

Advanced polymeric/inorganic nanohybrids An integrated platform for gas sensing applications

Shakeel, Ahmad; Rizwan, Komal; Faroog, Ujala; Igbal, Shahid; Altaf, Ataf Ali

10.1016/j.chemosphere.2022.133772

Publication date

Document Version Final published version

Published in Chemosphere

Citation (APA)

Shakeel, A., Rizwan, K., Farooq, U., Iqbal, S., & Altaf, A. A. (2022). Advanced polymeric/inorganic nanohybrids: An integrated platform for gas sensing applications. Chemosphere, 294, Article 133772. https://doi.org/10.1016/j.chemosphere.2022.133772

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

ELSEVIER

Contents lists available at ScienceDirect

Chemosphere

journal homepage: www.elsevier.com/locate/chemosphere

Advanced polymeric/inorganic nanohybrids: An integrated platform for gas sensing applications

Ahmad Shakeel a,b,*, Komal Rizwan c,**, Ujala Farooq d, Shahid Iqbal e, Ataf Ali Altaf f

- a Faculty of Civil Engineering and Geosciences, Department of Hydraulic Engineering, Delft University of Technology, Stevinweg 1, 2628, CN, Delft, the Netherlands
- b Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering & Technology, Lahore, New Campus, 54890, Pakistan
- ^c Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
- d Faculty of Aerospace Engineering, Department of Aerospace Structures and Materials, Delft University of Technology, Kluyverweg 1, 2629, HS, Delft, the Netherlands
- e Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad, 46000, Pakistan
- f Department of Chemistry, University of Okara, Okara, 56300, Pakistan

HIGHLIGHTS

- Effects of toxic gases on human health have been described.
- Polymer/inorganic nanohybrids based sensors have been discussed for gas sensing.
- Basic sensing mechanism of gas sensors has been reviewed.

G R A P H I C A L A B S T R A C T

ARTICLE INFO

Handling Editor: Hafiz M.N. Iqbal

Keywords:
Polymeric materials
Nanohybrids
Gases
Sensing
Metal oxide

ABSTRACT

Rapid industrial development, vehicles, domestic activities and mishandling of garbage are the main sources of pollutants, which are destroying the atmosphere. There is a need to continuously monitor these pollutants for the safety of the environment and human beings. Conventional instruments for monitoring of toxic gases are expensive, bigger in size and time-consuming. Hybrid materials containing organic and inorganic components are considered potential candidates for diverse applications, including gas sensing. Gas sensors convert the information regarding the analyte into signals. Various polymeric/inorganic nanohybrids have been used for the sensing of toxic gases. Composites of different polymeric materials like polyaniline (PANI), poly (4-styrene sulfonate) (PSS), poly (3,4-ethylene dioxythiophene) (PEDOT), etc. with various metal/metal oxide nanoparticles have been reported as sensing materials for gas sensors because of their unique redox features, conductivity and facile operation at room temperature. Polymeric nanohybrids showed better performance because of the larger surface area of nanohybrids and the synergistic effect between polymeric and inorganic materials. This review article focuses on the recent developments of emerging polymeric/inorganic nanohybrids for sensing various toxic gases including ammonia, hydrogen, nitrogen dioxide, carbon oxides and liquefied petroleum gas. Advantages, disadvantages, operating conditions and prospects of hybrid composites have also been discussed.

E-mail addresses: a.shakeel@tudelft.nl (A. Shakeel), komal.rizwan45@yahoo.com (K. Rizwan).

https://doi.org/10.1016/j.chemosphere.2022.133772

Received 9 September 2021; Received in revised form 23 January 2022; Accepted 25 January 2022 Available online 29 January 2022

^{*} Corresponding author. Faculty of Civil Engineering and Geosciences, Department of Hydraulic Engineering, Delft University of Technology, Stevinweg 1, 2628, CN, Delft, the Netherlands.

^{**} Corresponding author.

1. Introduction

Gas sensors have attained attention in research fields and industrial areas because air contains various toxic gases that are hazardous for human health (Akram et al., 2021). The toxic gases may cause asthma, skin burning, dizziness, drowsiness, vomiting, nausea, cancer, lung issues, hypoxia, weight loss etc. (Dhall et al., 2021). Every gas has threshold limit value (TLV) which represents the concentration of respective toxic gas in atmosphere that may be breathed by most people with no bad effects. It is typically presented in parts per million (Fig. 1). For safety of living beings including animals, plants and humans, the sensing of toxic gases in environment is most important. Gases are emitted from different sources and few gases may react to form new compounds in atmosphere (Cunha et al., 2015). The continuous release of different gases such as ammonia (NH3), carbon monoxide (CO), carbon dioxide (CO₂) hydrogen sulfide (H₂S), nitrogen dioxide (NO₂) and volatile compounds creates various issues including ozone depletion, acid rain, sick house syndrome and global warming. There are two main sources (Natural and man-made) of introduction of toxic gases in environment. The natural sources include volcanic eruption, cloud lightning. livestock and natural wild fire in forests. While man-made sources include smoke of aeroplanes, factories, automobiles, ships, coal burning. agriculture and domestic activities (see Fig. 2). There are several techniques including GC/MS and optical spectroscopies which are used to detect gases but they have various drawbacks like time consuming, expensive, bigger instrument and difficult to use in field. To control air pollution, there is a need to develop sensors to detect these gases quickly. By using various sensing materials and different transduction elements, different gas sensors have been developed.

Hybrid nanomaterials are unique conjugates of inorganic and organic materials (Tabish et al., 2021). In comparison of single component, the hybrid materials contain versatile functionalities along with increased chemical and physical features. Advance nanostructures based on organic/inorganic composites are significant for innovations in various fields (Nadeem et al., 2021; Yasin et al., 2020) particularly in gas sensing applications. Hybrids contain increased conductivity, porosity, catalytic activity, optical and electrical potential (Ibraheem et al., 2020; Nadeem et al., 2020).

Miscible polymeric composites are of great concern but generally polymers are immiscible in absence of specific type of interactions with them. Polymeric hybrids may possess the weak bonding interactions like hydrogen bonds and van der waals forces between organic and inorganic parts, while few organic/inorganic hybrids contain strong chemical bonds at the interface. These interactions are dependent on size, dispersion form, shape and size distribution of nanoparticles (Adnan et al., 2018). Nanohybrids have potential to detect gases even at ppm concentration. Previously, semiconductor gas sensors (ZnO, SnO₂, NiO, CuO) have been reported for their gas sensing applications and a

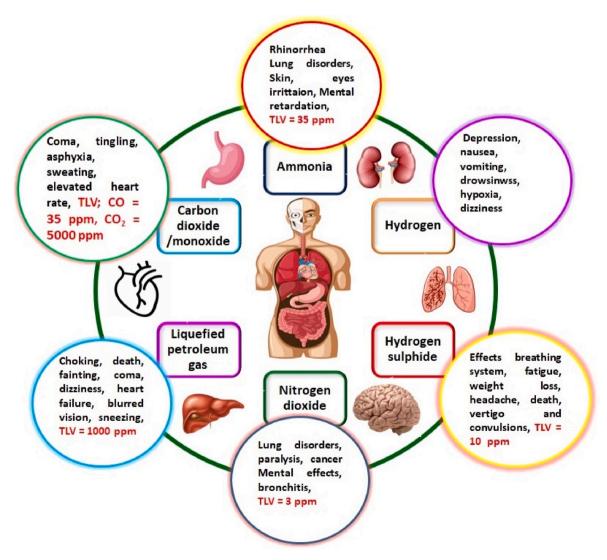


Fig. 1. General representation of health effects of toxic gases on human being. TLV represents threshold limit value.

significant attention was paid to them because of their good sensitivity, cost effectiveness and good capability in detecting wide range of toxic gases (Manjakkal et al., 2020). However, semiconductor based sensors possess lower selectivity, surface defects, poor adsorption potential and lower anti-corrosive properties (Seekaew et al., 2019). Synthesis of nanohybrids opened new dimensions for the researchers to achieve great selectivity with enhanced sensitivity. Conducting polymers including poly (3,4-ethylenedioxythiophene) (PEDOT), polyacetylene (PA), polythiophene (PT), poly (phenylene vinylene) (PPV), polyaniline (PANI) and polypyrrole (PPy) are sensitive materials and they have shown excellent potential in gas sensors because of their conductivity changes upon exposure of gas molecules (Ibanez et al., 2018). These polymers have benefits of cost effectiveness, high functionalities, great stability, short response time, great recovery, facile synthesis and high surface area. Various disadvantages including poor sensitivity, slow response, poor selectivity and poor recovery are also limiting factors associated with their gas sensing performance. Nanohybrids of polymer with inorganic nanomaterials overcome the defects of polymers/metal oxides, enhance their stability, sensitivity and response. Composites of polymers with inorganic nanomaterials including metal oxides, metal oxide semiconductor and other materials are famous class of sensing materials (Farea et al., 2021) with enhanced features like increased sensitivity, great surface area, lowering of sensor working environment and detection of wide range of gases (Nguyen et al., 2013). Different methods like physical, chemical and electrochemical techniques have been employed previously for the synthesis of polymeric/inorganic nanohybrids for gas sensing. In this review, we have focused on synthesis and applications of different polymer/inorganic nanohybrids for sensing of various harmful gases including hydrogen, ammonia, hydrogen sulfide, carbon dioxide, carbon monoxide, nitrogen dioxide and LPG (liquefied petroleum gas). Besides, efforts have been made to

report concentration of analyte, response time, operating temperature, recovery time and advantages and disadvantages of nanohybrid materials in gas sensing process.

2. Polymeric nanohybrids for gas sensors

Previously, metal oxide based semiconductors have been used to sense gases but they need higher operating temperatures. Since 1980's, polymers are used as active-layer of gas sensor (Miasik et al., 1986). Composite of polymeric materials with metal oxides or other inorganic materials can enhance the selectivity and different sensing features due to the synergistic and geometrical effects (Hangarter et al., 2013; Miller et al., 2014). Polymeric materials possess larger surface area and good electrical conductance. When the gas molecules either electron acceptor or donor get adsorbed on the surface of polymer induces change in carrier concentration around polymer, and therefore, variation in resistance occurs (Varghese et al., 2015). Large surface area of polymeric materials enable gas molecules to adsorb in a better way. Various metals based gas sensors have been reported previously for gas sensing (Sharma and Kim, 2018; Zhang et al., 2019b) but efficacy of these devices was improved by synthesizing the nanohybrids of inorganic materials with polymers (Muthusamy et al., 2021; Sonwane et al., 2019). Various inorganic metal oxides may perform as catalyst to decompose gases in free radicals and facilitate their combination with oxygen having functional moieties on polymeric surfaces, and hence, showing great response towards such gases (Karaduman et al., 2017).

2.1. Basic sensing mechanism

Gas sensors consist of the sensing material and these are devices which have the ability to sense toxic gases. Gas sensors are classified on

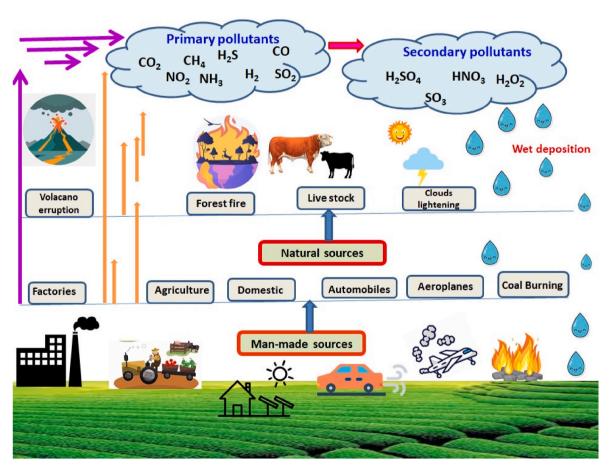


Fig. 2. Representation of Natural and man-made sources responsible for introduction of toxic gases in environment.

the basis of their reaction with atmospheric gases. Different known types of gas sensors are quartz-crystal microbalance, field effect transistors, chemiresistors, etc. From all sensors, chemiresistive sensors are famous because of the facile and cheap synthesis process, easy operation and small in size (Joshi et al., 2018). This sensor can determine the change in resistance of sensing material upon exposure of the target gas. Change in electrical resistance of sensing material occurs after interaction with gases (Banica, 2012). These sensors can be used for monitoring of air quality index, sensing of toxic gases, medical diagnostic purpose and also in food processing because of cost effectiveness, facile operation and good compatibility with other devices (Mirzaei et al., 2016).

The main mechanism involves the direct charge transfer phenomena between polymeric surface and the gas molecule. Inorganic materials (metals etc.) show catalytic potential upon contact with the various gases and while in coordination with polymeric materials, the sensing capacity of nanohybrid is significantly enhanced. During recent years, different groups have synthesized polymer and inorganic nanomaterials based nanohybids for sensing of toxic gases (Gaikwad et al., 2017). Large surface area and provision of many active sites on nanohybrid enable the gas molecules to adsorb on surface of nanohybrid in good manner. In nanohybrids, the polymeric materials prevent the agglomeration of inorganic materials (metal oxides), while metal oxides also play a role in the prevention of polymer fossilization. Different adsorbed oxygen species are formed upon acquisition of electrons by the atmospheric oxygen from oxides conduction band. Depletion layer forms on metal oxides surface which leads to an increase in resistance. After exposure of sensor with measured gas, the electrons from conduction band are captured by target gas and reacts with O2 molecules on sensor surface. This phenomena leads to a decrease in conductance of sensor. Inorganic metal oxides are n-type semiconductors and polymeric materials are p-type semiconductors, thus formation of p-n junction during the process can increase the conductivity and this can be explained through p-n heterostructure theory. The fermi energy level of metal oxides is low in comparison of polymers, thereof, polymer accepts electrons from metal oxide surface which leads to the same fermi energy level of both materials. At this point, the electrons number onto the surface and at the interface of metal oxide decreases, the potential barrier enhances, broadening of depletion layer occurs and eventually sensor resistance changes significantly. The understanding of sensing mechanism is very important to enhance the selectivity and sensitivity of gas sensors. Conductance of n-type semiconductor increases with reducing analyte while it decreases with oxidizing analyte (Tricoli et al., 2010) and vice versa effects are observed with p-type semiconductor where holes are majority of charge carriers. The conductivity increases in the presence of oxidizing gas as number of holes increases while it decreases when reducing gas is incorporated as the concentration of hole charge carrier decreases (Pandey and Nanda, 2013).

2.1.1. Gas-sensing performance parameters

The detection limit, operational temperature, response time, recovery time, stability, sensitivity, repeatability and selectivity are various parameters to determine the performance of gas sensor (Yang et al., 2013). Ratio of resistance when exposed to background and target gas environments represents the sensor response towards reducing gases. Response towards oxidizing gases is represented as ratio of resistance when exposed to target gas and background environment. Sensor response is calculated through the following equations:

$$S = \frac{R_o}{R_-} \qquad \text{(reducing environment)} \tag{1}$$

$$S = \frac{R_g}{R_o} \qquad \text{(oxidizing environment)} \tag{2}$$

 R_o and R_g represent the resistances of sensor in background gas and target gas, respectively while S represents the sensor response. On the basis of electrical response, various approaches are employed for

determining the gas sensor sensitivity. Sensitivity is basically defined as a change in response to certain target gas concentration. The capability of sensor to respond in selective manner, in the presence of numerous materials, is called selectivity. Selectivity feature of a sensor tells that whether sensor can respond selectively to an analyte. Repeatability tells us that how many times sensor result will remain constant when tested under similar environment. Response and recovery time represents the time required to reach 90% of total change in resistance during exposure and removal of gas, respectively. Limit of detection or LOD represents the lowest gas concentration that can be detected via a gas sensor. The temperature at which a gas sensor shows maximum sensitivity is known as a working temperature (Kang et al., 2010).

3. Gas sensing applications of polymeric/inorganic based nanohybrids

Gas sensing performance of different polymeric/inorganic nanohybrids for sensing of different toxic gases including hydrogen, ammonia, hydrogen sulphide, nitrogen dioxide and carbon oxides has been reported in detail in this section (Fig. 3).

