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A Practical Bayesian Optimization Approach for the
Optimal Estimation of the Rotor Effective Wind Speed

Nikolaos Moustakis, Sebastiaan Paul Mulders, Jens Kober, and Jan-Willem van Wingerden

Abstract— Modern wind turbines require careful tuning of
controller and estimator parameters. However, tuning requires
expert control experience, and is therefore in practice often
performed by a trial-and-error brute-force approach. The
contribution of this work is twofold. Firstly, a framework for
tuning the parameters for conventional control and estimator
architectures with Bayesian optimization is proposed. Secondly,
the proposed scheme is applied to the problem of tuning
Kalman filter parameters for the estimation of the rotor effec-
tive wind speed. For accomplishing the beforementioned task,
the Bayesian optimization machine learning algorithm uses
entropy search as utility function. The NREL 5-MW reference
wind turbine is used in high-fidelity simulation software to
show the efficacy of the proposed methodology. The Bayesian
optimized Kalman filter configuration, is shown to estimate
the rotor effective wind speed with a root mean square error
smaller than 5 %, with respect to the actual effective wind speed
over all load cases.

I. INTRODUCTION

Wind turbines have received a lot of interest by industrial
and research communities over the last decades. The atten-
tion is due to their small negative impact on environment
and the huge potential to anticipate on the increasing global
demand for renewable energy. A considerable effort has
been made by the research community towards developing
control algorithms for maximum wind power extraction,
while simultaneously reducing fatigue loading [1], [2].

Wind turbine controller performance relies for a large
extent on the quality of sensor measurements. The driving
force that gives rise to the feedback control systems is
the collection of precise information on the state of the
controlled dynamic system, obtained or computed using
sensor measurements. This information allows the control
system to make appropriate decisions or compensate with
computed signals [3].

A. Wind turbine control framework for finding optimal con-
troller and estimator parameters

The above discussion outlines the importance of controller
and estimator tuning. Present wind turbine controllers are
mainly based on a measurement of the rotor or generator
speed, complemented with additional control loops targeting
specific loads. Depending on the operation region, torque
and pitch control respectively maximize and limit the power
extracted from the wind [4], [5]. However, there is an indirect
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Fig. 1. Framework for estimating the controller C(θ) and estimator P(θ)
parameters θ for a set of load cases.

relationship between the design equivalent loads (DEQL),
which denote the compromise between the power production
and the (fatigue) loads the wind turbine is subjected to.
Furthermore, the DEQL cost function is highly non-linear
with respect to the load variations. This results in convoluted
tuning of the wind turbine controller as the trade-off between
power yield and wind turbine loads is opaque.

The motivation of the current work stems from finding
new ways to improve the wind turbine controller during
its design process. This will be realized by incorporating
machine learning (ML) methods to tune the parameters of
conventional fixed-structure estimators and controllers. By
using ML approaches, the wind turbine controller can be
tuned to minimize the DEQL directly. Direct optimization
of the controller and estimator parameters, combined with
an accurate effective wind speed estimation, should allow the
realization of optimal maximum power point tracking control
algorithms [2, p. 153]. Moreover, a rotor effective wind speed
(REWS) estimate allows common control objectives (e.g.
power maximization, derating, fatigue load reduction) to be
scheduled upon a single parameter for the whole operating
region [6, p. 11].

The schematic representation proposed for tuning the
controller and estimator parameters is shown in Fig. 1.
The framework is general in the sense that it allows for
optimization of the controller and estimator paremeters,
respectively represented by

{
θc, θp

}
∈ θ , using the ML

algorithm. Furthermore, the scheme is set up such that system
uncertainties and disturbances are incorporated, represented
by the ∆-block in Fig. 1.
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B. REWS optimal tuning approach

An overview of established methods towards REWS es-
timation can be found in [7]. A drawback of all REWS
estimation approaches is the absence of a systematic pro-
cedure for tuning the parameters of the estimators, and one
has to rely on intuition or rules of thumb. Most recently, an
adaptive unscented Kalman filter was proposed [8], using a
master-slave approach described earlier in [9]. The method
allows for online adaptation of the noise covariance matrices
for estimator tuning. The drawbacks of this method are
the computational burden when the wind properties vary
rapidly, and the poor noise covariance adaptation in case the
observability condition number is large.

