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An Overview of Aerosol-Cloud Interactions

Hamish Gordon’, Franziska Glassmeier?, and Daniel T. McCoy?

ABSTRACT

Aerosol-cloud interactions refer to the group of atmospheric processes by which aerosols influence cloud
properties, and sometimes also processes by which clouds affect aerosols. The effect of these atmospheric pro-
cesses on Earth’s radiative balance is potentially large, but uncertain. When combined with uncertainties in
aerosol concentrations thatresult from emissions and aerosol processes, the uncertainty in aerosol-cloud interac-
tions dominates the overall uncertainty in our knowledge of radiative forcing of Earth’s climate. Aerosols affect
clouds primarily by changing the number of cloud condensation and ice nuclei, “indirect effects,” and sometimes
also the temperature of the cloud, “semi-direct effects.” Changes in cloud processes in response to aerosol-cloud
interactions may cause significant adjustments to cloud macrophysical properties such as coverage and conden-
sate amount. Aerosol-cloud interaction research focuses on understanding the atmospheric processes at work,
mainly by analyzing observation data, performing laboratory experiments, and building models to simulate how
aerosols influence clouds. In this review, we outline the relevant atmospheric science and highlight some promising
techniques that have been applied recently to better understand aerosol-cloud interactions and their implications
for radiative balance, such as Gaussian process emulation. This chapter is intended to provide background to sub-
sequent chapters in this series of monographs and as an introduction for graduate students to current research

in the field of aerosol-cloud interactions.

2.1. INTRODUCTION AND MOTIVATION

Aerosols are of fundamental importance to clouds.
Without aerosols, relative humidities must reach 420%
before condensation of water vapor will occur on ions,
the next suitable surface in the atmosphere (Mason,
1960; Wilson 1900). Such high saturation ratios would
be unlikely to occur near Earth’s surface, as water
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would instead condense as dew, and so without aerosols,
fogs and boundary-layer clouds would presumably be
rare or absent. Conversely, in a world without clouds,
atmospheric aerosols would also look very different, pre-
sumably existing in substantially higher concentrations.

2.1.1. The Importance of Aerosol-Cloud Interactions
for Climate

The relevant question for climate, however, is how
much difference to clouds is made by perturbations to
a natural background level of aerosols. Changing the
number of aerosols capable of acting as nuclei for water
vapor to condense upon (cloud condensation nuclei, or
CCN) leads to a change to the cloud droplet concentra-
tion, which in turn changes the reflectivity or albedo of
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16 CLOUDS AND THEIR CLIMATIC IMPACTS

clouds. When kept separate from any change to the cloud
condensate (liquid or ice mixing ratio) resulting from
changing aerosol concentrations, this effect on cloud
albedo is referred to as the Twomey effect (Twomey, 1974,
1977). In addition to the albedo, perturbations to cloud
droplet concentrations also perturb microscopic pro-
cesses inside clouds. These include collision-coalescence
leading to the formation of warm rain (the Albrecht
effect (Albrecht, 1989)), the condensation of supersat-
urated water vapor, the rate of sedimentation of cloud
droplets, and the time needed for any given cloud droplet
to evaporate. Changing the number of aerosols capable
of acting as ice nuclei, the surfaces on which water can
freeze, similarly influences the radiative properties of
clouds and the probability of precipitation. Together,
all of these processes by which aerosols affect cloud
albedo and microphysical properties are known as
indirect effects of aerosols on Earth’s radiative balance.
This distinguishes these aerosol effects from the
“direct” effects of aerosols on radiation due to scat-
tering and absorption, and from the thermodynamical
perturbations to nearby clouds that result from aerosol
absorption, termed semi-direct effects by Hanse et al.
(1997).

The most obvious consequence of aerosol-cloud inter-
actions, hereafter abbreviated as ACls, for long-term radi-
ation balance is apparent when the natural background
level of aerosols is considered to be the pre-industrial
atmosphere, and the perturbation is the total anthro-
pogenic change in aerosol since pre-industrial times.
Anthropogenic aerosols have led to an increase in the
amount of radiation reflected by the Earth that has offset
between 20% and 50% of the warming due to increased
carbon dioxide concentrations over the industrial period
(Bellouin et al., 2020; Charlson et al., 1992; Twomey,
et al., 1984). The majority of this aerosol effect is due to
the “indirect forcing of climate” by aerosols via ACls,
rather than due to the direct radiative effects of the
aerosols themselves. The radiative forcing of Earth’s
climate due to the strengthening of the Twomey effect
over time is usually abbreviated as RF,;. When changes
in cloud microphysical properties driven by aerosol,
leading to adjustments in cloud macrophysical properties
(e.g., area, thickness), are included, the resulting radia-
tive forcing is termed an “effective” radiative forcing
(ERF,;). The large uncertainty in ERF,;, which was
estimated by Bellouin et al. (2020) to lie between —1.73
and —0.27 Wm™ (16-84% range), is the main motivation
for the sustained efforts by the atmospheric community
to better understand AClIs. Hansen et al. (2011) are more
blunt, remarking that “Aerosol uncertainty is the prin-
cipal barrier to quantitative understanding of on-going
climate change”. Thus, AClIs are critical to a treatment of
the role of clouds in the climate system.

ACIs have numerous other more subtle implications
for climate, as they are involved in several important
feedback loops (Gettelman et al., 2016) and effects on
atmospheric circulation (e.g., Mann et al., 2018; Wilcox
et al. 2020). It is likely that changes in cloud cover and
thickness in response to a warming atmosphere will be
affected by changing aerosol concentrations as the climate
warms, and, in turn, ERF; will be strongly affected by
changing clouds in a future climate.

2.1.2. Outline and Aims of this Review

ACIs have been the subject of numerous recent review
articles (Bellouin et al., 2020; Fan et al., 2016; Kreiden-
weis et al., 2019; Milmenstddt et al., 2018; Rosenfeld
et al., 2014- Seinfeld et al., 2016; Storelvmo, 2017; Tao
et al., 2012) and we are aware of others in preparation.
This contribution is selective rather than comprehensive
and is intended to complement these alternative perspec-
tives. We provide a brief introductory overview intended
to provide context for later chapters in this monograph,
followed by a characterization of some emerging trends
in current research. We begin with a brief overview of
the AClIs of interest in different meteorological regimes.
We then discuss some key warm-cloud processes in
detail: activation of aerosols, rain formation processes,
and albedo. We follow with an overview of some new
methodological approaches to disentangling ACls. This
is followed by discussion of cold clouds, and finally
field experiments and satellite observations. To keep our
review to a reasonable length, we do not discuss how
clouds affect aerosols, although we do acknowledge that
such effects may also have feedbacks to, and implications
for, Earth’s climate, as discussed by Carslaw et al. (2010)
and Tegen and Schepanski (2018).

2.2. HOW AEROSOLS AFFECT DIFFERENT
CLOUD TYPES

ACIs vary widely depending on the meteorological
regime in which they occur. Some of the different regimes
are illustrated in Figure 2.1.

Warm clouds are those which contain no ice and in
which the temperature does not extend below 0°C; we
note that supercooled liquid clouds are not warm. In
warm non-raining low clouds (stratus and stratocumu-
lus) and fogs found in the subtropics and midlatitudes,
the size of the droplets for a given liquid water content
(LWC) depends on the droplet number concentration.
This dependence in turn leads to a significant and
relatively well-understood effect of increasing droplet
concentration on cloud albedo (RF,,). The other pos-
sible ACIs of interest are evaporation-entrainment and
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Figure 2.1 Schematic depicting some of the possible aerosol effects on clouds in the tropics and subtropics.
Dashed lines denote temperature inversions.

sedimentation-entrainment feedbacks (Hill et al., 2009),
which are also discussed in Chapter 12: Small-Scale
Mixing of Clouds with Their Environment. Address-
ing sedimentation-entrainment feedbacks first, a higher
droplet concentration leads to a slower sedimentation
rate of droplets. Ackerman et al. (2004) showed that
slower sedimentation will increase the entrainment of
dry air into clouds, leading to more droplets evaporating,
reducing the cloud albedo and water content. Bretherton
et al. (2007) found that this increased entrainment was
the result of more cloud water being concentrated at
the top of the cloud when sedimentation is slower. As a
result, evaporation rates at the cloud top are increased
in proportion to the increased LWC, and entrainment is
promoted by evaporative cooling. Furthermore, smaller
droplets evaporate more quickly, promoting more tur-
bulence and also increasing entrainment of dry air: the
evaporation-entrainment feedback (Homann & Feingold,
2019; Small et al., 2009; Wang et al., 2003).

In warm raining clouds with low aerosol concentra-
tions, a further ACI may become important: the Albrecht
effect (Albrecht, 1989). This aerosol and precipitation
regime is found frequently in the remote marine atmo-
sphere. Recent research suggests the Albrecht effect is
most important in very clean clouds, perhaps even only in
clouds where the droplet concentration is below around
30cm™3, although this threshold is very uncertain. When
aerosol concentrations are this low, droplets are large,
and so fewer collision-coalescence events must take place
to grow a cloud droplet into a drizzle or rain drop.
Conversely, drizzle is suppressed in polluted conditions.
Evidence stems from large eddy simulations and correla-
tions in observations (e.g., Dagan al., 2015; Gryspeerdt,
Goren, et al., 2019; Khairoutdinov & Kogan, 2000; Mann

et al., 2014). The same mechanism may be active in slow-
ing down precipitation processes at much higher droplet
concentrations, for example in orographic clouds (Givati
& Rosenfeld, 2004). However, some droplets nucleated on
very large soluble aerosols, known as giant cloud conden-
sation nuclei, grow efficiently into raindrops (Johnson,
1982) due to their high solute concentrations (Jensen &
Nugent, 2017). Increasing concentrations of these large
aerosols should, up to a point, hasten precipitation onset
and reduce cloud liquid water paths (LWP) (Posselt &
Lohmann, 2008).