3.1. Sensing of ammonia

Ammonia (NH₃) is a toxic, colourless, and harmful gas, which needs to be detected in medical, industrial and living environments (H.-Y. Li et al., 2020b; Z. Li et al., 2020c). It is an atmospherically, industrially and biologically key inorganic compound which can be extensively used in many industries including fertilizer, household cleaners, petroleum, fire power plants, rubber, organic compounds, food processing, medicines, automobile, etc. (Abun et al., 2020; Das and Roy, 2021). However, in these applications, there is a high possibility of ammonia release into the atmosphere, causing severe air pollution. Smaller concentrations of ammonia can exert multiple effects on human health including irritation on eyes, skin and upper respiratory tract along with nausea, dizziness and fatigue (Diana et al., 2018; Li et al., 2020b). On the other hand, higher concentrations of ammonia can cause serious concerns such as cardiac arrest and damage to the birthing system. According to U.S. Occupational Safety and Health Administration (OSHA), the permissible time-exposure limit of ammonia gas is 15 min for 35 ppm and 8 h in case of 25 ppm, after which it becomes hazardous to the human health (Das and Roy, 2021; Fan et al., 2020). Moreover, ammonia is an important component of metabolism and, therefore, it is a typical biomarker of urea imbalance caused by renal disease or H. pylori-induced gastric infection (Tai et al., 2020). Thus, the detection of ammonia gas in exhaled human breath is a unique way of diagnosing kidney diseases. In short, highly sensitive, instant, accurate and effective ammonia gas sensing at room temperature has become an important factor for health care, environmental monitoring and industrial safety.

Wu and his colleagues reported the fabrication and ammonia sensing characteristics of polyaniline (PANI) based nanohybrid sensor modified with graphene (G) as an additive on porous polyvinylidene fluoride (PVDF) substrate (Q. Wu et al., 2021). In-situ polymerization method has been used to prepare the G-PANI-PVDF film (Fig. 4a). In short, G-PVDF film was produced by dipping the PVDF substrate in the graphene-ethanol mixture. G-PVDF films were then immersed in a mixture of aniline and HCl under magnetic stirring followed by the immersion in the mixture of ammonium peroxydisulfate (APS) and HCl. The polymerization of aniline on G-PVDF films was identified by the change in colour from grey-white to dark green of the films. In the end, silver electrodes were produced by screen printing on the prepared G-PANI-PVDF films. The ammonia sensing properties of the synthesized flexible sensor was analysed by self-made testing system (Fig. 4b), which can record the data points and transfer the numerical values to the computer through Bluetooth. The results showed that the response and recovery time of PANI based sensor decreased from 150 s to 46 s and from 300 s to 198 s, respectively, by incorporating graphene. The lower

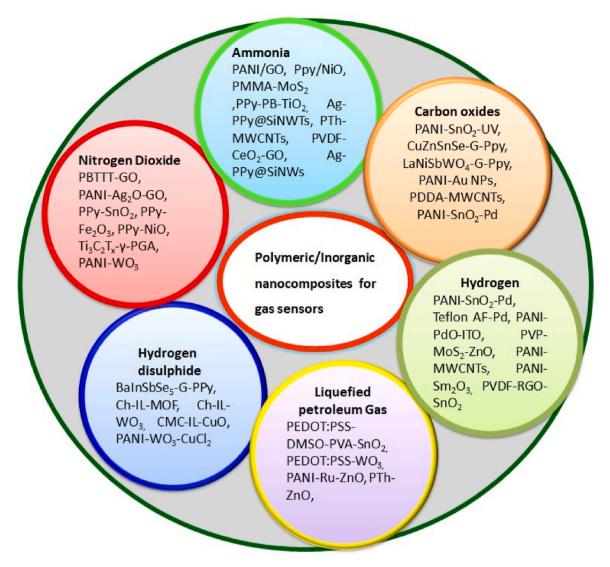


Fig. 3. Gas sensing applications of various polymeric/inorganic nanohybrids.

detection limit of prepared sensor was 100 ppb. The maximum response value for G-PANI-PVDF sensor was observed to fluctuate around 12% after 1500 bending/extension. This behaviour shows that the addition of graphene significantly enhances the bending stability of the prepared nanohybrid sensor. In addition to the sensitivity and stability, a good linear relationship between sensor response and temperature or relative humidity was also evident. The improved sensing behaviour of G-PANI-PVDF sensor was attributed to: (i) reversible acid-base doping process of PANI, (ii) effective charge transport route via graphene sheets, and (iii) multi-hierarchical porous structure provided by PVDF (Q. Wu et al., 2021).

Hu and his colleagues investigated the ammonia sensing ability of an intriguing material prepared by the polymerization of aniline on hollow nickel oxide (NiO) (Hu et al., 2021), as shown in Fig. 5. The hollow NiO–CuO structure was formed by solvothermal reaction followed by calcination. Then, CuO was etched in HCl and the polymerization of aniline was attained on the hollow structure, resulted in a spherical hollow composite of PANI-h-NiO. The sensor response was observed to be directly proportional to the concentration of ammonia, with a linear behaviour within the range of 1–10 ppm. The PANI-h-NiO sensor showed a better response of 43.1% at 10 ppm as compared to 28.7% and 12.6% for PANI-NiO and PANI, respectively. Furthermore, the composite sensor (PANI-h-NiO) displayed excellent selectivity for ammonia

against water, VOCs and humidity along with the superb repeatability and long term stability. The excellent sensing performance of PANI-h-NiO sensor was related to two aspects: (i) larger surface area and more active sites provided by hollow structure, and (ii) p-p heterojunction at the interface between PANI and NiO (Hu et al., 2021).

Wang and co-workers reported the use of polyaniline (PANI) along with copper ferrite ($CuFe_2O_4$) to prepare the heterostructure composite, coated onto a substrate with electrodes, for high-performance ammonia sensing (Wang et al., 2020b). The experimental outcome revealed that the composite sensor (PANI- $CuFe_2O_4$) showed higher response of 27.37% at 5 ppm concentration of ammonia, which was significantly better than the one observed for pristine $CuFe_2O_4$ or PANI films. This superior sensing capability of as-synthesized composite sensor was associated to the p-n junction between PANI and $CuFe_2O_4$, which formed an electric field and converted the ammonia concentration into resistive changes. Therefore, this sensor presented an easier way to utilize PANI- $CuFe_2O_4$ nanohybrid sensor to detect lower concentrations of ammonia gas (Wang et al., 2020b).

Likewise, Fan and colleagues prepared the hierarchical nanohybrid sensor for ammonia detection using ultrasonic spray assisted in-situ polymerization to produce polyaniline (PANI) on tungsten trioxide (WO₃) nano-plates by intercalation-exfoliation process with varying molar ratios of aniline/WO₃ (Fan et al., 2020). The nanohybrid sensor

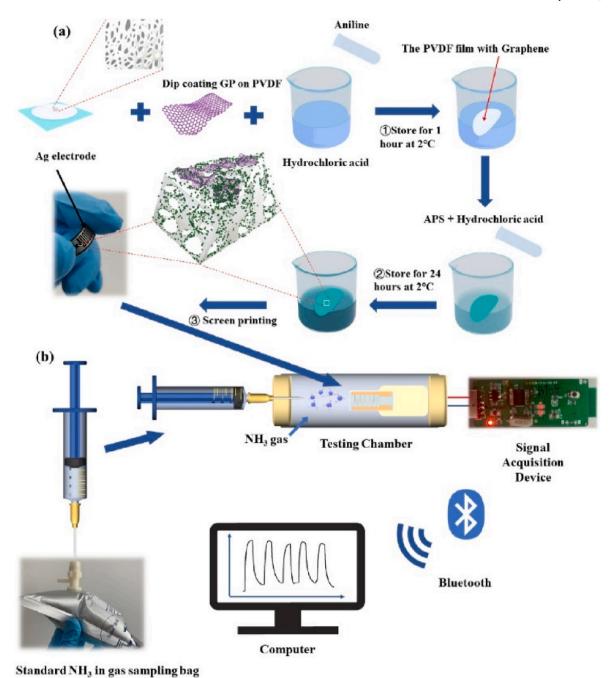


Fig. 4. (a) Fabrication scheme of G-PANI-PVDF sensor; (b) The schematics of testing system for gas sensing performance. Reprinted with permission from (Q. Wu et al., 2021).

(PANI-WO₃) displayed better ammonia sensing ability than the PANI nanocrystals or WO₃ nano-plates under same working conditions. At optimized molar ratio of aniline/WO₃ (2.5), the sensor exhibited a higher response of 34 at 100 ppm concentration of ammonia at room temperature. It was also observed that PANI primarily controlled the ammonia gas sensing properties of PANI-WO₃ sensor. A doping reaction (Fig. 6a) was found to occur as ammonia gas exposed to the sensor, which basically means the generation of NH₄ $^+$ by capturing a proton from NH $^+$ group of PANI, which eventually resulted in the conversion of emeraldine salt (ES) to emeraldine base (EB), along with an increased resistance. In order to clearly understand the sensing mechanism, the possible energy diagram is presented in Fig. 6b and c. A typical p-n junction was formed at the interface between the p-type PANI and n-type WO₃, due to the difference in energy-gap of PANI and WO₃. In the

presence of ammonia gas, a high resistance state was developed due to the capturing of holes from PANI by the NH_3 molecules and this lead to enhancement of depletion region of the p-n heterojunction. Moreover, the hierarchical structure of PANI-WO $_3$ nanohybrid provided the ample flow channels for ammonia gas, which eventually resulted in faster adsorption/desorption of NH_3 molecules, better electron transport and enhanced ammonia sensing process (Fan et al., 2020). Several other researchers have also reported the synthesis and ammonia sensing capability of nanohybrid sensor based on polyaniline and different nanomaterials including graphene oxide (Javadian-Saraf et al., 2021), MoS_2 – SnO_2 (A. Liu et al., 2021), Nb_2CT_x (Wang et al., 2021), SWCNTs (Ansari et al., 2020), MWCNTs (T. Wu et al., 2020a), CuO (Ahmadi Tabar et al., 2020), etc.

In addition to polyaniline (PANI), polypyrrole (PPy) has also been

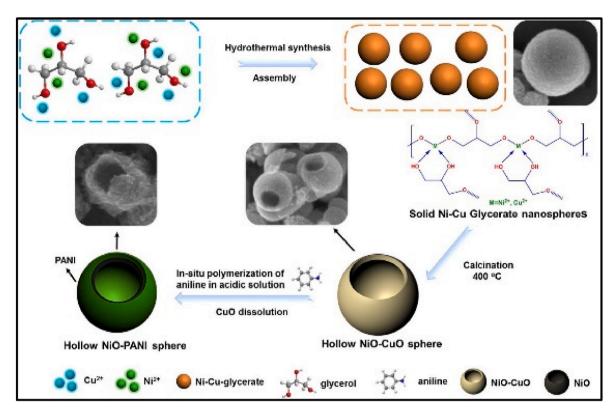


Fig. 5. Preparation scheme of PANI-h-NiO sphere composite for ammonia sensing at room temperature. Reprinted with permission from (Hu et al., 2021).

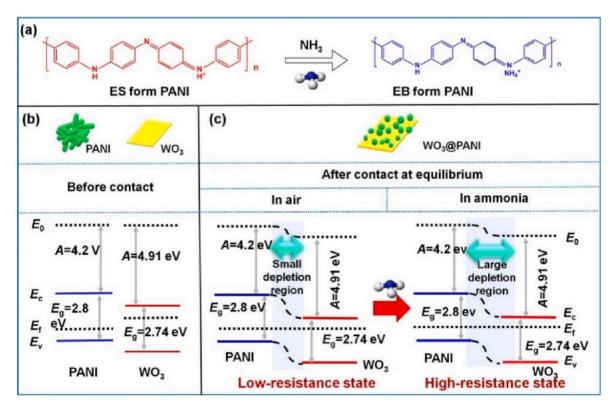


Fig. 6. (a) Reaction between PANI and NH₃ gas; Energy band diagrams of (b) PANI, WO₃ and (c) PANI-WO₃ heterojunction. Reprinted with permission from (Fan et al., 2020).

extensively used to fabricate the nanohybrid sensor for ammonia gas sensing. For instance, Qin and co-workers developed the composite sensor based on silver nanoparticles (Ag NPs) modified polypyrrole at

silicon nanowires (SiNWs) for ammonia sensing under high humidity (Qin et al., 2020). The wrapping of PPy shell on loose silicon nanowires was achieved by vapour phase polymerization in the presence of $AgNO_3$

as an oxidant, which resulted in decorated Ag NPs on the PPv shell layer. The experimental results showed a higher response of 1.45-4.26 for 1-12 ppm concentration of ammonia at 80% relative humidity (RH), in case of Ag-PPy-SiNWs sensor. The response of Ag-PPy-SiNWs sensor (3.2) at 6 ppm was 78% and 208% higher than pristine PPy-SiNWs (1.8) and SiNWs (1.04), respectively (Qin et al., 2020). These results clearly indicated the efficacy of silver nanoparticles functionalization on the improvement of ammonia sensing ability of prepared sensor. Moreover, by increasing the humidity from 50% RH to 80% RH, the Ag-PPy-SiNWs sensor response decreased by 53%. The combined role of electronic sensitization, chemical sensitization and anti-humidity of the silver nanoparticles were mainly responsible for the enhanced ammonia sensing of Ag-PPy-SiNWs sensor, as compared to the sensors without the functionalization of Ag NPs. Therefore, this study presented a rapid, selective, ultrasensitive and reversible ammonia gas sensor under high humid conditions for clinical diagnosis. In addition to this, polypyrrole (PPy) has been utilized to prepare nanohybrid sensors for ammonia gas detection at room temperature by incorporating several nanomaterials such as TiO₂ (Muthusamy et al., 2021), SnO₂-GNR (Hsieh et al., 2021), NiO (Thi Hien et al., 2021), Ag-Ag₂O (Shoeb et al., 2021), graphene oxide (Shahmoradi et al., 2021), WO₃ (Albaris and Karuppasamy, 2020), V₂O₅-WO₃ (Amarnath et al., 2020), ZnO (P. Singh et al., 2021), Au (Li et al., 2020c), etc.

Abun and colleagues reported the fabrication of ammonia gas sensor through polymethyl-methacrylate (PMMA) supported exfoliation of molybdenum disulfide (MoS2) multi-layered nano-sheets by ultrasonication technique (Abun et al., 2020). The results depicted an enhanced response of 54% for PMMA-MoS2 sensor, which was tremendously superior to the bulk MoS2 (15.2%) at 500 ppm concentration of NH3. Furthermore, the as-synthesized PMMA-MoS2 nanohybrid sensor showed outstanding selectivity to C₃H₆O, H₂ and CO₂. The higher sensing performance of PMMA-MoS₂ sensor was linked to the existence of structural defects and oxygen functional groups, which strongly enhances the sensing ability. Thus, the improved gas sensing characteristics of surface modified PMMA-MoS2 nanohybrid sensors are quite favourable and sustainable as compared to the existing MoS₂ sensors for ammonia gas (Abun et al., 2020). Efficiency of various polymeric/inorganic nanohybrids for detection of ammonia has been given in Table 1.

3.2. Sensing of nitrogen dioxide

Among numerous greenhouse gases, nitrogen dioxide (NO2) is recognized by World Health Organization (WHO) as one of the most dangerous, toxic and hazardous airborne contaminants (W. He, Zhao and Xiong, 2020). NO2, a reddish-brown gas with pungent smell, is typically released into the atmosphere because of automotive exhaust, fossil fuels, thermal power plants, blasting of explosives, metal refining industries, ignition of propellants, food processing, etc. (Li et al., 2020a; Mirzaei et al., 2020; S. Zhao et al., 2019). This release of NO₂ causes a detrimental effect on environment such as acid rain, formation of ozone and photochemical smog (W. He et al., 2020; J. Wu et al., 2020b). Apart from this, the exposure of even lower concentrations of NO2 can exert serious effects on human health including respiratory irritation, emphysema, asthma, bronchitis nausea, lung cancer, paralysis, and even death (Zhuang et al., 2019). NO₂ has also been identified as a biomarker for diagnosing gastric and lungs diseases (Z. Li, Liu, Guo, Guo and Su, 2018). Therefore, it is highly required to develop a selective, highly sensitive, reliable and stable gas sensor to detect NO2 at room temperature for clinical diagnosis and environmental protection.

