Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

Fine-grained Access Control for a Blockchain-based Healthcare System

Sem Duveen, Mauro Conti, Chhagan Lal
TU Delft

Abstract—Large volumes of medical data (MD) are
continuously generated by the healthcare domain. When
sharing these data, issues arise regarding privacy and se-
curity. To solve these issues, a permissioned blockchain
(BC) can be used, but since blockchains do not have ac-
cess control (AC) as a default feature, the integration of
an access control system (ACS) is necessary to ensure the
confidentiality of the medical data. The main question
that we aim to answer is: How can access control tech-
niques (ACT) be incorporated into a BC-based medical
data sharing system (MDSS)? To answer this question, we
created an access control system (ACS), based on Hyper-
Ledger Fabric, after evaluating existing techniques, with
the use of a set of questions, that were chosen specifically
for this purpose. Our ACS uses a smart contract, called
the Access Contract to restrict access, based on access lev-
els and permission queries, which are stored in the state
ledgers of HyperLedger Fabric’s world state. The Access
Contract defines the necessary transactions for an ACS,
in which these variables are used. Our ACS satisfies more
metric questions than the related works’s average and is
thus optimal. We found that AC can be incorporated into
a BC-based MDSS, by utilizing smart contracts to define
the needed transactions that use access levels and permis-
sion queries to restrict the access of users.

1 Introduction

Healthcare is a domain that continuously generates large
amounts of MD from various sources. This makes health-
care a data-intensive domain [10]. This large volume of data
needs to be shared among different health facilities. How-
ever, healthcare systems are facing several challenges con-
cerning the privacy and security when sharing MD [18]. Solv-
ing these challenges is important, because the shared data
contain personal information of patients and should therefore
remain confidential. According to Dubovitskaya et al. [6],
these challenges can be solved by using a permissioned BC
to create this MDSS.

A big problem that arises when trying to use BC to create
such a system is the lack of AC as a default feature of BC
[12]. A MDSS without any ACT would allow people to ac-
cess data that they are not authorized to. This is unacceptable
for a MDSS, since a patient’s data should always remain con-
fidential.

Currently, there are many projects that propose a BC-based
MDSS. For example, Guo et al. [12] propose a hybrid archi-
tecture that uses both BC and edge nodes in order to make AC
based on the attributes of the user possible for MD sharing.
Other examples are Ancile [3], MedBloc [14] and MedRec
[1]. Each of these projects has its own way of integrating AC
into their system.

They are, however, not perfect yet. Each of them uses dif-
ferent ACTs and provides a proof, with different metrics, for
their optimality. This makes it unclear which ACT is the bet-
ter one to use for a BC-based MDSS.

The main question is: How can ACTs be incorporated into a
permissioned BC to create such a BC-based MDSS? To an-
swer this question, we will present the design of an ACS that
can be integrated into a permissioned BC that uses the frame-
work HyperLedger Fabric.

This paper’s main contributions are that it gives a set of met-
rics that can be used to evaluate an ACS for MD sharing,
shows the strong and weak points of existing works and fi-
nally, uses this information to give a design of a fine-grained
and adaptible ACS that can be used to integrate AC into a
BC-based MDSS.

The structure of the remainder of the paper is as follows. Af-
ter this introduction, the second section gives the background
information needed in order to understand the subject of the
paper and discusses related work. First, the third section
shows an evaluation of these related works and the metrics
that are used. Next, this evaluation is used in order to cre-
ate a new or improved ACT. Finally, the new ACS is evalu-
ated, based on the same metrics as chosen in section 3. The
last three sections contain the discussion and future research,
conclusions and responsible research.

2 Background and Related Work
2.1 Blockchain

A BC consists of a chain of data packages, which are called
blocks [19]. Each of these blocks stores multiple pieces of
data called transactions. A block can be seen as a data struc-
ture that consists of two parts, the header and the data. The
header contains the hash value of the previous block in the
chain, a timestamp, a Merkle Root and some other informa-
tion. The data part contains the relevant data of the transac-
tion. Since the BC is extended by each block, the BC can

be seen as a complete ledger of the transaction history. This
BC is duplicated across the distributed network, where every
node has its own copy [25].

2.2 Smart Contracts

A smart contract is a piece of code that governs transactions
and defines the conditions of a mutually agreed contract [5].
Smart contracts run and are stored on the BC and are executed
by all the participants of the network. Since they function
on a publicly shared ledger on the distributed network, smart
contracts are immutable, once they have been agreed to run
[25].

2.3 Access Control

Currently, there are many different ACTs used for AC. Some
noteable examples are Discretionary AC (DAC), Mandatory
AC (MAC), Role-based AC (RBAC), Attribute-based AC
(ABAC) and Relationship-based AC (ReBAC).

Discretionary Access Control

DAC is a way to restrict access, based on the identity of a
user and/or the group they belong to [9]. When using DAC,
the owner of an object is able to decide which users should be
allowed to access the object and what type of actions they are
allowed to perform on the object. [16]. Due to the owner hav-
ing full authority and control over their object, DAC is also
known under the name, owner-based AC [26]. An implemen-
tation of a DAC model usually utilizes an Access Control List
(ACL), AC Matrix or an AC Capability List [2]. All three are
different ways of storing the access levels that are granted to
users. DAC is the most commonly used ACT in commercial
operating systems, such as UNIX and Linux [2].

Mandatory Access Control

When using MAC, the AC policies are fully managed by the
system administrator [24]. This is the exact opposite of DAC,
where every user manages the AC policies of their own ob-
ject. Multiple ACTs exist that use MAC as a base. An exam-
ple of this is Lattice-based AC. For this MAC model, access
is restricted, based on the sensitivity of the information that
an object contains [9]. This sensitivity is represented by a la-
bel. Each user is also given a label. This user label is checked
against the object label to see if it has the same or a higher
level of sensitivity. These sensitivity labels generally include
TS (top secret), S (secret), C (confidential), R (restricted) and
U (unrestricted) [2].

