Graduation Presentation

Bernard Aukema

1 February 2012

Hydrogen Technology Research & Business Center

NDSM Old Shipyard Amsterdam North

Architectural Engineering Lab06

Tutors: J.F. Engels & A.A.J.F. van den Dobbelsteen

GVB

Hydrogen Technology Fascination

Toyota FCV-R - Fuel Cell Concept Car (2015)

Electrolysis $2 H_2O + Energy = 2H_2 + O_2$ Liquid Electricity Gas Gas Fuel Cell

Experimental in Architecture Research feasibility and usage in architecture

Energy self-sufficient (different than energy neutral) Using the hydrogen technology

Experimental in Architecture Research feasibility and usage in architecture

Energy self-sufficient (different than energy neutral) Using the hydrogen technology

Experimental in Architecture Research feasibility and usage in architecture

Energy self-sufficient (different than energy neutral) Using the hydrogen technology

Facts

- Lightest gas (H2)
- Electrolysis: H2O (Liq) > 2H2 (gas) + O2 (gas)
- Water is abundant on the surface of Earth
- No CO2 emission during the production and use of hydrogen

How? Energy Storage

- In combination with renewable energy (Solar, Wind)
- Lighter than battery system
- No toxic metals
- Large gas volume > Compression required
- Extremely explosive > Strong tank required, save place

Pavilion Restaurant & Exposition

Feasibilty tested in Pavilion Msc1 project

- Restaurant
- 90m2 Wind Turbine
- 80 m2 Solar Panels
- Compressed Hydrogen stored in "legs"

Progressive in hydrogen technology. We want to become Hydrogen City!

Projects:

Progressive in hydrogen technology. We want to become Hydrogen City!

Projects:

Map of Amsterdam

∕∕_N

H₂ Architecture Design & Research

Hydrogen Technology in Architecture 8/37

Old dockyard NSDM – east

NDSM-East Amsterdam North

Impressions NDSM-East

A

GVB

IJVEER 52

Impressions NDSM-East

Why the NDSM Area? Energy experimental site

- 'De Broedplaats' wants to be energy self-sufficient :
- Energy experimental site > Kunst en energieroute
- There are already some projects Heatpump & heating + cooling storage Passive solar energy Electric charging point Bio fuel tank station

 - Wind turbine in the old crane
 - Heating network

De energie maatschappij, dat zijn wij!

Why the NDSM Area? Energy experimental site

- 'De Broedplaats' wants to be energy self-sufficient :
- Energy experimental site > Kunst en energieroute
 - There are already some projects
 - Heatpump & heating + cooling storage Passive solar energy Electric charging point Bio fuel tank station

 - Wind turbine in the old crane
 - Heating network

Environmental conditions

- Good view over the IJ-river, harbor, Amsterdam Center
- Open site: sun, wind, water > energy experience

Addition for NDSM-East

- Active Solar & Wind energy + Hydrogen Storage Hydrogen Research and Business Center

De energie maatschappij, dat zijn wij!

Structuring ideas Building

Structuring ideas Building

Small models Start building desing

Small models Wind blowing through building

Small models Wind blowing through building

Wind simulation test

South side Bird's-eye perspective

Still to the

Bird's-eye

n n

Location Near the building

DutchHy

Collaboration between several companies, research centers and cities, without a clear location.

The goal of DutchHy it to stimulate the hydrogen and fuel cell technology in the Netherlands.

- Active developement of the hydrogen technology
- Support Dutch hydrogen iniatives
- Express the Dutch expertise in hydrogen technology
- Advice and information about the hydrogen technology

DutchHy

• Light

- Light
- Materialisation

- Light
- Materialisation

Functionality:

.

Catch Rainwater = 6 Degrees

- Light
- Materialisation

Functionality:

٠

Catch Rainwater = 6 Degrees

- Light
- Materialisation

Functionality:

- Catch Rainwater = 6 Degrees
- Catch Solar Energy = 30 Degrees south

Bring to the core

- Purify H2O
- Electrolize to H2 & O2

Schematic Section Produce / use Hydrogen

H₂ Architecture Design & Research

Hydrogen Technology in Architecture 22/37

H₂ Architecture Design & Research

Hydrogen Technology in Architecture 22/37

Model impressions

Model impressions

Model impressions

H₂ Architecture Design & Research

 H_2 Architecture Design & Research

Impression Arriving by boat, around the building

WELLER ALLENDER

Hydrogen Technology in Architecture 26/37

H_2 Architecture Design & Research

Corridor Impression Routing/lighting/ducting/materials

HIII

H₂ Architecture Design & Research

WC

Office Layout Quality & Installations

- Lighting corridor, auditorium
- •Decentralized office ventilation
- •Slow extraction of air
- •Fast trench heating
- •Constant concrete floor activation

