removed and replaced by the contact force resulting of
constraining the system to follow the level set at p4 as shown in Fig. 5.4c, then the whole system
behaves as neutrally stable.

y

xp1

p2

p3

p4

k k

(a)

f

p4

k k

(b)

p4

k k

(c)

Figure 5.4: (a) Two springs snapping-through with their level sets, (b) the system is stable in
x-direction and unstable in y-direction for the equilibrium configuration at p4, (c) The system
has been constrained to follow an equipotential line in which it behaves neutrally stable.

Another way to see this concept is to assume for a moment that the vector r′ has a constant
magnitude, then dividing Eq. 5.48 by |r′|2 allows to re-express this equation as

t̂TKt̂ = − κ

|r′| f · n̂ (5.49)
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where t̂ and n̂ are the unitary tangent vector and unitary normal vector to the trajectory r, respec-
tively, and κ its curvature. Now the term on the left is expressing the work done by the change in
force along a unitary displacement in the tangent direction (Fig. 5.5a). We know that a statically
balanced system can not do work, then this work is compensated by the work done by the actual
force along a displacement in the normal direction and magnitude κ

|r′| (Fig. 5.5b).

t̂

∆f

(a)

f

n̂
κ

|r′|
(b)

Figure 5.5: (a) Positive work done by the change in force ∆f along the tangent direction, (b)
Negative work done by the actual force f in the normal direction.

Singularity and zero force

Another way in which Eq. 5.46 is equal to zero is when both terms in the equation are zero. For
both terms, this can occur in different ways.

r′TKr′ = f · r′′ = 0 (5.50)

For instance, the right term can be zero in three situations, (i) the force f is normal to vector r′′,
(ii) the vector r′′ is equal to zero or, (iii) the force f is equal to zero. The left term, can be zero
as well in three situations, (i) vector r′ is equal to zero, (ii) matrix K transforms vector r′ into an
orthogonal vector with respect to itself, or (iii) vector r′ is in the null space of K.

This preceding gives another nine different ways in which a system can be statically balanced,
but some of these are impractical like r′ = 0, because it means that the system is not moving or
that the trajectory is not a function of the t parameter, while some others imply that the system,
like in section 5.3.1, must be constrained to follow a level set, e.g., r′′ = 0 which means that the
system moves in a straight trajectory.

But when the force f is zero, this is interesting, because it means that the system could not require
any motion constraining, if it is a stable system.

There are three interpretations for f = 0, (i) the system is moving in a potential energy function
that is constant in all direction of the vector space of variables qi, (ii) the system is already
constrained to follow an equipotential line as explained in section 5.3.1, or (iii) the system is at a
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stationary point of the potential energy function in all the orthogonal directions to the trajectory.

The first interpretation is saying that the statically balanced trajectory is in fact a subspace of
higher dimensional statically balanced workspace, which from a synthesis view it is not providing
any insights. The second interpretation as well does not provide with new insights besides those
given in section 5.3.1. Now the third interpretation is important, because combined with situation
(iii) in which the left term in Eq. 5.50 can be zero, saying that matrix K is singular and r′ is in
its null space. It takes back to the results about stability presented in section 5.2.4, where it was
shown that matrix K ideally should be a positive semi-definite matrix.

Notice that in this case vector r′ is related with ∆q by

∆q = ∆r = r′∆t (5.51)

5.3.2 Multidimensional workspace

In the previous section it was presented the workspace of the statically balanced system as a para-
metric curve in t. Here, the same concepts are extended to workspaces as parametric functions
of more than one parameter, and basically the same conclusions are drawn.

Consider again the potential energy function, the force and the stiffness as functions of the q

variables

U (q) (5.39)

f (q) =
∂U

∂qi
(5.40)

K (q) =
∂2U

∂qj∂qi
(5.41)

If the set of q variables can be expressed as functions of the parameters t, then we will have a
system of equations in the form

qi = fi (t) (5.52)

and the workspace r in terms of the t parameters expressed as

r (t) = qi (t) êi (5.53)

Clearly, the Jacobian of the system of equations is

Jik =
∂qi
∂tk

(5.54)
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Now, assuming that the potential energy function of a statically balanced system in its workspace
is constant

U(t) = constant (5.55)

Then, the force in the workspace as a function of the parameters t is

f (t) = 0 =
∂U

∂tk
=
∂U

∂qi

∂qi
∂tk

= f(qi)
T
J (5.56)

and the stiffness

K (t) = 0 =
∂

∂tl

(
∂U

∂qi

∂qi
∂tk

)

=
∂

∂tl

(
∂U

∂qi

)
∂qi
∂tk

+
∂U

∂qi

∂

∂tl

(
∂qi
∂tk

)

=

(
∂2U

∂qj∂qi

∂qj
∂tl

)
∂qi
∂tk

+
∂U

∂qi

∂

∂tl

(
∂qi
∂tk

)

Or in matrix notation

K (t) = 0 = JTK (qi) J + f(qi)
T ∂J

∂tl
(5.57)

Notice the similitude between Eq. 5.46 and Eq. 5.57. Basically, they are the same. Equation
5.46 is just a simplification to a one-dimensional workspace of Eq. 5.57. The important issue is
to understand the relation of the Jacobian and its rate of change, into the context of trajectories
as workspaces, which is more simple and easy to visualize.

Figure 5.6, express the idea behind the theory generalization for static balancing in a graphical
way.

U (qi) → qi = fi (tk) → U (tk) = constant
↓ ↓ ↓
∂2U
∂qj∂qi

J = ∂qi
∂tk

∂2U
∂tl∂tk

↓ ↓
K 0 = JTKJ + f · ∂J∂tl

Figure 5.6: Generalization for static balancing in a graphical way
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5.4 Summary

A short literature review was presented at the beginning of the chapter in order to provide a view
on the field of applications of static balancing. Gravity compensation, vibration isolation, and
stiffness reduction were identified as their main application.
The chapter introduced the definitions of static balancing from different perspectives, aiming
on their application into discretized structures being described in terms of multiple degrees of
freedom.
Figure 5.7 shows in a graphical way the definitions for static balancing and their interrelations.

Static Balancing

Constant potential

Continuous
equilibrium

Neutral stability

Zero virtual work

Zero natural
frequency

Stiffness matrix
Semi-positive

definite

Eigenvalues
λi ≥ 0

Null space 6= 0

Rank deficient
Singular

unknown
relation

Figure 5.7: Static balancing definitions and their interrelations

All the definitions for static balancing were generalized through a coordinate transformation, in
which the multiple degrees of freedom describing the system deflection were projected into the
workspace in which the system exhibits a behavior of static balancing.
Definitions for static balancing were developed in a way that they could be applied to discretized
systems described in terms of multiple degrees of freedom. In simple systems, most of the time
it is possible to obtain analytical expressions describing the behavior of their potential energy,
force or stiffness. However for complex systems, obtaining such expressions is not easy, if
not impossible. Description of complex systems is better approached by approximated models
which are constructed from discrete elements that result in mathematical descriptions in terms
of stiffness matrices. The stiffness matrix holds in its structure all the system’s size, shape, and
topology properties. That is where the static balancing generalization gains relevance, since it is
expressed in terms of the stiffness matrix of statically balanced systems.
In section 5.2.1, proposition 5.1, stated that statically balanced systems are in essence prestressed
structures, and more specific, prestress inducing high densities of strain energy per unit of de-
flection. Expanding the implications of this proposition in terms of the definitions for static
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balancing, we have that

- The potential energy must have an initial value different from zero, if we assume zero
potential at the stress-free configuration.

- Pre-stressing can be achieved in many ways. If force is used, it means preloading.

- From a stability perspective the system should exhibit somewhere in its internal structure,
regions subjected to instability exhibiting negative stiffness behavior.

- From a motion perspective, prestressing promotes reduction of the overall stiffness in the
system’s workspace which means in turn reduced natural frequency and speed variations
during motion.

Systems in a state of static balancing are systems with singular configurations, this is why they
were explained from the energy, force, stability, virtual work and motion perspectives, intending
that each angle could provide with a different insight on this singular state.
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6 Design of statically balanced compliant
mechanisms

If I have a thousand ideas and only one turns out to be

good, I am satisfied.
Alfred Nobel

The idea behind the design of Statically Balanced Compliant Mechanisms (SBCM’s) is to design
mechanisms that perform their intended function through the use of compliance, thus preserv-
ing all the benefits that this conveys while removing the energetic inefficiencies by using static
balancing.
In chapter 3, we discussed the most common synthesis methods for compliant mechanisms.
The overview included the most characteristic features of each approach and their fundamental
principles. Among all the methods presented, three were considered the most relevant, namely,
the Rigid-Body-Replacement (RBR), the building blocks (BB), and the structural optimization
(SO).
Similarly, chapter 5 presented different definitions of static balancing from the standpoint of
potential energy, force, stability, virtual work and motion.
In this chapter, we will explore the combinations between design methods for compliant mecha-
nisms with static balancing criteria towards the definition of a design methodology for statically
balanced compliant mechanisms.
Along section 5.2, five definitions about what static balancing is were developed. Now, we want
to use those definitions as design criteria to identify a state of static balancing during the synthesis
steps. Table 6.1 presents these definitions mathematically, in which r (t) represents the statically
balanced workspace.
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Table 6.1: Definitions of static balancing as design criteria

Definitions Criteria Mathematical expression
Definition 5.1 Energy criterion ∀q ∈ r (t) : U (q) = constant
Definition 5.2 Force criterion ∀q ∈ r (t) : f (q) = 0
Definition 5.5 Stiffness criterion ∀q ∈ r (t) : K (q) ∆q = 0
Definition 5.3 Work criterion ∀q ∈ r (t) : w (q) = 0
Definition 5.6 Frequency criterion ∀q ∈ r (t) : ω (q) = 0

6.1 The design methodology

The construction of the design methodology is done by identifying and interrelating what we will
call the recurrent elements. Recurrent elements refer to specific features that appear repeatedly in
the context of SBCM’s and influence the design outcome. Recurrent elements can be identified
by analyzing, for instance, the classifications of design requirements, design attributes, design
approaches, etc.

Inside the context of SBCM’s we can identify seven main recurrent elements: (i) compliancy
type, (ii) classification of the functional requirements, (iii) modularity of the mechanism, (iv)
static balancing strategy, (v) modularity of the design process, (vi)design methods for compliant
mechanisms, and (vii) static balancing criteria.

Compliancy type is a recurrent element indicating that a mechanism achieves its mobility due to
either lumped compliance or distributed compliance in the deforming elements. The compliancy
type is an imposition of the design requirements but driven by the particularities of the design
methods for compliant mechanisms.

In the case of structural optimization, the compliancy type is influenced by the chosen parameter-
ization. For instance, a continuum ground structure is more prone to lumped compliance while a
parameterization based on parametric curves is more inclined towards distributed compliance.

For the Rigid-Body-Replacement method, the compliancy is determined by the replacement
method. For instance, replacing revolute joints by flexure notch hinges clearly results in lumped
compliance while the use Pseudo-Rigid-Body models can result in distributed compliance.

The building block method as presented in literature is intended to promote distributed compli-
ance, but the method can be applied in the design of building blocks promoting lumped compli-
ance if we combine the concepts of instant center of rotation and compliance ellipsoids with the
Rigid-Body-Replacement method based on flexure notch hinges.

Classification of the functional requirements relates to the idea that the main function of a
mechanism can be classified as either function generation, path generation, or motion generation
(see chapter 2.1).

Modularity of the mechanism relates to the possibility of the mechanism to be fully compliant
or partially compliant. Remember that fully compliant mechanisms are monolithic structures



6.1 The design methodology 109

in which motion comes entirely from deformation of the constitutive members, while partially
compliant mechanisms are modular designs connected through kinematic pairs where motion
results from the combination of elastic deformations and relative rigid body motion between
modules.

Static balancing strategy refers to the way in which the static balancing problem is addressed.
These are the strategies focused on how to statically balance previously existing unbalanced
mechanisms. These strategies are used effectively in the context of modular design processes.
Chapter 5.1 mentioned some strategies towards static balancing such as stationary centers of
gravity, compensation by springs, function decomposition, buckling, etc.

Modularity of the design process relates to the idea of performing the two design phases —
design of the mechanism and static balancing of the mechanism— in one or two design stages. In
a modular design process the functional requirements and the static balancing characteristics are
done in independent design stages. In an integral design process all the requirements (functional
requirements and static balancing characteristics) are completed in one stage (see chapter 2.2).

A modular design process can be used in the design of either partially or fully SBCM’s. In
the case of fully compliant designs, it is required to remove any relative motion between the
connected modules, so that the kinematic pair connecting the modules is in fact a rigid joint.

An integral design process can be used as well in the design of fully and partially SBCM’s. The
design process is only limited by the selection of the design method for compliant mechanisms.
For instance, the use of building blocks does not allow for the inclusion of pre-stressing effects,
rendering it ineffective to be used in an integral design process. Another example is the use
of structural optimization based on FEA in the design of partially compliant mechanisms. The
inclusion of revolute and/or prismatic joints, while not impossible, increases the complexity to a
level that makes impractical the use of an integral design process.

Design methods for compliant mechanisms and static balancing criteria are closely related,
so the use of one design method limits the use of the static balancing criteria and vice versa.
Therefore, we need to explore the feasibility between combinations of these two design features.
To do so, we organize the three synthesis methods for compliant mechanisms with the five design
criteria for static balancing into a screening matrix (see Fig. 6.1).

Feasibility comes as a result from the possibility of a design method to include pre-stressing
effects so it can deal with the static balancing characteristics.

The building block methods (as presented in literature) are based on linear and infinitesimal de-
flections which do not account for pre-stressing effects, thus making them useful in the design of
compliant mechanisms with functional requirements but without static balancing characteristics.
Consequently, any direct combination between building blocks and the design criteria for static
balancing is considered not feasible.

In the case of the RBR method, the possibility to include pre-stressing effects comes from the in-
clusion of torsion springs at the revolute joints (using either Psuedo-Rigid-Body model or notch
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Figure 6.1: Feasibility of the combinations between the static balancing criteria and the design
methods for compliant mechanisms.

hinges), which account for the bending stiffness of its equivalent compliant joint. The inclusion
of torsion springs allows to obtain analytical expressions for all the static balancing design crite-
ria, except for the frequency criterion. Analytical expressions for frequency in nonlinear systems
are difficult to obtain, therefore the combination RBR-Frequency is considered not feasible due
to impracticability.

In the case of structural optimization, the analysis method employed in the design process de-
termines the feasibility in the use of a specific static balancing criterion. Here it is assumed that
the evaluation of the objective function at the analysis step is performed with the aid of some
numerical approach such as finite elements, in which case estimating the virtual work does not
make a new contribution with respect to the use of criteria like potential energy, work or stiffness,
and its computation could be rather cumbersome. As a result, the combination between virtual
work and structural optimization is regarded as not feasible.

So far we have identified the recurrent elements in the design of SBCM’s. Now based in the
aforementioned considerations we construct the design methodology for statically balanced com-
pliant mechanisms by coherently interrelating the recurrent elements. In this work we propose
the methodology that is depicted in Fig. 6.2. In this methodology each possible path across Fig.
6.2 is a method for the design of statically balanced compliant mechanisms.

To extract a design method from the methodology, first in diagram A we select whether the
design method will provide fully or partially compliant designs. Then we select the modularity
of the design process taking into account the constraints for a specific combination. The next
level indicates which design method for compliant mechanisms can be used to comply with
the functional requirements (function, path or motion generation) and to comply with the static
balancing characteristic.

In the specific case of a design method using a modular design process, the static balancing
problem can be conceptualized based on a design strategy to later design the balancer using a
specific design method for compliant mechanisms with pre-stressing capabilities (so far only
structural optimization and rigid-body-replacement have this capability).
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Figure 6.2: Methodology for the design of statically balanced compliant mechanisms. The
methodology originates from the interrelation of the recurrent elements in the design of stati-
cally balanced mechanisms and the design of compliant mechanisms.

Once the design method for compliant mechanisms that will account for the static balancing
characteristic has been selected we proceed to diagram B to select the static balancing crite-
rion that will be used to guarantee a static balancing state. Diagram B helps to determine as
well the type of compliancy based on the chosen method for the design of compliant mecha-
nisms. For instance in structural optimization the compliancy type is determined mainly by the
parameterization while in the rigid-body-replacement method the compliancy is determined by
the replacement model, building blocks are conceived to promote distributed compliance.

Figure 6.3 presents an example of a design method for SBCM extracted from the methodology in
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Fig. 6.2. The design method is used to obtain partially compliant mechanisms using a modular
design process. The functional module is designed through the use of building blocks, while the
balancer is conceptualized by the use of zero-free-length springs and designed with the rigid-
body-replacement method based on the pseudo-rigid-body model for distributed compliance.
The static balancing characteristic is incorporated by using the continuous force criterion.

Diagram A Diagram B

Partially
compliant

Modular design
process

The function

The balancing

Rigid body
replacement

Building
blocks

Zero-free-length
springs strategy

funtion, path and
motion generation

function
generation

Stiffness
criterion

Replacement
method

Pseudo-Rigid-Body model
for lumped compliance

Figure 6.3: One of many possible methods for the design of statically balanced compliant mech-
anisms derived from the methodology in Fig. 6.2.

6.2 Design methods

In this section we introduce four of the possible design methods that can be derived from the
design methodology shown in Fig. 6.2. Each design method is presented through an exam-
ple comprising the design of a statically balanced compliant mechanism. The design methods
presented in the following were chosen to illustrate the concepts and procedures mentioned in
previous sections and their use in the design of statically balanced compliant mechanisms.

