
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ens.ewi.tudelft.nl/

CAS-2021-4589734

M.Sc. Thesis

Hybrid Posit and Fixed Point Hardware
for Quantized DNN Inference

Zep Kleijweg B.Sc.

Abstract

The recently introduced posit number system was designed as a replacement
for IEEE 754 floating point, to alleviate some of its shortcomings. As the
number distribution of posits is similar to the data distributions in deep neu-
ral networks (DNNs), posits offer a good alternative to fixed point numbers in
DNNs: using posits can result in high inference accuracy while using low pre-
cision numbers. The number accuracy is most important for the first and last
network layers to achieve good performance. For this reason, these are often
computed using larger precision fixed point numbers compared to the hidden
network layers. Instead, these can be computed using low precision posit,
to reduce the memory access energy consumption and the required memory
bandwidth. The hidden layer computation can still be performed using cheaper
fixed point numbers.
An inference accuracy analysis is performed to quantify what the effect of this
approach is on the VGG16 network for the ImageNet image classification task.
Using 8 bit posit for the first and last network layer instead of 16 bit fixed
point is shown to result in a top-5 accuracy degradation of only 0.24%. The
hidden layers are computed using 8 bit fixed point in both cases.
The design of a parameterized systolic array accelerator performing exact ac-
cumulation is proposed that can be used in a scale-out system along with fixed
point systolic array tiles. To increase hardware utilization, a hybrid posit de-
coder is designed to enable fixed point computation on the posit hardware.
Using this hardware, the entire network can be computed using 8 bit data,
instead of using 16 bits for some layers. This reduces energy consumption and
the complexity of the memory hierarchy.

Hybrid Posit and Fixed Point Hardware for
Quantized DNN Inference

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Embedded Systems

by

Zep Kleijweg B.Sc.
born in Haarlem, The Netherlands

This work was performed in:

Circuits and Systems Group
Department of Microelectronics & Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright © 2021 Circuits and Systems Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Hybrid Posit and Fixed Point Hardware for Quantized DNN In-
ference” by Zep Kleijweg B.Sc. in partial fulfillment of the requirements for the
degree of Master of Science.

Dated: September 30, 2021

Chairman:
prof.dr.ir. René van Leuken

Advisor:
dr. Inayat Ullah

Committee Members:
prof.dr. Zaid Al-Ars

iv

Abstract

The recently introduced posit number system was designed as a replacement for IEEE
754 floating point, to alleviate some of its shortcomings. As the number distribution
of posits is similar to the data distributions in deep neural networks (DNNs), posits
offer a good alternative to fixed point numbers in DNNs: using posits can result in high
inference accuracy while using low precision numbers. The number accuracy is most
important for the first and last network layers to achieve good performance. For this
reason, these are often computed using larger precision fixed point numbers compared
to the hidden network layers. Instead, these can be computed using low precision posit,
to reduce the memory access energy consumption and the required memory bandwidth.
The hidden layer computation can still be performed using cheaper fixed point numbers.
An inference accuracy analysis is performed to quantify what the effect of this approach
is on the VGG16 network for the ImageNet image classification task. Using 8 bit posit
for the first and last network layer instead of 16 bit fixed point is shown to result in a
top-5 accuracy degradation of only 0.24%. The hidden layers are computed using 8 bit
fixed point in both cases.
The design of a parameterized systolic array accelerator performing exact accumulation
is proposed that can be used in a scale-out system along with fixed point systolic array
tiles. To increase hardware utilization, a hybrid posit decoder is designed to enable fixed
point computation on the posit hardware. Using this hardware, the entire network can
be computed using 8 bit data, instead of using 16 bits for some layers. This reduces
energy consumption and the complexity of the memory hierarchy.

v

vi

Acknowledgments

With this thesis work, titled ”Hybrid Posit and Fixed Point Hardware for Quantized
DNN Inference”, my master study comes to completion.
I would like to thank my supervisor René van Leuken for his assistance during the entire
process of writing this thesis, and for providing me with the opportunity to pursue an
interesting topic of research.
Special thanks also go to my daily supervisors, David Aledo Ortega, Ercan Kalali, and
Inayat Ullah for their continued support during the entire project. You really helped
steer my thesis towards interesting topics and ideas. The help you provided with the
technical details is also much appreciated.
It goes without saying that I would not have been able to accomplish this work without
the strong support from people I care about. I want to thank my mother and father,
Annelies & Robert, and brother, Stijn, for their unwavering support during all of my
studies. I want to thank my girlfriend, Marit, for always being there for me, either
to motivate me or to provide some much needed distraction. I also want to thank
my friends, for being understanding of not seeing me as much these past months, yet
always being there for a relaxing chat along with a drink.

Thank you.

Zep Kleijweg B.Sc.
Delft, The Netherlands
September 30, 2021

vii

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Goals . 2
1.3 Approach . 3
1.4 Thesis Contributions . 3
1.5 Outline . 3

2 Number Systems & Arithmetic 5
2.1 Number Systems . 5

2.1.1 Fixed Point . 5
2.1.2 IEEE 754 Floating Point . 10
2.1.3 Posits . 12
2.1.4 Rounding . 19
2.1.5 Number System Comparison 20

2.2 Arithmetic Operations & Hardware . 24
2.2.1 Integer Computation . 24
2.2.2 Rounding . 30
2.2.3 Floating Point . 31
2.2.4 Posits . 34
2.2.5 Hardware Comparison . 40

2.3 Related Works: Posit Hardware . 41

3 Deep Neural Networks 45
3.1 Deep Neural Networks . 45

3.1.1 Two Network Architectures . 46
3.1.2 Network Components . 47

3.2 Inference Computation . 51
3.2.1 Compute Architectures . 51
3.2.2 Systolic Arrays . 53
3.2.3 Energy: Memory vs. Compute 55
3.2.4 Quantization . 56

3.3 Related Works: Posit in DNNs . 58
3.4 Methodology: Hybrid Hardware . 60

4 Inference Accuracy Analysis 63
4.1 Network: VGG16 . 63

4.1.1 Weight & Bias Quantization . 66
4.1.2 Activation Quantization . 67

ix

4.2 Verification Dataset . 68
4.3 Results . 68

5 Hardware Designs 71
5.1 Posit Systolic Array Design . 71

5.1.1 Data Flow . 71
5.1.2 Edge & Distributed Conversion 72

5.2 Posit Processing Element Design . 74
5.2.1 Processing Element Design . 74
5.2.2 Open-Source Posit Hardware 79
5.2.3 Encode Fixed Point Numbers to PIF 83
5.2.4 Quire to Fixed Point . 90
5.2.5 Shorter Quire . 91
5.2.6 Pipelining . 92

5.3 Verification . 94
5.3.1 Generating Verification Data 94

5.4 Results: Synthesis & Timing Analysis 96
5.4.1 Using Different Decoders . 97
5.4.2 Quire Conversion . 98
5.4.3 Processing Elements . 98
5.4.4 Systolic Arrays . 103

6 Conclusions 107
6.1 Future Work . 108

x

List of Figures

2.1 Unsigned number representations. 7
2.2 Example of 1’s complement number arithmetic, involving end-around

carry. 9
2.3 Example of 2’s complement number arithmetic, dropping the carry. . . 9
2.4 32 bit IEEE 754 floating point representation. 10
2.5 Representation of a posit number. 12
2.6 A comparison between the number distributions of 16 bit IEEE floating

point, posit, and fixed point number systems. 22
2.7 Unsigned integer ripple-carry adder. 25
2.8 1’s complement signed integer adder. 26
2.9 2’s complement signed integer adder. 27
2.10 Carry out that is not an overflow. 27
2.11 2’s complement adder with overflow detection, assuming signed input

operands. 28
2.12 Binary multiplication of two 4 bit numbers. 28
2.13 4 bit array multiplier. 29
2.14 Fixed point arithmetic with example values, with 2 integer bits and 3

fraction bits. 30
2.15 Floating point multiplier. 34
2.16 Posit to PIF decoder, where clog is the ceiling of the log: ⌈log2(x)⌉. . 35
2.17 8 bit input leading zero counter using 2 modules with 4 bit inputs. . . 37
2.18 An 8 bit barrel shifter design. 38
2.19 PIF to posit encoder. 39

3.1 An example of a fully connected layer. 49
3.2 An example of a convolutional layer. 50
3.3 An example of the max pooling operation. 51
3.4 Example of a 5× 4 systolic array. 54
3.5 A comparison between the distribution of posit numbers and the weight

distribution in a DNN. Figures from [1]. 59
3.6 9 tile systolic array design. 61

4.1 VGG16 before and after adding quantization layers. 65

5.1 Output stationary systolic array of size 5× 4. 72
5.2 Two different approaches to handle posit decoding and quire conversion

in a systolic array architecture. 73
5.3 Posit processing element for exact accumulation. 75
5.4 Top-level distributed processing element for an output stationary data

flow. 77
5.5 Top-level distributed processing element for an output stationary data

flow, that reuses the quire registers for the converted results. 78
5.6 Top-level edge processing element for an output stationary data flow. . 79

xi

5.7 The Deepfloat decoder design. 85
5.8 Hybrid decoder design that can convert both posits and fixed point input

numbers to the PIF. Posit and fixed point precision is assumed to be
equal. 89

5.9 Simple pipelining example. 92
5.10 Simplified schematic of a processing element, where the dotted lines

indicate potential locations to introduce pipelining registers. 93

xii

List of Tables

2.1 Effective operations. 7
2.2 Complement number system modular arithmetic. 8
2.3 Number formats in the IEEE 754-2008 standard, where the +1 in sig-

nificand length is the implicit bit. 10
2.4 IEEE 754 special case representations. 12
2.5 Regime field examples and their interpreted values, where x is don’t care. 13
2.6 Posit formats as described in [2], where the +1 in significand bits is the

implicit 1 bit. 13
2.7 Half & full adder truth table. 25
2.8 Truth table for a 4 input leading zero counter. 37