H₂ Architecture Design & Research

Hydrogen Technology in Architecture 31/37

 H_2 Architecture Design & Research

Hydrogen Technology in Architecture 32/37

 H_2 Architecture Design & Research

Arcam building, Amsterdam

KALZIP ALUMINIUM ROOFING SYSTEM TO ACHIEVE MINIMUM 'U' VALUE OF 0.25 W/m²K

Kalzip Aluminium

Uni-solar amorphous solar cells

	jan	feb	mar	apr	may	jun	jul	aug	sep	oct	nov	dec		
Heating Demand kWh	5315,0	4619,3	3414,4	2023,1	818,2	122,5	122,5	818,2	2023,1	3414,4	4619,3	5315,0		
Cooling kWh (electrical)	22,5	150,5	372,1	627,9	849,5	977,5	977,5	849,5	627,9	372,1	150,5	22,5		
Electricity kWh	13500,0	13500,0	13500,0	13500,0	13500,0	13500,0	13500,0	13500,0	13500,0	13500,0	13500,0	13500,0		
Wind Kwh	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
Full solar hours per day	1,0	2,0	3,0	4,0	4,5	5,0	4,5	4,0	3,0	3,0	1,0	1,0		
Yield 80% verlies (accu) kWh	7344,0	14688,0	22032,0	29376,0	33048,0	36720,0	33048,0	29376,0	22032,0	22032,0	7344,0	7344,0		
Electr: Surplus/shortage energy kWh?	-6178,5	1037,5	8159,9	15248,1	18698,5	22242,5	18570,5	15026,5	7904,1	8159,9	-6306,5	-6178,5		
TRANSFORMED into hydrogen kWh	0,0	518,8	4080,0	7624,0	9349,2	11121,3	9285,3	7513,2	3952,0	4080,0	0,0	0,0		
Electrolyser kW needed	0,0	1,4	11,3	21,2	26,0	30,9	25,8	20,9	11,0	11,3	0,0	0,0		
USED FROM STORAGE by Fuel Cell kWh	15446,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	15766,2	15446,3		
Heat released kWh	3707,1	518,8	4080,0	7624,0	9349,2	11121,3	9285,3	7513,2	3952,0	4080,0	3783,9	3707,1		
Shortage/surplus Heat? kWh	-1607,8	-4100,5	665,6	5600,9	8531,0	10998,7	9162,7	6695,0	1928,9	665,6	-835,4	-1607,8		
Additional Heating (USED FROM STORAGE) kWh	1607,8	4100,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	835,4	1607,8		
Fuel cell kW needed	17,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	17,5	17,2		
Remaining stored H2 Kwh	0	0	4079,968	7624,03	9349,24	11121,27	9285,268	7513,236	3952,032	4079,968	0	0		
Floorarea M2	9000		40000,0	.										
Heating/m2a	29						~							
Cooling/m2a	8		35000,0	ס ו ו		/				_				
Electricity /m2a	18		30000 (Solar + Wind Yield Cooling Demand							
Efficiency Solar Panels	0,12		25000,0		_/									
Burning hydrogen efficiency Fuel Cell efficiency	1 0,4		20000,0							Heating Demand Electricity Demand				
Electrolyser efficiency	0,5		15000,0	,							Heat from fuel			
Heat pump system? 1= yes, 0=no	1		10000,0	,					\vdash	— <u> </u>	ell+electroly Extra Heating	ser g		
COP Heating COP Cooling	8		5000,0	, ->	\checkmark	·		$\overline{}$	<	F	Remaining st	ored H2		
M2 solar panels	2550	<u>ノ</u>		, ⊥ 🔼	Δ		~		1					
M2 wind turbines	0			jan fe	eb mara	apr may ju	ın jul au	ig sep oc	t nov de	c				
Feasible?	Feasible!		-5000,0	,										