The current work examines the existence of an optimal
configuration of static (Kalman filter) KF noise covariance
matrices, resulting in satisfactory REWS estimation perfor-
mance for different wind speed conditions. It is desirable to
automate the optimization process, since numerous simula-
tion iterations for different wind speed conditions need to be
performed for performance evaluation purposes.

Bayesian optimization (BO) provides an elegant approach
for this particular set-up, as a global optimization machine
learning algorithm. It offers black-box and sample-efficient
optimization, without relying on gradient or Hessian ap-
proximations [10]. More precisely, BO employs a Gaussian
process (GP) as a non-parametric model for the unknown
objective function that captures all prior knowledge. The
underlying utility function suggests the next evaluation point
to learn most about the location of the optimum.

The combination of controller tuning and BO has been
successfully applied in the past. A framework for lin-
ear–quadratic regulator (LQR) tuning resulted in improved
balancing performance of an inverted pendulum setup [11].
This idea is further expanded in [12] for LQR tuning of a hu-
manoid robot balancing poles. Therein, the authors consider
the entropy search (ES) optimization algorithm [13]. The
same algorithm is adopted in this work, as it is demonstrated
in numerical and real-world set-ups to deliver the optimal
configuration in a minimum number of function evaluations.

The remainder of this paper is organized as follows.
Section II formulates the REWS problem. Then, Section III
presents the main result of this paper of modeling the
objective function as a GP. Furthermore, the same section
illustrates how the BO-ES combination is used as a utility
function to estimate the optimal KF estimator parameters.
The efficacy of the proposed methodology is illustrated
through simulations in Section IV. Finally, Section V con-
cludes this paper, stating the main contributions and propos-
ing recommendations for future work.

II. REWS ESTIMATION

For estimating the REWS, this section reformulates the
power balance estimator approach [6] to include an addi-
tional degree of freedom (DOF): the drivetrain rotational-
flexibility. This DOF is usually ignored in literature with the
aim to simplify the proposed design.

Fig. 2. Schematic representation of the wind turbine drivetrain [7, p. 1156].

A. Wind turbine drivetrain model

The considered wind turbine mechanical drivetrain model
is illustrated in Fig. 2. The rotor and shaft inertia are
combined in Jr, while Br represents the friction of the
rotor bearings. The drivetrain is modeled as a spring-damper
system, with the respective stiffness and damping coefficients
Kδ and Bδ . The angular velocity of the low-speed shaft is
transmitted to the high-speed shaft through the gearbox with
gearing ratio Gb ≥ 1. The combined inertia of the high-speed
shaft, gearbox and generator is represented by Jg, and Bg is
the friction induced by the generator. The dynamical system
of the drivetrain is derived as:

Jrω̇r = Tr−Brωr−Bδ

(
ωr−

ωg

Gb

)
−Kδ θδ ,

Jgω̇g = η
Bδ

(
ωr−ωg/Gb

)
+Kδ θδ

Gb
−Bgωg−Tg,

θ̇δ = ωr−
ωg

Gb
,

(1)

in which ωr, ωg, and Tg respectively represent the rotor
speed, generator speed, and generator torque. The drivetrain
torsion angle is denoted by θδ . The drivetrain properties are
in accordance with [14]. The aerodynamic rotor torque is
defined by

Tr =
1
2

ρπ
R5ω2

r

λ 3 Cp(β ,λ ), (2)

which after separation in terms of the tip-speed ratio λ and
the pitch angle β gives

2Tr

ρπR5ω2
r
=

Cp(β ,λ )

λ 3 = F(β ,λ ). (3)

The F(β ,λ ) curve for the NREL 5-MW wind turbine is
depicted in Fig. 3, and is obtained using the high-fidelity
wind turbine simulation software FAST v8.16 [15]. The
importance of the F(β ,λ )-curve will be highlighted in
Section II-B.