3.1 The architecture of the AlexNet network, where the input propagates
from the top to the bottom. 47

3.2 The architecture of the VGG16 network, where the input propagates
from the top to the bottom. 48

4.1 Simulation results for different number systems, where the hidden layers
are quantized to 8 bit fixed point numbers. The single precision baseline
uses no quantization in any layer. 69

5.1 Alignment of a product to the quire. 82
5.2 The functionality of the neighboring bit XOR. 84
5.3 How the leading zero count of the XORed input signal is interpreted,

where LZC() is the leading zero count. The signals in brackets are the
2’s complement representation of the signed integers. 86

5.4 Quire to fixed point example using (4,0)-posit quire and 6 bit fixed point. 91
5.5 Decoder implementation results. 98
5.6 Quire to fixed point converter. 98
5.7 Implementation results of processing elements using regular posit decod-

ing. 99
5.8 Hybrid processing element results for different fixed point bit widths. . 100
5.9 Hybrid processing element results for different parameters, where the

fixed point input precision is set to 8 bits. 101
5.10 Hybrid PE results using a shorter quire. The fixed point input precision

is 8 bits. 102
5.11 Pipelined PE implementation results. The fixed point input precision is

set to 8 bits. 102
5.12 Non-pipelined 9× 8 systolic arrays, with different input fixed point pre-

cision. 103
5.13 Pipelined 9 × 8 systolic array implementation results for different bit

widths and with reduced quire sizes. 104

xiii

5.14 Pipelined 9×8 systolic array implementation results for different param-
eters and with reduced quire sizes, where the fixed point input precision
is set to 8 bits. 105

xiv

List of Acronyms

AI artificial intelligence.

ANN artificial neural network.

ASIC application-specific integrated circuit.

BRAM Block RAM.

CNN convolutional neural network.

CPU central processing unit.

DCNN deep convolutional neural network.

DNN deep neural network.

DSP digital signal processing.

DUT device under test.

es exponent size.

FF flip-flop.

FMA fused multiply-add.

FPGA field programmable gate array.

FSM finite-state machine.

GPU graphics processing unit.

HLS high-level synthesis.

ILSVRC ImageNet Large Scale Visual Recognition Challenge.

IP intellectual property.

IS input stationary.

LOC leading one counter.

LSB least significant bit.

LUT lookup table.

LZC leading zero counter.

xv

MAC multiply-accumulate.

ML machine learning.

MSB most significant bit.

NaN not a number.

NaR not a real.

NLR no local reuse.

OS output stationary.

PE processing element.

PIF posit intermediate format.

ReLU rectified linear unit.

RS row stationary.

RTL register-transfer level.

SA systolic array.

sf scaling factor.

TPU tensor processing unit.

ULP unit in last position.

unum Type III universal number.

useed unum seed.

WS weight stationary.

xvi

Introduction 1
Deep learning is a machine learning technique that is used to extract meaningful, high-
level information from large sets or streams of data. It has applications in for example
image and speech recognition, which makes deep learning a widely studied topic. For
image recognition, which is the application that is focused on in this thesis, the deep
neural network (DNN) model is currently the most popular, as it has been found to
be most effective [3]. This model uses multiple convolutional layers in order to extract
more abstract features from the input data [4]. The accuracy that is achieved by DNNs
has increased rapidly over the years, thanks to increasing model sizes and a huge in-
crease in the amount of available data to train the networks with [5]. Of course, the
progress in the field could not have been achieved without the huge increase in com-
putational resources [5]. The high achievable accuracy has sparked interest for the use
of DNNs in consumer electronics and on edge devices like drones [6] and autonomous
vehicles [7].
In order to make the networks more powerful and perform more difficult tasks, larger
networks can be used [5]. However, this also increases the number of operations that
are required to compute accurate results. It also incurs a higher energy consumption,
which is often the limiting factor in compute systems [8]. A technique that is often used
to decrease energy consumption and memory overhead is to use fewer bits to represent
numbers during the computation. This technique is known as quantization, and also
helps to increase throughput: smaller precision operations require less hardware area,
meaning more compute can be performed within the same area constraint.
The inference accuracy degradation caused by the use of low precision, fixed point data
compared to single precision floating point data has been proven to be relatively small
[9]. The use of the IEEE 754 floating point number representation [10] has become
the standard for real number representation in the computing industry. However, the
use of fixed point numbers for deep learning inference has been widely adopted, as the
lower accuracy of the numbers does not have a significant impact on the network accu-
racy and the hardware to compute with fixed point numbers is less expensive in terms
of area, power, and delay. A recently introduced number system has some promising
characteristics, making it another viable alternative.
Gustafson introduced the posit number system in 2017 [11]. It achieves a larger dy-
namic range and accuracy than IEEE 754 floating point numbers for the same number
of bits, and has a number distribution that is quite similar to typical data distribution
in DNNs [1]. This means that low precision numbers can be used, with a less severe
accuracy degradation but with the benefit of reduced memory footprint and energy
consumption. Unfortunately, this does come at the cost of increased hardware area
overhead and power requirement compared to fixed point numbers: posit hardware
area is comparable to floating point hardware [12].
A popular approach to increase the performance of DNN computation is to use an

1

accelerator, rather than performing the computation on a general purpose central pro-
cessing unit (CPU) and graphics processing unit (GPU). An accelerator implements
a compute architecture in hardware that is optimized for a certain application. This
makes hardware accelerators less flexible, but also means that they can be faster, and
more area and energy efficient, than a general purpose compute platform. A specific ar-
chitecture that is a good fit for the acceleration of DNN inference is that of the systolic
array (SA), where all data passes through multiple compute cores in sequence before
the result is again stored in the memory hierarchy [13]. This type of architecture has
the benefit that an algorithm that involves multiple operations on each datum sequen-
tially can be computed without the latency and energy consumption of continuously
gathering the same data from memory. It is however less general purpose and often
needs to be adjusted to work for a specific application, requiring new hardware designs.

1.1 Motivation

The desire to deploy high performance DNN applications in edge devices means energy
efficient compute systems are required. The use of lower precision number representa-
tions has been explored in research, but with the posit number system another option
has been introduced that can come with a smaller accuracy penalty. The recent in-
troduction of the number system means that high effort hardware designs to compute
with posits are sparse and often not open source. This makes it difficult for designers
to make a well informed trade-off as to what suits their application.

1.2 Thesis Goals

This thesis studies the posit number system, and specifically its use in a systolic array
based hardware accelerator for DNN applications. The posit number system offers a
different number distribution compared to IEEE floating point numbers, that is well
suited for use in a DNN compute system. The systolic array architecture reuses data,
which reduces expensive memory accesses.
The goal of this study is to design a posit SA that can be used in a hybrid compute
system that can compute with both posit and fixed point data representations. This
way, posits can be used for those network layers that benefit from the increased accuracy
posits offer, while the cheaper fixed point number system can be used for the rest of the
computation. The posit computations that replace the fixed point computation will
also use a smaller bit width, to reduce the memory access energy consumption and the
required memory bandwidth.
The aim of this study is to investigate the impact this hybrid computation approach
has on the network inference accuracy. Different trade-offs that can be made in the
design of the SA will also be evaluated based on their hardware area and delay.

2

1.3 Approach

First the different number systems will be introduced, and their properties compared.
Then the hardware structures that can be used to compute with them are presented,
identifying their differences. Next, an introduction into DNNs is presented, to discover
how the use of the posit number system introduces a benefit. Subsequently, the effect
on DNN inference accuracy of using posit numbers for part of the computation will be
evaluated, using software to simulate posits on floating point hardware.
Next, a processing element that performs exact accumulation of posit products is de-
signed, that forms the basic module the systolic array is built from. The processing
element is designed using parameters, such that it can easily be used to compute with
different bit width numbers. Different trade-offs in its design are evaluated. The design
of the systolic array is also parameterized to easily change the size of the array. All the
hardware designs are implemented in SystemVerilog and verified using reference data.

1.4 Thesis Contributions

The following summarizes the main contributions of this thesis:

• An elaborate explanation and comparison of the fixed point, floating point, and
posit number systems, as well as the hardware that is used to compute with them.

• An inference accuracy analysis of a post-training quantized deep neural network
using posit number system for the first and last network layer, while using fixed
point numbers for the hidden layer computation.

• Design and implementation of a reconfigurable hybrid systolic array that can
compute exact accumulation with both the posit and fixed point number system.
This SA can be used in combination with fixed point SA tiles to form a hybrid
compute system.

1.5 Outline

The content of this thesis is organized as follows:

• Chapter 2 introduces and compares the different number systems and the basic
hardware structures to compute with them. Related work on posit hardware
designs is also discussed.