6.2.1 Integral design method for fully compliant mechanisms using struc-
tural optimization

Due to the extension of this particular method, it is presented as an independent chapter. The
method is explained in more detail in chapter 7 where it is presented as an integral design method
for statically balanced fully compliant mechanisms (see Fig. 6.4).
In this chapter the structural optimization as a design method for compliant mechanisms is set as
a binary topology optimization problem of a partial ground structure, solved through the use of
genetic algorithms.
To test the design method, two design problems are set: (i) the inverter, and (ii) the gripper. In
both design problems, the static balancing characteristic is included as a constraint through the
use of the continuous equilibrium criterion and the neutral stability criterion.
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Figure 6.4: Diagram of an integral design method for statically balanced fully compliant mecha-
nisms using structural optimization methods.

6.2.2 Integral design method for fully compliant mechanisms using Rigid-
Body-Replacement

In this section we examine an integral design method for fully compliant mechanisms based
on the Rigid-Body-Replacement (RBR) method. The idea behind the use of an integral design
method is to design a statically balanced compliant mechanism in one single design phase. Figure
6.5 shows the structure of the design method.

Diagram A Diagram B

Fully
compliant

Integral design
process

The function
and balancing

Rigid body
replacement (RBR)

funtion, path and
motion generation

Force
criterion

Replacement
method

Pseudo-Rigid-Body model
for lumped compliance

Figure 6.5: Diagram of an integral design method for fully compliant mechanisms using rigid-
body-replacement method.

The objective is to induce the static balancing state during the transformation process from a rigid
body mechanism to a compliant mechanism in the RBR method by adjusting the values of the
stiffness and pre-loading angles at the linkage’s joints. Remember that during the transformation
process from rigid to compliant, the RBR method uses a model of the deflection of the compliant
members as pin jointed rigid links with torsion springs accounting for the stiffness properties of
the compliant members. The stiffness and pre-loading angles correspond to parameters of the
torsion springs used in the replacement model.

An interesting advantage of using linkages based on rigid bodies is that the angle of rotation
between links does not depend on the actual length of the links but on their relative lengths.
Therefore, the strain energy of torsion spring at the linkage’s joints is not affected by the scaling
of the linkage. Also notice that to guarantee a state of static balancing we need to have a constant
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strain energy value different from zero, and this constant value is not specific. Therefore, for a
given rotation and pre-loading angle of the torsion springs, the static balancing state depends on
their stiffness’s relative proportions. These two characteristics allow to design a statically bal-
anced rigid-body mechanism in terms of proportions which are later transformed into a statically
balanced compliant mechanism during the dimensioning of the compliant joints.

To test this design method, we will design a statically balanced compliant linkage which is to
generate a straight line path. The design is based on the Watt’s four-bar linkage depicted in Fig.
6.6a, where the middle point of the coupler link is the point of interest tracing a straight line
path with a linear correlation coefficient of r = 0.9995 for an input link rotation of [-0.7,0.2]rad.
Figure 6.6b depicts the replacement model that will be used by the RBR method.

Input link

Coupler link
Output link

Path

(a)

a

b

c

d

ϕ2

ϕ3
ϕ4

ϕ23

ϕ34

k2

k23

k34

k4

(b)

Figure 6.6: The design problem is the design of a statically balanced compliant version of a
Watt’s four-bar linkage. (a) Watt’s four-bar linkage tracing a straight line path at the coupler’s
middle point. (b) Replacement model of the Watt’s four-bar linkage used in its transformation
into a compliant mechanism.

Table 6.2 provides the proportions between the lengths of the links on the Watt’s linkage.

Table 6.2: Proportions between lengths of a Watt’s linkage for straight line path generation

Link Proportional length
Input link a 1
Coupler link b 0.8
Output link c 1
Ground link d 2.154

To find the value of the pre-loading angles and proportional stiffness of the torsion springs, we
need to express analytically the total strain energy of the linkage with torsion springs. The total
strain energy is simply the sum of the strain energy of each torsion spring,

U = U2 + U23 + U34 + U4 (6.1)
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The expression for the expansion of the energy in terms of the stiffness k, the link’s relative
rotation angle ϕ and the pre-loading or initial angles ϕ0 yields,

U = 1
2k2

(
ϕ2 − ϕ0

2

)
+ 1

2k23

(
ϕ23 − ϕ0

23

)
+ 1

2k34

(
ϕ34 − ϕ0

34

)
+ 1

2k4

(
ϕ4 − ϕ0

4

)
(6.2)

The rotation angle ϕ23 for a linkage in a open configuration is given by

ϕ23 = π − ϕ2 + ϕ3 (6.3)

while the rotation angle ϕ34 is given by

ϕ34 = ϕ4 − ϕ3 (6.4)

Keep in mind that even if the linkage goes into the cross configuration, the measurement of the
rotation angles is relative to the linkage’s open configuration.

Watt’s linkage is a 1 DOF linkage, therefore it is possible to express the rotation angles ϕ3 and
ϕ4 in terms of ϕ2. General analytical expressions for these two angles can be found by using
vector loop equation 6.5.

a

b

c

d

ϕ1

ϕ2

ϕ3

ϕ4

ϕ23

ϕ34

Figure 6.7: Vector loop equation for a fourbar linkage with given ground link orientation ϕ1.

a + b− d− c = 0 (6.5)

Solution to the vector loop equation is provided with Eq. 6.6 and 6.7,

ϕ3 = 2 arctan

(
−E −

√
E2 − 4DF

2D

)
(6.6)

ϕ4 = 2 arctan

(
−B −

√
B2 − 4AC

2A

)
(6.7)
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where

A = cosϕ2 −K1 cosϕ1 +K3 −K2 cos (ϕ2 − ϕ1) (6.8)

B = E = −2 sinϕ2 + 2K1 sinϕ1 (6.9)

C = K1 cosϕ1 − cosϕ2 +K3 −K2 cos (ϕ2 − ϕ1) (6.10)

D = cosϕ2 −K1 cosϕ1 +K5 +K4 cos (ϕ2 − ϕ1) (6.11)

F = K1 cosϕ1 − cosϕ2 +K5 +K4 cos (ϕ2 − ϕ1) (6.12)

K1 =
d

a
(6.13)

K2 =
d

c
(6.14)

K3 =
a2 − b2 + c2 + d2

2ac
(6.15)

K4 =
d

b
(6.16)

K5 =
c2 − a2 − b2 − d2

2ab
(6.17)

Substituting Eq. 6.3 to Eq. 6.17 into Eq. 6.2 together with the link lengths in Tab. 6.2, and
assuming a horizontal ground link (ϕ1 = 0), we get the total strain energy of the Watt’s linkage
with torsion springs in terms of the input angle ϕ2, the springs’ stiffness, and the springs’ pre-
loading angles.

Differentiation of the total strain energy with respect to the input angle ϕ2 gives an analytical
expression for the linkage’s resultant moment at joint 2 while differentiation of the resultant
moment with respect to ϕ2 provides the linkage’s resultant stiffness at the same joint,

f =
dU

dϕ2
(6.18)

k =
d2U

dϕ2
2

(6.19)

To find the springs’ stiffnesses and pre-loading angles that statically balance the linkage along
the range of motion defined by ϕ2, we solve the constrained nonlinear optimization given by Eq.
6.20,

min
x

frms

s.t. : xmin ≤ x ≤ xmax

(6.20)

where the design vector x is formed the by springs’ stiffnesses and pre-loading angles,
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x =
[
k2 k23 k34 k4 ϕ0

2 ϕ0
23 ϕ0

34 ϕ0
4

]
(6.21)

and the objective function frms is the root mean square (RMS) of the force vector f , see Eq.
6.22. The force vector is formed by the values of the linkage’s moment at joint 2 calculated at 10
evenly spaced points in the range of motion ϕ2=[-0.7;0.2]rad.

frms =

√
1
10

10∑
i=1

f2
i where fi = f (x, ϕ2i

) and ϕ2i
= −0.8 + (0.1) i (6.22)

The constraints are formed by the boundaries of the design variables,

xmin =
[
1 1 1 1 −0.9 3.5 1.2 2

]
(6.23)

xmax =
[
10 10 10 10 0.4 5.2 2.4 3.4

]
(6.24)

Take into account that the lower limit for the stiffness can not be set to zero. If zero is allowed
as the lower limit, the optimization algorithm will give as a solution that all the four stiffness are
zero, which in other words means that the optimization will find that the best statically balanced
solution is a linkage with no springs.

For the pre-loading angles, the limits are set in a way that the range of allowable values is as
large as possible but without violating the rotation limit of 1.344 rad (77◦) for the entire joint
rotation (rotation during actuation plus pre-loading rotation). The rotation limit is given by the
pseudo-rigid-body model for distributed compliance [40], but here it is used as well as the limit
for the lumped compliance model.

The optimization problem is solved by sequential quadratic programming (SQP). The initial
point for the optimization (found by a trial and error search) is at,

x =
[
5 5 5 5 −0.2 4.3 1.8 2.7

]
(6.25)

A minimum with a force RMS value of 0.012 was found at the point,

x =
[
1.0577 1.005 1 1.906 0.4 3.5 2.4 3.4

]
(6.26)

Figure 6.8 shows the behavior of the Watt’s linkage when the results of the optimization are
substituted into Eq. 6.2, Eq. 6.18, and Eq. 6.19

Notice that while the strain energy is nearly constant and the force is close to zero along the range
of motion, the stiffness deviates considerably from zero. This result, in theory, can be improved
by using as objective function the RMS values of the stiffness instead of the force RMS value, but
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Figure 6.8: Strain energy, force and stiffness for the Watt’s linkage along the range of motion
ϕ2=[-0.7;0.2]rad using the values found by nonlinear optimization of the springs’ stiffness and
pre-loading angles.

the problem with this is that the optimization leads more naturally to a constant force mechanism
than to a statically balanced one. Table 6.3 summarizes the results of the optimization for the
statically balanced pseudo-rigid-body model (SB-PRBM) of the Watt’s linkage, while Fig. 6.9
depicts the linkage in its unstressed configuration.

Table 6.3: Values for a statically balanced pseudo-ridig-body model of the Watt’s linkage

Links’ Proportional lengths springs’ stiffness springs’ pre-loading angles
Input link a 1 k2 1.0577 ϕ0

2 0.4rad
Coupler link b 0.8 k23 1.005 ϕ0

23 3.5rad
Output link c 1 k34 1 ϕ0

34 2.4rad
Ground link d 2.154 k4 1.906 ϕ0

4 3.4rad

Now the design of the statically balanced compliant Watt’s linkage is about the design of the
compliant flexures that will replace the revolute joints in the pseudo-rigid-body model. The idea
is to select the geometry of the flexure that will replace the joint with the highest stiffness, in this
case stiffness k4. Once the geometry is selected, the flexure stiffness is computed and used as
the baseline to scale the remaining flexure stiffness and then reverse the calculations to find the
remaining flexures’ geometry. Choosing the highest stiffness as the stiffness baseline helps to
guarantee that the remaining flexures will not violate the yield strength limit.

Assuming a constant rectangular cross section of the flexure beams and a given out-of-plane
thickness t, we proceed to find the length l and the in-plane widthw of the flexure that will replace
the joint with highest stiffness. The geometry of the flexure beam should allow deflections below
the yield strength limit.

Remembering from mechanics of materials, the maximum stress of a rectangular constant cross
section beam subjected to a moment M at the end tip is given by,
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Figure 6.9: Pseudo-rigid-body model of the statically balanced Watt’s linkage in the unstressed
configuration.

σmax =
Mw

2I
(6.27)

Where I is the cross section second moment of inertia. Assuming that the flexures will be
subjected mainly to bending stresses, the solution for large deflections of the Bernoulli-Euler
equation for beams under pure bending is,

θ =
Ml

EI
(6.28)

Here E is the Young’s modulus and θ is the end tip rotation as a result of the applied moment
M . Substituting Eq. 6.28 into Eq. 6.27 yields,

σmax =
Ew

2l
θ (6.29)

This expression can be used to find the length l and the in-plane width w of the flexure if we
assume a value for the maximum allowable deflection θ of the flexure’s end tip, and set σmax as
the yield strength limit. The stiffness of the flexure beam is derived by transposing the moment
and deflection terms from Eq. 6.28 and by observing Hooke’s law for torsion springs,

k =
EI

l
(6.30)

Figure 6.10a shows Eq. 6.29 plotted for the assumed values in Tab. 6.4. The colored area
σmax ≤ σy is the design space for the flexure’s geometry, in which the flexure can undergo a 1rad
deflection without exceeding the yield strength limit. Remember that pure bending is assumed, so
we select a conservative geometry of l = 16mm and w = 1mm. Figure 6.10b shows a contour
plot of Eq. 6.30 in which we can observe the resultant baseline stiffness kb = 52.08N/mm for
the selected geometry.

Now we compute the vector of the flexures’ stiffness k by scaling the proportional stiffness kp

(the ones given by the optimization of the PRBM) with respect to the baseline stiffness kb.
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Table 6.4: Initial values assumed for the compliant Watt’s linkage

Property Value
Young’s modulus E (N/mm2) 2000
out-of-plane thickness t (mm) 5
Yield strength σy (N/mm2) 75
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Figure 6.10: Using Eq. 6.29, we select the length and in-plane width of the flexure beam k4

to establish the baseline stiffness without violating the yield strength limit. It is assumed that
θ = 1rad, and E = 2000. (a) Contour plot of the stress as a function of length and width (the
red area is the feasible design domain). (b) Contour plot of the stiffness as a function of length
and width.

k =
kb

max(kp)
kp (6.31)

Replacing the stiffness values from Tab 6.3 into Eq. 6.31 we get

k =
[
28.90 27.46 27.33 52.08

]
(6.32)

Once we have the stiffness of the four flexures we need to go backwards to find their geometry.
Let’s expand Eq. 6.30 for a flexure beam with constant rectangular cross section,

k =
Etw3

12l
(6.33)

Combining Eq. 6.33 and Eq. 6.29 by substitution of either the length l or the in-plane width w
yields an expression for the stiffness in function of the stress and either the in-plane or the length
respectively.
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k =
2tl2σ3

3E2θ3
(6.34)

k =
σtw2

6θ
(6.35)

With these two expressions we can track the contour level that matches the desired stiffness and
then find either the length or the in-plane width of a rectangular cross section flexure beam that
does not exceed the yield strength limit.
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Figure 6.11: These plots are used to select the flexures’ geometry for a given stiffness assuming
a deflection, material and out-of-plane thickness. (a) Contour plot of the stiffness as a function
of the length and stress. (b) Contour plot of the stiffness as a function of the length and width.

Figure 6.11 shows the contour levels of Eq. 6.34 and Eq. 6.33 for the four flexures’ stiffness in
Eq. 6.32. For example, we chose from Fig. 6.11a the same length of l = 16mm for the four
flexures and it is clear that none of the flexures exceed the yield limit for this length. From Fig.
6.11b we determined the in-plane width given by the selected length.

Table 6.5: Stiffness and geometry of the flexure beams of the compliant Watt’s linkage

Flexure beam stiffness (N/mm) length (mm) in-plane width (mm)
Flexure 2 28.90 16 0.8218
Flexure 23 27.46 16 0.8079
Flexure 34 27.33 16 0.8065
Flexure 4 52.08 16 1

Once the geometry of the flexure beams is known, we can proceed to dimension the compliant
Watt’s linkage. First we need to define the length of the rigid portion of the input and output links
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with respect to the flexible portion. The theory of the PRBM for lumped compliance recommends
a relation of 1:10 between the flexure beam and its rigid section, but due to space constraints we
use a proportion of 1:5.25, As a result for a 16mm flexure we get an 84mm rigid section. These
dimensions imply that the linkage is scaled by a factor of 100 with respect to the length values
in Tab. 6.3.

point of
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84 32
.6
3

34
.5
380

100

96.85

42.4

0.24rad

(b)

Figure 6.12: Dimensioning process to convert the rigid-body linkage into its monolithic compli-
ant version. (a) Flexures and rigid-body links have the same orientation and the flexures’ pseudo
pivot coincides in location with the pin joints. (b) Final dimensions of the compliant Watt’s
linkage.

The final dimensions of the compliant mechanism are obtained by superimposing the flexure
beams on the scaled rigid-body linkage while coinciding the flexures’ middle point with the
revolute joints as shown in Fig. 6.12a. After superimposing the flexures, these are connected by
rigid segments such that the point of interest is on one of the rigid segments.

Figure 6.12a also shows how to calculate the required deflection to take the compliant Watt’s
linkage from the initial unstressed configuration, Fig. 6.13a, into the intermediate pre-stressed
configuration prior to actuation, Fig. 6.13b.

With the final dimensioning of the statically balanced compliant mechanism, we proceed to the
analysis using finite elements (FEA) based on nonlinear frame elements. The solution is found
by displacement control in two time-steps (pre-stressing and actuation). Actuation is performed
by displacement control since the actuation force is unknown and we want to find how close it is
to zero. The actuation is applied as a vertical deflection of -80mm at the point of interest. Figure
6.13 depicts the deflection results from the FEA for the three configurations of the statically
balanced compliant Watt’s linkage.

In order to calculate the strain energy reduction required for the actuation of the statically bal-
anced compliant Watt’s linkage and its functional performance, we compare the statically bal-
anced design with its non-statically balanced version. To do so, we design a compliant Watt’s
linkage from the same values found in Tab. 6.4 and 6.5 as an unprestressed structure at the
intermediate configuration.