Tropical trade cumulus, the topic of Chapter 7: Trop-
ical Marine Low Clouds, and also congestus and deep
convective clouds tend to have higher vertical velocities
(greater than 1.0ms™'). In these clouds, concentrations
of large aerosols are generally low (below 200 cm™ in the
accumulation mode), as these aerosols are often depleted
by rainfall. Therefore, when compared to other cloud
types, supersaturations may reach higher values, and
smaller aerosols may be activated as droplets. Several
authors have explored possible links between aerosol
concentrations and the magnitude and altitude of latent
heat release during condensation and freezing in clouds,
and, by extension, if aerosols can influence how much
condensation occurs in liquid and how much in ice phases
of deep clouds. The effect of aerosols on deep clouds is
discussed further in section 2.7. In brief, in more pol-
luted clouds, in theory the larger surface area of aerosols
should lead to more condensation at lower altitudes than
in cleaner clouds. The lower altitude of the condensation
and resultant latent heat release in more polluted clouds
can affect updraft speeds but there is a lack of consensus
in the community on the strength of these latent heating
effects (Fan et al., 2007; Grabowski & Morrison, 2016,
2020).
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In mixed-phase clouds, as found in cyclones and
tropical deep convection, in addition to invigoration
effects due to latent heating (Fan et al., 2018; Khain
et al., 2004), high droplet concentrations may suppress
or promote droplet freezing (Pruppacher & Klett, 2010;
Yin et al., 2005). Delayed formation of warm rain may
enhance cold rain later (Rosenfeld et al., 2008), as well
as changing the radiative properties of the cloud top.
If droplets freeze homogeneously, more droplets lead
directly to more ice crystals, while if they freeze hetero-
geneously the ice concentration will depend more on the
concentration of ice nuclei, as well as on poorly under-
stood ice multiplication processes. Larger ice crystals
have substantially higher sedimentation rates, and thus
aerosols also affect the lifetime of cirrus clouds (Karcher
& Lohmann, 2003) and the mixed-phase clouds found at
high latitudes.

2.3. AEROSOL ACTIVATION

With the exception of the semi-direct effect, all ACls
depend on the influence of aerosols on cloud droplet
concentration. The major source of liquid droplet con-
centration in all warm clouds, and probably most cold
clouds, is aerosol activation, and the source rate is
determined by the cooling rate (usually the result of
upward air motion), by the aerosol concentration and
properties, and by the temperature. Sinks are droplet
evaporation, droplet freezing, warm rain formation, and
riming. Bellouin et al. (2020) estimate that cloud droplet
concentrations increased by between 5% and 17% from
1850 to the period 2005-2015.

The activation of an aerosol particle to a cloud droplet
occurs when the supersaturation of water vapor exceeds
the critical supersaturation for that particle S,. The super-
saturation is generally the result of an air parcel cooling as
it rises. S, is given by

1/2
443
S, =
27xr(3,

where A4 is proportional to the ratio of surface tension
to temperature, k is the volume-weighted hygroscopicity,
and r, is the dry radius of the aerosol (Ghan et al.,
2011). Thus, for a given aerosol particle, the critical
supersaturaticn depends principally on its size (Dusek
et al., 2006) but also on hygroscopicity (Kohler, 1936;
Petters & Kreidenweis, 2007) and surface tension (Prisle
et al., 2012; Shulman et al., 1996). Larger, more hygro-
scopic particles with lower surface tension activate at
lower supersaturations than smaller, less hygroscopic
particles with higher surface tensions, and surface-bulk
partitioning of molecules, especially surfactants, is also
important in determining surface tension and hygro-
scopicity (Petters & Kreidenweis, 2013; Sullivan et al.,

2.1)

2009). The dependence of activation on hygroscopicity,
sulfuric acid’s key role in new aerosol formation, and large
anthropogenic emissions of sulfur compounds together
explain why the radiative forcing of climate by ACIs is
more strongly dependent on sulfate than on any other
aerosol species (Boucher & Lohmann, 1995; Charlson
etal. 1992).

Calculating whether the critical supersaturation is
exceeded requires accounting for the number of aerosol
particles present, as aerosols take up water hygroscopi-
cally before they activate. If cloud droplets are already
present they should also be accounted for. Well above
cloud base in warm clouds (where activation is less likely),
the cloud droplets, not the aerosols, likely dominate the
sink of water vapor, and the supersaturation S is given by

1/3
g=_W dfh( 1 )
272G dz qu,

where w is the vertical air velocity, G is a growth factor
whose most important dependence is on temperature,
g, is LWC, z is height, and N, is droplet concentration
(Yanget al., 2019). A similar equation (Korolev & Mazin,
2003; Politovich & Cooper, 1988; Squires, 1952) does not
require knowledge of %’, but relies on the assumption of
quasi steady state between the source of supersaturation,
the updraft, and the sink of water vapor to droplets.
This may be a good approximation even at the base of
the cloud, provided turbulent fluctuations in vertical
velocity are correctly accounted for (Prabhakaran et al.
2020). However, more complicated parameterizations
accounting for the sink of water vapor to aerosols are
usually used at cloud base (Ghan et al., 2011; Twomey,
1959); he most commonly used is that of Abdul-Razzak
and Ghan (2000) which adopts the framework of K6hler
(1936). More detailed models, often with bin-resolved
cloud microphysics, are able to treat activation without
the ‘saturation adjustment’ approximation that is typi-
cally used in weather and climate models (Khain et al.,
2000). This approximation is the assumption that water
vapor condenses on droplets or ice crystals sufficiently
quickly that supersaturation is reduced to zero at the end
of each model time step, at which point water vapor and
condensate are in equilibrium. Detailed models without
this assumption must treat supersaturation “prognos-
tically,” which means they must keep track of how it
evolves from one time step to the next. These models
are especially needed when activation within existing
clouds is important (Fridlind et al. 2004), and poten-
tially also fogs (Schwenkel & Maronga, 2019; Thouron
et al., 2012). In fogs, supersaturation may be generated
by radiative cooling, not by updraft velocities. Recently,
however, approaches have been developed that will enable
activation in fog or activation above cloud base to be

2.2)



approximated to some extent in larger scale weather and
climate models (Gordon et al., 2020; Poku et al., 2021;
Wang et al., 2013; Yang et al., 2015).

Both aerosol size distributions (Kulkarni & Wang,
2006; Liu et al.,, 1974; Wang & Flagan, 1989) and
CCN conce trations at different vapor supersaturations
(Chuang et al., 2000; Hudson & Squires, 1976) can be
measured accurately by in situ instrumentation aboard
aircraft, as can cloud droplet size distributions (Baum-
gardner et al., 2001; Knollenberg, 1976) and updraft
speeds (Axford, 1968; Wood et al., 1997). However, a
perfect closure study of aerosol activation in the real
atmosphere is elusive, mainly because droplets are not
generally nucleated in the same place or at the same time
as they are detected. Activation can be better observed in
chamber experiments such as the Michigan Technological
University Pi chamber (Prabhakaran et al., 2020; Shaw
et al., 2020). This technology for cloud physics studies has
stood the test of time (Aitken, 1881) and still offers great
promise for ever more quantitative studies of the critical
interactions between turbulence and microphysics.

2.4. WARM CLOUD ALBEDO

In the preceding section, we described the activation
of aerosol into cloud droplets. Here, we describe how
the ability of aerosol to control cloud droplet number
concentration (N,) allows aerosol to directly affect cloud
albedo (). Alteration in cloud albedo by aerosol through
changing the number concentration of cloud droplets,
separately to any changes to the cloud condensate
amount, is known as the first indirect effect or Twomey
effect (Twomey, 1977).

Based on Lorenz-Mie theory, the optical depth (z) of a
cloud is the extinction cross-section of a collection of lig-
uid droplets with geometric radii (r) and size distribution
of cloud droplets (n,(r))

h 0
T= / / Q,xr*ny(r)drdz
z=0J0

where Q, is the efficiency of extinction, z is vertical dis-
tance and 4 is the geometric cloud height, and Q, » 2 for
liquid cloud droplets. The effective radius (r,) propor-
tional to scattering area, is

'/Ocm r- ﬂrznd(r)dr

(2.3)

=" . (2.4)
Fe Jo mring(r)dr
and LWC within some volume through the cloud is
4 00
LWC = T”pliq/o r3nd(r)dr (25)

Dividing equation (2.5) by the integrand of the inte-
gral with respect to z in equation (2.3), assuming Q, ~ 2,
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rearranging, and integrating with respect to height yields
in terms of ¢

h
T = / iLWC(z)/re(z)dz (2.6)

2=0 2Piig
Following the original presentation of S. Twomey (1977),
we wish to represent this in terms of the number concen-
tration of cloud droplets N,. This is useful because N,
depends mainly on the number concentration of CCN,
and unlike r, is to a first approximation independent of
LWC. N, is the LWC divided by droplet mass

4xr(z)} )“

Ny(z) = LWC(z) - <p,iq 3

2.7
To calculate N, from satellite data, a constant factor k =
r3/r is inserted to allow the effective radius rather than
the true radius to be used in this equation. An impor-
tant feature of real clouds that must also be taken into
account when measuring N, from space is the degree to
which they are subadiabatic (f,;). We may represent the
LWC of a cloud as a function of adiabaticity and cloud
vertical extent

LWC(z) = [Tz (2.8)

where I, is the adiabatic rate of increase of LWC with
height, a function of pressure and temperature. Using
equations (2.8) and (2.7) in equation (2.6) we may write
cloud optical depth as a function of N,, cloud geometric
depth and adiabaticity

T = A (fqL N1 (2.9)

where A is a constant equal to (2437[/250/),2‘.‘])]/3‘ Thus,
cloud optical depth is a weak function of N,. This may
also be written in terms of LWP instead of cloud thickness
using the integrated version of equation (2.8)

1/6
r=N(Ii/3-LWP5/6-A-< 32 ) (2.10)
ad” ad

Increasing N, increases cloud optical depth and yields
the first indirect effect or aerosol-cloud radiative effect.
The dependence of cloud albedo, or reflectance on N, is
further muted: assuming conservative scattering allows
us to approximate (Lacis & Hansen, 1974)

T
e ]

~

@.11)

where 5 is a constant that varies depending on the value
of the asymmetry parameter (usually given symbol g)
and on assumptions in the derivation of the equation.
The asymmetry parameter is the inteusity-weighted aver-
age of the cosine of the scattering angle. For a typical
g of 0.85, n ranges between 7 (Petty, 2006) and 13.3
(Tornow et al., 2020). An interesting feature of the
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1/3 power to which N, is raised and the relationship
between a and r is that at high N, the effects of
increasing N, yield diminished returns. One conse-
quence of this is the importance of the pre-industrial
state in determining ERF,, (Carslaw et al., 2013).
The dependence of 7 on N, and a on 7 is shown in
Figure 2.2.