• Chapter 3 provides an introduction to deep neural networks, the hardware archi-
tectures that can be used to with compute them, and quantization. Related work
about using posit in DNNs is also discussed.

• Chapter 4 explores the effect of using both posit and fixed point numbers in the
same DNN computation, to get the best out of both number systems.

3

• Chapter 5 describes the design of the posit processing element and systolic array
architecture, along with the specific optimizations and trade-offs that are imple-
mented and evaluated.

• Chapter 6 concludes this thesis and presents possible future work.

4

Number Systems & Arithmetic 2
In this chapter, three relevant number systems are described that can be used in a
DNN compute system. First, in Section 2.1, their basic working is discussed, followed
by the hardware structures that can be used to compute with the numbers in Section
2.2. Even though there are significant differences between the number systems, the
arithmetic operation structures have a lot of overlap. Finally, Section 2.3 discusses
some related work regarging posit compute hardware.

2.1 Number Systems

In a digital computing system, all information is stored in binary digits, or bits. How
these bits are interpreted, determines what information they represent. For example,
the same byte can be interpreted as an ASCII character, a negative integer, or a positive
fraction. In this section, two major number representations are discussed, that are in
use already for a long time in a wide variety of systems: the fixed point number system,
and the floating point number system. A third, relatively new number system is also
discussed, the Type III universal numbers called posits. This number system attempts
to take the useful things from the IEEE 754 floating point standard, and improve upon
its weak points.
In the following discussion, the word precision is used when referring to the total bit
width of a number. Accuracy is used to say something about the error a number
system introduces: a smaller difference in value of subsequent representable numbers
introduces a smaller error, so achieves a higher accuracy. Dynamic range describes
the ratio between the largest magnitude and the smallest magnitude a certain number
representation can assume.

2.1.1 Fixed Point

In a fixed point number system, also called Q-point [14], the location of the decimal
point is determined beforehand, during the design of a computing system. The decimal
point can not dynamically change from one position to another. The simplest example
are unsigned integers, where the decimal point is placed after the least significant bit
(LSB) and the value is always positive or zero. By moving the decimal point to the left,
rational numbers can be represented and real numbers approximated more accurately.
For representing signed values, there are numerous different representations that can
be used, which will also be discussed.

5

2.1.1.1 Unsigned Numbers

Unsigned numbers are positive, including zero. This can be useful when the designer
knows beforehand that negative numbers will never be used in the system, preventing
the need to also encode the sign of the numbers thus saving hardware and enlarging
the dynamic range of the representable numbers for the same precision.

Integers Integers can be represented as in Fig. 2.1a, where bN−1 is the most significant
bit (MSB) and b0 the least significant bit (LSB). Converting this number to a decimal
number can be done using (2.1). Numbers in the range [0, 2N − 1] can be represented
with N bits of precision.

ybase10 =
N−1∑
i=0

bi ∗ 2i (2.1)

Rational Numbers By moving the binary point, the number is divided into an integer
part and a fractional part, as shown in Fig. 2.1b. In the figure, the integer part is
represented by N bits, and the fractional part by M bits. The conversion to a decimal
number can be done using (2.2). The numbers that can be represented are in the range
[0, 2N − 2−M].

ybase10 =
N−1∑
i=−M

bi ∗ 2i (2.2)

Since only a finite number of bits can be used to represent the fraction, the accuracy of
the numbers that can be represented is limited: the numbers that can be represented
are always an integer multiple of the value that is assigned to the LSB: 2−M . This
is the often called the unit in last position (ULP), and gives the quantisation step
between consecutive numbers in the number system. It also immediately shows that a
larger fractional part results in the more accurate representation of real numbers, since
the ULP is smaller. However, it also means that there will always be a quatization
in the representation of real numbers. When a number needs to be stored that can
not be exactly represented in a certain number representation, it needs to be rounded.
This process is discussed in more detail in Section 2.1.4.
The precision of a real number is the total number of bits that are used to represent
the number: N + M . By varying the numbers N and M , a trade-off can be made
between the accuracy of the numbers that can be represented, and their dynamic
range: a larger M will increase the accuracy, but reduce the dynamic range when
using the same precision.

2.1.1.2 Signed Numbers

When the numbers that need to be represented can also be negative, a signed represen-
tation needs to be used. Different methods exist to encode the sign, three of which are

6

(a) Unsigned integer representation with N bits.

(b) Unsigned representation with an M bit fractional part and an N bit integer part.

Figure 2.1: Unsigned number representations.

discussed here. Signed numbers also make subtraction possible where the result can
be negative. Effective subtraction refers to the cases where the effective mathematical
operation is subtraction, including for example the addition of operands of opposite
sign (see Table 2.1 for each of the cases). For signed numbers, an extra bit is typically
used to indicate whether the number is positive or negative, where the convention is
that the MSB of a number indicates the sign, 1 indicates a negative number and 0 a
positive number [15].

Table 2.1: Effective operations.

Operands Effective operation
(+X) + (+Y) Addition
(+X) + (-Y) Subtraction
(-X) + (+Y) Subtraction
(-X) + (-Y) Addition
(+X) - (+Y) Subtraction
(+X) - (-Y) Addition
(-X) - (+Y) Addition
(-X) - (-Y) Subtraction

Sign & Magnitude Sign & magnitude representation is conceptually quite a simple
one: the magnitude is represented in the same way as for the unsigned case, and an
extra bit is used to indicate whether the number is positive or negative. Representing a
number in this way is quite straightforward and intuitive, other advantages include its
symmetric range and easy sign change. For integers, the representable range using sign
& magnitude representation is [−(2N−1 − 1), 2N−1 − 1]. The downside of a symmetric
range is that there are two representations for zero (+0 and −0), requiring separate
detection in the case of comparisons. The major disadvantage, however, is that effec-
tive subtraction can not be computed using the same hardware as effective addition:
subtraction might require borrowing from a more significant digit, while addition will
only carry partial results over to more significant digits. This means addition requires

7

a magnitude comparator to determine the sign of the result in case of effective sub-
traction, and a separate subtractor circuit next to the adder. Another approach would
be to use a complement representation internally, such that the same hardware can
be used for addition and subtraction. However, in order to prevent the repeated cost
of switching between the different representations it would be more efficient to just
use the complement representation throughout the system, which is exactly what is
generally being done in computing systems [15]. Two slightly different complement
representations are discussed next.

1’s Complement In a complement number system, a negative value −x is represented
as the unsigned value C − x where C is a suitable complementation constant that can
be decided by the designer [15]. Addition is computed as the sum of the unsigned
representations in modulo C, irrespective of the sign of the operands. Table 2.2 shows
these calculations, keeping in mind that in modular arithmetic adding C−1 is the same
as subtracting 1. This makes that the addition is the same for all operands, independent
of their sign, as long as their complement C − x can be calculated when necessary for
effective subtraction. Depending on the value chosen for C, this complement can be
quite cheap to calculate. This is the major strength of complement number systems:
at the cost of selectively complementing the operands, the rest of the addition process
is the same for effective subtraction and addition, preventing the need for separate
hardware.

Table 2.2: Complement number system modular arithmetic.

Desired operation Operation in mod C

(+X) + (+Y) X + Y
(+X) + (-Y) X + (C - Y)
(-X) + (+Y) (C - X) + Y
(-X) + (-Y) (C - X) + (C - Y)

An easy operation to obtain the complement of a number is the bitwise inversion
in case it is negative, which is exactly what is done in the 1’s complement number
representation. Since this operation can be done entirely in parallel, only a few inverters
are necessary that introduce minimal delay. The range of a 1’s complement number
system is [−(2N−1 − ULP), 2N−1 − ULP], with a redundant representation for zero
(both all-1’s and all-0’s). The ULP can be 2−M for fixed point, or 1 in case of integer
numbers. Bitwise inversion corresponds to subtracting a number from an all-1 vector,
or C = 2N − ULP , resulting in C − x = 2N − ULP − x. In order to perform addition
modulo this C, a carry out that is produced is fed back to the LSB to be added: the
dropped carry has a value of 2N , the bit added to the LSB has value ULP, resulting in
a reduction of the result equal exactly to the modulus.
This principle is known as end-around carry: the carry out of the MSB position is
added to the LSB position, effectively doubling the maximum possible length of carry
propagation. An example calculation involving end-around carry is shown in Fig. 2.2.
What the effect is on the hardware is discussed in Section 2.2.1.2. End-around carry
can be quite expensive for high precision numbers, especially because carry propagate

8

adders are often found in the critical path of a compute system. In order to prevent
this overhead, a complement number system with a different modulus can be used.

Figure 2.2: Example of 1’s complement number arithmetic, involving end-around carry.

2’s Complement Choosing C = 2N results in the 2’s complement number system.
The complementation of a number is slightly more involved than in the case of 1’s
complement: it requires bitwise inversion and the addition of ULP. This can be seen
from the equation that calculates the complement in the case of 1’s complement:
C−x = (2N −ULP −x)1′s complement+ULP = 2N −x. The range of the 2’s complement
system is asymmetric: [−2N−1, 2N−1 −ULP], which has the benefit of only having one
representation for zero, all-0’s. The addition of two numbers can be done by simply
dropping the carry-out, since this has the same value as the modulus: 2N . An example
calculation in the 2’s complement representation can be seen in Fig. 2.3.
At first sight it seems like the complementation needed for subtraction makes this
operation significantly more expensive than bitwise inversion, since it requires an ad-
dition and potentially full carry propagation. However, because complementation is
only needed for computing the subtraction of two numbers, the addition of ULP can be
incorporated into this computation at marginal cost. How this is done exactly is again
discussed in Section 2.2.1.2 in more detail. The fact is that it is a lot cheaper than
computation in 1’s complement notation, which has made 2’s complement the most
widely used method for signed number representation in modern computing systems.