Figures 6.14 and 6.15 show the comparison of both, the statically balanced and unbalanced com-
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(a) (b) (c)

Figure 6.13: Set of configurations of the SB compliant Watt’s linkage. (a) Initial configuration
before pre-stressing. (b) Intermediate configuration after pre-stressing and before actuation. (c)
Final configuration after actuation is applied as -80mm of vertical deflection at the point of
interest.

pliant Watt’s linkage, in their force-deflection behavior and straight line path generation, respec-
tively.
The statically balanced design exhibits a strain energy reduction in actuation of 93.98%. The
strain energies are estimated as the areas under the curves using the trapezoidal method. From
the force point of view, the force reduction is about 94.03%. This index is obtained by estimating
the root mean square of the force data in both designs.
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Figure 6.14: Force - displacement behavior at the point of interest. (a) Amplified view of the
behavior during actuation after pre-loading for the statically balanced compliant Watt’s linkage
. (b) Comparative view of the behavior for the statically balanced and unbalanced compliant
Watt’s linkage.

In the case of the functional performance, which is the generation of a straight path by the point of
interest, the results from the FEA show that in the unbalanced design, the path matches a straight
line with a linear correlation coefficient of r = 0.9994, while in the statically balanced design
the linear correlation coefficient for its path is 0.9718. If the linear correlation coefficient is
estimated after a vertical deflection of -10.8mm at the point of interest, the correlation coefficient
increases to r = 0.997. This value corresponds to 87.5% of the total deflection path.
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(a) (b)

Figure 6.15: Deflection path traced by the point of interest as predicted by the FEA. (a) Path for
the unbalanced compliant Watt’s linkage. (b) Path for the statically balanced compliant Watt’s
linkage.

The maximum stress distribution for the unbalanced design, according to the FEA, stays below
the assumed yield strength limit, while the statically balanced design is exactly at the limit (see
Fig. 6.16). Clearly, the dimensions for the flexure beams summarized in Tab. 6.5 must be
recalculated in order to keep the stresses within a safe range for the statically balanced design.
It is also true that the proposed model for the dimensioning of the flexure beams, as depicted
in Fig. 6.10, is a good tool for the initial dimensional estimation for designs based on lumped
compliance.

σmax

0.0164 σmin 34.01 σmax 68.039

(a)

σmax

0.006 σmin 37.54 σmax 75.08

(b)

Figure 6.16: Stress distribution at the deflection with the highest stress value (axial stress + max-
imum bending stress). (a) Stress distribution for the unbalanced Watt’s compliant mechanism.
(b) Stress distribution for the statically balanced Watt’s compliant mechanism.

6.2.3 Modular design method for fully compliant mechanisms using func-
tion decomposition

In this section we take a look at the modular design method for the static balancing of fully
compliant mechanisms using function decomposition.
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We define function decomposition as the idea of creating a desired function as the combination
of two or more functions. The functional module and the balancer are designed in such a way
that they exhibit behaviors characterized by two different mathematical functions. When these
two modules are combined, so are their functions, resulting in a third mathematical function
that represents the final desired behavior of the combined modules. In our case, the desired
behavior is either constant potential energy, or continuous zero force and stiffness. Function
decomposition is a recursive procedure that can be applied as well in the design of the functional
module and/or the balancer as compositions of sub-modules.

Diagram A Diagram B

Fully
compliant

Modular design
process

The function

The balancing

Structural
optimization

Rigid body
replacement

Building
blocks

Function decomposition

funtion, path and
motion generation

no relative motion
between modules

Energy
criterion

Force
criterion

Stiffness
criterion

Figure 6.17: Diagram of a modular design method for fully compliant mechanisms using func-
tion decomposition

The use of function decomposition for planar fully compliant designs —no pin joint connections—
requires that all the functions’ domains must lie on the same axis or line of motion without rel-
ative motion among the modules at the overlapping point. The condition of no relative motion
among the modules at the connection points comes from the monolithic nature of the composed
design. This is that at the connection points there is stiffness and as a consequence any relative
motion at this points is an unaccounted source of strain energy during the function decomposi-
tion.
In the case of statically balanced compliant mechanisms we have the advantage that the decom-
posed function describing a statically balanced behavior is a zero degree polynomial or constant
value. The value of the constant is zero when we observe the force or the stiffness, and is non-
zero when we observe the potential energy.
A zero degree polynomial can be constructed as the addition of two opposite or additive in-
verse functions, in which one of the functions is shifted depending on whether the decomposed
function is a zero or a non-zero value, see Fig. 6.18.
The design problem based on this view is simply to design the balancer as the additive inverse
of the functional module. Finding the additive inverse for any behavior of structures undergoing
large elastic deformations is difficult, so the trick is to design both, the functional module and the
balancer, in a way that their behaviors in energy, force or stiffness approximate simple functions.
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Figure 6.18: A zero degree polynomial can be decomposed as the summation of a function and
its additive inverse. (a) Summation of a function and its opposite function creates a zero constant
value. (b) Summation of a function and its shifted opposite function creates a non-zero constant
value.

In some cases, designing a structure with such simple behavior is not possible, but if we observe
that many complex behavior functions can be broken down into portions which individually
are simple functions, then the problem becomes to find the module where only a portion of its
behavior function is the additive inverse of the other module.

Many structures exhibiting complex behavior functions, once they are broken down, their indi-
vidual portions can be approximated by polynomials of, as a maximum, second degree. Within
this perspective, function decomposition towards static balancing of compliant mechanisms be-
comes a matter of arranging polynomials of second and first degree to create a zero degree poly-
nomial, as shown in Fig. 6.19.

To test this approach we will proceed to the design of three statically balanced compliant sus-
pensions for linear motion. For this purpose, we will make use of two simple structures, (i) the
folded-beam suspension and, (ii) the double arch suspension.

The folded-beam suspension is a structure used to generate linear motion. It is formed by two
opposite compliant fourbar linkages, where one linkage is grounded at the other’s coupler link,
see Fig. 6.20a. When the structure is actuated at the floating coupler link, the upward deflection
of the floating coupler link is compensated by the downward deflection of the remaining coupler
link, so the net result is a horizontal linear motion of the floating coupler link.

The characteristics of the deflection path on a folded-beam suspension are relatively simple.
The force-displacement behavior, even for large deflections is nearly linear. Consequently, the
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Figure 6.19: First and second degree polynomials can be combined to create a zero degree poly-
nomial. The zero degree polynomial or constant function could represent either the energy or
force and stiffness behavior of statically balanced compliant mechanisms.

stiffness is nearly constant and varies proportionally with the beams’ in-plane thickness and
inversely proportional to the suspension’s height. Figure 6.21a shows the variation of the force-
deflection due to the variation of the suspension’s height.

The double-arch suspension is a structure used to generate a force-deflection function rather
than a specific type of motion. The force-deflection function of the suspension is referenced to
the connection point of the two arches. With this type of suspension it is possible to generate
force-deflection functions with path sections exhibiting zero stiffness and/or variable positive and
negative stiffness. It is even possible to create structures with unstable equilibrium points and/or
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Figure 6.20: These two suspensions are representative examples of individual modules that can
be used in the construction of statically balanced compliant mechanisms. (a) The folded-beam
suspension. (b) The double-arch suspension.

two stable equilibrium points (bi-stable structures).

In this section, we make use of a symmetric suspension where the geometry of the arches is
described by cubic Bezier’s curves. The control polygon of the Bezier’s curve is defined by two
fixed control points —the initial and final— and two moving control points. The use of Bezier’s
curves allows to control the behavior of the force-deflection path in terms of the position of
the two moving control points. Figure 6.21b shows examples of force-deflection paths for the
symmetric Bezier’s double-arch suspension.

h1 < h2 < h3

Deflection

Force

compliant folded-beam suspension

h1 h2 h3

(a)

Deflection

Force

compliant double-arch suspension

(b)

Figure 6.21: Typical force-displacement behavior of a folded-beam suspension and a double-arch
suspension. (a) The folded-beam suspension exhibits a linear force-deflection behavior, where
the stiffness is inversely proportional to the suspension’s height. (b) The double-arch suspension
exhibits many different behaviors which can include positive, zero and negative stiffness.
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Design of statically balanced compliant suspension - concept 1

The first concept for the design of a statically balanced compliant suspension is composed of two
compliant double-arch suspensions. One double-arch suspension acts as the functional module
while the second suspension acts as the balancer.

Using the continuous equilibrium as the criterion for static balancing, we see that the force func-
tion to be decomposed is a zero degree polynomial with a constant value equal to zero,

f (t) = 0 tmin < t < tmax (6.36)

where f(t) represents the force as a function of the deflection t. Remember that t is the parameter
defining the statically balanced trajectory r(t). Decomposed in the most simple way, this function
is the sum of a constant c1 and its additive inverse −c1.

f (t) = 0 = c+ (−c) (6.37)

The constant value c represents a constant force mechanism, while the value −c represents the
mirror mechanism of same constant force mechanism. Figure 6.22 depicts the conceptual idea
on how the force function is decomposed.
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or

ce

Function decompostion

decomposed function

Figure 6.22: Decomposition of a continuous equilibrium function into two constant values.

Now we need to find the proper shape of a double-arch suspension that exhibits, along a portion
of its force-deflection path, a constant force. The geometry of the arches is found by shape
optimization of the suspension. Because the two arches in the suspension are symmetric, we
only need to find the shape of one of the arches. So we set as the design variables the location
of the two moving control points of the Bezier’s control polygon, while keeping the remaining
two control points as the fixed end tips of the arch. The objective function is set as the standard
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deviation σ of the suspension force with respect to a given reference force fref . The standard
deviation is only computed along an interval of the deflection path, see Fig. 6.23.

min
x

σ(x, fref )

s.t. : Ku− f = 0

xmin ≤ x ≤ xmax

(6.38)
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Figure 6.23: The objective function of the shape optimization is taken as the standard deviation
σ of the force with respect to a reference force, along an interval in the deflection path.

The optimization problem is solved using genetic algorithms. The objective function is computed
from the results of nonlinear finite element analysis solved through displacement control. The
structure is modeled using nonlinear frame elements for large deflection, small strains.

By using the values in Tab. 6.6, the result of the optimization is the geometry depicted in Fig.
6.24a. The force-deflection behavior for this structure is shown in Fig. 6.24b, In this figure we
observe a nearly constant force behavior for a vertical deflection of around 20mm.

Table 6.6: Values used for the shape optimization of the SBC suspension - concept 1

Property Value
Young’s modulus E (N/mm2) 2000
out-of-plane thickness t (mm) 5
Yield strength σy (N/mm2) 75
Double-arch suspension span l (mm) 100

Now we mirror the double-arch suspension in order to get the additive inverse to the constant
force function, as shown in Fig. 6.25a. Both suspensions are joined using a rigid beam so there
is no relative motion between points bu and bl.

Let’s take any point along the rigid beam that joins the two suspensions and call it the point of
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Figure 6.24: The result of the shape optimization is a nearly constant force compliant mechanism
in a deflection range of 15% of the suspension span. (a) Dimensions of the double-arch suspen-
sion after shape optimization. (b) Force-deflection behavior of the double-arch suspension after
shape optimization
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Figure 6.25: Construction of the statically balanced suspension. (a) The double-arch suspension
is mirrored. Both suspensions are connected avoiding relative motion at the connection point.
(b) Both suspensions exhibit opposite constant force function but they do not overlap, so they do
not cancel each other.

interest. If we observe the force-deflection function of each suspension at the point of interest
we notice that these two functions do not overlap, so the two constant forces do not cancel each
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other (Fig 6.25b). But if we displace the ground points of the two suspensions (points au, cu,
al, cl) relative to the point of interest as shown in Fig. 6.26a and then we actuate the system as
shown in Fig. 6.26b, we get the two force-deflection functions to overlap so the two constant
forces cancel each other, see Fig. 6.27.
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(b)

Figure 6.26: Prestressing and actuation of the compliant suspension. (a) The ground ports of
the double arch suspension are displaced in order to prestress the structure. (b) The prestressed
structure is actuated in a state near to static balancing.
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Figure 6.27: Force-deflection path of the individual modules and their combination.

From the potential energy perspective, displacing the ground points of the suspensions relative to
the rigid beam corresponds to the pre-stressing of the structure. Notice from the stress distribu-
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tion, how during pre-stressing most of the strain energy is concentrated at the lower suspension
and after the actuation the strain energy flows to the upper suspension, see Fig. 6.28.

0.035 30.89 61.81

(a)

0.029 30.89 61.81

(b)

Figure 6.28: Maximum stress distribution of the compliant suspension (axial stress+maximum
bending stress) in N/mm2. (a) Stress distribution after pre-stressing and before actuation. (b)
Stress distribution after actuation.

The statically balanced compliant suspension exhibits a standard deviation of 0.137 with respect
to a zero force along 20mm of deflection. A comparison along the same 20mm of deflection
between the statically balanced compliant suspension and one single double-arch suspension
shows a reduction of 95.12% in the energy required for the actuation and a 93.12% reduction in
the force RMS value.

Design of statically balanced compliant suspension - concept 2

The design of a statically balanced compliant suspension using only double-arch suspensions like
the one shown in section 6.2.3 exhibits a low stiffness perpendicular to the actuation line. This
means that while the suspension is actuated effortlessly, it could also move sideways. There are
cases when this is an undesired effect so we need to constrain the suspension to restrict sideways
motion. One solution to this problem is to include a folded-beam suspension.

To design the suspension without sideways motion, we resort to the use of continuous equilibrium
as the criterion for static balancing. The use of continuous equilibrium is a consequence of the
use of finite elements as the analysis method which provides results directly in terms of forces.

f (t) = 0 tmin < t < tmax (6.39)

Here, f(t) is the force function and t is the suspension deflection which defines the statically
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balanced trajectory r(t). The force function is decomposed as the summation of two zero degree
polynomials which are additive inverse, or in other words, the force is decomposed as the sum-
mation of two opposite constant force functions. In this case the constant force is not obtained
from one structure, but it is created by further decomposition of the constant force function as the
summation of two polynomials of first degree. These first degree polynomials are again additive
inverse but in this case they are shifted, so they create a non-zero constant value.

f (t) = 0 = c+ (−c) (6.40)

c (t) = (b1t+ c1) + (−b1t+ c1) (6.41)
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Figure 6.29: Decomposition of the continuous equilibrium function. (a) The equilibrium function
as a zero degree polynomial is decomposed into two zero degree polynomials or constant values.
(b) The function of a constant force is decomposed into two polynomials of first degree.

The design problem becomes a matter of finding two structures with linear force-deflection func-
tion, which when combined, create a constant force compliant mechanism. The statically bal-
anced compliant suspension results from the combination of the constant force mechanism and
its mirror structure.

A double-arch suspension is designed to provide the linear force-deflection function with nega-
tive slope (negative stiffness), while a folded-beam suspension is designed to provide the linear
force-deflection function with the same slope but positive (positive stiffness) along the same
range of motion.

The design of the double-arch suspension is done by using shape optimization. The design
variables are the location of the moving control points of the Bezier’s curve describing the arches’
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geometry. The objective function is set as the linear correlation coefficient of the force function.
The objective function is only computed along a section of the deflection path.

min
x

r(x)

s.t. : Ku− f = 0

xmin ≤ x ≤ xmax

(6.42)
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Figure 6.30: The objective function of the shape optimization is taken as linear correlation coef-
ficient r of the force along an interval in the deflection path.

The optimization problem is solved using genetic algorithms. The objective function is computed
from the deflection path obtained through the use of nonlinear finite elements. The structure is
modeled by frame elements with large deflection and small strains.
Using the values presented in Tab. 6.7, the result of the shape optimization is the geometry
depicted by Fig. 6.31a. The resultant structure exhibits the force-deflection function shown
in Fig. 6.31b. The linear correlation coefficient for the function is 0.9987 along the interval
[-20,-40]mm.

Table 6.7: Values used for the shape optimization of the SBC suspension - concept 2

Property Value
Young’s modulus E (N/mm2) 2000
out-of-plane thickness t (mm) 5
Yield strength σy (N/mm2) 75
Double-arch suspension span l (mm) 140

The folded-beam suspension is designed to provide the same linear force-deflection function
but with positive stiffness for a deflection of 20mm. The stiffness of the suspension is adjusted
by modifying only its height, while keeping the in-plane thickness constant. The value of the
height is found by a bisectioning search within two limit values, this is bisecting the interval
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Figure 6.31: The result of the shape optimization is a compliant mechanism with a nearly linear
force (r = 0.9987) and negative stiffness along a deflection range of 14% of the suspension span.
(a) Dimensions of the double-arch suspension after shape optimization. (b) Force-deflection
behavior of the double-arch suspension after shape optimization

and selecting a subinterval repeatedly. The limit values are two suspension heights at which one
stiffness is higher than required, while the other stiffness is lower.

The result is the folded-beam suspension with the dimensions shown in Fig. 6.32a. The folded-
beam suspension can deflect in two opposite directions from its equilibrium configuration. Figure
6.32b shows the force-deflection function for the deflection in the negative direction.

Connecting the double-arch suspension to the folded-beam suspension creates a constant force
compliant mechanism. The connection of the two suspensions is done through a rigid beam that
avoids relative motion between the suspensions. The force-deflection function of the combined
structure measured at any point along the connecting rigid beam is shown in Fig. 6.33.

