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Chapter 1

Introduction

This thesis contains a collection of papers concerning subfields of computer vision and ma-
chine learning.

First, we deal with the motion correspondence problem, which applies to various tasks in
computer vision. By resolving motion correspondence, one can track small objects in a video
sequence. After detection of the objects, the motion-based point correspondences help in
identifying the objects in a sequence of video images. Another typical motion correspondence
application concernes the recovery of the shape of a structured object where the tracked points
represent features on the object.

Next, we discuss the image segmentation problem. The main goal of image segmentation
is to reduce the number of image parts that has to be explained in terms of identity, shape,
position, and dynamic behavior. To this end, the image is divided into regions that are as large
as possible, but always cover a single object or a part thereof. Image segmentation applies
among others to computer vision and image compression.

Finally, we address the clustering problem. Clustering is often applied when data are
explored in order to retrieve information about the objects or phenomena from which the data
are acquired. The goal is to find groups or clusters of objects that show strong resemblance
based on the measured object data. In some applications, prototypes of the resulting clusters
are determined that can serve as cluster representatives.

This chapter is an attempt to grasp the fundamental aspects that the three problems within
this thesis have in common. All three problems can be viewed as pattern recognition prob-
lems, whether it concerns motion patterns, homogeneous image regions, or homogeneous
data clusters in general. However, the resemblance is stronger than that. That is, for all
three problems there are no examples given as to how the structure in the data is manifested.
Because of the lack of this type of knowledge, these problems are considered unsupervised
pattern recognition problems.

In Section 1.1, we first make a more clear distinction between supervised and unsuper-
vised pattern recognition. Since we modeled all problems as optimization problems, we focus
on modeling and model optimization issues for both types of pattern recognition problems
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in Section 1.2. It appears that when modeling pattern recognition problems as optimization
problems, one inevitably has to deal with conflicting optimization criteria. In Section 1.3
we therefore introduce essential terminology and solution methods from the field of multi-
criterion optimization or multi-objective optimization. In Section 1.4, we elaborate on spe-
cific multi-criterion-oriented modeling issues of clustering as a typical unsupervised pattern
recognition problem that facilitates the parameter setting as well as the interpretation of the
results.

In Section 1.5, we show how the multi-criterion modeling aspects are manifested in the
three pattern recognition problems that form the basis of this thesis. In particular, we indicate
the conflicting criteria that arise in each of the problem domains. In addition, we show how
the solution strategies adopted in each of the domains relates to common solution methods
in multi-criterion optimization. It should be mentioned that, since this chapter is written in
retrospect, in some cases this relationship is not strict.

Finally, in Section 1.6, we draw some conclusions about multi~criterion modeling and op-
timization of unsupervised pattern recognition problems. Specifically, we propose extensions
for the three pattern recognition problems regarding the improvement of the models and the
automatic estimation of their parameters.

1.1 Supervised and Unsupervised Pattern Recognition

For the sake of clarity, we start by giving the pattern recognition terminology as we use it. In
pattern recognition, a set of data vectors is given that is obtained by a measuring and feature
extraction process. The task is to discover structure in the data vectors by finding a function
that maps the data vectors to continuous, discrete, or symbolic outputs, which we call classes
[5], [151, [16], [29].

In pattern recognition, a major distinction is made with respect to the way the mapping
function is determined. That is, the mapping function can be learned with or without the
help of a supervisor, where the supervisor gives the corresponding classes for a set of data
vectors. In case these mapping examples are given, the problem is called supervised pattern
recognition, which includes regression and classification among others. In regression the
outputs are usually continuous values, while in classification these are symbolic class labels.
The goal of supervised pattern recognition is therefore to organize the knowledge of the
supervisor in such a way that new data vectors can be properly recognized as classes known
by the supervisor.

Without a supervisor, the problem is called unsupervised pattern recognition. The best-
known unsupervised pattern recognition problem is the clustering problem, but also other
problems can be classified as such, like the already mentioned image segmentation problem
and the motion correspondence problem. Without the prior knowledge of the supervisor, one
has to obtain the knowledge of the structure in the data otherwise. However, due to the lack
of a supervisor the problem becomes almost unsolvable: at most the relative structure in the
input data vectors can be found. Similar issues are involved as in supervised pattern recog-
nition, like the extraction of features from measurements and the selection of discriminating
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features. Other issues are more relevant in the unsupervised case, like the definition of proper
distance measures between data vectors, and the selection of a proper scale or level of detail.
Decisions about these issues cannot be made without some form of feedback. For that reason,
supervision is imperative to a certain extent also for unsupervised pattern recognition.

1.2 Modeling and Optimization in Pattern Recognition

In this section, we unravel some modeling and optimization issues involved in pattern recog-
nition problems. With respect to this, we only consider the given data set and no underlying
distributions or possible re-sampling from an infinite data pool. i.e. we use one data set and
that is all we have.

Both for supervised and unsupervised pattern recognition problems a function must be
determined that maps data vectors to classes. In supervised pattern recognition we try to learn
the function such that it optimally maps the input data vectors to the output classes given by
the expert. Accordingly, we try to minimize the error made by the mapping function. In
classification, the error is the number of misclassified data vectors, while in regression, the
error is the average or total distance between the predicted class value and the class value
given by the expert.

Clearly, for a given data set it is always possible to find a perfectly fitting mapping func-
tion, unless there are inconsistencies in the given examples. In real life, however, such results
are not useful. For this reason, we no longer consider a perfect mapping function, but we
rather aim for a model that suits the problem we want to solve.

For instance, for the classification problem, usually some misclassifications are preferred
over an overfitted (overspecialized) model, because it is assumed that there are some mea-
surement errors and supervision errors (outliers), and the number of data vectors can be too
low to fit a significant model (undersampling). Overfitting is caused by a too strict minimiza-
tion of the error and can be prevented by constraining the complexity of the model either
during the design or by introducing a complexity minimization criterion in the model. As an
example of the latter, when a classifier is based on a mixture of Gaussians model, the number
of Gaussians can be minimized or the size of the Gaussians can be maximized. Accord-
ingly, an appropriate classification model contains an error minimization criterion to achieve
specialization and a complexity minimization criterion to achieve generalization.

When the model is defined in such a way, a trade-off between both criteria must be found
when learning the model with the given examples. In order to validate the learned model the
input data vectors are usually divided up into a training set and a test set. Then, the model
is optimized with the training data and validated with the test data. However, in this way
it is not possible to learn a proper trade-off, since this procedure only gives a performance
measure (test error) afterwards. The trade-off can be found by iteratively optimizing the
model such that the test error is minimal. However, minimizing the error in the test set
by weighing specialization and generalization against each other in the training set leads to
another optimization problem. This procedure would require an extra validation set to come
up with a reliable performance measure. We note that in classification the term generalization
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is also used to qualify a ’good’ trade-off between both criteria leading to a small test error, that
is, a low number of misclassified data vectors in the test set. Clearly, establishing the right
trade-off between specialization and generalization is a very delicate matter. In effect this
trade-off should be generalized over all possible (unavailable) data sets instead of one single
small data set, which leads to another difficulty, known as the bias-variance dilemma. We
do not consider this type of error minimization and refer to standard textbooks for additional
information on this issue [5], [29].

In the unsupervised case, a suitable model also includes conflicting generalization and
specialization criteria. If we for instance consider the clustering problem, the generalization
criteria generally aim at making the clusters larger and the cluster borders smoother, while
specialization criteria make clusters smaller and their borders irregular. However, maximiza-
tion of a specialization criterion leads to as many clusters as data vectors and maximization
of a generalization criterion leads to one cluster containing all data vectors. In general, there
is no way to automatically find the right trade-off between both criteria, because no examples
are given, i.e. the supervision is lacking. Where in classification eventually overfitting leads
to sensitivity to outliers and to undersampling, in clustering overspecialization leads to no
significant structure at all.

In the remainder we focus on unsupervised pattern recognition issues. Especially, we
consider the conflicts between generalization and specialization criteria that are the most
problematic in unsupervised pattern recognition problems. To this end, we first overview
some relevant aspects and methods for solving multi-criterion optimization problems.

1.3 Multi-Criterion Optimization

In multi-criterion optimization problems, multiple minimization and maximization criteria
are defined over the same variables. Since these criteria are generally dependent, an im-
provement in one criterion may lead to a deterioration decrease in another. Accordingly, in
multi-criterion optimization problems, it is usually impossible to deliver objectively good
answers since there is a large set of mathematically equivalent optimal solutions called the
Pareto optimal set or Pareto front. The Pareto optimal set consists of those solutions (vectors
in criterion space) of which no criterion can be improved without degrading another one, see
Fig. 1.1. In the figure there are two criteria F;(x) and F,(x) defined over variable x hav-
ing a circular solution space or feasible region, where both F;(x) and F,(x) are minimization
criteria. When minimized independently, F(x) and F>(x) resultin F}'(x) and F;(x), respec-
tively. The curved thick line in the figure represents the Pareto set of this problem, i.e. the
solutions on this curve cannot be improved with respect to one criterion without decreasing
the other. Since it is not possible to decide on the optimal solution from this set mathemat-
ically, a decision maker is needed to select an element from the Pareto set as a preferred
solution.

There is a number of ways to solve multi-criterion optimization problems; and hence, to
select the desired solution from the Pareto set. Almost all multi-criterion solutions methods
convert the multi-criterion optimization problem into a single-criterion optimization problem,
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Figure 1.1: lustration of the Pareto set in a bicriterion optimization problem with a circular
feasible region. The points F*(x) and F(x) are respectively obtained by optimizing F (x)
and F(x) individually. The thick curved line connecting both points represents the Pareto
set or Pareto front.

such that one solution from the Pareto set is found. For the optimization of the corresponding
single-criterion optimization problem any of the known solution methods can be applied [2],
(7], [8], [11], [18], [24], [31] besides specially designed single-criterion optimization algo-
rithms. Additionally, with some of these methods it is possible to determine (or estimate) the
Pareto set or parts thereof by varying the parameters of the method.

Multi-criterion optimization solution methods can be classified based on the role that the
decision maker plays [13]. In the least involved cases, the decision maker may only accept
or reject the solution (no-preference methods). Otherwise, the decision maker can articulate
his preference beforehand (a priori methods), select the preferred solution from the computed
Pareto set (a posteriori methods), or he can progressively explore the Pareto set (interactive
methods).

From the methods that involve the decision maker, the a posteriori methods are computa-
tionally the most costly, since the whole Pareto set has to be found. The a priori methods, on
the other hand, are the most efficient. With these methods the desired solution can be found
directly, since a priori knowledge is used to estimate the parameters of the corresponding
single-criterion problem. Clearly, these methods require that the parameters of the single-
criterion solution method correspond to meaningful aspects of the problem domain.

Here, we shortly describe some typical methods to solve multi-criterion optimization
problems. For a more complete and elaborate description we refer to [20], [21], [28].
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Weighted Sum Method

The most widely used method for converting a multi-criterion optimization problem into a
single-criterion optimization problem is weighting the multiple criteria into a single crite-
rion. That is, all criteria are multiplied with a proper weighting coefficient and summed
up into one criterion function. This method is almost automatically used for facing a multi-
criterion optimization problem, though without mentioning the underlying conflicting criteria
or alternative solution methods are not mentioned.

This method has a number of drawbacks. Since there is no relation between the weights
and the obtained solution, it is difficult to determine the right weighting coefficients. For a
proper use, the method should be applied repeatedly in order to explore the Pareto set (as in
interactive and a posteriori methods), see Fig. 1.2(a). It can, however, be difficult to sample
the Pareto set at regular distances by varying the weighting coefficients. A more serious
problem is that parts of the Pareto set cannot be found when its elements lie on a non-convex
shaped surface, see Fig. 1.2(b).

e-Constraint Method

Another basic method that can be used to find optimal solutions is the s-constraint method
[9]. According to this method all criteria except one are converted into hard constraints.
These constraints give an upper limit in case the original criterion has to be minimized or a
lower limit if the original criterion has to be maximized. Like the weighting method, the &-
constraint method can be used to determine the Pareto front. That is, by varying the values of
the constraints and by solving the single-criterion optimization problem for every constraint
setting samples can be taken on the front at regular distances, see Fig. 1.3. Though this
method can be computationally intensive, the Pareto front can indeed be found, whether it is
convex or not.

Hierarchical or Ranking Method

In case the criteria can clearly be ordered in terms of their importance then the hierarchical or
ranking method may be appropriate. The criteria are optimized in order of importance, while
per criterion optimization step a constraint is added to fix the range of the optimal criterion
value of the previous step. That is, the previous criterion may only worsen to a certain extent,
see Fig. 1.4. This method is clearly an a priori method, though the decision maker can tune
the constraint range ratio parameter .

Value or Utility Functions

Sometimes it is possible to define a function on the multiple criteria that shows how the
decision maker would value each criterion vector. Accordingly, with such a value function or
utility function method the multi-criterion optimization problem converts into a true single-
criterion optimization problem. It is, however, generally very difficult to define a proper
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= Fa(x)
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Figure 1.2: In (a) the weighting sum method is applied to a bicriterion problem with a convex
Pareto front. In (b) the same method is applied to a problem with a non-convex Pareto front.
Accordingly, parts of the Pareto front cannot be found by tuning the weight vector. In the
figures, the curved thick lines represent the Pareto front or parts thereof (in case the Pareto
set is non-convex). The straight thick lines represent the setting of the weights, where the
slope of the lines is atan(w/w,) and w; and w, are the weighting coefficients of F(x) and
F>(x) respectively.
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Fi(x)

F,,*(x. €)

3 R 5169

Figure 1.3: Illustration of the estimation of a non-convex Pareto front with the £-constraint
method. The point F}(x) on the Pareto front is the result of minimizing F)(x) subject to
F>(x) < . In the figure, the curved thick line represents the part of the Pareto front that is
found when ¢ is step-wise incremented from zero to the position of the straight thick line.

Fi(x)

Ff(x)

Fy(x

(1 +8)Ff(x)

F(x)

Figure 1.4: Illustration of the optimization of a bicriterion optimization problem using the
ranking method. After optimization of F,(x), resulting in F;(x), the next criterion F) (x) is
optimized subject to F>(x) < (1 4+ 8) F5(x), which results in F\*(x). <
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value function, though it is assumed that implicitly the decision maker makes use of such a
function.

1.4 Clustering as a Multi-Criterion Optimization Problem

In order to elaborate on multi-criterion optimization aspects of unsupervised pattern recog-
nition problems, we focus on clustering as exemplary problem in this section. We already
mentioned that for clustering some form of supervision is needed, among others to define
proper distance measures between the data vectors and to define a proper level of detail.
Hence, clustering is usually a stage of an interactive process called exploratory data analysis.

Exploratory data analysis contains all (interdependent) stages, from finding proper mea-
surements, to extracting proper features, and to selecting a proper clustering. The clustering
part consists of designing the cluster model and optimization algorithm, estimating the pa-
rameters of the method, and delivering a corresponding data partitioning, where the model
parameters are related to a trade-off between the generalization and specialization criteria.
Sometimes the data analyst is able to give a good estimate of these cluster method parame-
ters. For instance, the number of clusters is quite often assumed to be known. If so, the results
of one run are assumed to be suitable. Otherwise the analyst evaluates the resulting partition-
ing with specific validation functions or statistical tests in the so-called cluster validation
phase. If the analyst disqualifies the partitioning, the cluster parameters are modified and the
data vectors are re-clustered. A major difficulty with this approach is that re-parameterisation
is far from trivial. That is, the means to check the cluster validity are in general totally dif-
ferent from the cluster algorithm, so the validity test results have no direct relation to the
parameters of the cluster algorithm. Another way to check the validity is to run the cluster
algorithm over a complete range of parameter settings and to validate the range of results
with a validation function, like the Davies Bouldin Index [4]. With such a method the analyst
attempts to discover trends in the validation function curve in order to find proper parameter
settings and the corresponding cluster results.

If we consider exploratory data analysis, the correspondence to multi-criterion optimiza-
tion becomes apparent, since the clustering stage inevitably results in at least a bicriterion
optimization problem, being a generalization and a specialization criterion. Therefore, also
in exploratory data analysis the analyst is involved in finding a proper trade-off between the
conflicting criteria. We list a number of issues that should be considered in the design of a
clustering model and the corresponding optimization algorithm. Especially the interpretation
of the optimization results and the estimation of the model parameters are taken into account.

First, however, we propose a generalization of the popular K-means model that will be
used to serve as an example in explaining these issues. In the normal K-means model the
number of clusters is assumed to be known. Further, the specialization criterion (F;) is de-
fined as the minimization of the squared distance between all data vectors and their corre-
sponding cluster means [19]. In the generalized K-means model, we do not fix the number of
clusters, but we minimize it instead. The minimization of the number of clusters serves as a
generalization criterion (F).



10 Introduction

Criteria
If the analyst is to give feedback in the clustering stage, the criteria must refer to mean-
ingful aspects of the problem domain, i.e. they must be qualitatively significant. For
instance in the generalized K-means model, the squared distance and certainly the num-
ber of clusters can be meaningful in the problem domain.

Parameters
In addition to the criteria, the model parameters should be meaningful in the problem
domain, that is, they should be quantitatively significant. Therefore, certain multi-
criterion solution methods are preferred over others. For instance, in case the model
parameters are weighting coefficients, it is difficult for the analyst to select proper val-
ues. Otherwise, for instance if the e-constraint method is used the (constraint) param-
eters can be meaningful if the corresponding criteria are qualitatively significant. In
the just proposed generalized K-means model, the quantitative significance of squared
distance is questionable but the number of clusters can clearly be quantitatively mean-
ingful.

Inspection
Finally, if the number of criteria, the size of the Pareto set, and the optimization algo-
rithm efficiency allow for it, then it can be preferable for the supervisor to inspect the
Pareto set. Then, from these solutions he can select a proper one. Both the shape of the
Pareto front and the corresponding solutions can be analysed.

In case the number of clusters is not known, the normal K-means model is typically
optimized for various values of K (number of clusters). Then, the solutions are vali-
dated with specific validation functions [1], [4], [6], [12]. This is equivalent to solving
the generalized K-means model using the e-constraint method, where the & constraint
is imposed on the number of clusters, i.e. K < Kpqr. Since the minimization of
the squared distance criterion always results in as many clusters as possible, the solu-
tions will consist of exactly Knq clusters. The only difference is that with the normal
K-means method the trends are analyzed in the shape of specific validation functions
instead of the shape of the Pareto front.

1.5 Applications

In this section we elaborate on the optimization criteria involved in the unsupervised pattern
recognition problems that we deal with in the remainder of this thesis. Further we attempt
to relate the implemented model and optimization method to the known solution methods for
multi-criterion optimization problems. Below, we first consider the motion correspondence
problem. Then, in the following section we describe the modeling and optimization issues of
the comparable image segmentation and clustering problem.
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1.5.1 Motion Correspondence

Motion correspondence has to be established when points are detected in a video sequence
while there is no reliable or significant appearance information about the corresponding im-
age features [3], [23], [25], [26]. Then, only positional information is used to link the points
in time. The main causes for unreliable and insignificant color information are changing light
conditions, poor recording conditions, and restricted recording devices or media. Additional
problems are temporarily occlusion, false detections, missing detections, and points that enter
or leave the video scene. The tracking of image features with or without appearance informa-
tion is an important task in computer vision, for instance to track small objects, to perform
gesture analysis or to recover object structure from feature-point motion, e.g. [27].

Denoted as an unsupervised pattern recognition problem, the motion correspondence
problem has the following characteristics: the number of feature points is unknown, the
point identity is unknown, the number of time instances during which a point is present is
unknown, and an unknown number of false detections is present.

We start with a restricted definition of the motion correspondence problem, where the
number of feature points is constant. Defined in this way the motion correspondence problem
can be modeled as a bicriterion optimization problem. That is, the overall smoothness of the
point tracks must be maximized (F|) and the number of outliers, that is, false and noisy
measurements, must be minimized. The second criterion is implemented by minimizing the
maximum deviation from local track smoothness (F3). Additionally, we impose a uniqueness
constraint that states that point measurements are assigned to at most one point track and that
a point track contains at most one point measurement per time instance. The first criterion
can be considered a specialization criterion and the second a generalization criterion. That
is, when tracks are only optimized for smoothness and all local deviations from smoothness
are allowed, the tracks are specifically fit to the given data set. On the other hand, when
the maximum local deviation from smoothness is minimized, many measurements will be
labeled false. Consequently, the motion tracks rather contain easily fitting measurements
than the outlying measurements.

In general an approach where the analyst has to select the optimal solution for the re-
sulting bicriterion optimization problem interactively is undesirable. Especially because we
aim to track high numbers of points in dense scenes and long sequences, it is practically
impossible.

In the proposed model, we assume that we have a good estimate of the upper limit of the
maximum deviation from local smoothness. In effect, we applied the e-constraint method
without mentioning it in the corresponding chapters. We used a fixed constraint value that
represents the maximum deviation from smoothness ¢,,,.. Accordingly, the model is opti-
mized for smoothness (F)) subject to F» < ¢n... At this stage, because of the uniqueness
constraint, additional measurements can be classified as outliers or false in case the number
of measurements was higher than the number of point tracks.

In Chapter 2, we optimize the track smoothness (F;) only between two time instances,
which we call a greedy solution. This optimization problem can be solved efficiently using
linear optimization techniques. Besides, we applied a similar model and optimization scheme
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to the problem of encoding audio and speech signals with sinusoids, though that subject is
not covered in this thesis [17].

In Chapter 3, we enhanced the optimization scheme by extending the temporal optimiza-
tion scope of the track smoothness criterion. We solved this problem that is known to be
intractable with a heuristic search algorithm. The algorithm uses a best first heuristic per
recursion level and uses additional constraints to prune the search tree.

In Chapter 4, we attack the general motion correspondence problem, that is, we allow the
number of points to vary in time. When only the previous two criteria F; and F; are opti-
mized, a solution with many very short point tracks is optimal. Accordingly, we add a third
criterion F3 that aims at the minimization of the number of tracks. Moreover, to prevent false
measurements to be considered (or linked) as short tracks, we also add a number of continuity
constraints. These constraints demand that in valid tracks a limited number of consecutive
measurements may be missing and that a certain minimal number of consecutive measure-
ments must be present. In the optimization algorithm for the model, the added criterion F3
has priority over the other two. The resulting hierarchical optimization scheme is specially
designed and does not resemble the hierarchical or ranking method that has been described
in Section 1.3.

1.5.2 Image Segmentation and Clustering

In Chapter 5, we address the image segmentation problem. In this problem, the task is to find
an unknown number of image regions or segments that are each as homogeneous as possi-
ble. Further, the union of adjacent segments should be heterogeneous [10], [14], [22]. The
described work is an extension of previously published results [30]. The image segmentation
problem is very similar to the clustering problem that is dealt with in Chapter 6, [5], [15],
[29]. The main difference is that in the image segmentation problem, spatial connectivity
has to be imposed on the segments. Therefore, the problem is also called spatial cluster-
ing. Both problems are clearly unsupervised pattern recognition problems, since the ground
truth (symbolic class labels) is lacking. The conflicting criteria that have to be optimized
are homogeneity of individual clusters (segments) and heterogeneity of the union of clusters.
In Fig. 1.5, we illustrate this conflict. In the figure, there are two groups of three smaller
clusters. This data set can be considered as either two clusters (the dashed circles) or six
clusters (the solid circles), where the two clusters are more general and the six clusters are
more specialized.

The unsupervised pattern recognition problem aspects of the clustering and image seg-
mentation problem are the following: the required densities in data or feature space are un-
known, the number of clusters is unknown, the shapes of the clusters is unknown, and an
unknown number of outliers is present among the data vectors.

Since the image segmentation problem is similar to the clustering problem, the models
that we propose for both problems are similar too. To solve the clustering problem a proper
trade-off must be found between maximization of cluster homogeneity and maximization of
the heterogeneity of the union of two clusters. The homogeneity maximization is expressed
as a minimization of the total squared distance from all data vectors to the corresponding
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Figure 1.5: A set of two or six clusters showing the conflict between cluster generalization
and cluster specialization. The solid circles are more specialized clusters. while the dashed
circles represent more general clusters.

cluster mean F) (sum-of-squared-error criterion), see also Eq. 6.1. The optimization of the
heterogeneity of the union of two clusters is expressed as a maximization the minimal joint
variance of any two clusters F, see of Eq. 6.4.

In order to solve this bicriterion optimization problem, we actually used the g-constraint
method. We minimized the sum-of-squared-error criterion F), while we constrain the min-
imal joint variance criterion, that is, F, > o,2,,. For the image segmentation problem in
Chapter 5, we assume that we can estimate a proper value of the joint variance constraint.
This assumption is based on the fact that the minimization of the sum-of-squared-error cri-
terion subject to the minimal joint variance constraint generally results in clusters with a
variance below the established constraint value 6,2, , see proof in Section 5.2. Accordingly,
the minimal joint variance constraint value can be estimated from the image, based among
others on the image noise.

In Chapter 6, we deal with the cluster problem. Since the number of data vectors is
small compared to those in the image segmentation problem (10* data vectors versus 10°
pixels), estimating the Pareto set becomes feasible in the clustering problem. Implicitly, the
g-constraint method has been applied to explore the model parameter space, resulting in an
estimation of the Pareto front. It appears that from the shape of the Pareto front suitable
solutions can indeed be recognized. Accordingly, studying the Pareto front can be used as
a cluster tendency or validation method. See for instance the computed feasible region and
corresponding Pareto front for the ris data set in Fig 1.6. In the figure, the sum-of-squared-
error criterion F is displayed as a function of the minimum joint variance F». The Pareto
front consists of those solutions from the feasible region that have a minimal squared error
while their joint variance is maximal; the black dots in the figure represent the, in this case,
discrete Pareto front. Since the Pareto front is non-convex, in retrospect it can be concluded
that the popular weighted sum method would not have been suitable to find the Pareto front
for the optimization of this multi-criterion model. Additionally, in Chapter 6, we show that
heuristics can be defined that automatically find a suitable trade-off for the cluster problem
from an analysis of the Pareto front. In effect, the use of these heuristics result in a value
function method for this bicriterion problem.
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Figure 1.6: Illustration of the feasible region of the Iris data set estimated with the ¢-constraint
method. The conflicting criteria are the sum-of-squared-error criterion F; and the minimum
joint variance criterion F>. In this case the Pareto front (solid dots) is discrete, because it
concerns a discrete optimization problem. This figure is an adapted version of Fig. 6.11 in
Chapter 6.

Both for the image segmentation problem and the clustering problem the corresponding
single-criterion optimization algorithm has been specifically designed. The algorithm con-
tains non-deterministic elements in order to escape from local optima, since this optimization
problem is also known to be intractable.

1.6 Discussion

This study of modeling and optimization aspects of a number of unsupervised pattern recog-
nition problems makes clear that by nature these problems give rise to multiple conflicting
criteria.

First, we want to stress that the popular, almost automatic transformation of a multi-
criterion optimization problem into a single criterion optimization problem using weighting
coefficients has a number of drawbacks. The most severe drawback is that the Pareto front,
the set of mathematical equivalent optimal solutions, cannot be determined in case the front
is non-convex. Consequently, with the weighted coefficients method some optimal solutions
are ruled out a priori.

Second, as we showed with the clustering model proposed in this thesis, the shape of the
Pareto front can give valuable information about a proper trade-off between the conflicting
optimization criteria. Moreover, it appears that the Pareto front of this model is non-convex,
which we showed by estimating it with the less conventional e-constraint method. Accord-
ingly, it could indeed not be found with the weighted sum method.

Third, any available information should be exploited in order to articulate the analyst’s
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preference for certain solutions in a multi-criterion model. These preferences can for instance
be expressed in the form of additional hard constraints, as those we implemented for the mo-
tion correspondence problem. In that way, we were able to solve the corresponding complex
combinatorial multi-criterion optimization problem with an a priori method.

In view of the optimization issues raised in this chapter, we foresee a number of concrete
improvements that can be made to solve the problems that we dealt with in this thesis. First,
the e-constraint method that is implicitly used for the motion correspondence problem could
be extended so the Pareto front of this problem can be inspected. Accordingly, it would be
possible to find a proper value of the corresponding constraint value (¢,,,.). This would be
very interesting, since the determination of a suitable ¢, value is far from trivial.

Second, for the clustering problem the shape of the Pareto front indeed reveals a suitable
trade-off between generalization and specialization criteria. The clustering problem is, how-
ever, certainly not yet solved. For instance, in case the variance of the clusters differs the
current model has shortcomings. Other generalization criteria may be considered or added to
improve the model.

Finally, we want to emphasize that especially in case of incommensurable criteria it is
important to make the criteria explicit. Instead of turning the problem into a single criterion
problem, one should to be aware of the conflicting criteria that are inherent to the problem.
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Abstract This paper studies the motion correspondence problem for which a diversity of
qualitative and statistical solutions exist. We concentrate on qualitative modeling, especially
for situations where assignment conflicts arise, either because multiple features compete for
one detected point or because multiple detected points fit a single feature point. We leave out
the possibility of point track initiation and termination, because that principally conflicts with
allowing for temporary point occlusion. We introduce individual, combined, and global mo-
tion models and fit existing qualitative solutions in this framework. Additionally, we present
a new efficient tracking algorithm that satisfies these — possibly constrained — models in a
greedy matching sense, including an effective way to handle detection errors and occlusion.
The performance evaluation shows that the proposed algorithm outperforms existing greedy
matching algorithms. Finally, we describe an extension to the tracker that enables automatic
initialization of the point tracks. Several experiments show that the extended algorithm is
efficient, hardly sensitive to its few parameters, and qualitatively better than other algorithms,
including the presumed optirnal statistical multiple hypothesis tracker.

Keywords: Motion correspondence, feature point tracking, target tracking, algorithms.

2.1 Introduction

Motion correspondence has a number of applications in computer vision, ranging from mo-
tion analysis, object tracking and surveillance to optical flow and structure from motion [11],
[24], [25], [26]. Motion correspondence must be solved when features are to be tracked that
appear identical or that are retrieved with a simple feature detection scheme which loses es-
sential information about their appearance. Hence, the motion correspondence problem deals
with finding corresponding points from one frame to the next in the absence of significant
appearance identification (see Fig. 2.1(a)). The goal is to determine a path or track of the
moving feature points from entry to exit from the scene, or from the start to the end of the
sequence. During presence in the scene, a point may be temporarily occluded by some object.
Additionally, a point may be missed and other points may be falsely detected because of a
failing detection scheme, as in Fig. 2.1(b) and Fig. 2.1(0)".