For example, Umar and colleagues examined the NO_2 sensing capability of nanohybrid sensor based on polyaniline-silver oxide-graphene oxide (PANI-Ag₂O-GO) (Umar et al., 2021). In order to fabricate the composite sensor, the dispersed solutions of graphene and PANI/Ag₂O in deionized water were mixed together (see Fig. 7a). The prepared mixture was then placed on the platinum microelectrodes fixed

over the alumina ceramic chips (interdigitated electrodes) via drop and dry method (see Fig. 7b). The sensing performance of the composite sensor was estimated by a computerized characterization instrument (see Fig. 7c). The target gas was exposed to the sensor through the gas cylinder and the measurements were recorded by a data acquisition system. The results indicated the two-fold higher response for PAN-I-Ag₂O-GO sensor (5.85) as compared to the PANI (2.5) and PANI-Ag₂O (3.25) sensors, when exposed to 25 ppm NO₂ at 100 °C. The enhanced gas sensing response of nanohybrid sensor (PANI-Ag₂O-GO) was attributed to the charge transfers between the adsorbed NO2 gas molecules and the nanohybrid surface. The adsorbed NO2 molecules on the surface of PANI-Ag₂O-GO dissociated into nitric oxide (NO) or dinitrogen oxide (N2O). This dissociation of NO2 molecules was facilitated by π - π conjugation system formed between PANI and Ag₂O/GO, which eventually provided a huge π electronic cloud and excellent electron transfer path (see Fig. 7d). Thus, the presented sensor is an excellent candidate for detecting NO₂ gas at low temperature (Umar et al., 2021).

Similarly, polyaniline (PANI) was also used to fabricate a novel bilayer thin film sensor based on tungsten trioxide (WO₃) via hydrothermal process and in-situ chemical oxidative polymerization processes (W. He et al., 2020). This bilayer composite sensor was developed on the fluorine-doped tin oxide (FTO) glass substrate for NO₂ gas sensing. The experimental outcome showed three times higher response for composite sensor as compared to the pure WO₃ sensor, when the sensor was exposed to 30 ppm NO₂ at 50 °C. The lower detection limit of NO₂ for the fabricated composite sensor was 2 ppm. The improved gas sensing behaviour of composite sensor was attributed to (i) the formation of p-n junctions between n-type WO₃ and p-type PANI, (ii) the larger surface area, (iii) increased oxygen vacancies, and (iv) a broad conduction channel.

Recently, Zhao and colleagues exploited the blocking effect of γ-poly (l-glutamic acid) (γ -PGA) to enhance the NO $_2$ gas sensing performance of titanium carbide (Ti₃C₂T_x) (Q. Zhao et al., 2021). Titanium carbide nanosheets were prepared via a two-step procedure: (i) dispersion of titanium aluminium carbide (Ti₃AlC₂) in aqueous solution of hydrofluoric acid (etching solution) and (ii) incorporation of aqueous solution of tetramethylammonium hydroxide (TMAOH) for intercalation. The γ-PGA-Ti₃C₂T_x composite was prepared by mixing aqueous solutions of Ti₃C₂T_x nanosheets and γ-PGA. The composite sensor was then fabricated by spraying the γ -PGA-Ti₃C₂T_x composite solution on the gold interdigitated electrode placed on the flexible polyimide substrate. The gas sensing characterization revealed the higher response of γ-PGA--Ti₃C₂T_x composite sensor (1127.3%), which was observed to be 85 times than the response of Ti₃C₂T_x sensor (13.2%). Furthermore, the as-synthesized γ-PGA-Ti₃C₂T_x composite sensor not only displayed a shorter response and recovery times (43.4 s and 3 s), as compared to Ti₃C₂T_x sensor (18.5 s and 18.3 s), but also exhibited a remarkable repeatability and reversibility at room temperature under 50% RH. This outstanding sensor response was associated to two aspects: (i) efficient adsorption of gas molecules and (ii) enhanced blocking effect from water molecules. The water film was observed to form on the surface of γ -PGA film by the adsorption of water molecules from the air on the surface. In the presence of lower concentration of NO2, the reaction between gas molecules and water occurred and resulted in NO₃⁻ and H⁺ ions, which ultimately reduced the film resistance. On the other hand, when the film was exposed to higher concentrations of NO₂, there was a competition between water molecules and gas molecules for the adsorption at the surface, which eventually created a blocking effect and an increase in film resistance. This competition was optimized by varying the Ti₃C₂T_x amount in the composite, which further enhances the gas sensing capability. This study presented a unique way of enhancing the gas sensing properties of $Ti_3C_2T_x$ by $\gamma\text{-PGA}$ modification (O. Zhao et al., 2021).

Zhang and colleagues investigated the gas sensing properties of PPy-NiO nanohybrid sensor by varying the molar ratios of the individual components (Zhang et al., 2020b). At optimal molar ratio between PPy

Table 1
Literature survey on the sensing performance of polymeric/inorganic nanohybrids for ammonia gas.

Sensing materials	Target gas	Conc.	Response	Response time (s)	Recovery time (s)	Operating temp. (°C)	Adv. Or disadv.	Ref.
PPy-PB-TiO ₂	NH ₃	100 ppm	78%	-	-	RT	High sensitivity and selectivity towards NH ₃	Muthusamy et al. (2021)
PANI-GO	NH_3	-	-	150	400	RT	Low-cost and highly selective for NH ₃	Javadian-Saraf et al. (2021)
PPy-SnO ₂ -GNR	NH_3	1 ppm	92.7%	_	_	RT	Outstanding repeatability and selectivity	Hsieh et al. (2021)
PEDOT:PSS- AVNF	NH_3	50 ppm & 100 p.	18.4% 260%	-	-	RT	Enhanced NH ₃ sensitivity	Lee et al. (2021)
PANI-MoS ₂ - SnO ₂	NH_3	m. 100 ppm	1090%	21	130	RT	Good repeatability, acceptable flexibility and excellent selectivity	(A. Liu et al., 2021)
PANI-PVDF-G	NH_3	1 ppm	60%	46	198	RT	Excellent flexibility with stable response time after 1500 bending/extending cycles	(Q. Wu et al., 2021)
PANI-PET:NH ₂ - MWCNTs	NH ₃	50 ppm	117%	47	-	RT	Good gas-sensing performance to NH ₃	Ma et al. (2021)
PPy-NiO	NH ₃	45 ppm & 350 ppm	65% 246.6%	12	178	RT	High sensitivity to NH ₃ gas	Thi Hien et al. (2021)
PANI-Nb ₂ CT _x	NH ₃	10 ppm & 50 ppm	74.68% 205.4%	218	300	RT	Superior selectivity, high sensitivity, low detection limit and good long-term reliability	Wang et al. (2021)
PANI-h-NiO	NH ₃	10 ppm	43%	149	257	RT	Superb anti-interference along with the superior repeatability in 5 cycles and long-term stability in a week	Hu et al. (2021)
PPy-G-Ag-Ag ₂ O	NH_3	_	_	60	40	RT	Excellent selectivity toward NH ₃	Shoeb et al. (2021)
PPy-SRGO	NH ₃	-	-	48	234	28	Good repeatability and high selectivity to low- concentration ammonia	Shahmoradi et al. (2021)
PANI-RGO	NH_3	100 ppm	620%	219	541	RT	Remarkable long-term stability, good selectivity, low detection limit and low power consumption	Luo et al. (2021)
LaNiMoSe ₂ -G- PANI	NH ₃	-	-	7–15	6–35	RT	Excellent detection ability with reproducibility	Oh et al. (2021a)
PANI-SnO ₂	NH_3	7 ppm & 90 ppm	200%, 102%	44 33	915 33	RT RT	-	Feng et al. (2021)
PANI-SWCNTs	NH_3	10 ppm	24–25%	1–4	8–10	RT	Excellent stability up to four cycles for consecutive 10 days	Ansari et al. (2020)
PVP-CuO	NH_3	10 ppm	23.8%	17	15	RT	Highest sensitivity, excellent reproducibility, long-term stability and complete data reliability of 90 days with very small variation	Khan et al. (2020)
PPy-GO-WO ₃	NH ₃	10 ppm	58%	50	120	RT	Improved stability for the period of 50 days	Albaris & Karuppasamy (2020)
PPy-V ₂ O ₅ -WO ₃	NH_3	50 ppm	85%	73	101	RT	High selectivity towards NH ₃ gas	Amarnath et al. (2020)
PANI-PVDF- MWCNTs	NH ₃	1 ppm	32%	76	26	RT	Good flexibility and minor decline in response value after 500 bending cycles	(T. Wu et al., 2020b)
PANI-SrGe ₄ O ₉	NH ₃	10 ppm	208%	62	223	RT	Supersensitive and ultra-low detection limit	(Y. Zhang et al., 2020a)
PANI-CuFe ₂ O ₄	NH_3	5 ppm	27.37%	84	54	RT	Excellent sensitivity toward NH ₃ gas	Wang et al. (2020b)
PMMA-MoS ₂	NH ₃	500 ppm	54% 320%	10	14 94	RT RT	Excellent sensitivity and selectivity Excellent NH ₃ sensing	Abun et al. (2020)
Ag- PPy@SiNWs PTh-MWCNTs	NH ₃	6 ppm 2000	88.7%	<6 100	90	RT	Extraordinary sensitivity, reversibility,	Qin et al. (2020) Husain et al. (2020)
PANI-Ph-RGO	NH ₃	ppm 100 ppm	773%	300	800	RT	selectivity and stability Low detection limit, good stability and	Tanguy et al.
							selectivity, wireless, chip less, and potentially fully printable	(2020)
PPy-GO- LiCuMo ₂ O ₁₁	NH ₃	100 -	-	50	45	RT	Higher sensing performance and selectivity	Oh et al. (2020)
PANI- CuO@3D- NGF	NH ₃	100 ppm	930%	30	57	RT	Outstanding low detection limit, excellent sensing performance and cheaper	Ahmadi Tabar et al. (2020)
P3HT-RGO- MWCNTs	NH ₃	10 ppm	3.6%	30	-	RT	-	Khanh et al. (2021)
PVDF-CeO ₂ -GO	NH ₃	50 ppm	1232%	106	11	RT	Strong response to NH ₃ gas with enhanced gas sensing properties	Deshmukh & Pasha (2020)
ZnO-en-PPy	NH ₃	100	265004	45 7	55 7	RT	Stability for 90 days	(P. Singh et al., 2021)
PPy-Au	NH ₃	100 ppm	2650%	7 ~30	7 ~390	RT RT	Stable and ultrahigh sensitivity even during repeated deformation Excellent stability and selectivity	Li et al. (2020c)
PANI-WO ₃ PANI-GO-ZnO	NH ₃ NH ₃	100 ppm 300 ppm	3400% -	~30 2	~390 164	- -	Excellent stability and selectivity Fast response	Fan et al. (2020) Gaikwad et al. (2017)
PANI-WO ₃	NH_3	100 ppm	121%	32	-	RT	Strong response to ammonia	Kulkarni et al. (2019)

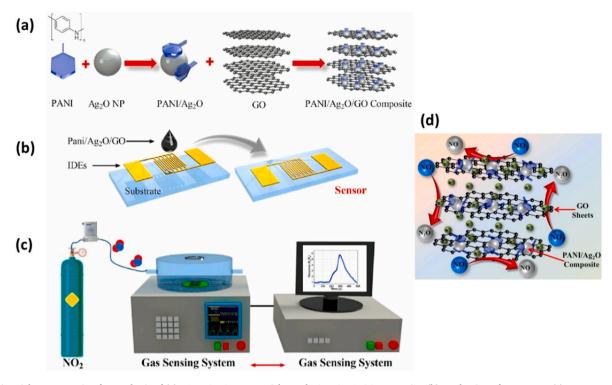


Fig. 7. Pictorial representation for synthesis of (a) PANI/Ag₂O nanoparticles and PANI-Ag₂O-GO composite; (b) Production of gas sensor; (c) Measurement of NO₂ sensing performance on prepared sensor; (d) Gas sensing mechanism of prepared PANI-Ag₂O-GO nanohybrid sensor for NO₂ gas. Reprinted with permission from (Umar et al., 2021).

and NiO, the response of the composite sensor (PPy-NiO) was 30 times higher than the bare NiO sensor along with the lower detection limit of 49 ppb. The flow of electrons from PPy to NiO resulted in greater variation in hole concentration and enhanced carrier mobility before or after NO $_2$ exposure (J. Zhang et al., 2020a). This heterojunction resistance was reduced by further increasing the molar concentration of PPy, which eventually resulted in lower sensitivity of prepared nanohybrid sensors. Thus, a suitable amount of PPy is important to fabricate a sensitive composite sensor for NO $_2$ detection. In addition to NiO, several other nanomaterials such as SnO $_2$ (Sakhare et al., 2021), graphene oxide (Guettiche et al., 2021), Fe $_2$ O $_3$ (Wang et al., 2020a), etc. were also

reported to fabricate PPy based nanohybrid sensors for detecting NO_2 gas. The sensing performance of different polymeric nanohybrid for NO_2 gas has been provided in Table 2.

3.3. Sensing of hydrogen

Hydrogen (H_2) gas is colourless, odourless, tasteless and highly flammable under normal conditions when released into the air (Ibraheem et al., 2021). It is widely used in many industries such as metal smelting, semiconductor processing, petroleum extraction, chemical processing and glassmaking because of its strong reducing

Table 2Literature survey on the sensing performance of polymeric/inorganic nanohybrids for NO₂ gas.

Sensing materials	Target gas	Conc.	Response	Response time (s)	Recovery time (s)	Operating temp. (°C)	Adv. Or disadv.	Ref.
PANI-Ag ₂ O- GO	NO_2	25 ppm	585%	100	140	100	Stability for 6 days	Umar et al. (2021)
GO-PEDOT: PSS-LGS	NO_2	100 ppm	570%	35	10	RT	Good cycling stability, excellent sensitivity and a low detection limit	Pasupuleti et al. (2021)
PPy-RGO: aryl:COOH	NO_2	2 ppm	30%	129	114	RT	Good functionality and stability under harsh environment	Guettiche et al. (2021)
PBTTT-GO	NO_2	10 ppm	174%	75	523	RT	Simple fabrication process for mass production and low cost	Sahu et al. (2020)
PPy-SnO ₂	NO_2	100 ppm	53.7%	33	881	RT	Highest selectivity towards NO_2 gas together with reproducibility kinetics	Sakhare et al. (2021)
$Ti_3C_2T_x$ - γ -PGA	NO_2	50 ppm	1127.3%	43	3	RT	High response kinetics, good repeatability, reversibility, and baseline stability. The batch consistency needs to be improved for practical applications along with the service life.	(Q. Zhao et al., 2021)
PPy-Fe ₂ O ₃	NO_2	10 ppm	221%	150	879	50	High selectivity and response to NO ₂	Wang et al. (2020a)
PPy-NiO	NO_2	60 ppm	4500%	-	-	RT	-	(J. Zhang et al., 2020a)
PANI-WO ₃	NO_2	2 ppm	118%	-	-	50	Good stability and selectivity	(W. He et al., 2020)
PPy-pTSA-Ag	NO_2	100 ppm	68%	148	500	RT	Fast response and great reproducibility	Karmakar et al. (2017)

characteristics. Moreover, hydrogen can be utilized for environmental, biomedical and seismic monitoring for detecting particular type of environmental pollution, bacterial diseases, etc. (Punetha et al., 2020). Due to its high energy content, low molecular weight and combustibility without producing any toxic gases (De Vrieze et al., 2020; Pareek et al., 2020), it is considered as a valuable source of carbon-free energy for many industries including fuel cell, nuclear, space and automobile (Frischauf, 2016). However, its applications are seriously restricted by its explosive nature for wide range of concentrations (4–75 vol%) (Punetha et al., 2020). Therefore, the development of sensors to detect even minute concentrations of $\rm H_2$ is critically required.

For instance, Ostergren and colleagues reported the fabrication of nanohybrid sensor based on fluorinated polymer (Teflon AF) and colloidal palladium (Pd) nanoparticles for efficient plasmonic sensing of H_2 (Östergren et al., 2021). The continuous flow process was used to prepare the single crystal Pd nanoparticles coated with polyvinylpyrrolidone (PVP) (see Fig. 8a). The TEM images showed the uniform cubic shape and a narrow particle size distribution (PSD) of the prepared Pd nanoparticles (see Fig. 8b). The nanohybrid was synthesized by mixing the polymer powder with the nanoparticle suspension. In the end, the mixture was processed in a micro-extruder to form filaments of nanohybrid, which were then either melt-pressed to form plate

or 3D printed to form complex shape. The complete dispersion of Pd nanoparticles, without any aggregation, into the polymer matrix was verified by the TEM images of cryo-fractured composite plates (see Fig. 8c). However, the nanoparticles were transformed into spherical shape from the cubic shape having sharp edges, which was linked to the processing at high temperatures (250 °C). The colour of the melt-pressed plates was observed to be completely transparent for Teflon AF while dark brown for composite plate having 6.2×10^{-3} vol% Pd (see Fig. 8d), which was associated to the localized surface plasmon resonance (LSPR) of the nanoparticles. The gas sensing results showed a faster response time of 2.5 s for 100 µm thick nanohybrid (Teflon AF-Pd) plate exposed to H₂ gas, along with the lower detection limit of 30 ppm. Furthermore, the nanohybrid material was 3D printed to form a sensor cap, which can be fitted on a standard optical fibre connector. The outcome displayed that the sensor cap was quite robust in sensing H₂ for multiple exposures (100 times) at 40,000 ppm. This research demonstrated a viable route for melt-processing the polymer-Pd nanohybrids for plasmonic sensing of H₂ (Östergren et al., 2021).