Aerosol-induced changes in cloud albedo translate into
changes to the radiative balance at the top of the atmo-
sphere R,

dR = d(RB[Agqc + (1 — Ay, ] — R%) (2.12)
where RiS“W denotes incoming shortwave radiation, RPy
outgoing longwave radiation, ¢ cloud fraction, and
Aqyaq the clear- and cloud-sky albedo at the top of the
atmosphere. The longwave term in equation (2.12) can
be neglected in warm clouds unless aerosol changes in
cloud top temperature are of interest or the clouds are
thin (e.g., Garrett et al., 1 February 2002). Furthermore,
changes in Ris"w are usually also negligible, at least on
sub-decadal timescales. Diamond et al. (2020) provide
a recipe to relate changes in radiative balance to the
albedo of a scene with partial cloud cover, accounting for
the transmissivity and albedo of the atmosphere above
clouds. Over ocean in unpolluted situations, when both
the surface albedo and the albedo of the atmosphere
above the clouds are small and the change in the cloud
fraction is not too large, it may be possible to approximate
equation (2.12) as

dR x d(a - ¢) (2.13)
where a is the cloud albedo. However, over land or
sea ice, in polluted conditions, and likely also for high
or deep clouds (because the approximation relies on the
above-cloud albedo being similar to the clear-sky albedo),
equation (2.13) would not be valid.

2.5. APPROACHES TO DETERMINING
SUSCEPTIBILITY

Aerosol effects on the radiative properties of clouds
can be quantified by relating a change in scene albedo
dR = d(a - ¢) (equation (2.13)) to the perturbation in
cloud droplet concentration dN, that caused the change
in scene albedo,

dn R dlna dinc
dinN, ~dInN, dInN,’ 219
where the logarithmic derivative dInR/dInN, =

(dR/R)/(dN,/N,) is introduced for convenience and
will broadly be referred to as susceptibility, following
Platnick and Twomey (1994). The perturbation in cloud
droplet number concentration is assumed to be the result
of a change in aerosol number concentration dN,, not the
result of precipitation or thermodynamic changes in the
cloud. Its numerical value corresponds to the percentage
change in R that is obtained for a 1% change in N,.
Expressing cloud albedo as a nested function of N,

@ = a{z[N;, LWP(N,)]}, (2.15)

where a(7) is given by equation (2.11) and z(N,4, LWP) by
equation (2.10). Applying the chain rule provides the fol-
lowing simplification for warm clouds:

dlne _dlna dint
dinN,  dlnzdInN,

_Odlna (dlnz  dlnz dInLWP
" dlnz \dInN, JInLWP dInN,
1  5dInLWP
=(l- Sy St
( a)(3+6 i N, > (2.16)

Note that partial derivatives (symbol: d) quantify changes
that arise with respect to one specific variable, keeping
all other variables at fixed values. Partial logarithmic
derivatives of a power law like equation (2.10) correspond



to its exponents. They are thus independent of any
constant pre-factors. Derivatives indicated by “d” com-
prise total changes, including nested dependencies. Such
dependencies can encapsulate very complex relation-
ships, for which no theoretical expressions are available;
the LWP r sponse to droplet number perturbations,
dIn LWP/dIn N4, for example, depends on the full
complexity of cloud dynamics.

Summarizing equations (2.14) and (2.16) yields the
overall susceptibility of a partially cloudy scene (Bellouin
et al., 2020),

dln R _l-a 5(l —a)dInLWP  dlInc @.17)
dInNd 3 6 dlnNd dlnNd ’
_ 0dInR olnR dInLWP
"~ dlnN; AdInLWP dInN,
dlnR dlnec
2.18
dlncdInN, (2-19)

where the first equality, like equation (2.16), strictly
applies only to warm clouds. The second equality assumes
that it is more generally suitable to quantify variability in
R based on a functional relationship R=f(N,, LWP, c).
We can identify the first term on the right-hand side of
equation (2.18) as a quantification of the Twomey effect,
that is, the change of R with N,, when keeping LWP (and
¢) constant. The second and third terms correspond to
the response of LWP and ¢ to changes in droplet number,
respectively. These terms are usually referred to as LWP
an cloud fraction adjustments.

Traditionally, logarithmic derivatives are empirically
quantified as linear regression slopes in log-log space.
Total derivatives correspond to one-dimensional lin-
ear regression (e.g., Quaas et al.,, 2009). For partial
derivatives, other dependencies must be kept constant
through stratification of the dataset (e.g., McComiskey
et al.,, 2009), or controlled for by applying multi-linear
regression (Fig. 2.3b).

The pragmatic linear regression approach faces
methodological and conceptual difficulties. First of
all, the linear regression approach only quantifies cor-
relation but does not guarantee causality, that is, it is
not clear if observed variability in LWP is indeed caused
by variability in N, (Gryspeerdt, Goren, et al, 2019;
McCoy, Field, et al., 2020). As an example of a correla-
tion between LWP and N, that is not caused by cloud
processes, consider a dataset that either samples under
moist and clean oceanic conditions or under dry and pol-
luted continental conditions. A second problem related to
the regression approach is that the variability exhibited by
a dataset varies with the scale of data aggregation (Bender
et al., 2019; McComiskey & Feingold, 2012; Possner
et al., 2016; Schutgens et al., 2016). Here, the scale of
data aggregation refers to how data are averaged at a
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scale greater than the process scale at which ACI occurs
before analysis is performed (McComiskey & Feingold,
2012).

A linear regression between the logarithms of quantities
further assumes a power law relationship with constant
exponents. It is thus not taken into account that such a
relationship may only be a valid approximation under
certain conditions. As an example, equation (2.10) is
only valid if a broadening of the droplet size distribution
from collision-coalescence can be neglected (Feingold
et al.,, 1997). We consider LWP adjustments as another
example of this challenge: Compare LWP adjustments
in a raining and a non-raining warm cloud. For the
raining state, we expect dInLWP/dIn N, > 0 from rain
suppression. For the non-raining state, droplet-size effects
on entrainment dominate and dIn LWP/dInN, < 0. In
addition to this state dependence, which is tied to the
internal state of a cloud field, the LWP adjustment may
also depend on external cloud controlling factors, for
example, on above-cloud moisture (Chen et al., 2014),
which control the entrainment response to droplet size.
We denote this as regime dependence. Both state and
regime dependence of susceptibility can be accounted
for by a stratification of the dataset prior to quantifying
the aerosol-cloud relationship, in our example based
on the occurrence of rain, and based on above-cloud
moisture (Gryspeerdt, Goren, et al., 2019). Biases from
imbalanced sampling within a specific state and regime,
for example, in the form of sparsely sampled very high
N, in the non-precipitating regime for high above-cloud
RH, can be addressed through joint histograms (e.g.,
Gryspeerdt, Goren, et al., 2019) or, equivalently, through
the use of bin-average values (Glassmeier et al., 2021;
Rosenfeld et al., 2019). Finally, the response dLWP to
dN, may not be instantaneous but evolve over time so
that susceptibility is time-dependent on the time that
has evolved since the aerosol conditions of a cloud sys-
tem were perturbed (Glassmeier et al., 2021). The next
section will discuss recent approaches to address these
challenges.

2.6. NEW METHODOLOGICAL APPROACHES

The proliferation of new, increasingly sophisticated
observations and new simulations with increasingly com-
plex models and/or increasingly high grid resolution
has led to an explosion in the availability of data that
contains information on ACIs. To make sense of the
data, new statistical approaches drawing on increasingly
popular machine learning algorithms can be employed.
We highlight here only a small sample of the tech-
niques available, chosen according to our own familiarity
with them.
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2.6.1. Gaussian-Process Emulation to Address State
Dependence

If the albedo susceptibility is not dependent on the state
of the cloud field, in particular the absolute values of N,
LWP, and ¢, the scene albedo R varies with cloud proper-
ties according to a power law, or log-log linear function,

R=i-NSLWP’¢' & InR=1Ini+alnN,+ fInLWP

+ylne, (2.19)
where i, a, f,y are constants that can be determined
from multi-linear regression. Figure 2.3b illustrates a
two-dimensional version of equation (2.19).