B. REWS estimation framework

The assumption is made that and pitch angle β and
generator speed ωg are measured quantities. Furthermore, the
rotor speed ωr and aerodynamic torque Tr are assumed to be
perfectly reconstructed from measurements: this assumption
is further clarified in the next section. Then, using (3), the
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Fig. 3. The NREL 5-MW F(β ,λ )-curve, generated using FAST.

effective wind speed V is calculated by first solving (3) for
λ and then calculating the REWS as

V =
ωrR
λ

. (4)

Remark 1: In principle, there are two methods to compute
λ from (3): the polynomial or tabular implementation. In the
former case, one solves the polynomial relation with respect
to λ , whereas for the latter, λ is tabulated against F in a
precalculated look-up table. Because both methods lead to
similar results, the tabular approach is employed in this work
for reasons of simplicity.

C. Estimation of aerodynamic torque and rotor speed

The aerodynamic torque Tr and the rotor speed ωr in (4)
are unknown, and thus must be estimated. Referring to the
drivetrain model in (1), the following discrete state-space
model is proposed:

x(k+1) = Ax(k)+B1Tr(k)+B2Tg(k), (5)

in which the term k denotes the discrete-time operator and
the state x(k) is defined as x(k) = [ωr(k), ωg(k), θδ (k)]. For
the purpose of estimating the unknown input, Tr is recast as
a random-walk process [16]:

Tr(k+1) = Tr(k)+wt(k), (6)

where wt is a zero-mean white-noise sequence, uncorrelated
with process and measurement noise. The augmented steady-
state KF is now derived as[

x̂(k+1)
T̂r(k+1)

]
=

[
A B1
0 1

]
︸ ︷︷ ︸

Ã

[
x̂(k)
T̂r(k)

]
+

[
B2
0

]
︸ ︷︷ ︸

B̃

Tg(k)

+L(y(k)− ŷ(k)),

ŷ(k) =
[
C 0

]
︸ ︷︷ ︸

C̃

[
x̂(k)
T̂r(k)

]
,

(7)

where the ˆ(·)-notation denotes the estimated values.
The measurement y identifies with the generator speed
ωg, corrupted by zero-mean white noise wg such that
y = ω̃g = ωg +wg. The ˜(·)-notation denotes noisy variables.

The Kalman gain L is computed by

P = Ã
(

Ã−PC̃T (C̃PC̃T +R)−1C̃P
)

ÃT + B̃QB̃T

L = PC̃T (C̃PC̃T +R)−1
(8)

in which P represents the steady-state error covariance ma-
trix, and Q and R are to the tunable KF parameters being
the process and measurement noise covariance matrices,
respectively. The necessary background theory for derivation
of (8) is comprehensively treated in [17]. The estimates T̂r, ω̂r
along with the measured pitch angle β are used to compute
an estimate of the tip-speed ratio

λ̂ = F−1(ω̂r, T̂r,β ), (9)

which is used to approximate the REWS by V̂ = ω̂rR/λ̂ .

Remark 2: Since for a single operating point (1) corre-
sponds to a linear time-invariant (LTI) system, evaluation
of (8) results in a constant Kalman gain L. Therefore, for
each wind speed condition, the Kalman gain needs to be
re-evaluated. Because it is more intuitive to tune the filter
in terms of process and measurement noise variances, as
opposed to the eigenvalues of the error-model, the former
mentioned approach is employed.

