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R-Boundedness versus γ-boundedness

Stanislaw Kwapień, Mark Veraar and Lutz Weis

Abstract. It is well-known that in Banach spaces with finite cotype, the R-bounded

and γ-bounded families of operators coincide. If in addition X is a Banach lattice, then these

notions can be expressed as square function estimates. It is also clear that R-boundedness implies

γ-boundedness. In this note we show that all other possible inclusions fail. Furthermore, we will

prove that R-boundedness is stable under taking adjoints if and only if the underlying space is

K-convex.

1. Introduction

Square function estimates of the form

(1)

∥
∥
∥
∥
∥

(
N∑

n=1

|Tnxn|2
)1/2∥

∥
∥
∥
∥
Lq

≤C

∥
∥
∥
∥
∥

(
N∑

n=1

|xn|2
)1/2∥

∥
∥
∥
∥
Lp

for operators T1, ..., TN :Lp(Rd)→Lq(Rd) and x1, ..., xN∈Lp(Rd) with 1<p, q<∞,

play an important role in harmonic analysis, in particular in Calderon–Zygmund and

martingale theory. In 1939 Marcinkiewicz and Zygmund [24] (building on previous

work of Paley [30], see also [11]) proved (1) for a single linear operator T=T1=...=

TN :Lp→Lq by expressing the square functions in terms of random series, i.e.

(2)

∥
∥
∥
∥
∥

(
N∑

n=1

|xn|2
)1/2∥

∥
∥
∥
∥
Lp

�p E

∥
∥
∥
∥
∥

N∑

n=1

rnxn

∥
∥
∥
∥
∥
Lp

�p E

∥
∥
∥
∥
∥

N∑

n=1

γnxn

∥
∥
∥
∥
∥
Lp

,

where (γn)n≥1 are independent standard Gaussian random variables and (rn)n≥1

are independent Rademacher random variables. Such random series with values in
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a Banach space have become a central tool in the geometry of Banach spaces and

probability theory in Banach spaces (see [1], [21], [22] and [26]).

Random series also allow to extend (1) to general Banach spaces and have

become an effective tool to extend many central results about Fourier multipliers,

Calderon–Zygmund operators, stochastic integrals and the holomorphic functional

calculus to Banach space valued functions and “integral operators” with operator-

valued kernels (e.g. see [2], [4], [5], [7], [13], [16], [18], [20], [29] and [37]). In recent

years it was observed that many of the classical results extend to the operator-

valued setting as long as all uniform boundedness assumptions are replaced by

R-boundedness or γ-boundedness assumptions (see the next section for the precise

definition). In many of these results it is crucial that the Banach space X has finite

cotype and in this case the second part of (2) remains valid: (see [22, Lemma 4.5

and Proposition 9.14])

E

∥
∥
∥
∥
∥

N∑

n=1

rnxn

∥
∥
∥
∥
∥
X

�X E

∥
∥
∥
∥
∥

N∑

n=1

γnxn

∥
∥
∥
∥
∥
X

.

For this reason R-boundedness and γ-boundedness are equivalent under finite co-

type assumptions. Furthermore, it is well-known that R-boundedness always implies

γ-boundedness. It was an open problem whether these two notions are the same

for all Banach spaces.

By constructing an example in �∞n ’s and combining this with methods from

the geometry of Banach spaces we prove the following result:

Theorem 1.1. Let X and Y be nonzero Banach spaces. The following asser-

tions are equivalent:

(i) Every γ-bounded family T ⊆L(X,Y ) is R-bounded.

(ii) X has finite cotype.

In this case R(T )�XRγ(T )≤R(T ).

In Section 4 we will also discuss the connections between R-boundedness and

γ-boundedness and �2-boundedness (as defined in (1) and Section 4) for general

lattices. We show that �2-boundedness implies R-boundedness if and only if the

codomain Y has finite cotype. Furthermore, R-boundedness implies �2-boundedness

if and only if the domain X has finite cotype. The proofs are based on connections

with classical notions such as p-summing operators and operators of cotype q. These

connections and the deep result of Montgomery-Smith and Talagrand, on cotype

of operators from C(K), (which are summarized in Talagrand’s recent monograph

[35], Chapter 16) allow to obtain as quick consequences proofs of Theorem 1.1 and
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Theorem 4.6. Since the results of Montgomery-Smith and Talagrand are quite in-

volved and we need for the proof of Theorem 1.1 a simple case we decided to give

in Section 3 an elementary and a concise proof of Theorem 1.1 which did not refer

to the results on the cotype of operators. However we have to underline that the

ideas behind this proof are the same as in the proof of [28, Theorem 5.3, p. 33].

In Section 5 we will characterize when R-boundedness and γ-boundedness are

stable under taking adjoints. It is well-known that the notion of K-convexity is a

sufficient condition for this. We will prove that it is also necessary. Surprisingly the

proof of this result is based on similar techniques as in Section 4.

Acknowledgment. The authors thank the anonymous referee for helpful com-

ments.

2. Preliminaries

Let (rn)n≥1 be a Rademacher sequence on a probability space (Ωr,Fr,Pr), i.e.

P(r1=1)=P(r1=−1)=1/2 and (rn)n≥1 are independent and identically distributed.

Let (γn)n≥1 be a Gaussian sequence defined on a probability space (Ωγ ,Fγ ,Pγ), i.e.

(γn)n≥1 are independent standard Gaussian random variables. Expectation with

respect to the Rademacher sequence and Gaussian sequence are denoted by Er and

Eγ respectively. The expectation on the product space will be denoted by E.

For Banach spaces X and Y , the bounded linear operators from X to Y will

be denoted by L(X,Y ).

Definition 2.1. Let X and Y be Banach spaces. Let T ⊆L(X,Y )

(i) The set of operators T is called γ-bounded if there exists a constant C≥0

such that for all N≥1, for all (xn)
N
n=1 in X and (Tn)

N
n=1 in T we have

(3)

(

E

∥
∥
∥
∥
∥

N∑

n=1

γnTnxn

∥
∥
∥
∥
∥

2)1/2

≤C

(

E

∥
∥
∥
∥
∥

N∑

n=1

γnxn

∥
∥
∥
∥
∥

2)1/2

.