For a state-dependent susceptibility, scene albedo
R=f(N; LWP,c) is given by a more complicated
function f. Figure 2.3a illustrates such a functional
relationship for our two-dimensional example. A power
law approximation is possible for limited regions of
the Ny4-LWP state space, in particular for fully overcast
states with ¢~ 1. Beyond this region, the power law
approximation cannot capture the full complexity of the
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R-state space relationship as indicated by the missing
curvature of scene albedo isolines in Figure 2.3b. While a
power law relationship can be determined from (log-log)
linear regression, mapping-out relationships like the
one illustrated in Figure 2.3a requires surrogate models,
or emulators, for how R, or the complex function f,
respectively, varies across state space. Gaussian-process
emulation provides such a description. We refer the
reader to Rasmussen and Williams (2006) and Lee et al.
(2011) for a detailed explanation. The scene-albedo
surface in Figure 2.3a corresponds to the mean of a
two-dimensional Gaussian process (a functional ana-
log of a multivariate Gaussian distribution), whose
mean and covariance functions have been constrained
by a set of training data points. This effectively corre-
sponds to an interpolation between the known training
data points with thoroughly quantified uncertainty
(the latter is not illustrated in Fig. 2.3). Relationships
obtained in this manner can then be differentiated to
obtain state-dependent partial derivatives as illustrated in
Figure 2.3c,d.
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Figure 2.3 Scene albedo R’ as a function of cloud droplet number concentration, Ny, and liquid-water path,
LWP, as obtained from (a) Gaussian process emulation representing the general function R’ = f'(N,, LWP) =
fINg4, LWP, c(N,,LWP)] and (b) bi-linear regression with an underlying model R' = In/' +a’InNy+ g’ InLWP
(cf. equation (2.19)). The white contour indicates where cloud fraction approaches unity, ca1, such that fully
overcast conditions are expected in the upper right corner of the N -LWP space. Comparing (a) and (b) in this
region illustrates that the bi-linear model (b) is an appropriate approximation of the more complex relationship
(@) under such conditions. (c, d) State-dependent values for partial derivatives (color contours) as derived from
(@ and according to eauation (2.17) (black line contours, only shown in the non-raining regime where they
apply). Plots are adapted frem Glassmeier et al. (2019) and apply to stratocumulus as modeled with large eddy
simulations under the specific boundary conditions outlined in the reference.



2.6.2. Tendency Emulation to Address Time
Dependence of Adjustments

Uncertainty in adjustments constitute an important
uncertainty in overall ERF,; (Bellouin et al., 2020).
Forcing from adjustments in LWP was estimated to be
between 0 and 0.56 Wm™2 and from adjustments in cloud
cover to be between —1.14 and 0 Wm™ (Bellouin et al.,
2020) based on observational constraints. Thus, methods
to leverage observations to constrain adjustments are
impactful. LWP adjustments, adj=dInLWP/dInN,,
as well as cloud-fraction adjustments, dInc/dInN,,
aim to quantify the effect of perturbing certain cloud
processes, like precipitation formation and entrainment,
on the state of the cloud as captured by LWP and c.
(A more direct, but also less feasible, way of doing so
would be to quantify aerosol effects on process rates; see
Miilmenstddt et al. (2020) for an interesting approach
along these lines). These perturbations to process rates
over time manifest in perturbations to the cloud state. In
particular, they are absent at the moment of perturbation,
adj(t = 0) = 0, where ¢ indicates time since the perturba-
tion. For stratocumulus cloud fraction, Christensen et al.
(2020) show that initially strong aerosol effects arising
from aerosol-enhanced cloud formation decrease over
time. They specifically observe that differences in cloud
fraction become less pronounced over a timescale of days.
Also for stratocumulus, Glassmeier et al. (2021) have
shown that the value of time-dependent adjustments,
adj = adj(?), evolves toward a steady state value adj(oo)
according to

adj() = adj(co) [1 —exp <--‘—)] , (2.20)

Tadj

where the equilibration timescale of the adjustment,

T4 = 7 [1 — d - adj(c0)] , 2.21)
scales with the steady state value and 7=9.6 h and
d = 1.6 are specific to the non-raining Sc studied. Glass-
meier et al. (2021) determine the value of adj(co) from
short-term LWP tendencies, or LWP time series, respec-
tively. Emulation of such tendencies v =dIn LWP/dr
allows the authors to represent the LWP evolution of an
Scdeck as a flowfield v(NV,;, LWP) in the space of Sc states
spanned by N, and LWP. Figure 2.4 illustrates such a flow
field and its relationship to adj(co).

2.6.3. Causality of LWP Adjustments

Examining covariances between aerosol, cloud micro-
physics (e.g., N,), and cloud macrophysical quantities
is inherently causally ambiguous. Covariances between
these quantities can result from external factors as well
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Figure 2.4 Liquid water path tendencies v =dInLWP/dt as
function of Ny and LWP. The LWP steady state, characterized
by v =0, is indicated by the blue line with negative slope (gray
in monochrome version). Its slope corresponds to the steady
state LWP adjustment adj(co) defined in the text. See Glassmeier
etal. (2021) for details.

as from real ACI (Stevens & Feingold, 2009), in contrast
to the steady state adjustments discussed in section 2.6.2.
In the case illustrated in Figure 2.5, N, may affect LWC
through adjustments (the strength of this effect is charac-
terized as dInLWP/dInN,, as discussed in section 2.5).
Any change in liquid content may in turn affect pre-
cipitation processes in clouds that are precipitating or
near to precipitating. However, precipitation strongly
affects N, through coalescence scavenging. Wood et al.
(2012) estimate that precipitation scavenging reduces N,
by a factor of 2-3 over remote oceans. Precipitation also
reduces concentrations of CCN by removing both inter-
stitial and activated aerosol through wet scavenging. Air
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Figure 2.5 A schematic of causal links between cloud, aerosol,
precipitation, and meteorology in warm clouds (Gryspeerdt,
Goren, et al., 2019; McCoy, Field, et al., 2020; Michibata
& Suzuki, 2020). Green lines (gray in monochrome version)
indicate a positive relationship. Red (dashed in monochrome
version) denotes a negative relationship. Blue (black in
monochrome version) is ambiguous.
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mass history affects both aerosol and clouds, inducing
further potentially spurious covariance between N,
and cloud macrophysical properties and complicating
the constraint of dInLWP/dInN, from observations
(Mauger & Norris, 2007). As a specific example of the
covariability discussed in section 2.5, the present-day
configuration of sources and sinks of aerosol, with strong
continental aerosol sources and strengthening precipi-
tation away from continents, yields a spurious negative
dInLWP/dInN, in important cloudy regions such as the
stratocumulus-cumulus transition off the Chilean coast
(Engstrom et al., 2015; Gryspeerdt, Goren, et al., 2019;
Mauger & Norris, 2007; McCoy, Field et al., 2020; Wood
et al.,, 2012).

Several methods have been proposed to cut this causal
Gordian Knot. These must rely on either modeling
(where causality can be controlled) or examining case
studies where causality is mostly unambiguous (discussed
below in section 2.6.4). An example of the empirical
approach is given by Gryspeerdt, Goren, et al. (2019),
who use variability observed by Moderate Resolution
Imaging Spectroradiometer (MODIS) stratified accord-
ing to volcanic emissions of aerosol to isolate a causal
signal. Some examples of the modeling-based approach
are given by D. T. McCoy et al. (2018) and McCoy,
Field, et al. (2020), who utilize global simulations to
study extratropical weather regimes where the effects of
precipitation on aerosol and N, are disabled to isolate
the effect N, - LWP and N, — ¢. The methodology
assumes that models are able to replicate the effects of
precipitation scavenging on N, and CCN in a realistic
manner and that nonlinear feedbacks between adjust-
ments and precipitation are negligible (e.g., precipitation
is primarily determined by the state of the atmosphere,
not by adjustments).

In short, observational inference must either use a case
study where causality is less opaque, or use a model where
causality can be controlled (but where the model must be
assumed to accurately reproduce the non-ACI parts of the
systemin Fig.2.5)toinferd InLWP/dInN,. In the follow-
ing section, we will briefly discuss the use of case studies
to study ACls.

2.6.4. Causality Inference from Transient Events

Asdiscussed in the preceding section, causal ambiguity
greatly hampers our ability to cleanly infer the strength
of ACls from observations. Examination of case studies
where changes in aerosol are disentangled from meteo-
rology and precipitation has been used in many studies
to constrain AClIs. These so-called “opportunistic experi-
ments” in aerosol forcing offer an opportunity to assign
causality to ACI inferred from observations (Christensen
et al., 2021).

The canonical example of an opportunistic exper-
iment is the bright lines left in cloud cover by ships
(so-called ship tracks), which have been observed since
the first satellite images of Earth (Conover, 1966).
Ship tracks are a common feature of oceanic clouds
in the anthropocene and many studies have examined
their behavior in an attempt to isolate the effect of
aerosol on clouds (Ackerman, Toon, Taylor, et al.,
2000; Diamond et al., 2020; Goren & Rosenfeld,
2014; Gryspeerdt, Smith et al, 2019; Hobbs et al.,
2000; Toll et al., 2017, 2019; Thornton et al., 2017)
(Web of Science suggests >70 papers since 1990),
although recent work shows that estimates of the
radiative effect of ACI and LWP adjustments in Sc
from ship tracks are up to 200% too large when com-
pared to the climatological effect (Glassmeier et al.,
2021).

While less visually striking, many other opportunistic
experiments ha' e been discovered and used to constrain
ACI (M. Christensen et al., 2022). These include volcanic
emissions of sulfur dioxide from strong emitters such
as Kilauea (Hawaii) (Fig. 2.6), Holuhraun (Iceland),
and the Vanuatu archipelago (Carn et al., 2017; McCoy
& Hartmann, 2015; Mace & Abernathy, 2016; McCoy
et al., 2018; Malavelle et al., 2019; Yuan et al., 2011)
as well as smaller sources such as the volcanoes on the
Aleutian and Sandwich islands (Gasso, 2008). Volca-
noes have the capability to substantially affect boundary
layer aerosol and by extension cloud over duration of
the eruption. However, this relatively short time period
means that meteorological variability may make changes
in cloud properties difficult to interpret (McCoy et al.,
2018). Steady changes in aerosol sources in step with
economic activity and emissions controls, most notably
in East Asia and North America, give a longer timescale

Figure 2.6 MODIS Aqua imagery of the 2008 eruption of

Kilauea, Hawaii. MODIS thermal anomalies are shown in red
(impossible to see by eye in monochrome version). The OMI
boundary layer SO, retrieval is overlaid in orange (large gray
pixels in monochrome version).



during which the effects of aerosol and meteorological
variability can be more cleanly separated (Bennartz,
2007; McCoy et al., 2018). Some examples of emissions
controls that have had changes in cloud microphysics
associated with them include the implementation in the
United States of the 2009 Clean Air Interstate Rule
and 2010 Acid Rain Program. In the People’s Republic
of China, similar controls include the twelfth S-year
Plan and preparations for the 2009 Beijing Olympic
Games (McCoy et al., 2018). However, the slower nature
of these changes introduces the confounding factors
of internal variability and climate change (Manaster
et al., 2017; Norris et al., 2016; Zelinka et al., 2020).
The cycle of aerosol emissions between weekdays and
weekends has also been suggested as a path toward
assigning causality in ACI (Quaas et al., 2009). More
generally, the contrast between polluted and pristine
regions (Hamilton et al., 2014) may be considered to
aggregate anthropogenic activity into a single oppor-
tunistic experiment (Koren et al., 2014; McCoy, McCoy,
et al., 2020).