Figure 2.3: Example of 2’s complement number arithmetic, dropping the carry.

9

2.1.2 IEEE 754 Floating Point

As opposed to a fixed point number system, the decimal point in a floating point
number system is not placed at a fixed position. The most widely used floating point
representation is the IEEE 754 standard [10], the 2008 revision of which is discussed
in detail here. The decimal representation definitions that are also in the standard are
not discussed here, since these are not of interest. When using the word float, it refers
to a floating point number adhering to the IEEE 754 standard.
The representation of the number is split into three different parts, much like signed
fixed point numbers. In this case however, the integer part is replaced by an exponent
to increase the dynamic range of the representable numbers by effectively moving the
position of the decimal point depending on the value that is represented. Fig. 2.4 shows
the general representation standard, and (2.3) can be used to calculate the decimal value
of a floating point number when it is not one of the special representations that are
discussed later. Table 2.3 shows the different (binary) format lengths defined in the
standard, where the significand length includes the implied bit in front of the fraction
corresponding to the +1 in (2.3).

Figure 2.4: 32 bit IEEE 754 floating point representation.

ybase10 = (−1)MSB ∗ 2exp−bias ∗ (1 + fraction) (2.3)

Table 2.3: Number formats in the IEEE 754-2008 standard, where the +1 in significand length
is the implicit bit.

Bits Common name Significand bits Exponent bits Exponent bias
16 Half precision 1 + 10 5 15
32 Single precision 1 + 23 8 127
64 Double precision 1 + 52 11 1023
128 Quadruple precision 1 + 112 15 16383

The first term of (2.3) represents the sign of the numbers, that is encoded in the MSB
of the number according to the same convention as for signed integer and fixed point
numbers. For the exponents, a biased representation is used. This allows representing
integers in the range [−bias, 2q−bias], where q is the length of the exponent, as unsigned
integers in the range [0, 2q−1] when the bias is chosen to be 2q−1. The reason this biased
representation is rarely seen anywhere else than in the exponents of floating points is
because they require correction of the bias even after simple arithmetic, as is shown in
(2.4). Multiplication and division become even more complicated. However, using a

10

biased representation for the exponents allows for easy zero detection and magnitude
comparison for floating point numbers.
In the floating point standard a slightly different bias value of 2q−1 − 1 is used. This is
because the all-0’s and all-1’s exponents are used to represent exception cases, and with
this bias the smallest representable exponent has a value of 1 after biasing. Because
the exponents are represented as unsigned values, magnitude comparison can be done
without having to decode the signs, simplifying the operation. Since the exponents of
floating point numbers are only added and subtracted, for multiplication and division
of floating point numbers respectively as shown in (2.5), these benefits outweigh the
downside of the necessary bias correction. On top of that, the delay of computation
on the significands is typically longer than the delay of the exponent computation,
effectively hiding the delay caused by the bias representation from the critical path.
The third term of (2.3) is called the significand and is in the range [1, 2), as the fraction
is in the range [0, 1). The addition of 1 to the fraction is implicit, and not represented
by a bit in the binary number representation in order to save space. The fraction is
calculated in the same way as the fraction of a fixed point number.

x+ y + bias = (x+ bias) + (y + bias)− bias

x− y + bias = (x+ bias)− (y + bias) + bias
(2.4)

2x ∗ 2y = 2x+y

2x

2y
= 2x−y

(2.5)

2.1.2.1 Special Representations

The IEEE 754 standard was designed in such a way that each operation has a well-
defined result, for example also division by zero. This means that certain representa-
tions are reserved in order to represent special cases: not a number (NaN) is used to
represent undefined numbers, like 0/0, 0∗∞, and

√
−1. There are also representations

for zero and infinity, which are both signed numbers in the standard, that do no follow
the general rule of interpretation as given in (2.3). The different cases are shown in
Table 2.4, where the value of subnormals can be calculated using (2.6): instead of an
implicit 1 in the significand, a 0 is used. This is done to accurately represent smaller
magnitude values close to zero, with a magnitude smaller than the smallest normal
magnitude, hence their name. Effectively, these numbers are represented with less
bits for the fraction, not utilizing the most significant bits. Using subnormal numbers
results in gradual underflow, rather than replacing a value that is smaller than the
smallest normal number by zero.

ybase10 = (−1)MSB ∗ 2exp−bias ∗ (0 + fraction) (2.6)
From the way NaNs are represented can be seen that there is a lot of redundancy: there
are 2fraction bits+1 different ways to represent a NaN, where the +1 originates from the
sign bit. As can be seen from Table 2.3, most bits are used to represent the fraction,
making this redundancy rather expensive: these representations could also be used to
represent actual values. There also appears to be slight redundancy for representing

11

Table 2.4: IEEE 754 special case representations.

Value Exponent Fraction
Subnormal all-0’s non-zero

NaN all-1’s non-zero
±∞ all-1’s all-0’s
± 0 all-0’s all-0’s

signed 0, yet the sign still carries some information: division by zero will for exam-
ple result in a signed infinity, which can be important depending on the application.
However, the signed zero representation and all the different NaN representations make
comparison between numbers difficult, for example for x < y and x = y, complicating
the hardware to compute the result.

2.1.3 Posits

In 2017 John L. Gustafson introduced the Type III universal number (unum) [11],
that contains two different modes: valid mode and posit mode. In valid mode, a unum
represents a range of real numbers much like interval arithmetic. This mode is not
really relevant to the contents of this research, so the focus is on posit mode. In posit
mode, a unum represents a real number of fixed size and behaves quite similar to
floats. A unum in posit mode is referred to as a posit, for brevity and in accordance
with the literature.
The posit representation consists of four different fields, as can be seen in Fig. 2.5:
the sign, regime, exponent, and fraction. The regime field is of variable length and
consists of a sequence of the same bits terminated by one bit of opposite value, as
shown in Table 2.5 for a maximum length of 4 bits. The zero sequence that occupies
the entire length of the number is not assigned a regime value, as it indicates either
of the two exception values discussed later. To calculate the value of a posit number
(2.7) can be used, where k is the value of the regime, e the value of the exponent, and
es the maximum exponent size. This equation is also often written as (2.8), where
useed = 22

es which is short for unum seed. The term 2k∗2
es+e is often called the scaling

factor (sf), as it determines the effective exponent of the number.

Figure 2.5: Representation of a posit number.

ybase10 = (−1)S ∗ 2k∗2es+e ∗ (1 + fraction) (2.7)

12

Table 2.5: Regime field examples and their interpreted values, where x is don’t care.

Regime field 0000 0001 001x 01xx 10xx 110x 1110 1111
Value (k) x -3 -2 -1 0 1 2 3

ybase10 = (−1)S ∗ useedk ∗ 2e ∗ (1 + fraction) (2.8)
The precision of a number, N, and the maximum exponent length, es, are the only
two parameters that are determined during the design of a system using posits, and
can be chosen with complete freedom according to the designers needs. If 19 bits are
sufficient to achieve the desired dynamic range and accuracy, numbers of 19 bits can be
used. The notation (N, es)-posit is often used to indicate the parameters of the posit
number that is being used. Nevertheless, the posit standard draft [2] does speak of four
standard formats with set parameters. These are summarized in Table 2.6, where the
quire and PIF length are explained in the next sections.

Table 2.6: Posit formats as described in [2], where the +1 in significand bits is the implicit 1
bit.

Bits Common name Max. significand
bits

Max. exponent
bits (es) Quire bits PIF length

8 Posit8 1 + 5 0 32 12
16 Posit16 1 + 12 1 128 21
32 Posit32 1 + 27 2 512 38
64 Posit64 1 + 58 3 2048 71

The regime field is run-length encoded, meaning that its length determines the value
k: k = −r if R0 = 0, and k = r − 1 if R0 = 1, with R0 and r as in Fig. 2.5. This is
also summarized in Table 2.5. Since the length of the regime is variable it is different
for different numbers in the same number system. It can even occupy all of the N − 1
bits that are not used by the sign. In this case it also does not need to be terminated
by a bit of the opposite value. This also means that even though es is defined to be
a certain length, this indicates the maximum length of the exponent and it can be
shorter as well, or not present at all. If the regime is short and the exponent also fits
into the number representation, the remaining bits are used for the fractional part. If
the fraction and/or (part of) the exponent bits are not present in the representation of
a number, they are assumed to be zero when decoding the value of the number. Since
the number of fraction bits also changes between numbers, the accuracy of a number
depends on its value: numbers that have a large magnitude exponent have a longer
regime, so less fraction bits and accuracy. Numbers that are close to 1.0 in magnitude
have the highest accuracy, as most bits are being used for the fraction. The accuracy
reduces both when a number is closer to zero in magnitude, and for larger magnitude
numbers: the number of regime bits increases which reduces the number of fraction
bits. This is known as tapered accuracy, and is explained in more detail in Section
2.1.3.2.
The exponent is represented by an unsigned integer without a bias. As the value of

13

the regime can be negative, there is no need for the exponent to also be negative to
make the exponent of the scaling factor negative. Again, the scaling factor is given
by 2k∗2

es+e. Because the contribution of the regime value k to the scaling factor is
multiplied by 2es, the exponent of the scaling factor can express any signed integer in
its range: the regime scales the value of the exponent with signed integer steps of 2es,
and the exponent field with any power of two in the range [20, 2es−1]. This makes the
exponent field easy to interpret.
Whenever the sign bit of a posit is 1, the 2’s complement of the number needs to
be computed before decoding the rest of the fields. This prevents the need for a
representation of negative zero, along with the complications of detecting different
bit patterns that represent the same real value [11]. This also makes that integer
comparison hardware can be used to compare posit numbers.