The least admissible constant C is called the γ-bound of T , notation Rγ(T ).

(ii) If the above holds with (γn)n≥1 replaced by (rn)n≥1, then T is called

R-bounded. The R-bound of T will be denoted by R(T ).

(iii) If T is uniformly bounded we write U(T )=supT∈T ‖T‖.

We refer to [5] and [20] for a detailed discussion on R-boundedness. Let us note that

by the Kahane–Khincthine inequalities (see [22, Theorem 4.7]) the second moments

may be replaced by any p-th moment with p∈(0,∞).
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Remark 2.2. Some of the operators Tn in (3) could be identical. This some-

times leads to difficulties. However, for R-boundedness a randomization argu-

ment shows that it suffices to consider distinct operators T1, ..., TN∈T (see [5,

Lemma 3.3]). Unfortunately, such a result is not known for γ-boundedness.

An obvious fact which we will use below is the following: Let T ⊆L(X,Y ) be

R-bounded. If U :E→X and V :Y →Z are bounded operators, then

(4) R
(

{V TU :T ∈T }
)

≤‖V ‖R(T )‖U‖.

The same holds for γ-boundedness.

For details on type and cotype, we refer to [8, Chapter 11] and [22]. For type

and cotype of operators we refer to [31] and [35] and references therein.

Let q∈[2,∞]. An operator T∈L(X,Y ) is said to be of Rademacher cotype q if

there is a constant C such that for all N≥1, and x1, ..., xN∈X one has

(
N∑

n=1

‖Txn‖q
)1/q

≤C

∥
∥
∥
∥
∥

N∑

n=1

rnxn

∥
∥
∥
∥
∥
Lq(Ω;X)

.

The infimum of all constants C is denoted by Cq(T ). Replacing (rn)n≥1 by (γn)n≥1

one obtains the definition of Gaussian cotype q of T and the optimal constant in this

case is denoted by Cγ
q (T ). It is well-known that this notion is different in general

(see Remark 2.7). In the case X=Y and T is the identity, one obtains the notions

of Rademacher and Gaussian cotype q of X , and these notions are known to be

equivalent (see [8] and [22]).

Let p∈[1, 2]. An operator T∈L(X,Y ) is said to be of Rademacher type p if

there is a constant τ such that for all N≥1, and x1, ..., xN∈X one has

∥
∥
∥
∥
∥

N∑

n=1

rnTxn

∥
∥
∥
∥
∥
Lp(Ω;Y )

≤ τ

(
N∑

n=1

‖xn‖p
)1/p

.

The infimum of all constants τ is denoted by τp(T ). Replacing (rn)n≥1 by (γn)n≥1

one obtains the definition of Gaussian type p of T and the optimal constant in this

case is denoted by τγq (T ). By an easy randomization argument and [22, Lemma 4.5]

these notions can be seen to be equivalent. In the case X=Y and T is the identity,

one obtains the notions of Rademacher and Gaussian type p of X . We say that X

has nontrivial type if there exists a p∈(1, 2] such that X has type p.

The Maurey–Pisier theorem [26, Theorem 1.1] gives a way to check whether

a given Banach space X has finite cotype. In order to state this result recall that
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for p∈[1,∞] and λ>1, X contains �pn’s λ-uniformly if for every n≥1, there exists a

mapping Jn :�
p
n→X such that

λ−1‖x‖≤‖Jnx‖≤‖x‖, x∈ �pn.

Theorem 2.3. For a Banach space X the following are equivalent:

(i) X does not have finite cotype.

(ii) X contains �∞n ’s λ-uniformly for some (for all) λ>1.

There is a version for type as well:

Theorem 2.4. For a Banach space X the following are equivalent:

(i) X does not have nontrivial type.

(ii) X contains �1n’s λ-uniformly for some (for all) λ>1.

(iii) X∗ does not have nontrivial type.

In [32] it was shown that another equivalent statement is that X is K-convex. For a

detailed treatment of these results and much more, we refer to [1, Theorem 11.1.14],

[8, Chapter 13 and 14], [25] and [27].

Finally we state a simple consequence of Theorem 2.3 which will be applied

several times.

Corollary 2.5. If X does not have finite cotype, then for every N≥1, there

exist JN :�∞N →X and ÎN :X→�∞N such that ‖JN‖≤1, ‖ÎN‖≤2

ÎNJN = id �∞N
and JN ÎN |X0 = idX0 ,

where X0=JN �∞N .

Proof. Fix N≥1. By the Maurey–Pisier Theorem 2.3 we can find a bounded

linear operator JN :�∞N →X such that 1
2‖x‖≤‖JNx‖≤‖x‖. Let X0=JN �∞N . Let

IN :X0→�∞N be the invertible operator given by INx=e when JNe=x. Let (e∗n)
N
n=1

be the standard basis in �1. For each 1≤n≤N let x∗
n=I∗Ne∗n∈X∗

0 and let z∗n∈X∗

be a Hahn–Banach extension of x∗
n. Then ÎN :X→�∞N given by ÎNx=(〈x, z∗n〉)Nn=1

is an extension of IN which satisfies ‖ÎN‖=‖IN‖≤2. From the construction it is

clear that ÎNJN=INJN=id �∞N
. �

Property 2.6. LetX be a Banach space and let p∈[1,∞). The following hold:

(i) One always has

(5)

∥
∥
∥
∥
∥

N∑

n=1

rnxn

∥
∥
∥
∥
∥
Lp(Ω;X)

≤
(
π

2

)1/2
∥
∥
∥
∥
∥

N∑

n=1

γnxn

∥
∥
∥
∥
∥
Lp(Ω;X)

, x1, ..., xN ∈X, N ≥ 1.
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(ii) The space X has finite cotype if and only if there is a constant C such

that

(6)

∥
∥
∥
∥
∥

N∑

n=1

γnxn

∥
∥
∥
∥
∥
Lp(Ω;X)

≤C

∥
∥
∥
∥
∥

N∑

n=1

rnxn

∥
∥
∥
∥
∥
Lp(Ω;X)

, x1, ..., xN ∈X, N ≥ 1.