Role-based Access Control

According to Bai et al. [2] DAC and MAC, due to the con-
tinuous development of computer applications, hardly begin
to satisfy AC demands like adding, canceling and merging of
enterprise departments, title promotion, duty change and the
leaders’ responsibility seperation and restriction. In order to
solve these problems with DAC and MAC, RBAC was pro-
posed. To restrict access with RBAC, various roles are distin-
guished, after which every user of the system is granted one
or more of these roles [2]. Access rights are given to each of
these roles. Users are only allowed to access an object if they
have one or more of the needed roles.

Attribute-based Access Control

ABAC can define permissions based on almost any user char-
acteristic, relevant for security. These characteristics are
known as attributes and can have three different types. Sub-
ject attributes, which define the identity and characteristics
of subjects; resource attributes, which define the characteris-
tics of entities that are acted upon by a user; and environment
attributes, which describe the technical, situational and oper-
ational environment [4]. Each object is associated with rules,
regarding certain attributes. When a user tries to get access to
an object, their attribute will be checked against each of these
rules. Access will only be granted when all of the rules are
satisfied.

Relationship-based Access Control

An ACS that uses ReBAC [11] restricts access based on the
relationship that the user, who is trying to access an object,
has with the owner of said object. The word owner, when
using ReBAC, does not mean the same as it does when used
in DAC. In this case the owner does not necessarily have full
control over the AC policies of the object. When a user tries
to access an object, their relationship with the object owner
will be checked. The access request will be rejected, if their
relationship is not one of the authorized relationships or if it
does not exist.

2.4 Related Work

Guo et al. [12] propose an ACS for a BC-based MDSS. This
system has an architecture that is a hybrid between a Hyper-
Ledger Fabric BC and edge nodes. HyperLedger Fabric in-
cludes a so called ACL, in which permissions can easily be
specified. The proposed system uses ABAC as ACT. Since
there can be a lot of conditions that need to be met to be able
to access the data, ABAC allows for very fine-grained and se-
cure AC. This high number of conditions is also its biggest
limitation, since a higher number of rules means that the AC
policy will take up more space. The proposed system chooses
high security over being more efficient with space. Another
limitation is that this project does not only use BC, but also
needs edge nodes in order to work.

Ancile [3] is an Ethereum-based [7] permissioned BC, de-
signed for the management of MD. It utilizes smart contracts
in order to achieve heightened AC for users of various roles,
like patients, providers and third parties. The ACT that Ancile
uses is owner-based, which is better known as DAC. Dagher
et al. [3] commit to the idea that patients own their data and
that this data is not a currency that can be exchanged. A lim-
itation that Ancile has is that it uses access levels, which, un-
less specifically specified as an access level, makes it impos-
sible to only retrieve parts of the data. When retrieving data,
it always returns the full file. In addition, the authors of the
paper do not give experimental results and only give a com-
parative analysis against other projects [5]. Lastly, it is only
possible to grant permission per user, instead of a group of
users at once.

MedChain [5] is another project, that is very similar to An-
cile. The smart contract structure that is used for AC is almost
identical. Because of this, MedChain has the same strengths
and limitations as Ancile when it comes to AC.

MedRec [1] is a project that uses an ACT that is a hybrid be-
tween DAC and ReBAC. This means that the data that needs
to be accessed on the BC is stored in a smart contract that
represents the relationship between a patient and a provider.
However, the permissions are still only managed by the owner
of the data. This smart contract stores a query link to the pa-
tients data and a permission query link, which will only dis-
play the data that allowed to be accessed. This makes it pos-
sible to only retrieve parts of the patient’s data that is allowed
to be seen, instead of always returning the full file. Since
these query links can get complicated, storing it takes up more
space than specifying an access level [23]. Just like Ancile,
another limitation of MedRec is its incapability to specify
permission for a group, rather than an individual. This is the
case, because the permissions are stored per relationship. The
authors of the paper do not explicitly explain any AC policies
that allow third-parties to access the MD. Currently, MedRec
is still a prototype.

Shah et al. [23] propose an Ethereum-based MDSS with
integrated AC. It builds upon and improves the previously
mentioned project, MedRec [1]. The main improvement re-
garding AC is that it is capable of specifying permissions for
groups, which the patient can specify themselves. Since it
builds upon MedRec, it has the same limitations regarding
AC, besides not being able to specify permissions for groups.
MediChain [22] is a project that uses a HyperLedger Fabric
BC in order to create a MDSS with AC. The ACT it uses is
DAC, because the authors believe that the owner should have
distcretionary authority over the data they own. MediChain
is made with a patient-centric user experience in mind. The
AC policies are stored in HyperLedger Fabric’s ACL. The se-
curity and privacy of MediChain has not been tested yet. The
authors of the paper state that, in the future, they would like
to test MediChain against various security attacks, which im-
plies that this has not been done yet.

Ramani et al. [21] propose a system that allows a patient to
fully control the access policies for their data. It is, however,
unclear if the authors of the paper use DAC or a combination
of RBAC. These access policies are enforced by using smart
contracts, which are stored on the BC. The project does not
allow patients to give access to other patients, in order to have
them edit their access policies. Patients can only receive read-
access from other patients. When an unregistered person tries
to access the data, access will automatically be denied. This
is done by checking the registrar contract, which contains in-
formation on all registered users. This does create problems,
since this makes it impossible for third-parties to access the
data.

EACMS [20] is a HyperLedger Fabric-based BC that does
not only integrate AC into a BC-based MDSS, but, through
the combined use of RBAC and DAC, it also makes it possi-
ble for emergency doctors to receive access to a patient’s data
in case of an emergency. It does this by allowing an emer-
gency doctor to access the data for a set amount of time when
a case is deemed to be an emergency. A big problem that
arises with this project is to discern emergencies from non-
emergencies. This is an ethical question that does not have
an explicit answer, and is therefore out of the scope of this
research project. Even though this is the case, it still can not

be ignored as a limitation.