As already described for other gases, polyaniline (PANI) has been used to fabricate composite sensors for remarkable sensing of H_2 gas as well. For example, Pippara and colleague fabricated a unique composite film based on the amalgam of polymer, metal and semiconductor for H_2

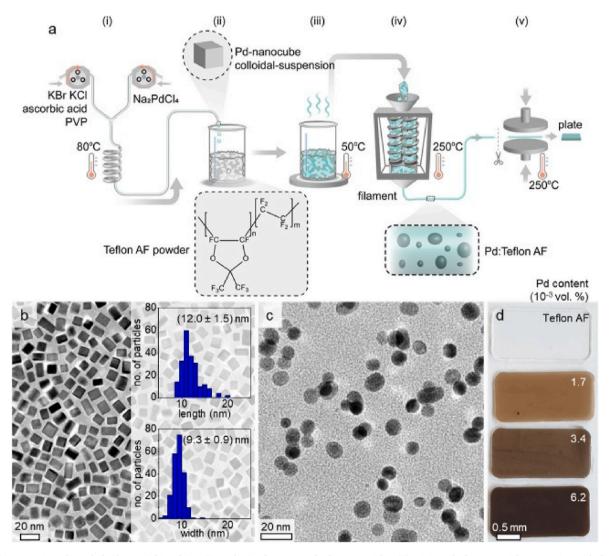


Fig. 8. (a) Preparation of nanohybrid material involving (i) synthesis of PVP-coated Pd nanoparticles, (ii) mixing of Pd nanoparticle suspension with the polymer, (iii) drying of Pd-polymer mixture, (iv) melt extrusion, and (v) melt pressing; (b) TEM image of Pd nanoparticles with length and width histograms; (c) TEM image of Pd nanoparticles incorporated in Teflon AF and (d) melt-pressed plates of neat Teflon AF and its nanohybrids (0.5 mm-thick) Reprinted with permission from (Östergren et al., 2021).

gas sensing at room temperature (Pippara et al., 2021). Nanohybrid film, based on tin oxide (SnO2) nanosheets and PANI doped with Pd, was prepared via hydrothermal process. The computational results showed a considerable improvement in the H2 sensitivity of (i) SnO2 because of doping with Pd and (ii) PANI due to the presence of SnO2. The gas sensing experiments revealed a highest sensitivity of 540% for the SnO₂-Pd film at 4000 ppm of H₂ while the highest performance factor was observed for the composite film, PANI-SnO₂-Pd (Pippara et al., 2021). Likewise, Arora and Puri developed a hetero-structure composite sensor based on polyaniline (PANI), palladium oxide (PdO) and indium tin oxide (ITO) for H2 gas sensing at room temperature (Arora and Puri, 2020). Nanohybrid (PANI-PdO) was prepared by using in-situ wet chemical polymerization process. The prepared nanohybrid was then deposited on the ITO layer coated glass substrate via spin coating technique. The gas sensing results displayed a two fold increase in the sensitivity of the composite sensor (PANI-PdO-ITO) at 10,000 ppm of H₂, as compared to the bare PANI sensor. Moreover, this sensitivity of composite sensor also showed an increase with the increasing content of PdO from 5 wt% to 10 wt% (Arora and Puri, 2020). Hence, the authors presented a facile and economical approach for fabricating highly efficient, responsive, sensitive and handheld H2 gas sensors, without the requirement of expensive interdigitated electrodes. Same polymer (i.e., PANI) was also used to develop composite sensors for H2 gas based on other nanomaterials such as Sm₂O₃ (Jamnani et al., 2020), MWCNTs (Bafandeh et al., 2020), etc.

Goel and colleagues presented a hybrid sensor (PVP–MoS₂–ZnO) for H₂ gas detection at lower temperatures (Goel et al., 2021). The hybrid film was prepared by decorating the surface of ZnO film (obtained via magnetron sputtering) with the variable concentrations of MoS₂-PVP nanohybrid (prepared through polymer supported liquid exfoliation). This decoration was found to increase the surface area and the number of adsorption sites for H₂ molecules, which eventually enhanced the gas sensitivity. At optimal concentration of MoS₂-PVP (i.e., 5 mg/mL), the composite sensor (PVP–MoS₂–ZnO) exhibited almost 8 times higher sensing response than the bare ZnO sensor at 50 ppm H₂ concentration. The enhanced sensing capability of as-fabricated composite sensor (PVP–MoS₂–ZnO) was attributed to the (i) spill-over effects and (ii) electronic sensitization (ES). Hence, the reported hybrid sensor with excellent hydrogen sensing ability indicated a significant role of PVP-MoS₂ in hydrogen detection (Goel et al., 2021).

Similarly, Punetha and colleagues developed a tertiary nanohybrid sensor based on polyvinylidene fluoride (PVDF) polymer and two nanomaterials including tin oxide (SnO $_2$) and reduced graphen oxide (RGO) for H $_2$ gas sensing (Punetha et al., 2020). The hot press method

was used to fabricate the nanohybrid film having fixed concentration ratio between polymer and nanomaterials (0.9 and 0.1), however, with varying ratios between both nanomaterials (SnO $_2$ and RGO). The sensor was fabricated by placing the composite film on the interdigitated chromium electrode via electronic beam evaporation technique. The experimental outcome showed that the composite sensor (PVDF-SnO $_2$ -RGO) having 0.75/0.25 ratio between SnO $_2$ /RGO exhibited 49.2% sensing response and 34 s response time at 100 ppm concentration of H $_2$ (Punetha et al., 2020). This tertiary nanohybrid sensor explored a new way to fabricate reliable, flexible and high performance sensor for H $_2$ gas (Table 3).

3.4. Sensing of hydrogen sulfide

Hydrogen sulfide (H2S) is a colourless, toxic, extremely hazardous, highly corrosive, combustible, and potentially lethal gas primarily recognized from its smell of rotten eggs (Cheng et al., 2019). It is extensively produced in large quantities from various industries including wastewater treatment, petroleum refining, coke ovens, leather manufacturing, paper mills, food processing, mining industry, livestock farming, glue manufacturing and construction (A. Ali et al., 2021; Xu and Townsend, 2014). H₂S is also emitted from the natural sources such as natural gas, crude petroleum, volcanos, hot spring and the bacterial breakdown of human, animal and food wastes in the absence of oxygen (F. I. M. Ali et al., 2020a; R. He, Xia, Bai, Wang and Shen, 2012). The exposure of this lethal gas at lower concentrations can cause severe health effects including sore throat, dizziness, eye inflammation, headache, damaging respiratory and nerve system, poor memory and losing consciousness (Y. Wang et al., 2020c). However, at very high concentrations of H2S, immediate death can also occur which makes it a silent killer (Kimura, 2011). Therefore, an efficient and faster detection of H₂S gas are crucial for protecting human health and environment.

Metal organic frameworks (MOFs) possess highly ordered structure, ultra-porosity and great surface area for adsorption (Mehtab et al., 2019; Rasheed et al., 2020; Rasheed and Rizwan, 2022). The geometry of metal and structure of linkers give an ordered framework with strong bonds which is an important requirement for the stability of sensor material. MOFs possess tuneable pores, great catalytic potential and thermal stability. Owing to these features, MOFs are widely used in sensing of volatile organic compounds. MOFs possess great synthetic-flexibility which made them eligible for tuning of mechanical, electrical and optical features. MOFs have high energy band gap due to the use of insulating ligands and also bad overlapping between p orbitals of the ligands and d-orbitals of metal ions. Due to these issues, MOFs do

Table 3Literature survey on the sensing performance of polymeric/inorganic nanohybrids for hydrogen gas.

Sensing materials	Target gas	Conc.	Response	Response time (s)	Recovery time (s)	Operating temp. (°C)	Adv. Or disadv.	Ref.
PANI-SnO ₂ - Pd	H_2	50 ppm & 350 ppm	19.2%, 353.7%	39	53	RT	-	Pippara et al. (2021)
Teflon AF-Pd	H_2	11	-	2.5	-	RT	Robust sensing in a long term test of 100 exposures	Östergren et al. (2021)
PVP-MoS ₂ - ZnO	H_2	50 ppm	46%	-	-	150	Superior hydrogen sensing	Goel et al. (2021)
PANI-PdO- ITO	H_2	10000 ppm	175%	3	4	RT	Highly sensitive towards H ₂ gas	Arora & Puri (2020)
PANI-Sm ₂ O ₃	H_2	10000 ppm	394%	3	7	RT	Excellent repeatability	Jamnani et al. (2020)
PANI- MWCNTs	H_2	4000 ppm	24%	48	55	0	Good repeatability, sustainability and selectivity	Bafandeh et al. (2020)
PVDF-RGO- SnO ₂	H_2	100 ppm	49.2%	34	142	RT	Low-cost, flexible and wearable sensor	Punetha et al. (2020)
PANI-SnO ₂	H_2	6000 ppm	42%	11	7	30	Fast response and great sensitivity	Sonwane et al. (2019)
PPy-Pd-TiO ₂	H_2	10000 ppm	8.1%	220	100	25	Great stability and selectivity	Zou et al. (2016)
Ni–Pd- SWCNTs	H_2	-	10%	720	60	25	-	(García-Aguilar et al., 2014)
MWCNTs- TiO ₂ -Pt	H_2	500 ppm	3.9%	-	-	RT	-	Dhall et al. (2017)

not show electrical conductivity which is a major requirement for sensors development (Ghanbarian et al., 2018). Polymeric materials possess novel electrical features and they are easy to synthesize. Alternating single and double bonds are present in polymer chains, therefore, delocalization of pi electrons occur along the chain and this charge delocalization provides many active sites for desorption and adsorption of target gas molecules. Thereof, integration of MOFs with polymeric materials can incorporate charge conduction feature in them and generation of hollow metal oxides based MOFs may possess excellent potential in sensing applications (C.-S. Liu, Li and Pang, 2020). A novel composite sensor based on polymer mixed-matrix membrane and metal organic framework (MOF) for efficient sensing of H2S gas at room temperature has been developed (A. Ali et al., 2021). The composite film was prepared by mixing the chitosan solution, ionic liquid (glycerol) and MOF. The sensor was fabricated by mounting the composite film between copper and stainless steel plates. The experimental results showed an increase in the measured current signal as a function of increasing gas concentration. After stopping the gas flow and flusing the chamber with N₂ gas, the response reduced to its original values within 30 s, which represented the reversibility of the sensor (see Fig. 9a). The enhanced sensing of composite sensor was attributed to the presence of amino and hydroxyl groups in chitosan and ionic liquid, which eventually provided the unbonded electrons and facilitated the proton conductivity throughout the membrane (see Fig. 9b). On the other hand, MOF provided extra sites for interaction with the H2S molecules by having multiple oxygen atoms with unbounded electrons. The composite sensor was observed to efficiently detect the H₂S gas up to 1 ppm, which was 15 times higher than the sensing response of polymer membrane without MOF. This behaviour revealed that the incorporation of MOF nanoparticles boosted the proton conductivity of polymer membrane by providing extra interactions sites, open porous and hierarchical structure. However, this sensing response can further be enhanced by playing with the pore structure, pore size, pore shape, type of MOF, etc. which needs further systematic investigation. Therefore, the as-fabricated polymer-MOF composite sensor is a suitable candidate for H2S detection at room temperature because of its excellent selectivity, response time, reproducibility and stability. In addition to MOF, same research group has also investigated the H₂S gas sensing ability of chitosan/ionic liquid flexible membrane by incorporating either CuO (F. I. M. Ali et al., 2020b) or WO₃ (F. I. M. Ali et al., 2020a; T Shujah et al., 2019a,b) nanoparticles.

Likewise, in addition to chitosan, Hittini et al. investiagted the $\rm H_2S$ gas sensing behaviour of carboxymethyl cellulose (CMC) and ionic liquid (glycerol) based flexible membrane modified with copper oxide (CuO) nanoparticles (Hittini et al., 2020). The nanoparticles of required size were synthesized by using microwave supported hydrothermal method. The polymeric solution (CMC-IL) was mixed with different

amounts of nanoparticles and the resultant membrane was placed between two electrodes to fabricate the $\rm H_2S$ gas sensor. The sensor showed faster response and higher sensitivity at low concentration of $\rm H_2S$ gas (15 ppm) and at low temepratures. Furthermore, the sensor was highly selective towards the target gas along with the low humidity dependence. The sensor response was observed to increase by increasing the nanoparticles concentration from 2.5 to 5% while the sensor response remained the same by futher increase up to 7.5%. This behaviour was attributed to the increase in reactive sites till 5% of nanoparticles and to the aggolmeration of nanoparticles by further increase in their concentration. Therefore, this study presented an interesting organic-inorganic hybrid sensor for $\rm H_2S$ gas sensing in harsh environments with low power consumption and good sensitivity (Hittini et al., 2020).

Belkhamssa et al. reported the fabrication of polyaniline-copper chloride (PANI-CuCl₂) and polyaniline-tungsten trioxide-copper chloride (PANI-WO3-CuCl2) composite sensors for H2S detection (Belkhamssa et al., 2021). The sensor was prepared by drop casting the composite solution on the carbon electrodes, which were screen printed on polyethylene terephthalate (PET) substrate. The experimental outcome revealed a reduction in the response time from 15 min to 4 min and insensitivity to humidity till 40% by incorporating WO₃ nanoparticles within the PANI-CuCl₂ composite. The results further showed the working range of the composite sensor from 0.1 to 1 ppm along with the limit of detection of 155 ppb. The enhanced sensing properties of tertiary composite (PANI-WO3-CuCl2) sensor was attributed to the (i) formation of p-n heterojunction between n-type WO₃ and p-type PANI and the enhancement in the oxygen adsorption capacity of PANI-WO3 composite, (ii) formation of copper sulfide due to the reaction between H₂S and CuCl₂, which eventually increased the carrier concentration and decreased the resistance of sensor. Moreover, this resistance change of sensor was also linked to the partial sulfidation of WO₃ in the presence of H2S. Hence, the excellent selectivity, fast response and good repeatability of the composite sensors made them quite useful for H2S detection in industrial applications (Belkhamssa et al., 2021).

Oh and colleagues studied the H₂S gas sensing properties of novel nanohybrid sensors based on quaternary semiconductor (BaInSbSe₅), graphene and polypyrrole (Oh et al., 2021c). In contrary to the traditional sensors based on polypyrrole, this study simplifies the operation of sensors for real sample analysis due to the presence of semiconductor. The sensor exhibited very fast response time (<1 s) and recovery time (<1 s) at room temperature for 300 ppm of H₂S gas. The excellent sensing performance of the sensors was associated to the high adsorption capacity and low band energy gap. Therefore, the fabricated sensor is a potential candidate for environmental and industrial applications due to its highly stable sensitivity and selectivity along with the outstanding repeatability (Oh et al., 2021c). Sensing performance of different polymeric/inorganic nanohybrids for detection of hydrogen sulphide has

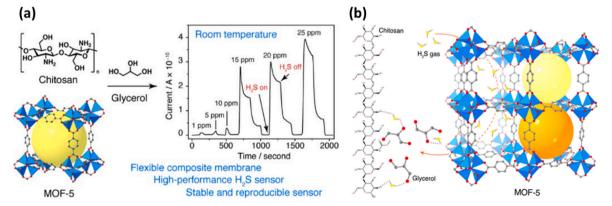


Fig. 9. (a) Electrical current signal of Ch-IL-MOF composite sensor as a function of H_2S concentration and time; (b) Pictorial representation of proposed H_2S gassensing mechanism. Atom colors: S, yellow; Zn, aqua; O, red; N, blue; C, grey; and H, pastel red. Reprinted with permission from (A. Ali et al., 2021). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

been given in Table 4.