2.1.3.1 Special Representations

There are only two bit patterns that are interpreted differently in the posit number
system: the all-0’s vector that means zero, and the sign being 1 with the remainder of
the bits being zero. This represents not a real (NaR), which is ±∞ or ”the point at
infinity”. Unlike in IEEE 754, it is not signed and the need for a developer to represent
a NaR is considered a clear indication that an application is still in development [11].
For the same reason, if the result of a calculation exceeds the maximum representable
number it should not overflow to infinity according to the posit arithmetic rules: doing
so would turn a finite error into an infinite error. The same goes for underflow to zero,
which means losing all the information. Instead, the result should be the minimum
representable number.
For convenience, these two numbers get their own name: minpos is the smallest mag-
nitude, non-zero value that is expressible in a given posit format, and maxpos is the
largest value expressible in a given posit format. Minpos is the posit number with only
the LSB set to 1 and the rest to 0, and maxpos is the posit number with only the sign
set to 0 and the rest set to 1. Their values can be computed according to (2.9), where
−(N − 2) and N − 2 are the minimum and maximum regime value for an N bit posit
respectively.

minpos = 2−(N−2)∗2es

maxpos = 2(N−2)∗2es (2.9)

Handling the result of potential overflow or underflow is left up to the programmer,
making it visible in the source code. The same goes for possible NaR values, which
should never occur as a result from calculations with posits since rounding to infinity
does not occur. This comes from the different approach that is used in the posit
system, which makes the programmer or computer language responsible for handling
illegal computations like division by zero. While posit hardware should still detect and
handle NaR values, it does so completely silently: if something goes wrong, it can be
dumped to NaR without alerting the user or setting any flags. This can for example be
useful when processing an array of data where exceptions can be discarded. However,

14

the programmer should be aware of this and handle it accordingly in places where it
might be a problem.
This is illustrated by Gustafson in [11] with an example: the computation of the square
root of a negative number. While a programmer might object that this is an exception
for which specific behavior is required, the posit standpoint is that this is a software bug
and not something that the hardware should be taking care of. The programmer should
figure out where it might be a problem and take care of it in those cases, for example
by checking input operands to the square root function. This way the hardware is not
paying a penalty in maximum performance for every operation, instead exceptions are
handled only when required.
Therefore, posits are developed not to handle all exceptions in hardware but instead
target speed, simplicity, and economy. This is most important for many computer users,
according to Gustafson [11]. For those concerned with rigorous computing, bounding
results and tracking all accuracy loss, or those still checking the validity and behavior
of a numerical algorithm, using valid mode instead of posit mode is the answer.

2.1.3.2 Tapered Accuracy

The number of bits that are being used for the fraction changes with the magnitude of
the number that is represented in the posit number system. When the scaling factor
has a large exponent magnitude, the regime uses more bits and less bits remain to
represent the fraction. This means that numbers that can be represented with the
minimum regime length of 2 bits are represented with most fraction bits. In an N bit
posit, 1 bit is used for the sign, making the maximum number of fraction bits equal to
N − 1 − 2 − es. The range of numbers that can be represented with this number of
fraction bits is ±[2−2es , 22

es
). As posits have a symmetric number distribution around

zero the same range applies to both positive and negative numbers.
The given range is around 1.0, and there are as many values that can be represented in
the range [0, 2−2es) as in [22

es
,maxpos]. As an example, for (8,1)-posit the range that

uses the maximum number of fraction bits is [1
4
, 4), or [1

4
, 4 − 1

8
], while minpos = 1

4096
and maxpos = 4096. This shows the impact of tapered accuracy: the posit number
system has a large dynamic range with a high accuracy for a smaller range of numbers.
In Section 2.1.5, a figure that shows the number distribution of posit numbers is shown
and compared to the fixed and floating point systems.

2.1.3.3 Posit Intermediate Format

The length of all posit fields, except the sign, is variable, meaning it is difficult to
compute with posits directly. Therefore, posits have to be decoded before computation.
The posit intermediate format (PIF) can be used as an intermediate representation in
which a posit number is represented with fixed field sizes [16, 17]. The fields are as
follows:

• A NaR flag of 1 bit,

• A flag to indicate zero of 1 bit,

15

• A sign of 1 bit,

• An exponent of wE bits,

• A fraction of wF bits.

The NaR flag is used to prevent the necessity of checking for NaR in each arithmetic
operator, instead just the flag can be checked which reduces the complexity. For the
same reason a flag is used to indicate a posit of value zero: it is interpreted differently
to other posits and needs to be detected separately. The sign just contains the sign bit
of the original posit number.
The exponent is the combination of the regime and exponent field, so it represents
the scaling factor. The value of the regime is multiplied by 2es for the scaling factor
exponent, which is equivalent to shifting it to the left by es bits. The value of the
exponent can then be represented in these shifted in bits. The maximum regime value
k is achieved when all of the bits after the sign are 1, in which case kmax = N − 2 that
can be represented using ⌈log2(N−2+1)⌉ bits: say N = 6, then kmax = 4 which requires
⌈log2(4+1)⌉ = 3 bits. Since the exponent can also be negative, an extra bit is required
for the sign (which is unrelated to the sign of the complete number). The width of the
exponent in the PIF can be computed using (2.10). The exponent is represented in a
biased representation, similar to floats, with a value bias = (N − 2) ∗ 2es + 1. This
bias value is chosen to represent the smallest representable exponent with a value of
1 in the biased representation, since the maximum exponent magnitude of the scaling
factor Emax = (N − 2) ∗ 2es.

wE = 1 + es+ ⌈log2(N − 1)⌉ (2.10)

The maximum fraction width wF occurs whenever the regime is the shortest possible:
a length of 2 bits. As 1 bit is used for the sign, (2.11) can be used to calculate the
width of the fraction in the PIF. This makes the total width of the PIF representation
wPIF = wE + wF + 3, as also shown in Table 2.6.

wF = N − (3 + es) (2.11)

In [16] it is suggested to include two more bits in the PIF, namely the round and
sticky bits that are used for correct rounding after a computation. However, it makes
more sense to only represent these when they are required, to prevent unnecessary
interconnect and registers. For example, after decoding a posit these two bits will always
be zero. If the decoded posit is then stored in registers to be used for computation in
the next clock cycle, it would be a waste to also store these two bits that are known
to be zero anyway. Therefore, these bits are not included in the PIF here, but handled
separately when required during computation.
After a posit number has been decoded into its corresponding PIF representation,
all the fields have a constant width. While this format requires more wiring, the
computational hardware would need to be wide enough to calculate with the widest
possible input fields anyway. After the calculation is done, the result that is represented
in the intermediate format needs to be encoded back to a regular posit format. The

16

hardware structures used for decoding and encoding posit numbers are discussed in
Sections 2.2.4.1 & 2.2.4.3, respectively.

2.1.3.4 Quire

In posit arithmetic, there is a quire that can be used to exactly compute the dot product
of two vectors [2], along with the operations that can be constructed using a dot prod-
uct. Exact addition is an example: if the second input vector contains only the value 1,
the elements of the first input vector will be exactly added. Exact computation in this
case means there is no intermediate rounding of the products or the accumulated sum,
only the final result is rounded once. This increases the accuracy of the final result.
The quire is based on the Kulisch accumulator [18, 19], which can be used for the
exact accumulation of floating point numbers and products. However, the IEEE 754
standard does not require an exact accumulator to be present [10]. Even so, exact
accumulation has also been researched for floating point numbers [20]. Floating point
arithmetic does require the fused multiply-add (FMA) to be present, which combines
the multiplication of two numbers and the addition to a third into a single operation
with a single rounding. While this does increase the accuracy of the result of a dot
product compared to separate multiplication and addition, it does not offer the same
benefits as exact accumulation.
One of the benefits of exact accumulation is that it makes the multiply-accumulate
(MAC) operation associative, and with that provides the same results between different
compilers and hardware implementations. While regular addition should be associative,
rounding intermediate results breaks this property [21] as displayed in (2.12), where
round() is any rounding function and the symbol ̸≡ means that the two expressions
are not equivalent, even though their value may be equal in some cases. Computing
the dot product, or MAC operation, using the quire can be done with a single rounding
as in (2.13), increasing the accuracy of the final result as well as keeping the associa-
tive property of addition intact. This also means the same results are achieved when
using different compilers or compute systems for the same computation, which is not
necessarily the case when exact accumulation is not used [21].