Yang et al. [25] propose a system where the AC is only han-
dled by two smart contracts. The Summary Contract and the
Record Relationship Contract. Multiple ACTs are used in
order to restrict access. The system uses a hybrid between
MAC, RBAC and ReBAC. The AC policies are only managed
by the data provider, but since this can get complicated, a per-
missions field is present in the Record Relationship Contract,
where permissions for roles can be specified. The permis-
sions field is not used, but present in case it is needed. The
other permissions are stored in the summary contract by mul-
tiple access rights fields.

Finally, there is MedBloc [14], which is very similar to the
other projects. It uses ACLs to let the patient specify who is
allowed to access their data. MedBloc uses the DAC tech-
nique, which makes their pros and cons mostly the same as
other systems that use DAC. The authors of the paper con-
ducted experiments, that show that when more access poli-
cies are used, the system does not perform worse than nor-
mal. This experiment was not perfect, since they used arbi-
trary policies, which will not be used in real life applications.
Some limitations that are shared among many different
projects are because of ACTs. An important limitation for
DAC, for example, is that it is weak against Trojan horse at-
tacks and buggy programs with malicious input [17]. DAC
assumes that all programs are benign and correct, which is
not the case in actuality. MAC is also not perfect, since all
permissions are managed by one administrator. For larger
systems, this can cause them to have more work than they
can handle, which makes them more prone to mistakes. For
ABAC the biggest limitation was already mentioned before:
A file can have a large amount of rules that need to be sat-
isfied in order to access the data. This large amount of rules
needs to be stored, so a larger amount of space is needed in
order to have ABAC. The needed amount of space may out-
number the available space, if the number of rules becomes
too high and/or the rules become too complex. RBAC has
some limitations as well. Permissions can, for example, only
be given to roles. It is impossible to give permission to a user
or even an operation. This makes RBAC less flexible than
some other ACTs. ReBAC’s biggest limitation is that it is
impossible to grant access to users that one has not yet been
in contact with, since they need to already have established a
relationship. When using ReBAC, emergency doctors, ambu-
lance staff, third-parties and similar users, are not allowed to
access any data.

3 Methodology
3.1 Review of techniques

In order to create a new or improved ACT for the given
healthcare system, the existing ACS’s will first have to be
reviewed, based on a chosen set of metrics that best fit the
requirements of a MDSS.

Metrics

The set of metrics that will be used in order to review the
ACS’s will be a subset from the set of metrics that is given
by Hu et al. [13]. Hu et al. give a set of metrics that can

Project Framework Techniques Advantages Limitations

[12] HyperLedger | ABAC Very fine-grained and secure AC Inefficient use of space, needs edge nodes

Ancile Ethereum DAC Patient owns their own data Always gives full health record, no experimental results, no groups
MedChain || Ethereum DAC Same advantages as Ancile Same disadvantages as Ancile

MedRec Ethereum DAC + ReBAC Allows giving access to part of health record Query takes up space, no access for groups, prototype

[23] Ethereum DAC + ReBAC Improves on MedRec, group access now possible Same disadvantages as MedRec

MediChain || HyperLedger | DAC Patient-centric Not well tested against security attacks

[21] Ethereum DAC + RBAC Only registered users can get access Third party access impossible and only read access for other patients
EACMS HyperLedger | DAC + RBAC Emergency doctors have access in emergencies Unclear when a case is an emergency

[25] Ethereum MAC + RBAC + ReBAC Access managed by one administrator Administrator can get overwhelmed

MedBloc HyperLedger | DAC Patient manages their own permissions Not well tested

Table 1: Related work

be used in order to evaluate ACS’s, but they do not give any

indication of which metrics can be used in order to evaluate
an ACS that is used for MD sharing. This is why only a subset
of these metrics are useful for the evaluation of such a system.
After thoroughly reading and studying the given metrics, we
have chosen a set of questions that will be used for evaluation.
Each metric can be described by their own set of questions.
These metrics and the corresponding questions are as follows.

Auditing: Having a log is significant for the ACS, because
it allows administrators to check if no-one is using their ac-
cess at times that they should not be accessing the data. It
makes it possible to manually check if everyone is obeying
AC rules that can not be specified digitally.

* Q1I: Are system failures logged by the ACS?

* Q2: Are denied access requests logged by the ACS?

* Q3: Are granted access requests logged by the ACS?

Ease of privilege assignments: The amount of steps
needed to assign a permission, group or permission inheri-
tance need to be as small as possible for the system to have
the optimal efficiency. Therefore, this metric shows the effi-
ciency of projects, based on the amount of steps needed for
these actions. The smaller, the more efficient.
* How many steps are needed in order to:

- Q1: Add a permission?

- Q2: Remove a permission?

- Q3: Change a permission?

- Q4: Create a user group and their relations?

- QS: Create a data group and their relations?

- Q6: Add a permission with inheritance?

Policy management: It is important for a user to be able to
manage their policies well. This management is made more
fine-grained and flexible when a user can assign a policy to
a specific target, like all doctors of a certain hospital. The
expiration date allows for users to assign policies that delete
themselves at the time they specify. This way a user does not
have to delete the policy manually, if it is known until when
it is needed beforehand. This is significant, since people can
be forgetful.

* Q1: Is policy expiration assignment allowed by the ACS?
* Q2: Is policy target assignment allowed by the ACS?

Delegation of administrative capabilities: Administrating
permissions can be a lot of work if it is done by only one ad-
ministrator. If the workload becomes too much, the adminis-
trator will be more prone to mistakes. This can be solved by
allowing the delegation of administrative capabilities.

* Q1: Does the ACS allow policy administration delegation?

Bypass: There are a lot of situations in healthcare that re-

quire immediate access to a patient’s health records. There

might not always be someone to provide access at a time like

that. Even though the question, of when to use a bypass, is

hard and ethical, a bypass, with tolerable risk, is important.

* Q1: Is the ACS able to bypass AC rules for critical deci-
sions?

e Q2: Is the risk of bypassing AC rules tolerable?

Least privilege principle support: When working in the

medical field, one should not get access to more data than

necessary. For example, an eye doctor needs access to data

regarding your eyes and should for that reason not have access

to more than that.

* Q1: Is the ACS able to enforce the least privilege principle?