3.5. Sensing of carbon oxides (CO₂ and CO)

Nowadays, most of the countries have taken different steps to limit global warming (i.e., temperature variations, oceanic fermentation, etc.) which are critically important to avoid catastrophic levels of greenhouse gases. Although CO₂ is an important part of the photosynthesis process, it is one of the odourless and colourless greenhouse gases which enter into the atmosphere through fossil fuels, burning trees, factories reactions, etc. (Jeong et al., 2016). The human exposure to CO2 above certain concentrations (>5000 ppm) can cause serious health issues such as respiratory disorders (Ha et al., 2018). On the other hand, CO₂ is extensively used for producing carbonated drinks and pneumatic frameworks. Moreover, the detection of CO2 gas in human breath can provide non-invasive and early diagnosis of gastric malignancies (Van Marcke, Daoudia, Penaloza and Verschuren, 2015). CO is another odourless, colourless and a toxic gas which is primarily produced by the incomplete combustion of fuels (natural gas, gasoline, coal, wood, etc.) in gas fires, car engines and domestic appliances (Mahendraprabhu et al., 2019). The human exposure to lower concentrations of CO can create nausea, dizziness, headache, vomiting and unconsciousness (Hsu et al., 2020). Conversely, the moderate to higher concentrations of CO (800–6000 ppm) can significantly affect the amount of oxygen carried by haemoglobin in the human body and can ultimately cause the heart diseases (Roy et al., 2020; Tahira Shujah et al., 2019). Thus, the development of smart and reliable sensors for detecting minute levels of CO₂ or CO is urgently needed to control and monitor its concentrations for various applications.

Riyazi and azim examined the carbon dioxide (CO2) gas sensing performance of capacitive-type nanohybrid sensor based on polypyrrole (PPy) and copper phthalocyanine (CuPc) (Riyazi and Azim Araghi, 2020). First of all, PPy was prepared from its monomer via one-step reaction of chemical oxidative polymerization by using ammonium persulfate (APS) in an acidic media (HCl). The nanohybrid (PPy-CuPc) were then fabricated by in-situ chemical oxidative polymerization method with or without the addition of cationic surfactant, cetyltrimethylammonium bromide (CTAB) within the temperature range of 0–5 $^{\circ}$ C. The SEM images revealed the formation of interconnected network of nanofibers by incorporating CTAB in PPy-CuPc mixture, which eventually resulted in higher response and sensitivity as compared to the PPy-CuPc nanohybrids without CTAB and pure PPy, due to their particulate morphology. This enhanced sensing performance of PPy-CuPc nanohybrids in the presence of CTAB was associated to the (i) porous structure of sensing layer which facilitated the diffusion of gas molecules, (ii) high surface-to-volume ratio of nano-fibrous structure of PPy, (iii) interconnected network of PPy nanofibers, and (iv) synergistic effect of properties of individual components (PPy and

CuPc). Hence, this interesting approach can be utilized to produce reliable, innovative, cheaper and sensitive nanohybrid sensors based on phthalocyanine and other conducting polymers for different commercial applications (Riyazi and Azim Araghi, 2020).

Kumar and colleagues reported the fabrication of PPy-MWCNTs nanohybrids using chemical oxidative polymerization technique for CO₂ gas sensing at room temperature (Kumar et al., 2020). The morphological analysis confirmed the nano-crystalline structure of PPy-MWCNTs with a minimum crystallite size of 8.1 nm. The nanotubes were found to be completely wrapped by the polymer, which enhanced the sensitivity of the sensor. The as-fabricated sensor displayed highest sensing response (7.2) for 1000 ppm of CO2 and maximum sensitivity of 41.33 k Ω /%RH for humidity at room temperature. Moreover, the prepared sensor also exhibited excellent selectivity towards CO2 among acetone, LPG and ethanol. The sensing mechanism of prepared nanohybrid sensor was linked to the increase in resistance upon exposure of CO₂ (see Fig. 10). The chemisorbed oxygen captured a free electron from the conduction band, which decreased the concentration of electrons inside the film and increased the depletion layer, which means increase in resistance (Kumar et al., 2020).

Roy and colleagues designed a resistive-type nanohybrid sensor based on poly (diallyldi-methylammonium chloride) (PDDA) and MWCNTs for efficient and low-level sensing of carbon monoxide (CO) at room temperature (Roy et al., 2020). The results of gas sensing experiments showed the sensitivity value of 11.51 for 20 ppm of CO. The prepared sensor was suitable to detect very low concentrations of CO ranging from 1 to 20 ppm along with the detection limit of 127 ppb. Moreover, the sensor response was observed to increase by increasing the temperature up to 100 °C. The sensing mechanism of the sensor was explained by the charge transfer from CO molecule to positively charged quaternary ammonium group available on PDDA, which eventually resulted in higher current from the sensor. On the removal of CO molecule, the ammonium group regained its electrons, which ultimately reduced the current. The sensor can be fabricated on any flexible substrate to have portable CO sensor for monitoring indoor air quality and also for industrial applications (Roy et al., 2020).

Nasrefahani and colleagues demonstrated the CO gas sensing performance of nanohybrid sensor based on PANI and gold (Au) nanoparticles (NPs) prepared via ultrasonic mixing of PANI with different amounts of Au NPs (Nasresfahani et al., 2020). The SEM micrographs showed the deposition of negatively charged Au NPs onto the positively charged PANI fibres due to the hydrogen bonding and electrostatic interaction. The experimental outcome showed that the nanohybrid sensor having 2.5% Au NPs exhibited detection limit of 33 ppm, higher response (14% @ 1000 ppm), faster response time (180 s) and excellent selectivity, which was attributed to the high surface energy of Au NPs and more adsorption sites for CO molecules. This study presents an exciting way of enhancing the gas sensing performance of a polymer by

Table 4Literature survey on the sensing performance of polymeric/inorganic nanohybrids for hydrogen sulphide gas.

Sensing materials	Target gas	Conc.	Response	Response time (s)	Recovery time (s)	Operating temp. (°C)	Adv. Or disadv.	Ref.
BaInSbSe ₅ -G- PPy	H_2S	-	900–1400%	234	76	RT	High selectivity and sensitivity with outstanding reproducibility	Oh et al. (2021c)
Ch-IL-CuO	H_2S	100 ppm	217.9%	14.4		40	Extremely high sensitivity to H ₂ S gas	Ali et al. (2020b)
Ch-IL-WO ₃	H ₂ S	100 ppm	187%	13.6	-	40	Highly selective, sensitive and long-term stabile along with low power consumption	Ali et al. (2020a)
CMC-IL-CuO	H_2S	300 ppm	20%	52.4	-	40	Decent responses and selectivity towards H ₂ S gas	Hittini et al. (2020)
PANI-WO ₃ - CuCl ₂	H_2S	-	-	10	-	RT	High and fast response as well as an excellent selectivity to H ₂ S gas	Belkhamssa et al. (2021)
Ch-IL-MOF	H_2S	100 ppm	91%	<8	<30	RT	High sensitivity, low-power consumption and flexibility	(A. Ali et al., 2021)
PANI-SnO ₂ - RGO	H ₂ S	0.1 ppm	9.1%	-	-	RT	Flexible sensor, great stability and repeatability	Zhang et al. (2019a)

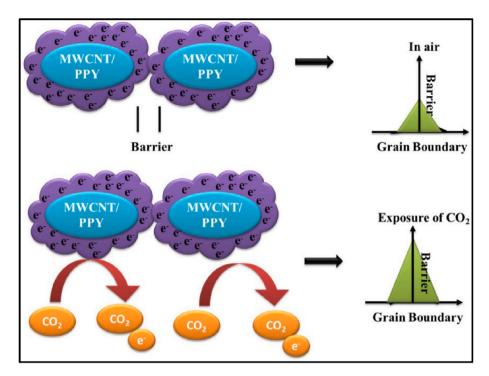


Fig. 10. Gas sensing mechanism of PPy-MWCNTs based nanohybrid sensor. Reprinted with permission from (Kumar et al., 2020).

incorporating a noble metal (Nasresfahani et al., 2020). Sensing performance of different polymeric/inorganic nanohybrids sensing of carbon oxides has been given in Table 5.

3.6. Sensing of liquified petroleum gas

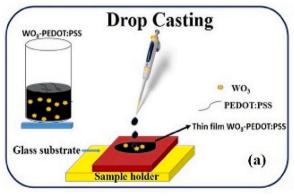
Liquid petroleum gas (LPG) is highly flammable and produced during the processing of crude oil. LPG typically consists of a mixture of hydrocarbons such as butane and propane (Albaris and Karuppasamy, 2019). It is extensively used as a fuel in automobiles as well as for industrial and domestic applications. On the other hand, the Permissible

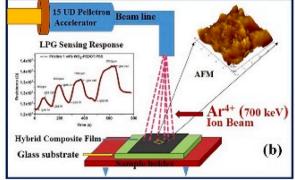
Exposure Limit (PEL) has been stated as 1000 ppm for LPG (Patil et al., 2015). Similarly, due to its high flammability, even a small amount of LPG can cause a huge fire resulting in destruction of human life, property and infrastructure (M. Singh, Singh et al., 2021). Hence, there is a dire need to develop cost effective, compact in size, lower power consuming, selective and sensitive LPG sensor for household and industrial applications.

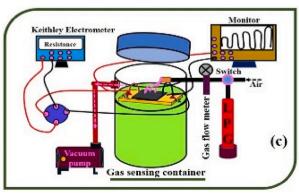
Ram and colleagues examined the effect of irradiation of low energy ion beam on the physico-chemical and LPG sensing features of PEDOT: PSS-WO $_3$ hybrid thin films (Ram et al., 2020). The composite solution was prepared by mixing 1 wt% or 5 wt% of WO $_3$ nanoparticles in

Table 5
Literature survey on the sensing performance of polymeric/inorganic nanohybrids for carbon oxides.

Sensing materials	Target gas	Conc.	Response	Response time (s)	Recovery time (s)	Operating temp. (°C)	Adv. Or disadv.	Ref.
PANI-SnO ₂ - UV	CO ₂	5000 ppm	47.4%	35.1	43.2	RT	Good reproducibility, dependability and selectivity response in multi-cycle towards various CO ₂ levels	Nasirian (2020)
CuZnSnSe-G- PPy	CO_2	1000 ppm	65%	7–15	6–35	RT	Facile and low-cost route	Oh et al. (2021b)
LaNiSbWO ₄ - G-PPy	CO_2	1800 ppm	120%	<1	<1	RT	Good repeatability, reproducibility and measurement accuracy	Oh et al. (2021d)
PPy-MWCNTs	CO_2	1000 ppm	720 ppm	30	37	RT	Higher accuracy	Kumar et al. (2020)
PPy-CuPc	CO_2	5000 ppm	175%	34	175	RT	Low-cost, reliable and sensitive towards CO ₂ gas	Riyazi & Azim Araghi (2020)
PANI-SnO ₂	CO_2	5000 ppm	47.4%	35.1	43.2	RT	-	Nasirian (2020)
PANI-NaO ₂	CO_2	4000 ppm	60%	900	600	RT	-	Barde (2016)
PANI-TiO ₂	CO_2	1000 ppm	53%	552	342	RT	-	Sonker et al. (2016)
PANI-LaFeO ₃	CO_2	5000 ppm	12.13%	197.82	42.17	RT	-	Karouei & Moghaddam (2019)
PANI-Au NPs	CO	6000 ppm	27%	180	200	RT	Low detection limit and good selectivity	Nasresfahani et al. (2020)
PANI-SnO ₂ -Pd	CO	-	30–401%	11–88	45–62	RT	-	Kishnani et al. (2021)
PDDA- MWCNTs	CO	20 ppm	11.5%	18	33	RT	Stable for 2 months with excellent reproducibility	Roy et al. (2020)


PEDOT:PSS conducting polymer. The hybrid films of PEDOT:PSS-WO₃ were deposited on the glass substrate via cost-effective drop casting technique (see Fig. 11a), which also possess silver electrodes to measure the sensing response of LPG at room temperature. The low energy ion beam was then used to irradiate the nanohybrid thin films (see Fig. 11b) either under ambient conditions or under vacuum. Silver paste was used to connect with the continuous surface of the hybrid films as shown in Fig. 11c, in order to monitor the sensing behaviour of hybrid film. The XRD results displayed a decrease in particle size by increasing the fluence of ion beam irradiation, which suggested the chain scission due to irradiation. The nanohybrid films irradiated at lower fluence displayed higher sensitivity and faster response times, which was attributed to lower surface defects. Therefore, this approach can be used to enhance the structural properties of composite sensors for different gas sensing applications at room temperature (Ram et al., 2020).


Singh and colleagues developed PANI-ZnO-Ru based nanohybrid through in-situ polymerization method and determined their LPG sensing behaviour at room temperature (RT) (M. Singh et al., 2021). The microscopic analysis showed the highest porosity for PANI-ZnO-Ru based nanohybrid, which facilitated its sensing behaviour towards LPG. Moreover, the nanohybrid sensor exhibited highest sensitivity (1.22) and lowest response and recovery times (28 and 45 s, respectively) as compared to ZnO and Ru-doped ZnO. The nanohybrid (PAN-I-ZnO-Ru) thin film was described as p-type material with holes as a majority charge carrier. Upon exposure to LPG, the composite sensor released the electrons from the nitrogen chains present in PANI. The atmospheric oxygen was then reduced by these electrons to create O ions on the surface of thin film and oxidized the butane molecules. The majority charge carriers of nanohybrid (i.e., holes) were then combined with the electrons, which eventually resulted in a decrease in the number of charge carriers and an increase in the resistance of the material. Upon removal of LPG gas, the resistance of the material decreased again due to the discontinuation of recombination process between holes and electrons. Hence, the presented material is a promising candidate for LPG sensing and, therefore, can be used to produce potential LPG sensors (M. Singh et al., 2021).


Thangamani et al. reported the synthesis of PVA-PPy-V2O5 nanohybrid film, having different concentrations of V2O5 nanoparticles, through solution casting method (Thangamani et al., 2021). The thermal analysis revealed an increase in the thermal stability of the nanohybrids by incorporating the nanoparticles. The strong chemical interaction between V₂O₅ nanoparticles and polymer blend (PVA-PPy) resulted in excellent mechanical properties of nanohybrid films (PVA-PPy-V2O5). The nanohybrid sensor having 15 wt% of V2O5 displayed the excellent selectivity, highest sensitivity (1.16%) and lowest response and recovery times (10 and 8 s, respectively) for 600 ppm of LPG at room temperature. This enhancement in gas sensing behaviour of nanohybrid film was attributed to the transformation of spherical V₂O₅ structures to nano-rods of V2O5 in the nanohybrid, which was verified by AFM and SEM analysis (Thangamani et al., 2021). This flexible chemiresistive sensor can be used for commercial applications because of its excellent sensitivity and higher selectivity towards LPG (Table 6).

4. Summary and critical overview

In this review, applications of different polymeric/inorganic nanohybrids in gas sensing system have been reviewed. Different polymeric materials including PANI, PEDOT, PSS and PMMA hybridized with different inorganic materials have been explored for their sensing efficacy for different toxic gases (i.e., ammonia, hydrogen, liquefied petroleum gas, carbon oxides, nitrogen dioxides, etc.). Composites of polymer with inorganic materials enhance the active sites, conductivity potential, selectivity and sensing capacity of sensors. Sensing mechanism of different nanohybrid for sensing of gases has also discussed in detail. Results showed that polymeric/inorganic nanohybrids are potential candidates for sensing of various gases in detection limit from ppb-ppm with fast response, less recovery time at different temperatures as shown in Tables 1–6 with reported literature. Nanohybrid based

Fig. 11. (a) Schematic illustration of preparing nanohybrid thin films on glass substrate via drop casting technique; (b) Pictorial diagram of Ar⁴⁺ ion beam (700 keV) irradiation of hybrid nanohybrid film; and (c) The schematic demonstration of gas sensing setup. Reprinted with permission from (Ram et al., 2020).

Table 6Literature survey on the sensing performance of polymeric/inorganic nanohybrids for LPG gas.