Now we create the mirror structure of the combined suspension in order to obtain the additive
inverse function to the constant force, see Fig. 6.34a. Notice that the folded-beam suspension in
the mirror structure has been flipped. This modification has no influence on the force-deflection
function but it helps to create a more compact design.

The combined suspension and its mirror structure exhibit opposite force-deflection functions, but
they do not overlap along the same interval of deflection, so the forces do not cancel each other
(see Fig. 6.34b).

In order to overlap the two force-deflection functions of the two combined structures, we need to
apply a relative displacement between the ground ports of the structures (au, cu, du, eu, al, cl,
dl, el) and the rigid beam connecting the two structures along points bu and bl, see Fig. 6.35a.
Applying this relative displacement corresponds to the pre-stressing of the structure.
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Figure 6.32: The dimensions of the suspension that provide the required stiffness are found by
bi-sectioning the suspension’s height while keeping the in-plane and out-of-plane thickness con-
stant. (a) Dimensions of the folded-beam suspension. (b) Force-deflection function of the folded-
beam suspension. The linear correlation of the function for the deflection interval [0,-56]mm is
r = 0.9894.
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Figure 6.33: Combination of the double-arch suspension and the folded-beam suspension creates
a constant force compliant mechanism.

The final result is a nearly statically balanced compliant suspension with high lateral stiffness.
The stroke of the statically balanced deflection is around 20% of the double-arch suspension’s
span. The force-deflection function of the whole structure is shown in Fig. 6.36b. Figure 6.36a
shows the force-deflection function of the four suspensions when the whole structure is actuated
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Figure 6.34: The statically balanced compliant suspension is the combination of two constant
force mechanisms. (a). The combined structure and its mirror structure. (b) The two constant
forces do not overlap along the same interval of deflection, hence they do not cancel each other.
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Figure 6.35: Prestressing and actuation of the compliant suspension. (a) The eight ground ports
of the four suspensions are displaced in order to prestress the structure. (b) The prestressed
structure is actuated in a state near to static balancing.

in a state of static balancing.

From the stress distribution it is possible to get an idea on how the strain energy builds up in
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Figure 6.36: After pre-stressing the whole structure, the four force-deflection functions of the
four suspensions do overlap. (a) The four suspensions are combined to create two opposite
constant force functions. (b) The two constant force functions cancel each other to create a
statically balanced compliant mechanism along a range of motion equal to 20% of the double-
arch suspension’s span.

the structure during the pre-stressing phase (Fig. 6.37a) to later flow across the structure during
actuation, so throughout the stroke the strain energy remains nearly constant.

The statically balanced compliant suspension exhibits a force RMS value of 0.156N along 28mm
of deflection. A comparison along the same 28mm of deflection between the statically balanced
compliant suspension and one single folded-beam suspension shows a reduction of 91.39% in
the energy required for the actuation and an 87.76% reduction in the force RMS value.

Design of statically balanced compliant suspension - concept 3

In the previous section, the design of a statically balanced compliant suspension with high lateral
stiffness was shown. However this suspension is rather bulky and its embodiment does not lead
to a slender design, so it is desirable to reduce the number of suspension modules that are used.

To design the statically balanced suspension, we use the static balancing criterion of continuous
equilibrium in order to simplify the structural analysis by the use of finite elements. The con-
tinuous equilibrium expresses that force function f(t) must be zero along the deflection t of the
suspension. Here, the deflection t is also the parameter defining the statically balanced trajectory
r(t).
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Figure 6.37: Maximum stress distribution of the compliant suspension (axial stress+maximum
bending stress) in N/mm2. (a) Stress distribution after pre-stressing and before actuation. (b)
Stress distribution after actuation.

f (t) = 0 tmin < t < tmax (6.43)

The force function is a zero degree polynomial which, in this case, is decomposed as the sum-
mation of two additive inverse first degree polynomials, as shown in Eq. 6.44 and Fig. 6.38a.
The polynomials represent two opposite linear force functions, one with positive slope (positive
stiffness) and the other with negative slope (negative stiffness).

Notice that the two linear functions are symmetric with respect to their x-intercept points. This
kind of symmetry in a linear function has the advantage of allowing further decomposition into
two linear functions with the same slope but shifted apart, as shown in Eq. 6.45 and Fig. 6.38b.

f (t) = 0 = a1t+ (−a1t) (6.44)

−a1t =
(
−a1

2
t− b1

)
+
(
−a1

2
t+ b1

)
(6.45)

To create the linear negative stiffness force function symmetrical with respect to its x-intercept,
first we need to find a structure that provides a linear negative stiffness force function. Then
a combination of such structure with its overlapped mirror structure will provide the desired
symmetric linear force function.

To find a structure that exhibits a linear negative stiffness force function, we use shape optimiza-
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Figure 6.38: Decomposition of the continuous equilibrium function. (a) The equilibrium function
as a zero degree polynomial is decomposed into two opposite first degree polynomials. (b) The
force function with negative slope (negative stiffness) is decomposed into two polynomials of
first degree with equal negative slope but shifted appart.

tion of a double-arch suspension. The optimization problem is solved using genetic algorithms.
The design variables are defined as the location of the moving control points of the Bezier’s curve
describing the arches’ geometry. The objective function is set as the linear correlation coefficient
of the force function. The linear correlation is only computed along a section of the deflection
path (see Fig. 6.30).

min
x

r(x)

s.t. : Ku− f = 0

xmin ≤ x ≤ xmax

(6.46)

The objective function is computed from the deflection path obtained from nonlinear finite el-
ements analysis. The finite element problem is solved using displacement control while the
structure is modeled by frame elements with large deflection and small strains.

Table 6.8 presents the values assumed in the optimization problem. Figure 6.39a shows the
solution to the shape optimization problem.

To create the linear positive stiffness function symmetrical with respect to its x-intercept, we use
a folded-beam suspension moving in both directions from its equilibrium point. The suspension
is designed in such a way that its positive stiffness matches the negative stiffness of the combined
double-arch suspensions. The stiffness of the folded-beam suspension is adjusted by modifying
its height while keeping its in-plane and out-of-plane thickness constant. The value of the height
is found by using a bi-sectioning search within a higher and lower limit value with respect to the
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Table 6.8: Values used for the shape optimization of the SBC suspension - concept 3

Property Value
Young’s modulus E (N/mm2) 2000
out-of-plane thickness t (mm) 5
Yield strength σy (N/mm2) 75
Double-arch suspension span l (mm) 100
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Figure 6.39: The result of the shape optimization is a compliant mechanism with a nearly linear
force (r = 0.998) and negative stiffness along a deflection range of 10% of the suspension span.
(a) Dimensions of the double-arch suspension after shape optimization. (b) Force-deflection
behavior of the double-arch suspension after shape optimization.

desired one.

We combine the folded-beam suspension with the double-arch suspension and its mirror struc-
ture by using a rigid beam element, as depicted in Fig. 6.41a. The rigid beam removes the
relative motion with respect to the suspensions. The force-deflection function of the suspensions
is measured with respect to any point along the rigid beam or point of interest. If the structure
is not pre-stressed, the force functions of the three individual suspensions do not overlap along
the same interval of deflection. Figure 6.41b shows the force-deflection functions of the three
suspensions before pre-stressing.

If we apply a relative displacement between the ground points of the structure (points au, cu, du,
al, cl, and dl) and any point of interest, as shown in Fig. 6.42a, then the force-deflection functions
of the suspensions overlap, canceling each other’s forces along a range of motion of 5% of the
double-arch suspension span. Figure 6.43a shows the force combination of the two double-arc
suspensions, while Fig. 6.43b shows the result of combining the folded-beam suspension with
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Figure 6.40: The dimensions of the suspension that provided the required linear positive stiffness
symmetrical with respect to its x-intercept. (a) Dimensions of the folded-beam suspension. (b)
Force-deflection function of the folded-beam suspension.
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Figure 6.41: Assembly of the three suspensions to create a statically balanced suspension. (a)
The folded-beam suspension is connected with the double-arch suspension and its mirror struc-
ture through a rigid beam. (b) Without pre-stressing of the structure the three force-deflection
functions of the suspensions do not overlap along the same interval of deflection, hence the forces
do not cancel each other.
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the net force of the two double-arch suspensions.
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Figure 6.42: Prestressing and actuation of the compliant suspension. (a) The six ground ports
of the whole suspension are displaced in order to prestress the structure. (b) The prestressed
structure is actuated in a state near to static balancing.

The final result is a nearly statically balanced compliant suspension with high lateral stiffness.
The suspension behaves statically balanced for about 10mm of its range of motion. Along this
10mm of deflection, the suspension exhibits a standard deviation of 0.048 with respect to zero. A
comparison between the statically balanced compliant suspension and the folded-beam suspen-
sion shows a reduction of 93.86% in the energy required for the actuation and a 90.89% reduction
in the force RMS value.
This suspension has a smaller number of ground points which simplifies the embodiment of the
final design. The stroke of the statically balanced deflection is around 10% of the double-arch
suspension’s span which is shorter than the one in concepts 1 and 2. The stroke of the suspension
may be increased by searching for better geometries of the double-arch suspension which provide
a larger linear force-deflection function.
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Figure 6.43: Pre-stressing of the statically balanced compliant suspension overlaps the force-
deflection functions of the individual suspensions allowing for the cancellation of each other’s
forces. (a) Force-deflection function as a result of combining the two doble-arch suspensions
after pre-stressing of the structure. (b) Force-deflection function of the pre-stressed SB compliant
suspension.
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Figure 6.44: Maximum stress distribution of the compliant suspension (axial stress+maximum
bending stress) in N/mm2. (a) Stress distribution after pre-stressing and before actuation. (b)
Stress distribution after actuation.
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6.2.4 Modular design method for fully compliant mechanisms using SO-
SO and buckling based on continuous force criterion

In this section we test a modular design method for fully compliant mechanisms that is entirely
based on structural optimization (SO). Both the functional and balancing modules, are designed
using structural optimization. The idea is to obtain a functional module with a given topology
that is susceptible to buckling. Once this topology is found, the design is adjusted to attain a
state of static balancing through observation of the continuous equilibrium criterion. Figure 6.45
depicts the design process at hand.

To know if a topology is susceptible to buckling we look for two conditions, (i) there must be
straight beam elements in which their intended deflection is perpendicular with respect to their
longitudinal axis and (ii) it should be possible to load these beam elements under compression
without affecting the static equilibrium of the whole system. If these two conditions are met, then
it may be possible to reduce the stiffness of the system and induce a state near to static balancing
by either (i) buckling at critical load these beam elements or (ii) post-buckling these elements
in order to induce negative stiffness that compensates for the remaining positive stiffness of the
system.

Diagram A Diagram B

Fully
compliant

Modular design
process

The function

The balancing

Structural
optimization

Buckling strategy

funtion, path and
motion generation

no relative motion
between modules

Force
criterion

Parameterization
for the function
Topology optimization based

on continuous ground structure

Parameterization
for the balancing

Shape optimization based
on parameterized curves

Figure 6.45: Diagram of a modular design method for fully compliant mechanisms using struc-
tural optimization and buckling based on continuous force criterion

To test this method we will use one of the benchmark examples in the design of compliant
mechanisms, the inverter mechanism. The inverter takes a displacement in one direction at the
input port and delivers a displacement in the opposite direction at the output port.

Figure 6.46 shows the problem setup for the inverter which is to be solved using topology op-
timization with a continuous ground structure parameterization. The optimization is set as the
problem of maximizing the output displacement with respect to a unitary force applied at the
input port. The maximization is subjected to static equilibrium of forces, a volume constraint
and bounded design variables.
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Figure 6.46: Setup of the functional design problem which is to be solved using topology opti-
mization with a continuous ground structure.

max
x

uout

s.t. : Ku− f = 0

V ≤ Vmax

0 ≤ x ≤ 1

(6.47)

The topology optimization problem is solved using the 104 line code from Bendsoe [11]. The
ground structure is taken as a mesh of 40x40 elements, with a maximum allowable volume of
30% of the total design domain. It is used a penalization factor of 3.0 with a sensitivity filtering
based on radial averaging with a length of 1.2. The result of the topology optimization problem
is shown in Fig. 6.47
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Figure 6.47: Initial design for the functional module (the inverter) using topology optimization.

This result shows that the horizontal beam elements a, b, g and h are in such configuration that it
is possible to apply a compressive horizontal load to buckle these elements. The idea is to later,
during actuation, use the strain energy stored in the buckled elements to help in the deflection of
the rhombus formed by the elements c, d, e and f, so that the whole strain energy of the system
is kept constant.

For this idea to work it must be guaranteed that during the pre-loading no energy (meaning no
deflection) will be induced to the elements forming the rhombus, so the vertical deflection of
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points 2 and 7 must be minimized during pre-loading. If this condition is not guaranteed, it
would mean that during pre-loading the rhombus would already be deflected and later during
actuation the flow of strain energy between the buckled elements and the rhombus would be
inefficient or, even, no flow would be present at all.

This problem is posed as a shape optimization problem of the buckling beams a, b, g and h. The
beams’ shape is parameterized by the use of cubic Bezier curves (see Fig. 6.48) where the initial
and final control points of each curve are fixed and the x and y position of the remaining two
control points of each curve are used as the design variables.
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control point 1

control point 2
(xp1, yp1)
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pre-stressing

pre-stressing

displacement
input port

displacement
output port

Figure 6.48: Parameterization for the optimization of elements a, b, g and h as cubic Bézier
curves.

The objective function is set as the root mean square (RMS) value of the actuation force. Notice
that for Eq. 5.7 in section 5.2.2, if the force vector f and the trajectory vector ds are parallel, then
the equation can be set as a RMS function which attains its minimum value at zero.

The shape optimization problem is subjected to static equilibrium of forces and bounded design
variables. The total deflection actuation at point 4 is 3mm while the pre-loading deflection at
points 1 and 6 is 1.1mm.

min
x

frms

s.t. : Ku− f = 0

xmin ≤ x ≤ xmax

(6.48)

To guarantee minimum vertical deflection of points 2 and 7 during pre-loading, we look for a
vertical slope of the Bézier curves at points 2 and 7 and keep points 1, 2, and 3 collinear as well
as points 6, 7, and 8. The vertical slope is secured by setting the x coordinate of the moving
control points next to points 2 and 7 to coincide with the x coordinate of points 2 and 7.

The optimization is solved using the genetic algorithm toolbox in Matlab with a maximum of
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60 generations and a population of 20 individuals per generation. The rest of setup choices for
crossover, mutation, genetic coding, initial population and elite count are set to their default
values. In order to keep symmetry, the optimization algorithm is run with only three design
variables corresponding to one Bézier curve (xp1, yp1, yp2), the other nine variables from the
remaining three curves are mirror values with respect to the vertical and horizontal symmetry
axes 2-7 and 4-5, respectively.

The objective function of each individual in the genetic algorithm is computed from a finite
element static analysis for large deflections and small strains. The solution is done through the
use of displacement control in two load steps with 50 substeps each, where the first step is the
pre-loading and the second step is the actuation. The structure is modeled using a co-rotational
total lagrangian formulation for planar nonlinear frame elements (see Mankame [81]).

The result of the shape optimization is shown in Fig. 6.49. Without losing accuracy, the shape of
the buckled beam is a curve that can be simplified into a half ellipse where the minor axis is 1/8

times the major axis.

(a) (b) (c)

Figure 6.49: (a) Undeformed shape of the inverter without prestressing. (b) Deformed shape
of the inverter after prestressing without actuation. (c) Deformed shape of the inverter during
actuation in a state of quasi-static balancing.

The force-deflection path of the inverter’s input port (point 4) is shown in Fig. 6.50a. A com-
parison of the force-deflection path for the inverter before and after pre-loading is shown in Fig.
6.50b. Comparison of the areas under the force-displacement curves in Fig. 6.50b shows a theo-
retical reduction of 94.28% in the actuation energy for the range of motion [0,-3]mm. If we only
consider the range of motion [0,1.65]mm, then the reduction increases to 97.76%.

One problem found with the design is that due to its symmetry, the structure is likely to deflect
during pre-loading into its first buckling mode which does not match the desired behavior. The
first buckling mode corresponds to a vertical displacement of the rhombus at the center of the
structure. The desired behavior corresponds to the second buckling mode, see Fig. 6.51. The
linearized pre-buckling analysis shows that the vertical displacement of the rhombus during pre-
loading is more likely to occur as compared to the desired behavior. The predicted buckling load
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Figure 6.50: Inverter’s force vs displacement behavior at the input port. (a) Behavior of the
inverter after pre-loading. (b) Comparative behavior of the inverter before and after pre-loading.
The pre-loaded configuration exhibits a strain energy reduction in actuation of 94.28%.

of the first mode is 56% lower with respect to the buckling load of the second mode. To obtain
the correct behavior it is necessary to constrain the respective downward and upward motion of
points 2 and 7.

(a) (b)

Figure 6.51: Inverter’s buckling modes predicted by linearized pre-buckling analysis of the in-
verter. (a) First buckling mode showing a vertical displacement of the rhombus. (b) Second
buckling mode which is the desired behavior.