round(round(a+ b) + round(c+ d)) ̸≡ round(round(round(a+ b) + c) + d) (2.12)

round(
i=N−1∑
i=0

ai ∗ bi) (2.13)

The quire is basically a fixed point number with enough integer and fraction bits to
exactly represent posit products. To make sure products can be added to the quire
exactly, it needs to be able to represent both the smallest and largest possible products
of a certain posit representation. This means that it should consist of enough integer
bits to represent maxpos2, and enough fraction bits to represent minpos2. An extra
bit is required for the sign. The quire is used to store intermediate results during accu-
mulation, so extra integer bits should be used to protect the quire from overflow. How

17

many integer bits should be used however, depends on which of the posit documenta-
tion you are reading.
According to [11], the quire should accommodate at least a billion products to be accu-
mulated, requiring an additional 30 integer bits to prevent overflow independent of the
posit parameters the quire will be used with. The total number of quire bits should then
be rounded up to the nearest power of 2, to make the hardware cleaner and to allow
for easy reading and writing of the quire to memory. In the posit standard draft [22]
it is mentioned to use N − 1 bits to prevent quire overflow, allowing at least 2N−1 − 1
sums of products before overflow. This assumes that longer accumulations are used
when a larger number precision is required, which may not be true for all applications.
However, it does keep the cost of the quire down for smaller precision posits.
With minpos2 = 2−(N−2)∗2es∗2 and maxpos2 = 2(N−2)∗2es∗2, the number of fraction and
integer bits for the quire can be computed using (2.14) & (2.15) respectively. In (2.15)
N − 1 bits are assumed for preventing overflow, and the +1 is because X + 1 bits are
required to represent the integer 2X .

Quire fraction bits = ⌈|log2(minpos2)|⌉ = 2 ∗ (N − 2) ∗ 2es (2.14)

Quire integer bits = N − 1 + ⌈log2(maxpos2)⌉+ 1 = N + 2 ∗ (N − 2) ∗ 2es (2.15)

Quire bits = sign+ quire integer bits+ quire fraction bits = 1+N +4 ∗ (N − 2) ∗ 2es
(2.16)

Another benefit of an exact accumulation is that it solves the magnitude difference
problem. Since large magnitude numbers are spread further apart in number systems
that use an exponent for moving the binary or decimal point, the addition of a small
magnitude number might have no effect on the sum after rounding, resulting in the
situation in (2.17) where the product results in a small magnitude number and a has
a large magnitude [23]. Posits are specifically vulnerable to this, because they use
tapered accuracy: large magnitude numbers are further apart than what would be the
case without tapered accuracy.

round(a+ b ∗ c) = a (2.17)

Even though the situation in (2.17) is the expected behavior for a single operation, it
can become problematic when computing the dot product of two vectors. The contin-
ued addition of small products can still have a significant effect on the accumulated
value, resulting in a large final error. Using (4,0)-posit as an example this problem can
become more clear.
All representable values for (4,0)-posit are {0,±0.25,±0.5,±0.75,±1,±1.5,±2,±4}.
For simplicity, consider the continued addition of 0.5 with intermediate rounding:

round(round(round(round(round(round(0.5+0.5)+0.5)+0.5)+0.5)+0.5)+0.5) = 2.0

18

Performing the same accumulation using the quire will result in a different result,
because only one rounding operation will be done:

round(0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5) = round(3.5) = 4.0

This result is a lot closer to the result of an unrounded computation. The impact of
rounding intermediate results becomes larger when the data does not only consist of
positive numbers, but also negative numbers:

round(round(round(round(round(round(0.5 + 0.5) + 0.5) + 0.5) + 0.5) + 0.5)− 0.5) =

round(2.0− 0.5) = 1.5

round(0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5− 0.5) = round(2.5) = 2.0

As displayed in the case above, a single negative number can throw off the result of
the entire accumulation when each intermediate result is rounded. In the case of exact
accumulation the error is due only to a single rounding operation, providing a more
accurate result. For accumulations with a larger number of terms, more intermediate
rounding occurs, possibly degrading the quality of the result. Of course performing
exact accumulation using the quire does come at a cost.
The downside of using the quire is that quite a wide register needs to be used, as
can also be seen from Table 2.6. Especially for high precision numbers, the cost of
the quire becomes quite large. In order to add numbers or products to the quire a
wide shifter and adder are required: to shift the summand to the correct (fixed point)
position according to the scaling factor, and then add it to the quire, respectively. The
hardware to compute with the quire is explained in more detail in Section 5.2.1.

2.1.4 Rounding

When a number can not be exactly represented in a given representation, it needs to
be rounded. This can for example happen after a multiplication operation, which in-
creases the precision of a real number: the example 0.1 ∗ 0.1 = 0.01 shows that the
result requires a wider fraction to be exactly represented. Rounding can be done in
any arbitrary manner, but the IEEE 754 standard defines a few techniques that can be
used.
The different rounding algorithms are the following, where the first is the default
method for IEEE 754 floating point numbers, and the only one that should be used
according to the posit standard:

1. Round to nearest, ties to even

2. Round to nearest, ties away from zero

3. Round towards zero

4. Round towards +infinity

5. Round towards -infinity

19

The simplest rounding method is to simply ignore the extra, least significant bits that
do not fit into the number representation, which is often called truncation. For positive
numbers in a sign & magnitude representation this means always rounding down even
when all the bits are 1, while for a negative number this equals always rounding up:
in short, the number is rounded towards zero as in rounding method 3. In a 2’s
complement representation however, the result is always rounded down when truncated:
or towards -infinity as in rounding method 5. The benefit of truncation is that it is free:
no hardware is required to compute the correct rounding of a number. The downside
is that all of the information in the bits that are truncated is lost.
For the default rounding method of rounding to the nearest representable number,
with a tie rounded to the nearest even number, some more work is necessary. Since
rounding to a larger magnitude number requires incrementing it, this might cause full
carry propagation through the fraction and require renormalization of the number,
possibly making rounding quite an expensive operation. In this rounding method,
numbers are rounded to the nearest number that can be accurately represented in the
number system: for integer numbers this means, for example, that all the numbers in
the range (2.5, 3.5) will be rounded to the value 3. Numbers that are exactly in the
middle of two representable numbers, or ”ties”, are rounded to even numbers. In the
same example, this means 2.5 is rounded to 2 while 3.5 is rounded to 4. Even numbers
have the property that the final bit is set to 0.
How this rounding operation can be achieved is easier to explain clearly after having
explained multiplication, and is therefore explained in Section 2.2.2. It is however not
required to store all of the bits during computation that can not be represented in the
final result: three bits suffice to ensure correct rounding. These are called the guard,
round, and sticky bits.
When rounding posits, it is important to keep in mind that bits that do not fit into
the representation are not necessarily all fraction bits: they can be exponent bits as
well. In this case, ”nearest” means ”nearest exponent”, and the tie point is not the
arithmetic mean of the two adjacent numbers, as in (2.18) that is used for rounding
fractional parts, but the geometric mean as in (2.19). While it may make more sense
from a mathematical point of view to round to the nearest posit using the arithmetic
mean as a tie point in every case [24], this would mean the hardware needs to detect
whether the rounded bits are part of either the exponent or fraction. This increases
the hardware cost, which is probably the reason posits are not rounded in this manner.

meanarithmetic =
x+ y

2
(2.18)

meangeometric =
√
x ∗ y (2.19)

2.1.5 Number System Comparison

Each of the different number systems has its own benefits and disadvantages, for ex-
ample computational simplicity or high accuracy. Here, a comparison is made between
some key characteristics of the different systems. A comparison of the hardware to com-
pute with the numbers is made in Section 2.2.5. The benefits of each of the number

20

systems for use in DNN application is discussed in Section 3.2.4.

2.1.5.1 Number Distribution

The different number systems have significantly different number distribution, which
can play an important role in choosing the right number system for a specific appli-
cation. If a number system is chosen that has a similar number distribution to the
data that it needs to represent, less bits are probably required to achieve the required
accuracy. The number distributions of 16 bit floating point, posit, and fixed point
number systems can be seen in Fig. 2.6, and is discussed in this section.
From the number distribution of half precision floating point numbers in Fig. 2.6a can
be seen that floats are sort of uniformly distributed when plotted on a logarithmic scale.
This is because the number of fraction bits is constant for each number, independent
of the value of the exponent. Therefore there are equally many numbers that can be
represented for each exponent value. The decreasing number of representable small
magnitude numbers on the left of the graph are caused by the gradual underflow that
is introduced by subnormal numbers. For subnormal numbers, the effective number of
fraction bits decreases for smaller magnitude numbers.
The distribution of (16,1)-posit is shown in Fig. 2.6b. This shows a distribution where
the number of representable values decreases with the magnitude of the numbers, even
on a logarithmic axis. This is because posit uses tapered accuracy: when the magni-
tude of the exponent increases, the regime becomes longer at the cost of fraction bits.
This also displays that it can be a risk to use posits near overflow: their accuracy is
significantly reduced, maxpos for (16,1)-posit is 224. The same is actually true near
underflow, even though it is not necessarily clear from the figure. If it is required to
represent data near overflow or underflow, it might be safer to extend the precision of
the number representation by 1 or 2 bits to ensure higher accuracy.
The fixed point number distribution in Fig. 2.6c is plotted on a linear axis, which
clearly shows the limited dynamic range of the fixed point number system. All the
numbers are uniformly distributed though, which can be beneficial when the data is
known to be uniformly distributed over a certain range as well.
When comparing the dynamic range of float and posit using Fig. 2.6 it can be seen
that posit can represent numbers over a wider range. A formal definition of dynamic
range is given in (2.20), where max and min refer to the largest and smallest magnitude
numbers that can be represented in the number system. For half precision floats this
gives log10(

215∗(2−2−10)
2−24) = 12.0, while for (16,1)-posit it is log10(

228

2−28) = 16.9 decades.
At the same time, the number of values that can be represented in a range around
20 is using posit is larger than for floating point. This means that in this range,
posits achieve a higher accuracy than floats. For numbers with a larger magnitude
exponent however, floats are represented more accurately. Fixed point numbers can
only represent numbers over a small range, but can do so with large accuracy. The
dynamic range and accuracy of fixed point numbers is a trade-off that can be made
by changing the number of integer and fraction bits that are used to represent the

21

(a) Number distribution of 16 bit, half precision
floating point with a log2 x-axis.