D. Kalman filter optimization problem

As explained earlier in Section II-B and II-C, V̂ depends
on ω̂r and T̂r. The estimation quality of these two variables
depends on the tuning of the noise covariance matrices Q and
R. To account for the dependence of variables, the estimated
REWS is parametrized as follows:

V̂ (θ) := V̂ (WQ(θ),WR(θ)) (10)

where WQ(θ), WR(θ) are defined as design matrices corre-
sponding to noise covariance matrices. The elements in θ are
the parameters to be tuned by the ES algorithm. To evaluate
the performance of the learning algorithm, the minimization
objective function is described as

J(θ) =
1
N

N

∑
t=1

∥∥∥Vt −V̂t(θ)
∥∥∥

2
, (11)

where V̂ ∈ RK is the estimated REWS signal parametrized
by the unknown θ , and V ∈ RK is the actual REWS signal
provided by the simulation. The amount of samples for each
simulation load case is indicated by K, and N represents the
number of simulated scenarios. The solution to the REWS
problem is given by

θmin = argmin
θ

J(θ) and θ ∈ RD. (12)

III. THE BO-ES LEARNING ALGORITHM APPROACH

It is important to note that the shape of the non-parametric
objective function (11) is unknown. In effect, one can not
rely on gradient and Hessian approximations, which excludes
the use of first or second order methods. In the considered
setting, function evaluations are expensive by numerous
simulations to be performed. Therefore, it is important to
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spend the computational effort efficiently, by making clever
choices on where to seek the parameters that are most likely
to approach the optimum.

This section describes the BO-ES optimizer, which can
globally explore the parameter space, and infer the optimum
set of parameters that minimizes J(θ). It has to be noted that
in the current work, the BO-ES combination is presented
only from a high-level and practical viewpoint; for the
mathematical details of GP, BO and ES as BO optimizer,
the reader is referred to [13], [18] and [19].

A. Objective function viewed as a Gaussian process

To form a probabilistic belief over the objective function,
J is modeled as the GP

J(θ)∼ GP
(
µ(θ),kSE(θ ,θ

′)
)
, (13)

where µ(θ) is the mean of J(θ), usually chosen equal to 0,
and kSE(θ ,θ

′) the shift invariant squared exponential kernel

kSE(θ ,θ
′) = σ

2
θ exp

[
−1

2
(θ −θ

′)T
Λ(θ −θ

′)

]
, (14)

where σθ represents the variance of the input θ and
Λ = diag(λ1, λ2 . . . λD) are the parameters (length scales)
that determine how quickly J(θ) varies with the input.

The objective function in (11) assumes that the simulated
REWS V is perfectly measured. In a more realistic situation
however, one has to accommodate for noisy function evalu-
ations of J(θ) to model uncertainty in the simulated REWS
V or uncertainty of the tabulated solution of F in (3). Hence,
noisy function evaluations of J(θ) are assumed

J̃(θ) = J(θ)+wJ (15)

where wJ denotes independent identically distributed Gaus-
sian noise with variance σ2

J . The total set of hyperparameters
is defined as H = {λ1, λ2 . . .λD, σθ , σJ}.

Assume the unknown function J̃(θ) is evaluated M times
in respective locations of θ . Then the training data for the
GP is defined as {Θ, Y}= {θi, J̃i | i = 1, 2 . . . M}. The joint
distribution of the training outputs Y and the test outputs Y ∗

according to the prior is given by[
Y
Y ∗

]
∼N

0,

[
K(Θ,Θ)+σ2

J I K(Θ,Θ∗)
K(Θ∗,Θ) K(Θ∗,Θ∗)

] , (16)

in which N represents the normal distribution and the
covariance matrix K is evaluated element-wise using (14).
The predictive distribution of the test data Y ∗ conditioned on
the test inputs and prior training data is represented as

Y ∗|Θ,Y,Θ∗ ∼N
(

J∗,cov(J∗)
)
. (17)

The posterior mean and the posterior variance are given
respectively as

J∗ =K(Θ∗,Θ)[K(Θ,Θ)+σ
2
J I]−1Y,

cov(J∗) =K(Θ∗,Θ∗)
−K(Θ∗,Θ)[K(Θ,Θ)+σ

2
J I]−1K(Θ,Θ∗).

(18)

The probability of the minimum of J(θ) in (13) is repre-
sented as

pmin(θ) := p(θ = argmin
θ

J(θ)), θ ∈ RD. (19)