6.3 Summary

In this chapter we presented a design methodology from which is possible to derive design meth-
ods for statically balanced compliant mechanisms (Fig. 6.2). The design methodology is based
on what is called as the seven recurrent elements:
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- Compliancy type

- Classification of the functional requirements

- Modularity of the mechanism

- Static balancing strategy

- Modularity of the design process

- Design methods for compliant mechanisms

- Static balancing criteria

The proposed methodology is meant to be used in the design of planar structures where their
statically balanced workspace corresponds to a line trajectory, although some of the derived
design methods are not entirely limited to such dimensionality. For instance, the design methods
based on rigid-body-replacement may provide SBC spatial mechanisms as long as the spatial
rigid body mechanism can be converted into a compliant one.
The fact that the methodology is based on the recurrent elements helps the designer to consider
a priori the available analysis tools and the basic requirements that most influence the design
process and the final design. When the designer is able to consider all of these elements, then the
selected design method allows to foresee the entire design process as well as the design space in
which the solution lies.
Several examples were developed in detail in order to provide acquaintance with the design
methodology. Each example tries to show in context how the design methods for compliant
mechanisms are combined with some of the static balancing criteria and how the static balancing
criteria can be implemented through the use of the static balancing strategies.
For instance in the example presented in section 6.2.2, one of the key ideas is to show the chal-
lenges that come from the application of the replacement methods. The example shows how the
conversion of rigid body joints into compliant flexures is performed in a way that the resultant
flexures, without overcoming the yield strength limit, provide the compliant mechanism with the
proper kinematics and stiffness.
The examples presented in sections 6.2.4 and 6.2.3 show buckling and function decomposition,
respectively, as the conceptual strategies for the static balancing of compliant mechanism.
The use of design examples also intends to show the non-linear nature of statically balanced
compliant mechanisms and the high dependency of static balancing of, (i) the boundary condi-
tions applied to the structures and (ii) the way the structures are pre-stressed using either forces
or displacements.
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7 Topology Optimization of Statically
Balanced Compliant Mechanisms

A computer will do what you tell it to do, but that may be

much different from what you had in mind.
Joseph Weizenbaum

In this chapter, we explore more deeply the possibilities of using topology optimization as a de-
sign method for planar statically balanced compliant mechanisms (SBCM’s), limited to designs
with functional requirements categorized as function generation. The optimization problems
in this work are solved by the use of genetic algorithms and based on partial ground structure
parameterization. To achieve static balancing characteristics, in this chapter we introduce two
optimization formulations based on the ideas of (i) neutral stability, through the use of buckling
modes resulting from linear pre-buckling analysis, and (ii) continuous equilibrium, through the
use of static analysis for large deflections. The selection of these two statically balanced criteria
is explained in section 7.3.
Topology optimization as a sub-class of design optimization is an iterative design method in
which functional and non-functional requirements are set through the objective function, con-
straints and parameterization. The link between requirements and optimization is done through
the conceptual framework of mechanisms as design objects introduced in chapter 2 (Fig. 2.10).
In this framework it was said that compliant mechanisms must perform their main function —
here some sort of function generation— while they meet the functional characteristic of statically

balanced and the product characteristic of monolithic.
If we apply these three elements from the design framework of mechanisms —main function,
statically balanced and monolithic— into optimization as an iterative design method we see that
(i) the function generation problem (the main function) can be defined as the optimization’s
objective function, (ii) the static balancing characteristic can be set as constraints, and (iii) the
product characteristic of monolithic can be reflected in the parameterization.
In the following sections we expand the ideas about these relations between the function gener-
ation problem and characteristics with the objective function, constraints and parameterization.
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First, section 7.1 introduces the view and definitions assumed in this work about design opti-
mization, structural optimization and topology optimization. Sections 7.2, 7.3 and 7.4 present of
the objective function, the constraint functions and the parameterization. Subsequently section
7.5 presents the entire optimization setup and, finally, the results and discussion are presented.

7.1 Topology optimization, structural optimization and design
optimization

Topology optimization and structural optimization are a form of design optimization. Design op-
timization is a design method that automates the search for the design that best fulfills the design
requirements. The automated search is based on finding the minimum value of a cost function f ,
while keeping a set of constraints expressed as equalities h, inequalities g and boundaries lb and
ub of the design variables.

minimize
x∈Ω

f(x)

subject to

h(x) = 0

g(x) ≤ 0

lb ≤ x ≤ ub

(7.1)

The cost function or objective function is defined in a way that at its minimum, the function
provides an optimum configuration of the design variables. The design variables are the domain
of the objective function and constraint functions. When the design variables assume values,
they model a candidate solution inside the design search space. The way these variables model
and represent the design solution is called the parameterization.

By way of illustration, imagine that you want to find the trapezoid-like structure with the lowest
weight, which can withstand a force while allowing for the minimum deflection in the elastic
range, Fig.7.1. We could choose to remove the unnecessary material using a circular mask de-
fined in terms of its position and radius. By doing so, we would be parameterizing the problem
in terms of three variables, x1, x2 and x3, representing the mask x and y position and its radius
r, but we would also be limiting the design space to the solutions that the parameterization can
express.

The view of design optimization as a design method can be contemplated when we consider the
iterative design cycle, Fig. 7.2. In this view, setting the requirements corresponds to defining
(i) the functional requirements which are expressed mathematically as the objective function,
and (ii) the product characteristics and design constraints which are expressed mathematically as
equalities, inequalities and boundaries of the design variables.

The synthesis step is performed when the optimization procedure assigns values to the design
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Figure 7.1: Example of a parameterization where the optimum design is described in terms of
three design variables. The three variables determine the size and x and y location of the circular
mask representing an internal material void.

variables without violating their boundaries. At this step, candidate solutions are proposed.

The analysis step is performed by evaluating the objective function, equalities and inequalities at
the point given by the assumed values of the design variables in the synthesis step. The perfor-
mance of the candidate solution is analized from the perspective of the requirements expressed
as the objective function and constraints.

The evaluation step verifies if the objective function value from the analysis is, in fact, the mini-
mum and if the equalities and inequalities have not been violated. If these verifications are found
to be false, the design cycle is iterated. If they are found to be true, then the assumed values of
the design variables at the last synthesis step define the design solution.

Design cycle

Iterate until
evaluation is true

Set
requirements

Synthesis

Analysis

Evaluation

Set functional requirements as f(x)
Set product characteristics and constraints as h(x) and g(x)

Assign values to
design variables
x = xi

Evaluate f(xi), h(xi) and g(xi)

verify:
f(xi) is minimum

h(xi) = 0
g(xi) ≤ 0

Figure 7.2: Design optimization as a cyclic design method.
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In the case of structural optimization and topology optimization, the design object is a structure.
By structure we mean an arrangement of bodies assembled in such a way that they perform
a given function over a system of forces. By this definition, a rigid body mechanism and a
compliant mechanism are structures with the function of transmitting and/or transforming forces,
while a static structure has the function of supporting loads.
Generally speaking, structural optimization is a design method used to find optimal material
distributions in a structure to ensure a desired behavior, while topology optimization is a design
method used to find optimal connectivities among the constitutive elements of a structure in order
to achieve a desired behavior.
To illustrate the difference between structural optimization and topology optimization, we ob-
serve that the behavior of a structure is determined by the material properties and the geometri-
cal properties. Geometrical properties are defined in terms of sizes, shapes and topologies. This
means that in structural optimization, finding the material distribution is to find the location and
values of the material properties as well as the sizes, shapes and topologies.
On the other hand, in topology optimization we do not look directly for a material distribution
but for the connectivity of the constitutive elements and, depending on how the constitutive
elements are defined, their connectivity might or might not determine the location and values
of the material properties as well as the shapes and sizes. The way the constitutive elements are
defined and parameterized, delimits the material distribution problem in a topology optimization.
Think for example of a problem where the constitutive elements are defined as bar elements with
given shape and size, Fig.7.3a. It does not matter how you connect these elements, the diversity
on shapes and sizes of the overall structure is limited. But if, in the same problem, the constitutive
elements are defined as small square elements, Fig.7.3b, then it is possible to describe similar
structures where the shapes and sizes can be modified to some extent.
Topology optimization methods search for the connectivities mainly as an existence/nonexistence
problem of the constitutive elements inside a universal structure where all the possible and al-
lowed connections are already defined. Here the design variables are normally defined as (i) a set
of discrete variables defining the possible states of existence, typically binary variables 0 or 1, or
(ii) as continuous variables defining some material or geometrical property like Young’s modu-
lus, density, width, thickness, etc [119][76]. In the case of continuous variables when their value
is zero, they set the nonexistence state of the constitutive elements. This approach transforms the
topology optimization problem to a size optimization problem.
A topology optimization can be used to perform a structural optimization, by properly defin-
ing the constitutive elements. However, topology optimization does not necessarily lead to a
structural optimization, when the existence/nonexistence state of constitutive elements does not
modify the shapes and sizes.



7.2 The objective function 157

Bars as a constitutive elements Possible connectivities
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Figure 7.3: (a) Four bars as constitutive elements. This definition limits the structure diversity in
shape and size. (b) 30 square elements as constitutive elements can define similar structures with
some diversity in shapes.

7.2 The objective function

For the topology optimization problem we need to set the main function of the mechanism —
some sort of function generation or relation between input and output— as the objective function
for the optimization problem. We need to find a mathematical expression which, at its minimum
or maximum, expresses that the mechanism accomplishes its intended purpose.

In chapter 3.4.2, it was shown that most of the objective functions for the design of compliant
mechanisms attempt to adjust the conflicting requirements of stiffness and flexibility. Maxi-
mization of the force transmission between input and output, and maximization of the flexibility
(maximum deflection with minimum force) are desired. Viewing compliant mechanisms as struc-
tures, stiffness ensures the ability to withstand the reaction forces, while flexibility ensures the
motion of the structure.

Stiffness, in most of the cases, is achieved by the minimization of the strain energy (SE) [27] or
by the inclusion of a spring at the output port simulating the stiffness of the workpiece [126].
The inclusion of the spring makes the mechanism to account for the reaction forces during the
optimization process.

Flexibility is achieved through the maximization of the geometrical advantage (ratio between
displacements at the output and the input).
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GA =
uoutput
uinput

(7.2)

In some formulations, this geometrical advantage is expressed directly [126] while in some others
it is expressed as the mutual potential energy (MPE) between the actuating force at the input and
a dummy load at the output [27].

MPE = ∆vTK∆q = ∆vT∆f = ∆fTd ∆q (7.3)

Here, ∆q is the displacement field caused by the actuating force ∆f at the input, while ∆v is the
displacement field due to the dummy load ∆fd acting at the output. K is the stiffness matrix.

For the case of statically balanced compliant mechanisms, it is not possible to ensure the ability
to withstand the reaction forces by minimizing the strain energy simply because it goes against
definition 5.1, which states that a SBCM must exhibit constant strain energy along the statically
balanced motion. Besides, in chapter 2.1, we stated precisely that static balancing is another way
to address the strain energy storage problem without the need to minimize the strain energy.

The use of a spring at the output port will not be considered. The evaluation of the static balancing
quality on the mechanism is done by observing the reaction forces at the input, which ideally
must be zero. The inclusion of the spring at the output would add noise to this observation.

On the other hand, the use of the MPE to ensure flexibility is also excluded due to two problems,
(i) Maximization of the MPE promotes flexibility when the deflection of the structure is induced
by the application of forces. The change in force ∆f or ∆fd is assumed constant, leaving no
other option than to maximize the MPE by maximizing the deflection. However, in SBCM, we
rather apply displacements than forces since the actuation forces are supposed to be zero. So, if
the deflection of the structure is induced by nodal displacements, those displacements become
constant, leading for the optimization to maximize the MPE by maximizing the input force, thus
promoting rigidity rather than flexibility. (ii) The second problem comes from remembering
proposition 5.3, where it was stated that a SBCM must exhibit a singular semi-positive definite
matrix in which the displacement vectors belong to the null space of the stiffness matrix and they
are spanned by the eigenvectors u0i

with zero eigenvalues. So, if the stiffness matrix becomes
singular semi-positive definite, the change in force would be zero meaning that the MPE would
be zero no matter the change in deflection, therefore impeding the maximization of the MPE. In
other words, if the state of static balancing is achieved, there is no way to know if the compliant
mechanism is becoming more flexible or not.

To achieve flexibility, we are left only with the option of maximizing the geometrical advantage
(GA) as expressed by Eq. 7.2. However, we need to remark that the displacement values to
compute the GA can come from two different sources. In the first one, which is the conventional
source, displacement values are given by the solution of a static analysis. These values are
absolute displacements contained in the displacement field. In the second source, displacement
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values are given as proportions between the displacements. This results when the displacement
field is contained in the null space of the stiffness matrix.

For the cases when a specific value of geometrical advantage is required, it is proposed to set the
objective function f(x) as,

f (x) = sin (αθ) (7.4)

where α is a correction factor and θ is the actual GA expressed as the orientation angle of a vector
υ. The components of such vector are the values of the displacement at the input and output port
(see Fig. 7.4).

uoutput

uinput

υ

θ

Figure 7.4: Displacements at the input and output port seen as components of a vector, which
defines a fixed value of geometrical advantage.

The idea is as follows, by defining a desired GA we are defining the orientation angle θd of vector
υ.

θ = arctan

(
uoutput
uinput

)
(7.5)

Notice that Eq. 7.5 is used to compute both θ and θd. Once we know the desired orientation
angle θd, we compute the correction factor α.

α =
π

2θd
(7.6)

The correction factor α guarantees that the objective function in Eq. 7.4 has a maximum of 1
only when the actual GA expressed by θ is equal to the desired GA expressed by θd. Any other
value of GA during the optimization will decrease the objective function.

For the case when the displacements are in relative proportions, i.e., displacements computed as
eigenvectors, it is not possible to control the sign of the displacements by setting vector υ in a
specific quadrant of the Cartesian plane (for instance, input displacement positive while output
negative). In this case, we define vector υ only in the first quadrant and, by adding a (+) or (-)
sign to Eq. 7.4 we control whether the displacements have the same orientation or are opposed
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respectively. Be aware that if the maximization problem is posed as a minimization problem, this
sign convention is inverted.

Here we have proposed the objective function expressed in Eq. 7.4, which allows for the design
of compliant mechanisms with a desired geometrical advantage.

7.3 The static balancing constraint

It has been shown that static balancing is not a functional requirement but a functional character-
istic that constrains the behavior of the system. We want to express the characteristic of statically

balanced as a constraint in the optimization formulation. Mathematically this constraint can be
expressed as constant potential energy, continuous equilibrium, neutral stability, zero natural
frequency, constant speed or continuous zero virtual work, see chapter 5.

Assuming that during the optimization design cycle (Fig. 7.2), the analysis step is performed
through the use of Finite Elements Analysis (FEA), the natural choice for the formulation of the
static balancing constraint is related to the criterion of continuous equilibrium and/or neutral sta-
bility. The choice of the constraints comes by observing that the Finite Element Method (FEM)
formulates the deflection problem of a structure in terms of the stiffness properties of the constitu-
tive elements. The material and geometrical properties (topology, shapes and sizes) are collected
into one global stiffness matrix which when combined with a set of known displacements, allows
for the prediction of the forces or vice versa.

The use of one of these two static balancing constraints means that the optimization problem is
approached from either of two perspectives, (i) to verify or (ii) to guarantee. After the analysis
at the evaluation step, we could verify that the system is statically balanced, or during the anal-
ysis step prior to the evaluation, we could guarantee that FEA results provide with a statically
balanced system. In the development of this work, we explore both perspectives, to verify and
to guarantee. For a constraint based on neutral stability we explore the to guarantee perspective
as a way to secure feasible solutions and get acquainted with the specifics of the approach, while
for a constraint based on continuous equilibrium we explore the to verify perspective.

7.3.1 Neutral stability constraint

From proposition 5.3, we know that for a discretized system expressed in terms of a stiffness
matrix, singular semi-positive definiteness is a necessary but not sufficient condition for neutral
stability. Guaranteeing a state of neutral stability is not easy, so we trade certainty for the promise
of neutral stability by guaranteeing the singular semi-positive definiteness of the stiffness matrix.

A way to ensure that the stiffness matrix is singular semi-positive definite is by solving the
deflection problem as a generalized eigenvalue problem.
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Assuming that the system is at the first equilibrium state, the stiffness matrix can be expressed
as,

K = Kl + Kσ (7.7)

where Kl is the linear elastic stiffness matrix, which is independent of loads and deflections, and
Kσ is the stress stiffness matrix at the first equilibrium state. Matrix Kσ is a function of the
applied load and accounts for the stresses induced on the structure. The generalized eigenvalue
problem is set as,

(Kl − λfKσ) u = 0 (7.8)

Equation 7.8 describes what is called eigenvalue buckling or linearized prebuckling analysis
[20][154]. Here, the eigenvectors u are the buckling modes and the eigenvalues λf are the load
factors. The ith load factor λf defines the critical buckling load pcr of the ith buckling mode as
a proportion of the applied load p used during the analysis.

pcr = λfp (7.9)

We are interested only in the lowest eigenvalue associated to the first buckling mode. Notice that
if, during the analysis, the structure is deflected using a unitary load (p = 1), then the load factor
is equal to the critical buckling load required to take the structure into a state of zero stiffness.

The buckling mode u is precisely the eigenvector u0 that spans the null space of the stiffness
matrix. This is observed if we redefine the stiffness matrix in Eq. 7.7 as,

K = Kl + λfKσ (7.10)

then, substituting Eq. 7.10 into Eq. 7.8,

Ku = 0 (7.11)

we see that the buckling mode u is in the null space of K and is also and eigenvector associated
to a zero eigenvalue in the solution of the problem

Ku = λu (7.12)

The static balancing constraint is included in the analysis by performing a linearized prebuckling
analysis rather than a static analysis. Here it is necessary to remark two implications on the
constraint imposed in this way, (i) the analysis, while nonlinear in essence, is linear with respect
to the deflections, and (ii) the condition leads to a zero stiffness solution but does not guarantee
the equilibrium condition required in a neutrally stable state.
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The aforementioned means that the optimization using the static balancing constraint imposed
on the analysis could lead to either statically balanced systems or constant force systems, but, as
mentioned in chapter 6, constant force mechanisms are building blocks in the design of statically
balanced systems.