A candidate solution to the correspondence problem is a set of tracks that describes the
motion of each point from scene entry to exit. We adopt a uniqueness constraint, stating that
one detected point uniquely matches one feature point. When 2-D projections from a 3-D
scene are analyzed, this is not trivial, because one feature point may obscure another. If we
further assume that all M points are detected in all n frames, the number of possible track sets
is (M!)* ~1. Among these solutions, there is a unique track set that describes the true motion
of the M points. In order to identify the true motion track set, we need prior knowledge about
the point motion, because otherwise all track sets are equally plausible. This knowledge can
range from general physical properties like inertia and rigidity to explicit knowledge about
the observed objects, like for instance the possible movements of a robot arm in the case that

n the remainder of this paper we display the measurements from different time instances in one box and usey
labels to indicate the time the point was detected.




2.1 Introduction

t
W

R —
'\\\_.__L__‘——o
- -
—n
(a) ket Iy fel
N a
® -~
oo | | 5 5
—1 >
(b) k-1 i ]
A ] -\ \_?
R\L\._d_'____;’
-—
I —

(c) iy I Tewl

Figure 2.1: Three moving points are measured at three time instances. The lines represent
the point correspondences in time. In (a) all points are measured at every time instance. In
(b) there is an extra or false measurement at £, and in (¢) there is a missing measurement
at fip

points on a robot arm are to be tracked. Clearly, generic motion correspondence algorithms
cannot incorporate scene information. Moreover, they do not differentiate between the points
in the scene, i.e. all points are considered to have similar motion characteristics.

When many similar points are moving through a scene, ambiguities may arise, because a
detected point may well fit correctly to the motion model of multiple features points. Addi-
tional ambiguities are caused by multiple detected points that fit correctly to the model of a
single feature. These correspondence ambiguities can be resolved if combined motion char-
acteristics are modeled, like for instance least average deviation from all individual motion
models. Besides resolving these ambiguities we also have to incorporate track continuation
in order to cope with point occlusion and missing detections. Other events that we may need
to model are track initiation and track termination, so that features can enter and leave the
scene, respectively.

The available motion knowledge is usually accumulated in an appropriate model. Then,
a specific strategy is needed to find the optimal solution among the huge amount of candidate
solutions defined by the model. When the nearest-neighbor motion criterion is used, (see also
Section 2.3) and there are neither point occlusions nor detection errors, track set optimality
only depends on the point distances between any two consecutive frames. It is then legitimate
to restrict the scope of the correspondence decision to one frame ahead, which we call a
greedy matching solution to the correspondence problem. In other cases in which velocity
state information is involved, correspondence decisions for one frame influence the optimal
correspondence for the next frames and the problem becomes increasingly more complex. In
such cases only a global matching over all frames can give the optimal result. In this paper,
we consider the more difficult cases, i.e. dense and fast moving points, which makes the use
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of velocity state information essential. Because there are no efficient algorithms to find the
optimal track set by global matching, only approximation techniques apply. Several statistical
[2] and qualitative approximation techniques have been developed both in the field of target
tracking and computer vision.

Statistical Methods

The two best known statistical approaches are the Joint Probabilistic Data-Association Filter
(JPDAF) [9] and the Multiple Hypothesis Tracker (MHT) [20]. The JPDAF matches a fixed
number of features in a greedy way and is especially suitable for situations with clutter. It
does not necessarily select point measurements as exact feature point locations, but, given the
measurements and a number of corresponding probability density functions, it estimates these
positions. The MHT attempts to match a variable number of feature points globally, while
allowing for missing and false detections. Quite a few attempts have been made to restrain
the consequent combinatorial explosion, such as [3], [4], [5], (6], [15], [16]. More recently,
the equivalent sliding window algorithms have been developed, which match points using a
limited temporal scope. Then, these solve a multidimensional assignment problem, which
is again NP-hard, but real-time approximations using Lagrangian relaxation techniques are
available [7], [8], [17], [18], [23].

A number of reasons make the statistical approaches less suitable as a solution to the
motion correspondence problem. First, the assumptions that the points move independently
and, more strongly, that the measurements are distributed normally around their predicted
position may not hold. Second, since statistical techniques model all events as probabilities,
these techniques typically have quite a number of parameters, such as the Kalman filter pa-
rameters, and a priori probabilities for false measurements, and missed detections. In general,
it is certainly not trivial to determine optimal settings for these parameters. In the experiments
section we show that the best known statistical method (MHT) is indeed quite sensitive to its
parameter setting. Moreover, the a priori knowledge used in the statistical models is not dif-
ferentiated between the different points. As a consequence, the initialization may be severely
hampered if the initial point speeds are widely divergent, because the state of the motion
models only gradually adapts to the measurements. Finally, the statistical methods that opti-
mize over several frames are despite their approximations computationally demanding, since
the complexity grows exponentially with the number of points.

Heuristic Methods

Alternatively, a number of attempts has been made to solve the motion correspondence prob-
lem with deterministic algorithms [1], [12], [14], [19], [22]. These algorithms are usually
conceptually simpler and have less parameters. Instead of probability density functions,
qualitative motion heuristics are used to constrain possible tracks and to identify the opti-
mal track set. By converting qualitative descriptions like smoothness of motion and rigidity
into quantitative measures, a distance from the optimal motion can be expressed (where a
zero distance makes a correspondence optimal). The most commonly known algorithm is
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the conceptually simple greedy exchange algorithm [22], which iteratively optimizes a lo-
cal smoothness of motion criterion averaged over all points in a sequence of frames. The
advantage of such deterministic algorithms is that it is quite easy to incorporate additional
constraints, like (adaptive) maximum speed, and a maximum deviation from smooth motion,
while this a priori knowledge can restrain the computational cost and improve the qualitative
performance, e.g. [1], [10].

The main contributions of this paper are the presentation of a 1) qualitative motion model-
ing framework for the motion correspondence problem. We introduce the notion of individual
motion models, combined motion models, and a global motion model, and we differentiate
between strategies to satisfy these models. Further, we propose a 2) new efficient algorithm
that brings together the motion models, an optimal strategy, and an effective way to handle
detection errors and occlusion. Finally, we present an extensive 3) comparative performance
evaluation of a number of different qualitative methods.

The outline of the paper is as follows. We start by giving a formulation of the motion
correspondence problem in the next section. Then in Section 2.4, we present our qualitative
motion model and show how the existing deterministic motion correspondence algorithms
can be fit into it. Additionally, we present a new algorithm that effectively resolves motion
correspondence using the presented model in Section 2.5. In Section 2.6, we compare the
qualitative performance, the efficiency, and the parameter sensitivity of the described algo-
rithms. Further, we show how the proposed algorithm can be extended with self-initialization
and evaluate it with synthetic data experiments in Section 2.7. We broaden this evaluation in
Section 2.8, with real-data experiments. We finish the paper with a discussion on possible
extensions and some conclusions.

2.2 Problem Statement

In this section we describe the motion correspondence problem as treated in this paper. In
motion correspondence, the goal is tracking points that are moving in a 2-D space that is
essentially a projection of a 3-D world. The positions of the points are measured at regular
times, resulting in a number of point locations for a sequence of frames. For the moment,
we assume that we have initial motion information of all points, which is given by point
correspondences between the first two frames. From Section 2.7 onwards this restriction
is lifted. Since the measured points are projections, points may become occluded and thus
missing. Moreover, the point detection may be imperfect, resulting in missing and false point
measurements. Because long occlusion on the one hand and scene entrance and exit on the
other hand are conflicting requirements, we leave out the possibility of track initiation and
track termination, so the number of features to be tracked is constant. Applications using
this problem definition range from object tracking in general, like animal tracking to perform
behavior analysis, particle tracking, and cloud system tracking, to feature tracking for motion
analysis. In the remainder of this paper, we abbreviate the moving points to ‘points’ and their
measured 2-D projections to ‘measurements’.

More formally: There are M points, p;, moving around in a 3-D world. Given is a
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sequence of n time instances for which at each time instance #; there is a set X* of m; mea—
surements x with 1 < j < myand 1 < k < n, of points p;. The measurements xk | are
vectors representmg 2-D coordinates in a 2-D space, with dimensions S,, (width) and Sy
(height). The number of measurements, my, at #, can be either smaller (occlusion) or larger
(false measurements) than M. At t;, the M points (M < m,) are identified among the m,
measurements. Moreover, the corresponding M measurements at ¢, are given. The task is
to return a set of M tracks that represent the (projected) motion of the M points through the
2-D space from 1; to #, using the movements between #; and ¢, as initial motion character-
istics. A track T;, with I < i < M, is an ordered n-tuple of corresponding measurements:
(x}I xi X5 ) with 1 < j, < my. It is assumed that points do not enter or leave the scene
and that the movement can be modeled independently. A track that has been formed up to 7,
is called a track head and is denoted as T,.‘, wherel <i < M.

2.3 Qualitative Motion Modeling

The assumption underlying the qualitative model that we advocate is that points move
smoothly from time instance to time instance. That is, not only the individual points move
smoothly, but the total set of points moves smoothly as well, both between time instances
and over the whole sequence. Hereto, we define a qualitative model in which these quali-
tative statements are explicitly represented by a composition of motion models that we have
called the global motion model, the combined motion model and the individual motion model.
The individual motion model represents the motion of individual points. To embed the mo-
tion smoothness constraints, we can make use of well-known general physical properties like
rigidity and inertia. Without loss of generality, we only consider first-order motions, and thus
leave out acceleration-state information. Consequently, the motion vector of a feature point
can be estimated from only two consecutive measurements. On the basis of the motion vector
and the adopted individual motion model, the position of the point at the next time instance
can be predicted. The measurement that is closest to this prediction can then be selected as
corresponding measurement. In reality, however, the points do not move exactly according to
their predictions, because of shortcomings of the adopted individual motion model. These are
among others caused by the limited order of the motion model, the fact that measurements
are 2-D projections of 3-D movements, and by noise in the system.

To express the misfit between a measurement and the predicted position, the candidate
motion vector between the candidate measurement and the last measurement in the track is
calculated. Using the inertia argument the cost representing the misfit is expressed in terms
of the candidate motion and the previous true motion vector. These costs can be used to
select the appropriate candidate measurement to make a correspondence. When points are
moving far apart from each other or when they move reasonably according to their models,
their measurements can easily be assigned to the corresponding feature point. With densely
moving point sets, however, assignment conflicts can easily occur. That is, one measurement
fits correctly multiple individual motion models or multiple measurements correctly fit one
motion model. To resolve these ambiguities, the motion smoothness constraint is also im-
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posed on the complete set of points. To this end, we introduce the combined motion model,
which expresses the deviation from this motion constraint. As an example, we could enforce
that the average deviation from the individual motion models is minimal.

Even with the use of the combined motion model it is not always possible to decide
on point correspondences. For that reason the motion smoothness constraint is additionally
extended over the whole sequence in the global motion model.

In the remainder of this section, we present some individual motion models, combined
motion models and a global motion model and we give quantitative expressions for each of
them. To simplify the notation of the criteria that lead to the point tracks T;, we introduce the

assignment matrix A; = [a,.kj], where the entries aj; have the following meaning: af, = 1

if and only if measurement x’}“ is assigned to track head 7 and otherwise zero. Because
some measurements are false and others are missing, there can be some measurements that
are not assigned to a track head (all zeros in a column in A¥), and some track heads that have

no measurement assigned to them (all zeros in a row in A*). Or, more formally:

M miy
Yoafi<t l<jsmgn Yoabsl I<isM: odielo ) )
i=1 j=I1

We use two alternative notations for a correspondence between a measurement and a track
head. First, we define o} as:

k

o =

i & a{‘j =1 (2.2)

Second, we use ordered pairs (i, j) to indicate that measurement x';“ has been assigned
to track head 7}", Z* then contains all assignment pairs from ; to 14| according to:

Zh={G. play=1) 2.3)

Tracks T; can now be derived from A, which is the concatenation of the assignment

matrices A¥. We introduce a deviation matrix D* = |¢¥; | to denote all individual assignment
1 g

costs ¢}; between track heads T;* and measurements x*'.

The assignment matrix identifies all correspondences from frame to frame, while the de-
viation matrix quantifies the deviation from the individual motion track per correspondence.
The matrices A* and D* both have M rows and my,; columns. The rows represent the M
track heads, Ti", and the columns represent the m;., measurements, x'}“ that have been
detected at ;.

Individual Motion Models

We now formulate three individual motion models, together with an expression to compute
a deviation from the optimal track. The first model uses only one previous measurement to
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predict the new position. We have indicated the dependence of only one previous measure-
ment by the order of the individual model: O;, = 1. The other two individual models depend
on two measurements and consequently have order O;, = 2. The followmg motion criteria

coefficients cf; ; are all defined from track head T¥ to a measurement x

im1 The nearest-neighbor model does not incorporate velocity information. It only states
that a point moves as little as possible from #; to ;4.

=l % —xf |, where 0 <cf; < /82 +5;. (2.4)

im2 The smooth motion model as introduced by Sethi and Jain [22] assumes that the ve-
locity magnitude and direction change gradually. The smooth motion is formulated
quantitatively in the following criterion:

) 01 (Xk ka l) (’;H—Xf")
KA R P [ Py
N L Ll 25
N E T e A | ‘

where 0 < cl'.‘j <1.

im3 The proximal uniformity model by Rangarajan and Shah [19] assumes little motion in
addition to constant speed. The deviation is quantified in the following criterion:

k_ +1_
R [ e I
j myy -1 k 1_
Z,,IZ“II(X'; X )= (" = x5
"xk+l Xk “ 06
M ’ :
Zp:l Z;ns-ll ka+l xl;? "
where 0 < cf‘j < 1.
Combined Motion Models
Combined motion models serve to resolve correspondence conflicts between two successive
S frames in case of dense moving point sets, making the individual model errors dependent on

each other. Next, we give two combined model criterions C* as a function of A* and D*, that
are defined at #; over all established track heads.




2.3 Qualitative Motion Modeling 29

120 120
®p; ®
100} ® p2 100(m p;
A p; 7 Ap; 1
80 80 /
60 —oe 60 P
1y 14 ! 5]
40 40
—a ' 2}
20 1 ) 20 2
15 2
0 0
30 40 60 80 100 120 140

(a) (b)

Figure 2.2: Three moving points that are matched with im1 and em1 using either z = 1 (a)
or z = 2 (b). As a consequence larger deviations are penalized more in (b).

cml

cm2

The average deviation model. This is a typical combined model which is usually re-
alistic. It accounts for the average deviation from the optimal track according to the
individual model [21], [22], {26]. Quantitatively, we use the generalized mean, which
has a z parameter to differentiate between emphasis on large and small deviations from
the optimal individual track (see Fig. 2.2).

1

M mpy

. l V4 -
Ct(Ak, DY) = [M D ak(ck) ] 2.7)

i=1 j=1

The average deviation conditioned by competition and alternatives model is derived
from [1], [19]. In this combined model measurements are assigned to that track head
that gives low deviation from the optimal track, while both the other tracks are less
attractive for this measurement and the other measurements are less attractive for this
track.

M mgy

CH(A* DY) = %ZZ(a{‘jc,’-‘j~w1Ra(i)—w2RC(j)), 2.8)

i=1 j=1

where:

M
Ri() = ——=> (1-al)cl; R =——->(1-d"), (29
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R, (i) represents the average cost of alternatives for Tf and R.(j) the average cost for
competitors of x}*'.

Global Motion Model

To find the optimal track set (over all frames) according to a certain combined model, we need
to compute the accumulated global motion deviation S(D) as in the following expression:

n—1

S(D) = min > chak DY, (2.10)
YV 4=0um
where U is the set of matrices A that satisfy Eq.2.1.

That is, the overall minimum of averaged combined criterions defines the optimal track
set. Because finding this minimum is computationally expensive, a greedy matching is con-
sidered in this paper. This means that instead of finding correspondences over all frames, we
establish optimal correspondences between two successive frames, given the state of the in-
dividual motion models and the combined model up to that moment. After these sub-optimal
correspondences have been established the states of the individual models are adjusted and the
next frame is considered. In other words, Eq.2.10 is approximated by minimizing C *(A*, D¥)
separately, i.e.:

n-—1
$(p) = k; Crin(DY),  where Cp,,(D¥) = min C*(4*, D) @.11)
This approximation approach reduces the complexity of the problem considerably, al-
though at the cost of greedy, possibly less plausible, correspondence decisions (see for ex-
ample Fig. 2.3). In the remainder, we leave out the D and D¥ parameter for S, §, and ct.
respectively.

Model Constraints

The motion models we have described so far allow for any point speed and for any deviation
from smoothness. The models only state that those assignments are preferred that have little
deviation from the individual model. There are, however, situations in which there is more
knowledge available about the point motions, like the minimum speed (d i) and the maxi-
mum speed (dmqx) [1], [12], [14], [21], maximum violation of smoothness (¢max) [1], [14],
[21], and spatial or temporal adaptive speed and smoothness violation constraints [10]. When
imposed on the individual motion models, these constraints enable the recognition of impos-
sible assignments, which can be both qualitatively and computationally beneficial. These
constraints can for instance be implemented by setting the individual criterion to a very high
value when some constraint is violated. The strategy that satisfies the models (see next sub-
section) can exploit these constraints more adequately by leaving out of consideration those
correspondences that violate the motion constraints.
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Figure 2.3: Two moving points at four time instances. When the smooth motion model (im2)
with the average deviation model (cm1) are assumed, (b) gives a two times lower deviation
from the optimal path than (a). However, (a) is decided for when greedy matching is used.

Strategy

To find the optimal track set, we compute the global motion deviation. However, we are
not interested in the actual value of S, but in the assignment matrix A that results in the
minimal global motion deviation. In the next section, we first show how existing algorithms
approximate the minimization of C* and consequently deliver a sub-optimal solution A*. In

Section 2.5, we present an optimal as well as efficient algorithm to find that AF that minimizes
ck.

2.4 Algorithms

Having modeled the feature point motion and having described quantitative expressions that
can be used to identify the optimal track set, we now review a number of existing algorithms
and fit them in our motion framework using our concept of individual and combined mo-
tion models. Further, we describe the strategy they use to find the optimal correspondences.
Because all algorithms perform greedy matching, their task is to find C¥

min*

S&S Algorithm (im2/cm1/z=1)

The first algorithm we looked at was originally developed by Sethi and Jain [22]. The original
algorithm assumes a fixed number of feature points to be tracked and does not allow for
occlusion and detection errors. Here, we describe the adjusted algorithm by Salari and Sethi
[21] that partially fixes these shortcomings. The algorithm adopts a smooth motion model
for individual motion (im2). The combined motion model is an average deviation model
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(ecm1/z=1). To find an optimum of the global motion, the algorithm iteratively exchanges
measurements between tracks to minimize the criterion on average.

Initially, the tracks are led through the nearest neighboring measurements in the sequence.
In this stage conflicts are ‘resolved’ on a first-come, first-served basis. That is, at #;,, mea-
surements are assigned to the closest track parts T,." that have been formed up to #; to which
no point was assigned yet. Consequently, the initialization procedure is a greedy im1/cm1
approximation.

Then, each iteration step modifies at most two assignment pairs somewhere in the se-
quence, by exchanging the second entry of the pair. The algorithm considers all possible
exchanges within the d,,,, range of two track heads in the whole sequence and the exchange
that gives the highest gain by decreasing the average criterion deviation is executed. The
iteration phase stops when gain can no longer be obtained. The exchange gain between as-
signment pairs (i, p) and (j, g) (see Eq.2.3) is defined in the following way:

8l = cfy + 5y = (cf, + ) (2.12)

To achieve even better tracking results, the algorithm first optimizes correspondences over
all frames in the forward direction and then (after this iteration phase stops) it optimizes corre-
spondences in the backward direction. Only when the optimization process has not changed
anything in either direction, the algorithm stops. This bi-directional optimization process
can indeed increase the tracking quality, but, unfortunately, this process is not guaranteed to
converge, especially with densely moving points [19].

In contrast with what we said before, this algorithm seems to optimize over the whole
sequence. However, when we look carefully at the optimization process within one iteration
phase, we see that this is only partially true. As long as the tracks are wrong at the start,
exchanges in the remainder of the track will mostly be useless. This is due to the fact that the
tracks were initialized using another criterion than the one that is considered in the iteration
phase. Consequently, the optimization is only effective at the initial measurements of the
tracks. This problem is most severe when the sequence is long and when the difference
between the initialization criterion (nearest neighbor) and the optimization criterion (smooth
motion) is large, i.e. with high speeds and high densities. We tested this statement by feeding
to the S&S algorithm the example shown in Fig.2.3. If we do not optimize in both directions,
the S&S algorithm indeed makes greedy correspondences as in Fig.2.3(a), which supports
the statement that S&S is a greedy matching algorithm.

The Salari and Sethi version of this so-called greedy exchange algorithm additionally
proposes a way to resolve track continuation, initiation and termination. They introduce
a number of phantom points to the set of measurements in each frame. These phantom
points serve as replacements of missing measurements, while satisfying local constraints. By
imposing the maximum allowed local smoothness criterion and a maximum speed, missed
measurements are recognized and filled in with phantom points. Moreover, the constraints
also allow the detection of false measurements. Effectively, false measurements are replaced
by phantom points if the introduction of a phantom point results in a lower criterion value.
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This approach generally works fine except that missing measurements (represented by a
phantom point) always have the maximum criterion and displacement. For instance, if point
pi has not been measured at #, the algorithm can easily associate a measurement of p; at
fi41 to another point which is within the criterion range ¢,,,,. It is important to remark that
the phantom points only enforce that the local movement constraints are satisfied, but when
a phantom point is put in a track, the track is in fact divided into two tracks. In other words,
this maximum criterion approach solves the correspondence problem up to the maximum cri-
terion. Choosing a low maximum criterion leads to many undecided track parts and a higher
maximum criterion leads to possibly wrong correspondences. This is where the track initia-
tion/termination and occlusion events become conflicting requirements, as already mentioned
in Section 2.2.

R&S Algorithm (im3/cm2)

A different approach to the correspondence problem is chosen by Rangarajan and Shah [19].
They have a different combined motion model and do not use an iterative optimization pro-
cedure. The R&S algorithm assumes a fixed number of feature points and it allows for tem-
porary occlusion or missing point detections, but not for false detections. It uses the proximal
uniformity model (im3) as individual motion model and cm2 as the combined motion model.
This algorithm does not constrain the individual point motion, i.e. it does not have a dp,q; or
®max parameter.

To find the minimum of the combined model (Eq.2.8), the authors use a greedy non-
iterative algorithm. In each step of the algorithm, that particular point x'}ﬁ“ is assigned to
track head T} that has a low deviation from the optimal motion (low individual deviation)
while on average all alternative track heads have a larger deviation with respect to x'}“ and
on average all other measurements have a worse criterion with respect to T,.k .

We continue the description of the algorithm in terms that fit the proposed motion frame-
work as established in Section 2.3. The algorithm selects that assignment pair (i, j) that
maximizes R (i) + R.(j) among all minimal track head extensions, where R, (i) and R.(})
are derived from Eq.2.9 according to:

1 My 1 M .
R ()= ——— ki R(j)=— ek (2.13)
’ M =1 5 P pzlz.p;#i "

Then, an optimal assignment pair g(X,, X,,) is repeatedly selected in the following way:

m

80X Xo) = (G, ) |1 = argmax(R,(p) + RL())). j =argminc},).  (2.14)

where X, is the set of track head indices that have not yet been assigned a measurement, and
X is the set of measurement indices that have not yet been assigned to a track head. After an
assignment has been found, the track head and measurement are removed from the respective
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index sets X, and X,,. The algorithm accumulates the assignment costs, and eventually stops
when X, is empty. The criterion computation can be summarized in the recurrence relation
as follows:

0, ifX, =9
C'Xe Xm) =1, . s L @15)
(C,'j +C' (X, =i}, X — (D 1 G, J) = 8(Xs, Xm))a otherwise
The matching assignment pairs are collected similarly:
a, ifX, =
ZX X = o =0
(G, HUZ' X, — (i} X = (D | G, J) = 8(X,, X)), otherwise
(2.16)
Consequently, this strategy results in the following approximation of C K
Cra=Cdillzi<M}{jl1<j<mun) @.17)
and the set of assignment pairs as defined in Eq.2.3:
Z=z{ilt<i<M}{jl1<j<mn} (2.18)

Additionally, the algorithm differentiates between two cases: 1) all measurements are
present and 2) some measurements are missing, by occlusion or otherwise. In the first case,
the algorithm works as described above. Otherwise, because there is a lack of measurements
at fx.41, the problem is not which measurement should be assigned to which track head, but
which track head should be assigned to which measurement. Then, the assignment strategy
is similar to the above. When all track head assignments T,-" to measurements x’; are found, it
is clear for which tracks a measurement is missing. The R&S algorithm directly fills in these
points with extrapolated points. The disadvantage of this track continuation scheme becomes
apparent when the point occlusion lasts for a number of frames. Direct extrapolation results
in a straight extension of the last recognized motion vector, which, in the long term, can
deviate much from the true motion track so that recovering becomes increasingly difficult

(see the experiments in Section 2.6.2).

C&V Algorithm (im2/cm2)

The third and last scheme we describe has been developed by Chetverikov and Verestdy [1].
Their method allows for track initiation, track termination, and occlusion only during two
time instances. C&V assume the smooth motion model (im2) and cm?2 as combined motion
model. The algorithm extends track heads T} by first collecting all candidate measurements
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x’}“ in the circle with radius d,,,; around xf whose criterion does not exceed ¢,,,.. The
candidate measurements are considered in optimal criterion order with respect to the track
head. Then, for each measurement all competing track heads are collected. The candidate
measurement will be rejected if it is the best alternative for any of the competing track heads.
When there are no candidates left, the track head will not be connected. Remaining uncon-
nected track parts, caused by occlusion or otherwise, are handled in a post-processing step,
which we leave out of the discussion.

This scheme does not maximize the cost of the alternatives (i.e. w; = 0 in Eq.2.8)
and track heads are only considered as competitors if they are within the d,,., as well as
®max range. Moreover, their cost is not averaged as in Eq.2.8: any competitor that fits a
measurement bes, prevents that the measurement is assigned to T.

The basics of this algorithm can be summarized as followsZ. Let X,(i) be the set of
alternative track head extensions for track head T,."' as defined below:

X, (i) = {j € X i € X(j),¥p € X (j)(j = arg min ¢k, = p = i)]. (2.19)

qEXm

where each measurement xﬁ“ has a set of competing track heads X.(j) according to:

Xe() =i € X0 1 &+ =%t < davs ¢ty < b } (2.20)

The algorithm selects a measurement from X, (i) for a track head from X, according to:

.. . . . k
gX Xm)= (G, )1ieX.j= argqénxlal}i)ciq) (2.21)

Substituted into Eq.2.15-2.18, this leads to the minimal combined criterion approximation
and the corresponding set of assignment pairs Z*,

The advantage of this scheme is that the d,,,, parameter is exploited very efficiently. With
low point densities, there is usually just one candidate point and there are no competing track
heads for that point. However, higher point densities or large d,, values can reveal the
inadequacy of the strategy to find the minimal combined motion model deviation. Because
the deviation is not averaged over competitors and alternatives, greedy assignment decisions
are the result.

2.5 Optimal Algorithm to Minimize C*

In the previous section we saw that known algorithms adopt a sub-optimal search strategy
to minimize C*. In this section, we propose an algorithm that finds the minimum of the

2We describe the algorithm in our own terms assuming a fixed number of points and verification depth = 2. see
[1] for details.
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combined motion models efficiently. To this end, we use the Hungarian algorithm, which
efficiently finds the solution of the classical assignment problem [13]. Danchick and New-
man [6] first used this algorithm in a similar context; to find hypotheses for the Multiple
Hypothesis Tracker. In general, the algorithm minimizes the following expression:

C = iia,’jw,‘j (222)

subject to:

m m
Zaij=1, 1<j<m Zaij=1, 1<i<m a,'jE{O,l}
i=l

It typically finds the minimal cost assignment, which can be represented in a weighted
bipartite graph consisting of two sets of vertices, X and Y. The m vertices from X are
connected to all m vertices of ¥ with weighted edges w;;. The algorithm then assigns every
vertex from X to a separate vertex in Y in such a way that the overall cost is minimized.

In order to be able to apply the Hungarian algorithm and to handle detection errors and
occlusion, we prepare the measurement data such that the problem becomes squared. We
propose to handle the false detection problem by introducing false tracks as proposed earlier
in [26]. False tracks do not have to adhere to any motion criterion, so that measurements that
do not fit the motion model of any true track will be moved to these false tracks. By associ-
ating a maximum cost deviation (¢.,) with assignments to false tracks, we even recognize
false measurements if other measurements are missing.

We propose to implement track continuation by introducing the concept of slave measure-
ments (Fig. 2.4(a)), similar to the interpolation scheme in [26]. Slave measurements have two
states: free and bound. A free slave is not willing to be assigned to a track. Consequently,
it has a maximum deviation cost from the optimal motion track. Free slave measurements
serve similar goals as the phantom points in [21]. A slave measurement is bound when it has
been assigned to a track, despite its high deviation. Bound slaves imitate the movements of
their neighboring measurements. One calculates their position by interpolating the positions
of the preceding and succeeding measurements in the track established so far (Fig. 2.4(b)).
The interpolated positions enable a more accurate calculation of the motion criterion. In this
way, we retain as much motion information as possible and we are therefore able to find plau-
sible correspondences. Additionally, we assign a high cost (> @m.x) to correspondences that
have d,nq, exceeded. This ensures that in such cases, a slave measurement is preferred over a
measurement that does not fit the model constraints.

Greedy Optimal Assignment (GOA) Tracker: Formal Description

To properly handle missing and false measurements, we extend the assignment matrices A*.
That is, we want to be able to assign false measurements to false tracks and slave measure-
ments to true track heads that have no measurement at ;. Since all measurements can be
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Figure 2.4: (a) shows a true measurement, a false measurement and a free-slave measurement
at fx41. The slave measurement is on the border of the dotted circle. (b) shows possible
bound-slave measurement positions related to possible track-head extensions.

false and the measurements of all track heads can be missing, we add my,, rows to allow
for my4 false tracks, and we add M columns to allow for M slave measurements, resulting
in the definition of the square matrix A% (resembling the dummy rows and columns in the
validation matrix as proposed in [9]).

The size of the individual criterion matrix is adjusted similarly. The entries in the m .,
extra rows and in the M extra columns all equal the maximum cost resulting in cost matrix
Dk

Having defined these square matrices, we can solve the linear assignment problem for
one frame after the other, assuming that the correspondences between the first two frames are
given (in case O;, > 1) so that the initial velocity vector can be computed.