For (i) see [8, Proposition 12.11]. For (ii) see [8, Proposition 12.27] and [22, Chap-

ter 9].

Remark 2.7. If X has finite cotype, then it follows from (5) and (6) that T∈
L(X,Y ) has Rademacher cotype q if and only if it has Gaussian cotype q. On the

other hand, in [28, Theorem 1C.5.3] it is shown that for 2≤p<q<∞ for all N≥2

large enough, there is a nonzero T∈L(�∞N , Lq) such that Cp(T )≥q−1/2 log(N)Cγ
p (T ).

In the following result we summarize some of the known results on R-bounded-

ness and γ-boundedness which will be needed.

Proposition 2.8. Let X and Y be Banach spaces. Let T ⊆L(X,Y ).

(i) If T is R-bounded, then it is γ-bounded, and Rγ(T )≤R(T ).

(ii) If T is γ-bounded then it is uniformly bounded and U(T )≤Rγ(T ).

(iii) Assume X has finite cotype. If T is γ-bounded, then it is R-bounded,

and R(T )≤CRγ(T ), where C is a constant which only depends on X .

Proof. (i) follows from the fact that (γn)n≥1 and (rnγn)n≥1 have the same

distribution. (ii) is obvious. (iii) follows from (6). �

Remark 2.9.

(i) For other connections between R-boundedness, type and cotype we refer

to [3], [10], [12], [14] and [36].

(ii) Recall the following result due to Pisier. If every uniformly bounded family

is R-bounded then X has cotype 2 and Y has type 2 (see [2, Proposition 1.13]).

The same result holds for γ-boundedness which follows from the same proof.

The following lemma gives a connection between R-boundedness and cotype.

Lemma 2.10. Let T1, ..., TN∈L(�∞M ,R) and let T ={Tn :1≤n≤N}. Let A:

�∞M→�∞N be given by Ax=(Tnx)
N
n=1. Then R(T )=C2(A) and Rγ(T )=Cγ

2 (A).
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Proof. Let S1, ..., Sk∈T and x1, ..., xk∈�∞M . Then

E

∣
∣
∣
∣
∣

k∑

i=1

riSixi

∣
∣
∣
∣
∣

2

=

k∑

i=1

|Sixi|2 ≤
k∑

i=1

∥
∥(Tnxi)

N
n=1

∥
∥
2

�∞N

=

k∑

i=1

‖Axi‖2�∞N ≤C2(A)
2
E

∥
∥
∥
∥
∥

k∑

i=1

rixi

∥
∥
∥
∥
∥

2

�∞M

and this shows that R(T )≤C2(A). Conversely, for x1, ..., xk∈�∞M choose

S1, ..., Sk∈T such that max1≤n≤N |Tnxi|=|Sixi|. Then

k∑

i=1

‖Axi‖2�∞N =

k∑

i=1

∥
∥(Tnxi)

N
n=1

∥
∥
2

�∞N
=

k∑

i=1

|Sixi|2 ≤R(T )2E

∥
∥
∥
∥
∥

k∑

i=1

rixi

∥
∥
∥
∥
∥

2

�∞M

.

from which we obtain C2(A)≤R(T ). The proof of Rγ(T )=Cγ
2 (A) is similar. �

The next simple type of uniform boundedness principle will be used several

times. For a set S let P(S) denote its power set.

Lemma 2.11. Let V be a vector space. Let Φi :P(V )→[0,∞] for i=1, 2 be

such that the following properties hold:

(i) for all A⊆V and λ∈R, Φi(λA)=|λ|Φi(A).

(ii) If A⊆B⊆V , then Φi(A)≤Φi(B).

(iii) If A1, A2, ...⊆V , then Φi(
⋃∞

n=1 An)≤
∑∞

n=1 Φi(An).

If for every n≥1 there exists a subset Bn⊆V such that Φ1(Bn)≤1 and Φ2(Bn)≥cn
with cn↑∞, then there exists a set A⊆V such that Φ1(A)≤1 and Φ2(A)=∞.

Proof. For every n≥1 choose An⊆V such that Φ1(An)≤1 and Φ2(An)≥4n.

Setting A=
⋃∞

n=1 2
−nAn one may check that the assertions hold. �

For A,B∈R, we will write A�tB if there exists a constant C depending only

on t such that A≤CB.

3. Proof of Theorem 1.1

We start with a characterization of the R-bound of a certain family of func-

tionals on c0.

Proposition 3.1. Let (an)n≥1 be scalars. Let (Tn)n≥1 be the elements of

(c0)
∗=�1 given by Tnx=anxn. Then R(Tn, n≥1)=‖a‖�2 .
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Proof. In the sequel we write ‖·‖ for ‖·‖c0 . For any (xn)
N
n=1 one has

∥
∥
∥
∥
∥

N∑

n=1

rnTnxn

∥
∥
∥
∥
∥
L2(Ω)

=

(
N∑

n=1

|Tnxn|2
)1/2

≤
(

N∑

n=1

‖xn‖2‖Tn‖2
)1/2

≤‖a‖�2 sup
1≤n≤N

‖xn‖≤‖a‖�2
∥
∥
∥
∥
∥

N∑

n=1

rnxn

∥
∥
∥
∥
∥
L2(Ω;c0)

.

By Remark 2.2 this implies that R(Tn, n≥1)≤‖a‖�2 . Next choose ε>0 arbitrary.

Fix an integer N≥1 such that ‖a‖�2−ε≤(
∑N

n=1 |an|2)1/2. Let (xn)
N
n=1 in c0 be

defined by xnn=1 and xnm=0 for m 
=n and n=1, ..., N . Then

‖a‖�2−ε≤
(

N∑

n=1

a2n

)1/2

=

(
N∑

n=1

|Tnxn|2
)1/2

=

∥
∥
∥
∥
∥

N∑

n=1

rnTnxn

∥
∥
∥
∥
∥
L2(Ω)

≤R(Tn, n≥ 1)

∥
∥
∥
∥

∑

n≥1

rnxn

∥
∥
∥
∥
L2(Ω;c0)

=R(Tn, n≥ 1) sup
m≥1

‖rmxmm‖L2(Ω) =R(Tn, n≥ 1). �

In order to estimate the γ-bound of a specific family of coordinate functionals

we need the following lemma which is a variant of [28, Proposition 3.1, p. 50]. Our

modification of the proof is more concise and gives a better constant.