2.6.5. Ensemble Approaches to Uncertainty
Quantification and Reduction in GCMs

General circulation models (GCMs) must represent
AClIs to model Earth’s climate and are also frequently
used to study ACIs on large scales. Uncertainties in
GCMs are associated with their initial conditions and
internal variability, their “structural” representation of,
or omission of, key processes, and their uncertain input
datasets and parameters. The uncertainty associated with
a subset of the uncertain input parameters, the “para-
metric uncertainty,” can be quantified using perturbed
parameter ensembles. In this approach, a large number
of simulations are run with parameters varied, or inputs
scaled, over plausible uncertainty ranges determined by
the modeling team or other experts.

Some GCM ensembles aimed at ACI studies use designs
where one parameter (or set of parameters) is varied at
a time, and the effect of that parameter is determined
directly (e.g., Lohmann & Ferrachat, 2010; Liu et al,,
2018). Others vary many parameters at once and infer the
importance of each parameter from subsequent analysis.
This procedure allows interactions between parameters
to be studied. It is feasible to vary around 50 parameters
in today’s GCMs in this way if around 200 GCM simu-
lations of a year are integrated. To formally quantify the
parametric uncertainty, tools such as Gaussian process
emulation (see section 2.6.1) are then used to interpolate
over the 50-dimensional parameter space and the range
of model output variables such as radiative forcing in
the emulated simulations is a measure of the parametric
uncertainty in that output variable. Such techniques have
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been applied to understand parametric uncertainty in
several climate models (e.g., Sexton et al., 2012; Qian
et al., 2018). Focusing on AClIs, radiative forcing from
the Twomey effect in a chemical transport model was
calculated by Carslaw et al. (2013) and similar techniques
were applied to a GCM ensemble described by Yoshioka
et al. (2019) with a wider range of possible aerosol indi-
rect forcing mechanisms by Regayre et al. (2018). These
authors found that parametric uncertainty in the aerosol
forcing is dominated by uncertainties in aerosol emissions
and in the parameterization of clouds and their radiative
effects. Studies of ACIs in a convective cloud model
by Johnson et al. (2015) highlighted the high sensitivity
of a convective cloud to aerosol concentrations and to the
representation of cloud microphysics.

More recent work is focused on using observations to
constrain the parameter space by eliminating implausible
model variants, and thereby reducing uncertainty in the
model output radiative forcing estimate (Johnson et al.,
2020; Regayre et al., 2019; Watson-Parris et al., 2020).
At the time of writing in 2021, these authors were able
to reduce the uncertainty in their (ERF,,;) estimate by
only 7%, though the direct aerosol effective radiative
forcing uncertainty was reduced by 33%. Reducing the
uncertainty is intrinsically difficult because not all param-
eters can be easily constrained and because each value of
radiative forcing in the plausible range can be achieved
with many different combinations of inputs, that is, a
situation of equifinality (Lee et al., 2016). However, there
is scope to reduce the uncertainty further by refining the
statistical techniques and by using a more diverse set of
complementary observations.

2.6.6. Regime Classification

The multiscaled nature of ACI means that patterns
of space and time covariability cannot be restricted to
a single length scale. One example is the structure of
open and closed cellular convection in clouds (Fig. 2.7).
This bi-stable morphology resembles Bernard-Rayleigh
convection and occurs across the globe, but was not
described until the first images of clouds from space
revealed their structure (Agee, 1984). It is hypothesized
that suppression of precipitation by aerosols may inhibit
the transition from closed to open cells (Rosenfeld et al.;
2006). This has been examined in satellite (Christensen
et al., 2020; Goren & Rosenfeld, 2012, 2015) and aircraf't
(Abel et al., 2020) observations and in high-resolution
simulations (Grosvenor et al., 2017; Possner et al., 2018).
While structures such as open and closed cells present
a simulation challenge at all but the highest resolutions
(Kazil et al., 2011), machine learning presents an objec-
tive pathway toward classifying these convective regimes
(Muhlbauer et al., 2014; McCoy, Wood, et al. 2017;
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Figure 2.7 MODIS Terra imagery of open and closed cellular
convection over the Pacific, 1 February 2016.

Wood & Hartmann, 2006). Recent analysis based on
training a convolutional neural network provides a global
examination of the properties of pockets of open cells,
although it assigns a relatively slight radiative impact to
closing all such pockets in the present-day (Watson-Parris
etal., 2021).

Similar regime classification techniques exist for larger
atmospheric structures, such as midlatitude cyclones.
Approaches exist to identify cyclones and fronts (Field &
Wood, 2007; Graf et al., 2017; Naud et al., 2010). Once
the cyclones are isolated, the covariability of aerosol
and clouds within them can be examined (Grandey,
Stier, & Wagner, 2013; Grandey, Stier, Grainger, et al.,
2013; Naud et al., 2017). Regime classification in large
datasets of systems where variability in meteorologi-
cal state and precipitation is substantial provides an
opportunity to understand the causal linkages in the
aerosol-cloud-precipitation system (McCoy et al., 2018).
More complex regime classification techniques that char-
acterize more of the frontal structure (Spensberger &
Sprenger, 2018) are likely to yield additional insight into
ACI occurring in this regime.

More broadly, k-means clustering offers a regime
classification approach that can be applied to both
observations and models with minimal assumptions
(Williams & Webb, 2009). Application of this technique
by Gryspeerdt and Stier (2012) demonstrated that the
observationally inferred strength of ACIs (the sensitivity
of N, to aerosol optical depth, AOD) is greatest in the
stratiform cloud regime, and this sensitivity was much
more difficult to detect in cirrus and deep convective
clouds. Further machine learning approaches to under-
standing clouds and climate are discussed in Chapter 16:
Machine Learning for Clouds and Climate.

2.7. AEROSOL EFFECTS ON ICE AND
MIXED-PHASE CLOUDS

Our discussion so far has focused on warm clouds;
introducing the ice phase and generalizing to other cloud
types lead to much additional complexity and associated
uncertainty. Because warm clouds are shallow and their
longwave emission temperatures are comparable to that
of the surface, longwave radiative effects can usually be
neglected in equation (2.12). For cirrus (Ci), in contrast,
the longwave effect even dominates the shortwave effect
(L’Ecuyer et al., 2019). To quantify aerosol effects on cold
clouds, it is therefore necessary to extend equation (2.18)
such that it accounts for perturbations to concentra-
tions of ice nucleating particles (INP), the number of ice
crystals V;, and ice water path. To date, a comprehensive
quantification of the effects of aerosols on the radiative
effects of cold clouds is missing, with available estimates
largely limited to global modeling studies (Gettelman
et al., 2012; Gryspeerdt et al., 2020; Heyn et al., 2017;
Jensen & Toon, 1992; Lohmann et al., 2008; Penner et al.,
2009). We therefore restrict our discussion to a qualitative
overview of aerosol effects on cold clouds, as summarized
in Table 2.1, but see also Chapter 4: Ice Particle Properties
and Cirrus Emissivity. We do not discuss the details of
the ice nucleation process or the role of INP chemical
composition in it, and instead refer the reader to recent
dedicated reviews by Murray et al. (2012) or Kanji et al.
(2017).

We distinguish the formation of in situ cirrus from
that of liquid-origin, or anvil cirrus. In situ Ci can form
either homogeneously, that is, through homogeneous
freezing of solution droplets, or heterogeneously, that is
through deposition freezing onto the surfaces of INP.
Both mechanisms for Ci formation can coexist and cloud
response depends on their relative importance (e.g.,
Barahona et al,, 2010; Gettelman et al., 2012; Zhu &
Penner, 2020). Aerosol effects on Ci are strongest if the
aerosol perturbation leads to a significant shift from
homogeneous to heterogeneous ice nucleation because
this means replacing the freezing of many solution
droplets by ice nucleation on much fewer INP. The result
is the formation of drastically fewer, but much larger
ice crystals (Kdrcher & Lohmann, 2003). The effect
is enhanced by faster cloud dissipation through faster
sedimentation of the larger crystals. A deliberate shift of
homogeneous Ci formation to heterogeneous formation
and faster sedimentation by seeding Ci with efficient INP
has been discussed as a possible form of solar radiation
management (Gasparini & Lohmann, 2016; Lohmann
& Gasparini, 2017; Mitchell & Finnegan, 2009; Penner
et al., 2015; Storelvmo et al.,, 2014). A third pathway
of Ci formation is through the homogeneous freezing
of liquid water droplets (in contrast to the solution
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Table 2.1 Cloud response to aerosol perturbations by cloud and aerosol type. Cloud response is separated into the initial albedo
response and adjustments. Processes targeted by suggestions for solar radiation management are highlighted by bold font,
processes targeted by weather modification attempts in italics. Note that INP are considered non-soluble. See main text for

details.
Cloud type Aerosol type Initial albedo response Adjustments
Warm CCN Higher albedo Entrainment-evaporation enhancement, rain
suppression/increased lifetime
Homogeneous Ci CCN Slightly increased albedo
Homogeneous Ci INP Lower albedo Faster sedimentation/reduced lifetime
Heterogeneous Ci INP Slightly increased albedo
Anvil Ci CCN Higher albedo Slower sedimentation/increased lifetime
Mixed phase INP Glaciation/reduced albedo Faster precipitation formation/reduced
lifetime/reduced orographic spill-over
Mixed phase CCN Higher albedo Evaporation/WBF enhancement, riming
suppression
Deep convective INP Glaciation/reduced albedo Hail suppression
due to glaciation
Deep convective CCN Higher albedo Decreased supersaturation/updraft invigoration,