7.3.2 Continuous equilibrium constraint

In this section, we present the static balancing constraint based on continuous equilibrium. The
constraint is used to verify the static balancing quality of the synthesized solution during the
optimization.

Definition 5.2, which defines static balancing as a state of continuous equilibrium, is expressed
mathematically by Eq. 5.9

0 =

∫

s

∣∣∣∣fi
∂r

∂qi
dqi

∣∣∣∣ where

∫

s

∂r

∂qi
dqi > 0 (5.9)

where fi are the force components tangent to the statically balanced trajectory r (q). If we define
the trajectory r as the motion of a specific DOF qa on a finite element mesh (for instance the x
DOF of the input port), we get

r = qa (7.13)

Now, applying Eq. 5.8 on Eq. 7.13, we find that,

∂r

∂qa
dqa = dqa (7.14)

where equation 5.9 becomes

0 =

qa2∫

qa1

|fadqa| where ∆qa > 0 (7.15)

Equation 7.15 is the constraint equation to be used in order to verify the state of static balancing
during the optimization process. This equation can be simplified for a discrete force function
rising from the solution of a nonlinear finite element analysis as

0 =
√∑

(fa)
2 (7.16)

This is done by assuming equally spaced time steps in the solution and by replacing the absolute
value function for the square root of a series of squares.



7.4 The parameterization 163

7.4 The parameterization

Parameterization as such, is the way in which a model is described in terms of a set of parameters.
In design optimization, the model represents the set of solutions of the design search space. A
given parameterization constrains the solution space to only the solutions that can be described
in terms of the parameters. The parameterization bounds the domain of the objective function.
In the following paragraphs, we define a parameterization which guarantees a mechanism design
with the product characteristic of monolithic.

In structural optimization, an ideal parameterization gives the most with the fewest. It should
provide with the most amount of possibilities to describe topologies, shapes and size by using
the fewest amount of parameters. Normally, the parameters are the design variables on which the
designer can exert control.

Here we use a partial ground structure of frame elements parameterized in terms of binary design
variables (see Fig. 7.5). The design variables determine the existence state of a frame element
by taking values of 0 or 1.

Node

Frame
element

b nodes

a
n
o
d
es

Figure 7.5: Partial ground structure composed of frame elements.

The number of design variables on a partial ground structure of a×b nodes is equal to the number
of elements connecting the nodes, and is given by

4ab− 3a− 3b+ 2 (7.17)

The number of possible permutations described by a binary ground structure is

2(4ab−3a−3b+2) (7.18)

However, not all possible permutations represent valid structures. Therefore, during the synthe-
sis step, it is necessary to guarantee that only valid structures are generated. A valid structure
exhibits two characteristics, (i) the presence of only one connected component (no disconnected
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Input port Output port

Ground port Load port

(a)

Input port Output port

Ground port Load port

(b)

Input port Output port

Ground port Load port
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Input port Output port

Ground port Load port

(d)

Figure 7.6: Validity of a structure seen as a graph. (a) Valid structure, one connected component
and four ports connected. (b) Invalid structure, two connected components. (c) Invalid structure,
disconnected port. (d) Invalid structure, two connected components and disconnected ports.

elements in the FE mesh), and (ii)inclusion of at least one walk in the component connecting the
essential ports (input, output, load and ground port).

In graph theory, a component is a subgraph where an existing walk connects the vertices to each
other. A walk is a sequence of vertices (the nodes) connected by edges (the elements) while a
path is a walk along which vertices and edges are distinct [139].

We will verify the number of connected components in a graph and the connectivity of essential
ports by using a modification of the Warshall’s algorithm for undirected graphs. There are search
algorithms such as Tarjan’s or Depth-first search, which allow for the computation of the num-
ber of components as well as the nodes’ associations to components [23]. While these search
algorithms are efficient in the analysis of a directed graph, Warshall’s algorithm is simpler to
implement for a undirected graph and, as will be shown, we do not need to know the number of
graph components and their structure.

Warshall’s algorithm for undirected graphs computes the whole graph’s connectivity by tracking
the connections in the adjacency matrix and updating these connections into a connectivity matrix
P in which the entry p(i, j) is either 1 or 0, indicating the existence or not of a path between
node i and node j, see appx. A.

The fact that Warshall’s algorithm counts individual nodes as single components and that matrix
P holds on each row i (and column j) the composition of the graph component to which vertex
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i belongs, allows for the redefinition of a valid structure as the structure where only one graph
component has multiple vertices and this component includes the essential ports.

We propose to validate the structures by multiplying the connectivity matrix P with a vector s

filled with ones.

Ps = t where s = [1 . . . 1 ]
T (7.19)

When matrix P represents the connectivity of a valid structure, the resultant vector t must be a
vector filled with ones, except at n entries where their values must be n as well. Among these n
entries there must be the indexes of the essential ports.

If vector t contains values different to 1 and n it means that there is more than one graph compo-
nent with multiple vertices. If the vector contains only entries equal to 1 and n, but the number
of entries with the value n is different of n, it means that there are two or more components
connecting n vertices.

Validation using Warshall’s algorithm removes the need to update the finite element mesh in
order to remove disconnected nodes.

7.5 Setting the topology optimization problem

In this section we intend to design statically balanced compliant mechanisms by using topology
optimization as a design method to obtain the connectivity of the constitutive elements while
omitting the search for shapes and sizes. Because we will not be concerned with shapes and
sizes and the number of the constitutive members is not defined, the connectivity problem is set
as a binary existence/nonexistence problem on a universal structure or ground structure.

The design is constrained to the design of planar compliant mechanisms for function generation,
i.e., designs with in-plane motion with a specific displacement relation between the input and the
output.

The design search space is assumed as a rectangular contour with a minimum of four essential
ports, (i) the input port, (ii) the output port, (iii) the ground port, and (iv) the preloading port. The
preloading port is where the structure is prestressed in order to obtain a state of static balancing
(proposition 5.1).

Two optimization formulations are set because of the existence of two different constraint func-
tions. Formulation (1) uses the neutral stability constraint discussed in section 7.3.1 while for-
mulation (2) uses the continuous equilibrium constraint discussed in section 7.3.2.

Both optimization formulations maximize an objective function, which promotes flexibility by
securing a geometrical advantage equal to 1 (see section 7.2). A specific GA=1 means that the
desired orientation angle is θd = π/4 (Eq. 7.5), hence the factor α in the objective function is
α = 2 (Eq. 7.6).
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input port output port

ground port

preloading port

Ω

Figure 7.7: The design search space and the essential ports.

f (x) = sin (2θ) (7.4)

The parameterization is based on binary partial ground structures built out of frame elements.
The deflection analysis of the structures is performed differently for each optimization formu-
lation. Deflection analysis in formulation (1) is performed by using linearized prebuckling fi-
nite element analysis on 6DOF frame elements, while analysis in formulation (2) is based on
two consecutive loading cases, using nonlinear finite element analysis solved through displace-
ment control on 6DOF frame elements with co-rotational formulation for large deflections, small
strains.
To solve the optimization problem we resort to heuristic algorithms. Finding the sensitivities of
the objective function is not simple, they require to compute the derivatives of the displacements
with respect to the design variables in a multi-step nonlinear finite element model solved through
displacement control. It is possible to compute the sensitivities numerically, but the cost of
doing so is comparable to the use of a heuristic approach, which has the benefit of increasing the
probability to find the global optimum and, if the solutions are not optimum solutions, they are
close to an optimum.
A genetic algorithm is set to run up to 100 generations. Wrong connectivities are penalized with
a high value on their fitness value.
Both optimization formulations are used in the synthesis of two benchmark design examples, (i)
the inverter, and (ii) the gripper. The inverter is a compliant mechanism where the displacement
at the input induces a displacement with opposite direction at the output. The gripper, on the other
hand, is a compliant mechanism where the displacement at the input induces an opening/closing
deflection between two output ports. Typical configurations of these two problems are shown in
Fig. 7.8.
Due to the symmetry of the design problem, the optimization is performed only on half of the
design. The final topology optimization setting is composed of two optimization formulations
applied to two design problems.
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Figure 7.8: Configurations of the two design problems. (a) The inverter. (b) The gripper.

Table 7.1: Setup of the topology optimization.
Two formulations and two design problems.

Optimization formulation 1 Optimization formulation 2
Neutral stability Continuous equilibrium

min
x

sin (2θ)

s.t. : (Kl − λKg) q = 0
x = [0, 1]

min
x

± sin (2θ)

s.t. :
qin2∫
qin1

|findqin| = 0

∆qin > 0
Kq = f
x = [0, 1]

Design problem 1 Design problem 2
The inverter The gripper

ground port load port

input port output port

preload

displacementdisplacement

ground port load port

input port

output port

preload

displacement

displacement

7.6 Results

The results of the optimization are presented in this section. Each optimization formulation
applied to each design problem was solved several times in order to check the success of the
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optimization procedure (see Tab. 7.2).

Table 7.2: Number of tryouts in the solution of each optimization formulation applied to each
design problem.

Formulation Design problem Number of tryouts

neutral
stability

inverter 30

gripper 60

continuous
equilibrium

inverter 30

gripper closing 30

gripper opening 30

The optimization formulation 2 (continuous equilibrium) applied to the design problem 2 (the
gripper) was solved for two different variations, (i) the gripper closing, and (ii) the gripper open-
ing, both using the same actuation.

7.6.1 Optimization formulation 1

Design problem 1 - The inverter

The optimization formulation 1 (neutral stability) applied to the design problem 1 (the inverter)
was solved 30 times. From these 30 solutions, only three are considered as viable solutions for
further development.

Table 7.3: Geometrical advantage and actuation energy reduction of the three viable solutions.

Solution Geometrical advantage Actuation energy reduction
A 0.84 50.09%
B 0.56 79.60%
C 0.91 77.56%



7.6 Results 169

(a)

−4 −3 −2 −1 0
−4

−3

−2

−1

0

Deflection (mm)

F
o
rc

e
(N

)

Force vs Deflection at input port

prestressed
unprestressed

(b)

deformed undeformed

(c)

deformed undeformed

(d)

Figure 7.9: Compliant inverter. (a) Topology with a GA=0.84 and actuation energy reduction of
50.09%. (b) Force-deflection behavior at the input port. (c) Deflection configuration predicted
by non-linear FEA. (d) Deflection configuration predicted by linearized pre-buckling analysis
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Figure 7.10: Compliant inverter. (a) Topology with a GA=0.56 and actuation energy reduction
of 79.60%. (b) Force-deflection behavior at the input port. (c) Deflection configuration predicted
by non-linear FEA. (d) Deflection configuration predicted by linearized pre-buckling analysis
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Figure 7.11: Compliant inverter. (a) Topology with a GA=0.91 and actuation energy reduction
of 77.56%. (b) Force-deflection behavior at the input port. (c) Deflection configuration predicted
by non-linear FEA. (d) Deflection configuration predicted by linearized pre-buckling analysis

Design problem 2 - The gripper

The optimization formulation 1 (neutral stability) applied to the design problem 2 (the gripper)
was solved 60 times. From these 60 solutions, only six are considered as viable solutions for
further development.

Table 7.4: Geometrical advantage and actuation energy reduction of the six viable solutions.

Solution Geometrical advantage Actuation energy reduction
A 0.92 67.25%
B 0.92 63.43%
C 0.75 92.81%
D 0.97 73.56%
E 0.51 65.13%
F 1.03 56.52%
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Figure 7.12: Compliant gripper. (a) Topology with a GA=0.92 and actuation energy reduction of
67.25%. (b) Force-deflection behavior at the input port. (c) Deflection configuration predicted
by non-linear FEA. (d) Deflection configuration predicted by linearized pre-buckling analysis
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Figure 7.13: Compliant gripper. (a) Topology with a GA=0.92 and actuation energy reduction of
63.43%. (b) Force-deflection behavior at the input port. (c) Deflection configuration predicted
by non-linear FEA. (d) Deflection configuration predicted by linearized pre-buckling analysis
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Figure 7.14: Compliant gripper. (a) Topology with a GA=0.75 and actuation energy reduction of
92.81%. (b) Force-deflection behavior at the input port. (c) Deflection configuration predicted
by non-linear FEA. (d) Deflection configuration predicted by linearized pre-buckling analysis
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Figure 7.15: Compliant gripper. (a) Topology with a GA=0.97 and actuation energy reduction of
73.54%. (b) Force-deflection behavior at the input port. (c) Deflection configuration predicted
by non-linear FEA. (d) Deflection configuration predicted by linearized pre-buckling analysis
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Figure 7.16: Compliant gripper. (a) Topology with a GA=0.51 and actuation energy reduction of
65.13%. (b) Force-deflection behavior at the input port. (c) Deflection configuration predicted
by non-linear FEA. (d) Deflection configuration predicted by linearized pre-buckling analysis
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Figure 7.17: Compliant gripper. (a) Topology with a GA=1.03 and actuation energy reduction of
56.52%. (b) Force-deflection behavior at the input port. (c) Deflection configuration predicted
by non-linear FEA. (d) Deflection configuration predicted by linearized pre-buckling analysis
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7.6.2 Optimization formulation 2

Design problem 1 - The inverter

The optimization formulation 2 (continuous equilibrium) applied to the design problem 1 (the
inverter) was solved 30 times. From these 30 solutions, only six are considered as viable solutions
for further development.

Table 7.5: Geometrical advantage and actuation energy reduction of the six viable solutions.

Solution Geometrical advantage Actuation energy reduction
A 0.93 96.23%
B 0.83 88.12%
C 0.98 95.88%
D 0.66 84.20%
E 0.93 83.24%
F 0.66 95.48%
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Figure 7.18: (a) Topology of a compliant inverter with a GA=0.93 and actuation energy reduction
of 96.23%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant inverter
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Figure 7.19: (a) Topology of a compliant inverter with a GA=0.83 and actuation energy reduction
of 88.12%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant inverter
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Figure 7.20: (a) Topology of a compliant inverter with a GA=0.98 and actuation energy reduction
of 95.88%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant inverter
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Figure 7.21: (a) Topology of a compliant inverter with a GA=0.66 and actuation energy reduction
of 84.20%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant inverter
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Figure 7.22: (a) Topology of a compliant inverter with a GA=0.93 and actuation energy reduction
of 83.24%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant inverter
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Figure 7.23: (a) Topology of a compliant inverter with a GA=0.66 and actuation energy reduction
of 95.48%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant inverter
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Design problem 2 - The gripper closing

The optimization formulation 2 (continuous equilibrium) applied to the design problem 2 with
the gripper variation closing was solved 30 times. From these 30 solutions, only nine are consid-
ered as viable solutions for further development.

Table 7.6: Geometrical advantage and actuation energy reduction of the nine viable solutions.

Solution Geometrical advantage Actuation energy reduction
A 0.99 96.32%
B 0.97 90.29%
C 0.74 98.59%
D 1.11 95.13%
E 0.94 98.88%
F 1.03 99.26%
G 1.00 82.43%
H 1.01 73.04%
I 1.20 93.29%
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Figure 7.24: (a) Topology of a compliant gripper with a GA=0.99 and actuation energy reduction
of 96.32%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant gripper
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Figure 7.25: (a) Topology of a compliant gripper with a GA=0.97 and actuation energy reduction
of 90.29%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant gripper
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Figure 7.26: (a) Topology of a compliant gripper with a GA=0.74 and actuation energy reduction
of 98.59%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant gripper
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Figure 7.27: (a) Topology of a compliant gripper with a GA=1.11 and actuation energy reduction
of 95.13%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant gripper
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Figure 7.28: (a) Topology of a compliant gripper with a GA=0.94 and actuation energy reduction
of 98.88%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant gripper
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Figure 7.29: (a) Topology of a compliant gripper with a GA=1.03 and actuation energy reduction
of 99.26%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant gripper
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Figure 7.30: (a) Topology of a compliant gripper with a GA=1.00 and actuation energy reduction
of 82.43%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant gripper
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Figure 7.31: (a) Topology of a compliant gripper with a GA=1.01 and actuation energy reduction
of 73.04%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant gripper
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Figure 7.32: (a) Topology of a compliant gripper with a GA=1.20 and actuation energy reduction
of 93.29%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant gripper



7.6 Results 181

Design problem 2 - The gripper opening

The optimization formulation 2 (continuous equilibrium) applied to the design problem 2 with
the gripper variation opening was solved 30 times. From these 30 solutions, only four are con-
sidered as viable solutions for further development.

Table 7.7: Geometrical advantage and actuation energy reduction of the four viable solutions.