Lemma 3.2. Let n≥1 be fixed. Let (xi)
n
i=1 be real numbers. Then

(7)

(

logn

n

n∑

i=1

x2
i

)1/2

≤ 4E sup
i≤n

|γixi|.

The constant 4 on the right-hand side of (7) is not optimal.

Proof. It suffices to consider the case n≥2. Without loss of generality we can

assume E supi≤n |γixi|=1 and xi>0 for all i. Fix t>1. Since P(sup1≤j≤n |γixi|>t)≤
1/t, it follows from [21, Proposition 1.3.3] that

n∑

i=1

P
(

|γixi| ≥ t
)

≤
P(sup1≤j≤n |γixi|>t)

P(sup1≤j≤n |γixi| ≤ t)
≤ 1

t−1
.

Recalling Komatsu’s bound (see [34, Proposition 3]):

√
2πP(γi >s)=

∫ ∞

s

e−x2/2 dx≥ 2

s+(s2+4)1/2
e−s2/2, s∈R,
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we find that with yi=xi/t

2√
2π

n∑

i=1

2yi
1+(1+4y2i )

1/2
e−1/(2y2

i ) ≤
n∑

i=1

P
(

|γixi| ≥ t
)

≤ 1

t−1
.

Note that for every i, one has |yi|=t−1
√

π
2E|γixi|≤

√
π
2 . Therefore,

2√
2π

2yi
1+(1+4y2i )

1/2
≥ y2i

K
,

where K= π(1+
√
1+2π))
4 ≈2.9. Letting Θ(y)=ye−1/(2y) we find that 1

K

∑n
i=1 Θ(y2i )≤

1
t−1 . Since Θ is convex we obtain that

Θ

(

1

n

n∑

i=1

y2i

)

≤ K

n(t−1)
.

It is straightforward to check that Θ(y)≥e−1/y for all y>0. Therefore, Θ−1(u)≤
− 1

log(u) for all u∈(0, 1), and we obtain

1

n

n∑

i=1

x2
i ≤− t2

log(K/(n(t−1)))
.

Now the result follows by taking t=K+1. �

Remark 3.3. A lower estimate for the constant used in (7) follows from the

following claim:

E

(

sup
i≤n

|γi|2
)

≤ 2 log(2n).(8)

Indeed, taking xi=1 for i=1, ..., n with n≥1 in (7) arbitrary gives that the constant

at the right-hand side of (7) cannot be smaller than 2−1/2. To prove the claim we

follow the argument in [9, Lemma 3.2]. Let ξ=supi≤n |γi| and let h:[0,∞)→[1,∞)

be given by h(t)=cosh(t1/2). One easily checks that h is convex and strictly increas-

ing and h−1(s)=log(s+(s2−1)1/2)2≤log(2s)2. It follows from Jensen’s inequality

that for every t>0,

Eξ2 = t−2
Eh−1

(

cosh(tξ)
)

≤ t−2h−1
(

E cosh(tξ)
)

≤ t−2 log
(

2E cosh(tξ)
)2
,

E cosh(tξ)=E sup
i≤n

cosh(tγi)≤
n∑

i=1

E cosh(tγi)=nE exp(tγ1)=net
2/2.

Combining both estimates yields that Eξ2≤(t−1 log(2n)+t/2)2, and (8) follows by

taking t=
√

2 log(2n).
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Lemma 3.4. Let (Tn)n≥1 be elements of (c0)
∗=�1 given by Tnx=xn. Then

for all N≥2,

(
N

2 log 2N

)1/2

≤ γ(Tn, 1≤n≤N)≤ 4

(
N

logN

)1/2

.

Note that Proposition 3.1 yields that R(Tn, 1≤n≤N)=N1/2, and hence there is a

logarithmic improvement in the above γ-bound.

Proof. Fix N≥2. Let (Sj)
J
j=1⊆{Tn, 1≤n≤N}. We will first show that for all

x1, ..., xJ∈c0 one has

(9)

∥
∥
∥
∥
∥

J∑

j=1

γjSj(xj)

∥
∥
∥
∥
∥
L2(Ω)

≤ 4

(
N

logN

)1/2
∥
∥
∥
∥
∥

J∑

j=1

γjxj

∥
∥
∥
∥
∥
L2(Ω;c0)

.

For 1≤n≤N , let An={j :Sj=Tn}. Clearly, the (An)
N
n=1 are pairwise disjoint.

Let an=(
∑

j∈An
|Tn(xj)|2)1/2 for n=1, ..., N . It follows from orthogonality and

Lemma 3.2 that

Eγ

∣
∣
∣
∣
∣

J∑

j=1

γjSj(xj)

∣
∣
∣
∣
∣

2

=

J∑

j=1

∣
∣Sj(xj)

∣
∣
2
=

N∑

n=1

a2n ≤
16N

logN
E sup

1≤n≤N
|γnan|2.(10)

Let Γn=
∑

j∈An
γjxj for 1≤n≤N . Since (Γnn)

N
n=1 are independent Gaussian ran-

dom variables and E|Γnn|2=a2n, it follows that (Γnn)
N
n=1 and (γnan)

N
n=1 have equal

distributions. This yields

E sup
1≤n≤N

|γnan|2 =E sup
1≤n≤N

|Γnn|2.(11)