Let S(θ ∗,θmin) describe the loss function when θ ∗ is chosen
as the minimum of J(θ), instead of the real minimum θmin.
Then, this loss function induces utility for the knowledge
about θmin through the loss functional

L(pmin) =
∫

D
min
θ∗

S(θ ∗,θmin)pmin(θmin)dθmin, (20)

where D a bounded domain. ES proposes to maximize the
Relative Entropy LKL (Kullback-Leibler (KL) divergence).
Hence we use its negative value as the loss functional in (20)

LKL =−
∫

D
pmin(θ) log

pmin(θ)

b(θ)
dθ , (21)

where b(θ) is a uniform distribution. In mathematical statis-
tics, the Kullback-Leibler (KL) divergence [20] measures
how one probability distribution diverges from a second
expected probability distribution, and corresponds to the
information gain when comparing statistical models of in-
ference. With this particular choice of loss functional, the
loss is maximized for a uniform belief over the minimum
and approaches negative infinity if p approaches the Dirac
distribution. As a consequence, ES chooses those evaluation
points for which the first Taylor expansion of LKL, ∆LKL is
minimal. Thus, evaluating the points for which the informa-
tion gain about the location of the minimum is maximized.

Remark 3: Continuous armed bandit algorithms like
Probability of Improvement (PI) [21], the Expected Improve-
ment (EI) [22] and the Upper Confidence Bound (UCB) [23],
aim to minimize regret: the sum over function values at
evaluation points. In contrast, probabilistic optimizers like
ES, aim to obtain the minimum over the function horizon,
regardless the function values at evaluation points. Although
the two setups seem similar, they employ different strategies:
the former methods explore as much as possible of the input
space, whereas the latter performs a trade-off (exploration)
of the search input space versus exploitation of current
promising areas [19].
A last step is to define the hyperparameter set H for the
GP in (13). At the beginning of the ES algorithm, the
hyperparameter set is initialized at randomly chosen values.
Then it is updated at every iteration of the ES algorithm so
that the posterior distribution of the observations Y given the
hyperparameters is maximized, i.e.,

H = argmax
H

p(Y |0,H). (22)

The algorithm for tuning the KF parameters towards estimat-
ing the REWS is given in Algorithm 1.

IV. SIMULATION RESULTS

In this section, the BO-ES is employed as optimization
algorithm to learn the optimal weighting matrices for the
REWS KF defined in (7).
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Algorithm 1 REWS KF tuning using BO-ES
1: function ES(Θ,Y) . Initialize ES at random point
2: n← 1 . Initialize number of function evaluations
3: while n≤ N do . For N evaluation function points do:
4: [J∗,cov(J∗)]←GP(Θ,Y ) . Condition GP on data
5: pmin← approx(J∗,cov(J∗)) . Approximate pmin
6: θ ← argmin∆LKL(pmin) . ES proposes next evaluation point
7: J̃← COST(θ) . Evaluate cost at point
8: {Θ,Y}← {Θ,Y}∪{θ , J̃} . Update training data
9: H← arg max

H
p(Y |0,H) . Optimize hyperparameters

10: θop← arg max
θ

pmin . Update currently best optimum

11: n← n+1 . Increment number of function evaluations
12: end while
13: return θop . Return ES optimum
14: end function
15: function COST(θ )
16: L← KALMAN(WR(θ),WQ(θ)) . Compute Kalman gain
17: JOut← 0 . Initialize cost
18: for i=1 to K do . For K in number simulations:
19: (Vi,V̂i(θ))← SIM(L) . Run simulation and record V̂ , V
20: J = norm(Vi−V̂i,2) . Compute cost of each simulation
21: JOut← JOut + J . Compute the cost over all simulations
22: end for
23: JOut = JOut/K . Average the total cost with number of simulations
24: return JOut
25: end function

A. Simulation set-up

For this work, the NREL 5-MW reference wind turbine
is used and simulated in FAST v8.16. The NREL 5-MW
reference model represents a conventional three-bladed up-
wind variable-speed, variable-pitch controlled turbine. The
community-driven and open-source wind turbine baseline
Delft Research Controller (DRC) [24] is employed, which
among other features, includes below-rated torque control
and above-rated collective pitch control.