domain-wide adaptation of convective activity

droplets discussed earlier) in the anvil regions of deep
convective clouds, which occurs at temperatures <—38°C.
The number of cloud droplets available for homogeneous
freezing depends on the number of CCN such that more
but smaller droplets lead to more but smaller crystals
(analogous to the Twomey effect) and anvils that persist
longer due to reduced sedimentation velocities (Fan et al.,
2013; Gryspeerdt, Miilmenstddt, et al., 2018; Morrison
& Grabowski, 2011; Wang et al., 2020; Zhao et al., 2019).
Increasing INP concentrations in a cloud that already
freezes heterogeneously can also increase ice crystal
number concentration (Zhou & Penner, 2014). Likewise,
increasing the abundance of CCN/solution droplets
in a homogeneous Ci may increase ice crystal num-
ber concentration (Gettelman et al., 2012; Gryspeerdt,
Miilmenstadt, et al., 2018; Kédrcher & Lohmann, 2003).
Overall, however, the coupling of solution droplets and
INP to Ci crystal number is much weaker in comparison
to meteorological controls like updraft and temperature
than for CCN and cloud droplet number (Gryspeerdt,
Milmenstadt, et al., 2018; Kadrcher & Lohmann, 2002,
2003).

Ice crystals in mixed-phase clouds result from the freez-
ing of cloud droplets that contain INP. For such crystals,
the Wegener-Bergeron-Findeisen (WBF) (Bergeron, 1935;
Findeisen, 1938; Storelvmo & Tan, 2015; Wegener, 1911)
process leads to rapid growth of ice crystals at the expense
of cloud water, that is, glaciation of the cloud. This means
that ice crystal size is not controlled by the number of INP.
The most important effect of perturbations to the INP

concentration is therefore perturbations to the glaciation
state, rather than changes in ice crystal size.

Glaciation frequently results in the formation of
precipitation. Glaciogenic cloud seeding, that is, the
deliberate introduction of efficient INP, usually silver
iodide (Langmuir, 1950; Vonnegut, 1958), has thus been
attempted as a means to shift orographic precipitation
pattern from the leeward to the windward side of moun-
tain ridges. While a chain of cloud processes observed
during the SNOWIE field campaign (Tessendorf et al.,
2019) has been documented (French et al., 2018), a
statistically significant documentation of the efficiency
of glaciogenic seeding remains challenging (Flossmann
et al., 2019). Glaciogenic cloud seeding is also attempted
to inhibit hail formation by favoring the ice-pathway
of precipitation, that is, ice-ice collection and rimed
snow, over the mixed-phase pathway leading to hail
A comprehensive series of experiments in Switzerland
concluded the absence of a statistically significant effect
of a randomized seeding strategy on hail kinetic energy
(Federer et al., 1986), while a more recent study reports
a significant effect for a moderately increased sample
size and considering variability in seeding strength rather
than randomized seeding (Dessens et al., 2006).

Pathways in mixed-phase precipitation formation can
also be perturbed by an increase in CCN. Smaller cloud
droplets reduce the efficiency of riming but increase
evaporation, which in turn enhances the efficiency of
the WBF process. Both sensitivities are notably weaker
than that of autoconversion to droplet size (Glassmeier &
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Lohmann, 2016). This is only one example of a tendency
of adjustments in mixed-phase clouds to compensate
each other, in line with the notion of clouds as buffered
systems (Stevens & Feingold, 2009). Furthermore, the
total amount of precipitation is subject to external con-
straints, which enforce a re-distribution of precipitation
formation pathways in response to aerosol, rather than an
overall change. For the example of stratiform orographic
precipitation, such a constraint arises from the total con-
densation allowed for by orographic lifting (Glassmeier
& Lohmann, 2018).

The effect of additional CCN on deep convective
clouds has led to much debate. Considering individual
updrafts, Rosenfeld et al. (2008) suggested an “ice-phase”
pathway where smaller droplets would be more prone to
cross the freezing level, which would result in convective
invigoration through additional latent heat of freezing,
and also precipitation formation and sedimentation.
A recent theoretical study by Igel and van den Heever
(2021) emphasizes the point made by Rosenfeld et al.
(2008) and Grabowski and Morrison (2020) that the
latent heat of freezing is approximately balanced, but
slightly exceeded, by the energy needed to loft the con-
densate, so invigoration can actually only occur when
the sedimentation of precipitation reduces the weight of
the air parcel, making it more buoyant. Igel and van den
Heever (2021) and Grabowski and Morrison (2016, 2020)
agree that as a result the overall invigoration effect is
often very weak.

Perhaps more effective is the “liquid-phase” path-
way for convective invigoration described by Fan et al.
(2007), Koren et al. (2014), Grabowski and Morrison
(2016) and Fan et al. (2018). In this case, a convective
invigoration is the result of additional latent heat of
condensation due to a reduced in-cloud supersaturation
under high-aerosol conditions. The invigoration, which
is manifested in increased updraft speeds, can result
in the “secondary” activation of aerosols well above
the cloud base in comparison to unperturbed clouds.
These aerosols were either too small to activate at cloud
base or were entrained into the cloud from its edges. As
these aerosols act to reduce the supersaturation, they
may also feed back to affect the altitude at which the
latent heat is released. However, isolating these com-
plex effects of aerosols on deep convective clouds in
observations is challenging, perhaps even impossible
(Fan et al., 2018; Grabowski, 2018; Miltenberger et al.,
2018).

When considering the embedding of convection in
its environment beyond invigoration effiects on individ-
ual cloud parcels (Morrison & Grabowski, 2013), the
“embedding pathway” suggests that invigoration effects
are likely restricted to localized areas rather than spread
over entire regions (Abbott & Cronin, 2021; Morrison

& Grabowski, 2013). Increased aerosol loading is also
observed to lead to more, rather than stronger, convection
(Abbott & Cronin, 2021; Blossey et al., 2018; Grabowski
& Morrison, 2020). Grabowski and Morrison (2020)
have associated this with mesoscale circulations, which
they also suggest as a likely explanation for lightning
enhancements in shipping lanes (Thornton et al., 2017).
In a recent study, Abbott and Cronin (2021) more-
over describe a “humidity-entrainment” mechanism for
invigoration, which attributes invigoration to increased
humidity caused by aerosol-enhanced detrainment and
evaporation. As well as questioning the relevance of
original “ice-phase” pathway for individual updrafts
(Grabowski & Morrison, 2020), recent research has also
suggested that invigoration effects are likely restricted to
small areas rather than spread over entire regions (Abbott
& Cronin, 2021).

2.8. SEMI-DIRECT EFFECTS

Semi-direct effiects of aerosols on clouds were first so
described by Hansen et al. (1997) and are associated with
the effect of absorbing aerosols on local temperatures.
The magnitude of the effects can be very large (tens of
Wm™2) locally, but both regional and global effects are
poorly understood. The lack of understanding stems
from two key sources: first, the effiects depend strongly on
the location of aerosols relative to clouds (Johnson et al.,
2004), and second, calculation of semi-direct radiative
effiects requires an atmospheric model, and the simulated
effects depend both on (frequently large) model biases
in cloud cover and optical thickness and on internal
variability.

Just a cloud droplet number concentrations are criti-
cal to understanding indirect effiects, heating rates in the
vicinity of clouds arecritical to understanding semi-direct
effiects. Instantaneous heating rates generally range from
0.1to3 Kday_] (Gordon et al., 2018; Johnson, 2005; Pan-
icker et al., 2014), which of course decrease substantially
when annual or monthly means are considered (Allen
et al., 2019). Local temperature changes resulting from
the heating rates can reach up to a few Kelvin.

The effect of absorbing aerosols on cloud cover can
be either positive or negative. Absorbing aerosols inside
clouds can lead to clouds evaporating, while absorbing
aerosols above temperature inversions can strengthen the
temperature inversion by heating the air. This second
effiect can lead to additional cloud cover as the entrain-
ment of dry air from above the boundary layer into
clouds is reduced if the inversion is stronger (Gordon
et al., 2018; Johnson et al, 2004; Koch & Del Genio,
2010). However, for above-cloud aerosols to have a strong
effect, the aerosol layer must be very close to the cloud
layer (Herbert et al., 2020). On the other hand, absorbing



aerosols below clouds can also enhance convection and
therefore cloud cover in some cloud regimes (Feingold
et al., 2005; McFarquhar & Wang, 2006).

Semi-direct effects are likely important in cloudy
regions where concentrations of absorbing aerosols,
mainly black carbon but also dust, are high. Regional
studies have focused on three key areas, among others. In
the Amazon rainforest, fires are frequent in the dry sea-
son, and different modeling studies find semi-direct effects
of different signs (Archer-Nicholls et al., 2016; Feingold
et al., 2005; Koren et al.,, 2004; Liu et al., 2020), and
magnitudes of order S Wm™ when averaged over a day or
a few days. In the southeast Atlantic stratocumulus deck,
which is in the outflow of the world’s largest source of
biomass burning aerosol in southern Africa, semi-direct
effects could exceed 10 Wm™2 locally, but the sign is again
uncertain (Gordon et al.,, 2018 Lu et al,, 2018; Mallet
et al, 2019; Yamaguchi et al., 2015). Similarly, large
effects may prevail in very polluted and cloudy areas
of South and East Asia (Menon et al., 2002) or nearby
oceans (Ackerman, Toon, Stevens, et al., 2000). However,
the semi-direct effects vary between and even within
models, depending, for example, on whether convection
is parameterized or explicit (Archer-Nicholls et al., 2016).
The constraint that overlying aerosols must be close to
cloud layers to exert negative semi-direct effects places
challenging requirements on both models and observing
instruments such as CALIOP, which are prone to errors
of a few hundred meters in precisely locating the height of
aer sol layers (Das et al., 2020; Rajapakshe et al., 2017,
Shinozuka et al., 2020).