For signs (εk)k≥1 let Iε on c0 be the isometry given by Iε((αk)k≥1)=(εkαk)k≥1. It

follows that pointwise in Ωγ one has

sup
1≤n≤N

|Γnn|2 = sup
1≤n≤N

∣
∣
∣
∣
∣
Er

[
N∑

m=1

rmrnΓmn

]∣
∣
∣
∣
∣

2

≤ sup
n≥1

∣
∣
∣
∣
∣
Er

[
N∑

m=1

rmrnΓmn

]∣
∣
∣
∣
∣

2

=

∥
∥
∥
∥
∥
Er

[

Ir

(
N∑

m=1

rmΓm

)]∥
∥
∥
∥
∥

2

≤Er

∥
∥
∥
∥
∥
Ir

(
N∑

m=1

rmΓm

)∥
∥
∥
∥
∥

2

=Er

∥
∥
∥
∥
∥

N∑

m=1

rmΓm

∥
∥
∥
∥
∥

2

,



R-Boundedness versus γ-boundedness 135

where we applied Jensen’s inequality and the fact that Ir is an isometry. Com-

bining the above estimate with (11) and using that Γ1, ...,ΓN are independent and

symmetric we obtain

E sup
1≤n≤N

|γnan|2 ≤EγEr

∥
∥
∥
∥
∥

N∑

m=1

rmΓm

∥
∥
∥
∥
∥

2

=Eγ

∥
∥
∥
∥
∥

N∑

m=1

Γm

∥
∥
∥
∥
∥

2

=E

∥
∥
∥
∥
∥

J∑

j=1

γjxj

∥
∥
∥
∥
∥

2

.

Now (9) follows if we combine the latter estimate with (10).

To prove the lower estimate, let (xn)n≥1 be the standard basis for c0. Let

gN=Rγ(Tn :1≤n≤N). The result follows from

N =E

∣
∣
∣
∣
∣

N∑

n=1

γnTnxn

∣
∣
∣
∣
∣

2

≤ g2NE

∥
∥
∥
∥
∥

N∑

n=1

γnxn

∥
∥
∥
∥
∥

2

= g2NE sup
1≤n≤N

|γn|2 ≤ g2N2 log(2N),

where we applied (8). �

As a consequence of Lemma 3.4 we find the following result which provides

an example that the Rademacher cotype and Gaussian cotype of operators are not

comparable in general (cf. [28, Theorem 1C.5.3] and Remark 2.7).

Corollary 3.5. Let (Tn)n≥1 be elements of (c0)
∗=�1 given by Tnx=xn. Let

A:�∞N →�∞N be given by Ax=(Tnx)
N
n=1. Then for all N≥2,

1

4

(

log(N)
)1/2

Cγ
2 (A)≤C2(A)≤

(

2 log(2N)
)1/2

Cγ
2 (A).

Proof. This is immediate from Lemmas 2.10 and 3.4, where we note that

C2(A)=R({Tn :1≤n≤N})=
√
N . �

We now turn to the proof of one of the main results.

Proof of Theorem 1.1. The implication (ii) ⇒ (i) has already been mentioned

in Proposition 2.8.

To prove (i) ⇒ (ii) we use Lemma 3.4. Assume (i) holds. Assume X does

not have finite cotype. We will derive a contradiction. Since we may use a one-

dimensional subspace of Y , it suffices to consider Y =R. We claim that for every

N≥1 there exists a SN⊆L(X,R) such that Rγ(SN )≤1 and R(SN )≥cN with

cN ↑∞ as N→∞. For each N≥1 choose JN :�∞N →X and ÎN :X→�∞N and X0 as in

Corollary 2.5. Let Tn :�
∞
N →R be given by Tnx=

1
8 (

logN
N )1/2xn for each 1≤n≤N . Let
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TN={Tn :1≤n≤N}. Then as a consequence of Lemma 3.4 we have Rγ(TN )≤1/2.

From Proposition 3.1 we find that

R(TN )=

(
N∑

n=1

‖Tn‖2
)1/2

=
1

8
(logN)1/2.

Now let (Sn)
N
n=1 be given by Sn=TnÎN and SN={Sn :1≤n≤N}⊆L(X,R). Then

by (4) one has Rγ(SN )≤‖ÎN‖Rγ(TN )≤1. Moreover, by (4) one has

1

8
(logN)1/2 =R(TN )≤R(SN |X0)‖JN‖≤R(SN ).

Now by Lemma 2.11 we can find a family S ⊆L(X,R) which is γ-bounded but not

R-bounded. This yields a contradiction. �

4. R-Boundedness versus �2-boundedness

In this section we discuss another boundedness notion which is connected to

R-boundedness and γ-boundedness.

Definition 4.1. Let X and Y be Banach lattices. An operator family T ⊆
L(X,Y ) is called �2-bounded if there exists a constant C≥0 such that for all N≥1,

for all (xn)
N
n=1 in X and (Tn)

N
n=1 in T we have

(12)

∥
∥
∥
∥
∥

(
N∑

n=1

|Tnxn|2
)1/2∥

∥
∥
∥
∥
≤C

∥
∥
∥
∥
∥

(
N∑

n=1

|xn|2
)1/2∥

∥
∥
∥
∥
.

The least admissible constant C is called the �2-bound of T . Notation R�2(T ) or

R2(T ).

Remark 4.2.

(i) The notion �2-boundedness is the same as Rs-boundedness with s=2 as

was introduced in [37]. A detailed treatment of the subject and applications can be

found in [19].

(ii) The square functions in (12) are formed using Krivine’s calculus (see [23]).

(iii) Clearly, every �2-bounded family is uniformly bounded.

(iv) A singleton {T}⊆L(X,Y ) is �2-bounded and R2({T})≤KG‖T‖, where
KG denotes the Grothendieck constant (see [23, Theorem 1.f.14]).

(v) For lattices X , Y and Z and two families T ∈L(X,Y ) and S ∈L(Y, Z)

one has

R2
(

{ST :S ∈S , T ∈T }
)

≤R2(S )R2(T ).
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In order to check �2-boundedness it suffices to consider distinct operators

in (12).

Lemma 4.3. Let X and Y be Banach lattices and let T ⊆L(X,Y ). If there is a

constant M>0 such that for all N≥1 and all distinct choices T1, ..., TN∈T , one has

∥
∥
∥
∥
∥

(
N∑

n=1

|Tnxn|2
)1/2∥

∥
∥
∥
∥
≤M

∥
∥
∥
∥
∥

(
N∑

n=1

|xn|2
)1/2∥

∥
∥
∥
∥
, x1, ..., xN ∈X,

then R2(T )≤KGM , where KG denotes the Grothendieck constant.