(b) Number distribution of (16,1)-posit with a log2
x-axis.

(c) Number distribution of 16 bit fixed point with
4 integer bits with a linear x-axis.

Figure 2.6: A comparison between the number distributions of 16 bit IEEE floating point,
posit, and fixed point number systems.

numbers.

Dynamic range = log10(
max

min
) (2.20)

In 1971 Robert Morris suggested a tapered floating point number system that uses an
extra field that indicates the length of the exponent field, and with that the length of
the fraction field [25]. In that paper he wrote: ”It seems likely that most applications

22

which require the greatest accuracy of representation also are likely not to generate
numbers of extremely large or extremely small magnitude. In other words, users of
floating-point numbers are seldom, if ever, concerned simultaneously with loss of accu-
racy and with overflow. If this is so, then the range of possible representation can be
extended to an extreme degree and the slight loss of accuracy will be unnoticed.”
Even though the quote is quite old, it probably remains true: in most cases the high
accuracy that can be achieved by large magnitude floating point numbers is not re-
quired. The posit number system implements the same idea of using tapered accuracy,
but does so using run length encoding instead of a separate field. The result is similar
though: the accuracy of the representable numbers drops with the increasing magni-
tude of the exponent. Depending on the application this can come at only a slight loss
in accuracy, as is shown in more detail in Section 3.3.
While the posit documentation of course hurries to show examples where posits perform
better than floating points [26], there are also examples where this is not the case. Some
are provided in [24], for example the fact that most physics constants are represented
less accurately in (64,3)-posit than they are in double precision floating point. This
implies computations using those constants will also be less accurate when using posits
instead of floats. It is therefore important to make a proper trade-off when selecting
between the use of posits or floats for a specific application, and to choose the number
system that is most suited to represent the required data.

2.1.5.2 Redundancy

In the IEEE 754 number representation there are a lot of different bit patterns that
represent NaN, as can be seen from Table 2.4. Whenever the exponent is all-1’s, the
number is either infinity or NaN. The original idea was that the fraction bits could be
used to provide useful information about what sort of exception has occurred [10]. In
practice, however, it seems this feature is often not supported [21]. Therefore, a lot
of representations are reserved to represent the same thing. For single precision floats,
with a length of 32 bits, 23 bits are used for the fraction. This means that, including the
sign and excluding infinities, there are 223+1 − 2 = 16777214 different representations
for NaN, which is 0.39% of the total number of representations. While this percentage
is quite small, it becomes larger for smaller precision numbers: for 16 bit, half precision
floats it becomes 3.12%.
Posits, on the other hand, have been designed to include no redundancy, not even for
signed zero and infinity. The value zero does not follow the general rule of how to
decode the posit number, and needs to be detected separately. The same goes for NaR,
but since the bit vector is very similar to zero most of the hardware can be reused for
detection. The remaining bit patterns have a distinct meaning, all following the same
rule for interpretation. Fixed point representation does not use any exceptions, and as
such there is no redundancy at all.
The downside of redundancy is that multiple bit representations are being used to
represent the same value, instead of representing distinct values. These representations
could also have been used to extend the dynamic range or accuracy of the numbers.
On top of that, redundancy also complicates the hardware to compute with them as
discussed in Section 2.2.5.

23

2.1.5.3 Interpretation

As fixed point and floating point numbers have fixed size fields, they can be more
easily computed with than posits. Due to the run length encoding of the regime, the
location and length of the exponent and fraction field changes between numbers in the
same representation. The need to decode posits complicates their computation and
also comes with a hardware and delay overhead.

2.2 Arithmetic Operations & Hardware

Each of the number systems require different hardware to correctly compute the desired
results. However, the devil is in the details here and a lot of the major components that
are used for the different number systems are quite similar and can be reused. Division
will not be discussed, since it is more complicated than addition and multiplication
and not an important operation in the targeted application. First, integer and fixed
point hardware is discussed since it is simplest. After that, floating point and posit
hardware is described. Only basic designs are discussed, to get some insight into the
basic differences between the different operations and number systems. Depending on
the designers needs there are a lot of different optimizations that can be done to make
a trade-off between hardware area, delay, latency and energy. These optimizations are
not the focus of this discussion and are therefore not described.

2.2.1 Integer Computation

The hardware to compute with integers does not require much control, making it the
most straightforward to implement. However, it is important to note that arithmetic
operations increase the precision of the result compared to the precision of the input
operands. For x-bit operands the results after addition will be x + 1-bits, while the
result after multiplication will require 2 ∗ x-bits. If the width of the data path remains
the same width after the computation, the result may need to be rounded and overflow
detected.

2.2.1.1 Addition

The basic module out of which adders are build are called full adders. These have three
input bits, one for both input bits of the corresponding index, and a carry input from
the previous index. It has two output bits, a carry that propagates to the next index
and the sum result of the current index bits. The truth table for the full adder module
can be found in Table 2.7. There are many ways to implement a full adder module,
depending on the speed and area requirements as well as the used technology.
Essentially, a full adder is a single bit adder. By using multiple of them, an adder can
be designed that adds larger precision numbers. Fig. 2.7 shows how to use full adder
modules to construct a basic ripple-carry adder for unsigned integer addition. It is
called a ripple-carry adder because the carry can propagate from the LSB position all
the way through the adder to the MSB position. As can be seen in the figure, a half
adder is used for the LSBs of the input, since there is no carry input for this position.

24

A half adder is a simpler version of the full adder, and its truth table corresponds to
the first four rows of Table 2.7.
The carry output of the final full adder can be used as overflow detection: if a carry
is produced from the most significant position, the result of the addition does not fit
into the same number of bits as the input operands. Typically the datapath after the
addition is only as wide as the input operands, meaning the larger result can not be
represented. In this case, the overflow signal can be used to detect that a result has
been produced that is too large in magnitude to be correctly represented. How this
should be handled depends on the application, and the overflow signal can be used as
a control signal to trigger handling the exception.

Table 2.7: Half & full adder truth table.

A B Cin S Cout

0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Figure 2.7: Unsigned integer ripple-carry adder.

2.2.1.2 Subtraction

In order to enable subtraction, a signed number representation needs to be used. As
discussed before in Section 2.1.1.2, using a complement number system has the benefit
that the same hardware can be used for addition and subtraction. First, 1’s complement
hardware is described in order to show its major drawback. After that, 2’s complement
is discussed.

1’s Complement Typically, for a fixed point or integer carry propagate adder, the
LSBs are added using half adder cells, whereas all the other bits are added using full

25

adder cells as shown in Fig. 2.7. Half adders do not have a carry input, since there
can be no carry in at the lowest index in unsigned addition. However, when using a
1’s complement number system a ”carry in” at the LSB position can be used for the
end-around carry.
An adder/subtractor circuit for computation with 1’s complement numbers is shown
in Fig. 2.8. The control signal that indicates whether the addition or subtraction
operation is required is used to selectively complement the second input operand. Al-
ternatively, an inverter and multiplexer can be used for each input bit instead of XOR
gates, where the mux select is again the control signal for addition or subtraction.
The feedback from the MSB carry bit to the LSB position is the end-around carry that
is necessary for 1’s complement addition. This figure also illustrates why this is quite
undesirable in a computation: the end-around carry can cause another carry being cre-
ated in the LSB position, propagating through the rest of the adder bits. This increases
the length of the critical path, reducing the maximum operating frequency.

Figure 2.8: 1’s complement signed integer adder.

2’s Complement In a 2’s complement adder, the addition of a carry in to the LSB
can be used in a different manner: for the complementation of the operand in case of
subtraction. Complementing the input operand in the case of subtraction requires an
addition to the LSB. Instead of performing this addition only on the operand that is
being subtracted, the addition of ULP can be performed during the computation by
using the carry in of the adder. This prevents the need to use two separate adders
in case of subtraction, saving hardware and delay. An adder/subtractor circuit for
computation with 2’s complement numbers is shown in Fig. 2.9, where the XOR gates
are used to selectively invert the second operand in case of subtraction.