In order to calculate the motion criterion, the individual motion models with O;,, = 2
need the vector (x¥ — x* " ~ ') and all need (x"+l x¥). If either of x’; ! or x¥ is a slave mea-
surement, we estimate these vectors by scanning back in T" to collect two true measurements
in the nearest past being x” o and x* i respectively, with 1 < p < ¢ < k and oz % means

k — g times recursive apphcatlon of a . Consequently, the vector estimates are defined as
follows:
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. - XZF-W — xsk_.p k41 xf"‘l —_ le_r—*q
xoxt =2 M = ———— (2.23)
i J i

Having obtained these velocity vector estimates, we can now compute the individual mo-
tion criteria cf‘] We transform the criterion matrix to a bipartite graph and prune all edges
with weights that exceed @mqx. Then, to satisfy the combined motion model, we adjust the
edge weights w;; as defined below.

cml average deviation model:

wyj = (k) (2.24)

cm2 average deviation conditioned by competition and alternatives, using Eq. 2.13;

wij = cf; — w R, () — w2 RL(j) (2.25)

As mentioned before, the actual value of the minimized C* is not important. Therefore in
eml, the 1/z power can be ignored, because the 1/z power function is monotonic increasing.

Algorithm

1. Starting with k = O;,, compute all costs cfj in the cost matrix D¥ as follows:

(a) true tracks to true measurements,i.e. 1 <i <M, 1 <i < myy;:
If the maximum speed (d,n4x ) constraint is violated then cfj = Pmax + €.

Otherwise cfj is calculated according to the individual motion model.
(b) all other entries: ¢}; = @max
Construct a bipartite graph based on the criterion matrix D¥.
Prune all edges that have weights exceeding @pmqx -
Adjust the edge weights according to the combined motion model in Eq.2.24 and 2.25.

“os e

Apply the Hungarian algorithm to this graph, which results in the minimal cost assign-
ment. The resulting edges (assignment pairs) correspond to an output A%, from which
the first M rows and m;, columns represent the assignment matrix A*.

6. Increase k; if k < n goto 1, otherwise, done.




2.6 Performance Evaluation 39

2.6 Performance Evaluation

To evaluate the performance of the different algorithms, we compared them qualitatively and
quantitatively. In Section 2.6.1, we start by looking at their correspondence quality by using
a specially constructed example that (also) tests the algorithm’s track continuation capabil-
ities. Then, in Section 2.6.2, we explore the sensitivity of the algorithms to some problem
parameters like the point density and the total number of points, and algorithm parameters
like d,,q. In all experiments in this section, the correspondences between the first two frames
are known and passed on to all algorithms (even to those that are capable of self-initialization
to avoid that one of the methods is favored).

2.6.1 Constructed Example

The carefully constructed example shows two crossing feature points with a missing mea-
surement at #4 for the first and at 5 for the second point (see Fig. 2.5(a)). The difficulty of this
data set is that in two consecutive frames a measurement is missing, but for different points.
With all algorithms we used the smooth motion model (im2). For algorithms that have a ¢4y
parameter; we varied its value from 0.05 to | (lower values do not allow the initial motion of
p2). Further, we fixed the d,,4, value to 20.

S&S Results

The S&S algorithm either leads to wrong correspondences or to disconnected track parts.
We used two different settings of ¢,,,, to show the shortcomings of S&S. First, with a high
Omax (0.1 < @Ppax < 1), the algorithm makes wrong correspondences (Fig. 2.5(b)). When
assigning measurements to track heads T,." , the algorithm prefers track heads that have a true
measurement at #; over track heads that have a phantom point at z;. Of course the motion
criterion for that true measurement assignment may not exceed the maximum criterion. On
the other hand, if ¢4, is lower (e.g. 0.05), the algorithm separates four track parts, while
correspondences between the track parts have to be found afterwards (see Fig. 2.5(c)).

R&S Results

The R&S algorithm, which has no parameters, chooses the right correspondence when one
measurement lacks at #4. Then, it estimates the missing measurement by extrapolation and
continues with the next frame. With point extrapolation for one frame only, the deviation is
limited. In the next frame (#5) the situation is similar to the previous frame. The algorithm
connects the single present measurement to the right track head and extrapolates the missing
measurement. The processing of the last 3 frames is straightforward (see Fig. 2.5(d)).

C&YV Results

At 13, C&V assigns the single measurement to the right track head ( T23 ). Then at ¢5 only one
track head (7,') remains to which the measurement can be assigned. If it did not fit because



40 Resolving Motion Correspondence for Densely Moving Points

the distance was too great, this measurement could start a new track. Since it is not too far
away, the only point at ¢ is also assigned to 7>. The two track parts that belong to p; are not
connected in the post-processing step (Fig. 2.5(e)).

GOA Tracker Results

When the algorithm proposed in this paper is applied to this data set with the smooth motion
and average deviation model, all correspondences are made correctly. Moreover, the algo-
rithm interpolates the missing measurements better than R&S and, hence, forms the most
plausible tracks (see Fig. 2.5(f)).

2.6.2 Performance with Generated Data

In this section we describe the tests we carried out to evaluate various aspects of the described
algorithms. To this end we used a data set generator that is able to create data sets with uncor-
related random point tracks of various densities and speeds. Among the described algorithms
only the R&S algorithm does not exploit the d,,,x parameter to improve the quality and ef-
ficiency. For the experiments, we added the d,,,, parameter to R&S (now called R&S*)?
similar to the GOA tracker. Then, we tuned all algorithms to find the optimal d,,,. setting
for each of them and used that setting in all experiments. For C&V, R&S*, and the GOA
tracker the true maximum is optimal and for S&S a very high value, d,4x = 50, is optimal. In
Section 2.6.2, we consider the sensitivity of the algorithms for the d,,., parameter setting. We
did not test the ¢4, sensitivity, because it constrains the motion similarly. Other experiments
evaluate the performance for increasingly difficult data sets, an increasing number of missing
point detections, and the efficiency of the algorithms.

For the generation of the uncorrelated tracks, we used the data set generator called Point
Set Motion Generator (PSMG) according to [27] (see example in Fig. 2.6). Because this data
generator model allows feature points to enter and leave the 2-D scene, which we do not
consider in this paper, we modified the model to prevent this by replacing invalid tracks until
all tracks were valid. The PSMG has the following parameters (defaults in brackets):

1. Number of feature point tracks (M = 50)

2. Number of frames per point track (n = 8).

3. Size (S,, = Sp) of the square space (S = 100).

4. Uniform distributions for both dimensions of initial point positions between 0 and S.

5. Normal distribution for the magnitude of the initial point velocity vector:
v? = Ny, =5, 04 =0.5)

6. Uniform distribution for the angle of the initial velocity vector, between 0 and 2.

31f dpgy is very high, then R&S* behaves like the original R&S, i.e. unconstrained speed.
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Figure 2.5: (a) Two input measurements at 8 time instances. At t4 a measurement for point
pi is missing and at 5 a measurement of point p; is missing. The figures show the results of
(b) S&S using 0.1 < Ppar < 1, () S&S using Gmax = 0.05, (d) R&S, (¢) C&V, and (f) the
GOA tracker respectively. In the figures the estimated points are shown as nonfilled boxes
and crosses indicate the true positions of the missing points.
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Figure 2.6: Example PSMG data set with 15 points during 8 time steps.

7. Normal distribution for the update of the velocity vector magnitude v,’.‘, from #; to tyy1:
v = N@t, 0y, =0.2)

8. Normal distribution for the update of the velocity vector angle ,k from #; to tr41:
B! = N(BE, a5, = 0.2)

9. Probability of occlusion (p, = 0, i.e. no occlusion)

A number of different measures have been proposed to quantify the quality of perfor-
mance, like the distortion measure [19] and the link-based error and track-based error [27].
We use the track-based error as in [27], which is defined as follows:

T,
Eprack = 1 — =212, (2.26)

total

where T4 is the total number of true tracks and Tyorrecr is the number of completely correct
tracks.

Some remarks about the experiments. First, in all cases the shown results are an average
of 100 runs. We did not incorporate significance levels because the minimal possible track
error depends on the actual presented data, and hence, on the appropriateness of the individual
motion model. Nevertheless, the ranking and relative quality for each experiment were the
same as those illustrated in the figures. Second, in this section we ran the S&S algorithm only
with a forward optimization loop, because otherwise the algorithm would not converge (see
also Section 2.4).

Tuning Individual and Combined Models

To find an optimal combination of individual and combined motion models, we assume that
the individual models and combined models are independent. In order to find the best indi-
vidual model for the PSMG generated data, we ran experiments with the individual models
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Figure 2.7: (a) Track error of the GOA tracker with the average deviation model (em1), in
combination with the nearest neighbor, smooth motion or proximal uniformity model. (b)
Track error of the GOA tracker with the smooth motion model in combination with em1 and
cm2

im1, im2 and im3, together with the combined model cm1/z = 1 implemented in the GOA
tracker. In Fig. 2.7(a), we show the results of this experiment. Clearly, the model im2 fits this
generated data set best.

In order to identify the best combined model for this data set, we ran tests witheml/z = 1,
cml/z = 2, em2/w; = w; = 0.3 and em2/w, = w; = 0.2 as shown in Fig. 2.7(b). We chose
w; equal to wy, because we want to express that the lack of alternatives is equally important
as the absence of competing track heads. cm2 with even lower w; and w, values becomes
better until it finally equals em1l/z = 1 when w; = w, = 0. From these tests we conclude
that the smooth motion model (¢, = 0.2) with average deviation model (z 1) is the
best combined modeling for PSMG data. Hence, we used these models in the remaining
experiments, if possible. That is, only the GOA tracker allows for combined model settings
and can be adjusted in that sense.

Variable Density Performance

To show how the algorithms perform with an increasing number of conflicts, we applied them
to several data sets with an increasing point density. To this end, we generated the data in a
fixed sized 2-D space and varied the number of point tracks. In Fig. 2.8(a), we display the
results of all algorithms. The figure clearly shows that the GOA tracker performs best.

Variable Velocity Performance

Another experiment to test the tracking performance of the algorithms is varying the mean
velocity and keeping the number of points constant. In order to obtain reasonable speed
variances with all mean velocities, we scaled both o, and g,, with the mean values according
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Figure 2.8: (a) Results of the algorithms applied to increasingly dense point sets. (b) Track
error as a function of the mean velocity.

to oy, = 0.1u,, and o, = 0.041,,. In addition, we enlarged the space in which the point
tracks are generated to S = 200, to prevent that mainly diagonal tracks are allowed. The
ranking of the algorithms is similar to the variable density experiment and again the GOA
tracker performs better than all other schemes (see Fig. 2.8(b)).

Track Continuation Performance

In this experiment, we compared the track continuation performance of the R&S extrapo-
lation scheme and the slave measurements interpolation, as proposed in this paper. We left
out the other two algorithms because S&S does not really handle track continuation and
C&V only allows very limited occlusion. In order to properly compare the track extrap-
olation and the slave measurements interpolation, we implemented them both in the GOA
tracker. We tested the track continuation performance in a variable occlusion experiment,
with 0 < p, < 1. In Fig. 2.9(a), we display the track error results of the GOA tracker with
both track continuation schemes with either 50 or 100 points.

As illustrated in this figure, the slave measurements approach proposed in this paper
clearly achieves better track continuation results than the track extrapolation scheme as pro-
posed by Rangarajan and Shah [19]. The difference between the approaches is larger with
a higher probability of occlusion (p,), because then occlusion during a number of consec-
utive frames will occur more often, in which case the difference between interpolation and
extrapolation becomes apparent.

Variable Volume Performance

This test is directed towards the measurement of the computational efficiency of the different
algorithms. Hereto, we keep the point density constant while increasing the number of point
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Figure 2.9: (a) Track error of the GOA tracker with either slave interpolation (Inter) or the
R&S extrapolation scheme (Extra) in a variable occlusion experiment with 50 or 100 points.
(b) Nlustration of the efficiency of the algorithms in a variable volume experiment.

tracks (and thus enlarging the size of the 2-D space proportionally). Consequently, the corre-
spondence problem remains equally difficult, but the problem size grows. In Fig. 2.9(b), we
show the results with logarithmically scaled axes. The figure shows that, with optimal d,,qy,
C&V is the fastest. Further, the computation time of the algorithms is widely divergent but
all algorithms have polynomial complexity. We list the polynomial orders in the summary of
the experiments in Section 2.6.3.

Sensitivity to d,,,. Parameter Setting

As mentioned, up to this point all algorithms used the tuned and optimal settings of the dp
parameter. In this sensitivity experiment, we show the importance of the a priori knowledge
about a reasonable value for this parameter. To this end, we varied the d,,,, parameter from
the known true value up to a high upper limit, d,,.x = 50 (lower values than the true maximum
speed are clearly not sensible). Fig. 2.10(a) clearly shows that both S&S and R&S* are most
sensitive to variations in this parameter. Remarkably, S&S performs better when dnq, is set
far too high. We expect that the ill initialization, together with the exchange optimization
causes this effect because every point exchange must obey the d,,,, constraint. Both C&V
and the GOA tracker are hardly sensitive to dq, variations (which implies that they do not
take advantage of it either). Computationally, especially the C&V algorithm is hampered by
an incorrect or ignorant d,,q, value as Fig. 2.10(b) illustrates. Consequently, the GOA tracker
is the fastest when dj,, is over 5 times the true maximum speed.




46 Resolving Motion Correspondence for Densely Moving Points

0.2 T T T T T RIS* I i T T T T T
p——
0.18 | OV - |]
~ OI6 1 x 8§  x [ SS  ——
-g 014 | - GOA FONN ] RS* ---%---
s x GOA -~
w012 F B = CcV [
ot B i ~ | L]
g 0(2); y E 0.1 3 . S
1 B - -~ P \\\ - -~-1 - e - R
'E; 0.06 ‘* Tyen oo j ol Q* o
5 e B o VRS S
0.04 - ..6;;:__,5__-,:?-‘&? :""l"'("'ﬁ . - - - X s
0.02 - B
)
ol 1 1 1 L 1 2 0.01 & I 1 1 I 1 1 1
5 10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
d, d,

max max

(a) (b

Figure 2.10: Hlustrates the sensitivity of the algorithms to dynqx variations. (a) shows the track
error performance and (b) shows the computational performance.

2.6.3 Summary of Experiments

In conclusion, for tracking a fixed number of points the GOA tracker is qualitatively the best
algorithm among those we presented, according to its track continuation handling in the first
test and its performance in all PSMG experiments. Moreover, it is hardly sensitive to the
dmax parameter setting. S&S performs only slightly worse when we used the optimal dyqx
setting (dmax = 50), but it is an order of magnitude slower than the GOA tracker. Moreover
S&S did not perform well on the specially constructed example, nor does it give interpolated
positions of the missed points. The version of R&S*, with an added dy,x parameter and
modified individual model, is efficient and qualitatively good as long as it has an accurate es-
timate of d,,q,. The sensitivity experiment shows that R&S* performs worst of all algorithms
if this value is not known (or not used as in the original R&S implementation). With (near)
optimal maximum velocity setting, C&V is the fastest. If this optimal value is not known
(which is usually the case), then the efficiency of C&V degrades rapidly. We should also note
that, in our experiments, S&S performed consistently better than C&V, which does not agree
with the results reported in [27]. This is probably because in [27] a different d ., setting is
used for S&S, to which this algorithm is quite sensitive, as we showed in Section 2.6.2. This
implies that S&S cannot exploit the dpqx parameter effectively to handle missing and spuri-
ous measurements. Finally, the variable occlusion experiment clearly showed that the slave
measurements implement track continuation better than the point extrapolation scheme [19].
In Table 2.1, we summarize the PSMG experiments. The last column shows the polynomial
order of complexity of the algorithms as derived from the variable volume experiment.
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Table 2.1: Summary of the PSMG experiments.

variable variable variable .
. density velocity volume polynomial
Algorithm M=100) | (L =10) | M= 100) .order
Yy . ain O(M?%)
Elrack Etrack time (s)
GOA 0.07 0.029 0.097 1.9
S&S 0.09 0.039 34 3.0
C&V 0.14 0.057 0.047 1.6
R&S 0.13 0.035 0.44 2.8

2.7 Algorithm Extension with Self-Initialization

In the problem statement in Section 2.2, the correspondences between the first two frames
were assumed to be known. In this section, we generalize the problem by lifting this restric-
tion and elaborate on how self-initialization is incorporated in the GOA tracker.

Two algorithms we discussed have an integrated way of automatically initializing the
point tracks. That is, both S&S and C&V only use the measurement positions for the ini-
tialization. R&S, on the other hand, uses additional information, i.e. the optical flow field,
which is computed between the first two frames. We advocate the integrated approach, be-
cause it is more generally applicable and it allows for optimizing the initial correspondences
using a number of frames, as we proposed in the global motion model in Section 2.3. Here,
we propose to extend the GOA tracker with features of the S&S algorithm. After that, we
demonstrate the appropriateness of this extension and again analyze the parameter sensitivity
of the algorithms that support self-initialization.

2.7.1 Up-Down Greedy Optimal Assignment Tracker
(GOA/up-down)

The S&S algorithm has a number of shortcomings, of which the computational performance
has been shown to be the most apparent. Also, as mentioned, we deliberately left out the bi-
directional optimization, which quite often does not converge. However, for self-initialization
the bi-directional optimization is essential.

We propose to modify the GOA tracker in the spirit of [21] and [22] by initializing the
correspondences between the first two frames using the described optimal algorithm to mini-
mize C¥ with im1/cm1. After these correspondences are made, we continue the optimization
of the remaining frames (up) in the normal way and additionally optimize the same frames
backwards (down). Further forward and backward optimization proved to be useless, because
the optimization process already converged. The reason for this fast convergence is that both
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the initial correspondences and the optimization scheme have been improved considerably
compared to S&S.

2.7.2 Self-Initialization Experiments

To test the performance of the algorithms that are capable of self-initializing the tracks, to-
gether with the just described extended GOA/up-down tracker, we did another variable den-
sity experiment, and a sensitivity experiment using the PSMG track generator. The individual
models need not be tuned again because the parameter settings of the PSMG are the same as in
Section 2.6:2. This time, we left out S&S because of serious convergence problems with their
bi-directional optimization scheme, which is essential for self-initialization. R&S does not
implement self-initialization using only point measurements, so it cannot be applied within
these experiments.

Although we did not discuss statistical motion correspondence techniques in detail in this
paper, we included the multiple hypothesis tracker (MHT) as described and implemented
by Cox and Hingorani [3] in this experiment in order to see how it relates to non-statistical
greedy matching algorithms. We should note that this MHT implementation is not the most
efficient (for improvements see e.g. [15]), though qualitatively equivalent to the state of the
art of the statistical motion correspondence algorithms.

Variable Density Experiment

For this experiment we tuned the algorithms optimally for the given data sets. That is, both
C&V and GOA/up-down use the true dp,,. The (eight) parameters of the MHT (like the
Kalman filter and Mahalanobis distances), were tuned with a genetic algorithm, for which we
used the track error as fitness function.

Actually the only difference with the variable density experiment in Section 2.6.2 is that
here the initial correspondences are not given. Fig. 2.11(a) shows the performance of the
algorithms. Clearly, GOA/up-down performs best and, remarkably, almost as good as when
the initial correspondences were given. The performance of the MHT is similar to the GOA
tracker until it seriously degrades, when the number of points exceeds 50, see Fig. 2.11(a).
This can be explained from the fact that the parameters for the MHT were trained for (only) 50
points. We did not include more points, because the training was already very time consuming
(> 2 days on a Silicon Graphics Onyx II). It is, however, striking to see that the GOA tracker
also performs consistently better than the MHT even with less than 50 points, although the
latter optimizes over several frames. Among others this may be caused by the effective self-
initialization scheme of the GOA tracker. The up-down scheme can be said to optimize the
initial correspondences over the whole sequence when optimizing up. Then the remaining
correspondences are established in the down phase.

Sensitivity Experiment

When the correspondences for the initial frames are not given, we expect the algorithms to
be more sensitive to the d, setting. Namely, when the initial velocity is unconstrained,
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Figure 2.11: (a) shows the track error as a function of the number of points in a variable
density experiment with self-initialization, and (b) shows the track error as a function of the
dmay setting.

the greedy matching algorithms can easily make implausible initial choices from which they
cannot recover. To study this behavior, we did another sensitivity experiment for C&V and the
GOA tracker and additionally an experiment to test the sensitivity of the MHT. We studied
the MHT separately, because is has different parameters (and no d,,,,). First, Fig. 2.11(b)
indeed shows that for C&V a good estimate of d,,, is essential. GOA/up-down, however,
hardly suffers from a lack of a priori knowledge concerning dnq., which is partially because
the global cost was optimized for the initial frames. Moreover, the up/down optimization
scheme can no longer be considered purely greedy, because correspondences are reconsidered
in the backward direction. Since both algorithms were computationally influenced similarly
as when the initial correspondences were given, we did not include the figure here. We have
to mention, however, that the computation time of C&V increased even 10 times faster (11
sec. when d,q = 50), because in this experiment the number of alternatives becomes much
higher in the first frame. As a consequence, the GOA tracker was already the fastest when
dmax Was set over 3 times the true maximum speed.

In order to fairly test the sensitivity of the MHT and to show the results for all parameters
in the same figure, we tested the performance in the range from 1/5 of the optimal setting to
10 times the optimal setting of all essential parameters (10 runs per setting). Consequently,
the results in Fig. 2.12(a) can easily be compared in relation to Fig. 2.11(a), in which 5 (d4x)
is also optimal. The figure clearly shows that there is a small parameter range in which the
performance is (sub)optimal. Especially increasing or decreasing the Mahalanobis distance
or the initial state variance parameter with 1/5th results in a performance penalty of roughly
a factor two. Also the computation time increases dramatically it the parameters are not
properly set, as Fig. 2.12(b) shows. We plotted the names of the essential parameters in the
figures, but refer to [3], [20] for a complete description.
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Figure 2.12: Parameter sensitivity experiment for the MHT. (a) shows the track error as
function of parameter variations and (b) shows the computation time.

2.8 Real Data Experiment: Tracking Seeds on a Rotating
Dish

Our final experiment is based on real image data. In this experiment we put 80 black seeds
on a white dish and rotated the dish with a more or less constant angular velocity, which
implies the use of the smooth motion model (im2/¢,q. = 0.1). The scene was recorded with
a 25 Hz progressive scan camera using 4 ms shutter speed, resulting in a 10 image video
sequence with very little motion blur®. The segmentation of the images was consequently
rather straightforward, i.e. in all 10 images all 80 seeds were detected and there were no false
measurements. There was a large difference in speed of the seeds ranging from 1 pixel/s in
the center to 42 pixel/s at the outer dish positions. Like in Section 2.7, we tested only those
algorithms that have self-initialization capability and again we included the MHT. Clearly, in
contrast with Section 2.7, in this experiment the point motion is strongly dependent. Since all
algorithms are hampered equally, this experiment actually tests the general applicability of the
algorithms®. To be able to run the MHT properly we tuned its main parameters by applying
a genetic algorithm (for which the ground truth was established by manual inspection.) For
this experiment we also added the S&S algorithm, because this time it converged consistently,
that is, with different d,,,, settings.

Fig. 2.13 shows the resulting tracks overlaid on the first image of the sequence. Only the
GOA/ up-down tracker was able to find all the true seed tracks, while the d,,, setting did not
influence the results. Even GOA/up (not down!) was able to track the 80 seeds correctly over
all 10 frames, regardless of the d,, value. Not surprisingly, the C&V algorithm that already
proved to be sensitive to dp,, suffers severely from the divergent seed speeds. The S&S

“The rotating dish sequence is available at http://www-ict.its.tudelft.nltracking/datasets/sequences/rotdish80.tgz.
50ne could, of course, argue that for this data set a rotational individual model or polar coordinates for the
measurement positions would fit better.
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algorithm, which is also sensitive to dynqy, again makes less errors when dp, is relaxed. In
general the behavior of S&S turned out to depend greatly on the d 4. and ¢y, settings. Al-
though the MHT was extensively tuned and it optimizes over several frames simultaneously,
it still made a few errors. Besides, the MHT is substantially slower than the other algorithms.

2.9 Discussion

Throughout this paper, we introduced a framework for motion modeling, and we presented
the greedy optimal assignment (GOA) tracker that we extended with self-initialization. In
this section we discuss some potential other extensions and improvements.

Although the tracking of a variable number of points conflicts with occlusion handling, it
is certainly a feature that should be considered as an extension to the GOA tracker. Among the
described algorithms we have seen two ways to approach this conflict of requirements, either
by actually not implementing track continuation (S&S) or by only allowing occlusion during
a very limited number of frames (C&V). First, the GOA tracker can support track initiation
and termination by replacing the slave measurements with the phantom points as in S&S.
Alternatively, the GOA scheme can be incorporated in the C&V algorithm. The idea is that
at each time instance, the GOA scheme is applied first to find corresponding measurements
for all point tracks that have been established so far. Then, the original C&V scheme links
the remaining measurements if possible. As a result the tracking features of C&V still apply
and its performance increases®.

Further, to deal more effectively with the underlying physical motion, the order of the
individual motion models could be increased, e.g. by modeling point acceleration. Clearly,
extending the scope of the individual models implies difficulties for the model initialization
and the track continuation capabilities.

Finally, the scope over which the global matching is approximated can be extended. In
this paper, we approximated S(D) in a greedy sense, i.e. we only minimized the combined
model over two successive frames. We already illustrated in Fig. 2.3 that extending the scope
for this minimization would yield more plausible tracking results. However, extending the
scope implies that we need to cope with an increasingly complex problem, to which the
efficient Hungarian algorithm as such cannot be applied anymore.

2.10 Conclusion

In this paper we showed an adequate way to model the motion correspondence problem
of tracking a fixed number of feature points in a non-statistical way. By fitting existing
algorithms in this motion framework, we showed which approximations these algorithms
make. An approximation that all described algorithms have in common is that they greedily

SWe have already implemented this idea, but did not include it in the experiments for the sake of clarity. With
a fixed number of points, its performance could indeed be rated in between that of GOA/up-down and that of the
original C&V algorithm.
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(e) MHT: 3 errors, 86 sec.

(f) GOA/up-down: O errors, 90(160) msec.

Figure 2.13: Results of applying the self-initializing algorithms to the rotating dish sequence,
consisting of 10 frames with each 80 seeds; true d,n,, = 42 pixels/sec.



1,
e

2.10 Conclusion

match measurements to tracks. For this approximation we proposed an optimal algorithm,
the Greedy Optimal Assignment (GOA) tracker, which obviously qualitatively outperforms
all other algorithms. The way the proposed algorithm handles detection errors and occlusion
turned out to be effective and more accurate than the other described algorithms. Moreover,
the experiments show clearly that its computational performance is among the fastest. Also
the self-initializing version of the GOA tracker turned out to be adequate and hardly sensitive
to the maximum speed constraint (d,y,, ) setting. Briefly, for the tracking of a fixed number
of feature points the proposed tracker has proven to be efficient and qualitatively the best.

Among the described algorithms the R&S algorithm is completely surpassed because it
operates under the same conditions, while the GOA tracker outperforms R&S both qualita-
tively and computationally. The S&S algorithm, which does not support track continuation,
is computationally very demanding. The major drawbacks of the C&V algorithm are its
relatively poor performance, especially with respect to the initialization, its restricted track
continuation capability, and its sensitivity to the d,,,, setting. Still, S&S and C&V may be
considered because both support the tracking of a variable number of points and C&V can
be very fast. In the previous section we indicated how their performance can be improved by
incorporating GOA features in these algorithms. In a number of experiments we included the
statistical multiple hypothesis tracker. Even though the MHT optimizes over several frames,
which makes it computationally demanding, it turned out that it does not perform better than
the GOA tracker. Possible causes are the effective initialization of the GOA tracker and the
fact that the MHT models the tracking of a varying number of points, although we set the
respective probabilities as to inform that the number of points is fixed. Most importantly, the
MHT has quite a few parameters for which the tuning proved to be far from trivial.

In conclusion, the proposed qualitative motion framework has proven to be an adequate
modeling of the motion correspondence problem. As such, it reveals a number of possibilities
to achieve qualitative improvements, ranging from more specialized individual models to
S(D) approximations with an extended temporal scope.
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Abstract This paper addresses the motion correspondence problem: the problem of finding
corresponding point measurements in an image sequence solely based on positional informa-
tion. The motion correspondence problem is most difficult when the target points are densely
moving. It becomes even harder when the point detection scheme is imperfect or when points
are temporarily occluded. Available motion constraints should be exploited in order to rule
out physically impossible assignments of measurements to point tracks. The performance can
be further increased by deferring the correspondence decisions, that is, by examining whether
the consequences of candidate correspondences lead to alternate and better solutions. In this
paper, we concentrate on the latter by introducing a scheme that extends the temporal scope
over which the correspondences are optimized. The consequent problem we are faced with is
a multi-dimensional assignment problem, which is known to be NP-hard. To restrict the con-
sequent increase in computation time, the candidate solutions are suitably ordered and then
additional combined motion constraints are imposed. Experiments show the appropriateness
of the proposed extension, both with respect to performance as well as computational aspects.

Keywords: Computer vision, feature point tracking, token tracking, multi-target tracking,
motion correspondence, multi-frame optimization, multi-dimensional assignment problem.

3.1 Introduction

Computer vision deals with the interpretation of image sequences. Because the problem of
semantic labeling of an arbitrary scene is far from solved, any information that can help the
scene interpretation should be exploited. The known temporal dependencies between frames
in a sequence together with known physical properties like inertia and rigidity have been
proven to be very helpful. More than that, temporal relations can be crucial in circumstances
in which the objects in the recorded scene are difficult to distinguish, either because of poor
recordings, poor recording conditions, restricted recording devices/media, or because the
objects appear identical anyway. The research fields concerned with these issues are among
others object tracking [21], feature or token tracking [3] [10] [23] [34], and optical flow
or motion estimation (9] [15]. Applications range from surveillance [16] [26] [32], motion
analysis, and structure from motion [27] [28] [31] [33] to (multi-)target tracking [8] [17] [20].

Here, we restrict ourselves to the case that the objects have indeed an identical appear-
ance, which leaves us with the positional information as sole feature for identification. For
this reason the objects are simply referred to as points in the remainder of this paper. The
consequent problem that has to be solved is called the motion correspondence problem, that
is, finding corresponding measurements through an image sequence solely based on the mea-
sured positions and derived motion characteristics (Fig. 3.1(a)). For this problem appearance-
based methods like optical flow estimation do not apply. Additionally, like among others [3]
[6] [20] [23], we adopt a uniqueness constraint which states that a measurement originates
from (at most) one point and a point results in (at most) one measurement.