	jan	feb	mar	apr	may	jun	jul	aug	sep	oct	nov	dec	
Heating Demand kWh	5315,0	4619,3	3414,4	2023,1	818,2	122,5	122,5	818,2	2023,1	3414,4	4619,3	5315,0)
Cooling kWh (electrical)	22,5	150,5	372,1	627,9	849,5	977,5	977,5	849,5	627,9	372,1	150,5	22,5	j
Electricity kWh	13500,0	13500,0	13500,0	13500,0	13500,0	13500,0	13500,0	13500,0	13500,0	13500,0	13500,0	13500,0)
Wind Kwh	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0)
Full solar hours per day	1,0	2,0	3,0	4,0	4,5	5,0	4,5	4,0	3,0	3,0	1,0	1,0)
Yield 80% verlies (accu) kWh	7286,4	14572,8	21859,2	29145,6	32788,8	36432,0	32788,8	29145,6	21859,2	21859,2	7286,4	7286,4	ł
Electr: Surplus/shortage energy kWh?	-6236,1	922,3	7987,1	15017,7	18439,3	21954,5	18311,3	14796,1	7731,3	7987,1	-6364,1	-6236,1	1
TRANSFORMED into hydrogen kWh	0,0	461,2	3993,6	7508,8	9219,6	10977,3	9155,7	7398,0	3865,6	3993,6	0,0	0,0)
Electrolyser kW needed	0,0	1,3	11,1	20,9	25,6	30,5	25,4	20,6	10,7	11,1	0,0	0,0)
USED FROM STORAGE by Fuel Cell kWh	15590,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	15910,2	15590,3	;
Heat released kWh	3741,7	461,2	3993,6	7508,8	9219,6	10977,3	9155,7	7398,0	3865,6	3993,6	3818,4	3741,7	1
Shortage/surplus Heat? kWh	-1573,3	-4158,1	579,2	5485,7	8401,4	10854,7	9033,1	6579,8	1842,5	579,2	-800,9	-1573,3	ł
Additional Heating (USED FROM STORAGE) kWh	1573,3	4158,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	800,9	1573,3	\$
Fuel cell kW needed	17,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	17,7	17,3	
Remaining stored H2 Kwh	0	0	3993,568	7508,83	9219,64	10977,27	9155,668	7398,036	3865,632	3993,568	0	0)
Floorarea M2	9000		40000,0	b									
Heating/m2a	29												
Cooling/m2a	8		35000,0	o		/							
Electricity /m2a	18									<u> </u>	olar + Wind	Yield	
			30000,0) 									
Efficiency Solar Panels	0,069		25000,0	, 📖	/			\downarrow		(Cooling Dem	and	
			_							—-+	leating Dem	and	
Burning hydrogen efficiency			20000 (
Fuel cell efficiency	0,4		20000,0	·					\	— E	ectricity De	mand	
	0,5		_		/				\				
Ruilding operating hours	12		15000,0) 	/				1	H	leat from fu	el	
bunung operating nours	12		_							c	ell+electroly	yser	
Heat nump system? 1= yes_0=no	1		10000,0	י 					+	— — E	xtra Heating	g	
COP Heating	8		_										
COP Cooling			5000,0) 						F	Remaining st	tored H2	
M2 solar papels	4400				\mathbf{X}			>					
N/2 using turkings			0,0	o 		· · ·							
wiz wind turbines	U			jan f	eb mara	apr may ju	un jul au	ig sep oo	t nov de	c			
Feasible?	Feasible!		-5000,0)						_			

Efficiency: Needed roof surface:

Multicrystalline

15-18% 2550 m2

UNI-SOLAR®: More efficient and ecological production process based on a lower expenditure of material and energy

Amorphous 5-8% (12-20% in 2020) 4400 m2

Crystalline module

Amorphous module (e.g. Kalzip[®] AluPlusSolar)

Amorphous silicon cells have a lower annual yield per m2, but they have a better annual yield in kWh/kWp. This means that the crystalline cells are less efficient per installed kWp. The reason of this is that amorphous cells can handle high temperatures, low light levels, and shading better. So crystalline solar cells are better in laboratory conditions, but the amorphous solar cells are more efficient (25%) per kWp in outdoor conditions.

Thank you for your attention

Bernard Aukema Architectural Engineering | Lab06

Additional Sheet Building installation scheme

Additional Sheet P3 (october 2011) - Entrance

Additional Sheet Inspirations

MARINA

Additional Sheet Wind & turbines

12

14

16

18

Gem 4 4,9 m/s

85,1 mm

Gem 4 5,6 m/s

10

H₂ Architecture Design & Research

6

8

4

0

2

Hydrogen Technology in Architecture 42/45

Gem 🖌 5,9 m/s

89,0 mm

74,9 mm

Additional Sheet Bolon floor

BOLON

H₂ Architecture Design & Research