Sensing materials	Target gas	Conc.	Response	Response time (s)	Recovery time (s)	Operating temp. (°C)	Adv. Or disadv.	Ref.
PEDOT:PSS- DMSO-PVA- SnO ₂	LPG	100 ppm	79%	20	31	RT	Excellent conductivity, sensitivity, stability under mechanical deformations and humidity conditions (1–100% RH)	Almukhlifi et al. (2021)
PVA-PPy-V ₂ O ₅	LPG	600 ppm	116%	10	8	RT	High sensitivity and excellent selectivity for LPG	Thangamani et al. (2021)
PANI-Ru-ZnO	LPG	-	-	28	45	RT	High sensitivity to LPG gas	(M. Singh et al., 2021)
PEDOT:PSS-WO ₃ - irradiated	LPG	1000 ppm	24%	25	40	RT	-	Ram et al. (2020)
PTh-ZnO	LPG	1200 ppm	55.7%	-	-	RT	Excellent LPG sensing capability even at higher temperatures	Husain et al., 2020b
PPy-Bi ₂ O ₃ -Ag ₂ O	LPG	500 ppm	-	50	70	348K	High sensitivity, selectivity and stability	Choudhary & Waghuley (2017)
PANI-TiO ₂	LPG	-	43.2%	76	95	-	Good response	Moradian & Nasirian (2018)

sensors exhibited great sensitivity, reliability and selectivity towards analytes, even at low concentrations. The fabrication of gas sensors with nanomaterials is beneficial as smaller devices may be synthesized which may be easily portable and can be used for detecting gases in fields with accurate measurements. Compared to different gas sensors based on different polymeric nanohybrids as PPy-PB-TiO2, PEDOT:PSS-AVNF, PVP-CuO and others, PANI based nanohybrids showed highest response for sensing NH3 gas such as PANI-WO3 nanohybrid showed response of 3400% at 100 ppm concentration (Fan et al., 2020). These PANI based nanohybrids showed high selectivity for NH3 gas and these sensors showed great flexibility, high sensitivity, low LOD and reusability. High sensitivity may be due to the synergistic effect of two combined materials and also because of high conductivity of PANI. For sensing of hydrogen, PANI based nanohybrids (i.e., PANI-SnO2-Pd and PANI-Sm₂O₃) also showed high response and great sensitivity (Pippara et al., 2021). Polymeric nanohybrids based on PPy showed high sensing potential for the H₂S (900-1400%) (Oh et al., 2021c), CO₂ (720%) (Kumar et al., 2020), NO₂ (4500%) (J. Zhang et al., 2020a) and LPG (116%) gases. PPy based sensors showed high response, great accuracy and outstanding reproducibility. Hence, by developing polymeric/inorganic nanohybrids based sensor, faster response and low measurement limit can be obtained. Conclusively, gas sensing nanohybrids are very beneficial for the safety of environment, and hence, there is still a need to focus further on their development by using variety of sensing materials of high potential.

5. Future perspectives

In this review, sensing potential of polymer/inorganic nanohybrids for different gases has been explored. Sensors showed good response, sensitivity and repeatability and reviewed sensors worked well at room temperature. There are still many challenges which are necessary to be resolved for development of nanohybrid based gas sensors. There is a need to explore the exact sensing mechanistic pathway to determine the potential of materials in different fields. Cost effective routes should be introduced for the synthesis of nanosensors for great performance at commercial scale. Sensing material should be stable enough under different conditions and should have a capacity to be used several times. These research results regarding gas sensors are still at the stage of lab research, and therefore, many studies are further required to bring relevant results at industrial scale. Literature review suggest that the detection limit may obtain till ppb level, but the response is not so high. Thereof, various studies are required to develop highly sensitive sensors. Further investigations are required to solve other problems related to the development of sensors possessing higher sensitivity such as: (i) humid atmosphere is observed to influence the sensor performance as compared to the dry air, (ii) molecules of gas enters inside the metallattice and initiates hysteresis phenomena, (iii) polymeric nanohybrids do not exhibit long term stability, (iv) room temperature response of polymeric nanohybrids is not ideal, (v) ratio of materials during synthesis process affects the sensing performance, etc. In future, following points needs to be addressed while choosing composite materials for polymeric/inorganic nanohybrids based sensors: large surface area, chemically stable, great conductivity, high moisture resistance, varying temperature range, great gas adsorption and desorption potential. From the reviewed literature, the following are the possible important directions to enhance the sensing features of gas sensors: (i) optimization of structure of composite sensors and mixture ratio to get high surface area, (ii) enhancing the active sites number to increase the sensitivity of sensor, (iii) selection of suitable catalyst with high catalytic efficacy and conductivity for chemical doping to enhance sensor response value.

Credit author statement

Ahmad Shakeel: Conceptualization, Visualization, Writing – original draft, Komal Rizwan: Conceptualization, Project administration, Writing – original draft, Ujala Farooq: Investigation, Formal analysis, Writing – review & editing, Shahid Iqbal: Supervision, Writing – review & editing, Ataf Ali Altaf: Formal analysis, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Abbreviations

PPy Polypyrrole
PB Prussian blue
TiO₂ Titanium dioxide
PANI Polyaniline
GO Graphene oxide
SnO₂ Tin oxide

GNR Graphene nanoribbon

PEDOT:PSS Poly(3,4-ethylenedioxythiophene):poly(4-

styrenesulfonate)

AVNF Ammonium vanadate ((NH₄)₂V₆O₁₆•1.5H₂O) nanofiber

MoS₂ Molybdenum disulphide PVDF Polyvinylidene fluoride

G Graphene

PET:NH₂ Polyethylene terephthalate (PET) fibers with amino group

MWCNTs Multi-walled carbon nanotubes

NiO Nickel oxide

h-NiO Hollow Nickel oxide

Nb₂CT_x Niobium carbide MXene nanosheets

 $\begin{array}{ll} {\rm SRGO} & {\rm Sulfonated\ graphene\ oxide} \\ {\rm LaNiMoSe}_2 & {\rm Quaternary\ semiconductor} \\ {\rm SWCNTs} & {\rm Single-walled\ carbon\ nanotubes} \end{array}$

 $\begin{array}{lll} RGO & Reduced \ graphene \ oxide \\ PVP & Polyvinylpyrrolidone \\ WO_3 & Tungsten \ oxide \\ V_2O_5 & Vanadium \ pentoxide \\ SrGe_4O_9 & Metal \ oxide \ semiconductor \end{array}$

CuFe₂O₄ Copper ferrite

PMMA Polymethyl-methacrylate SiNWs Silicon nanowires

PTh Polythiophene

LiCuMo₂O₁₁ Quaternary semiconductor

3D-NGF Three-dimensional nitrogen-doped graphene-based

framework

P3HT Poly(3-hexylthiophene)

CeO₂ Cerium oxide en Encapsulated LGS Langasite

PBTTT Poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]

thiophene]

 $Ti_3C_2T_x$ Titanium carbide γ -PGA γ -poly(L-glutamic acid)

Teflon AF Poly(4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole-co-

tetrafluoroethylene)

 $\begin{array}{ll} ITO & Indium \ tin \ oxide \\ Sm_2O_3 & Samarium \ oxide \\ \end{array}$

BaInSbSe₅ Quaternary semiconductor

Ch Chitosan

IL Ionic liquid (glycerol)
CMC Carboxymethyl cellulose
CuZnSnSe Quaternary semiconductor
LaNiSbWO₄ Quaternary semiconductor

CuPc Copper phthalocyanine Au NPs Gold nanoparticles

PDDA Poly(diallyldi-methylammonium chloride)

Poly (vinyl alcohol) **PVA** PDA Polydopamine NFs Nanofibers **PA66** Polyamide 66 GN Graphite nanosheet Cadmium telluride; CdTe Poly(hydroxy-3-butyrate) **РЗНВ** para toluene sulfonic acid PTSA

References

Abun, A., Huang, B.-R., Saravanan, A., Kathiravan, D., Hong, P.-D., 2020. Effect of PMMA on the surface of exfoliated MoS2 nanosheets and their highly enhanced ammonia gas sensing properties at room temperature. J. Alloys Compd. 832, 155005. https://doi.org/10.1016/j.jallcom.2020.155005.

Adnan, M.M., Dalod, A.R., Balci, M.H., Glaum, J., Einarsrud, M.-A., 2018. In situ synthesis of hybrid inorganic–polymer nanocomposites. Polymers 10 (10), 1129.

- Ahmadi Tabar, F., Nikfarjam, A., Tavakoli, N., Nasrollah Gavgani, J., Mahyari, M., Hosseini, S.G., 2020. Chemical-resistant ammonia sensor based on polyaniline/CuO nanoparticles supported on three-dimensional nitrogen-doped graphene-based framework nanocomposites. Microchim. Acta 187 (5), 293. https://doi.org/10.1007/s00604-020-04282-y.
- Akram, R., Yaseen, M., Farooq, Z., Rauf, A., Almohaimeed, Z.M., Ikram, M., Zafar, Q., 2021. Capacitive and conductometric type dual-mode relative humidity sensor based on 5,10,15,20-tetra phenyl porphyrinato nickel (II) (TPPNi). Polymers 13 (19), 3336.
- Albaris, H., Karuppasamy, G., 2019. Fabrication of room temperature liquid petroleum gas sensor based on PAni–CNT–V2O5 hybrid nanocomposite. Appl. Nanosci. 9 (8), 1719–1729. https://doi.org/10.1007/s13204-019-00967-w.
- Albaris, H., Karuppasamy, G., 2020. Investigation of NH3 gas sensing behavior of intercalated PPy–GO–WO3 hybrid nanocomposite at room temperature. Mater. Sci. Eng., B 257, 114558. https://doi.org/10.1016/j.mseb.2020.114558.

Ali, A., Alzamly, A., Greish, Y.E., Bakiro, M., Nguyen, H.L., Mahmoud, S.T., 2021. A highly sensitive and flexible metal-organic framework polymer-based H2S gas sensor. ACS Omega 6 (27), 17690–17697. https://doi.org/10.1021/ acceptage.1e0305

- Ali, F.I.M., Awwad, F., Greish, Y.E., Abu-Hani, A.F.S., Mahmoud, S.T., 2020a. Fabrication of low temperature and fast response H2S gas sensor based on organic-metal oxide hybrid nanocomposite membrane. Org. Electron. 76, 105486. https://doi.org/ 10.1016/j.orgel.2019.105486.
- Ali, F.I.M., Mahmoud, S.T., Awwad, F., Greish, Y.E., Abu-Hani, A.F.S., 2020b. Low power consumption and fast response H2S gas sensor based on a chitosan-CuO hybrid nanocomposite thin film. Carbohydr. Polym. 236, 116064. https://doi.org/10.1016/ i.carbpol.2020.116064.
- Almukhlifi, H.A., Khasim, S., Pasha, A., 2021. Fabrication and testing of low-cost and flexible smart sensors based on conductive PEDOT-PSS nanocomposite films for the detection of liquefied petroleum gas (LPG) at room temperature. Mater. Chem. Phys. 263, 124414. https://doi.org/10.1016/j.matchemphys.2021.124414.
- Amarnath, M., Heiner, A., Gurunathan, K., 2020. Size controlled V2O5-WO3 nanoislands coated polypyrrole matrix: a unique nanocomposite for effective room temperature ammonia detection. Sensor Actuator Phys. 313, 112211. https://doi. org/10.1016/j.sna.2020.112211.
- Ansari, N., Lone, M.Y., Shumaila, Ali J., Zulfequar, M., Husain, M., Husain, S., 2020. Trace level toxic ammonia gas sensing of single-walled carbon nanotubes wrapped polyaniline nanofibers. J. Appl. Phys. 127 (4), 044902 https://doi.org/10.1063/ 1.5113847
- Arora, K., Puri, N.K., 2020. Chemiresistive sensing platform based on PdO-PANI/ITO heterostructure for room temperature hydrogen detection. Mater. Chem. Phys. 247, 122850. https://doi.org/10.1016/j.matchemphys.2020.122850.
- Bafandeh, N., Larijani, M.M., Shafiekhani, A., 2020. Investigation on hydrogen sensing property of MWCNT/Pani nanocomposite films. Polym. Bull. 77 (7), 3697–3706. https://doi.org/10.1007/s00289-019-02915-8.
- Banica, F.-G., 2012. Chemical Sensors and Biosensors: Fundamentals and Applications. John Wiley & Sons.
- Barde, R.V., 2016. Preparation, characterization and CO2 gas sensitivity of Polyaniline doped with Sodium Superoxide (NaO2). Mater. Res. Bull. 73, 70–76. https://doi. org/10.1016/j.materresbull.2015.08.026.
- Belkhamssa, N., Ksibi, M., Shih, A., Izquierdo, R., 2021. Fabrication of fast responsive and insensitive-humidity sensor based on polyaniline-WO₃-CuCl₂ for hydrogen sulfide detection. IEEE Sensor. J. 21 (8), 9716–9722. https://doi.org/10.1109/ ISFN 2020 3019240
- Cheng, Z., Sun, Z., Zhu, S., Lou, Z., Zhu, N., Feng, L., 2019. The identification and health risk assessment of odor emissions from waste landfilling and composting. Sci. Total Environ. 649, 1038–1044. https://doi.org/10.1016/j.scitotenv.2018.08.230.
- Choudhary, A., Waghuley, S., 2017. LPG sensing application of PPy based nanocomposites at low operable temperature. Mater. Lett. 205, 36–39.
- Cunha, I., Moreira, S., Santos, M.M., 2015. Review on hazardous and noxious substances (HNS) involved in marine spill incidents—an online database. J. Hazard Mater. 285, 509–516.
- Das, M., Roy, S., 2021. Polypyrrole and associated hybrid nanocomposites as chemiresistive gas sensors: a comprehensive review. Mater. Sci. Semicond. Process. 121, 105332. https://doi.org/10.1016/j.mssp.2020.105332.
- De Vrieze, J., Verbeeck, K., Pikaar, I., Boere, J., Van Wijk, A., Rabaey, K., Verstraete, W., 2020. The hydrogen gas bio-based economy and the production of renewable building block chemicals, food and energy. N. Biotech. 55, 12–18. https://doi.org/10.1016/j.nbt.2019.09.004.
- Deshmukh, K., Pasha, S.K.K., 2020. Room temperature ammonia sensing based on graphene oxide integrated flexible polyvinylidenefluoride/cerium oxide nanocomposite films. Polym. Plastics Technol. Mater. 59 (13), 1429–1446. https://doi.org/10.1080/25740881.2020.1744011.
- Dhall, S., Mehta, B.R., Tyagi, A.K., Sood, K., 2021. A review on environmental gas sensors: materials and technologies. Sens. Int. 2, 100116. https://doi.org/10.1016/j. sintl.2021.100116.
- Dhall, S., Sood, K., Nathawat, R., 2017. Room temperature hydrogen gas sensors of functionalized carbon nanotubes based hybrid nanostructure: role of Pt sputtered nanoparticles. Int. J. Hydrogen Energy 42 (12), 8392–8398.
- Diana, M.P., Roekmijati, W.S., Suyud, W.U., 2018. Why it is often underestimated: historical study of ammonia gas exposure impacts towards human health. E3S Web Conf. 73, 06003.
- Fan, G., Chen, D., Li, T., Yi, S., Ji, H., Wang, Y., Sun, J., 2020. Enhanced room-temperature ammonia-sensing properties of polyaniline-modified WO3 nanoplates derived via ultrasonic spray process. Sensor. Actuator. B Chem. 312, 127892. https://doi.org/10.1016/j.snb.2020.127892.
- Farea, M.A., Mohammed, H.Y., Shirsat, S.M., Sayyad, P.W., Ingle, N.N., Al-Gahouari, T., Shirsat, M.D., 2021. Hazardous gases sensors based on conducting polymer composites. Chem. Phys. Lett. 776, 138703.
- Feng, Q., Zhang, H., Shi, Y., Yu, X., Lan, G., 2021. Preparation and gas sensing properties of PANI/SnO2 hybrid material. Polymers 13 (9), 1360.
- Frischauf, N., 2016. 5 hydrogen-fueled spacecraft and other space applications of hydrogen. In: Ball, M., Basile, A., Veziroğlu, T.N. (Eds.), Compendium of Hydrogen Energy. Woodhead Publishing, Oxford, pp. 87–107.
- Gaikwad, G., Patil, P., Patil, D., Naik, J., 2017. Synthesis and evaluation of gas sensing properties of PANI based graphene oxide nanocomposites. Mater. Sci. Eng., B 218, 14–22. https://doi.org/10.1016/j.mseb.2017.01.008.
- García-Aguilar, J., Miguel-García, I., Berenguer-Murcia, Á., Cazorla-Amorós, D., 2014. Single wall carbon nanotubes loaded with Pd and NiPd nanoparticles for H2 sensing at room temperature. Carbon 66, 599–611.