Proof. Let T1, ..., TN⊆T and x1, ..., xN∈X be arbitrary. Let S1, ..., SM∈T

be distinct and such that {S1, ..., SM}={T1, ..., TN}. For each 1≤m≤M let Im=

{i:Ti=Sm}. Then (Im)Mm=1 are disjoint sets. For each 1≤m≤M let xm,i=xi if

i∈Im and xm,i=0 otherwise.

For each 1≤i≤N let x̃i∈X(�2M ) be given by x̃i(m)=xm,i and let S̃ :X(�2M )→
Y (�2M ) be given by S̃((ym)Mm=1)=(Smym)Mm=1. By the assumption we have that

‖S̃‖L(X(�2M ),Y (�2M ))≤R2(T ). From Remark 4.2(iv), we see that

∥
∥
∥
∥
∥

(
N∑

n=1

|Tnxn|2
)1/2∥

∥
∥
∥
∥
Y

=

∥
∥
∥
∥
∥

(
N∑

i=1

|S̃x̃i|2
)1/2∥

∥
∥
∥
∥
Y (�2M )

≤KGM

∥
∥
∥
∥
∥

(
N∑

i=1

|x̃i|2
)1/2∥

∥
∥
∥
∥
X(�2M )

=KGM

∥
∥
∥
∥
∥

(
M∑

m=1

N∑

i=1

|xm,i|2
)1/2∥

∥
∥
∥
∥
X

=KGM

∥
∥
∥
∥
∥

(
N∑

n=1

|xn|2
)1/2∥

∥
∥
∥
∥
X

. �

Property 4.4. LetX be a Banach lattice and let p∈[1,∞). The following hold:

(i) One always has

(13)

∥
∥
∥
∥
∥

(
N∑

n=1

|xn|2
)1/2∥

∥
∥
∥
∥
X

≤
√
2

∥
∥
∥
∥
∥

N∑

n=1

rnxn

∥
∥
∥
∥
∥
Lp(Ω;X)

, x1, ..., xN ∈X, N ≥ 1.

(ii) The space X has finite cotype if and only if there is a constant C such that

(14)

∥
∥
∥
∥
∥

N∑

n=1

rnxn

∥
∥
∥
∥
∥
Lp(Ω;X)

≤C

∥
∥
∥
∥
∥

(
N∑

n=1

|xn|2
)1/2∥

∥
∥
∥
∥
X

, x1, ..., xN ∈X, N ≥ 1.

For (i) and (ii) see [8, Theorem 16.11] and [23, Theorem 1.d.6].
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Recall that a space X is 2-concave if there is a constant CX such that

(
N∑

n=1

‖xn‖2
)1/2

≤CX

∥
∥
∥
∥
∥

(
N∑

n=1

|xn|2
)1/2∥

∥
∥
∥
∥
, x1, ..., xN ∈X, N ≥ 1

A space X is 2-convex if there is a constant CX such that

∥
∥
∥
∥
∥

(
N∑

n=1

|xn|2
)1/2∥

∥
∥
∥
∥
≤CX

(
N∑

n=1

‖xn‖2
)1/2

, x1, ..., xN ∈X, N ≥ 1.

Recall the following facts from [8, Corollary 16.9 and Theorem 16.20]:

(i) X has cotype 2 if and only if X is 2-concave.

(ii) X has type 2 if and only if it has finite cotype and is 2-convex.

Note that c0 is an example of a space which is 2-convex, but does not have type 2.

The following result is the version of Remark 2.9(ii) for �2-boundedness.

Proposition 4.5. Let X and Y be Banach lattices. The following are equiv-

alent:

(i) Every uniformly bounded subset T ⊆L(X,Y ) is �2-bounded.

(ii) X is 2-concave and Y is 2-convex.

The proof is a slight variation of the argument in [2].

Proof. (ii) ⇒ (i): Let T ⊆L(X,Y ) be uniformly bounded. Let T1, ..., TN∈T

and x1, ..., xN∈X . If follows that

∥
∥
∥
∥
∥

(
N∑

n=1

|Tnxn|2
)1/2∥

∥
∥
∥
∥
≤CY

(
N∑

n=1

‖Tnxn‖2
)1/2

≤CY U(T )

(
N∑

n=1

‖xn‖2
)1/2

≤CY U(T )CX

∥
∥
∥
∥
∥

(
N∑

n=1

|xn|2
)1/2∥

∥
∥
∥
∥
.

(i) ⇒ (ii): First we prove that X is 2-concave. Fix y∈Y with ‖y‖=1. Let

T ={x∗⊗y :x∗∈X∗ with ‖x∗‖≤1}. Then T is uniformly bounded and therefore

it is �2-bounded. Choose x1, ..., xN∈X arbitrary. For each n choose x∗
n∈X∗ with

‖x∗
n‖≤1 such that 〈xn, x

∗
n〉=‖x∗

n‖ and let Tn=x∗
n⊗y. Then each Tn∈T and it

follows that from (13) that

(
N∑

n=1

‖xn‖2
)1/2

=

∥
∥
∥
∥
∥

(
N∑

n=1

|Tnxn|2
)1/2∥

∥
∥
∥
∥
≤R2(T )

∥
∥
∥
∥
∥

(
N∑

n=1

|xn|2
)1/2∥

∥
∥
∥
∥
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Next we show that Y is 2-convex. Fix x∈X and x∗∈X∗ of norm one and such

that 〈x, x∗〉=1. Consider T ={x∗⊗y :y∈Y with ‖y‖≤1}. Then T is uniformly

bounded and hence �2-bounded. Choose y1, ..., yN∈Y arbitrary. Let Tn=x∗⊗ yn

‖yn‖
and xn=‖yn‖x for each n. Then T1, ..., TN∈T and it follows that

∥
∥
∥
∥
∥

(
N∑

n=1

|yn|2
)1/2∥

∥
∥
∥
∥
=

∥
∥
∥
∥
∥

(
N∑

n=1

|Tnxn|2
)1/2∥

∥
∥
∥
∥

≤R2(T )

∥
∥
∥
∥
∥

(
N∑

n=1

|xn|2
)1/2∥

∥
∥
∥
∥
≤R2(T )

(
N∑

n=1

‖yn‖2
)1/2

. �

Theorem 4.6. Let X and Y be nonzero Banach lattices. The following asser-

tions are equivalent:

(i) Every �2-bounded family T ⊆L(X,Y ) is R-bounded.