There is a number of conditions under which establishing motion correspondence is es-
pecially difficult: 1) the points move densely together, 2) the detection is imperfect, i.e. there



3.1 Introduction 61

(a) iy s /]

SF - S 2
— e
(b) Tke1 I Tkvn
A A _— ] _\ \?
o— | e |l &
— .|

(c) Tt U3 ket

Figure 3.1: Three moving points are measured at three time instances. The lines represent the
point correspondences over time. In (a) all points are measured at every time instance. In (b)
there is an extra or spurious measurement at 7., and in (c) there is a missing measurement
at tgyg.

are spurious (Fig. 3.1(b)) and missing (Fig. 3.1(c)) measurements, 3) points are temporarily
occluded, and 4) the number of points varies. Here, we consider such difficult cases, except
we assume that the number of points is fixed. Namely, without additional constraints, coping
with both condition 3) and 4) gives rise to conflicting requirements for a tracking algorithm,
as noted in [29]. Recently, in [29] we proposed a qualitative motion model together with
the Goa tracker, which is a greedy matching method that efficiently finds optimal correspon-
dences between two frames given a smoothness of motion criterion. We showed that the Goa
tracker outperforms other greedy trackers [3] [19] [22] and even the presumed optimal mul-
tiple hypothesis tracker (MHT) [20] for the tracking of a fixed number of points!. In [29],
we have also suggested a global matching model that optimizes over the whole sequence, but
did not report an algorithm that satisfies the model. However, the more difficult the problem,
the more important it becomes to perform a global matching, i.e. to defer correspondence
decisions. Especially when there are many spurious measurements, deciding greedily is dan-
gerous, although the introduction of motion constraints can limit the damage.

In this paper, we propose an algorithm that enables us to defer correspondence decisions
by introducing a temporal scope parameter s. With scope s = 1 this algorithm equals the
previously introduced Goa tracker [29] and when s = n the algorithm performs a global
matching, where n is the number of frames in the sequence. The extended temporal scope
tracking resembles the beam-search principle in [34], trajectory aging in [10] and the N-scan-
back principle in the statistical data association filters [4] [5] [6] [7] [17] [18] [20] [24] [25]3.
In contrast with our problem setting, [10] [25] [34] do not adopt the uniqueness constraint,

UIn this paper, we only compare our results with the MHT [20] since it had the most competitive performance.
2 A temporal scope s = 1 is similar to N = 0 in N-scan-back filters.
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hence, they optimize the tracks independently. Clearly, that problem is less complex, though
it may lead to unrealistic assignments. In [6] [7] [17] [18] [24] the statistical data association
problem has been formulated as a multi-dimensional assignment problem and approximate
solutions have been presented using Lagrangian relaxations techniques. With respect to the
multi-frame optimization, our approach is more similar to the multiple hypothesis tracker
(MHT) in [4] [5] {20] in the way that we also rank the best assignments per frame and finally
decide for the ’optimal’ assignment after a certain number of frames has been processed.
However, our optimization strategy is quite different. We search the alternative solutions up
to s levels in a depth-first way, whereas the track maintaining algorithms (like the MHT) can
be said to search in a breadth-first way. The advantage of our method is that it needs less
memory and allows for more effective pruning of unlikely alternatives. In the experiments
section we give an indication of a suitable value for the temporal scope s.

In the next section we formulate the problem and give the notation we use. Then, we
summarize and modify the motion models that we proposed in [29]. In Section 3.4 we intro-
duce the new tracking algorithm that embodies the extended scope optimization scheme. In
the experiments section, we show the appropriateness of the new algorithm.

3.2 Problem Statement

Given is a sequence of n time instances for which at each time instance #; there is a set of
m; measurements x’J‘ of points p; moving in a 3-D world, with 1 < j < my, 1 <k <n,
and 1 <i < M. The measurements are vectors in a two-dimensional space, with dimensions
S, (width) and S), (height), representing 2-D coordinates. The number of measured points
m; can be either smaller (occlusion or missing detections) or larger (spurious measurements)
than M.

The problem is to find a set of M tracks that represents the (projected) motion of the M
points through the 2-D space from t; to t,,. A track 7; is an ordered n-tuple of corresponding
measurements: (x}.l, xi.z, x'j'."), with 1 < ji < my. Itis assumed that points do not enter or
leave the scene (ignoring condition 4) of the problem). A point track that has been formed up
to t; is called a track head and is denoted as Ti".

We use two additional ways to denote which measurement corresponds to which track
head. First, we introduce the assignment matrix A¥ = [afj], where afj = 1 if and only if
x’}“ corresponds to T and zero otherwise. Alternatively, we use a§ =iif a{‘j = 1. Further,
a concatenation of s assignment matrices from #; to 4, is called a multi-assignment,
denoted as an s-tuple: AKS = (Ak, AFFL AR+ 1y where AKS[1] = A%, AK$[2] = A%,
etc.

3.3 Modeling

Here, we only give a brief description of our way to model the motion correspondence prob-
lem. For a more detailed description and analysis we refer to [29].
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In order to select the corresponding measurement for a track head from the list of can-
didate measurements we need to have a model of the point motion: the individual motion
model. In addition to prior motion models the parameters of such a model can be constructed
on-line from the tracked measurements. Since it is impossible to rule out model errors, or, in
other words, to predict the point positions perfectly, usually there will be correspondence am-
biguities. Therefore, additional combined and global motion models have been proposed to
make prediction errors dependent. Here, we summarize the individual, combined, and global
models.

3.3.1 Individual Motion Model

The individual motion model expresses predictions about the position of a moving point
based on historical track information. Further, it states the cost when deviating from these
predictions. Here, we formulate two different individual motion models.

im] The nearest-neighbor model does not incorporate velocity information. It only states
that a point moves as little as possible from #; to #4;. Consequently, the model uses
only measurements of one previous time instance for the position prediction.

iy =l —xf |, where 0<cf; <./S2+ S} 3.1

im2 The smooth-motion model as first introduced in [23] assumes that the velocity mag-
nitude and direction both change gradually. This model uses measurements from two
previous time instances. The smooth motion is formulated quantitatively with the fol-
lowing criterion:

N R M it
cr. = . — 5 — » "
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where 0 < ¢f; < 1.

To enable the modeling of spurious and missing measurements, we first need to modify
the assignment matrix format. To this end, we extend A* such that it has M + my4; rows and
M + myy columns. The first M rows represent the track heads of the target points and the
first my, columns represent the true measurements. The remaining rows and columns represent
false tracks (to assign spurious measurements to) and slave measurements (to replace missing
measurements), respectively. Additionally, the matrix D¥ = [c,’.‘j] contains the individual
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motion criterion coefficients, where c,‘J expresses the deviation from the predicted position
for measurement x’}“ to track head T*. For true track heads to true measurements these

coefficients are computed as defined above. All other entries in D* equal ¢, which is
a known maximum of the individual motion criterion. For candidate correspondences that
exceed a certain maximum speed (dqx) We set c,’.‘j = @max + € to effectively disregard them?.

Slave Interpolation

If any of the measurements in the vectors (x* — x*;!) and (x**' — x¥) are missing, the vectors
i o Jj i

are estimated by interpolation according to:

ka-»q _x:k_.p Kl r
= — i ) X. —X = — : ) 3.3
o q-p T k+1-gq )

xf~—xk_l

where xZ ., and x?, . are true measurements in the nearest past in T,." ,1<p<qg<kand
i @;

k—q

o

;% means k — g times recursive application of a:¥.

3.3.2 Combined Motion Model

The combined motion model serves to make individual model errors dependent between two
successive frames. Here, we give only one such combined motion cost definition C*(A*) (see
[29] for alternative ones) that aims at spreading the errors as much as possible.

My M+mygyy

+m,
Z Z afjc,{‘j, 34
i=]

1
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(A7) = -+ j
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3.3.3 Global Motion Model

The global motion model serves to model the overall motion from ¢, to f,,. It averages out the
combined motion errors over time, and in this way it ensures that the combined motion errors
depend on each other.

n—1

S(D) = min ’; ck (A% (3.5

This global model is, however, hard to optimize. Therefore, we redefine the global model
with the temporal scope s as parameter.

3Where € is a arbitrary (small) positive number
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n-1

Ss(D) =y Cr(Aks, [1)), (3.6)
k=2
where

Aﬁf,, =arg mkin Ck:.\-(Ak:s) with Ck:s (Ak:s) — Z ckr- I(Ak:p[p]) (3.7)
A s
p=I

When s = | Eq.3.6 equals S(D) in [29] and when s = n Eq.3.6 equals Eq.3.5.

3.4 Restrained Optimal Assignment Decision (ROAD)
Tracker

As we already mentioned, the computation of the global motion model (Eq.3.5) is intractable
in general. The complexity can be reduced by using a limited temporal scope s as in Eq.3.6.
However, the problem to be solved is an (s + 1)-dimensional assignment problem with non-
decomposable cost [1], which is known to be NP-hard for s + 1 > 3 [11]. Finding a greedy
matching solution (s = 1) can be formulated as a classical (2-dimensional) assignment prob-
lem [29], for which a number of efficient solutions has been reported in the literature, among
which the Hungarian method [12] is the best known. When the scope is larger, s > 1, the
problem is still NP-hard. Therefore, it is important to limit s and to use a specific strategy
to search the alternatives efficiently. Here, we propose the ROAD tracker, a recursive algo-
rithm that searches the alternatives depth first up to s levels. Since it has been shown that the
greedy solution is close to optimal [29], a best-first heuristic per recursion level is an obvious
strategy.

Because the global motion criterion is additive and monotonic increasing, we also pro-
pose to use the branch-and-bound mechanism, where the initial bound is determined as the
algorithm searches best first per recursion level in a depth-first way. Moreover, we adaptively
lower the bound by introducing a combined motion constraint ,,.,. For the computation of
Ymax We introduce two assumptions. First, we assume that the cost of the solution Afn:n is
more or less uniformly spread over the recursion levels (scope). So after finding a temporary
solution A* with global cost (bound) C;, we stop testing alternative assignments if their cost
exceeds F, g” Cp/s, where s is the (remaining) scope and F, gy (F, gy > 1) is a factor that expresses
the maximum allowed deviation from Cj. Second, we assume that the optimal assignment
A%$ [1] cannot have a much higher cost than the cost CX. of the locally best assignment
A% ;- So we additionally stop the testing of alternatives if their cost exceeds ;' CX. , where
F/ (F] = 1) expresses the maximum allowed deviation from C¥ . This leads to the follow-
ing combined motion constraint:
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Vmax = Min(F/ Ch,,. FY Cp/s) (3.8)

e

In contrast with the constraints on the individual motion (dpgy and @pax), Vimax iS NOt
physically motivated. Consequently, when y,,4, is used, the solution can no longer be guar-
anteed to be optimal with respect to the individual motion models.

Now we only need a way to generate the assignments between #; and x4 in best-first
C*-order. To this end we use Murty’s algorithm [14], which is an efficient algorithm to rank
assignments in order of increasing cost. This algorithm was used before in {4] to enumer-
ate hypotheses for the statistical multiple hypothesis tracker. In short, the Murty algorithm
returns the minimum cost assignment for an assignment problem given a number of assign-
ments Y is no longer allowed, where Y C U*:

k _ : k
Apin(Y) =arg min C(A), 3.9)
where U* is the set of all possible assignment matrices at #.

3.4.1 Basic ROAD Tracker

After having introduced the main elements, we now describe the complete ROAD tracker
algorithm. One of the parameters of the ROAD tracker is A*~!, which serves to initialize
the individual motion models, hence to compute D* (for im2). So far, we did not include
this parameter in any of the criterion definitions (Eq.3.4-3.9). In the recursive calling of the
ROAD algorithm, however, we include the A* ~! parameter, because the controlled permuta-
tion of A*~! is the main ingredient of this recursive algorithm. Clearly, in the first frame the
assignment for the previous frame is not available, leading to an initialization problem. We
return to this afterwards.

The algorithm works as follows (see Fig 3.2). First, it computes the criterion matrix
D* using A* !, It constructs a bi-partite graph from D* and prunes all edges with weights
exceeding @mqx. Then, if the scope s = 1, it just returns the minimal cost assignment, which is
the same as the Goa tracker result. Otherwise it starts enumerating the assignments according
to increasing cost. For every generated assignment the algorithm calls itself recursively to
figure out if there is a multi-assignment A%+ =1 for this assignment matrix that results in
a lower total cost than the given bound C,. If the tracker finds such an improved multi-
assignment, this assignment becomes the new solution.

3.4.2 Self-Initializing ROAD Tracker

We solve the just mentioned initialization problem in the same way as in [29], that is, by
initializing A! with the minimal cost assignment Afm.n using the individual model im1 and
running the algorithm once up and once down. This results in the algorithm shown in Fig. 3.3.
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ROAD(A* ! k. s, Cp. A*3)
A¥=1 : assignment between previous and current frame
k : frame number
s : remaining scope
Cy : cost bound for assignments in the remaining scope
A*s: best solution for the remaining scope
begin
Cr’:”.n = C"(Af‘;”.”) ; find minimum cost assignment
if s = 1 then ; at lowest recursion level?
if CX,, < Cp then ; better than global bound?
Aks = (A% ) ; update solution
end
else
Y=0 ; set of processed matrices
do
A= A* (V) ; get next best with Murty
Y =Y U{A} ; add to processed set
Co = CF(A) ; compute cost
T = A%s[2..5] ; get default solution
T =ROAD(A,k+ 1,5 —1,C, — Cy, T) ; call recursively to improve T’
A¥S = (A)o T ; concatenate A with new tail
if C*S(A%%) < C) then ; better than global bound?
Cp = CF¥(A%) ; update global bound
Aks = Aks ; update solution
end
VYmax = min(F/ CX. FY Cy/s) ; compute combined constraint
while (Y # UK A Cy < Cp A Cy < Yimax) ; stop when global bound or
end ; combined constraint exceeded
: or no alternatives are left
return AXS ; return solution
end

Figure 3.2: The ROAD tracker for recursive multiple frame assignment optimization
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let A=A, initialize first assignment with im1
letk =2 start at second frame

up: | A¥ = ROAD(A* ' k, s, 00, ()) | find optimal assignment using scope s
increase k

ifk <ngotoup
otherwise go to down

down: | decrease k

A¥ = ROAD(A**! k, 5,00, ()) | find optimal assignment using scope s

if k > 2 goto down
otherwise done

Figure 3.3: The self-initializing ROAD tracker.

3.5 Experiments

With the experiments, we intend to show the improved performance that can be achieved by
restraining the assignment decisions, that is, by increasing the temporal scope (s > 1). We
used the PSMG data generator [30] and ran tests with varying scope s and constraint factors
F} and F}. For details on the used PSMG parameter settings, see [29]. We always set F}’
equal to F;’ (both denoted as F?) and we fed the algorithm with the true (known) maximum
speed in order to disregard physically impossible correspondences. In all experiments, we
compared the results with those of the original Goa tracker, which is the same as the ROAD
tracker with scope s = 1. As a reference tracking algorithm we added the well-known
statistical multiple hypothesis tracker (MHT) [20] as described and implemented by Cox and
Hingorani [4]. The essential parameters of the MHT were trained with a genetic algorithm
on labeled data sets of 50 points; there were no missing or spurious measurements. Both for
the ROAD tracker and the MHT we set (additional) pruning parameters to limit the solution
space in addition to the model constraints. The ROAD tracker evaluates no more than 300
candidates at each recursion level. The MHT has at maximum 300 global hypotheses* per
group, a track tree depth of 3, while the minimum ratio between the likelihoods of the best
and the worst hypothesis is 0.005. All displayed results are the average of 500 runs. When
the average run time of an experiment exceeded 10 seconds, the experiment was stopped. As
a consequence, some curves in the figures are incomplete.

3.5.1 Variable Density Experiment.

In the first experiment, we explored the performance of the ROAD tracker as a function of the
point density. The performance is expressed as the ratio of incorrect tracks and total number
of tracks, which we call the track error (E,,,.) after [30]. Fig.3.4(a) clearly shows that the
ROAD tracker outperforms both the Goa tracker and the MHT. Further, the less constrained

4The number of candidates for the ROAD tracker and the number of global hypotheses per group for the MHT
have different meanings.
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Figure 3.4: (a) Shows the track error as a function of the number of points and (b) shows the
computation time as a function of the number of points.

the combined motion is, the better the performance. Remarkably, the track error with scope
§ = 3 is larger than with s = 2 when the same combined constraint setting is used. This
is because with a larger scope s = 3 the global cost C}, can decrease faster, resulting in a
stricter combined motion constraint at the highest search levels. However, the unconstrained
experiments (F = F] = 0o) show that with s = 3 the best results can be accomplished®.
Nevertheless the computation time quickly becomes a bottleneck, as the next experiment will
demonstrate.

3.5.2 Variable Volume Experiment.

In the next experiment, we varied the number of points while the point density remained the
same. Consequently, the problem remains equally difficult. Fig.3.4(b) shows that the Goa
tracker is the fastest and has polynomial complexity. The ROAD tracker has exponential
complexity, but when s = 2 and F;" and Fy are low (1 < F}, F} < 1.05), the exponential
order is also quite low, so that near-polynomial behavior is achieved over a range from 10 to
100 points. The MHT is slow but, because of the pruning parameters, it has near-polynomial
complexity. It has, however, to be mentioned that the track error increases considerably with
the number of points®.

SIn the unconstrained experiments we did only 200 runs and set the maximum average run time to 1000 sec. in
order to show that the performance indeed improves.

%In contrast to the MHT, the Goa tracker has a constant track crror, and with the ROAD tracker the track error
even decreases with the number of points.
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Figure 3.5: (a) Shows the track error as a function of the spurious measurements ratio P, and
(b) shows the track error as a function of the probability of missed detection P,,.

3.5.3 Variable Number of Spurious Measurements.

In order to show the importance of deferring correspondence decisions in the presence of
noise, we did an experiment where we gradually incremented the number of spurious mea-
surements. The number of spurious measurements is normally distributed around the dis-
played mean ratio P; of the number of points (M = 20). As an example: P; = 0.5 implies
an average of 10 spurious measurements per frame. The position of these measurements is
uniformly spatially distributed. Fig.3.5(a) indeed shows that the track error is lower when
s > 1. Moreover, deferring the assignment decisions even has as a result that the difference
between the ROAD tracker and the Goa tracker becomes larger as the amount of spurious
measurements grows. With the specifically trained MHT the track error hardly increases.
When the noise ratio P, > 0.1, the MHT clearly performs best. It followed from additional
experiments that the Goa tracker and the ROAD tracker performed worse in these cases be-
cause of the noise sensitivity of their initialization scheme. That is, especially the spurious
measurements in the second frame result in deviant initial motion vectors. Then, during the
up optimization, some true measurements may be considered as noise. Because the down
optimization scheme only operates on tracks that have measurements in the last frames, it is
not always possible to undo the effects of such an ill initialization. Howeyver, if there are no
spurious measurements in the second frame, the Goa tracker and the ROAD tracker always
perform better than the MHT for all settings of P;.

3.5.4 Variable Number of Missing Measurements.

Finally, we did an experiment with simulated missing detections. In Fig.3.5(b) we display
the track error as a function of the probability that a point was not detected or missed Py,.
According to the problem definition, i.e. no scene entrance and exit, all points are detected in
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the first and last two frames. Again the number of points is M = 20. The ROAD tracker with
various settings performs better than the Goa tracker. Also in this experiment the difference
between the ROAD tracker and the Goa tracker increases as the problem becomes more
difficult. The MHT turns out to be extremely sensitive to occlusion. Part of the problem
is that, although the probability of detection is set properly, the MHT easily divides tracks
into separate parts.

3.6 Conclusion

In this paper, we described the ROAD tracker, a recursive algorithm that establishes motion
correspondence by optimizing over several frames using a qualitative motion model. At each
recursion level the tracker evaluates candidate assignments in best-first order using Murty’s
algorithm.

As an extension of the Goa tracker, the ROAD tracker uses the same individual, com-
bined and global motion models. We introduced an approximation of the global motion
model, which additionally has a temporal scope parameter. Further, we introduced an adap-
tive combined motion constraint y,,,, on top of the branch-and-bound mechanism to reduce
the exponential growth in computation time. The various experiments show that the defer-
ment of assignment decisions indeed improves the tracking performance. Even with a very
strict combined constraint setting (1 < F, FJ < 1.05), the ROAD tracker clearly out-
performs the Goa tracker in all experiments. Relaxing this constraint further improves the
performance, but care must be taken since unconstrained assignment optimization over sev-
eral frames is intractable in general, as the experiments have shown. The experiments have
also shown that setting the temporal scope to s = 2 gives the best compromise between qual-
itative and computational performance. The ROAD tracker also outperforms the specifically
trained MHT, except when there are a lot of spurious measurements in the first frames. This
issue needs further investigation.

Some additional remarks about the computational aspects. The Goa tracker is the fastest
and the only algorithm with polynomial complexity. The MHT is the slowest, though the
MHT is difficult to judge in terms of computational complexity. That is, it was not possible to
configure the MHT such that it had a constant track error in the variable-volume experiment.

As the unconstrained experiments show, the track error performance can hardly be im-
proved given the applied composite motion model. The efficiency of the proposed algorithm
can, however, be improved by implementing optimizations to Murty’s algorithm, as reported
in [2][13].

Finally, the next extension to the ROAD tracker must be to allow for the tracking of a
variable number of feature points. When points or objects can enter and leave the scene, the
algorithm can be applied in an even broader domain.
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Abstract In this paper we pose the problem of tracking of a varying number of points
through an image sequence as a multi-objective optimization problem with additional hard
constraints. One of the objectives is to find smooth tracks for a number of points optimized
over several frames. The smooth tracks are established using a composite motion model,
based on second-order motion characteristics. Within the model, the inevitable prediction
errors are averaged out and measurement uniqueness is imposed. The optimization of the
smoothness objective alone results in a multi-dimensional assignment problem that is known
to be NP-hard. Clearly, in order to find a solution to the motion tracking problem modeled
as such, the objectives must be ordered and a number of approximations must be made. The
optimization algorithm we present is a sequential heuristic search algorithm. It adequately
prunes the search tree in such a way that its exponential order remains low. When the al-
gorithm is compared to other tracking algorithms, it turns out that the proposed algorithm is
easy to tune and generally more efficient and more accurate.

Keywords: Feature-point tracking, motion tracking, multi-target tracking, motion corre-
spondence, multi-frame optimization, multi-objective optimization.

4.1 Introduction

Motion tracking is a very important task for the identification of objects and activities in
video sequences [27]. One of the ways to approach the motion tracking problem is based
on optical flow fields that are computed directly on the image sequence data [1], [11], [20].
Alternatively, feature or token tracking methods can be applied to segments or features that
are retrieved by segmentation or filter operations [3], [13], [26], [44]. Applications of motion
tracking range from surveillance [21], [30], {41] motion analysis, and structure from motion
[12], [27}, [33], [34], [39], [43] to (multi-)target tracking 9], [22], [24].

In certain cases, the color or brightness information is left out of consideration because it
is unreliable or insignificant. Then, only positional information is used for the tracking, for
which reason the problem is called the motion correspondence problem. The main cause of
unreliable color information is changing light conditions. Additionally, the color information
is insignificant in case of poor recording conditions, restricted recording devices or media [7].
[9], [24], and when the points appear identical anyway {35], see for example Fig. 4.1. In this
paper we especially address the motion correspondence problem, though color or brightness
information can be included in order to improve the quality of the tracking method that we
propose. We elaborate on this in the concluding section. In the remainder we refer to the
entities that we track as points and we to the detected segments or features as measurements.

In order to track a number of points without using appearance information, one needs
another way to find the corresponding measurements in consecutive images. One method
to achieve this is to match measurements using the nearest-neighbor criterion [5], [8], [32].
Though it is the simplest method, it is also the least accurate, especially when the point den-
sity or speed is high. Second-order motion characteristics appear to give enough information
to reasonably differentiate motion tracks from each other, and hence to find the correspond-
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(a) image 1 (b) image 4 (¢) image 7

Figure 4.1: Three images from an image sequence of a rotating dish with 80 black seeds.
Clearly, on this scale most seeds look identical, which makes it impossible to track the seeds
based on appearance information.

ing measurements [4], [13], [23], [26], [37]. Besides the limited order of the motion model,
there are other causes that make establishing of motion correspondence problematic. The first
problem relates to whether the tracking is done in the 2-D or 3-D space. Usually, points move
in a 3-D world. When the scene is recorded with one camera, only 2-D positional informa-
tion is retrieved. The consequent loss of information by the projection disturbs the assumed
motion characteristics. Second, an imperfect detection scheme may result in a shortage or
surplus of measurements. Third, a point may be occluded by other points or non-tracked
objects such that it cannot be detected. Together with the fact that point manoeuvres may be
under-sampled, a motion model can hardly be made free of errors. A more effective approach
than (over)fitting the motion model to certain applications, a more effective approach is to ac-
cept an imperfect motion model and to postpone the correspondence decisions [7], {13], [22],
[24], [36], [44].

In this paper, we focus on solving the motion correspondence problem for a monocular
image sequence. It should be mentioned that besides the used 2-D motion models there are
no restrictions that prevent the presented solutions to apply in 3-D as well. This work is com-
plementary to [37], where a non-statistical motion framework is proposed for the tracking
of a fixed number of points together with an efficient optimization scheme. The framework
aims at establishing smooth tracks using a second-order motion model, while allowing for
missing and falsely detected measurements. In contrast to [13], [29], [44], the proposed
model imposes a uniqueness constraint, which states that a measurement originates from (at
most) one point and a point results in (at most) one measurement. Without this constraint,
tracks can be optimized independently, making the problem less complex, though at the cost
of possibly unrealistic correspondences. The optimization algorithm in [37] optimizes the
framework greedily by only considering two consecutive frames at the same time. In [36],
an improved optimization scheme is reported which establishes the correspondence decisions
using an extended temporal scope. This has indeed improved the tracking performance at a
limited computational cost. To summarize, the method turned out to be qualitatively better,
more efficient, and less sensitive to its parameter settings than an efficient implementation [4]
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of Reid’s multiple hypothesis tracker [24], which is the best-known statistical method, as well
as other non-statistical methods [3], [23], [25] for tracking a fixed number of points. Opti-
mizations to [4] have been reported [18], though similar optimizations apply to the algorithm
described in [36] as well.

The limitation of the framework in [37] is that it allows for the tracking of a fixed number
of points. The contribution of this paper is that we generalize the problem by lifting this
restriction, so that the number of tracked points may vary over time. Accordingly, similar
fundamental problems arise as when clustering data sets into an unknown number of clusters.
That is, whereas in clustering ultimate homogeneity is achieved with as many clusters as data
samples, here the tracks are ultimately smooth when they contain only two measurements.
Additional constraints and objectives are needed in order to rule out these trivial solutions.
Therefore, in this paper the motion framework is modified accordingly. Other methods that
support the tracking of a time-varying number of points are [3], [7], [13], [17], [24], [25],
[44]. Among these methods [3], [24] and [25] have been surpassed computationally and
qualitatively in case the number of tracked points is fixed, as was demonstrated in [37]. In the
performance evaluation in this paper, we again include algorithms [3] and [24] to compare
their tracking performance for a varying number of points. We left out of consideration
the method described in [7], since it uses a similar statistical model as [24] and only has a
different approximation scheme. Further, we do not consider [13], [17], and [44] because
they do not impose the just mentioned uniqueness constraint, which limits their application,
especially in case of high point densities or high point speeds.

The outline of the paper is as follows. In the next section, we elaborate on the new
problem. For the implementation of the extended tracking features, additional objectives are
defined, resulting in a multi-objective optimization problem. In order to rule out the unde-
sirable trivial solutions, two continuity constraints are proposed. Then in Section 4.3 we
quantify the posed objectives, motion constraints and continuity constraints in a composite
motion framework. In Section 4.4, we describe the new optimization algorithm and sum-
marize its previously published components. In Section 4.5, we validate the method with
artificial test data and real image sequences and compare its performance to other known
tracking algorithms with similar capabilities. In the artificial test data experiments, we test
the performance as a function of the point density, the average track length, and the average
point motion dependence. With real image sequences we study the influence of other types
of point motion, point dependence, noise, and occlusion. Finally, in Section 4.6, we draw
conclusions about the proposed method and consider some directions for improvement with
respect to the efficiency and performance quality.

4.2 The Motion Correspondence Problem

Establishing motion correspondence comes down to finding corresponding measurements
between time instances solely based on positional information (Fig 4.2). Besides the devel-
opment of a suitable motion model for individual points, the main problem is the resolution
of correspondence ambiguities. These ambiguities relate to the imperfectness of the motion
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Figure 4.2: Three moving points are measured at three time instances. The lines represent the
point correspondences over time. In (a) all points are measured at every time instance. In (b)

there is an extra or spurious measurement at #;1, and in (c) there is a missing measurement
at bttt

model, occlusion, measurement noise (Fig. 4.2), segmentation problems (Fig. 4.2), as well
as some more fundamental problems to which we return later. First, we list the requirements
that a solution to the motion correspondence problem should meet.

R-1.

R-2.

R-3.

R-4.

R-5.

smoothness of motion: measurements are assumed to belong to the same point track if
the resulting track adheres to general physical constraints like inertia and rigidity.

point uniqueness: a measurement originates from at most one point. Consequently, a
measurement may be part of at most one point track.

measurement unigueness: a point results in at most one measurement. Derived from
that, a point track contains at most one measurement at each time instance.

track termination: a point may disappear from the scene.

track initiation: new points can appear in the scene.

. missing measurements: points may not be measured due to detection errors or occlu-

sion.

. spurious measurements: false measurements may be caused by detection errors.
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Together the requirements R-2 and R-3 depict the previously mentioned uniqueness con-
straint. Since the only evidence of the possible presence of a point are its measurements, one
can never be sure if a track really represents the motion of a single point or that the measure-
ments represent appearing and disappearing points that just happen to form a smooth track.
The latter is possible, though very unlikely. Therefore, the goal is to find a number of tracks
that fit the just listed requirements, whether they represent true point tracks or not.

Problem Statement

Given is a sequence of n time instances for which at each time instance f, there is a set X*
of m; measurements x’;, with 1 < j < my, 1 < k < n. The measurements represent pro-
jected point locations of M points moving in a 3-D space. Accordingly, the measurements
are vectors in a 2-D space, with dimensions S, (width) and S, (height) The number of mea-
sured points, m; can be either smaller (because of occlusion or missing detections) or larger
(because of false measurements) than M;.

The problem to be solved is to find a set of M tracks T that represents the (projected)
motion of all the points that have been in the scene between ¢; and ¢,, where a track T; is
an ordered n-tuple of corresponding measurements: (x}l, x?z, - X} ). A track may contain
dummy entries ¢ at its head when the point entered the scene after ¢;. It may also con-
tain dummy entries at its tail when the point left the scene before #,. In case the point was
temporarily occluded or missed for another reason the track may also contain dummies in
between. The number of measurements in a track is denoted as | T;|. We define the true track
set representing the motion of all points in the scene as T*.

We use two alternative ways to denote which measurements are linked together to form
a track. First, we introduce the assignment matrix A* = [a{‘j] A<i<M,1<j<m),

where a!‘j = 1 if and only if xk+1 corresponds to 7;[k] and zero otherwise, where T;[k] is

J
the k-th element in 7. Alternatively, we use of =i if a; = 1. Further, a concatenation of
s assignment matrices from #; to #;4, — is called a multi-assignment, denoted as an s-tuple:
Ak = (AR ARFL ARy where ARY[1] = AF, AFS[2] = AX!, etc. A candidate
solution A~ or A, is a multi-assignment of length n — 1. A track set T can be derived
from A by collecting all paths in A with more than one measurement.