Safety: An ACS is always at risk of failing. This risk may

be incredibly small, but it is always important to have some

extra safety constraints just in case. The more extra safety

constraints there are, the better.

* Q1: How many extra safety constraints does the ACS
posses?

Conflict resolution or prevention: In some ACTs, it is
possible to create multiple permissions that are in conflict
with eachother. For example, a user can deny access of all
doctors, but allow access for a specific doctor. These con-
flicts should either be prevented, or resolved.

¢ Is the ACS capable of:

- Q1: resolving conflicts between policy rules?

- Q2: preventing conflicts between policy rules?
Operational/situational awareness: There are many spe-
cial cases regarding ACS’s for MD. For example, when a pa-
tient is under eighteen, their parents should have access until
they turn the right age. But in some cases the patient can be
unable to manage their own access because of medical rea-
sons. In this case, parents should remain in control. The sys-
tem needs to be aware of these situations.

* Q1: Is the system capable of specifying and enforcing op-
erational/situational awareness control?

Expression properties: ACS’s are more easily maintained

when they allow for the use of standards and rule specification

languages. The same holds for the use of one or more ACTs.

This metric is significant for the developers of the system.

* Q1: Does the system allow the use of existing AC stan-
dards?

* Q2: Does the system allow the use of existing AC rule
specification languages?

* Q3: Does the system follow an existing ACT?

* Q4: Does the system allow the combination of different
ACTs?

Adaptability to the implementation and evolution of
ACTs: In a hospital, ACTs can change and evolve fast. It
might, for example, be useful to first grant all doctors access,
but later only a specific one. This is why the system should
be adaptable.

* Q1: Is the system capable of handling future changes in the
ACTs?

Evaluation

The ten projects, stated in section 2.4, will be evaluated, based
on the questions that were previously chosen. Each of these
questions will be answered for all of the projects and after-
wards these answers will be discussed in order to find out
how an ACS can be made that satisfies the largest subset of
questions. To satisfy ease of privilege assignment and safety,
the number needs to be better than or equal to the average.
The following tables each represent a question and their
corresponding answers for each project. The abbreviations
that are used are: No (N), yes (Y), unspecified (UNS), not
applicable (N/A) and question x (Qx) where x is a number.

Auditing: A BC, by nature, is a log of all the transactions
that have been made. However, this log does not contain log
entries regarding system failures, granted requests and denied
requests. Table 2 shows the presence of these features.

—_
o)

Project
[12]
Ancile
MedChain
MedRec
[23]
MediChain
[21]
EACMS
[25]
MedBloc

22222227720
222227272~ Z O
22222272<7~Q

Table 2: Auditing

Ease of privilege assignment: The amount of steps that
need to be taken in order to add, change and remove permis-
sions should not be too big, since this would lessen the per-
formance of the BC. The same holds for the amount of steps
needed in order to create user and data groups and to create
permissions with inheritance. Table 3 shows the amount of
steps needed for each.

Project QI Q2 Q3 Q4 Q5 Q6

[12] 2 3 3 2 N/A N/A
Ancile 3 4 4 N/A N/A N/A
MedChain || 3 4 4 1 N/A N/A
MedRec 2 2 2 N/A N/A N/A
[23] 2 2 2 2 N/A N/A
MediChain || 2 3 3 N/A N/A N/A
[21] 3 4 5 N/A N/A N/A
EACMS 2 3 UNS UNS N/A N/A
[25] 3 4 4 N/A N/A N/A
MedBloc || 4 UNS UNS N/A N/A N/A

Table 3: Ease of privilege assignment

Policy management: It may be preferable for a patient to
only give permission for a certain amount of time or to doc-
tors, but only of a certain hospital. Table 4 shows if these
features are allowed.

9

Project
[12]
Ancile
MedChain
MedRec
[231]
MediChain
[21]
EACMS
[25]
MedBloc

ZZARRKZZZAKZZO
ZZZZZAKZZZAO

Table 4: Policy management

Delegation of administrative capabilities: Since the ad-
ministration of permissions can get quite exhausting, it might
be preferable to be able to delegate the administrative capa-
bilities to another user. Table 5 shows if this is possible.

=

Project
[12]
Ancile
MedChain
MedRec
[23]
MediChain
[21]
EACMS
[25]
MedBloc

Z
7]

ZZ%ZCJZZ~<~<ZO
7

Table 5: Delegation of administrative capabilities

Bypass: In case of an emergency or other similar situations
where critical AC decisions need to be made, it is useful to be
able to bypass the AC rules when the risk is tolerable. This is
shown in table 6

Project Ql Q2
[12] N N/A
Ancile N N/A
MedChain || N N/A
MedRec N N/A
[23] N N/A
MediChain || N N/A
[21] N N/A
EACMS Y Y
[25] N N/A
MedBloc N N/A

Table 6: Bypass

Least privilege principle support: A user should have the
minimal amount of access that is possible, while still being
able to do their jobs. Table 7 shows if this is the case.

=

Project
[12]
Ancile
MedChain
MedRec
[23]
MediChain
[21]
EACMS
[25]
MedBloc

2222222227 2Z~Q0

Table 7: Least privilege principle support

Safety: In order to avoid leaks, a system can have safety
constraints besides the ACS. Table 8 shows the amount of
constraints.

Project
[12]
Ancile
MedChain
MedRec
[231]
MediChain
[21]
EACMS
[25]
MedBloc

————o o oN~— N

Table 8: Safety

Conflict resolution or prevention: In some cases, conflict-
ing permissions can be added. These conflicts should be pre-
vented and/or resolved. Table 9 shows if this is the case.

—|
L]

Project
[12]
Ancile
MedChain
MedRec
[23]
MediChain
[21]
EACMS
[25]
MedBloc

2222222272 ZZ~0
222222227 Z2Z~Q

Table 9: Conflict resolution or prevention

Operational/situational awareness: An ACS should be
able to make AC decisions, based on operational/situational
variables. Table 10 shows if this is the case.