- Ghanbarian, M., Zeinali, S., Mostafavi, A., 2018. A novel MIL-53 (Cr-Fe)/Ag/CNT nanocomposite based resistive sensor for sensing of volatile organic compounds. Sensor. Actuator. B Chem. 267, 381-391.
- Goel, N., Bera, J., Kumar, R., Sahu, S., Kumar, M., 2021. MoS2-PVP nanocomposites decorated ZnO microsheets for efficient hydrogen detection. IEEE Sensor. J. 21 (7), 8878-8885. https://doi.org/10.1109/JSEN.2021.3054038.
- Guettiche, D., Mekki, A., Lilia, B., Fatma-Zohra, T., Boudjellal, A., 2021. Flexible chemiresistive nitrogen oxide sensors based on a nanocomposite of polypyrrolereduced graphene oxide-functionalized carboxybenzene diazonium salts. J. Mater. Sci. Mater. Electron. 32 (8), 10662-10677. https://doi.org/10.1007/s10854-021-
- Ha, N.H., Thinh, D.D., Huong, N.T., Phuong, N.H., Thach, P.D., Hong, H.S., 2018. Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide. Appl. Surf. Sci. 434, 1048-1054. https://doi.org/10.1016/j.apsusc.2017.11.047.
- Hangarter, C.M., Chartuprayoon, N., Hernández, S.C., Choa, Y., Myung, N.V., 2013. Hybridized conducting polymer chemiresistive nano-sensors. Nano Today 8 (1),
- He, R., Xia, F.-F., Bai, Y., Wang, J., Shen, D.-S., 2012. Mechanism of H2S removal during landfill stabilization in waste biocover soil, an alterative landfill cover. J. Hazard Mater. 217-218, 67-75. https://doi.org/10.1016/j.jhazmat.2012.02.061.
- He, W., Zhao, Y., Xiong, Y., 2020. Bilayer polyaniline-WO3 thin-film sensors sensitive to NO2. ACS Omega 5 (17), 9744-9751. https://doi.org/10.1021/acsomega.9b041
- Hittini, W., Abu-Hani, A.F., Reddy, N., Mahmoud, S.T., 2020. Cellulose-Copper Oxide hybrid nanocomposites membranes for H2S gas detection at low temperatures. Sci. Rep. 10 (1), 2940. https://doi.org/10.1038/s41598-020-60069-4.
- Hsieh, C.-H., Xu, L.-H., Wang, J.-M., Wu, T.-M., 2021. Fabrication of polypyrrole/tin oxide/graphene nanoribbon ternary nanocomposite and its high-performance ammonia gas sensing at room temperature. Mater. Sci. Eng., B 272, 115317. https:// doi.org/10.1016/j.mseb.2021.115317.
- Hsu, K.-C., Fang, T.-H., Tang, I.T., Hsiao, Y.-J., Chen, C.-Y., 2020. Mechanism and characteristics of Au-functionalized SnO2/In2O3 nanofibers for highly sensitive CO detection. J. Alloys Compd. 822, 153475. https://doi.org/10.1016/j. iallcom.2019.153475.
- Hu, Q., Wang, Z., Chang, J., Wan, P., Huang, J., Feng, L., 2021. Design and preparation of hollow NiO sphere- polyaniline composite for NH3 gas sensing at room temperature. Sensor. Actuator. B Chem. 344, 130179. https://doi.org/10.1016/j. snb.2021.130179.
- Husain, A., Ahmad, S., Mohammad, F., 2020a. Electrical conductivity and ammonia sensing studies on polythiophene/MWCNTs nanocomposites. Materialia 14, 100868. https://doi.org/10.1016/j.mtla.2020.100868.
- Husain, A., Shariq, M.U., Mohammad, F., 2020b. DC electrical conductivity and liquefied petroleum gas sensing application of polythiophene/zinc oxide nanocomposite. Materialia 9, 100599. https://doi.org/10.1016/j.mtla.2020.100599.
- Ibanez, J.G., Rincón, M.E., Gutierrez-Granados, S., Chahma, M.h., Jaramillo-Quintero, O. A., Frontana-Uribe, B.A., 2018. Conducting polymers in the fields of energy environmental remediation, and chemical-chiral sensors. Chem. Rev. 118 (9), 4731-4816
- Ibraheem, S., Chen, S., Peng, L., Li, J., Li, L., Liao, Q., Wei, Z., 2020. Strongly coupled iron selenides-nitrogen-bond as an electronic transport bridge for enhanced synergistic oxygen electrocatalysis in rechargeable zinc-O2 batteries. Appl. Catal. B Environ. 265, 118569. https://doi.org/10.1016/j.apcatb.2019.118569. lbraheem, S., Li, X., Shah, S.S.A., Najam, T., Yasin, G., Iqbal, R., Shahzad, F., 2021.
- Tellurium triggered formation of Te/Fe-NiOOH nanocubes as an efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 13 (9), 10972-10978. https://doi.org/10.1021/acsami.0c2257
- Jamnani, S.R., Moghaddam, H.M., Leonardi, S.G., Neri, G., 2020. PANI/Sm2O3 nanocomposite sensor for fast hydrogen detection at room temperature. Synth. Met. 268, 116493. https://doi.org/10.1016/j.synthmet.2020.116493.
- Javadian-Saraf, A., Hosseini, E., Wiltshire, B.D., Zarifi, M.H., Arjmand, M., 2021. Graphene oxide/polyaniline-based microwave split-ring resonator: a versatile platform towards ammonia sensing. J. Hazard Mater. 418, 126283. https://doi.org/ 10.1016/i.ihazmat.2021.126283.
- Jeong, Y.J., Balamurugan, C., Lee, D.W., 2016. Enhanced CO2 gas-sensing performance of ZnO nanopowder by La loaded during simple hydrothermal method. Sensor. Actuator. B Chem. 229, 288-296. https://doi.org/10.1016/j.snb.2015.11.093.
- Joshi, N., Hayasaka, T., Liu, Y., Liu, H., Oliveira, O.N., Lin, L., 2018. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures graphene and 2D transition metal dichalcogenides. Microchim. Acta 185 (4), 1-16.
- Kang, X., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y., 2010. A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81 (3). 754-759
- Karaduman, I., Er, E., Çelikkan, H., Erk, N., Acar, S., 2017. Room-temperature ammonia gas sensor based on reduced graphene oxide nanocomposites decorated by Ag, Au and Pt nanoparticles. J. Alloys Compd. 722, 569-578.
- Karmakar, N., Fernandes, R., Jain, S., Patil, U.V., Shimpi, N.G., Bhat, N.V., Kothari, D.C., 2017. Room temperature NO2 gas sensing properties of p-toluenesulfonic acid doped silver-polypyrrole nanocomposite. Sensor. Actuator. B Chem. 242, 118-126. https:// doi.org/10.1016/j.snb.2016.11.039.
- Karouei, S.F.H., Moghaddam, H.M., 2019. Pp heterojunction of polymer/hierarchical mesoporous LaFeO3 microsphere as CO2 gas sensing under high humidity. Appl. Surf. Sci. 479, 1029-1038.
- Khan, H.U., Tariq, M., Shah, M., Iqbal, M., Jan, M.T., 2020. Inquest of highly sensitive, selective and stable ammonia (NH3) gas sensor: structural, morphological and gas sensing properties of polyvinylpyrrolidone (PVP)/CuO nanocomposite. Synth. Met. 268, 116482. https://doi.org/10.1016/j.synthmet.2020.116482.

Khanh, T.S.T., Trung, T.Q., Giang, L.T.T., Nguyen, T.Q., Lam, N.D., Dinh, N.N., 2021. Ammonia gas sensing characteristic of P3HT-rGO-MWCNT composite films. Appl. Sci. 11 (15), 6675.

- Kimura, H., 2011. Hydrogen sulfide: its production and functions. Exp. Physiol. 96 (9), 833-835. https://doi.org/10.1113/expphysiol.2011.057455
- Kishnani, V., Verma, G., Gupta, A., 2021. Highly Sensitive, Ambient Temperature Co Sensor Using Polyaniline/Tin Oxide/Palladium Composites. https://d
- Kulkarni, S., Navale, Y., Navale, S., Stadler, F., Ramgir, N., Patil, V., 2019. Hybrid polyaniline-WO3 flexible sensor: a room temperature competence towards NH3 gas. ensor. Actuator. B Chem. 288, 279-288.
- Kumar, U., Yadav, B.C., Haldar, T., Dixit, C.K., Yadawa, P.K., 2020. Synthesis of MWCNT/PPY nanocomposite using oxidation polymerization method and its employment in sensing such as CO2 and humidity. J. Taiwan Inst. Chem. Eng. 113, 419-427. https://doi.org/10.1016/j.jtice.2020.08.026
- Lee, S.H., Bang, J.H., Kim, J., Park, C., Choi, M.S., Mirzaei, A., Kim, H.W., 2021. Sonochemical synthesis of PEDOT:PSS intercalated ammonium vanadate nanofiber composite for room-temperature NH3 sensing. Sensor. Actuator. B Chem. 327, 128924. https://doi.org/10.1016/j.snb.2020.128924.
- Li, G., Shen, Y., Zhou, P., Hao, F., Fang, P., Wei, D., San, X., 2020a. Design and application of highly responsive and selective rGO-SnO2 nanocomposites for NO2 monitoring. Mater. Char. 163, 110284. https://doi.org/10.1016/j.
- Li, H.-Y., Zhao, S.-N., Zang, S.-Q., Li, J., 2020b. Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 49 (17), 6364-6401. https://doi.org/10.1039/C9CS00778D.
- Li, Z., Chen, J., Chen, L., Guo, M., Wu, Y., Wei, Y., Wang, X., 2020c. Hollow Au/ polypyrrole capsules to form porous and neural network-like nanofibrous film for wearable, super-rapid, and ultrasensitive NH3 sensor at room temperature. ACS Appl. Mater. Interfaces 12 (49), 55056-55063. https://doi.org/10.1021/
- Li, Z., Liu, Y., Guo, D., Guo, J., Su, Y., 2018. Room-temperature synthesis of CuO/ reduced graphene oxide nanohybrids for high-performance NO2 gas sensor. Sensor. Actuator. B Chem. 271, 306-310. https://doi.org/10.1016/j.snb.2018.05.097.
- Liu, A., Lv, S., Jiang, L., Liu, F., Zhao, L., Wang, J., Lu, G., 2021. The gas sensor utilizing polyaniline/MoS2 nanosheets/SnO2 nanotubes for the room temperature detection of ammonia. Sensor. Actuator. B Chem. 332, 129444. https://doi.org/10.1016/j. snb.2021.129444.
- Liu, C.-S., Li, J., Pang, H., 2020. Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord. Chem. Rev. 410,
- Luo, G., Xie, L., He, M., Jaisutti, R., Zhu, Z., 2021. Flexible fabric gas sensors based on reduced graphene-polyaniline nanocomposite for highly sensitive NH 3 detection at room temperature. Nanotechnology 32 (30), 305501. https://doi.org/10.1088/ 1361-6528/abf455.
- Ma, J., Fan, H., Li, Z., Jia, Y., Yadav, A.K., Dong, G., Wang, S., 2021. Multi-walled carbon nanotubes/polyaniline on the ethylenediamine modified polyethylene terephthalate fibers for a flexible room temperature ammonia gas sensor with high responses. Sensor. Actuator. B Chem. 334, 129677. https://doi.org/10.1016/j. snb 2021 12967
- Mahendraprabhu, K., Selva Sharma, A., Elumalai, P., 2019. CO sensing performances of YSZ-based sensor attached with sol-gel derived ZnO nanospheres. Sensor. Actuator. $B\ Chem.\ 283,\ 842-847.\ https://doi.org/10.1016/j.snb.2018.11.164.$
- Manjakkal, L., Szwagierczak, D., Dahiya, R., 2020. Metal oxides based electrochemical pH sensors: current progress and future perspectives. Prog. Mater. Sci. 109, 100635.
- Mehtab, T., Yasin, G., Arif, M., Shakeel, M., Korai, R.M., Nadeem, M., Lu, X., 2019. Metal-organic frameworks for energy storage devices: batteries and supercapacitors. J. Energy Storage 21, 632–646. https://doi.org/10.1016/j.est.2018.12.025. Miasik, J.J., Hooper, A., Tofield, B.C., 1986. Conducting polymer gas sensors. J. Chem.
- Soc., Faraday Trans. 1: Phy. Chem. Condens. Phase. 82 (4), 1117-1126.
- Miller, D.R., Akbar, S.A., Morris, P.A., 2014. Nanoscale metal oxide-based
- heterojunctions for gas sensing: a review. Sensor. Actuator. B Chem. 204, 250-272. Mirzaei, A., Bang, J.H., Choi, M.S., Han, S., Lee, H.Y., Kim, S.S., Kim, H.W., 2020.
- Changes in characteristics of Pt-functionalized RGO nanocomposites by electron beam irradiation for room temperature NO2 sensing. Ceram. Int. 46 (13), 21638–21646. https://doi.org/10.1016/j.ceramint.2020.05.271.
 Mirzaei, A., Leonardi, S., Neri, G., 2016. Detection of hazardous volatile organic
- compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review Ceram. Int. 42 (14), 15119-15141.
- Moradian, M., Nasirian, S., 2018. Structural and room temperature gas sensing properties of polyaniline/titania nanocomposite. Org. Electron. 62, 290-297.
- Muthusamy, S., Charles, J., Renganathan, B., Ganesan, A.R., 2021. Ternary polypyrrole/ prussian blue/TiO2 nanocomposite wrapped poly-methyl methacrylate fiber optic gas sensor to detect volatile gas analytes. Optik 230, 166289. https://doi.org/ 10.1016/j.ijleo.2021.166289.
- Nadeem, M., Yasin, G., Arif, M., Bhatti, M.H., Sayin, K., Mehmood, M., Flörke, U., 2020. Pt-Ni@PC900 hybrid derived from layered-structure Cd-MOF for fuel cell ORR activity. ACS Omega 5 (5), 2123-2132. https://doi.org/10.1021 acsomega.9b02741.
- Nadeem, M., Yasin, G., Arif, M., Tabassum, H., Bhatti, M.H., Mehmood, M., Zhao, W., 2021. Highly active sites of Pt/Er dispersed N-doped hierarchical porous carbon for trifunctional electrocatalyst. Chem. Eng. J. 409, 128205. https://doi.org/10.1016/j. cej.2020.128205.
- Nasirian, S., 2020. Enhanced carbon dioxide sensing performance of polyaniline/tin dioxide nanocomposite by ultraviolet light illumination. Appl. Surf. Sci. 502, 144302

- Nasresfahani, S., Zargarpour, Z., Sheikhi, M.H., Nami Ana, S.F., 2020. Improvement of the carbon monoxide gas sensing properties of polyaniline in the presence of gold nanoparticles at room temperature. Synth. Met. 265, 116404. https://doi.org/ 10.1016/j.synthmet.2020.116404.
- Nguyen, L.Q., Phan, P.Q., Duong, H.N., Nguyen, C.D., Nguyen, L.H., 2013. Enhancement of NH3 gas sensitivity at room temperature by carbon nanotube-based sensor coated with Co nanoparticles. Sensors 13 (2), 1754–1762.
- Oh, W.-C., Fatema, K.N., Liu, Y., Cho, K.Y., Ameta, K.L., Chanthai, S., Biswas, M.R.U.D., 2021a. Chemo-electrical gas sensors based on LaNiMoSe2 in graphene and conducting polymer PANI composite semiconductor nanocomposite. J. Electron. Mater. https://doi.org/10.1007/s11664-021-09082-5.
- Oh, W.-C., Fatema, K.N., Liu, Y., Cho, K.Y., Jung, C.H., Biswas, M.R.U.D., 2021b. Novel designed quaternary CuZnSnSe semiconductor combined graphene-polymer (CuZnSnSe-G-PPy) composites for highly selective gas-sensing properties. J. Mater. Sci. Mater. Electron. 32 (10), 12812–12821. https://doi.org/10.1007/s10854-020-03651-w
- Oh, W.-C., Fatema, K.N., Liu, Y., Jung, C.H., Sagadevan, S., Biswas, M.R.U.D., 2020. Polypyrrole-Bonded quaternary semiconductor LiCuMo2O11–graphene nanocomposite for a narrow band gap energy effect and its gas-sensing performance. ACS Omega 5 (28), 17337–17346. https://doi.org/10.1021/acsomega.0c01699.
- Oh, W.-C., Lim, C.S., Liu, Y., Sagadevan, S., Jang, W.K., Biswas, M.R.U.D., 2021c. Quaternary nanorod-type BaInSbSe5 semiconductor combined graphene-based conducting polymer (PPy) nanocomposite and highly sensing performance of H2O2 & H2S gases. J. Mater. Sci. Mater. Electron. 32 (12), 15944–15963. https://doi.org/ 10.1007/s10854-021-06145-5.
- Oh, W.-C., Liu, Y., Sagadevan, S., Fatema, K.N., Biswas, M.R.U.D., 2021d. Polymer bonded Graphene- LaNiSbWO4 nanocomposite (G-LaNiSbWO4-PPy) for CO2 sensing performance under normal temperature condition. Inorg. Nano Metal Chem. 1–10. https://doi.org/10.1080/24701556.2020.1855197.
- Östergren, I., Pourrahimi, A.M., Darmadi, I., da Silva, R., Stolaś, A., Lerch, S., Müller, C., 2021. Highly permeable fluorinated polymer nanocomposites for plasmonic hydrogen sensing. ACS Appl. Mater. Interfaces 13 (18), 21724–21732. https://doi.org/10.1021/acsami.1c01968.
- Pandey, S., Nanda, K., 2013. One-dimensional nanostructure based chemiresistor sensor. Nanotechnology 10, 1–17.
- Pareek, A., Dom, R., Gupta, J., Chandran, J., Adepu, V., Borse, P.H., 2020. Insights into renewable hydrogen energy: recent advances and prospects. Mater. Sci. Energy Technol. 3, 319–327. https://doi.org/10.1016/j.mset.2019.12.002.
- Pasupuleti, K.S., Reddeppa, M., Nam, D.-J., Bak, N.-H., Peta, K.R., Cho, H.D., Kim, M.-D., 2021. Boosting of NO2 gas sensing performances using GO-PEDOT:PSS nanocomposite chemical interface coated on langasite-based surface acoustic wave sensor. Sensor. Actuator. B Chem. 344, 130267. https://doi.org/10.1016/j.snb.2021.130267.
- Patil, P.T., Anwane, R.S., Kondawar, S.B., 2015. Development of electrospun polyaniline/ZnO composite nanofibers for LPG sensing. Procedia Mater. Sci. 10, 195–204. https://doi.org/10.1016/j.mspro.2015.06.041.
- Pippara, R.K., Chauhan, P.S., Yadav, A., Kishnani, V., Gupta, A., 2021. Room temperature hydrogen sensing with polyaniline/SnO2/Pd nanocomposites. Micro Nano Eng 12, 100086. https://doi.org/10.1016/j.mne.2021.100086.
- Nano Eng 12, 100086. https://doi.org/10.1016/j.mne.2021.100086.