4.3 The Motion Correspondence Model

Given a set of measurements per time instance, the problem is to find corresponding points
in order to form tracks. Without further assumptions, numerous (undesirable) point tracks
could be generated as solutions. If only some smoothness criterion is optimized, it is a triv-
ial solution to qualify all measurements as being spurious, i.e. to form no point track at all,
since partly visible tracks have a higher overall track smoothness than point tracks that are
completely visible. Generally, if we do not constrain the number of tracks, there are vir-
tually infinitely many partly visible point tracks that satisfy the given requirements. This
results in the earlier noted [37] conflict between temporary occlusion and track termination
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and initiation. In order to prevent these solutions, we define the objectives of the motion
correspondence problem as follows:

O-1. Minimize the overall deviation from track smoothness. This objective demands that not
only single tracks are smooth, but that all tracks as a group are as smooth as possible.
Together with the uniqueness requirement R-2, this objective ensures that the optimal
track smoothness of all tracks depend on each other.

0O-2. Maximize the number of measurements that together form a track. We demand that as
many as possible measurements are linked together to form point tracks.

0O-3. Minimize the total number of tracks. Since it is necessary to constrain the number of
tracks and that we do not know the number of points present in the scene a priori, we
aim to minimize the number of tracks.

In order to rule out certain undesirable solutions, we add two continuity constraints that
should be satisfied. These two continuity constraints show resemblance to the probabilities of
detection, false alarms, track initiation, and track termination in the statistical tracking models
[7]1,[9], [24]. The main difference is that the constraints that we present here are deterministic
rather than statistical. Further, we need less a priori knowledge and model parameters in order
to deal with the same phenomena.

C-1. maximal absence a,,,x: A point may be absent in at most a,,,, consecutive images.
In [37] it has been noted that tracking a varying number of points conflicts with the
handling of temporarily occlusion. The problem is that without semantic knowledge of
the tracked points and their environment, it is almost impossible to decide whether a
track has terminated or not. If a point has not been measured for a long time, there is
still a chance that it will be measured again. However, the longer it has been invisible,
the less is known about its state. In other words, such a point may fit perfectly to any
measurement. To overcome this conflict we define a maximum absence parameter @
that makes it possible to differentiate between long occlusion and disappearance of one
point followed by the appearance of another. The true maximum absence of all points

in the scene is denoted as aj, ..

The following problems may result when the true constraint value is not known. If
Qmax < a,,, then some point tracks will incorrectly be divided up in separate parts. If
Amax > Gy, then tracks of different points may be linked together. It depends on the
structure of the data and the setting of the other constraints whether the latter kind of

error will occur.

C-2. minimal presence py;,: A point must be measured in at least p,,;, consecutive images.
In other words, a track may not consist of gathered spurious measurements. The under-
lying assumption is that points can be occluded or missed but are generally visible for
a certain time in between. Accordingly, we want to rule out tracks that are formed by
points that are detected once every a,,,, + | frames. The minimal presence parameter
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Pmin demands that a point must be measured in at least p,,;, consecutive frames. The
true minimum presence of all points in the scene is denoted as p7, .

If pmin > p},;, then some point tracks will incorrectly be divided up in separate parts.
On the other hand, setting pmin < pj,;,, may lead to the linking of track parts of dif-
ferent points. Again, it depends on the structure of the data and the values of the other
constraints whether setting the constraint too loose will lead to errors.

Proposition 1 If p,, = n then

IL Mi=M,1<k<n

Proof:

1. If p;,;, = n then there are no missing measurements in any track. Hence, a;,,. =0. =

max
IL. If p};,, = nthen |[T*| = n,1 <i < M. Then, no track initiates after ¢; or terminates
before z,. Then it follows that the number of points in the scene is constant over time,
ie. My =M. n

Additionally, physical properties of the recorded objects limit their speed and acceleration.
Especially when the number of points varies over time, imposing the following motion con-
straints helps to differentiate between track extension and new track initiation.

M-1. maximum speed dyy: Points cannot move faster than d,,,, per time step.

M-2. maximum deviation from smoothness ¢,,.. Points cannot accelerate unrestrictedly.

So far we only stated that point tracks must be as smooth as possible. However, we did
not quantify this statement. Next, we describe the composite motion framework (see also
[37]), which gives quantitative expressions for overall smoothness in the point tracks and the
motion constraints. Since we complemented the problem, we modified the framework such
that it incorporates the additional tracking capabilities.

In order to select the corresponding measurement for a track from the list of candidate
measurements, we need to have a model of the point motion, which we call the individual
motion model. In addition to prior motion models, the parameters of such a model can
be constructed on-line from the tracked measurements. Additionally, combined and global
motion models are proposed to make prediction errors dependent between tracks and over
time. Both the combined and the global model have been modified (w.r.t. {37]) in order to
integrate the new objectives and constraints.
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4.3.1 Individual Motion Model

The individual motion model expresses predictions about the position of a moving point based
on historical track information. Further, it states the cost when deviating from these predic-

tions.

Here, we formulate two different individual motion models that are used throughout

this paper.

iml]

im2

The nearest-neighbor model does not incorporate velocity information. It only states
that a point moves as little as possible from 7 to 7. Especially when the tracked
points represent features on non-rigid objects the inertia principle may be violated. If
other suitable models are lacking. the nearest-neighbor model may be considered [8],
[35]. Later we will show that this model can also be used as a first estimate in order to
initialize the next model.

- ||Xk+] L”. where 0 < C”Fj < \/—“'—+—S‘h (41)

It can be easily seen that if a point does not move, ij = 0 for the corresponding
measurements .

The smooth-motion model as introduced in [26] assumes both that the velocity direc-
tion and magnitude change gradually. The smooth motion is formulated quantitatively
with the following criterion:

Xk —xk1 K+l ok
by (x; o ) (" —x0)

! T TR A
l

\/le —x, % x|

e =%+ T x|

(Il-w)]1-

(4.2)

where 0 < cl’.‘. < 1. The first term in this equation accounts for the angular deviation
of the displacement vectors by computing their dot product. The second term accounts
for the speed deviation of the displacement vectors as the ratio of their geometric and
arithmetic means. We set the weight as proposed in [26] to w = 0.1.

k 1 k+1

If points move uniformly x¥ — X =X —x{, then it follows that cf;, = 0 for the

corresponding measurements.
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Slave Interpolation

If any of the measurements in the vectors (xf - xi . Y and (x';+l - xf.‘) are missing, the vectors
are estimated by interpolation according to:

q P k+1 q
XYy — X 4 X; =X
k ~1 a; ¢ @ r ! P !

k k+1 k @;
X, —X, = —— X. —xi = —-————m, 43

where x,_., and x?,_, are the first true measurements in the nearest pastin T}, 1 < p < ¢ <
a; o

k . . L -
k and &; 7 means k — ¢ times recursive application of af. The missing measurements are
filled in with so-called slave measurements.

Hard Motion Constraints

The motion constraints M-1 and M-2 as proposed in Section 4.2 apply to (4.1) and (4.2).
These constraints serve to disqualify certain correspondences. If either of the constraints is
violated, we set c,’fj = Pmar + € t0 effectively disregard the respective correspondence (where
€ is an arbitrary positive number). We denote the true dpnqx as dy,,, and the true @max as @y,
as derived from the point motion in the scene.

Detection Errors and Occlusion

In order to cope with spurious and missing measurements, we extend the assignment matrix
A* such that it has M + my rows and M; + myy columns. The first M; rows represent
the tracks of the target points and the first m4; columns represent the true measurements.
The remaining rows and columns represent false tracks (to which spurious measurements
are assigned) and slave measurements (which replace missing measurements), respectively.

Additionally, the matrix Dt = [c:‘j] contains the individual motion criterion coefficients,

where c,(‘}. expresses the deviation from the predicted position for measurement x’j‘-“ to track

T;. For true tracks to true measurements these coefficients are computed as defined above.
All other entries in DX equal dyqx OF @pmax. depending on the used individual motion model.

k+1
i=1 mi.

Proposition 2 The assignment matrix A* is a square matrix with maximum size
Proof: We prove this by induction. At ¢, the maximum number of points M, equals the
number of measurements m;. Hence, the size of A! is M| +m, = m| +m,. Suppose that the
size of A” is Zf;“ll my. Suppose further that until 7, all measurements have been qualified
as being spurious. Still, all of the measurements before 7, may be the first measurement of
a track. So, M,y = Y 2! my. Then, the size of the assignment matrix AP*! is Mp41 +
Mpra = Y0 my +mpys = S°7*2 ;. If, on the other hand, any measurement before ¢,
was assigned to another measurement, say at 1, then, at f,, the number of tracks Mg <
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M, + mg41. Consequently, if any two measurements are assigned to each other the size of
A* shrinks. Hence, the size of A* is less than or equal to Zf:]' m;. m
Clearly, when the point motion is modeled accordingly, the resulting assignment matrices

become impractically large for long sequences.

4.3.2 Combined Motion Model

The combined motion model serves to make individual model errors dependent between two
successive frames. Here, we give only one such combined motion cost definition C*(M,.. A¥)
that aims at spreading the errors as much as possible, assuming all inter-point dependencies
to be similar. Further, it implements the uniqueness requirements (R-2, R-3). In [37] the
number of points was assumed fixed (M), but here we have a time-varying number of points
My, which therefore is an additional parameter.

1 Mi+mpy My +nigy

k ky 1 k ok
C* (M., A¥) = 7 ; ; afcl; (4.4)
subject to:
(R-2) Z.‘M=‘1+mk+l a:{j =1, 1<jM+myp
(R-3) YAk =1, 1<i < My+m
a{"j € {0, 1}

The minimization of (4.4) is an assignment problem or a minimum-weight perfect match-
ing problem (e.g. [40]), where the size of the problem is M +m; ;. We define the assignment

matrix A¥ . resulting from the minimization of (4.4) as:

AX ., = arg min CX(M;, A), (4.5)
AeU*
where U* is the set of all possible assignment matrices at #.
There are several (optimal) algorithms that can be used to compute Af,“.", e.g. [6], [14],

[16]. The Goa tracker for the tracking of a fixed number of points [37] uses the Hungarian
method [16], which has O (n*) worst-case performance.

4.3.3 Global Motion Model

The global motion model serves to model the overall motion from ¢, to #,,. It averages out the
combined motion errors over n time instances, and in this way it ensures that also the com-
bined motion errors depend on each other. Here, we quantify the model objectives introduced
in Section 4.2 in order to express the extended tracking features of the model.
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n—1

s k k
(O-1) min ; CH(My, A% (4.6)
M
(0-2) max Zj T 4.7
(0-3) 2161{/1 M (4.8)

where U is the set of all multi-assignments of length n — 1.

From the resulting multi-assignment A the set of tracks T can be extracted and the track
constraints imposed. Only paths in the multi-assignment A with more than one corresponding
measurement are considered tracks. Otherwise, when there is a single isolated measurement
it is spurious according to the model.

The derived tracks should satisfy the following continuity and motion constraints:

G+

(C-1) Tk # ¢ ATk+11=¢ = \/ Tilk+pl#¢
p=1
Pmin

(C-2) Tikl=¢ ATk +11#¢ = \ Tilk+pl#¢
p=1

(M-1) I Tilk + 11— TK] I< dimax

M-2) CI;;q < Pmax

where ¢%_ is the criterion for xt = T;[k] and x’;“ =Tilk+1].

4.3.4 Model Properties

Here, we list some propositions that express the importance of selecting significant values for
the model constraints.

Proposition 3 If pyin, = n then M < ming_; my.

Proof: Letm, = argminj_, my. Suppose M > m,. Then at t, there must be a point track
that misses a measurement. This contradicts with p,;, = n. Hence, M < min_, my. [ ]

Proposition 4 If dyax = 00 and ¢pmax = 00 then M > ming_; my.

Proof: Let m, = minj_, my. Suppose M < m,. Then at t, there is at least one mea-
surement not linked to a track. With respect to the motion constraints, that measurement can
be linked to any measurement at ¢, and t,,;. So either at the left or at the right side one
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of the continuity constraints must have been violated. p,,;, cannot be violated at t, because
there is a measurement. If @, is violated then m,_, < m p OF Mpy < my, which is in
contradiction to the assumption that m,, = minj_, m;. -

Collary 1 If dyyux = 00 and ¢, = 00 and pyin = n then M = min}_, my.

Proof: Follows directly from Proposition 3 and 4. ]

It follows from these propositions that when there are many spurious measurements, d,,,
and @,,,, should be adjusted accurately. Otherwise, there will certainly be tracks (partially)
consisting of spurious measurements. Sometimes it is possible to adapt d,,,. and Prax N
space and in time, e.g. in [10] the motion constraints are adapted spatially.

Finally, setting any of the constraints too strict leads to the exclusion of the true track set
T* from the feasible region'. In general the true extremes for the constraints are not known,
so care must be taken when setting these constraint values.

4.4 The Algorithm

There are two fundamental problems related to the model as described in the previous sec-
tion. First, the model gives rise to a multi-objective optimization problem with additional
constraints. As is known for multi-objective optimization problems, there is usually a large
set of mathematically equivalent optimal solutions, i.e. the Pareto optimal set (e.g. [31]).
This reflects the motivation for defining the objectives in the first place in Section 4.3. In or-
der to strive for a single best solution, the optimization algorithm we propose gives priorities
to the objectives. First, we postulate that the most important objective is to include as many
measurements as possible in a point track (O-2). Then, we want the tracks to be as long as
possible, or, in other words, we want to form as few tracks as possible (O-3). Finally, the
tracks themselves must be as smooth as possible (O-1).

The second fundamental problem is that the optimization of the model is intractable.
That is, even the single objective optimization problem of tracking a fixed number of points
is known to be NP-hard. In order to make the optimization problem computationally feasible,
the proposed algorithm has two related approximation steps. The first approximation of the
algorithm is to sequentially optimize the global model. That is, instead of optimizing the
model globally, we optimize it per time instance. Additionally, at each time instance we use

a restricted optimization scope aiming at an estimation of A% which we define as follows:

5
Af,;f,, = arg I;I;lkln Ck:s(Ak:s), where Ck:s (Ak:s) — Z CfH-p - l(Ak:p [p]) (49)

p=1

A consequence of the sequential optimization procedure is that we are faced with an
initialization problem. More precisely, the second-order individual motion criterion (im2)

I'The feasible region of a constrained optimization problem is the set of solutions that satisfy the given constraints.
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cannot be computed at the beginning of a point track. We solve this initialization prob-
lem with a forward (up processing) and backward (down processing) sequential optimization
phase, similar to the solution to the initialization problem for the tracking of a fixed number
of points in [37]. During the up processing, we use a two-stage procedure to estimate the
motion vectors at the end of the point tracks. The first estimation stage init/ hypothesizes
the point correspondences for im2 using iml. The second estimation stage init2 continues
the tracks using these hypotheses until the tracks stop. A track may stop because either the
end of the sequence is reached, or there are no measurements in the dmax, @mar range of
the last measurement in the track, or the measurements fit better to other tracks. After these
two stages, we assume that we have good estimates of the correspondences between the last
measurements in the point tracks. Then, these are used in the reverse optimization phase,
the down processing. The first goal of the down-processing phase is to make the tracks as
smooth as possible. Especially when the second initialization stage has resulted in early track
termination the first hypotheses were probably wrong. In that case the number of tracks will
decrease while optimizing for smoothness in the down-processing phase. This will be shown
in the step-by-step tracking example that we describe later in this section.

During the two-stage initialization procedure, conflicts may arise between the first ini-
tialization stage for one track and the second initialization stage for another track. That is,
optimal measurements need to be selected for both the extension of a hypothesized track as
well as for the initiation of new tracks. Again two criteria need to be optimized. We let the
track extension take preference over track initiation as to express our preference for having
as little tracks as possible (O-3).

Having defined the objectives and approximations of the proposed algorithm, we can now
describe the two tracking phases of the so-called Roads tracker, being the up-processing and
the down-processing phase (see Fig. 4.3).

Up processing The up direction aims at estimating the initial motion vectors of the point
tracks in a two-stage process. First we execute the init2 stage of the tracks T that have
already been initiated, i.e. we attempt to extend these tracks while imposing the proposed
constraints?. To this end, we need to compute A% using T and the measurements present
in X%+ X*2 X%+ where s is the scope of the optimization. We estimate A%S, with
the Restrained Optimal Assignment Decision (Road) tracker [36], which we describe next.
Before we determine the optimal assignment for the tracks, we check whether or not some
of the tracks have terminated by imposing the continuity constraints. That is, a track may
not contain more than @, slave (missing) measurements and no less than p,,;, consecutive
valid measurements. The state of the track is maintained with the enabled state E;, where
E; = 1 if and only if the track 7; has not terminated. Then, this state variable is fed to the
Road tracker in order to indicate which tracks are involved in the assignment optimization.
The resulting assignment A* is used to update the tracks in T

After the track extension, we try to initiate new tracks using the remaining measurements

in X**1. As just mentioned we optimize the assignment between #; and t( using im/, which

2For the first frame the track set T is clearly empty.



4.4 The Algorithm 91

T=0 initialize as empty track set
letk =1 start at first frame
up: | E = ValidTracks(T, k) check tracks for termination

[init2] | A* = Road(A*~' k,s, 00, (). E) | find optimal assignment using im2 and scope s
T = UpdateTracks(T, A") update tracks with found assignment

linit]] | BX = A% with Road[s=1, im/] (= Goa tracker[im1])
T’ = CreateTracks(B") create new tracks from this assignment
T=TUT add tracks to track set
k=k—+1
ifk <ngotoup

otherwise go to down

down: | k=k—1
E =ValidTracks(T, k) check tracks for initiation and termination
A¥ = Road(A*~',k,s, 00, (), E) | find optimal assignment using im2 and scope s
T = UpdateTracks(T, A") update tracks with found assignment

if k > 2 goto down
otherwise done

Figure 4.3: The Roads tracker for tracking a varying number of points. For the description of
the arguments of the Road algorithm see Appendix A.

is the init] motion estimation stage. We convert the resulting assignment into a list of new
tracks of the form (¢, ..., x¥, xﬁ'-“. .y ), when afj = 1 € A*, and we insert these tracks in
the track set 7. This ends the second processing stage and we advance to the next frame.

When all frames have been processed, we can start the down-processing phase.

Down processing In the down phase we use the initial track segments to find the final
tracks. Since we assume that these segments can be erroneous, tracks may use measurements
present in other tracks as well as measurements that are still unassigned. When all measure-
ments from a track are taken by other tracks, the number of tracks decreases. Clearly, since
some of the tracks present in T have { measurements at the tail, these tracks cannot be ex-
tended yet. In order to indicate whether a track can be extended, we define three track states,
being: before tracking, tracking, and after tracking. All tracks start in the before-tracking
state. Only those tracks that are in the tracking state will be extended. After a frame has been
processed, the state of the track is updated resulting in a possible update of E;,i.e. E; = 1 if
and only if track 7; is in tracking state. The state update works as follows:

1. From before tracking to tracking: if there are two consecutive true measurements in
the track. Because all measurements are involved in the assignment optimization, even
partially initialized tracks can lose their initial measurements. In such a case these
tracks remain in the before-tracking state.

2. From tracking to after tracking: if either of the continuity constraints is violated, i.e. if
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there are more than a,,,, consecutive missing measurements or there are less than p,,i,
consecutive true measurements in a track.

If all frames have been processed in the down-processing phase, the algorithm stops.
Now, we summarize the Road tracker from [36], which we use for the extension of partial
tracks. It optimizes assignments over s frames in order to approximate A% .

Road Tracker

As mentioned in {37] the computation of the global motion model for fixed M is NP-hard.
Therefore, in [37] the global model has been approximated in a greedy way. That is, the
model is approximated sequentially by optimizing only assignments between two frames. In
[36] the optimization scope has been extended to several frames. Accordingly, the perfor-
mance improved significantly, as has been demonstrated. Here, we summarize how the Road
tracker estimates A% .

When the scope of the optimization is larger than s > 2 the computation of Af,;f" results
in an (s + 1)-dimensional assignment problem which is known to be NP-hard fors + 1 > 3
[15]. Accordingly, even if the scope is limited (s < n), we need a specific search strategy
to constrain the exponential growth. The Road tracker searches the candidate assignments
depth first up to s levels using a best-first heuristic per recursion level. Additionally, it prunes
the search tree using an adaptive branch-and-bound mechanism. The initial bound is deter-
mined as the algorithm searches best first per recursion level. Then, the bound is lowered by
introducing a cost-bound constraint y,,q,. This cost-bound constraint is derived from the cost
of the best local (current recursion level) assignment C¥, = C*(Ak, ) and the global cost
bound C}, according to:

Vmax = Min(F/ Ch... FY Cy/s), (4.10)

where F,y (= 1) is the local cost factor and ng(z 1) is the global cost factor and s is the
remaining scope.

The best-first ordering of the assignments per recursion level is accomplished using the
Murty algorithm [19]. In short, the Murty algorithm returns the minimum cost assignment for
an assignment problem given that a number of assignments Y, where Y C U k is no longer
allowed:

Apin(Y) =arg min C*(My, A), @.11)

The Road tracker now works as follows. First, it computes the criterion matrix D* using
A*~1. Then, if the scope s = 1, it just returns the minimal cost assignment AX .. (like the
Goa tracker in [37] using the Hungarian method [16]). Otherwise it starts enumerating the
assignments according to increasing cost. For every generated assignment the algorithm calls

itself recursively to figure out if there is a multi-assignment Af,ﬂ:s ~! for this assignment
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Figure 4.4: (a) shows a set of input points with attached time labels. In (b) the tracking result
after up processing is displayed and in (c) after down processing.

matrix that results in a lower total cost than the given bound C,. If the tracker finds such
an improved multi-assignment, this assignment becomes the new solution. The details of the
algorithm are described in Appendix A.

Tracking Example

To show the workings of the Roads algorithm, we process an example step by step. The input
data is displayed in Fig. 4.4 and consists of a sequence of six frames with 2, 3, 3, 3,2, and 1
measurements per frame, respectively.

We start with the up processing of the sequence. For the first frame there are no tracks
yet (see Fig 4.5(a)), so we skip the track extension. Therefore the only two measurements
remain unbound. X2 contains three measurements from which two are within the dinax TaNgE
to both measurements in frame 1. Using the im] model, the correspondences are optimized
resulting in two new tracks, as shown in Fig. 4.5(b). In frame two, we start with extending
the existing tracks, i.e. the inir2 stage. One of the tracks has two candidate measurements
and the other has none, because of the ¢,,,, violation. Hence, only the first track is extended
(see Fig. 4.5(c)). Then, in the init! stage, one new track is formed as shown in in Fig. 4.5(d).
The frames 3-5 are processed likewise, resulting in the configurations as in Fig. 4.5(¢)-4.5(h).
Fig. 4.4(b) shows the resulting tracks after the up-processing phase.

The down-processing phase starts with the tracks found in the two-stage initialization
procedure as shown in Fig. 4.6(a). From the third frame onwards (counting backwards now),
correspondences are modified resulting in a decrease in the number of established point tracks
as illustrated in Fig. 4.6(b)-Fig. 4.6(d). The final tracks are shown in Fig. 4.4(c).
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Figure 4.5: Up processing of a sequence of six frames with three points. The rows above
the thick grey line represent the initialized tracks and the rows below the line represent the
measurements, one column per frame.
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Figure 4.6: Down processing of a sequence of six frames with three points. The rows above
the thick black line represent the final tracks. The rows between the thick lines represent the
hypothesized tracks after initialization and the rows below the grey line represent the unbound

measurements. In this case there are no unbound measurements left after the up-processing
phase.

Parameter Summary

We now summarize all parameters described for the presented tracking method. We differen-
tiate between the model and the optimization parameters. The model parameters should be
set as to fit the properties of the tracked points. Setting the model constraint parameters ac-
curately is especially important in case the points move close to each other. The optimization
parameters, on the other hand, do not reflect any motion properties of the points. They serve
to improve the quality of the tracking results.

Model parameters
w im2 (4.2) | second-order motion model parameter
dmax (M-1) maximum speed constraint parameter
Prmax (M-2) maximum deviation from smoothness constraint parameter
Amax (C-1) maximum absence constraint parameter
DPmin (C-2) minimum presence constraint parameter

Optimization parameters
s 4.9 temporal scope parameter
FY (4.10) | local cost bound factor
Fy (4.10) | global cost bound factor

o~
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4.5 Experiments

In order to validate the extended capabilities of the Roads tracker, we carried out two types
of experiments. First, we tested its performance with generated data. This type of experi-
ment has the advantage that a number of problem parameters can be controlled so that the
behavior of the algorithm can be investigated under various conditions. Moreover, the per-
formance can easily be measured since the ground truth is available. Second, we applied
the algorithm to some real image sequences to see how it operates when the presented data
have possible unexpected real-world characteristics. In both types of experiments we com-
pared the Roads tracker with Reid’s Multiple Hypothesis Tracker (MHT) [4], [24] and the
tracker by Chetverikov and Verestdy (C&V) [3]. We decided to include these trackers in
the experiments because they have the same features as the Roads tracker but they have a
different motion model or optimization scheme. In [37] it has already been shown that the
original Roads tracker surpasses other tracking methods [23], [25], which we therefore do
not consider here.

We always set F equal to F} (F?) and we fed the Roads tracker and the C&V algo-
rithm with the true d,,,, (given in Section 4.5.1 or by inspection in Section 4.5.2) in order
to disregard physically impossible correspondences. In the generated data experiment we
varied the scope and the cost-bound constraint, while in the real image sequence experiment
we fixed these parameters to s = 2 and F¥ = 1.05. For the generated data experiment, the
MHT needed extensive tuning of its relatively high number of parameters. Since the ground
truth was available, we could use a genetic algorithm for this purpose. In the image sequence
experiments we used the MHT parameter settings as described in [4], in which both image
sequences were used too (and appropriate parameter setting can be assumed). For all algo-
rithms we set the minimum track length to three, so that any track that has been formed using
second-order motion characteristics is considered valid.

4.5.1 Performance with Generated Data

For the controlled generated data experiments, we used the Point Set Motion Generator
(PSMGQG) [38] that allows for the generation of independent point tracks, with some vari-
ance in the speed and direction of motion. We modified the original PSMG since we wanted
to test some additional problem parameter settings. In [36], we already added a parameter to
vary the number of spurious measurements per time instance. For the new problem setting
we needed a way to vary the number of points. Additionally, we added a way to test the
sensitivity of the algorithms to point motion dependence.

1. Varying number of points.

In order to test the behavior of the algorithms in case the number of points varies in
time, we added a minimum track length parameter n,,,. Then, each point track has
two additional parameters, being the start frame s; and its length ;. The generation
of random point tracks then works as follows. For each point track (a total of M)
the length /; is first chosen uniformly distributed between n,,;, and n — n,,;,, where
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Figure 4.7: In (a) a data set consisting 10 independent moving points with track length varying
between 3 and is 20 frames is displayed. (b) shows a data set with 10 points with track length
between 5 and 20 frames moving as 3 independent groups.

n is the total sequence length. Then, the start frame is chosen between 0 and n —/;,
again uniformly distributed. The point tracks themselves are generated according to
the PSMG. Clearly, by having variable length point tracks that start at variable time
instances, the actual number of points M, varies from ¢ to f,.

2. Point groups.

In order to test the sensitivity of the algorithms for point motion dependence, we added
a parameter G that represents the number of point groups. The generation of point
tracks works as follows. First, G kernel tracks are generated as before. These kernel
tracks always have a length of n frames. Then, the M point tracks are generated by
selecting a random kernel track and a random initial position (in the given S, x Sj
window). Then, again a random track length and first frame are chosen as before, but
now the remaining point positions directly follow the motion of the selected kernel.
Consequently, when G = 1 all point motion is dependent and when G = M (on the
average) all point motion is independent.

When not explicitly indicated otherwise, we set 1, = 5,n =20, M = 50, and G = 50.
The other parameters have the same values as used in [37], being:

1. Size (S, = Si) of the square space (§ = 100).
2. Uniform distributions for both dimensions of initial point positions between 0 and S.

3. Normal distribution for the magnitude of the initial point velocity vector:
U? = Ny, = 5,0, =0.5)

4. Uniform distribution for the angle of the initial velocity vector, between 0 and 27.
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5. Normal distribution for the update of the velocity vector magnitude v ,’-‘, from #; to t41:
vg(+[ = N(vlk’ Uvu = 0'2)

6. Normal distribution for the update of the velocity vector angle B¥ from t; to fiyy:
Bt = N(BF, 05, = 0.2)

7. Probability of occlusion (p, = 0, i.e. no occlusion)

Performance Measure

A number of different measures have been proposed to quantify the quality of the perfor-
mance, like among others the distortion measure [23), the link-based error and track-based
error [38]. Like in [37), we used the track-based error as proposed in [38], which is defined
as follows:

Teorrect
Etrack = 1- s (412)

total

where T4 is the total number of true tracks and Tyoprec; is the number of completely correct
tracks.

The choice for this measure is now less obvious than in [37], because in this case, the
tracks can have different lengths. Clearly, it is usually more difficult to find completely
correct tracks in case they are longer. In the figures the displayed track error and computation
time is always averaged over 500 runs.

Variable Density Experiment

With the proposed data generator, we did a variable density experiment. We gradually in-
creased the number of points while keeping the scene size constant. Figure 4.8(a) shows
the track error E; 4.« as a function of the total number of points M that has appeared in the
scene. The figure clearly shows that the C&V algorithm performs worst. With scope s = 2
the Roads tracker has the best performance. Even with a strict cost-bound constraint setting
(F? = 1.01) the Roads tracker performs better than the specifically trained MHT when the
number of points M > 80. By relaxing F? the performance improves further. Relaxing
FY beyond F¥ = 1.05 hardly resulted in any improvement. Figure 4.1b shows the aver-
age computation time for the variable density experiment. Clearly, the C&V algorithm is
the fastest, followed by the Roads tracker with scope s = 1. Both have a near-polynomial
order of performance. The MHT and the Roads tracker with scope s = 2 display the ex-
pected exponential growth in computation time, though the order is different. The MHT is
clearly the slowest algorithm, while the exponential order of the Roads tracker depends on
the cost-bound constraint setting.
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Figure 4.8: Results of a variable density experiment by applying the C&V algorithm, the
MHT algorithm, and the Roads tracker to data sets from the modified PSMG data generator.
In (a) the track error is displayed and in (b) the accompanying computation time.