Project
[12]
Ancile
MedChain
MedRec
[23]
MediChain
[21]
EACMS
[25]
MedBloc

ZZAKAKZZZAKKZ0

Table 10: Operational/situational awareness

Expression properties: There are many useful standards,
languages and techniques for AC. Table 11 shows the pres-
ence of these properties.

._
|
|
K|

Project
[12]
Ancile
MedChain
MedRec
[23]
MediChain
[21]
EACMS
[25]
MedBloc

ZZZZ~ZZZZ~O
2222222 Z~<Q
O
o Z 222 O

Table 11: Expression properties

Adaptability to the implementation and evolution of
ACTs: Itis preferable for an ACS to be adaptable to future
changes in the ACTs, since these tend to change relatively
often. Table 12 shows if this is the case.

—|

Project
[12]
Ancile
MedChain
MedRec
[23]
MediChain
[21]
EACMS
[25]
MedBloc

ZRKZZZ~KZKKZO

Table 12: Adaptability to the implementation and evolution of ACTs

Amount of satisfied questions: Table 13 shows the amount
of satisfied metric questions per related work.

Project Amount
[12] 2
Ancile 5
MedChain || 9
MedRec 4
[23] 8
MediChain || 6
[21] 4
EACMS 9
[25] 4
MedBloc 3
Average 6.4

Table 13: Amount of satisfied questions

3.2 System Design and Implementation

Now that all metrics have been used to evaluate the related
works, a new ACS can be created that satisfies the largest pos-
sible subset of questions by looking at how the other works
achieve or fail to achieve this.

Access levels

The users of the system can perform various actions on a pa-
tient’s data. These actions are restricted through the use of
access levels. These access levels have a hierarchy and all
allow a set of actions. The access levels are as follows.

READ: When a user is granted this access level by a data
owner, they are allowed to read the health records of this pa-
tient. Any other actions are prohibited.

WRITE: A user that is granted this access level can per-
form the same actions that a user with the READ access level
can perform and more. Besides reading the health records,
this user is also allowed to edit the health records.

OWNER: The top of the access level hierarchy is the
OWNER access level. A user with this access level has access
to all actions. This includes the actions of both the READ and
WRITE access level. Besides these actions, this user is also
allowed to change the access level of other users, change the
permission query and give access to entirely new users.

Permission query

This system uses permission queries, instead of using normal
queries that retrieve a patient’s full health record. This per-
mission query only returns the parts of the data that a user
is allowed to access. A permission query can, for example,
only retrieve a patient’s name, email and address, instead of
retrieving the full file with more sensitive information. When
a user has the OWNER access level, they can edit the corre-
sponding permission query, so it retrieves a different part of

the health record. The permission queries are encrypted, to
ensure that they can be shared securely.

Transactions

Each user is able to perform a predefined set of transactions.
These transactions are as follows.

requestAccess: A user of the system is able to request ac-
cess to the data. This does not mean that this access request
will be granted. The user provides a requested access level,
role and institution, so that the system can check if the user
has access, based on these attributes. This request can be
granted or denied.

updateAccessLevel: Users can try to update the access level
that a user has given to another user. If the access level of the
updating user is OWNER, this user will be allowed to change
the target access level. If the access level is lower, they will
not be able to perform this action.

updatePermissionQuery: Users can also try to update their
permission query. This permission query holds a query for a
part of the health record, for which the data owner has given
someone access. This update of the permission query can,
just like an update of the access level, only be successfully
done when the updater has an access level of OWNER.

grantAccess: users with the OWNER access level is able to
grant access to a specific user. They will have to provide an
access level and permission query for the target user or group
of users.

revokeAccess: Finally, users with the OWNER access level
can revoke access. They can remove any permissions, pro-
vided they have the appropriate access level.

World state

HyperLedger Fabric consists of two parts that are closely re-
lated, but very distinct. These two parts are the blockchain
and a so called world state [15]. The world state is a database
that holds the current values of a set of ledger states. This
makes it possible to easily access the current value of a state,
instead of having to traverse the entire transaction log, in or-
der to calculate it. The ledger states are expressed as key-
value pairs, whose structure can be {Key=K, Value=V} ver-
sion=x or {Key=K, Value={KV}} version=x. In this case x
is a number, K is a key, V is a value and {KV} is a key-value
pair. The values that the ACS uses are stored in this world
state in the form of these state ledgers. The state ledgers that
are used for the ACS are structured as follows.

Permission: {Key=K, Value={Level: level, Query: query,
expires: bool, (expiration: date)}}

Access level: {Key=level, Value=rank}

Data: {Key=patient_id, Value=ptr}

K represents a key value that can have three different values.
The key value is of a concatenation that always first includes
the patient’s ID. Following straight after is the data requester
ID or the ID of a role that a user can have. In case of a role, an
institution ID can follow. Level is an access level and query
is the permission query. Expires is a bool that shows if an ex-
piration date is present. Expiration is the expiration date and

is optional. For the access level state ledger, level represents
an access level and rank represents a number that signifies the
hierarchy of the access level. For the data state ledger maps a
patient id to a pointer that points to their health record.

Smart Contract

The transactions used by the ACS are defined within smart
contracts. In hyperledger, these smart contracts are stored in
something that is called, a chaincode. For this ACS, only
one chaincode with one smart contract is needed. This smart
contract is called the Access Contract.

The variables used in the smart contract are id, roleld, in-
stld, targetld, patientld, level, query and date. The five id’s
are used as a key to get values from the world state. id rep-
resents a patient-user permission, roleld represents a patient-
role permission and instld represents a patient-role-institution
permission. Targetld represents the id that one wants to add
as key in the world state or the key of the ledger one wants
to delete from the world state. Patientld represents the id of a
patient. level and query represent the access level and permis-
sion query. The date represents the current date and is used
to check if a permission is expired. Audit(granted) and au-
dit(denied) represent the part of the contract where granted or
denied access requests will be logged. The get, put and delete
methods represent actions, performed on the world state.