Global modeling studies are similarly diverse in their
prediction of semi-direct effects, which is not surprising
given that they often cannot even agree on direct effects
of absorbing aerosol (Bond et al., 2013; Stier et al., 2013).
Global modeling studies have frequently investigated
semi-direct effects in the context of aerosol effects on
atmospheric dynamics (Mahajan et al., 2012); in this
context, they are a subset of “rapid adjustments.” Recent
Precipitation Driver and Response Model Intercompari-
son Project (PDRMIP) simulations with CMIPS models
found negative semi-direct effects of black carbon largely
cancel positive direct effects (Stjern et al., 2017). How-
ever, one noteworthy study (Allen et al., 2019) attempts
to reduce model biases via observational constraints and
finds semi-direct effects are globally positive, in contrast
to the CMIPS models. These global model intercom-
parisons also highlight the importance of semi-direct
effects on high clouds in climate models, which may be
a promising avenue for future work with more detailed
models. More generally, the lack of consensus even on
how semi-direct effects influence low clouds invites addi-
tional modeling and observational studies at a range of
scales.
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2.9. FIELD EXPERIMENTS

For decades, field campaigns have been conducted to
better understand ACls. Usually, these involve either
aircraft or surface measurements or both, although
tethered or untethered balloons, drones or airships are
also promising as the slower pace permits more detailed
sampling of individual clouds. The scale and scope
of ACI-focused field campaigns has steadily increased
since early observations of CCN by Woodcock (01 Oct.
1953) and others, who collected the aerosols on glass
slides mounted on their aircraft, or sometimes stretched
spider’s webs (Twomey, 1954). Here, we discuss only a
selection of the most recent field campaigns dedicated
to ACls for which major scientific outcomes are known,
with apologies for the inevitable omissions.

The important role of CCN in determining the prop-
erties of low clouds at low latitude was investigated in
campaigns in the southeast Atlantic between 2016 and
2018 (Zuidema et al., 2016). In the ORACLES (Rede-
mann et al., 2021), CLARIFY (Haywood et al., 2021),
LASIC (Zuidema et al., 2018), and AEROCLO-sa (For-
menti et al., 2019) campaigns, the effect of smoke plumes
from Africa on the important stratocumulus: to-cumulus
transition in the region is potentially critical to their
radiative effects (Yamaguchi et al., 2015; Zhou et al.
2017). A highlight of these campaigns for ACls was the
demonstration that entrainment of free tropospheric air
masses into the boundary layer can be suppressed by
pockets of open cells (Abel et al., 2020).

Low-level clouds at low latitudes have also been targeted
by the EUREC*A, and ATOMIC campaigns in the Barba-
dos trade cumulus region (Bony et al., 2017; Stevenset al.,
2021) were more focused on clouds than aerosols, but their
extremely large-scale (four aircraft, four research vessels,
two unmanned aerial vehicles [UAVs], and a surface sta-
tion) and broad-scope meant ACIs were also investigated.
We anticipate insights into the role of Saharan dust in sup-
pressing precipitation in trade cumulus clouds (Stevens
et al., 2021).

At the crossover point from low-latitudes to midlat-
itudes, the ACE-ENA campaign from the Azores in
2017 and 2018 (Zheng et al., 2021) studied both marine
stratocumulus and clouds associated with extra-tropical
cyclones. The current ACTIVATE campaign is also likely
to yield new insights into low-level clouds, also in the
North Atlantic, but further north and wesi in a simi-
lar region to that sampled by the NAAMES campaign
(Behrenfeld et al., 2019). Concurrently, a series of field
experiments (CAPRICORN, SOCRATES, MARCUS,
and MICRE) probed low clouds in the Southern Ocean
(McFarquhar et al., 2020). So far, a common theme of
all of these campaigns has been how clouds can create
favorable environmernts for the formation of new aerosol
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particles (McCoy et al., 2021; Sanchez et al., 2018; Zheng
et al.,, 2021), which may subsequently grow to act as
CCN. The proposed mechanism in the subtropics (at the
Azores) involves new particle formation in clean regions
of the upper boundary layer, while in the Southern Ocean
and north-western North Atlantic it appears to happen
at higher altitude, facilitated by upward transport of
precursors, perhaps in midlatitude cyclones.

The Southern Ocean campaigns also made extensive
measurements of INP concentrations and found them
to be much lower than observed earlier by Bigg (1973).
INP concentrations are hypothesized to be an impor-
tant contributor to climate model biases in the region
(Murray et al., 2021; Vergara-Temprado et al., 2018).
The deficiency of supercooled liquid in the Southern
Ocean is now addressed in the latest climate model sim-
ulations informed by these field campaigns (Gettelman
et al., 2020). Likewise in the northern latitudes, ongoing
analysis of the MOSAIC campaign data from the RV
Polarstern, which drifted in Arctic ice over the 2019-2020
winter season, is likely to yield additional insights into
the role of AClIs in the rapidly changing Arctic climate.

Deep clouds and their interactions with aerosols have
also been studied extensively recently, though aircrafts
do not usually sample convective cores so in situ mea-
surements are more limited. The synergistic Go-Amazon
and ACRIDICON-CHUVA campaigns in the Amazon
elucidated the aerosol-cloud life cycle in the Amazon rain-
forest (Andreae et al., 2018; Wang & Zhang, 2016). As
in the more recent ATom campaigns (Williamson et al.,
2019), intense new particle formation in the upper tro-
posphere was observed and hypothesized to supply
CCN to boundary-layer clouds. The significance of
upper-tropospheric aerosol production processes for
clouds was appreciated earlier by Clarke et al. (1998) and
others but it can now be studied in unprecedented detail,
and is one aim of the CAFE-Brazil mission of 2022.
Complementary measurements of ACls in deep clouds
have been collected more recently by the CAMP’EX
mission in fall 2019, which has studied cloud effects
on aerosol in air masses near the Maritime Continent
(Hilario et al., 2021). Early data suggest wet scavenging is
a dominant process shaping aerosol size distributions in
the free troposphere.

Aircraft measurements yielding detailed in situ infor-
mation are complemented by short- and long-term
remote sensing from the surface as well as from space
(section 2.10). Sometimes, clouds can be sampled directly
in this way: in fog, detailed in situ measurements can be
obtained at the surface over long periods directly. Two
recent notable field campaigns on aerosol-fog interactions
are C-FOG in eastern Canada (Fernando et al., 2021)
focused on coastal fog and WIFEX in the Indo-Gangetic
Plain between 2015 and 2019 (Ghude et al., 2017). While

a critical research question in all fog studies concerns the
activation of aerosol at low supersaturation (e.g., Mazoyer
et al., 2019), this is complicated in the severely polluted
environment of the Indo-Gangetic Plain by high concen-
trations of absorbing aerosol (Safai et al., 2019) which
could potentially lead to changes in supersaturation due
to heating effiects.

When clouds are higher, surface remote sensing mea-
surements using radar, lidar, and microwave techniques
are key to long-term studies of ACIs. The most prominent
surface remote sensing measurements are those of the
US Department of Energy’s ARM program, now in its
28th year of operations (Mather & Voyles, 2013), which
now has three permanent stations at the Southern Great
Plains, North Slope of Alaska, and Graciosa Island sites
as well as several mobile facilities which participated
in, or were the focus of, some of the campaigns listed
above, namely, LASIC, MOSAIC, and MARCUS. The
increased precision and sophistication of cloud radars
(Kollias et al., 2020), improved calculations of cloud
microphysical properties from surface retrievals (e.g., Wu
et al., 2020; Yang et al., 2019), and the introduction of
tethered balloon measurements (Dexheimer et al., 2019)
are likely the most exciting recent innovations for studies
of ACls.

2.10. NEW SATELLITE PRODUCTS

Many of the techniques for constraining ACI we
describe in earlier sections rely on satellite retrievals.
Satellite observations are attractive for several reasons:
they can provide observations of remote, pristine regions
that are critical in setting forcing from ACI (Carslaw
et al., 2013; Hamilton et al., 2014; McCoy, McCoy
et al., 2020), their large data volume allows detection
of relatively small amounts of ACI-induced variability
relative to meteorologically-induced variability (Bender
et al., 2019); and they can allow long-term observations
of regions that reveal trends and responses to transient
events (Bennartz et al., 2011; Li et al.,, 2018; McCoy
et al., 2018; Malavelle et al., 2019). We will briefly survey
common satellite observations used in evaluating ACI.

Constraint of the first indirect effect in liquid clouds
by satellite requires knowledge of aerosol that is relevant
to CCN and the cloud microphysical state (Nakajima
et al., 2001; Quaas et al., 2020). While passive near-IR
and visible retrievals by satellites are sensitive to cloud
droplet radius(r,), the more physically informative vari-
able describing ACI in warm clouds is N, (Wood, 2012)
(see section 2.4). This quantity can be calculated with
some assumptions usingretrievals of r and r, (Bennartz &
Rausch, 2017; Grosvenor et al., 2018; Grosvenor & Wood,
2014; Nakajima et al., 2001) (section 2.4). However, these
calculations require that clouds be plane-parallel, which



may potentially lead to substantial regional and sea-
sonal biases (Grosvenor & Wood, 2014; Zhang et al.,
2016, 2019). Similar retrievals are possible utilizing
microwave LWP (Bennartz, 2007), polarimeter droplet
radius (Alexandrov et al., 2012; Hasekamp et al., 2019),
and lidar ob ervations of optical depth (Hu et al., 2007,
Li et al., 2018). Each of these retrievals has assumptions
that are made in the retrieval process and thus strengths
and weaknesses relative to other retrievals (Grosvenor
et al., 2018). Observations of aerosol properties from
space are possible and may be coupled with observations
of N, to yield an estimate of the first indirect effect
(Gryspeerdt et al., 2017- Nakajima et al., 2001 Quaas
et al., 2020). However, the use of vertically integrated
aerosol can be problematic when aerosol and clouds are
not vertically collocated. Furthermore, when aerosol
and cloud are vertically collocated, aerosol swelling by
cloud substantially complicates the relationship of AOD
to aerosol number concentration (Christensen et al.,
2017; Twohy et al., 2009), and this and other sources of
bias tend to be most important in clean regimes where
clouds are most sensitive to aerosols (Ma et al., 2018).
As an alternative, studies have utilized aerosol reanalysis
that attempt to account for near-cloud aerosol swelling
(Bellouin et al., 2013; McCoy, Bender, et al., 2017) or have
screened aerosol retrievals for nearby cloud (Christensen
et al.,, 2017).