Variable Average-Track-Length Experiment

It can be expected that the initialization schemes of the algorithms are hampered if the tracks
are short. To test this sensitivity, we carried out an experiment in which we varied the n,,;, pa-
rameter of the track generator (the average track length is proportional to 1 ,,;,,). In Fig. 4.9(a)
the track error results are displayed. For the C&V algorithm we see that its performance
decreases when the average track length increases. Although this is in contrast to our first
hypothesis, this behavior can be expected since the measurement density increases when the
average track length increases, which clearly makes the problem more complex. The other al-
gorithms suffer from that problem too, as can be seen by the increase of the track error when
nmin > 10. With respect to the initialization problems, we see that the Roads tracker and
the MHT indeed display a track error that is slightly inversely proportional to n,,;,. Overall
the Roads tracker clearly performs best for all settings of n,,;,. Computationally, the MHT
suffers most from a high average track length as demonstrated in Fig. 4.9(b), again because
of the increasing measurement density.

Variable Motion Dependence Experiment

So far, we have only considered independent point motion. In order to test the sensitivity of
the algorithms to point motion dependence, we varied the number of point groups G. The
measure of motion dependence is expressed as the point motion correlation coefficient p,,.

Proposition S Given is a set of M points randomly distributed in G independent groups. The
point motion correlation p,, between two points equals:
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Figure 4.9: (a) displays the track error as a function of the minimum track length parameter
of the modified PSMG. In (b) the corresponding computation time is displayed.

_ M/G-1

" M-1

(4.13)

Proof: When we consider two points a and b, the correlation coefficient p,, between the
motion vectors Y, and Y, of these points is defined as:

_ E[Y,Y,) - E[Y)E[Ys]

= 4.14
Pm JVar(Y)Var(Y,) “-19)

Since all points move according to the same PDF, the following holds:
E[Y,] = E[Y] = E[Y] (4.15)
Var(Y,) = Var(Yp) = Var(Y) (4.16)

Accordingly:
E[Y,Ys] - E[Y]

o = EaDol = BT 4.17)

Var(Y)

Further, since the two points either belong to the same group or to different independent
groups, E[Y,Y,] can be rewritten as:

E[Y?], ifa and b are from the same group (4.18)

E[Y]?, ifa and b are from distinct groups

E[Y, Y] = {
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Figure 4.10: In the figure we show some difficult tracking examples. In (a) and (b) the points

move in parallel and in (b) and (c) there are possibly some crossing point tracks. See text for
explanation.

In other words:

E[Y,Yy] = P.E[Y?] + (1 - P)EIY ], (4.19)

where P is the probability that a and b are points from the same group. Combining (4.17)
and (4.19) yields:

2 _ 2_ 2 - 2
_ REI)+ (- P)EYP - EXYE _ |, ED)-EDYP _ (4.20)
Var(Y) Var(Y)

m

The probability P; can be determined from the ratio of combinations of two points from the
same group and the total number of combinations of two points, resulting in:

b (MéG)G _ M/G(A';/G—I)G _ M/G—l
T T TEED T e

(4.21)

]

In case the points have correlated motion, we expect them to move more often in parallel.
On the other hand, independently moving points will have more crossing tracks. Both types
of motion have certain difficulties. That is, if correlated points move in parallel, they all
have the same model deviation in the same direction, see for example Fig. 4.10(a). As a
consequence it is possible that to limit the total cost it is better to choose a wrong alternative
for all but one track and to terminate (or interpolate) the remaining track as in Fig. 4.10(b).
Uncorrelated crossing point tracks, on the other hand, usually result in many assignment
ambiguities because most individual motion models are inadequate in these cases, as can be
seen in Fig. 4.10(c) and Fig. 4.10(d).

The variable point-motion dependence experiment was again carried out for all three
algorithms. In Fig. 4.11 the results of the experiment are displayed. Fig. 4.11(a) shows that
the trackers indeed suffer from high point-motion correlation, especially the C&V algorithm.
Also with most trackers the error increases when the point motion is highly independent. For
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Figure 4.11: (a) displays the track error as a function of the point motion correlation p,. In
(b) the computation time is displayed for the same experiments.

each tracking algorithm the breaking point between the two mentioned tendencies occurs at a
different correlation value. In general, the track error does not depend strongly on the point-
motion correlation p,,. It has, however, to be noted that in order to make p,, the only problem
variable, we did not clutter the correlated points in a restricted area. This would certainly
have led to larger deviations in the track error and it would also be more realistic. However,
the tracking of cluttered points is problematic, as was already demonstrated in the variable
density experiment. Finally, only for the MHT the computation time is significantly higher
when the point correlation is high, as can be seen in Fig. 4.11(b).

4.5.2 Image Sequence Experiments

For the real image sequence experiments, we used the PUMA sequence and the Toy-car se-
quence (courtesy of the University of Massachusetts). Although we analyzed many other
sequences we restrict ourselves here to these sequences since they resulted in clearly notice-
able differences for the algorithms. In both sequences the motion of the feature points is
highly dependent. We used the corner detector as described in [28] in order to get the fea-
ture position information. We did not exploit color (brightness) information for any of the
tracking algorithms?,

4.5.3 PUMA Sequence

In Figure 4.12(a)-4.12(d), we show some images from the PUMA sequence and overlayed
the detected feature positions. The PUMA sequence has rotational and strongly dependent

3The reference MHT as described in [4] exploits color information, but we did not use it here for fair performance
comparison. Moreover, similar color validation schemes could be incorporated in the other algorithms too.
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motion which violates the (second order) motion model of all algorithms. In Figure 4.13(a)-
4.13(d), we show the tracking results of the C&V algorithm (a), the MHT (b) and the Roads
tracker with ppi, = 2 (c) and pyi, = 3 (d). Although they are difficult to interpret we can
conclude from these figures that the C&V algorithm produces many incorrect tracks. This
is mainly caused by its dyq, sensitivity (as demonstrated in [37]), since the point speed is
widely divergent is this scene. Another reason is its greedy optimization scheme.

The MHT sometimes has problems to find the beginning of a track. Further, the MHT
adjusts the track state more gradually than the Roads tracker, which can be both disadvan-
tageous and beneficial. For instance, the MHT sometimes prefers straight lines, but on the
other hand it makes less irregular tracks through spurious measurements. Especially when
Pmin 18 low as in Figure 4.13(c), the Roads tracker finds some invalid tracks. Though, when
Pmin = 3, the Roads tracker is able to track many more short tracks in the top right of the
sequence in contrast to the MHT (see the tracks in the top right corner in Fig. 4.13(b) and
Fig. 4.13(d)). With a higher p,,;, value the Roads tracker has in general less artifacts. Similar
results can be achieved by lowering a4y

4.5.4 Toy-Car Sequence

In the Toy-car sequence a number of toy cars move quite fast in opposite directions. As a
consequence some cars are partly occluded during a number of frames. The motion of the
cars is mainly uniform. In Fig. 4.14 some images from the sequence are displayed. The
tracking results are shown in Fig. 4.15. The C&V algorithm had among others problems with
the occlusion, resulting in vertical and crossing tracks. The MHT again had problems to find
the beginning of some of the tracks, e.g. the features at the rear wheel of the toy car that
starts in the upper left corner. Besides, all trackers found some crossing tracks. For the Roads
tracker this problem could be reduced by increasing pp, from p,in = 3 t0 ppin = 4 as can
be seen in Fig. 4.15(c) and Fig. 4.15(d) respectively.

4.6 Conclusion

We addressed the problem of tracking a varying number of points over time through a monoc-
ular image sequence. We especially considered the case in which point appearance informa-
tion is insignificant so that only motion information can be used to identify the points over
time. The consequent problem that has to be solved is called the motion correspondence
problem.

We formulated the problem as a multi-objective optimization problem with additional
motion constraints and continuity constraints. The presented optimization algorithm (Roads
tracker) inevitably makes approximations in order to make the optimization computationally
feasible, because the optimization of one of the objectives is known to be NP-hard. Fur-
ther, in the algorithm the objectives have been ordered in order to strive for a single best
solution, since multi-objective optimization problems generally have a large set of mathe-
matically equivalent solutions. Appropriate values for the constraint parameters depend on
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(c) my = 83 (d) m3y = 87

Figure 4.12: Frame 1 (a), 10 (b), 20 (¢) and 30 (d) from the PUMA sequence.
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(a) C&V: 227 tracks (b) MHT: 172 tracks

(¢) Roads: 148 tracks (d) Roads: 146 tracks

Figure 4.13: (a) Tracking results of applying the C&V algorithm, (b) the MHT, (c) the Roads
tracker with @may = 2, pmin = 2 and (d) the Roads tracker with @pmay = 2, pmin = 3 to the
features found in the PUMA sequence.
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the application. Therefore, we explored the consequences of setting these values wrongly.
In short, there is a trade-off between erroneous breaking up of a point track and connecting
track parts of different points erroneously.

Both synthetic data experiments and real-image sequence experiments support the appro-
priateness of the proposed method. In all experiments we compared the performance of the
method with other tracking algorithms. The synthetic experiments (with ground truth) were
directed towards making an increasingly dense problem, increasing the average track length,
and making the point motion increasingly dependent. In these experiments the proposed
Roads tracker proved to be the most accurate. The MHT [24] consistently performed second
best and the C&V algorithm [3] clearly had the largest track error. Computationally, we can
conclude that the C&V algorithm is the fastest followed by the Roads tracker and the MHT,
respectively.

The experiments with the real-image sequences showed that the C&V algorithm certainly
has problems with dense point sets, occlusion and noise. Based on these sequences, it is,
however, much harder to decide between the MHT and the Roads tracker. Partly, this is
because of the lack of ground truth and partly because both aigorithms make different (types
of) errors. However, it can be concluded that the Roads tracker is easier to tune because it has
a smaller number of parameters. Moreover, the MHT is much more sensitive to its parameter
settings, as was already demonstrated in [37].

We consider a number of improvements to the proposed method. First, we suggest some
modifications to improve the computational performance. By putting related tracks in sep-
arate groups, a number of track groups can be tracked independently, resulting in a lower
exponential order of the multi-frame optimization scheme. Also optimizations to Murty’s
algorithm can be implemented as reported in [2] and [18].

Another improvement is the adjustment of the w parameter of the individual model im2.
Either by estimation beforehand or by on-line adaptation, w can be fit to the motion of the
points. A number of experiments we carried out (not included) support this idea.

Finally, in case significant color or texture information is available, it can be used for
correspondence validation as in [4], [42], [45]. A small template at the measurement posi-
tions can be extracted and the similarity between the measurement template in the track at 74
and the templates of the candidate measurements at ;41 can be computed. Then, only those
candidate measurements that are closer than a certain distance with respect to the similarity
measure are considered further. This modification will be both qualitatively and computa-
tionally beneficial.
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(ay m; = 51 (b) m3 =58

(¢)ms =52 (d) my = 58

Figure 4.14: Frame 1 (a), 3 (b}, 5 (c), and 7 (d) from the Toycar sequence.
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(a) C&V: 56 tracks (b) MHT: 53 tracks

(c) Roads: 34 tracks (d) Roads: 35 tracks

Figure 4.15: (a) Tracking results of applying the C&V algorithm, (b) the MHT, the (c) Roads
tracker with @y = 2, pmin = 3 and (d) the Roads tracker with @qc = 2, pmin = 4 to the
features found in the Toycar sequence.



Appendix A

Multi-frame assignment optimization algorithm

Road(A* "' k.s. Cp. AU E)
AK=1 : assignment between previous and current frame
k : frame number
s : remaining scope
Gy - cost bound for assignments in the remaining scope
A% best solution for the remaining scope
: tracks in T that are enabled and may be extended
begin
Ct., = CHAFK ) ; find minimum cost assignment
if s = I then ; at lowest recursion level?
if CX. < Cp then ; better than global bound?
Als = Ak ) ; update solution
end
else
Y=49 ; set of processed matrices
do
A= AL () ; get next best with Murty
Y =Y U{A} ; add to processed set
Co = C*(A) ; compute cost
B = AXs[2..5] ; get default solution
B =Road(A,k+ 1,5 —1,Cy, — Cy, B, E) ; call recursively to improve B
A% = (A)o B ; concatenate A with new tail
if C*$(A%%) < C) then ; better than global bound?
Cp = CH (A% ; update global bound
Ak = pks ; update solution
end
Yimax = min(F/ CK. [ FYCy/s) ; compute cost-bound constraint
while (Y # U* ACy < Cp A Cy < Yimax) ; stop when global bound or
end ; combined constraint exceeded
; or no alternatives are left
return AXS : return solution
end
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Abstract Clustering is inherently a difficult problem, both with respect to the definition of
adequate models as well as to the optimization of the models. In this paper we present a
model for the cluster problem that does not need knowledge about the number of clusters a
priori. This property is among others useful in the image segmentation domain, which we es-
pecially address. Further, we propose a cellular coevolutionary algorithm for the optimization
of the model. Within this scheme multiple agents are placed in a regular 2-D grid representing
the image, which imposes neighboring relations on them. The agents cooperatively consider
pixel migration from one agent to the other in order to improve the homogeneity of the en-
semble of the image regions they represent. If the union of the regions of neighboring agents
is homogeneous then the agents form alliances. On the other hand, if an agent discovers a
deviant subject, it isolates the subject. In the experiments we show the effectiveness of the
proposed method and compare it to other segmentation algorithms. The efficiency can easily
be improved by exploiting the intrinsic parallelism of the proposed method.

Keywords: clustering, image segmentation, modeling, distributed genetic algorithms.

5.1 Introduction

Clustering is an important and difficult task in unsupervised pattern recognition. The cluster-
ing problem comes down to finding a separation of a set of objects into an a priori unknown
number of subsets while minimizing intra-cluster variability (within scatter) and maximizing
the inter-cluster variability (between scatter). There is a huge amount of literature on the
subject, ranging from models, algorithms, algorithm parameter estimations to cluster validity
studies [19], [S1]. The clustering methods can be divided up into exclusive and non-exclusive
methods [35]. The best-known non-exclusive method is the fuzzy C-means model {20]. In
this method objects are soft clustered such that objects belong to all clusters to a certain de-
gree. For an overview of fuzzy clustering methods see for example [5] and [6]. In exclusive
clustering methods, the objects are partitioned into a number of (crisp) subsets, such that
each object belongs to exactly one subset. We concentrate on exclusive clustering methods,
among which the K-means model (or hard C-means) [37] is the most widely used. As the
fuzzy C-means model, the K-means model assumes that the number of clusters is known a
priori. There are, however, numerous domains for which this assumption cannot be satis-
fied. One of these is the image segmentation problem, which we especially address in this
paper. In (region-based) image segmentation, pixels are clustered based on their color or
texture information, while a hard constraint is imposed on spatial cluster (segment) connec-
tivity. Throughout this paper, we will consider the clustering problem and the segmentation
problem as being similar. Accordingly, we consider solution methods for both problems
interchangeably.

Since the clustering problem is a known NP-hard problem, deterministic algorithms for
the fuzzy C-means and the K-means model use a greedy optimization scheme in order to
find a suboptimal solution of their criterion function. Many stochastic optimization schemes
that aim at a global maximum have been reported, among which simulated annealing meth-
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ods [11], [33], [49] and evolutionary algorithms [17], [24], [26], [29], [36], [54]. As part
of some evolutionary approaches also certain domain specific recombination operators have
been reported [9], [10], [34], [53].

In this paper, we introduce a cluster model which aims at minimal intra-cluster variability.
Additionally, instead of maximizing the inter-cluster variability we impose a hard constraint
on the intra-cluster variability for the union of two clusters. We claim that such a constraint is
inevitable in order find useful solutions to the cluster problem. As a result the proposed model
allows for the clustering of a data set into an a priori unknown number of clusters. Addition-
ally, we specialize the model for image segmentation and propose a cellular coevolutionary
algorithm (CCA) to optimize the image segmentation model in a distributed way.

The outline of the paper is as follows. After first exploring the characteristics of the
clustering problem, we propose a new cluster model in Section 5.2, Then, in Section 5.3,
we specialize the model for image segmentation. We give an overview of related work in
distributed evolutionary computation while focusing on image segmentation in Section 5.4.
In Section 5.5, we describe a coevolutionary algorithm for the optimization of the proposed
model. In the experiments in Section 5.6, we demonstrate the effectiveness of the method and
compare its performance to some other image segmentation algorithms, both with synthetic
and natural images. We finalize the paper with a discussion and some concluding remarks in
Section 5.7.

5.2 Cluster Model

In this section, we elaborate on some fundamental characteristics of the cluster problem. We
will not consider the definition of an appropriate distance measure, which is a known problem
especially when multi-variate features are involved. The characteristics that we focus on are
manifest, irrespective of the used distance measures. Before going into detail, we first define
the clustering problem.

Given is a data set X = {x), Xa. ..., Xy}, where x; is a feature vector in a p-dimensional
metric space, and N = |X| is the number of objects in X. Then, a valid clustering of X in a
set of clusters C = {C}, (3, ..., Cy}, where M is the number of clusters, has the following
partition properties:

P-l.Ci#0,1<i<M
P2 UM Cci=x
P3. CNCj=0i#jl<ij<M

Additionally, the clusters should reflect the structure of the data such that objects in the
same cluster are similar to each other and objects from distinct clusters are different from
each other. In order to find a solution to the clustering problem, we need a quantitative
way to distinguish between similar and dissimilar objects or, in other words, we need to
quantitatively differentiate between homogeneous and inhomogeneous sets of objects. In the
literature various alternatives have been reported to approach this task [19], [32], [51].
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A common criterion to quantify cluster homogeneity is the sum-of-squared-error crite-
rion:

M
Z > lx—pcol? (5.1)
i=1 xeC;

|
where u(Y) = Zx
|Y[ xeY

Without additional constraints (5.1) has a zero minimum for M = |X|. Therefore, in ad-
dition to minimizing this criterion, many cluster models, like the K-means and fuzzy C-means
model, assume the number of clusters M to be known beforehand. There is, however, also
a number of methods that among others assume a certain maximum variability per cluster,
such as the split-and-merge and region growing algorithms in the image segmentation do-
main. We claim that objective clustering is not possible without such additional parameters
because of a scale problem. We use Fig. 5.1(a) to support this observation. It is impossible
to decide which is the right data clustering for the data set displayed in the figure: should
this data set be partitioned into 1, 7, 49, or even more clusters? For synthetic data sets with
self-similar structures like those displayed here, the problem is clearly undecidable. This may
seem an academic problem that does not correspond to real life, however, if we consider the
image in Fig. 5.2, we also see a nesting of structures. Again the number of clusters (seg-
ments) is arguable. For example, does the image only contain a tree, houses, garden, and sky,
or must a valid segmentation result also include clouds, bushes, windows, or even smaller
segments/clusters like the flowers and the leaves of the tree?

A typical approach to discover a significant set of clusters is to minimize (5.1) for a range
of settings of M, where 1 < M < M,,,. Then, a cluster validity study [8], [16], [21], [31]
can help in selecting the *true’ number of clusters by looking for sharp knees or local minima
in a cluster validity index function curve, e.g. the Davies-Bouldin index [16]. However, these
index functions can have multiple local minima and knees, or they sometimes contain no
significant transition at all. Moreover, the deepest local minimum or the sharpest knee are by
no means indications of the scale the user expects.

In addition to the scale problem, in many practical situations the features of the objects
are noisy. Because the intra-cluster variability of the data increases proportionally with the
amount of noise, the determination of the true cluster borders can be severely hampered,
leading to a noise problem. In some cases the noise can be reduced by filtering, but the
uncertainty principle [52] is a limiting factor. That is, by reducing the noise on the features
we also decrease the accurateness of the estimated cluster border.

Both the scale and the noise problem should be properly handled in a clustering method in
order to find objectively good cluster results. Both aspects are interrelated, since dealing with
one problem affects the other. That is, the smallest possible scale depends on the effective
noise level. Usually, both problems are implicitly attacked in the same way, which implies
that the assumed optimal scale is the one just above the noise level. We illustrate this with
the data sets shown in Fig. 5.1(b) and Fig. 5.1(c). If noise is considered as the limiting factor,



5.2 Cluster Model 119

(@) (®) ©

Figure 5.1: In (a) a noiseless 2-D data set consisting of a nested circular structure. In (b) and
(c) the same data set is displayed with an increasing amount of Gaussian noise. The number
of distinguishable clusters decreases accordingly.

Figure 5.2: An image from the Flower-Garden sequence. Also in this natural image the
number of segments is clearly arguable.
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then Fig. 5.1(b) contains 7 clusters and Fig. 5.1(c), which has even more noise, contains only
one cluster. Once again, also in Fig. 5.1(b) and Fig. 5.1(c) the problem is undecidable, since
the original data is the same as in Fig. 5.1(a).

In the image segmentation domain, in which we are especially interested, the number of
clusters is not known a priori. Therefore, we do not want to fix the number of clusters in our
model. However, as already mentioned, both straight minimization of the intra-cluster vari-
ability and maximization of the inter-cluster variability lead to undesirable trivial solutions,
being N clusters or 1 cluster, respectively. We choose to minimize the intra-cluster variability
while at the same time constraining the intra-cluster variability of the union of two clusters.
In this way, this intra-cluster variability constraint defines the scale at which two clusters can
be differentiated from each other.

To minimize the intra-cluster variability, we use the sum-of-squared-error criterion (5.1).
Here, we rewrite (5.1) such that it fits better to the model and the presented algorithm in the
remainder. Further, we implement the joint intra-cluster variability constraint as a minimum
variance for the union of two clusters. This leads to the following cluster model:

min Z |C:|Var(C;), (5.2)
¢ C;eC
where
1
Var(Y) = — Z Ix —u@)I? (5.3)
lYl xeY
subject to
VC;, Cj,i# j:Var(CiUC)) > a2, (5.4)

In general, the optimization of this model leads to clusters having a variance below 0 2, ..
However, there are some rare situations in which the variance of individual clusters can ex-

ceed this limit.

Propeosition 6 For a solution to the constrained optimization problem as defined in (5.2) and
(5.4) the following holds:

Var(Co) 2 02, = Vx € Co : (IIx — u(CHI? < 0 VIC, : Var(Cp U (X)) < 0py)

max max max

(5.5)

Proof: For the proof we use the inverse implication. So we prove that the variance of a
cluster C, will not exceed o2, if all remote cluster objects, that is, cluster objects for which
holds:

Ix = w(CHI* = o, (5.6)

max
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are outside the o2 range of another cluster, i.e.:

ﬁ(aCb :Var(Cy U {x}) < Unzm.\') (5.7)

Let C be the optimal clustering resulting from the minimization of (5.2) subject to (5.4) and
= Zc,ec |CitVar(C;). Further, assume that there is a cluster C, for which Var(C,) >
a,;’m_‘.. Then, 3x € C, such that Var(C, — {x}) < Var(C,). Especially all objects x for
which ||x — 1 (Co)[I* > o,,,, are candidates. Let C,, = C, — {x} and {x} form two separate
clusters. Now, still Var(C, U {x}) > o2, and since (5.7) applies, also in general YC; :
Var(C; U {x}) > a,,%a".. However, since Var({x}) = 0 the minimum 7z’ < z. This is
contradictory to the assumptions, so given (5.6) and (5.7). there is no cluster C, for which
Var(C,) > o, u

Informally, the implication of this proposition is that when a dispersed cluster is enclosed
by compact clusters, these compact clusters may prevent the dispersed cluster from splitting.
In other words, the presence of the compact clusters makes the cluster separation ambigu-
ous since in that case, the homogeneity criterion (5.2) is at odds with the joint variability
constraint (5.4).

Since the cluster variance can both be caused by the distribution of the data and by the
noise in the data acquisition process, knowledge about the noise can be exploited in this
model. We elaborate on dealing with noise in Section 5.5, where we describe a specialized
algorithm for image segmentation.

5.3 Image Segmentation Model

In this section we refine the just introduced cluster model for the image segmentation prob-
lem. The image segmentation problem is a special clustering problem where the objects are
picture elements (pixels) and the feature vector consists of the pixel position information
together with pixel appearance information.

The segmentation problem is defined differently from the cluster problem, since it re-
quires that the segments are spatially connected. Several segmentation methods only impose
a soft constraint on segment connectivity, e.g. [14], [22], [40], [41]. Accordingly, these
methods are merely quantization methods, though the problems are similar to a certain ex-
tent. There are two additional reasons why we impose connectivity as a hard constraint. First,
connected segments are usually bigger so that more reliable statistics can be maintained. Sec-
ond, the optimization problem simplifies into a one criterion optimization problem, since we
do not need to optimize a connectivity criterion as well. Moreover, we avoid the introduction
of an additional parameter that is needed in case the resulting multi-criterion optimization
problem is solved by weighting a homogeneity and a connectivity term.

We first define the image segmentation problem as a graph-partitioning problem. We
represent the image as an undirected graph G, where the N vertices represent the appearance
feature vectors of the pixels. For convenience we denote the vertices by the appearance
feature vectors x;. The pixel position information is represented in the edges of the graph.
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Figure 5.3: (a) is an image containing a background and two "objects’, making three segments
in total. (b) shows the corresponding segmentation graph and a blown up detail, where x has
two adjacent vertices X; and x, and four contiguous vertices, Xi, X2, X3, and Xs.

Further, we define contiguous vertices as being contiguous on the image grid, so every vertex
has exactly four contiguous vertices!. We write x; = x; if X; and x; are contiguous. Only
if two vertices are contiguous, there can be an edge connecting them, which makes them
adjacent. That is, every vertex can have at most four edges to contiguous vertices. In Fig. 5.3
we illustrate the relation between contiguous and adjacent vertices.

Definition 1 A segmentation graph is a graph for which the following holds: if there is a
path between two vertices and the vertices are contiguous, then the vertices are adjacent, i.e.
there is an edge between the vertices.

Every maximally connected subgraph (component) in a candidate segmentation graph
is a candidate segment S;, where 1 < i < M (and M being the number of segments). A
candidate segment S; has a set of vertices C; = V(S;) = {Xi, ..., Xy, }, where N; is the number
of vertices in §;.

A consequence of the hard connectivity constraint is that (5.4) only has to be satisfied
for contiguous components, where components Sy and S are contiguous: §; = § if 3x; €
Ci1,3x; € Cr 1 X; = X, with C) = V(S)) and C; = V().

The objective of the segmentation task is to find a segmentation graph that represents ho-
mogeneous appearing regions. In this study we do not consider color images, so the regions
must be homogeneous with respect to their brightness or intensity values. In the general clus-
ter model, we stated that a certain variability must be allowed for to establish a certain cluster
scale. However, if the intensity feature is noisy the image variability caused by the noise
must be incorporated too. So, in addition to the given intra-cluster variability to establish the
desired scale, we assume that a variability is given due to noise. We measure both variabili-
ties as pixel intensity variance present at the given scale (02) or resulting from the amount of

UIf eight connectivity is desired, then a slightly different definition for contiguity should be applied.
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2

noise (o), respectively. Then, 0.2, = o2 + 02

> since the underlying processes (signal and
noise) can be assumed independent.

5.4 Distributed Genetic Algorithms

Before describing the cellular coevolutionary algorithm (CCA) for the optimization of the
proposed image segmentation model, we first shortly overview the research in parallel and
distributed evolutionary computation. For a more elaborate survey on parallel genetic algo-
rithms, see [12]. In structuring the work in the distributed evolutionary field we propose a
distinction between complete solution models and partial solution models. By complete so-
lution models we mean methods that have a population of chromosomes that each encode a
complete problem solution. In partial solution models the chromosomes from a number of
populations together encode a complete solution. This classification resembles the Michigan
and Pittsburgh approach for single population learning classifier systems. In the Michigan
approach [28] a population evolves competing classification rules, while in the Pittsburgh
approach [50] complete rule sets compete each other. Here, we use the terms complete and
partial solution models to classify parallel and distributed evolutionary computation models.

5.4.1 Complete Solution Models

Though the original evolutionary algorithms are assumed to have inherent parallelism in their
search mechanism, also explicit parallel or distributed evolutionary models have been pro-
posed. On the one hand these models serve to ease the implementation of evolutionary algo-
rithms on parallel and distributed computer architectures, but they also offer some interesting
opportunities to explore the search space in a different way or just allow for delay of con-
vergence. First, single-population master-slave models only aim at gain in computational
efficiency. More interesting are the models with communicating populations, which we con-
sider in the remainder. First, coarse-grained parallel models (island model) typically consist
of a number of standard genetic algorithms in a certain topology. Once in a while individuals
migrate from one population to the other in order to increase diversity in the populations [1],
[13]. Sometimes the individuals only migrate to populations that are neighboring in the topol-
ogy. This aspect is further exploited in fine-grained or cellular genetic algorithms [13], [23],
[38]. In cellular genetic algorithms each individual from the population occupies a position
on a spatial structure (e.g. a 2-D grid) and only recombines with individuals in a restricted
neighborhood. Then, within the spatial structure, similar solutions emerge in restricted areas.

More recently, coevolutionary models have been developed consisting of interacting pop-
ulations, from which the host-parasite model is the best known [4], [15], [25], [27], [39], [46],
[47], [48]. In this model there is a host population and a parasite population and the fitness of
the individuals in one population depends on the individuals in the other population. Finally
the solution emerges in the host population.
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5.4.2 Partial Solution Models

Partial solution models only exist in coevolutionary approaches, unless the partial solutions
can be optimized completely independently. In general, however, if partial solutions are to be
composed into a complete solution, the partial solutions are dependent. Accordingly, the pop-
ulations coevolve the partial solutions in a competitive or cooperative way [45], [55]. Also
partial solution models can be coarse- or fine-grained. An example of a coarse-grained model
is described by Potter and De Jong [45]. In their model cooperative populations (species)
coevolve complete solutions to function optimization problems, where each individual popu-
lation optimizes a different function parameter.

Distributed Evolutionary Image Segmentation

To our knowledge, fine-grained partial solution models have only been reported in the image
segmentation domain. Not surprisingly, since in images the pixels are explicitly structured
in a 2-D grid and the colors are locally correlated. In [2] and [3] Andrey and Tarroux de-
scribe a distributed genetic algorithm (DGA) for image segmentation. In [2] it is used to find
homogeneous regions in grey images, while in [3] an Markov random field texture model is
incorporated to segment textured images. The described method optimizes segment model
parameters without a constraint on the number of segments. Additionally, segments expand
and distribute by a fitness-driven selection operator that copies chromosomes, including their
segment index, to neighboring image locations and occasionally also to more remote im-
age locations. Consequently, segments may become disconnected, which violates the strict
definition of the segmentation problem. The optimization process itself, which is restricted
to chromosomes in the same segment, is similar to that in cellular genetic algorithms. An
important difference with the model proposed in this paper is that the optimization within a
segment is not based on statistics of the whole segment. Instead only a predefined window
size around a pixel is considered. Moreover, the selection operator that copies local model
parameters and the segment label applies in a restricted neighborhood regardless of the color
model similarities. Both the window size and the genetic operator neighborhood size serve
as noise and scale parameters.