Access Contract

input: id, roleId, instId, level, date, patientId
requestAccess:
permission = get(id);

if(permission == null):
permission = get(instId);

if(permission == null):
permission = get(roleId);

if(permission != null):
if(!permission.expires || permission.expiration > date):
reqAccess = get(level);
access = get(permission.Level);

if(reqAccess >= access):
audit(granted);
return {
Pointer: get(patientId).ptr,
Query: permission.Query
5
else:
audit(denied)

else if(permission.expires):
audit(access denied);
delete(permission);
else:
audit(denied)

input: id, roleId, instId, query, date
updateAccessLevel:
permission = get(id);

if(permission == null):
permission = get(instId);

if(permission == null):
permission = get(roleld);

if(permission != null):
if(!permission.expires || permission.expiration > date):
if(permission.Level == OWNER):
permission.Level = level;

put(permission);

else if(permission.expires):

delete (permission); ing the chosen metrics.

L]
input: id, roleld, instId, query, date
updatePermissionQuery:
permission = get(id);

if(permission == null):
permission = get(instId);

if(permission == null): A
permission = get(roleld);

if(permission != null):
if(!permission.expires || permission.expiration > date):

if(permission.Level == OWNER):
permission.Query = query;
put(permission);

else if(permission.expires):

delete(permission);

input: id, roleld, instId, targetId,
level, query, date

grantAccess:
permission = get(id); .
if(permission == null):

permission = get(instId);

if(permission == null):
permission = get(roleId);
if(permission != null):
if(!permission.expires || permission.expiration > date):

if(permission.Level == OWNER && expires):
put({
Key=targetId,
Value={
Level: level,
Query: query,
expires: true,
expiration: date
}
s
else +if(permission.Level == OWNER):
put({
Key=targetId,
Value={
Level: level,
Query: query,
expires: false

b

else if(permission.expires):
delete(permission);

input: id, roleId, instId, targetld, date

revokeAccess:
permission = get(id);
key = id
L]

if(permission == null):

permission = get(instId);

key = instId
if(permission == null):

permission = get(roleld);
key = roleId

if(permission != null):
if(!permission.expires || permission.expiration > date):
delete(get(targetId));

else if(permission.expires):
delete(permission);

3.3 System evaluation

Our new ACS is created in such a way that it would satisfy
the biggest possible subset of the metrics questions that were .
chosen in section 3.1. This was done by looking at the related
work and learning from their mistakes and successes regard-

Auditing: Our system logs granted and denied access re-
quests. This satisfies Q2 and Q3 of the auditing metric.
Unfortunately, no way could be found to reliably log sys-
tem failures through the use of smart contracts. This only
leaves Q1 unsatisfied.

Ease of privilege assignment: The amount of steps that
are needed in order to add, change and remove permissions,
in the same order are 4, 3 and 4. Both adding and remov-
ing permissions take more steps than the average amount
of steps of the other projects, which is 2 and 3. Changing,
however, takes the same amount as the average. Finally,
creating a user group and their relations takes 4 steps. This
is hard to compare to the related work, since most projects
don’t support groups. The other questions are not applica-
ble. We have chosen for the larger amount of steps, in order
to satisfy more metrics. Q2 and Q4 are satisfied.

Policy management: Both policy expiration assignment
and policy target assignment are allowed by the system.
Policy expiration assignment is made possible by using an
expiration date that gets checked for every transaction. Pol-
icy target assignment is made possible through the use of
ABAC. This satisfies Q1 and Q2

Delegation of administrative capabilities: Policy admin-
istration delegation is made possible by allowing any user
to give another user the OWNER access level, as long as
they posses that access level as well. This way administra-
tive capabilities can be passed on. QI is, therefore, satis-
fied.

Bypass: Bypassing AC rules for critical decisions is not al-
lowed for the ACS. The risks of allowing users to bypass
AC rules in a MDSS were too big, since any risk, even
small, is not acceptable when it comes to MD. Another rea-
son why bypassing AC rules is not allowed is that deciding
when a decision is critical enough to bypass is an ethical
question that is out of the scope of this project.

Least privilege principle support: Through the combined
use of access levels and permission queries, the least privi-
lege principle is supported. It is possible to grant users ac-
cess to a small part of data and only allow them to perform
a certain action on it. This satisfies Q1.

Safety: Besides the access levels and permission queries,
our ACS has two extra safety constraints. These extra con-
straints are the expiration date and the log. This is one
constraint higher than the average of the related works and
therefore satisfies Q1.

Conflict resolution or prevention: Conflict resolution is
chosen above conflict prevention, because the ability to
grant access to both specific users and groups of users was
deemed more significant. Conflicts are resolved by priori-
tising permissions for a specific user over permissions for
a group and prioritising permissions for a role in an institu-
tion above permissions for a single role. This satisfies the
metric, since an ACS needs to have one of the two options.
Only Q1 is satisfied.

Operational/situational awareness: Even when looking
at related works that have successfully enforced opera-
tional/situational awareness, we could not find a way to do

this for the system by using smart contracts within the time
that was given for the research.

» Expression properties: Unfortunately, the ACS does not
allow the use of existing AC standards and rule specifica-
tion languages. A way to make this possible was not found,
but this might be possible after more research. The ACS
follows a combination of ABAC and DAC. Pure RBAC is
also possible if desired. This satisfies Q3 and Q4.

* Adaptability to the implementation and evolution of
ACTs: The ACS can, without a problem, adapt to a change
of ACT towards RBAC, MAC and only DAC. This is pos-
sible because roles are already used, one user can get the
OWNER access levels to all health records and all at-
tributes, besides the id, can be removed. Q1 is, therefore,
satisfied.

The amount of satisfied metric questions is 14 out of 24 met-
ric questions. This is a considerably larger number than the
average of the related works, which is 6.4 as shown in table
13. It is even 2 more than the highest scoring ACS, which
is 12, for Guo et al. [12]. Thus, our ACS is an improved
version, according to the chosen metrics.