 Punetha, D., Kar, M., Pandey, S.K., 2020. A new type low-cost, flexible and wearable tertiary nanocomposite sensor for room temperature hydrogen gas sensing. Sci. Rep. 10 (1), 2151. https://doi.org/10.1038/s41598-020-58965-w.
- Qin, Y., Zang, J., Wen, Z., 2020. Synergistic functionalization of aligned silicon nanowires by Ag nanoparticles&PPy wrapping for improving gas-sensing response at high humidity level. Phys. E Low-dimens. Syst. Nanostruct. 118, 113957. https:// doi.org/10.1016/j.physe.2020.113957.
- Ram, J., Singh, R.G., Singh, F., Chauhan, V., Gupta, D., Kumar, V., Kumar, R., 2020. Ion beam engineering in WO3-PEDOT: PSS hybrid nanocomposite thin films for gas sensing measurement at room temperature. Inorg. Chem. Commun. 119, 108000. https://doi.org/10.1016/j.inoche.2020.108000.
- Rasheed, T., Hassan, A.A., Bilal, M., Hussain, T., Rizwan, K., 2020. Metal-organic frameworks based adsorbents: a review from removal perspective of various environmental contaminants from wastewater. Chemosphere 127369.
- Rasheed, T., Rizwan, K., 2022. Metal-organic frameworks based hybrid nanocomposites as state-of-the-art analytical tools for electrochemical sensing applications. Biosens. Bioelectron. 199, 113867. https://doi.org/10.1016/j.bios.2021.113867.
- Riyazi, S., Azim Araghi, M.E., 2020. Performance of interdigitated capacitive-type CO2 sensor based on polypyrrole/copper phthalocyanine nanocomposite. J. Mater. Sci. Mater. Electron. 31 (4), 3539–3548. https://doi.org/10.1007/s10854-020-02902-0.
- Roy, N., Sinha, R., Daniel, T.T., Nemade, H.B., Mandal, T.K., 2020. Highly sensitive room temperature CO gas sensor based on MWCNT-PDDA composite. IEEE Sensor. J. 20 (22), 13245–13252. https://doi.org/10.1109/JSEN.2020.3004994.
- Sahu, P.K., Pandey, R.K., Dwivedi, R., Mishra, V.N., Prakash, R., 2020. Polymer/ Graphene oxide nanocomposite thin film for NO2 sensor: an in situ investigation of electronic, morphological, structural, and spectroscopic properties. Sci. Rep. 10 (1), 2981. https://doi.org/10.1038/s41598-020-59726-5.
- Sakhare, R.D., Navale, Y.H., Jadhav, Y.M., Mulik, R.M., Patil, V.B., 2021. Room Temperature Chemiresistive Properties of polypyrrole/Tin Oxide Hybrid Nanocomposites. Cham.
- Seekaew, Y., Pon-On, W., Wongchoosuk, C., 2019. Ultrahigh selective room-temperature ammonia gas sensor based on tin-titanium dioxide/reduced graphene/carbon nanotube nanocomposites by the solvothermal method. ACS Omega 4 (16), 16016-16024
- Shahmoradi, A., Hosseini, A., Akbarinejad, A., Alizadeh, N., 2021. Noninvasive detection of ammonia in the breath of hemodialysis patients using a highly sensitive ammonia

- sensor based on a polypyrrole/sulfonated graphene nanocomposite. Anal. Chem. 93 (17), 6706–6714. https://doi.org/10.1021/acs.analchem.1c00171.
- Sharma, B., Kim, J.-S., 2018. Graphene decorated Pd-Ag nanoparticles for H2 sensing. Int. J. Hydrogen Energy 43 (24), 11397–11402.
- Shoeb, M., Mobin, M., Ahmad, S., Naqvi, A.H., 2021. Facile synthesis of polypyrrole coated graphene Gr/Ag-Ag2O/PPy nanocomposites for a rapid and selective response towards ammonia sensing at room temperature. J. Sci.: Adv. Mater. Device. 6 (2), 223–233. https://doi.org/10.1016/j.jsamd.2021.02.003.
- Shujah, T., Ikram, M., Butt, A., Shahzad, M., Rashid, K., Zafar, Q., Ali, S., 2019a. H2S gas sensor based on WO3 nanostructures synthesized via aerosol assisted chemical vapor deposition technique. Nanosci. Nanotechnol. Lett. 11 (9), 1247–1256.
- Shujah, T., Ikram, M., Butt, A.R., Hussain, S.G., Shahzad, M.K., Zafar, Q., Ali, S., 2019b. Growth of zinc oxide and zinc stannate nanostructured thin films for carbon monoxide sensing application. Nanosci. Nanotechnol. Lett. 11 (8), 1050–1059.
- Singh, M., Singh, N., Singh, P.K., Singh, S.K., Tandon, P., 2021. Development of polyaniline/ZnO-Ru nanocomposite as a potential LPG sensing material operable at room temperature. J. Mater. Sci. Mater. Electron. 32 (5), 6110–6122. https://doi. org/10.1007/s10854-021-05329-3.
- Singh, P., Kushwaha, C.S., Singh, V.K., Dubey, G.C., Shukla, S.K., 2021. Chemiresistive sensing of volatile ammonia over zinc oxide encapsulated polypyrrole based nanocomposite. Sensor. Actuator. B Chem. 342, 130042. https://doi.org/10.1016/j. snb.2021.130042.
- Sonker, R.K., Sabhajeet, S., Yadav, B., 2016. TiO 2–PANI nanocomposite thin film prepared by spin coating technique working as room temperature CO 2 gas sensing. J. Mater. Sci. Mater. Electron. 27 (11), 11726–11732.
- Sonwane, N.D., Maity, M.D., Kondawar, S.B., 2019. Conducting polyaniline/SnO2 nanocomposite for room temperature hydrogen gas sensing. Mater. Today Proc. 15, 447–453. https://doi.org/10.1016/j.matpr.2019.04.106.
- Tabish, M., Malik, M.U., Khan, M.A., Yasin, G., Asif, H.M., Anjum, M.J., Nazir, M.T., 2021. Construction of NiCo/graphene nanocomposite coating with bulges-like morphology for enhanced mechanical properties and corrosion resistance performance. J. Alloys Compd. 867, 159138. https://doi.org/10.1016/j. iall.com.2021.159138.
- Tai, H., Wang, S., Duan, Z., Jiang, Y., 2020. Evolution of breath analysis based on humidity and gas sensors: potential and challenges. Sensor. Actuator. B Chem. 318, 128104. https://doi.org/10.1016/j.snb.2020.128104.
- Tanguy, N.R., Wiltshire, B., Arjmand, M., Zarifi, M.H., Yan, N., 2020. Highly sensitive and contactless ammonia detection based on nanocomposites of phosphatefunctionalized reduced graphene oxide/polyaniline immobilized on microstrip resonators. ACS Appl. Mater. Interfaces 12 (8), 9746–9754. https://doi.org/ 10.1021/acsami.9b21063.
- Thangamani, G.J., Deshmukh, K., Nambiraj, N.A., Pasha, S.K.K., 2021. Chemiresistive gas sensors based on vanadium pentoxide reinforced polyvinyl alcohol/polypyrrole blend nanocomposites for room temperature LPG sensing. Synth. Met. 273, 116687. https://doi.org/10.1016/j.synthmet.2020.116687.
- Thi Hien, H., Thi Anh Thu, D., Quang Ngan, P., Hong Thai, G., Thanh Trung, D., Trung, T., Truong Giang, H., 2021. High NH3 sensing performance of NiO/PPy hybrid nanostructures. Sensor. Actuator. B Chem. 340, 129986. https://doi.org/ 10.1016/j.snb.2021.129986.
- Tricoli, A., Righettoni, M., Teleki, A., 2010. Semiconductor gas sensors: dry synthesis and application. Angew. Chem. Int. Ed. 49 (42), 7632–7659.
- Umar, A., Ibrahim, A.A., Algadi, H., Albargi, H., Alsairi, M.A., Wang, Y., Akbar, S., 2021. Enhanced NO2 gas sensor device based on supramolecularly assembled polyaniline/ silver oxide/graphene oxide composites. Ceram. Int. 47 (18), 25696–25707. https:// doi.org/10.1016/j.ceramint.2021.05.296.
- Van Marcke, C., Daoudia, A., Penaloza, A., Verschuren, F., 2015. CO2 measurement for the early differential diagnosis of pulmonary embolism-related shock at the emergency department: a case series. Respirat. Med. Case Rep. 16, 106–108. https://doi.org/10.1016/j.rmcr.2015.09.004.
- Varghese, S.S., Lonkar, S., Singh, K., Swaminathan, S., Abdala, A., 2015. Recent advances in graphene based gas sensors. Sensor. Actuator. B Chem. 218, 160–183.
- Wang, C., Yang, M., Liu, L., Xu, Y., Zhang, X., Cheng, X., Huo, L., 2020a. One-step synthesis of polypyrrole/Fe2O3 nanocomposite and the enhanced response of NO2 at low temperature. J. Colloid Interface Sci. 560, 312–320. https://doi.org/10.1016/ iiris.2019.10.076
- Wang, S., Jiang, Y., Liu, B., Duan, Z., Pan, H., Yuan, Z., Tai, H., 2021. Ultrathin Nb2CTx nanosheets-supported polyaniline nanocomposite: enabling ultrasensitive NH3 detection. Sensor. Actuator. B Chem. 343, 130069. https://doi.org/10.1016/j.snb.2021.130069.
- Wang, X., Gong, L., Zhang, D., Fan, X., Jin, Y., Guo, L., 2020b. Room temperature ammonia gas sensor based on polyaniline/copper ferrite binary nanocomposites. Sensor. Actuator. B Chem. 322, 128615. https://doi.org/10.1016/j. snb.2020.128615.
- Wang, Y., Liu, A., Han, Y., Li, T., 2020c. Sensors based on conductive polymers and their composites: a review. Polym. Int. 69 (1), 7–17. https://doi.org/10.1002/pi.5907.
- Wu, J., Wu, Z., Ding, H., Wei, Y., Huang, W., Yang, X., Wang, X., 2020a. Flexible, 3D SnS2/Reduced graphene oxide heterostructured NO2 sensor. Sensor. Actuator. B Chem. 305, 127445. https://doi.org/10.1016/j.snb.2019.127445.
- Wu, Q., Shen, W., Lv, D., Chen, W., Song, W., Tan, R., 2021. An enhanced flexible room temperature ammonia gas sensor based on GP-PANI/PVDF multi-hierarchical nanocomposite film. Sensor. Actuator. B Chem. 334, 129630. https://doi.org/ 10.1016/j.snb.2021.129630.
- Wu, T., Lv, D., Shen, W., Song, W., Tan, R., 2020b. Trace-level ammonia detection at room temperature based on porous flexible polyaniline/polyvinylidene fluoride sensing film with carbon nanotube additives. Sensor. Actuator. B Chem. 316, 128198. https://doi.org/10.1016/j.snb.2020.128198.

- Xu, Q., Townsend, T., 2014. Factors affecting temporal H2S emission at construction and demolition (C&D) debris landfills. Chemosphere 96, 105–111. https://doi.org/ 10.1016/j.chemosphere.2013.07.052.
- Yang, Y., Zhang, H., Chen, J., Jing, Q., Zhou, Y.S., Wen, X., Wang, Z.L., 2013. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7 (8), 7342–7351.
- Yasin, G., Arif, M., Mehtab, T., Shakeel, M., Mushtaq, M.A., Kumar, A., Song, H., 2020. A novel strategy for the synthesis of hard carbon spheres encapsulated with graphene networks as a low-cost and large-scalable anode material for fast sodium storage with an ultralong cycle life. Inorg. Chem. Front. 7 (2), 402–410. https://doi. org/10.1039/C9OI01105F.
- Zhang, D., Wu, Z., Zong, X., 2019a. Flexible and highly sensitive H2S gas sensor based on in-situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sensor. Actuator. B Chem. 289, 32–41. https://doi.org/10.1016/ icpl. 2010.03.055
- Zhang, J., Wu, C., Li, T., Xie, C., Zeng, D., 2020a. Highly sensitive and ultralow detection limit of room-temperature NO2 sensors using in-situ growth of PPy on mesoporous NiO nanosheets. Org. Electron. 77, 105504. https://doi.org/10.1016/j. orgel.2019.105504.

- Zhang, S., Yang, M., Liang, K., Turak, A., Zhang, B., Meng, D., Yang, M., 2019b. An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes. Sensor. Actuator. B Chem. 290, 59–67.
- Zhang, Y., Zhang, J., Jiang, Y., Duan, Z., Liu, B., Zhao, Q., Tai, H., 2020b. Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with pptlevel detection ability at room temperature. Sensor. Actuator. B Chem. 319, 128293. https://doi.org/10.1016/j.snb.2020.128293.
- Zhao, Q., Sun, D., Wang, S., Duan, Z., Yuan, Z., Wei, G., Jiang, Y., 2021. Enhanced blocking effect: a new strategy to improve the NO2 sensing performance of Ti3C2Tx by γ-Poly(I-glutamic acid) modification. ACS Sens. https://doi.org/10.1021/acssensors.1c00132
- Zhao, S., Shen, Y., Zhou, P., Zhong, X., Han, C., Zhao, Q., Wei, D., 2019. Design of Au@ WO3 core–shell structured nanospheres for ppb-level NO2 sensing. Sensor. Actuator. B Chem. 282, 917–926. https://doi.org/10.1016/j.snb.2018.11.142.
- Zhuang, X., Han, S., Huai, B., Shi, W., Junsheng, Y., 2019. Sub-ppm and high response organic thin-film transistor NO2 sensor based on nanofibrillar structured TIPSpentacene. Sensor. Actuator. B Chem. 279, 238–244. https://doi.org/10.1016/j. snb.2018.10.002.
- Zou, Y., Wang, Q., Jiang, D., Xiang, C., Chu, H., Qiu, S., Liu, S., 2016. Pd-doped TiO2@ polypyrrole core-shell composites as hydrogen-sensing materials. Ceram. Int. 42 (7), 8257–8262