Solution Geometrical advantage Actuation energy reduction
A 0.43 98.76%
B 0.52 84.12%
C 0.72 87.05%
D 0.70 95.70%
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Figure 7.33: (a) Topology of a compliant gripper with a GA=0.43 and actuation energy reduction
of 98.76%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant gripper
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Figure 7.34: (a) Topology of a compliant gripper with a GA=0.52 and actuation energy reduction
of 84.12%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant gripper
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Figure 7.35: (a) Topology of a compliant gripper with a GA=0.72 and actuation energy reduction
of 87.05%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant gripper
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Figure 7.36: (a) Topology of a compliant gripper with a GA=0.70 and actuation energy reduction
of 95.70%. (b) Force-deflection behavior at the input port. (c) Final deflection configuration of
the compliant gripper
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7.7 Discussion

The presented design procedure based on topology optimization using a partial ground structure
with binary design variables is inefficient. The procedure presents a low average success rate of
15.6% for all the formulations and design problems used in this work. Table 7.8 consolidates
the success rate for each design formulation and design problem, together with the average and
standard deviation of the geometrical advantage and actuation energy reduction value (static
balancing quality).

Table 7.8: Accomplishment of the topology optimization procedure. An ideal solution should
exhibit a geometrical advantage and actuation energy reduction equal to 1.

Formulation Design problem
Rate of
success

Geometrical advantage
µ̄ σ

Actuation energy reduction
µ̄ σ

neutral
stability

inverter 10.0% 0.77 0.15 0.69 0.13

gripper 10.0% 0.85 0.17 0.70 0.11

continuous
equilibrium

inverter 20.0% 0.83 0.13 0.91 0.06

gripper closing 30.0% 1.00 0.12 0.92 0.08

gripper opening 13.3% 0.59 0.12 0.91 0.06

Total 15.6% 0.85 0.19 0.84 0.14

Figure 7.37 shows the histogram of the geometrical advantage and actuation energy reduction
values. These plots provide a graphical view of the average and standard deviation values pre-
sented in Tab. 7.8.
It is important to remark the difficulties of evaluating the static balancing quality. There is no
clear metric that indicates how good a state of near static balancing is with respect to a state
of perfect static balancing. We have evaluated the stiffness reduction of the mechanisms with
respect to themselves in their prestressed and unprestressed configurations. A comparison of
the actuation forces among designs in both configurations —unprestressed and prestressed— as
well as the prestressing forces, shows that the values of these forces are in different scales of
magnitude. This complicates an evaluation of the design since there is not a real problem to be
solved constraining the solution.
The low success rate relates to a number of factors where the most relevant is the parameteriza-
tion. In the following section, the relation between the low success rate and the parameterization
is discussed.

7.7.1 The parameterization

One reason for the low success rate is that the dependency of the static balancing quality with
respect to the structure’s preloading is not considered during the optimization. As a consequence,
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Figure 7.37: Histogram of the geometrical advantage and the static balancing quality for the
28 optimization results. The ideal value for the geometrical advantage and the static balancing
quality is 1. (a) Histogram of the geometrical advantage value. (b) Histogram of the static
balancing quality.

the solutions provided by the optimization do not exhibit the highest possible stiffness reduction.
To get the best stiffness reduction, it is required to tune the value of the preloading displacement
to the optimization solutions after the optimization has finished.

The fact that the solutions provided by the optimization do not exhibit the highest stiffness reduc-
tion is due to at least the following two particularities, (i) the preloading displacement applied
to the structure is kept constant during the optimization in order to keep the design variables as
a set of binary variables, and (ii) since a partial ground structure is composed of vertical, hor-
izontal and diagonal frame elements, it is not possible to have a continuous set of values for
any path-length between ports. These two conditions mean that compressive stresses responsible
for the stiffness reduction can no longer be tuned during optimization, neither by modifying the
preloading displacements at the load port nor by modifying the path-length between the load port
and the ground port.

Another reason for the low success relates to the penalization of wrong connectivities. The
optimization procedure is conceived to remove structures with either floating elements or dis-
connected ports. When individuals are removed from the population, their characteristics are not
passed into the next generation, resulting in a reduction of the design search space.

Table 7.9 summarizes the average rate of individuals removed from the consolidated population
along all the tryouts from the same formulation and design problem.

To understand this reduction of the design search space we need to note that genetic algorithms
randomly create the first generation of individuals trying to distribute them evenly across the
design search space. This even distribution of individuals increases diversity which, in turn,
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Table 7.9: Average rate of exclusion of individuals due to wrong connectivities.

Formulation Design problem
Average rate of
individuals exclusion

neutral
stability

inverter 4.53%

gripper 3.52%

continuous
equilibrium

inverter 7.42%

gripper closing 5.18%

gripper opening 5.08%

Total 4.67%

increases the chances of finding the global optimum. The idea is to find the optimum individual
by pushing up the best individuals over the rest of the population in a wide design space. Figure
7.38 shows the average rate of exclusion for each formulation and design problem along 50
generations. Notice how, for each design problem at the first generation, the exclusion rate
is about 45% and decreases to about 2% at generation 50. This behavior indicates that the
final solution tends to be enclosed in a specific region of the design search space determined by
the exclusion of individuals. The result is that the optimum comes from pushing up the best
individual in a smaller design space.
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Figure 7.38: Average rate of excluded solutions along 50 generations due to wrong connectivi-
ties.

A parameterization based on partial ground structures can provide with a large number of differ-
ent topologies. For instance, a partial ground structure holds 6561 valid topologies if we limit
connectivities to just four frame elements between the four essential ports in a 5x5 nodes struc-
ture. It is clear that in the case of statically balanced compliant mechanisms topology diversity
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is not enough. The dependency of the static balancing quality with respect to preloading — as
a means to prestress the structure — suggests the need for parameterizations that also allow for
the optimization of shapes and sizes.

7.8 Summary

The chapter introduces structural optimization as a design method under the view of the design
framework presented in chapter 2. The relation between the objective function, constraints and
parameterization with the function and characteristics resulting from the design requirements is
explained.
The chapter presents the preliminary results of topology optimization as an integral design
method for statically balanced fully compliant mechanisms. The design method is set as a binary
topology optimization of a partial ground structure, where the problem is to maximize a function
that guarantees a desired geometrical advantage between the input and output ports of the struc-
ture. The optimization problem is solved by using genetic algorithms and tested through the use
of two design examples, (i) the inverter, and (ii) the gripper. The static balancing characteristic
is included in the optimization as a constraint based on the continuous equilibrium and neutral
stability criteria.
Topology optimization as a method for the design of statically balanced compliant mechanisms is
proven to be able to provide feasible design solutions and interesting design configurations. The
net result is 28 designs of nearly statically balanced fully compliant solutions. These solutions
do not exhibit the ideal and intended geometrical advantage and static balancing characteristics.
The average value of the objective function and the static balancing quality with respect to their
ideal values is 85% and 84%, respectively.
The optimization procedure exhibits an average success rate of 10% for the formulation based
on neutral stability and 21.1% for the formulation based on continuous equilibrium. The average
success rate for the whole setup is 15.6%.
The chapter proposes a modification of Warshall’s algorithm for the connectivity analysis of
undirected graphs. The algorithm is used to remove structures with disconnected ports and float-
ing elements generated during the solution process by the genetic algorithm.
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In this work a promising design methodology is proposed from which it is possible to derive
several different methods for the design of nearly statically balanced compliant mechanisms.
The design methodology is based on the interrelation of seven recurrent elements that influence
the design outcome: compliancy type, classification of the functional requirements, modularity
of the mechanism, static balancing strategy, modularity of the design process, design methods
for compliant mechanisms, and static balancing criteria.

The recurrent elements on which the methodology is based are those elements constantly present
in the answers to questions such as: what is a design method, how are compliant mechanisms
designed, what conditions characterize a state of static balancing and how to include a state of
static balancing in the design of compliant mechanisms.

The design methodology is able to provide with 16 different general design methods —if we do
not count the variants resulting from considering the static balancing strategies, static balancing
criteria, optimization parameterizations and compliancy type— or around 480 specific design
methods.

The design methods derived from the methodology are structured methods that can provide con-
ceptual and detailed solutions in terms of their topologies, shape and sizes. The fact that the
design methodology is based on the recurrent elements forces the designer to initially consider
the design requirements instead of going directly to the design task. As a consequence, the de-
signer chooses the best design methods for the problem at hand, hence allowing the designer to
foresee how the design process will take place and where in the design space the solution will
lay.

In order to introduce the design methodology and its use, we derived four of the 16 general
design methods as examples. The four design methods were selected in such a way that they
demonstrated, in context, the use of synthesis methods such as the rigid-body-replacement and
structural optimization in combination with static balancing strategies like buckling and function
decomposition. These design methods were used in the design of 33 concepts of nearly stati-
cally balanced compliant mechanisms —4 suspensions, 10 inverters, 19 grippers— which show
how the design methodology helps the designer to widen the solution space, increase design
quality and structure the design process. We consider the design space widened since it is pos-
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sible to obtain different concepts in terms of topologies, shape and sizes for the same problem.
Take, for instance, the suspension design examples using either function decomposition 6.2.3 or
Rigid-Body-Replacement 6.2.2 or the examples using topology optimization. The quality of the
design is considered to be increased because it is possible to narrow the marginal values of the re-
quirements’ metrics and increase the number of design requirements as shown in the suspension
design examples using function decomposition 6.2.3.

One drawback of the design methodology is the need for the designer to be familiar with the
design methods for compliant mechanisms, since the recurrent elements which form the basis of
the design methodology revolve around these design methods.

So far, the methodology has been tested with design problems comprising rather simple design
requirements which do not allow for an evaluation of the methodology. A proper evaluation
would require the methodology to be subjected to design problems with realistic, diverse and
complex design requirements.

The whole idea behind the static balancing of compliant mechanisms is to get the good charac-
teristics of compliant mechanisms while removing the energetic inefficiencies due to the strain
energy storage. Designing a mechanism to be compliant implies that the design has the char-
acteristics of being monolithic, predictable, precise, reliable, compact, noiseless, durable, ener-
getically inefficient and motion limited. These characteristics can conflict or reinforce with the
characteristics of being energetically efficient, prestressed, overconstrained, and enlarged that are
associated with a mechanism that is statically balanced.

Static balancing improves the energy efficiency of compliant mechanisms since the character-
istics of statically balanced mechanisms tend to dominate over the characteristics of compliant
mechanisms —Energy efficiency dominates over energy inefficiency. The price to pay for the
energy efficiency is that statically balanced compliant designs tend to be enlarged compared to
their unbalanced versions —Enlargement dominates compactness. The enlargement comes from
the addition of the balancing elements and the addition of mechanisms or actuators used for the
prestressing of the statically balanced compliant mechanism.

The precision and predictability of compliant mechanisms could be compromised by the use of
static balancing since static balancing based on the prestressing of elastic elements makes use
of kinematic overconstraining. Overconstraining opposes to the principles of exact constraint
design which are one of the cornerstones for design in precision engineering. However, over-
constrained does not mean imprecise, it means that to achieve precision the design must rely
on other principles such as elastic averaging (overconstraining of a system with a large number
of compliant elements to achieve precision by averaging the error). Take for instance the work
of Shu et al. [124][123] where precision at nanometer level is achieved through the use of an
overconstrained design. As far as is known to the author, the relation between precision and
overconstraining in statically balanced compliant mechanisms is still an open question.

This work constructs the conceptual and mathematical framework for static balancing as a state of
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motion. The framework for static balancing is discussed with a view focused on systems modeled
by discrete elements where the size, shape and topology properties are collected into the system’s
stiffness matrix. The framework included the three classical conditions characterizing a state of
static balancing in terms of the potential energy, the forces, and the stability: (i) the potential
energy is constant all across the statically balanced workspace, (ii) all the internal forces are in
static equilibrium so the resultant forces are zero all across the workspace, hence no actuation
forces are required besides those to overcome the inertial loads and non-conservative forces,
(iii) due to continuous equilibrium, the stiffness is zero and the mechanism has no preferred
configuration under a perturbation, therefore the mechanism is neutrally stable.

The framework for static balancing is expanded in this work from the three classical conditions to
include new conditions based on the notions of virtual work, speed, natural frequency (large and
small amplitudes), and buckling: (iv) the virtual work at any point of the workspace is always
zero, (v) a statically balanced mechanism does not oscillate, so its natural frequency is zero as
well as the harmonic natural frequency due to small displacements at any point of the workspace,
(vi) in the absence of external disturbances, motion is driven by the inertia of the mechanism so
the speed across the workspace is constant, and (vii) a statically balanced compliant mechanism
is a pre-stressed structure, on which the pre-stressed areas induce a loss of structural stability,
creating a state of elastic self-buckling at critical load across the workspace.

All the aforementioned conditions are necessary conditions for a state of static balancing but
not all of them are sufficient. The necessary and sufficient conditions are: (i) the continuous
constant potential energy, (ii) the continuous zero force, (iii) the continuous neutral stability, (iv)
the continuous zero virtual work, (v) the constant speed, and (vi) self-buckling at critical load
which applies only for compliant mechanisms. The necessary but not sufficient conditions are:
(i) the continuous zero stiffness, (ii) the zero natural frequency, and (iii) the continuous zero
harmonic natural frequency for small displacements. We need to keep in mind that the necessary
but not sufficient conditions in static balancing are also necessary conditions to define a state
of constant force. All the conditions defining a state of static balancing while they are different
perspectives of the same state, different faces of the same dice, is their application as design
criteria towards static balancing what make them different. The use of one condition or another
can lead to different design results.

The construction of the framework also included the presentation of static balancing as a coor-
dinate transformation problem, in which the system’s workspace is a projection of a level set of
the system’s potential energy. Such a transformation problem allowed for the generalization of
static balancing into the equation,

K (t) = 0 = JTK (qi) J + f(qi)
T ∂J

∂tl
(5.57)

The generalization shows that static balancing is a problem dependent of the system’s deflec-
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tion, its stiffness properties and the workspace on which the system moves. The generaliza-
tion expresses that static balancing comes as a result of compensation by trajectory changes
—constraining motion to move in a workspace with constant potential energy— and singularity
with zero force —the system self-constrains its motion to a workspace with constant potential
energy.

Static balancing in elastic systems with either constrained motion or self-constrained motion
refers to a state of self-buckling at critical load in the elastic regime. This is loss of stability
without collapsing. The traditional engineering view says that structures are designed to with-
stand forces with a minimum of deflection. This view contrast with the fact that compliant
mechanisms are designed to deflect as much as possible with minimum force. So if we consider
compliant mechanisms as failed structures under the action of a load, then statically balanced
compliant mechanisms are failed structures that do not require any force to fail. Statically bal-
anced compliant mechanisms are structures that load themselves to the critical buckling load,
with a maximized range of motion where the self load is kept critical.

Buckling can be used as a simple design strategy towards static balancing. If a compliant mech-
anism has beam elements in which their longitudinal axis is perpendicular to the motion of their
adjacent elements, then it is likely that the stiffness of the compliant mechanism can be reduced
by simply buckling these beam elements. This strategy becomes relevant when we realize that
many compliant mechanisms are compositions of straight beam elements.

Statically balanced mechanism are arrangements of elements, where not all the elements exhibit
the same level of potential energy. Internally, some elements exhibit positive stiffness, while
some other elements exhibit negative stiffness. During the motion, these elements with positive
and negative stiffness exchange energy so the total potential energy is kept constant. Depend-
ing on how this exchange of energy takes place, some elements can switch their stiffness from
positive to negative and vice versa, but the net overall stiffness of the mechanism is zero. In
the case of statically balanced compliant mechanisms the elements with positive and negative
stiffness are normally elastic elements that at their nearest equilibrium configurations, are stable
and unstable, respectively.

From a design point of view, the whole idea of creating statically balanced compliant mechanisms
relies greatly on the possibility to create elastic structures with negative stiffness. A structure
that can be deformed from a mode with high density of strain energy per unit of deflection into a
mode with lower density of strain energy per unit of deflection, is most likely to exhibit negative
stiffness during the transition between modes. Negative stiffness is possible since the transition
between modes releases an excess of strain energy that is translated into larger deformations in
the low energy density mode. Under this view, when a SBCM is prestressed, some areas deform
in high energy density modes developing negative stiffness, thus during the actuation the released
excess of strain energy is absorbed by areas where the deformation follows an opposite transition
between modes —from low energy density into high energy density.
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For instance, negative stiffness in slender flexible elements can be achieved by a deformation
sequence of axial compression and bending. For beams with constant rectangular or circular
cross sections, the density of strain energy per unit of deflection in axial compression is greater
than the density under pure bending by an approximate factor of α2, where α is the ratio between
the beam’s length over the in-plane width or diameter (see appendix B).

Static balancing is a well defined and singular state that is quite difficult to reach. It can be
compared to the idea of balancing a sharp pencil on its tip over a flat marble surface. In both
cases, there is a theoretical point at which static equilibrium can be achieved in a passive way,
but one thing is the theoretical existence of such point and another one is actually reaching this
point. For instance, constructing a working version of the spring-to-spring zero stiffness balancer
presented in chapter 4 is quite a challenge, although the balancer has closed-form expressions
describing a state of perfect static balancing (see chapter 4), its design is defied by all sorts
of irregularities in the constitutive elements. In the case of compliant mechanisms, while it
is too venturous to say that perfect static balancing is impossible, it is better to say that it is
unlikely to be achieved. When we refer to statically balanced compliant mechanisms we are, in
reality, referring to compliant mechanisms with extremely low stiffness as an approximation to
the perfect state.