4 Discussion and Future Research

In the previous section we created a new ACS that satisfies
as many questions as possible from the metrics chosen in the
same section. Afterwards the system was evaluated by using
the same set of questions. Most of the questions were satis-
fied, except for Q1 of auditing, ease of privilege assignment,
bypass, operational/situational awareness and Q1 and Q2 of
expression properties. For this reason, there might be a better
way to integrate AC into a BC-based MDSS, since satisfying
all questions would create an improved version of our ACS.
However, in the given time and with our current knowledge,
this is the optimal ACS. The ACS enables fine-grained access
control by using access levels, permission queries and the de-
fault security features that HyperLedger Fabric provides. All
values that are needed to create the transactions that the ACS
needs are stored in the world state and can be retrieved with a
key. To define the transactions, the Access Contract was cre-
ated. When recreating the ACS, a different researcher might
create an ACS with slight differences to our ACS. This does
not necessarily mean that it is less optimal, since there can be
multiple optimal ACS’s.

In the future, more research is recommended on some sub-
jects that have not been researched thoroughly yet, while cre-
ating the current ACS. These future research subjects are as
follows.

* In the future, more research can be done into ways to re-
strict access. Currently we use access levels and permis-
sion queries, but there might be other techniques that can
be combined with the current techniques to make an even
better ACS. When more research is done, it might be pos-
sible to create an ACS that satisfies more metric questions
than the current one.

* The ACS already encrypts the permission query, but this
might not be the only part of the ACS that benefits from
being encrypted. Moreover, we do not go into depth about

the type of encryption that is used. In the future, further re-
search can be done into what parts to encrypt and with what
type of encryption. By encrypting the right information in
the right way, we can improve the security of the ACS.

* In the system design, it is stated that the ACS has a log that
contains granted and denied access requests, but we do not
go in depth about how this log should be integrated into the
system. In the Access Contract, the places where requests
should be audited is shown, but there is no transaction that
makes this possible yet. Future research into a transaction
or smart contract dedicated to auditing is recommended.

* Since not all metric questions are satisfied with the current
ACS, future research can be done into the possibility of sat-
isfying them. If more questions are satisfied, the ACS can
be improved, provided that all currently satisfying answers
stay the same.

5 Conclusions

The aim of this project is to answer the following question.
How can AC be incorporated into a BC-based MDSS? To
answer this question we proposed an ACS, based on Hyper-
Ledger Fabric, after evaluating existing works with the use
of current literature on this subject. First, a set of metrics
that could be used for the evaluation of an ACS for medi-
cal data sharing was chosen. Afterwards, the chosen metrics
were used to evaluate existing projects to to discern how the
metric questions might be satisfied. Finally, using the infor-
mation obtained from this evaluation, we created the design
of a new ACS. The ACS enables access control by using ac-
cess levels and permission queries, which are stored in the
state ledgers of HyperLedger Fabric’s world state. Here they
are mapped to a key, which can be a combination between the
id’s of two users, a user and a role or a user, role and institu-
tion. These state ledgers can also contain an expiration date
for the permission, but this is not mandatory. The world state
also contains a type of state ledger that maps a patient to their
data pointer. These values are retrieved from the world state
in a smart contract, called the Access Contract. This smart
contract defines the transactions that allow users to perform
the actions needed for an ACS. The granted and denied access
requests are logged, in order to make it possible to manually
check that no-one is misusing access. Finally, this ACS was
evaluated, which showed that it satisfied 14 of the 24 met-
ric questions. This score is more than double the average for
the related works, which was 6.4., and 2 more than the high-
est score, which was 12. So, to answer the main question,
AC can be incorporated into a BC-based MDSS, by utiliz-
ing smart contracts to define the needed transactions that use
access levels and permission queries to restrict the access of
users.

6 Responsible Research

6.1 Ethical aspects

According to [8], the definition of ethics is “pertaining to or
dealing with morals or the principles of morality; pertaining
to right and wrong in conduct”. We have created the ACS
according to scientific, ethical principals. There are not many
aspects of the research that fit the definition, but there are four

that do. First, in 2.4 we discuss the weaknesses of widely
used ACTs. This information could be misused by people
with malicious intent, in order to get access to patient’s med-
ical records. However, this information can be found by sim-
ply doing a google search, but would alone not be enough for
the attackers to get access to the data. Next, in section 3.1 we
chose the bypass metric to be part of the evaluation metrics.
This metric tests if bypassing access rules in case of a criti-
cal decision is possible and if the risk is tolerable. To satisfy
this metric, an ethical question has to be answered. Namely,
when is a decision critical? Especially in a healthcare setting,
this question is hard to answer with a justifiably answer and
should not be answered by the developers, but by the client
instead. Furthermore, the information that needs to be re-
stricted by the ACS has a high level of sensitivity. This makes
it significant for the ACS to prevent any data from leaking. It
is hard to say with certainty that our ACS is impervious to
attacks. The question that arises is: Is it ethical to use this
design in practice? The only answer that we’re able to give
is that it is impossible to say this with certainty for any ACS
design, since technology is always changing. When a system
that uses our ACS is tested well, the design is useable. Fi-
nally, an ACS does not have a conscience. For this reason,
it is of significance to have humans manually check if ethical
AC decisions are done according to ethical principals. With-
out this, the ACS might make decision that we, as humans,
would not approve of.

6.2 Reproducibility

When following the exact steps that were done to create this
specific ACS, the outcome should be the same. However, this
does not mean that it is easily reproducible. In section 3.1, the
metrics were chosen, based on their importance for the ACS
of a MDSS. This importance can never be fully objective, so
a different researcher might choose a different set of metrics.
The same holds for the final design of the ACS. The smart
contract of a different researcher might have the same func-
tionality as our Access Contract, but this does not mean that
the structure is exactly the same. Our ACS is not the only
optimal design, since there are small differences that would
create an equally optimal ACS.

References

[1] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and
Andrew Lippman. Medrec: Using blockchain for
medical data access and permission management. In
2016 2nd International Conference on Open and Big
Data (OBD), pages 25-30, 2016.

[2] Qing-hai Bai and Ying Zheng. Study on the access
control model. In Proceedings of 2011 Cross Strait
Quad-Regional Radio Science and Wireless Technology
Conference, volume 1, pages 830-834, 2011.