For simulation purposes, the blades are assumed stiff so
that flap- and edgewise blade motions are negligible and thus
these DOFs are disabled. Another assumption is that the wind
turbine operates in normal operating regimes, thus extreme
operating conditions are not considered.

The turbulent wind profiles are generated according to the
IEC 61400-3 standard [25], [26]. The load cases are of A,
B, and C turbulence intensity (TI) classes for various mean
wind speeds within the operating region (3− 25 m s-1). A
schematic representation of the simulation set-up is depicted
in Fig. 4.

Remark 4: A simulation environment is convenient for
development and testing of the proposed REWS estimator
optimization framework. One can likewise use real-world
wind speed data obtained from meteorological mast or a

Fig. 4. ML framework for tuning KF parameters towards REWS estimation.

LIght Detection And Ranging (LIDAR) device [27], and
perform BO-ES for tuning of the estimator parameters. In
this case, the REWS V is approximated by averaging the
measurements from anemometers installed on the meteoro-
logical mast and shift the weighted value in time. The latter
facilitates the direct extension of field-proven controllers to
new advanced control designs without major modifications.

B. 2D tuning of the REWS KF estimator

To illustrate the performance of the BO-ES framework,
the design matrices WQ and WR are chosen to satisfy the
following configuration

WQ(θ) = diag(1e−6,10θ1 ,1e−6,10θ2), WR(θ) = 1, (23)

where Q =WQ, R =WR and θ ∈ R2. The first and the third
entry in Q, corresponding to the rotor speed and torsion
angle, are chosen much smaller compared to R. This selection
is based on the intuition that KF should put more weight
on the correction based on the measurement rather than
the prediction from the system model. This is a rather
crude conservative design assumption but is adopted in this
preliminary analysis to illustrate how the BO-ES algorithm
performs. The manipulable entries in WQ correspond to the
generator speed and rotor torque.

The performance of BO-ES depends heavily on the di-
mensions of θ . More precisely, it is desirable to design WQ
and WR to be sensitive with respect to the changes in θ to
improve convergence performance of the optimizer, i.e., to
cover a large space with small changes in the parameters.

Each choice of θ corresponds to 66 simulations with a
mean wind speeds varying from 3−25 m/sec, for normal and
extreme turbulence classes. The generator speed signal ωg to
the KF is assumed to be corrupted by zero-mean white noise
satisfying ωg∼N (0,σ2

g ) with σg = 0.3. Each simulated load
case lasts 50 seconds and the first 5 seconds are omitted to
remove transient effects. Besides, choices of θ leading to
a non-convergent KF, or choices that lead to unacceptable
prediction performance, are highly penalized. The results of
BO-ES as optimizer for the REWS KF optimal parameter
estimation problem are graphically depicted in Fig. 5.

To obtain an insight on the learned GP cost function
surface, Fig. 6 shows the posterior mean versus the actual

Fig. 5. The apparent colorful grid represents the GP posterior mean and
the transparent areas the standard deviations. The red dots represent the
evaluation points.
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Fig. 6. Response surface versus the actual objective function evaluated on
a grid. The black dot represents the initial point, the red dot corresponds to
the minimum of the objective function and the yellow dot corresponds to
the minimum found through OB-ES.

objective function evaluated over a grid of 400 points. The
predicted values of J̃(θ) are very close to the actual ones
at evaluation points. In contrast, the same figure reveals that
far from the evaluation points, uncertainty represented by
the posterior standard deviation increases. The minimum of
J̃(θ) evaluated on the grid is computed 64.18, whereas the
minimum found with BO-ES is 64.72. It is evident that the
initial point resides in an area of high cost of J̃(θ).