Considering the design of statically balanced compliant mechanisms as an approximation to the
perfect state raises the question of which amount of approximation is good enough, or in other
words, how to define a state of nearly static balancing. For instance, if we evaluate static bal-
ancing by using the condition of zero continuous force, using as a metric the Root-Mean-Square
(RMS) value of the force, then a state of perfect static balancing is a RMS value of zero, but
which RMS value other than zero can be considered nearly static balancing?. Consider the cases
where it is possible to compare an unbalanced mechanism with its statically balanced version,
it is not clear which value of stiffness reduction can be considered as nearly static balancing,
hence it is not possible to define the marginal values of the metrics to quantify the quality of
such state. Consider the cases where the nearly statically balanced compliant mechanism does
not have an unbalanced version for comparison, in which case it is only possible to compare the
design with itself in the unprestressed configuration, then compromising the evaluation of the
requirements (an example of the latter consideration are the designs resulting from topology op-
timization shown in chapter 7 where a comparison of the actuation forces among designs shows
high variance). At the end the marginal values of the metrics used in the evaluation of a state of
nearly static balancing will be dictated by the design requirements of the problem at hand.

Nearly static balancing means that a mechanism in such a state can exhibit a behavior with pos-
itive, negative or alternating stiffness along the workspace. Which behavior is desirable would
depend on the design requirements. Now, all the static balancing conditions are some form of a
constant value along the workspace hence making the standard deviation the natural choice for
a metric. A state of perfect static balancing implies a standard deviation along the workspace
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equal to zero, where the mean value is the target value of the condition —notice that a stan-
dard deviation with mean value equal to zero is a RMS value. The problem with the standard
deviation is that it does not capture the changes in stiffness along the workspace. To evaluate
nearly static balancing with stiffness changes along the workspace, the use of metrics based on
the computation of error with respect to a prescribed behavior or metrics composed of several
functions where each function captures an aspect of the desired behavior, is advised.

In addition to the problem of nearly static balancing evaluation, there is the problem of the sen-
sitivity of static balancing quality with respect to (i) dimensional tolerances and (ii) prestressing.
The relation between the type of compliancy and the dimensional accuracy of flexible elements
and how this relation influences the static balancing quality is still an open question. A complete
study of this relation must include the relation between type of compliancy with creep and fatigue
and its effects on the static balancing quality. About prestressing, it is clear that the static bal-
ancing quality correlates with the amount of prestressing induced in the compliant mechanism.
This correlation is function of the variables defining the way in which prestressing takes place.
For instance, if prestressing is done by preloading, then static balancing quality is a function of
the force magnitude or displacement of the preloading.

The relation between prestressing and static balancing quality is influenced by the chosen design
method in the design methodology. For instance, the modular design method using function
decomposition shown in section 6.2.3 led to designs in which the value of preloading was known
exactly while design methods based on structural optimization where the prestressing variables
were not included as design variables (chapter 7) led to designs in which prestressing had to be
tuned. It is clear that during the design process of a statically balanced compliant mechanism a
variable must be included to account for the prestressing of the structure. Now, if the prestressing
value should be fixed at the beginning of the design process or searched along the process, is a
designer’s choice unless the design domain parameterization does not allow for a continuous
prestressing with a fixed prestresssing value, in which case it is adviced to search for the correct
prestressing value.

One problem that the designer could face in the design of statically balanced compliant mech-
anisms relates to the use of commercial finite element software. From the experience collected
in realization of this work we have found two main problems, (i) convergency problems in the
solvers when the solution is too close to perfect static balancing regardless of the use of arc length
or displacement control methods, and (ii) resetting of nodal displacements in multiple load steps
using displacement conditions. The resetting problem appears when after the first load step —
prestressing— the input port displaces, then in the second load step —actuation— the location
of the input port is reset to the initial location, just where it was before prestressing. The reset-
ting of the input port introduces, in the middle of the force-deflection path, an unrealistic portion
of behavior. These problems were avoided through a Matlab implementation of nonlinear finite
elements using the displacement control algorithm described in appendix C and the nonlinear
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formulation for frame elements presented in Mankame [81].
At the end of this work there are many open questions. The work introduced the general expres-
sion describing static balancing as a coordinates transformation problem, but its role in design
—for instance, used as a design constraint— remains unexplored. There are novel techniques
such as inverse finite elements and buckling under tensile load requiring research for their imme-
diate application in the design of SBCM’s. Topology optimization while tested as a viable design
method, requires more fundamental work on parameterizations, objective functions and solution
algorithms in order to develop an efficient design method towards static balancing of compliant
mechanisms. Prestressing of the elastic elements based on thermal effects and the use of electric
and magnetic fields in the static balancing of compliant mechanisms are open fields for research
in design with application in MEMS.
Along this work we have presented design examples of statically balanced compliant mecha-
nisms but the designs considered neither the effects of creep and stress relaxation due to the
prestressing of the elastic elements, nor the effects of fatigue due to cyclic actuation. The design
examples must be considered as the proof of concept of the design methods.
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9 Conclusion

In this work we proposed a design methodology from which it is possible to derive several
different methods for the design of nearly statically balanced compliant mechanisms. The design
methodology is based on the interrelation of seven recurrent elements that influence the design
outcome. The design methods derived from the methodology are structured methods that can
provide conceptual and detailed solutions.

In the development of this work, the design methodology was used in derivation of four design
methods out of 16 general design methods from which it was possible to create 33 concepts
of statically balanced compliant mechanisms —4 suspensions, 10 inverters, 19 grippers. The
concepts show how the methodology helps the designer to widen the design search space and
increase the quality of the designs. The methodology while proven promising still has not been
evaluated. Evaluation of the design methodology requires to test all the design methods that can
be derived from the methodology under realistic, diverse and complex design requirements in a
non-academic environment.

Using the elements of technical system representation, the relation between design requirements,
main function and attributes in the design of statically balanced compliant mechanisms was ex-
plained for the first time. The procedure for the design of mechanisms was explained as the cyclic
process of setting requirements, synthesis, analysis and evaluation, divided into conceptual and
detailed design stages. It was explained how the attributes of compliant and statically balanced

relate to design requirements that condition the main function and impose constraints and char-
acteristics. A conceptual framework was proposed for the design of mechanisms from which it
is possible to identify three recurrent elements —classification of the functional requirements,
modularity of the mechanism, and modularity of the design process— and explain how these
elements relate to the attributes of compliant and statically balanced and how they influence the
conceptual and detailed design stages.

An extensive overview of the methods for the design and synthesis of compliant mechanisms was
presented. The overview was pointed towards the basic ideas behind each method so the reader
could get a conceptual image of the field. To facilitate the conceptualization, the overview was
structured following a proposed classification of the field. The overview included a discussion
about each method’s simplicity, completeness and usefulness in the design of mechanisms for
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motion, path or function generation, and their adequacy to cope with non-linearities, types of
compliance, and designer’s inexperience.
The construction of the conceptual and mathematical framework was presented for static balanc-
ing as a state of motion. The framework included the three main conditions characterizing a state
of static balancing in terms of the potential energy, the forces, and the stability. The framework
was expanded from the three classical conditions based on energy, force and stability, to include
the new conditions based on the notions of virtual work, speed, natural frequency (large and
small amplitudes), and buckling. The conditions characterizing a state of static balancing were
discussed with a view focused on systems modeled by discrete elements where the size, shape
and topology properties are collected into the system’s stiffness matrix. The construction of
the framework also included the presentation of static balancing as a coordinate transformation
problem, in which the system’s workspace is a projection of a level set of the system’s poten-
tial energy. Such a transformation problem allowed the generalization of static balancing as a
problem dependent on the system’s deflection and its stiffness properties.
In the development of the design method based on topology optimization, a modification of the
Warshall’s algorithm was proposed for computing the connectivity matrix of an undirected graph.
Since the graph represents the connectivity of a structure, the modification allows to validate the
connectivity of the structure by simply observing the composition of a vector. The use of the
algorithm during an optimization procedure using genetic algorithms removes the need to update
the finite element mesh to remove disconnected nodes.



Appendix A Warshall’s algorithm

The pseudo code for the Warshall’s algorithm for computing the connectivity matrix P of an
undirected graph is presented in the following paragraphs.
The algorithm is based on the fact that two vertices i and j adjacent to a vertex k are in fact
connected to each other through vertex k. The algorithm starts by initially setting the connectivity
matrix P as the same adjacency matrix A. Then the algorithm extracts from the adjacency matrix
all the indexes equal to 1 in row k (or column k, adjacency matrix is symmetric for undirected
graphs) and add in the connectivity matrix a connection represented by a 1 at the entries (i, j)

and (j, i). The Entries (i, j) and (j, i) are all the pairs constructed with the indexes extracted
from row k. Once the connectivity matrix is updated, the process is repeated with the next row,
and so on. Figure A.1 shows an example of this process.

Algorithm 1: Warshall’s algorithm for graph connectivity
Data: A adjacency matrix.
Result: P connectivity matrix

P ←− A
n←− size P
for k ← 1 to n do

for i← k to n do
if P[i,k] = 1 then

for j ← k to n do
if P[k, j] = 1 then

P[i, j] = 1

If required, the number of components and the vertices’ associations to components are found by
observing that each row (or column) in the connectivity matrix P holds the indexes of an entire
component. The algorithm simply clusters the vertices’ indexes in a row as one component
and then clusters indexes in the next row where its index has not been clustered in a previous
component.
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Algorithm 2: Extraction of the components and vertices’ association from the connectivity
matrix generated by the Warshall’s algorithm

Data: P connectivity matrix.
Result: ncomp number of components, vrtxassc association of vertices to components.

n←− size P
vrtxassc←−

[
0 0 . . . 0

]
n×1

ncomp←− 0

indexes←−
[
1 2 . . . n

]

while indexes not empty do
ncomp←− ncomp+ 1
for i← 1 to n do

j ←− indexes[1]
indx←− P [i, j]
vrtxassc[indx]←− ncomp
remove entry indexes[indx]

1 2

3 4

A =




0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0




(a)

P =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




(b)

P =




0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0







0
1
0
0



k=1

P(2, 2) = 1

(c)

P =




0 1 0 0
1 1 1 0
0 1 0 1
0 0 1 0







1
1
1
0



k=2

P(1, 1) = 1
P(1, 3) = 1
P(3, 1) = 1
P(3, 3) = 1

(d)

P =




1 1 1 0
1 1 1 0
1 1 1 1
0 0 1 0







1
1
1
1



k=3

P(1, 4) = 1
P(4, 1) = 1
P(2, 4) = 1
P(4, 2) = 1
P(4, 1) = 1
P(4, 4) = 1

(e)

Figure A.1: (a) Graph and its adjacency matrix A. (b) Connectivity matrix P shows that each
vertex is connected to every other vertex, this matrix is obtained by following Fig. c, d and e.
(c) Pivot on column 1, find vertices connected through vertex 1 and update matrix P. (d) Pivot
on column 2, find vertices connected through vertex 2 and update. (e) Pivot on column 3, find
vertices connected through vertex 3.



Appendix B Strain energy in axial load and
bending

In this section we compare the strain energy induced in a slender element under axial loading
with respect to the strain energy on the same element subjected to bending. It is assumed that the
slender element has constant cross section, where the ratio between the element’s length l and its
in-plane width w is defined by the term α

α =
l

w
(B.1)

B.1 Strain energy under axial load

Strain energy under axial load for an elastic slender element with constant cross section is given
by the following expression,

Ua = 1
2Pδa (B.2)

where Ua is the strain energy, P is the axial load, and δa is the axial deflection. The relation
between an axial load P and the axial deflection δa is,

P =
AE

l
δa (B.3)

where A is the cross section area, E is the material Young’s modulus. By replacing Eq. B.3 into
Eq. B.2 we get an expression for the strain energy as a function of the axial deflection,

Ua =
AEδ2

a

2l
(B.4)
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B.2 strain energy under bending

Strain energy under bending for an elastic slender element with constant cross section is given
by the following expression,

Ub = 1
2Mθ (B.5)

where M is the applied moment, and θ is the angular deflection of the elastic element. The
relation between the moment M and the angular deflection θ is,

M =
EI

l
θ (B.6)

where I is the cross section area second moment of inertia with respect to the bending axis.
Replacing Eq. B.6 into Eq. B.5 yields an expression for the strain energy as a function of the
angular deflection,

Ub =
EIθ2

2l
(B.7)

In order to compare the strain energy between axial loading and bending we need to express Eq.
B.7 in terms of a linear deflection instead of an angular deflection. To do so we assume that the
elastic element under pure bending is a cantilever beam under the action of a moment, where the
origin of coordinates is set at the free end tip. The horizontal and vertical deflection of the end
tip is,

δbx = l − l

θ
sin θ (B.8)

δby =
l

θ
(1− cos θ) (B.9)

The total deflection of the free end tip is given by,

δ2
b = δ2

bx + δ2
by (B.10)

Replacing Eq. B.8 and B.9 into Eq. B.10 yields,

δ2
b = l2 +

2l2

θ2
− 2l2

θ
sin θ − 2l2

θ2
cos θ (B.11)

Equation B.11 can be expressed as an infinite series in terms of the angular deflection θ as

δ2
b = l2

( ∞∑

n=1

(−1)
n+1 2θ2n

(2n+ 2) (2n)!

)
(B.12)
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For angular deflections below π/4 the deflection δ2
b is approximated by the first term in the series,

δ2
b =

l2θ2

4
(B.13)

Substituting Eq. B.13 into Eq. B.7, yields the expression for the strain energy as a function of
the deflection of the end tip for angular deflections below π/4

Ub =
2EIδ2

b

l3
(B.14)

B.3 Comparison of strain energies under axial load and bend-
ing

In order to compare the stored strain energy in the slender element under the action of axial
loading and bending, we assume that the axial deflection and deflection of the free end tip are the
same deflection δ,

δ2 = δ2
a = δ2

b (B.15)

now dividing Eq. B.4 by Eq. B.14 and replacing δ2
a and δ2

b by δ2 yields,

Ua
Ub

=
Al2

4I
(B.16)

This expression relates the strain energy under axial loading and bending assuming the same
amount of deflection. If we assume for the slender element a rectangular constant cross section,
we have that the cross section area and moment of inertia is,

A = wt (B.17)

I =
tw3

12
(B.18)

then by replacing Eq. B.1, B.17, and B.18 into Eq. B.16 we get,

Ua
Ub

= 3α2 (B.19)

Now, if we assume that cross section of the slender element is circular,
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A = 1
4πd

2 (B.20)

I = 1
16πd

4 (B.21)

then by replacing Eq. B.1, B.20, and B.21 into Eq. B.16 we get,

Ua
Ub

= α2 (B.22)

The result in Eq. B.19 and B.22 says that for a slender element with constant rectangular or
circular cross section, the strain energy under axial loading is at least α2 times greater than the
strain energy under bending for the same deflection of the free end tip (for angular deflections
below π/4). So if the length of the elastic element is 10 times the in-plane width, the density of
strain energy per unit of deflection under axial loading is at least 100 times the density of strain
energy per unit of deflection under bending.



Appendix C Displacement control pseudo-
code

The notation used in this appendix is the following,

componenta
iteration
index

If the vector of nodal displacement d is divided between the components that can be moved
freely fd and the components that have a pre-assigned displacement value pd, then the system
equation Kt (d) d = fi can be written in terms of these free and pre-assigned displacements as

[
ffK (d) fpK (d)

pfK (d) ppK (d)

][
fd

pd

]
=

[
f f

pf

]
(C.1)

Equation C.1 can be decomposed into two sets of equations,

ffK (d) fd + fpK (d) pd = f f (C.2)

pfK (d) fd + ppK (d) pd = pf (C.3)

Displacement control must find the nodal displacement field d that makes g = 0, where g is the
difference vector between the internal forces fi and external forces fe.

g = fi (d)− fe = 0 (C.4)

In the case of displacement control no external loads are applied except the reaction forces to the
assigned displacements. Then, the vector of external forces fe can be expressed as

fe =

[
0

pr

]
(C.5)

where pr are the reactions forces. To find the solution, first it is needed to calculate the first
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estimation of the displacement field from Eq. C.2 , using the known incremental displacement

pd and solving for fd,

fd = ffK(d)
−1

(f f − fpK (d) pd) (C.6)

Now the iterative solution is found by expanding in Taylor series the components of the free
displacements of g,

fg = fg0 +
∂fg0

∂fd
∆fd (C.7)

but fg = 0, then solving Eq. C.7 for ∆fd and removing subscripts

∆fd = −
(
∂fg

∂fd

)−1

fg (C.8)

Remembering that

∂fg

∂fd
= ffKt (C.9)

equation C.8 can be expressed as,

∆fd = −ffK−1
t fg (C.10)

The final displacement field is found by updating the displacement field with the displacement
increment given by Eq. C.10,

dj = dj−1 +

[
∆fd

j

0

]
(C.11)

where superscript j indicates the iteration. Equation C.10 can be written in terms of the iteration
index j as,

∆fd
j = −

[
ffKt

(
dj−1

)]−1 (
f fi
(
dj−1

)
− 0
)

(C.12)

Now we can write the pseudo-code for the displacement control
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Algorithm 3: Pseudo-code for a non-linear finite element solution using displacement con-
trol

initialization
d = 0
fi = 0
∆pd

run iterative scheme

for substep← 1 to number of substeps do
pd = pd + ∆pd

function [d, fi] = solver (d, fi, pd)
Kt (d)

fd = ffK(d)
−1

(f fi − fpK (d) pd)

d =

[
fd

pd

]

run Newton-Raphson scheme

while no convergency do
Kt (d)

fg = f fi − 0 = (ffK (d) fd + fpK (d) pd)− 0

∆fd = −ffK−1
t fg

d =

[
fd + ∆fd

pd

]
or fd = fd + ∆fd

fi(d)
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