(ii) Every �2-bounded family T ⊆L(X,Y ) is γ-bounded.

(iii) Y has finite cotype.

Moreover, in this case R(T )�Y R2(T ) and Rγ(T )�Y R2(T ).

Proof. (i) ⇒ (ii) follows from Proposition 2.8. To prove (iii) ⇒ (i) assume Y

has finite cotype and let T be �2-bounded. Fix T1, ..., TN∈T and x1, ..., xN∈X .

It follows from (14) for Y and (13) for X that

∥
∥
∥
∥
∥

N∑

n=1

rnTnxn

∥
∥
∥
∥
∥
L2(Ω;Y )

≤CY

∥
∥
∥
∥
∥

(
N∑

n=1

|Tnxn|2
)1/2∥

∥
∥
∥
∥
Y

≤CY R2(T )

∥
∥
∥
∥
∥

(
N∑

n=1

|xn|2
)1/2∥

∥
∥
∥
∥
X

≤CY R2(T )
√
2

∥
∥
∥
∥
∥

N∑

n=1

rnxn

∥
∥
∥
∥
∥
L2(Ω;X)

.

To prove (ii) ⇒ (iii) it suffices to consider X=R. Assume (ii) holds and as-

sume Y does not have finite cotype. By Corollary 2.5 for each N≥1 we can find

JN :�∞N →Y and ÎN :Y →�∞N such that ‖ÎN‖≤2, ‖JN‖≤1 and ÎNJN=id �∞N
. Let

Tn :R→�∞N be given by Tna=aen. Then for 1≤k1, ..., kN≤N

∥
∥
∥
∥
∥

(
N∑

n=1

|Tknan|2
)1/2∥

∥
∥
∥
∥
�∞N

≤
(

N∑

n=1

‖Tknan‖2�∞N

)1/2

≤
(

N∑

n=1

a2n

)1/2

.

Thus with TN={Tn :≤n≤N} we find R2(TN )≤1. On the other hand by (7),
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1

4

(

log(N)
)1/2 ≤

(

E sup
1≤n≤N

|γn|2
)1/2

≤
∥
∥
∥
∥
∥

N∑

n=1

γnTn1

∥
∥
∥
∥
∥
L2(Ω;�∞N )

≤Rγ(TN )

∥
∥
∥
∥
∥

N∑

n=1

γn1

∥
∥
∥
∥
∥
L2(Ω)

.

This shows that Rγ(TN )≥ 1
4 (log(N))1/2. For n≥1, let Sn :R→Y be given by Sn=

JNTn and let SN={Sn :1≤n≤N}. Then by Remark (4.2) and (4.2), R2(SN )≤KG.

Moreover, by (4)

Rγ(S )≥‖ÎN‖−1Rγ(Tn : 1≤n≤N)≥ 1

8

(

log(N)
)1/2

.

Now by Lemma 2.11 we can find a family S ⊆L(R, Y ) which is �2-bounded but not

γ-bounded. Hence we have derived a contradiction. �

Theorem 4.7. Let X and Y be nonzero Banach lattices. The following asser-

tions are equivalent:

(i) Every R-bounded family T ⊆L(X,Y ) is �2-bounded.

(ii) Every γ-bounded family T ⊆L(X,Y ) is �2-bounded.

(iii) X has finite cotype.

In this case, R2(T )�XR(T )�XRγ(T ).

To prove this result we will apply some results from the theory of absolutely

summing operators (see [8]). Let p, q∈[1,∞). An operator T∈L(X,Y ) is called

(p, q)-summing if there is a constant C such that for all N≥1 and x1, ..., xN∈X
one has

(
N∑

n=1

‖Txn‖p
)1/p

≤C sup

{(
N∑

n=1

∣
∣〈xn, x

∗〉
∣
∣
q

)1/q

:
∥
∥x∗∥∥

X∗ ≤ 1

}

.

The infimum of all C as above, is denoted by πp,q(T ). An operator T∈L(X,Y ) is

called p-summing if it is (p, p)-summing. In this case we write πp(T )=πp,p(T ).

Note that in the case X=�∞M (see [8, p. 201]),

sup

{(
N∑

n=1

∣
∣〈xn, x

∗〉
∣
∣
q

)1/q

:
∥
∥x∗∥∥

X∗ ≤ 1

}

= sup
1≤m≤M

(
N∑

n=1

|xn,m|q
)1/q

.

We provide a connection between �2-boundedness and 2-summing operators,

which is similar as in Lemma 2.10.
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Lemma 4.8. Let T1, ..., TN∈L(�∞M ,R) and let T ={Tn :1≤n≤N}. Let A:

�∞M→�∞N be given by Ax=(Tnx)
N
n=1. Then R2(T )=π2(A).

Proof. Let S1, ..., Sk∈T and x1, ..., xk∈�∞M . Then

k∑

i=1

|Sixi|2 ≤
k∑

i=1

∥
∥(Tnxi)

N
n=1

∥
∥
2

�∞N
=

k∑

i=1

‖Axi‖2�∞N

≤π2(A)
2 sup
1≤m≤M

k∑

i=1

|xi,m|2 =π2(A)
2

∥
∥
∥
∥
∥

(
k∑

i=1

|xi|2
)1/2∥

∥
∥
∥
∥

2

�∞M

,

and this shows that R2(T )≤π2(A). Conversely, for x1, ..., xk∈�∞M choose

S1, ..., Sk∈T such that max1≤n≤N |Tnxi|=|Sixi|. Then
k∑

i=1

‖Axi‖2�∞N =
k∑

i=1

∥
∥(Tnxi)

N
n=1

∥
∥
2

�∞N
=

k∑

i=1

|Sixi|2 ≤R2(T )

∥
∥
∥
∥
∥

(
k∑

i=1

|xi|2
)1/2∥

∥
∥
∥
∥

2

�∞M

from which the result clearly follows. �

The next result is based on an example in [15] and a deep result in [35].

Lemma 4.9. Let N≥3. There exists a family T ={T1, ..., TN}⊂L(�∞N ,R) such

that

(15) R(T )≤ 1 and R2(T )�
(

log(N)

log(log(N))

)1/2

.