Constraints on aerosol-cloud adjustments in liquid
clouds require knowledge of cloud macrophysical state
and microphysical state (Albrecht, 1989; Gryspeerdt,
Goren, et al., 2019). As discussed above, N, is the most
relevant variable relating to microphysical state. How-
ever, inference of the sensitivity of cloud macrophysical
state to N, is complicated due to non-distinct causality
(see sections 2.6.3 and 2.6.4). The most common satel-
lite observations of warm cloud properties considered
are in-cloud LWP (Malavelle et al., 2019; Gryspeerdt,
Goren, et al., 2019), cloud areal extent (Albrecht, 1989;
Gryspeerdt et al., 2016), and area-mean LWP (McCoy
et al., 2018; McCoy, Field, 2020). This list is by no means
conclusive and other quantities less directly related to
shortwave radiative forcing have been examined, such
as cloud top height (Mace & Abernathy, 2016). These
properties may be derived from a multitude of different
satellite instruments, although they are most commonly
examined in the context of passive spectroradiometers
such as the MODIS (Platnick et al., 2003). However, it
has been argued that passive microwave observations
of liquid water path (Elsaesser et al., 2017) share less
information with N, calculated from 7 and r,, are more
directly comparable to GCMs, and are less sensitive to
cloud heterogeneity (McCoy, Field, et al.,, 2020). On
the other hand, the fact that microwave liquid water
path observations do not share shortwave scattering
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information with the calculation of N, also means that
they are less directly related to the shortwave radia-
tive properties, such as cloud fraction and z, which are
primarily derived from visible wavelength light.
Satellite-based inferences of the aerosol effect on cold
clouds are much more difficuit to make than inferences of
effects on warm clouds, and the effect of ice-phase micro-
physics on ERF,; is thought to be small relative to liquid
(Bellouin et al., 2020). However, lidar (e.g., CALIOP) and
combined lidar and radar (e.g., Cloudsat) observations of
cloud phase and ice crystal number concentration show
covariation with dust, indicative of glaciation, as well as
potential signatures of INP (Gryspeerdt, Sourdeval, et al.
2018; Sourdeval et al., 2015, 2016 2018; Hu et al., 2010;
Tan et al., 2014). Observations of ice water content and
path are still highly uncertain, but can be made using both
passive and active observations (Jiang et al., 2012).

2.11. OUTLOOKS

Radiative forcing by ACls has been considered quan-
titatively by Wigley (1989) and then by the Second
IPCC Assessment Report, where it was assessed to be
between —1.5 and 0 Wm™2. Top-down consiraints such
as the temperature differences between hemispheres,
the observed temperature record, as well as sulfur flux
estimates (Schwartz, 1988) were all employed. The radia-
tive forcing due to the first indirect effect is referred
to as RF,; and the forcing including “rapid adjust-
ments,” which include cloud adjustments to aerosols
or “second indirect effects” is referred to as effective
radiative forcing or ERF,; (Boucher et al, 2014).
In 2020, the ERF,; from 1850 to the present-day was
estimated by Bellouin et al. (2020) as between —1.73
and —0.27Wm™ (16-84% range), based mainly on
global modeling and satellite-derived estimates. When
top-down considerations are included, the overall aerosol
forcing range becomes —2.0 to —0.35 Wm™2, this time a
5-95% confidence interval including aerosol-radiation
interactions. A subset of CMIP6 models yield a similar
estimate of —1.41 to —0.21Wm™ (Smith et al., 2020).
To obtain the uncertainty range quoted here, we have
simply doubled the standard deviation of the different
models calculated by Smith et al. (2020) to approxi-
mate the 5-95% confidence interval. This uncertainty
from the multi-model intercomparison is slightly smaller
than the Bellouin et al. (2020) estimate, but may grow
as more models participate. It also does not account for
the large uncertainties in emissions inventories, which
are prescribed for the intercomparison and are there-
fore identical between models, nor does it account for
correlation between models (Knutti et al., 2010). Some
approaches yield much the same results but some do
not. For example, McCoy, McCoy, et al. (2020) obtain
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an estimate for the RF; of —1.6 to —0.6 Wm™ by con-
trasting the Northern and Southern Hemispheres, but
the estimate obtained by Johnson et al. (2020) from an
uncertainty quantification exercise on a single GCM
of —2.88 to —1.28 Wm™ (5 — 95%) is rather larger and
the central value is significantly more negative. The
uncertainty thus remains high, but should decrease as
anthropogenic emissions are reduced and the central
value of the present-day forcing becomes less negative. As
this central value decreases, global temperature rise will
accelerate (Andreae et al., 2005), although perhaps not
substantially (Shindell & Smith, 2019). Either way, the
feasibility of a controlled utilization of ACIs in geoengi-
neering approaches to temporarily moderate temperature
rise may need to be explored (National Academies of
Sciences & Medicine, 2021). Here, “feasibility” has to
be understood in the broadest sense, ranging from the
level of cloud physics via our modeling capabilities of
unintended side effiects to the level of governance and
ethics.

Solar radiation management by stratospheric aerosol
injection is associated with risks to the ozone layer or to
long-term biogeochemical cycles. Marine cloud brighten-
ing (Latham, 2002; Latham et al., 2012), in contrast, is
based on an easily reversible intervention, whose explo-
ration has, moreover, large overlap with improving our
fundamental understanding of ACI in stratocumulus.
While small-scale marine cloud brightening experiments
would offer a laboratory for ACI studies (Wood &
Ackerman, 2013; Wood et al., 2017), an improved
understanding of ACI directly informs the feasibility
and limitations of marine cloud brightening strategies
(Glassmeier et al., 2021). The main problems associated
with marine cloud brightening from a geoengineering
perspective are that it is not clear whether the technique
would be sufficiently effective in enhancing cloud albedo,
and it might, at least temporarily, disturb tropospheric
circulation. However, we expect to see significant new
work in the coming decade.

There are some other potential avenues for break-
ing the deadlock in ACI research to reduce the forcing
uncertainty. New records of pre-industrial aerosols may
come to light, for example, in ice cores (Carslaw et al.,
2017) or less obvious sources such as historical artworks
(Gryspeerdt, 2019; Zerefos et al., 2014). Global cloud
resolving models (Stevens et al., 2019) are likely critical
to understanding both forcing and feedbacks (Schneider
et al., 2017; Terai et al.,, 2020). The incorporation of
fully prognostic aerosols in such models is also under
way either by testing aerosols and AClIs in various kinds
of multiscale models (Gordon et al., 2020; Wang et al.,
2011; Zhang et al., 2012), or by running global models
w'th aerosols at progressively higher resolution. To our
knowledge, the highest spatial grid resolution of a global

model with prognostic aerosols is 3.5 km for a 2-week
integration (Sato et al., 2016).

New machine learning approaches to better understand
the proliferation of data that we already have are likely
to play a major role in reducing forcing uncertainty,
but require caution as results from machine learning
algorithms are only as good as the data or models that
are used to train and test them. For example, parametric
uncertainty quantification says nothing about uncertain-
ties or biases that cannot be easily parameterized, so can
only ever predict part of the full uncertainty. Happily, it
is a complementary part of the uncertainty to that previ-
ously explored by comparing different models. Machine
learning can also be embedded in models directly to
allow some processes to be treated more efficiently or
with more complexity (e.g., Brenowitz & Bretherton,
2018; Krasnopolsky et al., 2005). While these approaches
are challenging, due, for example, to the need to satisfy
conservation laws and other basic requirements of phys-
ical models, constraints to overcome these problems are
rapidly being developed (e.g., Beucler et al., 2021), paving
the way toward more widespread adoption of promising
machine learning algorithms.

As global temperatures climb, we foresee two further
topics gaining new importance. The first is aerosol effiects
on cloud feedbacks. Gettelman et al. (2016) showed that
different aerosol concentrations in the same model can
lead to different cloud feedbacks as well as diffierent
radiative forcing and demonstrated the use of an “aerosol
kernel,” inspired by the radiative kernels of Soden et al.
(2008), to disentangle forcing and feedbacks. Mathemat-
ically and conceptually, this kernel has some similarities
to susceptibility. The second topic is the role of ACIs
in weather forecasting and environmental engineering
research. While both weather and climate modification
techniques are rightly controversial, the interest in seeding
of precipitation in clouds (French et al., 2018) is likely
to grow as the planet warms and many formerly fertile
areas are likely to become arid and barren. It may thus
become crucial to revisit questions of the theoretical and
practical feasibility of weather modification. Similarly,
marine cloud brightening (Latham, 2002) may be seen
as a potential way to leverage AClIs to influence regional
climate. Semi-direct effects affect weather in heavily pol-
luted regions (Ding et al., 2013; Gautam et al., 2007, Ma
et al., 2020) and numerical weather prediction models are
increasingly catching up with climate models in adopting
more sophisticated aerosol schemes (Benedetti & Vitart,
2018). Widespread inclusion of ACIs in weather fore-
casting models is still on the horizon, but becomes more
feasible every year.

Thus, despite the likelihood that global aerosol load-
ings decrease in the coming decades, ACIs will remain
important. Continued efforts to understand them better



will likely be repaid many times over with substantially
improved capabilities for environmental prediction at all
spatial and temporal scales.
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