[3] Gaby Dagher, Jordan Mohler, Matea Milojkovic, and
Praneeth Marella. Ancile: Privacy-preserving
framework for access control and interoperability of
electronic health records using blockchain technology.
Sustainable Cities and Society, 39, 02 2018.

(4]

(5]

(6]

(7]
(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Ni Dan, Shi Hua-Ji, Chen Yuan, and Guo Jia-Hu.
Attribute based access control (abac)-based
cross-domain access control in service-oriented
architecture (soa). In 2012 International Conference on

Computer Science and Service System, pages
1405-1408, 2012.

Eman-Yasser Daraghmi, Yousef-Awwad Daraghmi,
and Shyan-Ming Yuan. Medchain: A design of
blockchain-based system for medical records access
and permissions management. /EEE Access,
7:164595-164613, 2019.

Alevtina Dubovitskaya, Zhigang Xu, Samuel Ryu,
Michael Schumacher, and Fusheng Wang. Secure and
trustable electronic medical records sharing using
blockchain, 2017.

Ethereum. https://ethereum.org/en/.
Ethical. https://www.dictionary.com/browse/ethical.

Yanfang Fan, Zhen Han, Jigiang Liu, and Yong Zhao.
A mandatory access control model with enhanced
flexibility. In 2009 International Conference on
Multimedia Information Networking and Security,
volume 1, pages 120-124, 2009.

Ruogu Fang, Samira Pouyanfar, Yimin Yang,
Shu-Ching Chen, and Sundararaj Iyengar.
Computational health informatics in the big data age:
A survey. ACM Computing Surveys, 49:1-36, 06 2016.

Philip W.L. Fong. Relationship-based access control:
Protection model and policy language. In Proceedings
of the First ACM Conference on Data and Application
Security and Privacy, CODASPY ’11, page 191-202,
New York, NY, USA, 2011. Association for Computing
Machinery.

Hao Guo, Wanxin Li, Mark Nejad, and Chien-Chung
Shen. Access control for electronic health records with
hybrid blockchain-edge architecture. In 2019 IEEE
International Conference on Blockchain (Blockchain),
pages 44-51, 2019.

Vincent C. Hu, Karen Scarfone, Vincent C. Hu, Karen
Scarfone, and Scarfone Cybersecurity. Guidelines for
access control system evaluation metrics, 2012.

Jack Huang, Yuan Wei Qi, Muhammad Rizwan
Asghar, Andrew Meads, and Yu-Cheng Tu. Medbloc:
A blockchain-based secure ehr system for sharing and
accessing medical data. In 20719 18th IEEE
International Conference On Trust, Security And
Privacy In Computing And Communications/13th IEEE
International Conference On Big Data Science And
Engineering (TrustCom/BigDataSE), pages 594—-601,
2019.

Ledger. https://hyperledger-
fabric.readthedocs.io/en/release-2.2/ledger/ledger.html.

Kathrin Lehmann and Florian Matthes. Meta model
based integration of role-based and discretionary
access control using path expressions. In Seventh IEEE

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

International Conference on E-Commerce Technology
(CEC’05), pages 443446, 2005.

Ninghui Li. How to make discretionary access control
secure against trojan horses. In 2008 IEEE
International Symposium on Parallel and Distributed
Processing, pages 1-3, 2008.

Xu Ma, Chen Wang, and Laihua Wang. The data
sharing scheme based on blockchain. In Proceedings of
the 2nd ACM International Symposium on Blockchain
and Secure Critical Infrastructure, BSCI *20, page
96-105, New York, NY, USA, 2020. Association for
Computing Machinery.

Michael Nofer, Peter Gomber, Oliver Hinz, and Dirk
Schiereck. Blockchain. Business and Information
Systems Engineering, 59, 03 2017.

Ahmed Raza Rajput, Qianmu Li, Milad

Taleby Ahvanooey, and Isma Masood. Eacms:
Emergency access control management system for
personal health record based on blockchain. /IEEE
Access, 7:84304-84317, 2019.

Vidhya Ramani, Tanesh Kumar, An Bracken,
Madhusanka Liyanage, and Mika Ylianttila. Secure
and efficient data accessibility in blockchain based
healthcare systems. In 2018 IEEE Global
Communications Conference (GLOBECOM), pages
206-212, 2018.

Sara Rouhani, Luke Butterworth, Adam D. Simmons,
Darryl G. Humphery, and Ralph Deters. Medichaintm:
A secure decentralized medical data asset management
system. 2018 IEEE International Conference on
Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and
IEEE Cyber; Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), Jul
2018.

Mira Shah, Chao Li, Ming Sheng, Yong Zhang, and
Chunxiao Xing. Smarter smart contracts: Efficient
consent management in health data sharing. In
APWeb/WAIM, 2020.

Fatima Sifou, Ali Kartit, and Ahmed Hammouch.
Different access control mechanisms for data security
in cloud computing. In Proceedings of the 2017
International Conference on Cloud and Big Data
Computing, ICCBDC 2017, page 40—44, New York,
NY, USA, 2017. Association for Computing
Machinery.

Guang Yang and Chunlei Li. A design of
blockchain-based architecture for the security of
electronic health record (ehr) systems. In 2018 IEEE
International Conference on Cloud Computing
Technology and Science (CloudCom), pages 261-265,
2018.

Ke-Jun Zhang and Wei Jin. Putting role-based
discretionary access control into practice. In
Proceedings of 2004 International Conference on

Machine Learning and Cybernetics (IEEE Cat.
No.04EX826), volume 5, pages 2691-2696 vol.5, 2004.

	Introduction
	Background and Related Work
	Blockchain
	Smart Contracts
	Access Control
	Mandatory Access Control
	Role-based Access Control
	Attribute-based Access Control
	Relationship-based Access Control

	Related Work

	Methodology
	Review of techniques
	System Design and Implementation
	System evaluation

	Discussion and Future Research
	Conclusions
	Responsible Research
	Ethical aspects
	Reproducibility