Peng et al. [43], [44] report a method derived from the DGA [2], [3]. Animportant differ-
ence is that in their so-called hierarchical distributed genetic algorithm (HDGA) the segment
index (label) of the pixel is an essential part of the fitness function. The algorithm aims at
minimizing the differences between pixel labels, while the pixel labels are initialized as quan-
tization levels using some histogram dichotomy scheme. Here, the size of the neighborhood
area serves as scale and noise parameter. This model resembles the Markov random field
image models (MRF) in {14], [18], [22]. The main difference is that Peng et al. use a cellular
GA scheme for the optimization of the local fitness function. Besides, as MRF segmentation
methods, the described method is a quantization method rather than a segmentation method,
since connectivity is not guaranteed (soft constraint).
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5.5 Algorithm

We now present the cellular coevolutionary algorithm (CCA) to optimize the model described
in the previous sections. The proposed model has two important parameters, being the scale-
derived image variance (of) and the noise variance ((7"2). We deal with noise by simply
pre-filtering the image with a uniform filter with size f. Consequently, the ¢, parameter
from (5.4) is affected in the following way:

2 2
o o+

2
_ g,
max T -t

5.8)
7 (3.8)

since the total variance changes accordingly.

The proposed algorithm dynamically aims at optimizing (5.2), while satisfying (5.4) as
well as the connectivity requirement. Accordingly, the algorithm has only one essential pa-
rameter, being o,,, . The segments are maintained by active entities that autonomously try
to optimize local criteria. We call these entities agents in order to stress their autonomous
behavior. For efficiency reasons, each agent manages the outside border B; = {x, ..., X5,
of the component it represents, where | B; | is the border length. This border is a list of vertices
that are contiguous but not adjacent to the component the agent represents. In other words,
B; contains candidate vertices with which the agent’s component can be extended. In the fol-
lowing sections, we describe how the segments are initially created, how they evolve during
the optimization process, and how the process terminates.

5.5.1 Creation

Let the image have dimensions W x H. Upon initialization the image is converted into a
regular grid with W x H unconnected vertices, hence N = W x H. Accordingly, the initial
segmentation graph has as many components as vertices. Further, N agents are created and
each component is assigned to an agent. After creation the evolution process starts.

5.5.2 Evolution

The evolution process is a sequence of epochs. During every epoch all agents (conceptually)
act in parallel or alternatively sequentially in random order. An agent can take one of three
actions. Alliances with neighboring agents are formed if the o2 parameter allows it. The
consequent component merge satisfies the scale condition (5.4). If no alliances are possible,
an agent considers subject migration from a neighboring agent if this improves the global
criterion (5.2). Now, no check is done whether the scale condition is violated. Afterwards (in
a later epoch), subject isolation is considered, if in the course of subject migrations the vari-
ance exceeds o,.,,,. Before considering one of these actions the agent estimates its probability
of success as the ratio of successful trials s; in the last m trials. We add a rest probability r

because the tides may turn after a period of failure.
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Figure 5.4: Schematic illustration of alliance formation. The agent in the center is the one
that attempts to form an alliance.

Pi=(-r)> +r (5.9)
m

The agent will act in this epoch only if P; > U(0...1), where U(0...1) is a uniformly
distributed number in the range [0...1].

Alliance Formation: Component Merge

An agent first tries to form an alliance with any of its neighboring agents. Agents form
alliances with their neighbors if the variance of the union of their components remains under
the predefined maximum o2, (5.4). Accordingly, for all k; neighbors the joint component
variance is computed:

o) = Var(C;UC)) (5.10)

Where the alliance that results in the lowest joint variance is selected. That is:

ki
p=argmino§ (5.11)
j=1

If the variance of the selected alliance satisfies (5.4), then agent A; and A, become allies,
see Fig. 5.4. We let A; represent the alliance by taking A,’s component. Then, the neigh-
boring agent A , no longer represents a graph component, so it terminates. Consequently, the
number of segments M decreases.

If the selected alliance violates (5.4), then the merge action fails for agent A; and the
agent considers subject migration.
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Figure 5.5: Schematic illustration of subject migration. The agent in the center is collecting
a number of candidates at its border.

Subject Migration: Vertex Exchange

The aim of the subject migration is to contribute to the minimization of the global criterion
(5.2). First, a number of candidate vertices are collected and the one that results in the highest
gain is selected.

Agent A; collects b; candidate vertices from its border B; by random sampling, see also
Fig. 5.5. It is important to note that at this point, the greed of the algorithm can be con-
trolled. Considering all border objects (b; = |B;|) as candidate would make the algorithm
very greedy, while taking very few objects restrains the optimization process.

Once the agent has collected a number of candidate vertices, it chooses that candidate
vertex that delivers the highest positive gain with respect to the global criterion (5.2). To this
end, the following local gain is computed for all candidates:

where x € C; and

&ij =ICi|Var(C;) + |CjVar(C)) (5.13)
gi; =(Cil + DHVar(C; U {x}) + (IC;| = ) Var(C; — {x})

If none of the candidates results in a positive gain, then the expansion trial fails since
it does not contribute to the global criterion (5.2). Clearly, this is a cooperative negotiation
scheme between agent A; and its neighboring agents.

Since segments must satisfy the connectivity constraint, vertex migrations from one seg-
ment to the other that violate this constraint must be recognized®. In other words, we have
to check whether the candidate vertex x € V(S;) is a cur vertex of §;. In Appendix A, we
describe an efficient cut-vertex detection algorithm for this problem.

ZClearly, as contiguous vertices always become adjacent, adding a contiguous vertex to a component can never
divide it up into two components.
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Figure 5.6: Schematic illustration of subject isolation. The agent in the center selects the
most deviant subject in case its component is too inhomogeneous.

If the neighboring segment S; becomes disconnected as a result of the migration (be-
cause X was a cut vertex), one or two new agents are created that represent the disconnected
components.

Subject Isolation: Vertex Removal

Since the scale constraint was not checked during the subject migration, it can happen that
the variance of the agents’ component can exceed the given maximum o2, In that case the
agent decides to isolate the most deviant subject (see also Fig. 5.6). To this end, the agent
first determines the vertex that has the largest (Eucledian) distance to the mean feature of the
component. Then, a new agent is created to which this vertex is assigned. This action serves

to satisfy the derived property in (5.5).

5.5.3 Termination

For an algorithm to work in practical situations it has to terminate at a certain point. When
no agent was able to successfully perform any of its actions for a certain number of epochs,
we decide that the algorithm has converged. We have to wait for a number of failed epochs,
because of the stochastic border sampling. We use the success counter s; for this purpose.
So the algorithm terminates if YA; : s; = 0. Because the variance of a segment can indeed
exceed 0,2, (see (5.5)) local oscillations can occur. To escape from such situations the algo-
rithm also stops when the agent community has evolved for a maximum number of epochs

Emax-

5.6 Experiments

In order to evaluate the proposed image segmentation method, we performed two types of
experiments. First, we explored some specific properties of the method to illustrate how
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(a) original (b) 5 epochs (¢) 10 epochs (d) 50 epochs (e) 1000 epochs

Figure 5.7: The CCA applied to the Circle image (a) with o = 20% Figure (b), (¢), (d),

max

(e) show the results after 5, 10, 50, 1000 epochs respectively.

it operates under various conditions and in what sense it can be adjusted. After that, we
did some experiments in which we compared the CCA performance to other known image
segmentation methods. In all experiments, we set the success ratio parameters (5.9) m = 100
and r = 0.01 and the border sampling parameter b; = |/|B;]]. These values are not very
critical so we could fix them for all experiments. If not stated otherwise we set the filter size
f =1, which means that we did not pre-filter the images. We show the segmentation results
in images, where the color of a segment equals the mean color of the pixels in the segment.

5.6.1 Exploring the CCA

First, we show the course of the segmentation process with the Circle image in Fig. 5.7(a), in
which the pixel intensity changes gradually. For this 128 x 128 image we set 0,2, = 20°.
In a strict sense this image can hardly be segmented, since there are no distinct regions to be
separated. However, since gradually changing colors are quite often part of a natural scene,
it is interesting to see how segmentation algorithms deal with such transitions.

Fig. 5.7(b) — Fig. 5.7(e) show some intermediate results of the segmentation process. In
Fig. 5.7(c) it can be seen that after 10 epochs the final number of segments has been found.
The remaining epochs are used to settle the segment borders. As expected, the final result in
Fig. 5.7(e) shows a number of clear ring-shaped segments.

Next, we did an experiment to illustrate how to handle noise properly with the CCA
segmentation method. We used a 128 x 128 Checkerboard image with squares having either
pixel intensity 100 or 160. We added Gaussian noise with u = 0 and 0% = 60 to this image,
see Fig. 5.8(a). Fig. 5.8(b) - Fig. 5.8(¢) show a number of segmentation results with different
pre-filter settings (o2, is adjusted accordingly). The o2, is set higher than prescribed in
(5.8), because in this case the variance in the homogeneous regions increases due to blurring
of the edges. The figures clearly show that the pre-filtering results in smoother segment
borders.

When we described our model design considerations, we stated that especially in image
segmentation it is not desirable to have the number of segments as model parameter. Instead,
a scale parameter was introduced to select a maximum allowed variability per segment. In
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Figure 5.8: Results of applying the CCA segmentation method to the Checkerboard image
with various filter size f and corresponding o2, settings.
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Figure 5.9: CCA segmentation results with different scale parameter settings.

Figure 5.9, we show the results of varying the scale when applying the CCA segmentation
method to a face image. Clearly, when the value of 62, is increased the smaller details
disappear from the resulting segmented images. In Fig. 5.9(b) most facial features are still
visible, since their segment variance is below the segment variance constraint. In Fig. 5.9(c)
and Fig. 5.9(d) the details gradually disappear, while at the scale in Fig. 5.9(e) only the
background, face, and hair can be distinguished.

5.6.2 Comparison with other Methods

In the next experiments, we compared the proposed method to two other typical segmentation
methods. The first one is the ’split-and-merge with grouping’ algorithm, which has a similar
model and parameters. The second one is a Markov random field model-based segmenta-
tion algorithm. The latter segmentation method has quite a different model and is often used
for segmentation and restoration. Since obtaining the ground truth is difficult in image seg-
mentation, comparing segmentation results is not trivial. Here, we compare the results with
respect to the following qualitative criteria: 1) accurateness: the segment border represents
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a true contour. 2) continuity: the segment border may not contain holes if the object that it
represents has a continuous contour. 3) fragmentation: the union of neighboring segments
must be inhomogeneous.

Before discussing the comparative experiments, we first describe the other two segmen-
tation algorithms in more detail.

Split-and-Merge with Grouping Segmentation (SMG)

The split-and-merge implementation we use is based on [30] and [42]. Typically the split-
and-merge algorithm uses a scheme in which a square region is recursively split into four
quads if the homogeneity predicate is false. Merging is allowed if for neighboring regions the
homogeneity predicate is true. The algorithm stops when no splitting or merging is possible.
The homogeneity predicate we use is the Chi-squared test, where the rejection probability is
set to 0.5. The maximum variance o2, used in this test has similar semantics as the maxi-
mum variance in (5.4). The specific implementation uses a quad tree structure for the splitting
and merging. Since only merges on the same level of the quad tree are allowed, a final group-
ing step is incorporated. In the grouping stage all regions that together are homogeneous are
grouped together. Now, regions are homogeneous if the distance between their means is be-
low a certain maximum §,,. Finally, the method usually ends up with many very small regions
at the intended segments borders. These regions are grouped together with their neighboring
segments if their size is relatively small (default 0.2%) with respect to their largest neighbor.
Like the proposed method in this paper, the split-and-merge algorithm does not need to know
the number of segments a priori. Moreover, segment connectivity is always satisfied, i.e.
the computed segment statistics are always based on connected components. The scale and
noise can be regulated by setting o2, and 8,, properly. Clearly, setting .2, very low yields
many small regions, so the actual segmentation is done in the grouping stage. In this way
the algorithm turns into a region-growing algorithm. The consequences of variations in both
parameters will become clear in the experiments.

Markov Random Field Model-Based Segmentation (MRF)

In Markov random field models for image segmentation, typically an energy function with
two terms is minimized simultaneously for all pixels in the image. It is assumed that the
number of color distributions is known together with their mean u; and variance o2. For the
natural images, we estimate these values with a mixture of Gaussians method, though we fix

o} = o2, to make a more fair comparison with the other methods. For the synthetic images

max
we feed the algorithm with the true color distribution values. Then, one of the terms in the
energy function accounts for the distance between the pixel color and the color distribution
to the pixel color and the other term introduces contextual information through the Markov
random field (MRF). That is, the second term imposes the same segment label on pixels
in a certain neighborhood (in this case a second-order model). The neighborhood term is
weighted with a factor 8 to stress the relative importance of local connectivity and color

matching. Since global optimization of the model is intractable, several approximations have
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Figure 5.10: Results of applying the SMG algorithm to the Circle image (Fig. 5.7(a)) with
various o2, and 8, parameter settings.
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been proposed [7], [14], {22]. We use the well-known ICM method, due to [7], which has
been proven to be the most effective method to optimize the MRF-based model [18]. As
remarked earlier, as a consequence of the optimization of these pixel criteria, this is rather a
quantization than a segmentation method. The scale and noise adaptation is controlled both
by the order of the Markov random field (second order) and the number of pre-defined color
distributions.

Gradual Changing Color

First, we applied the SMG and MRF methods to the synthetic images that we already used
to explore the CCA method in the previous subsection. For the original SMG method the
Circle image is especially difficult because the intensity changes gradually. Only if the 6.2,
parameter is set to zero the result is similar to the CCA outcome (fig. 5.10(a)). When, on the
other hand, o2, is set 'properly’, the resulting segments become irregular, as can be seen
in Fig. 5.10(b) — Fig. 5.10(e). The MRF method has the best results when the contextual
information is made unimportant (8 = 0.1) as in Fig. 5.11(a). Then, the segmentation re-
sult is mainly based on the image intensities. In this case, where there is no noise, there is
strong dependence between image intensity and segment label. Accordingly, the contextual

information is indeed superfluous or even harmful, see Fig. 5.11(b) — Fig. 5.11(e).

Noisy Image

Next, we applied the algorithms to the noisy Checkerboard image in Fig. 5.8(a). The SMG
algorithm clearly has problems with this image. We varied the 02, parameter between

o2, = 0 and the true variance of the Gaussian noise (62,, = 60?), and adjusted 8, as to
achieve the best possible segmentation result. The results achieved with 6.2, = 607 fit quite

well to the original noiseless image (Fig. 5.12(e)). We must, however, note that the regular
block pattern of the image definitely favors the split-and-merge algorithm. With lower o2,
values irregular borders occur and, as a consequence of the greedy chaining of small regions,

many extra irregular segments occur, see Fig. 5.12(a) — Fig. 5.12(e). Also the MRF method




5.6 Experiments 133

(@B =0.1 (b) =02 ©p=03 (dyg=04 @) =05

Figure 5.11: Results of applying the MRF algorithm to the Circle image (Fig. 5.7(a)) with
various 8 parameter settings.
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Figure 5.12: Results of applying the split-and-merge segmentation method to the Checker-

board image with various o2, and §,, settings.

is able to find useful segmentation results for the Checkerboard image. However, when the
B parameter is (too) low, the segments are strongly fragmented (connectivity violated) and
when 8 is high, blurring or smearing effects occur, see Fig. 5.13(a) — Fig. 5.13(e).

Natural Images

Finally, we applied all three algorithms to a number of natural images. In the natural images a
number of difficult aspects of image segmentation come together, like noise, gradual changing
colors, and large and small objects. For all algorithms we chose those parameter settings that
turned out to be the best for each of them. The 8 parameter of the MRF algorithm was fixed
to B = 0.3. We used o7, of the SMG equal to 62, of the CCA to select a certain scale.
Additionally, we set 6,2, = 0 to turn the SMG into a region-growing algorithm. In all cases
the 8, parameter of the SMG algorithm is adjusted accordingly.

We started with the Orca image in which the (splashing) water and the sky contain grad-
ually changing colors, see Fig. 5.14(a). Further, there are some well-defined large and small
segments on the orca. Like in the Circle image the MRF algorithm creates artefacts in the
gradually changing colors, as can be seen in Fig. 5.14(b). Besides, it creates many very small

regions around the orca, which is, however, hard to see in the figure. When o . is set to
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Figure 5.13: Results of applying the MRF model-based segmentation method to the Checker-
board image with various 8 settings and p; = 100, ;2 = 160, and ol = a3 = 60°.

the proper scale value, the SMG algorithm has contour artefacts, see Fig. 5.14(c). The SMG
with 62, = 0 makes nice contours, but has some artefacts resulting from the chaining of
small regions, like the light-grey areas on the trunk of the Orca and the light-grey region
above its fin, see Fig. 5.14(d). The CCA has a good segmentation result, except that (as for
the SMG method) some details seem missing, like the small white area on top of the Orca’s
head. When we measured the corresponding areas it appeared that the variance was indeed
below the given 62,,,, hence, the details should indeed not be visible at this scale.

The image from the Flower-Garden sequence (Fig. 5.2) has both very large segments (the
tree) as well as many small segments (the flowers). The MRF model-based method shows
the expected smearing effects, see Fig. 5.15(a). We had to lower the small-region-removal
parameter of the SMG method to 0.01% in order to prevent all flowers from being removed.
Besides, with g2, = 15 the same blocking artefacts occurred as before, see Fig. 5.15(b).
Configured as region grower (a,,z,mr = 0) the SMG results are better (Fig. 5.15(c)), though
in all cases small noisy regions remain. These are not always easy to see in the figures.
The CCA method gives segmentation results with both small details and large homogeneous
regions.

Finally, we applied the algorithms to a noisy image (Fig. 5.16(a)). The results are similar
to those obtained with the Checkerboard image. That is, the MRF has good segmentation re-
sults apart from the smearing effects (Fig. 5.16(b)) and the SMG has again blocking artefacts
(Fig. 5.16(c) and Fig. 5.16(d)). As expected, the SMG with a,fmx = 0 (Fig. 5.16(d)) and the
CCA (Fig. 5.16(e)) give similar irregular contours.

5.7 Conclusions

In this paper we presented a cluster model for which the number of clusters does not have to
be known a priori. Instead of the number of clusters, we introduced a scale parameter. We
justified this choice among others from the image segmentation domain, which we especially
addressed. We specialized the cluster model for the image segmentation problem and pre-
sented a cellular coevolutionary algorithm (CCA) to optimize it in a distributed way. In the
experiments, we showed the effectiveness of the method and compared it to two other well-
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known segmentation methods. Both the Markov random field model based segmentation
method (MRF) and the split-and-merge-and-group (SMG) scheme have quite a number of
parameters, some of which we estimated and fixed and others which we varied in the exper-
iments. Though it is hard to draw conclusions without trying all combinations of parameter
settings, the proposed CCA is clearly simpler since it has only one essential parameter. The
advantage of such a simple model is that it is both easier to tune and to optimize. Having
said this, we conclude the following. The MRF method implements segment connectivity as
a soft constraint and uses a weighting factor 8 to stress the importance of connectivity. Es-
pecially in case of noise and gradual segment transitions, connectivity must be stressed since
the pixels are not linked based on intensity only. However, the experiments show that setting
B too high results in smearing and blurring artefacts and setting it too low results in frag-
mented segments, though it has to be noted that the MRF artefacts are not only caused by the
MRF model, but also by the (ICM) model optimization scheme. The right trade-off between
connectivity and correct border estimation can be hard to find. Though connectivity is a hard
constraint for the SMG method, this method also has significant artefacts. First, it strongly
needs a small-region elimination step. This is a problem if the image indeed contains small
and large segments. Further, if the 0,2, value, which serves to define segment homogeneity,
is set properly, then strong blocking effects occur. On the other hand, when it is set very low
the SMG method is actually a region-growing algorithm. Then, the results are usually quite
good, though borders can be irregular and the grouping procedure has order dependence and
chaining artefacts. As regards the SMG method with low 2, values, the CCA tends to
result in somewhat irregular contours when the image is noisy. However, if an estimate of
the amount of noise is known, the proposed method prescribes to pre-filter the image and to
adjust 0,2, accordingly, which indeed results in smoother contours. Another problem that
the CCA method suffers from is that small regions can be absorbed by large homogeneous
regions. This is a consequence of the variance-based scale constraint in the proposed model.
The SMG method lacks the same problem in the merging and grouping steps. Other criteria
can be developed to prevent this, though it remains a difficult issue.

There is a number of possible extensions to the proposed method. First, the efficiency
of the CCA needs improvement, especially if image sequences are to be segmented. The
algorithm uses multiple agents that locally optimize a criterion. Accordingly, parallel com-
puter architectures can be exploited very effectively. In image sequences the efficiency can
be further improved by starting the evolution with the resulting agent constellations from the
previous image. Additionally, it would be very interesting to estimate a texture model for
each segment. This is far from trivial since the determination of textured segments conflicts
with finding small segments. Another appealing idea is to develop a similar algorithm for the
general clustering problem. The main difficulty in that respect is to exploit locality, which is
especially easy in the image domain.
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Figure 5.14: (a) shows the Orca image. In (b), (c), (d), and (e) the segmentation results are
shown with different algorithms and parameter settings.
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Figure 5.15: (a), (b), (c), and (d) show segmented images resulting from applying different
algorithms with several parameter settings to an image from the Flower-Garden sequence.
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Figure 5.16: (a) shows an MRI image with extra artificial noise. In (b), (c), (d), and (e) the
segmentation results are shown with different algorithms and parameter settings.



Appendix A

Cut vertex detection algorithm

Detecting whether a segment component becomes disconnected after the deletion of a vertex
x implies detecting whether x is a cut vertex of a segment component S. The vertex degree of
X € V(8) is at most three, because otherwise it could not be contiguous to another component.
If the vertex degree d(x) = 1, X cannot be a cut vertex, we are done. For the other cases, we
only need to know if there is a path between every pair of adjacent vertices of x which does
not include x itself. If there is no such path, the graph will be disconnected after the deletion
of x, i.e. it is a cut vertex.

First set the visit state of all vertices in V(S) to state = 0. Search depth first, starting
at an arbitrary adjacent vertex, say a;, of x and visit all adjacent vertices of every visited
vertex. The searching stops when another (arbitrary) adjacent vertex of x, say a,, is found
or all connected vertices to a; are visited. While searching, set the visit state of vertices to
state = 1 and skip those vertices that have already been visited (state = 1). If no path from
a, to an adjacent vertex of x is found, then x is a cut vertex.

Otherwise, if there is one more adjacent vertex, say as, start searching from this vertex
and continue until a vertex is found with state = 1 or until all connected vertices to a3 are
visited. Again mark evaluated vertices while searching, but now set state = 2 and skip those
vertices that already have state = 2. Only if there was no path to a vertex with state = 1
then x is a cut vertex.

Additionally, we speed up the algorithm considerably by using depth-first search with
iterative deepening, because usually the path connecting adjacent vertices is very short.
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Abstract We present a partitional cluster algorithm that minimizes the sum-of-squared-
error criterion while imposing a hard constraint on the cluster variance. Conceptually, hy-
pothesized clusters act in parallel and cooperate with their neighboring clusters in order to
minimize the criterion and to satisfy the variance constraint. In order to enable the demar-
cation of the cluster neighborhood without crucial parameters, we introduce the notion of
foreign cluster samples. Finally, we demonstrate a new method for cluster tendency assess-
ment based on varying the variance constraint parameter.

Keywords: cluster analysis, partitional clustering, cluster tendency assessment, cluster va-
lidity.

6.1 Introduction

Data clustering is an extensively investigated problem for which many algorithms have been
reported [18], [26]. Roughly, cluster algorithms can be categorized in hierarchical and parti-
tional algorithms. Hierarchical algorithms deliver a hierarchy of possible clusterings, while
partitional cluster algorithms divide the data up into a number of subsets. In partitional clus-
ter analysis most algorithms assume the number of clusters to be known a priori. Because in
many cases the number of clusters is not known in advance, additional validation studies are
used to find the optimal partitioning of the data [6], [8], [11], [16].

In this paper, we propose an algorithm for partitional clustering that minimizes the within
cluster scatter with a constraint on the cluster variance. Accordingly, in contrast to many
other cluster algorithms, this method finds the number of clusters automatically. Clearly, a
proper value for the variance constraint parameter has to be selected. We present a way to
discover cluster tendencies to find significant values for this variance parameter in case this
information is not available from the problem domain. We first formally define the cluster
problem.

Let X = {x,Xx2, ..., Xy} be a data set of N = |X]| feature vectors in a p-dimensional
metric space. Then, the cluster problem is to find a clustering of X in a set of clusters
C = {Cy, C,,...,Cy}, where M is the number of clusters, such that the clusters C; are
homogeneous and the union of clusters is inhomogeneous.

The most widely used criterion to quantify cluster homogeneity is the sum-of-squared-
error criterion or simply the square-error criterion ':

M I
Je = M’ (61)
N
where
HY) =) lIx—u®)| (6.2)
xeY

Usually the sum-of-squared-error criterion is not averaged over the whole data set. As defined here, J expresses
the average distance to the cluster centroids instead of the total distance.
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expresses the cluster homogeneity and

I
w(y) = 7 > x (6.3)

xeY

is the cluster mean.

Straight minimization of (6.1) leads to a trivial clustering with N clusters; one for each
sample. Therefore, additional constraints are imperative. For instance, one could fix M, the
number of clusters, to an a priori known number like among others the widely used K-means
model [23]. In the image segmentation domain, a maximum variance per cluster is sometimes
used in addition to a spatial connectivity constraint, e.g. {1], [15]. In this paper, we present
an algorithm that is based on a model proposed for intensity-based image segmentation [28].
The constraint that is imposed on the square-error criterion (6. 1) within this model states that
the variance of the union of two clusters must be higher than a given limito2 | ie.:

max’

HY
VC;.Cj,i # j:Var(CiUC)) > o5, where Var(Y)= (TI) (6.4)

max? I

A consequence of this model is that the variance of each resulting cluster is generally be-
low o}, [28]. This does, however, not imply that we could impose a maximum variance
constraint on each individual cluster instead. That is, if we would replace the joint vari-
ance constraint (6.4) with a constraint for individual clusters (VC; : Var(C;) < a,,zwx) the
minimization of (6.1) would lead to a trivial solution with one sample per cluster.

Clearly, since the model imposes a variance constraint instead of fixing the number of
clusters, the resulting optimal clustering can be different from the K-means result, even if the

final number of clusters is the same.

6.2 Algorithm

For the optimization of the cluster model, we propose a stochastic optimization algorithm.
In the literature other stochastic clustering algorithms have been reported that generally op-
timize the K-means model or fuzzy C-means model either using simulated annealing tech-
niques [7], [20], [25] or using evolutionary computation techniques [10], [13], [22], [29].
Accordingly, these stochastic approaches focus on the optimization of known cluster models.
The algorithm we propose, however, shows more resemblance with the distributed genetic
algorithm (DGA) for image segmentation as introduced by Andrey and Tarroux [2], [3]. We
also dynamically apply local operators to gradually improve a set of hypothesized clusters,
but, in contrast with the DGA approach, we consider the statistics of the whole cluster in
the optimization process. Before describing the algorithm itself, we first elaborate on the
neighborhood relationships of samples, which play a crucial role in the proposed algorithm.
Both for effectiveness and efficiency the algorithm exploits locality in the feature space.
Namely, the most promising candidates for cluster expansion are in clusters that are close in
the feature space. Similarly, the most distant cluster members are the least reliable, hence,
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Figure 6.1: Illustration of the cluster neighborhood with the 2 nearest-neighbors method. In
(a) the neighbor ranking for sample A is shown. (b) and (c) display the neighborhood of
the grey colored cluster with respectively 3 and 4 samples, where in (c) the set of expansion
candidates is empty.

Figure 6.2: Illustration of the cluster neighborhood with the 8 nearest-neighbors method. In
(a) the neighbor ranking for sample A is shown. (b) and (c) display the neighborhood of the
grey colored cluster with respectively 3 and 4 samples.

they are the first candidates for removal. The computational performance can also profit
from feature locality because cluster update operations can be executed in parallel when the
optimization process applies locally. For these reasons, we consider the optimization process
from the individual clusters’ point of view, i.e. each cluster can execute a number of actions
in order to contribute to an improvement of the criterion as well as to satisfy the variance
constraint.

In order to collect the expansion candidates of a cluster, we need to find neighboring
samples of that cluster. A common way to define the neighborhood of a sample is to collect
its k nearest neighbors using the Eucledian distance measure, where k is a predefined number.
In this way, the neighborhood of a cluster would be the union of the neighbors of all samples
in the cluster. Accordingly, the set of expansion candidates of a cluster consists of the samples
from its neighborhood, excluding the samples from the cluster itself. The problem with this
approach is that the value of k becomes an integral part of the cluster model, e.g. [12], [19],
[24]. If k is set too low, then even for small clusters all k nearest neighbors are in the cluster
itself, so there are no expansion candidates left, see Fig. 6.1. On the other hand, if k is set too
high, then the neighborhood is always large, so all clusters have a major part of the samples
as expansion candidates, which clearly violates the idea of locality. As a consequence, the set
of expansion candidates will be a mix of good and bad candidate samples without preference,
see Fig. 6.2.

We take another approach to collect the expansion candidates. First, we call the set of
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(b) ()

Figure 6.3: The figures illustrate the cluster border construction with respect to sample A
and its cluster. In (a) the distance ranking for sample A is shown and (b) and (c) display the
second-order border of the grey colored cluster with respectively 3 and 4 samples.

expansion candidates of cluster C, the outer border B, of cluster C,. Further, we introduce
the notion of foreign samples, which we define as neighboring samples that are not in the
cluster itself. Accordingly, the k-th order outer border B, of cluster C, is the union of the &
nearest foreigners of all samples in C,, leading to:

B,(k) = | F(x, k, Ca, X), (6.5)

xeC,
where F(x, k, C,, X) is the set of k nearest foreigners of x according to;
{nf(xv C(Ia Y)} U F(X7 k_ 19 Caa Y - {nf(x9 Cm Y)}), 1f k > 0

g, if k=0
(6.6)

F(xykvca7Y)=

and nf (x, Cq, Y) is the nearest foreigner of sample x € C, in X defined as:

nf(x,C,, Y) =arg min |y —x|> (6.7)
ye¥ -G,

Consequently, the outer border of a cluster always has a limited number of samples and
it never becomes empty (unless there is only one cluster left). In Fig. 6.3 we illustrate how a
second-order outer border evolves with the growing of a cluster. An appropriate value for the
order of the outer border depends on the constellation of the clusters and the actual data.