Fig. 7 shows the cost function per iteration at evaluation
points. The minimum is obtained at the 34th iteration.
The key observation is the remarkable exploration strategy
employed by ES: instead of following a greedy approach
attempting to minimize the cost close to the obtained mini-
mum, it evaluates regions where expected knowledge for the
minimum is maximum. This results in an efficient sampling
of the input space and learning of the unknown function,
resulting in a solution very close to the global minimum.

C. 5D tuning of the REWS KF estimator

This section presents the main result of this paper, the
optimal tuning of Q and R noise covariance matrices for the
KF in (7). The weight configuration (10) is chosen

WQ(θ) = diag(θ1,10θ2 ,θ3,10θ4), WR = θ5. (24)

The optimal parameter set θop ∈ R5 is computed as

θop = [0.6835,7.77,0.99,19.29,0.0622] (25)

0 10 20 30 40 50
0

200

400

600

Fig. 7. Objective function cost versus number of iterations. The red dots
correspond to non-convergent KF or very poor REWS performance. The
green dot represents the smallest obtained value.

TABLE I: Cost J(θ) for training and test load cases.
Cost J̃(θ) for training and test data
Training data Testing data

mean mean
65.52 65.72

standard deviation standard deviation
1.89 3.58

TABLE II: Mean and standard deviation over the RRMSE
for A, B and C TI wind load cases.

RRMSE
(

V,V̂ (θ)
)

A B C

mean 3.89% 4.31% 3.85%
std 1.43% 1.51% 1.15%

resulting in J̃(θop) = 65.34. From (24), Q and R are com-
puted

Q = diag
(

0.684, 5.01 ·107, 0.995, 19.49 ·1018
)

R = 0.0622.
(26)

To validate the result, the obtained configuration is evaluated
in load cases generated by different wind turbulence seeds.
Table I shows the mean and standard deviation for training
and testing data over 50 BO-ES realizations. It has to be
noted that θop is found over all TI wind load cases, i.e.,
constant Q and R over A, B and C TI classes. To argue
whether a scheduling approach for Q and R based on each
TI class would yield significant improvement in the REWS
estimation, the relative root mean square error (RRMSE) is
computed for each load case using θop from (25):

RRMSE
(

V,V̂ (θ)
)
=

√
1
K

(
V −V̂ (θ)

V
·100%

)2

. (27)

Table II shows the mean and standard deviation of the
RRMSE over the A, B and C TI classes for randomly
generated load cases different from the ones used for training.
The mean and standard deviation for all classes is small
and hence, it can be concluded that the constant Q, R
configuration yields satisfactory REWS estimation perfor-
mance for all TI classes spanning the operation region of
the WT. Figures 8-10 depict the estimated REWS versus the
simulated REWS for three wind speed realizations.
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Fig. 8. IEC3NTM (normal turbulence) mean velocity 8 m s-1 TI class C.
Magnified detail (80-100 s) represented by the dashed box.
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Fig. 9. IEC3ETM (extreme turbulence) mean velocity 16 m s-1 TI class
A. Magnified detail (80-100 s) represented by the dashed box.
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Fig. 10. IEC3ETM (extreme turbulence) mean velocity 20 m s-1 TI class
B. Magnified detail (80-100 s) represented by the dashed box.

V. CONCLUSION

This work introduces framework towards tuning Kalman
filter parameters for estimating the rotor effective wind
speed using Bayesian optimization with entropy search. The
obtained parameters were validated against randomly chosen
data having realistic turbulence characteristics. The resulting
effective wind speed estimator is proven to perform reason-
ably well, with a mean error less than 5 % over the nomi-
nal operation region of the WT. Future research directions
include the extension of the introduced machine learning
framework for tuning the parameters of WT controllers.

The use of effective REWS estimation using the presented
approach, in combination with optimal wind turbine con-
trollers tuning is expected to improve benchmarked values
for power extraction and load mitigation. Moreover, the
choice of kernel encodes assumed objective function proper-
ties as its shape and smoothness. A possible future direction
is the development of new kernels specially designed for
REWS estimation and wind turbine controllers, leading to
improved machine learning performance.
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