Proof. It follows from [15, Examples 3.29 and 14.6] that there is an opera-

tor A∈L(�∞N ) such that π2(A)≥(log(N))1/2 and π2,1(A)≤2. Let Tn :�
∞
N →R be

given by Tnx=(Ax)n for 1≤n≤N and T ={T1, ..., TN}. Then from Lemma 4.8

that R2(T )=π2(A)≥(log(N))1/2. On the other hand, from Lemma 2.10 and [35,

Theorem 16.1.10] we obtain

R(T )=C2(A)≤ c
(

log
(

log(N)
))1/2

π2,1(A)≤ 2c
(

log
(

log(N)
))1/2

,

where c is a numerical constant. Now the required assertion follows by homoge-

neity. �

Proof of Theorem 4.7. (iii) ⇒ (ii): Assume X has finite cotype. Let T ⊂
L(X,Y ) be γ-bounded. Then by (5) and (13) for Y , and (6) and (14) for X , the

result follows.

(ii) ⇒ (i): Since R-boundedness implies γ-boundedness by Proposition 2.8, the

result follows.
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(i) ⇒ (iii): Assume that every R-bounded family T ⊆L(X,R) is �2-bounded.

Assuming that X does not have finite cotype, one can use the same construction as

in Theorem 1.1 but this time applying Lemma 4.9 instead of Lemma 3.4. Here one

also needs to apply Remark 4.2 in a similar way as in Theorem 4.6. �

5. Duality and R-boundedness

In this final section we consider duality of R-boundedness, γ-boundedness and

�2-boundedness. For a family T ⊆L(X,Y ) we write T ∗={T ∗ :T∈L(X,Y )}.
For �2-boundedness, there is a duality result which does not depend on the

geometry of the spaces.

Proposition 5.1. Let X and Y be Banach lattices. A family T ⊆L(X,Y ) is

�2-bounded if and only if T ∗ is �2-bounded. In this case R2(T )=R2(T ∗).

Proof. This easily follows from the fact that for Banach lattices E, one has

E(�2N )∗=E∗(�2N ) isometrically (see [23, p. 47]). �

Recall from [6] and [12] that a family T ⊆L(X,Y ) is R-bounded if and only

if T ∗∗⊆L(X∗∗, Y ∗∗) is R-bounded. The same holds for γ-boundedness. It is well-

known that for spaces with nontrivial type (or equivalentlyK-convex with respect to

the Rademacher system by Pisier’s theorem, see [8, Chapter 13]), R-boundedness of

T ⊆L(X,Y ) implies R-boundedness of T ∗⊆L(Y ∗, X∗) (see [17, Lemma 3.1]). By

[33, Corollary 2.8] the same method can be used to obtain duality for γ-boundedness.

The following result shows that the geometric limitation of nontrivial type is also

necessary:

Theorem 5.2. Let X and Y be Banach spaces. The following are equivalent:

(i) For every R-bounded family T ⊆L(X,Y ), the family T ∗⊆L(Y ∗, X∗) is

R-bounded.

(ii) For every R-bounded family T ∗⊆L(X∗, Y ∗), the family T ⊆L(Y,X) is

R-bounded.

(iii) For every γ-bounded family T ⊆L(X,Y ), the family T ∗⊆L(Y ∗, X∗) is

γ-bounded.

(iv) For every γ-bounded family T ∗⊆L(X∗, Y ∗), the family T ⊆L(Y,X) is

γ-bounded.

(v) X has nontrivial type.

In this case for every T ⊆L(X,Y ),

Rγ(T )�X R(T )�X R
(

T ∗)
�X Rγ

(

T ∗).
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Proof. (v) ⇒ (i) and (v) ⇒ (iii): See the references before Theorem 5.2.

(i) ⇒ (v): Assume (i) and assume X does not have nontrivial type. From

Theorem 2.4 it follows that for every N≥1, there exists JN :�1N→X∗ such that
1
2‖z‖≤‖JNz‖≤‖z‖. Let TN⊆L(�∞N ,R) be as in (15). Then R(TN )≤1. Moreover,

since R has cotype 2 it follows from Theorem 4.7, Proposition 5.1 and (15) that

(16) R
(

T ∗
N

)

�R2
(

T ∗
N

)

=R2(TN )�
(

log(N)

log(log(N))

)1/2

=: cN .

Therefore, there is a constant K such that R(T ∗
N )≥KcN .

Now let SN={TJ∗
N |X :T∈TN}⊆L(X,R). Then R(SN )≤1. Furthermore,

noting that (J∗
N |X)∗=JN and hence JNT ∗∈S ∗

N for all T∈TN , one obtains

KcN ≤R
(

T ∗
N

)

≤ 2R
(

S ∗
N

)

.

Therefore, R(S ∗
N )≥ 1

2R(T ∗
N )≥K

2 cN . Now by Lemma 2.11 we can find a family

S ⊆L(X,R) which is �2-bounded but not R-bounded.

(iii) ⇒ (v): This follows from the proof of (i) ⇒ (v). Indeed, for the example

in (i) ⇒ (v) one has S is R-bounded and hence γ-bounded by Proposition 2.8.

Since, S ∗ is not R-bounded, Proposition 2.8 and the finite cotype of R imply that

S ∗ is also not γ-bounded.

(ii) ⇒ (v) and (iv) ⇒ (v): These can be proved in a similar way as (i) ⇒ (v)

and (iii) ⇒ (v) respectively. This time use JN :�1N→X such that 1
2‖z‖≤‖JNz‖≤‖z‖

and let SN={JNT ∗ :T∈TN}⊆L(R, X). Then R(SN ) is unbounded in N and

R(S ∗
N )≤1. Here S ∗

N={TJ∗
N :T∈TN}⊆L(X∗,R).

(v) ⇒ (ii) and (v) ⇒ (iv): If X has nontrivial type, then X∗ has nontrivial

type. Therefore, the results follow from (v) ⇒ (i) and (v) ⇒ (ii) applied to X∗. �
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pp. 97–111, Birkhäuser, Basel, 2006.
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