Besides the expansion candidates, we also need to collect candidates for removal from
the cluster in order to impose the variance constraint. To this end, we introduce the g-th
order inner border /, of cluster C,. The inner border I, consists of those samples that are the
furthest cluster mates of the samples in C,. Accordingly, the g-th order inner border can be
expressed as follows:

L{g) = | Gx.q.Co), (6.8)

xeC,
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where G(X, g, C,) is the set of g furthest cluster mates of x, or, in other words the g furthest
neighbors of x in C, according to:

, VU ,q—1,Y — , V)P, if 0
Gx.q.Y) = {fnx, V)}UGK g {fn(x,Y)H itg> 6.9)
Q), lf q= 0
and fn(x, Y) is the furthest neighbor of xin Y as in:
fn(x,Y) = argmax ||y — x||? (6.10)
yey

Since the set of foreigners of a sample changes every time the cluster is updated, for
efficiency reasons we introduce a rank list R; per sample Xx;, containing indices to all other
samples in X in order of their distance to the given sample. The rank list R; is an N-tuple
defined as R; = Rank(x;, X) according to:

Rank(x,Y) = (nn(x,Y) o Rank(x,Y — {nn(x, Y)})), (6.11)
where o is the concatenate operator and nn(x, Y) is the nearest neighbor of x in ¥ as in:

nn(x, Y) = argmin |ly — x| (6.12)
yeY )

The k nearest foreigners of a cluster sample can now easily be found by scanning the rank
list, starting at the head while skipping those elements that are already in the cluster. To this
end, some bookkeeping is needed for both the clusters and the samples.

After the definitions of the inner and outer border of a cluster, we now describe the maxi-
mum variance cluster (MVC) algorithm. Since the optimization of the model defined in (6.1)
— (6.4) 1s certainly an intractable problem, exhaustive search of all alternatives is out of the
question. In order to prevent early convergence of the consequent approximate optimization
process, we introduce sources of non-determinism in the algorithm [4].

The algorithm starts with as many clusters as samples. Then in a sequence of epochs every
cluster has the possibility to update its content. Conceptually, in each epoch the clusters act
in parallel or alternatively sequentially in random order. During the update process, cluster
C, performs a series of tests each of which causes a different update action for that cluster.

1. Isolation
First C, checks whether its variance exceeds the predefined maximum o2 _,. If so, it
randomly takes a number of candidates i, from its inner border I, proportional to the
total number of samples in I,. It isolates the candidate that is the furthest from the
cluster mean 1(C,). It takes a restricted number of candidates to control the greed of
this operation. Then the isolated sample forms a new cluster (resulting in an increase

of the number of clusters).



6.3 Experiments 153

2. Union
If on the other hand, C, is homogeneous (its variance is below o,2,.), then it checks
if it can unite with a neighboring cluster, where a neighboring cluster is a cluster that
contains a foreign sample of C,. To this end, it computes the joint variance with its
neighbors. If the lowest joint variance remains under o2 . then the corresponding

max?®

neighbor merges with C, (resulting in a decrease of the number of clusters).

3. Perturbation
Finally, if none of the other actions applies, the cluster C, attempts to improve the
criterion by randomly collecting a number of candidates b, from its outer border B,.
Again, to control the greed, a restricted number of candidates is selected proportional
to the size of the border. Then C, ranks these candidates with respect to the gain in the
square-error criterion when moving them from the neighboring cluster C, to C,,.

We define the criterion gain between C, and C;, with respectto x € Cy, as:

Gup = H(C,) + H(Cp) — H(C, U {x}) — H(C), —{x}) (6.13)

If the best candidate has a positive gain then this candidate moves from the neighbor to
C,. Otherwise, there is a small probability P, of occasional defect, which forces the
best candidate to move to C, irrespective the criterion contribution.

Because of the occasional defect, no true convergence of the algorithm exists. Therefore,
after a certain number of epochs E .., we set P; = 0. Further, since it is possible that at the
minimum of the constrained optimization problem (6.1) — (6.4) the variance of some clusters
exceeds o, (exceptions to the general rule mentioned in Section 6.1), after E ., epochs
also isolation is no longer allowed in order to prevent algorithm oscillations. With these
precautions the algorithm will certainly converge, since the overall homogeneity criterion
only decreases and it is always greater than or equal to zero. In case two clusters unite, the
criterion may increase, but the number of clusters is finite. Still, we have to wait for a number

of epochs in which the clusters have not changed due to the stochastic sampling of the border.

6.3 Experiments

In this section we demonstrate the effectiveness of the proposed maximum variance cluster
(MVC) algorithm with some artificial and real data sets. First, however, we show that the
maximum variance constraint parameter can be used for cluster tendency assessment.
Clearly, since the clustering result depends on the setting of o2, _, the square-error crite-
rion J, also changes as a function of 62 ... Accordingly, cluster tendencies can be read from
trends in J,. Consider for instance the data set shown Fig. 6.4(a). The corresponding square-
error curve resulting from varying o2, can be seen in Fig. 6.4(b). The figure shows some
prominent plateaus in the square-error criterion. Clearly, these plateaus can both be caused
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Figure 6.4: In (a) the R15 data set is shown, which is generated as 15 similar 2-D Gaussian
distributions. In (b) J, and M are displayed as a function of 0.2,,, for the R15 data set.

by hierarchical cluster structures and random sample patterns. If there is real structure in
the data then the variance constraint can be increased up to the moment that true clusters are
lumped together. On the other hand, if the resulting clustering is random in character, then
the clusters will easily be rearranged when the variance constraint is increased.

Let 02 be the starting point of a J, plateau and o2 the end point of that plateau, as for
example in Fig. 6.4(b). Then, we define the strength S of a plateau as the ratio:

2 o3
S(ay, og) = —I; (6.14)
O

Accordingly, the strength of a plateau gives an indication of whether or not the corre-
sponding clustering represents real structure in the data. Intuitively, we expect that two real
clusters will be lumped together if the variance constraint is higher than roughly twice their
individual variance. This implies that the strength of a plateau in J, should be greater than 2
in order to be a significant plateau, that is, to represent real structure. To test this hypothesis,
we did experiments with uniform random data and various numbers of samples. For each
data set, we measured the maximum plateau strength S,,,x and subsequently computed the
distribution of S,,,,. In Fig. 6.5 we show the cumulative distribution of S,,,, for different
sizes of the random data sets. Only when N was very low (N < 50), significant plateaus
were occasionally found, which is to be expected with low numbers of samples. On the other
hand, the experiments with structured data, among which the ones that we describe in this
section, indeed resulted in significant J, plateaus.
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Figure 6.5: Cumulative distribution of the maximum plateau strength for differently sized
random 2-D data sets. The distributions have been calculated from 1000 independent draws.

The advantage of this cluster tendency assessment approach is that the same model is
used for the clustering as for the cluster tendency detection. In our view the usual approach,
where different criteria are used for the clustering and the detection of the cluster tendency, is
undesirable, like for instance in [6], [8], [11], [16]. That is, the cluster algorithm may not be
able to find the clustering corresponding to the local minimum or knee in the cluster tendency
function?.

Some additional remarks need to be made about the significance of J, plateaus. First, it
has to be noted that because of fractal like effects, o3 must be higher than a certain value
in order to rule out extremely small ’significant’ plateaus. Second, in case there are rmultiple
significant plateaus, these plateaus represent the scales at which the data can be considered.
Then, the user can select the appropriate scale and corresponding plateau. In our view, there
is no best scale in these cases, so the selection is fully subjective.

In all experiments, we compared the performance of the MVC algorithm to the K-means
algorithm [23], and the Gaussian mixtures modeling (GMM) method with likelihood max-
imisation [18] using the EM algorithm [9]. For both the K-means and the GMM method
the numbers of clusters is set to the resulting number (M) found by the MVC algorithm.
Further, since both the MVC and the K-means algorithm prefer circular shaped clusters we
constrained the Gaussian models of the GMM to be circular too in order to reduce its number
of parameters. For the MVC algorithm we set P; = 0.001, E,pe = 100,k = 3,9 = 1,
io = VLIl and b, = |+/]B,]]. It has to be noted that these parameter values appeared
to be not critical (experiments not included). They merely serve to tune the convergence
behavior similar as in other non-deterministic optimization algorithms, like for instance the
mutation rate and population size parameters in genetic algorithms [14]. Since all algorithms

2When additional criteria are used to discover cluster tendencies, they are usually called cluster validity functions
or indices.
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method parameter hit M | time (mns)
MVC o2 =10 | 100 |15 | 122

max

MVC o2, =100 (100 | 8 |99

max

K-means | M =15 3 — |20
K-means | M =8 10 - 112
GMM M=15 4 — | 280
GMM M=238 10 — | 160

Table 6.1: Statistical results of applying the algorithms to the R15 data set.

have non-deterministic components?, we ran them 100 times on each data set and display the
result with the lowest square-error (MVC and K-means) or highest likelihood (GMM), i.e.
the best solution found. Further, we measured the average computation time, and the number
of times the best solution was found (hit rate). For the MVC algorithm we did not add the
computation time of the rank lists, since this time only depends on the size of the data set
and not on the structure. Moreover, these lists have to be computed only once for a data set
and can then be used for tendency assessment and the subsequent runs to find the optimal
clustering.

We start with the already mentioned data set from Fig. 6.4(a) consisting of 15 similar
2-D Gaussian clusters that are positioned in rings (R15). Though we know an estimate of
the variance of the clusters, we first varied the o2, constraint in order to discover the cluster
tendency. Fig. 6.4(b) shows the resulting curves for J, and the number of found clusters M.
The figure shows a number of prominent plateaus in J., from which the first {4.20...16.5]
has strength § = 3.93. This significant plateau corresponds to the originating structure of
15 clusters. Further, there is a large plateau [67.5...122] with strength S = 1.80 which
corresponds to the clustering where all inner clusters are merged into one cluster. This plateau
is, however, not significant according to our definition. This is because the total variance of
the clusters lumped in the center is much higher than the variance of the outer clusters. The
resulting clusterings for MVC (a,fm_‘. = 10), K-means (M = 15) and GMM (M = 15) were
the same (Fig. 6.6), and also for MVC (cf,ﬁm = 100), K-means (M = 8) and GMM (M = 8).
Table 6.1 shows that the MVC algorithm is clearly more robust in converging towards the
(possibly local) minimum of its criterion. That is, the hit rate for the MVC algorithm is much
higher than for the K-means and the GMM algorithm. Further, the K-means algorithm that is
known to be efficient is indeed the fastest.

The next artificial data set consists of three clusters with some additional outliers (O3),
see Fig. 6.7(a). Again, we first varied the 02, parameter for the MVC algorithm in order to
discover cluster tendencies. Although we roughly know the variance of the clusters, in this
case it is certainly useful to search for the proper o2, value, since the outliers may disrupt
the original cluster variances.

Fig. 6.7(b) clearly shows only one prominent plateau [22.0...82.0]. This plateau is sig-
nificant, because its strength is S = 3.73. In the corresponding clustering result all three

3The K-means and GMM algorithm are initialized with randomly chosen cluster models.
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Figure 6.6: Results of applying the clustering algorithms to the R15 data set. In (a) the results
of the MVC and K-means algorithm with 15 clusters is shown and in (b) the results of the
GMM method with 15 clusters is shown.

outliers are put in separate clusters leading to a total of six clusters, as is shown in Fig. 6.8(a).
Because the K-means algorithm does not impose a variance constraint it could find a lower
square-error minimum and corresponding clustering with M = 6 than the MVC as can be
seen in Fig. 6.8(b). The algorithm split one cluster instead of putting the outliers in separate
clusters. This supports the statement that using one model for the detection of cluster ten-
dencies and another for the clustering is undesirable. Also the GMM algorithm was not able
to find the MVC solution (see Fig. 6.8(b)), though the MVC solution indeed had a higher
likelihood. When M = 3, the K-means and the GMM algorithm merged two true clusters
and put the outliers in one clusters. Table 6.2 shows the statistics of this experiment. Again,
the K-means and GMM algorithm were clearly less robust in finding their respective (local)
criterion optimum than the MVC and the K-means was the fastest.

We repeated this experiment several times with different generated clusters and outliers.
The results were generally the same as described above, i.e. if there was a difference between
the cluster results of the algorithms, the MVC handled the outliers better by putting them in
separate clusters or it converged more often to its criterion optimum.

For the last synthetic experiment, we used a larger data set (D31) consisting of 31 ran-
domly placed 2-D Gaussian clusters of 100 samples each, see Fig. 6.9(a). The tendency
curve resulting from varying o2, for the MVC algorithm shows one significant plateau
[0.0030...0.0062] (S = 2.07), which corresponds to the original 31 clusters. Remarkably,
the K-means and the GMM algorithm were not able to find the originating cluster structure,
not even after 10000 trials. The statistical results in Table 6.3 show that the MVC algorithm
consistently found the real structure, while the difference in computation time between the

algorithms becomes small.
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method parameter | hit | M | time (ms)
MVC a,,z,(,_\. =50 {94 27
K-means | M =6 1 - 125
K-means | M =3 14| - |12
GMM M=6 1 - |17
GMM M=3 10— 143

Table 6.2: Statistical results of applying the algorithms to the O3 data set. The hit rate of the
GMM method with M = 6 certainly refers to a local maximum.
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Figure 6.9: In (a) the D31 data set is shown which is generated as 31 similar 2-D Gaussian
distributions. In (b) J, and M are displayed as a function of the 0,2, constraint parameter.

method parameter hit | M | time (ms)
MVC a,fm =0.004 | 100 | 31 | 930
K-means | M = 31 1 — | 390
GMM M =131 1 - 1220

Table 6.3: Statistical results of applying the algorithms to the D31 data set. The K-means and
GMM algorithm were not able to find the originating structure, so the hit rate refers to a local

optimum.
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Figure 6.10: (a) shows J, and M as a function of the 02, constraint parameter for the
German Towns data set. In (b) the clustering result of the MVC and the K-means algorithm
with 4 clusters is displayed.

method | parameter hit | M | time (ms)
4

MVC o,fm = 1500 | 100 27
K-means | M =4 29 - | 0.56
GMM M=4 1 - |12

Table 6.4: Statistical results of applying the algorithms to the German Towns data set.

Next, we applied the algorithms to some real data sets. We started with the German Towns
data set which consists of 2-D coordinates of 59 German towns (pre-’Wende’ situation).
In order to find a significant clustering result, we again varied the o, parameter for the
MVC algorithm. The resulting curves of J, and M are displayed in Fig. 6.10(a). The two
plateaus [1290...1840] and [ 1940...2810] have strengths § = 1.43 and § = 1.45 respectively.
Although both plateaus are not significant, we show the clustering results of the first plateau
with 4 clusters in Fig. 6.10(b), which equals the result of the K-means algorithm with M = 4.
The GMM algorithm came up with a different solution consisting of three main clusters and
one cluster containing a single sample. When we visually inspect the data in Fig. 6.10(b),
we can conclude that it is certainly arguable if this data set contains significant structure.
Table 6.4 shows similar hit rates as before and the K-means algorithm was again the fastest.

Finally, we processed the well-known Iris data set with both algorithms. The /ris data set
is actually a labeled data set consisting of three classes of irises each characterized by four
features. Fig. 6.11 illustrates the cluster tendencies resulting from varying o2, for the MVC
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Figure 6.11: J, and M as a function of the 0,2 . constraint parameter for the Iris data set.

method | parameter | hit | M | time (ms)
MVC o2, =101]100]3 43

max

MVC 62, =201100 {2 |25

max

K-means | M =3 36 - | 1.6
K-means | M =2 99 - | 0.83
GMM M=3 8 - 142
GMM M=2 99 - |16

Table 6.5: Statistical results of applying the algorithms to the /ris data set.

algorithm. The figure displays several plateaus, from which [0.76...1.39] and [1.40...4.53]
are the strongest. The plateaus with strengths S = 1.83 and S = 3.24 correspond to three
and two clusters, respectively. Hence, only the latter is significant. All three algorithms
found similar results for the same number of clusters. Since it is known that the three classes
cannot be separated based on the given features, it is not surprising that the clustering with
M = 3 does not correspond to the given labels. However, from the clustering with M = 2
(corresponding to the significant plateau), one cluster almost perfectly matches the samples
of class I and the other cluster matches the samples of class II+III of the Iris class labels.
The statistics in Table 6.5 show similar differences between the MVC, K-means, and GMM
algorithm as in the other experiments.

6.4 Discussion

We presented a maximum variance cluster algorithm (MVC) for partitional clustering. In
contrast to many other algorithms, the MVC algorithm uses a maximum variance constraint
instead of the number of clusters as parameter. In the experiments, we showed that the method
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is effective in finding a proper clustering and we compared its results to those of the widely
used K-means algorithm and the Gaussian mixtures modeling (GMM) method with likeli-
hood maximisation with the EM algorithm. In contrast to the proposed MVC method both
the K-means and the GMM method need the number of clusters to be known a priori.

We showed that the MVC method copes better with outliers than the K-means algorithm.
The GMM method is in principle able to separate the outliers, but has problems with the
optimization process leading to convergence into local criterion optima. The MVC algorithm
is more robust in finding the optimum of its criterion than both the K-means and GMM al-
gorithm. We must note that other and better optimization schemes for both the K-means
model (e.g. [5], [21]) and the Gaussian mixtures modeling (e.g. [17], [27]) have been de-
veloped. However, the improved optimization of these algorithms is achieved at the cost of
(considerable) additional computation time or algorithm complexity.

The MVC algorithm is up to 100 times slower than the very efficient K-means algorithm,
especially for small data sets and a low number of clusters. This is partially caused by the fact
that we did not adjust the maximum number of epochs parameter £ . to the size of the data
set. For larger data sets with a higher number of clusters the differences in computation time
between both algorithms almost disappear. An advantage of the MVC algorithm with respect
to computational efficiency is that it can be implemented on parallel and distributed com-
puter architectures relatively easily. Accordingly, for large data sets the MVC algorithm may
be advantageous also for efficiency reasons. In such a distributed computing environment,
clusters can be maintained by separate processes. Then, only clusters that are neighbors com-
municate with each other. The main point of consideration will be how to balance the cluster
processes on the available computers when clusters merge and when samples are isolated into
new clusters.

An interesting property of the proposed method is that it enables the assessment of cluster
tendencies. Generally, the curve resulting from varying the maximum variance constraint
parameter as a function of the square-error displays some prominent plateaus that reveal the
structure of the data. We indicated a way to find significant structure in the data by rating the
strength of the plateaus. Accordingly, we were able to find proper settings of the maximum
variance constraint parameter, which is the only model parameter.

A drawback of the MVC algorithm may be that it uses a distance rank list for every
sample. The size of this rank list grows proportional to the square of the number of samples,
so the amount of storage needed can become substantially. The main problem, however, lies
in the computation of these rank lists. Since these lists are sorted, their construction costs
O(Nlog(N)) operations. In order to prevent the rank list from becoming a bottleneck for the
application of the MVC algorithm, a maximum distance constraint d,,,. can be imposed in
addition to the maximum cluster variance constraint, €.g. dmax = 20uqy. Then only those
samples need to be ranked that are within the d,,,, range of the reference sample.
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Summary

In this thesis we address three different computer vision and machine learning problems, be-
ing the motion correspondence problem, the image segmentation problem, and the clustering
problem. In a number of chapters organized as journal papers. models and corresponding
optimization schemes are proposed to solve the respective problems. In the introductory
chapter we attempt to find unifying aspects in the properties of the problems and in the way
the problems have been attacked.

Chapter 2 studies the motion correspondence problem, for which a diversity of qualitative
and statistical solutions exist. We concentrate on qualitative modeling especially in situations
where assignment conflicts arise, either because multiple features compete for one detected
point or because multiple detected points fit a single feature point. We leave out the possibil-
ity of separate point track initiation and termination, because that principally conflicts with
allowing for temporary point occlusion. We introduce individual, combined, and global mo-
tion models and fit existing qualitative solutions in this framework. Additionally, we present
a new efficient tracking algorithm that satisfies these — possibly constrained — models in a
greedy matching sense, including an effective way to handle detection errors and occlusion.
The performance evaluation shows that the proposed algorithm outperforms existing greedy
matching algorithms. Finally, we describe an extension to the tracker that enables automatic
simultaneous initialization of the point tracks. Several experiments show that the extended al-
gorithm is efficient, hardly sensitive to its few parameters, and qualitatively better than other
algorithms, including the presumed optimal statistical multiple hypothesis tracker.

In Chapter 3, we enhance the greedy optimization scheme introduced in Chapter 2. We
propose to defer the correspondence decisions to achieve performance improvement, that
is, we examine whether the consequences of a number of candidate correspondences lead
to alternate and better solutions. The consequent problem we are faced with is a multi-
dimensional assignment problem, which is known to be NP-hard. To restrict the consequent
increase in computation time, the candidate solutions are suitably ordered and additional
combined motion constraints are imposed. Experiments show the appropriateness of the
proposed extension, both with respect to performance and to computational aspects.

In Chapter 4, we adjust the proposed motion correspondence model such that the num-
ber of tracked feature points may vary in time. Accordingly, the feature points may enter
and leave the video scene. Since this feature principally conflicts with the feature of coping
with temporary occlusion, additional measures are needed. Firstly, we add an optimization
criterion that aims to minimize the number of established point tacks. Secondly, we add two
continuity constraints that disqualify point tracks with more than a,,,, consecutive missing
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measurements, and point tracks with less than p,;, consecutive measurements. The corre-
sponding optimization algorithm we present is a sequential heuristic search algorithm. A
comparison between the algorithm and other tracking algorithms shows that the proposed
algorithm is easy to tune and generally more efficient and more accurate.

In Chapter 5, we study the clustering and the related image segmentation or spatial clus-
tering problem. These problems are inherently difficult, both with respect to the definition
of adequate models as well as to the optimization of the models. We present a model for
the clustering problem where the number of clusters does not need to be known a priori. In-
stead it minimizes the sum-of-squared-error while imposing a hard constraint on the cluster
variance. The absence of the number of clusters as parameter in the model is among others
useful in the image segmentation domain, for which we specialize the model. Further, we
propose a cellular coevolutionary algorithm for the optimization of the model in the image
segmentation domain. Within this scheme multiple agents are placed in a regular 2-D grid
representing the image, which imposes neighboring relations on them. The agents coopera-
tively consider pixel migration from one to the other in order to improve the homogeneity of
the ensemble of the image regions they represent. If the union of the regions of neighboring
agents is homogeneous then the agents form alliances. On the other hand, if an agent discov-
ers a deviant subject, it isolates the subject. In the experiments we show the effectiveness of
the proposed method and compare it to other segmentation algorithms. The efficiency can be
easily improved by exploiting the intrinsic parallelism of the proposed method.

In Chapter 6, we present a partitional cluster algorithm that fits the cluster model proposed
in Chapter 5. Conceptually, hypothesized clusters act in parallel and cooperate with their
neighboring clusters in order to minimize the sum-of-squared-error criterion and to satisfy the
variance constraint similar to the algorithm in Chapter 5. In order to enable the demarcation
of the cluster neighborhood without crucial parameters, we introduce the notion of foreign
cluster samples. Finally, we demonstrate a new method of cluster tendency assessment based
on the variation of the variance constraint parameter.

In the introductory chapter, we attempt to find unifying aspects of the motion correspon-
dence problem, the image segmentation problem, and the clustering problem. Since there
are no examples given that show how the structure in the data is established, these problems
are all unsupervised pattern recognition problems. We posed these problems as optimization
problems that typically contain a number of conflicting generalization and specialization cri-
teria. Both straight optimization of generalization criteria and of specialization criteria leads
to trivial solutions.

Because unsupervised pattern recognition problems inherently contain conflicting crite-
ria, we focus on multiple criterion related modeling and optimization aspects in the introduc-
tory chapter. It follows that as such these problems are fundamentally undecidable, since a
large set of mathematically equivalent optimal solutions exists.

Summary of the thesis: Motion Correspondence, Image Segmentation, and Clustering: Mod-
eling and Optimization Aspects™.

C.J. Veenman, Delft, November 2001.




Samenvatting

In deze thesis behandelen we drie verschillende computer vision en machine learning pro-
blemen, te weten het bewegingscorrespondentieprobleem, het beeldsegmentatieprobleem, en
het clusterprobleem. In een vijftal hoofdstukken, geschreven als tijdschrift artikelen, worden
modellen met bijbehorende optimaliseringsmethoden voor deze problemen gepresenteerd. In
het inleidende hoofdstuk bekijken we wat de genoemde problemen en oplossingsmethoden
gemeen hebben.

Om te beginnen bestuderen we in Hoofdstuk 2 het bewegingscorrespondentieprobleem,
waarvoor een verscheidenheid aan kwalitatieve en statistische oplossingsmethoden bestaat.
Wij concentreren ons op de kwalitatieve modellering, waarbij we met name kijken naar si-
tuaties waar toekenningsconflicten ontstaan, ofwel veroorzaakt doordat verschillende ken-
merkpunten passen op één gemeten punt, ofwel andersom. We laten afzonderlijke puntspoo-
rinitialisering en -be€indiging buiten beschouwing, omdat dit principiéel conflicteert met het
modelleren van tijdelijk niet gedetecteerde kenmerkpunten. We introduceren individuele, ge-
combineerde en globale bewegingsmodellen en passen bestaande methodieken in dit raam-
werk. Verder presenteren we een nieuw efficiént puntvolgalgoritme dat deze modellen op een
*greedy’ manier optimaliseert (eventueel met additionele constraints) inclusief een effectieve
manier om bestand te zijn tegen detectiefouten en occlusie. Uit de evaluatie blijkt dat dit
algoritme beter is dan bestaande ’greedy’ methodieken. Tenslotte beschrijven we een uitbrei-
ding van het algoritme dat automatische, gelijktijdige initialisatie van de puntsporen mogelijk
maakt. Verscheidene experimenten tonen aan dat dit algoritme efficiént is en nauwlijks ge-
voelig voor variaties in zijn parameters. Bovendien zijn de resultaten kwalitatief beter dan die
van de andere algoritmen inclusief de verondersteld optimale 'multiple hypothesis tracker.’

In Hoofdstuk 3 breiden we het in Hoofdstuk 2 geintroduceerde *greedy’ optimaliserings-
algoritme uit. We presenteren een methode waarbij de puntcorrespondentiebeslissingen wor-
den uitgesteld om zo de uiteindelijke resultaten te verbeteren. Dat wil zeggen, we testen
of de consequenties van een aantal kandidaatcorrespondenties leiden to andere en betere
puntsporen. Het probleem waar we dientengevolge mee geconfronteerd worden is een multi-
dimensioneel toekenningsprobleem, een bekend NP-compleet probleem. Om de zoekruimte
te beperken, worden de kandidaatoplossingen geordend en additionele constraints opgelegd.
Experimenten tonen middels verbeterde prestaties aan dat de voorgestelde uitbreiding inder-
daad een verbetering is.

In Hoofdstuk 4 passen we het bewegingscorrespondentiemodel verder aan zodat het aan-
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tal te volgen punten in de tijd mag variéren. Omdat deze optie principiéel conflicteert met het
omgaan met tijdelijk missende puntmetingen, zijn extra aanpassingen nodig. Ten eerste voe-
gen we een optimaliseringscriterium toe dat ernaar streeft het aantal vastgestelde puntsporen
te minimaliseren. Ten tweede voegen we twee continuiteitscriteria toe om puntsporen met
meer dan a,,,, achtereenvolgende missende puntmetingen of minder dan p,,;, achtereenvol-
gende puntmetingen te diskwalificeren. Het bijbehorende optimaliseringsalgoritme dat we
presenteren is een sequentiéel heuristisch zoekalgoritme. Bij het vergelijken van dit algoritme
met andere bekende algoritmen blijkt het voorgestelde algoritme eenvoudig in te stellen en is
het in het algemeen efficiénter en nauwkeuriger.

In Hoofdstuk 5 bestuderen we het cluster- en verwante beeldsegmentatieprobleem ofwel
het spatiéel clusterprobleem. Deze problemen zijn inherent moeilijk, zowel met betrekking
tot het defini€éren van adequate modellen als het optimaliseren van de modellen. We presente-
ren een model voor het clusterprobleem waarvoor het aantal clusters niet a priori bekend hoeft
te zijn. In plaats daarvan streeft het model naar minimalisering van de som der kwadratische
fouten ten opzichte van de clustercentra, terwijl een harde constraint op de clustervariantie
wordt opgelegd. De afwezigheid van het aantal clusters als parameter van het model is on-
der meer van belang in het beeldsegmentatiedomein, waarvoor we het model specialiseren.
Verder beschrijven we een cellulair coévolutionair algoritme voor de optimalisering van het
model in het beeldsegmentatic domein. In dit schema wordt een aantal agenten in een re-
gelmatig 2-D grid geplaatst. Dit grid, dat het beeld representeert, definiéert onder andere
buurrelaties tussen de agenten. Vervolgens overwegen de agenten pixelmigratie van de ene
agent naar de ander om zo de homogeniteit van de beeldgebieden die ze representeren te ver-
hogen. Als de beeldgebieden van naburige agenten gezamenlijk homogeen zijn vormen de
agenten allianties. Als aan de andere kant een agent een afwijkend pixel signaleert, zal hij
deze isoleren. In de experimenten tonen we de effectiviteit van de voorgestelde methode aan
en vergelijken we hem met andere beeldsegmentatiealgoritmen. De efficiéntie kan eenvou-
dig verhoogd worden door het intrinsieke parallellisme van de voorgestelde methode uit te
buiten.

In Hoofdstuk 6 presenteren we een partitioneel clusteralgoritme gebaseerd op het cluster-
model dat we in Hoofdstuk 5 hebben beschreven. Conceptueel werken alle clusters samen
met hun buurclusters om de kwadratische fout te minimaliseren en te voldoen aan de vari-
antie constraint, vergelijkbaar met het algoritme in Hoofdstuk 5. Om de omgeving van een
cluster vast te stellen zonder cruciale parameters introduceren we het begrip "foreign’ cluster-
element. Tenslotte stellen we een nieuwe cluster tendens methode voor die gebaseerd is op
het variéren van de variantie constraint parameter.

In het inleidende hoofdstuk verkennen we aspecten die het bewegingscorrespondentie-
probleem, het beeldsegmentatieprobleem en het clusterprobleem gemeen hebben. Omdat er
geen voorbeelden gegeven zijn omtrent hoe de structuur zich in de data manifesteert, kunnen
al deze problemen als 'unsupervised’ patroonherkenningsproblemen beschouwd worden. In
deze thesis hebben we deze problemen als optimaliseringsproblemen gedefini€erd, die on-
vermijdelijk een aantal conflicterende generalisatie- en specialisatiecriteria bevatten. Echter,
zowel directe optimalisering van generalisatiecriteria als specialisatiecriteria leidt tot triviale
oplossingen.
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Omdat "unsupervised’ patroonherkenningsproblemen inherent conflicterende criteria be-
vatten, richten we ons in het inleidende hoofdstuk op multiple criteria gerelateerde model-
lerings- en optimaliseringsaspecten. Het blijkt dat deze problemen als zodanig onbeslisbaar
zijn, omdat een groot aantal optimale, mathematisch equivalente, oplossingen bestaat.

Samenvatting van het proefschrift: Bewegingscorrespondentie, Beeldsegmentatie, en Cluste-
ring: Modellerings- en Optimaliseringsaspecten”.

C.J. Veenman, Delft, November 2001.
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