Overflow Detection In order to handle overflows in the 2’s complement adder, some
more hardware is required since the carry out can not be used on its own to detect

26

Figure 2.9: 2’s complement signed integer adder.

overflow. Since the MSBs indicate the sign, a carry out does not always indicate an
overflow as shown in Fig. 2.10. The adder circuit with overflow detection is shown in
Fig. 2.11, where the assumption is that the input operands are already in 2’s com-
plement representation and that the operation is always addition: the circuit is not a
subtractor, even though effective subtraction can occur due to negative input operands.
The only difference in hardware compared to the unsigned case is the determination of
the overflow signal. The reasoning behind this overflow detection scheme is that a carry
into the sign position should also produce a carry output if there is no overflow. Other-
wise, the sign of the result is not correct with regard to the input operands indicating
an overflow.

Figure 2.10: Carry out that is not an overflow.

2.2.1.3 Multiplication

There are multiple different algorithms that can be used for multiplication, each requir-
ing a specific hardware architecture as well. From Fig. 2.12a a first approach becomes
clear: using the bits of the second operand to selectively add the first operand to the
correct indices of the result. This can be implemented as a sequential algorithm [15],

27

Figure 2.11: 2’s complement adder with overflow detection, assuming signed input operands.

where the cumulative partial product is initialized to zero and each cycle the correctly
shifted term bi ∗ a ∗ 2i is added until all the partial products are added to the cumu-
lative result, where the power of 2 corresponds to the required shift for each index.
Because this approach is sequential, it can take many clock cycles before the result of
the computation is complete and the next computation can begin.

(a) Partial products for multiplication. (b) Expanded multiplication terms.

Figure 2.12: Binary multiplication of two 4 bit numbers.

For this reason a different approach is more popular for high speed designs, that is
based more on the expanded multiplication terms as in Fig. 2.12b. This multiplier
design is known as an array multiplier, because it uses an array of full adder cells to
compute the multiplication result. The hardware structure of such a multiplier can be
seen in Fig. 2.13, where each of the bitwise product terms aibj is computed using a
two input AND gate as shown explicitly for c0. The benefit of this design is that it can
be easily pipelined to increase the operating frequency and the utilization of each of
the components. Even though this increases latency just as the sequential algorithm
described before, new operands can actually be applied to the array multiplier in each
clock cycle rather than having to wait for the previous computation to be completed.
This increases the throughput of the multiplier.
As can be seen from Fig. 2.13 the structure of an array multiplier is very regular, and
only short wires are required to connect the components. This leads to a simple and
efficient hardware implementation [15]. As can be seen from the figure, zeroes are added
in multiple places to maintain the structure of the multiplier. Instead of adding zeros
these could be used to perform an extra addition during the multiplication, resulting

28

Figure 2.13: 4 bit array multiplier.

in a fused multiply-add operation. If this addition is not required and it is acceptable
to reduce the regularity of the multiplier, the full adder cells that have one of its inputs
being zero in Fig. 2.13 can also be replaced by half adders to reduce the hardware
utilization.
The last row of full adders are basically a ripple carry adder, to compute the final result
of the partial product addition. By replacing this adder with a faster type, the delay
of the multiplier can be reduced. The width of the result has been doubled compared
to the number of input bits of each operand and how this is handled depends on the
application: the data path may be wide enough to accommodate the extra bits, or it
may need to be shortened. If the application uses modular arithmetic, the MSBs can
simply be dropped.

2.2.1.4 Fixed Point Computation

Computation with fixed point numbers is quite similar to integer computation, but
care must be taken to align the decimal points of the operands [14]. Addition, as well
as subtraction for signed numbers, can be handled by the same hardware as is used
for integers: fractional addition is the same as integer addition, and carry propagation
over the binary point still gives the correct result. An example of addition is shown in
Fig. 2.14a.
Multiplication and division, however, require an extra shift operation to correct the
location of the binary point after computation, as is shown in Fig. 2.14b for multipli-
cation: after the computation, the precision of the result has been doubled. In order to
store the number in the original format, the result needs to be shifted to the right by the
number of fraction bits that are used in the representation. If any of the bits that are

29

shifted out of the number are 1 accuracy of the result is lost, which can be minimized
by using a rounding algorithm as described in Section 2.2.2. It is also possible not to
perform this shift, if the datapath after the operation allows for the extra precision of
the number. This is done for exact accumulation, for example.
The fact that fixed point arithmetic is so similar to integer arithmetic makes that a
fixed point number system can be implemented entirely in software, making use of
integer hardware. This saves the need to implement separate hardware for fixed point
computation.

(a) Fixed point addition. (b) Fixed point multiplication.

Figure 2.14: Fixed point arithmetic with example values, with 2 integer bits and 3 fraction
bits.

2.2.2 Rounding

As round to nearest, ties to even is the default rounding mode for IEEE floating points
and the only one that should be used with the posit number system, that rounding
scheme is discussed here. Rounding can be required after an integer multiplication as
was already shown, but can also be required in other cases like floating point addition.
The principle to rounding a number remains the same.
Assume a 4 bit fixed point number with 3 fraction bits: i0.f−1f−2f−3. After multiplica-
tion the number will have the following configuration: i1i0.f−1f−2f−3f−4f−5f−6, where
i1 can be used as an overflow detection. When using the word ”result” in the following
discussion, the result after rounding is meant, again containing the same number of
fraction bits as the input operands.
The fraction bits f−4f−5f−6 can not be represented in the original number representa-
tion, and as such the multiplication result needs to be rounded. For proper rounding,
the value of the bits that can not be represented needs to be determined: if their value
is less than ulp/2, the result needs to be rounded down and the bits that do not fit can
be truncated. If their value is larger than ulp/2, the number needs to be rounded up
which requires incrementing the result. A tie occurs when the bits that can not fit in
the result have a value exactly equal to ulp/2: it is exactly in between two representable
values. In case of a tie, the result must be rounded to an even number: the LSB of
the result must be 0. Achieving this may either require no action or incrementing the

30

result, depending on the LSB of the result. Selectively incrementing the result can be
achieved by adding the least significant result bit to the result in case of a tie.
The most significant bit that can not be represented in the final result has a value of
ulp/2 and therefore plays an important role in rounding. This bit is often called the
round bit for that reason. In the example above, the round bit is f−4: if it is unset, the
result needs to be rounded down and the fraction bits that can not be represented can
be truncated. If it is set, a tie needs to be detected: this occurs when all the bits less
significant than the round bit are zero. This can be determined using an OR operation:
if the result of the OR of all of the bits after the round bit is zero, it is a tie. Otherwise,
the result needs to be rounded up by incrementing it. The result of this OR operation
is called the sticky bit and can often be obtained dynamically during computation,
instead of in a single step at the end of the computation: this reduces the latency of
the rounding. For the example, the sticky bit is equal to f−5 OR f−6.

2.2.3 Floating Point

Floating point operations are more complex than integer and fixed point operations
because the exponent and fraction fields need to be handled separately. In this section
the basic algorithms for floating point addition and multiplication are discussed, as well
as the hardware structure for multiplication. The many optimizations that exist to
meet certain design goals are not explored here. Similarly, the additional complexity of
supporting subnormal numbers is not explained. For the computations on the exponent
and fraction fields integer hardware is being used, with the direct result that floating
point hardware will be larger and more complex than integer hardware.

2.2.3.1 Addition

In this section the algorithm that can be used for floating point addition is explained,
and summarized in Algorithm 1. For the correct addition of two floating point numbers
the significands need to be aligned such that their exponents have the same value. This
can be achieved by shifting the operand with the smaller exponent to the right. A
decimal example will be used to make this more clear:

9.943 ∗ 103 + 7.435 ∗ 101 = 9.943 ∗ 103 + 0.07435 ∗ 103 = 10.01735 ∗ 103

What also becomes clear from this example is that the result of the addition is not
necessarily normalized: in this case there are 2 digits before the decimal point. For the
result to be correctly represented as an IEEE float again, it should be normalized. In
case of subtraction, the first non-zero digit can also be after the decimal point. When
subtracting numbers of similar magnitude, specifically numbers with exponents that
differ not more than 1 in value, the first set bit can be many bits after the binary
point. This means the addition of the significands may need to be normalized by either
a right shift of 1 bit, or a left shift that can be larger. The exponent also needs to
be adjusted according to the required shift, and should be checked for overflow and
underflow as well: it might not be possible to represent the exponent of the result in
the given number representation. For the previous example, the normalized result is
1.001735 ∗ 104.

31

The significand of this result consists of more digits than the input operands, so it
needs to be rounded for the significand to comply to the number system parameters.
Rounding was discussed in Section 2.2.2, and can mostly be used for rounding the
addition result. However, because left shifting the significand may be required for
normalization, an extra bit for rounding needs to be used: the guard bit. The guard
bit is the most significant rounding bit, followed by the round and sticky bit. If the
addition result needs to be left shifted for normalization the guard bit is shifted in the
LSB position, and the round and sticky bits can be used for correct rounding. A single
extra bit is sufficient to ensure proper rounding, even though a larger left shift may be
required for normalization: this larger shift is only required for input exponents with a
difference in value of at most 1, in which case only a single bit right shift is required.
This means no more than 1 bit is shifted out of the representable fraction field in that
case.
Notice how the rounding of the significand may cause the result not to be normalized
again, requiring another normalization. This normalization results in the significand
to be a digit too long, requiring a second rounding before the output is finally ready.
The addition algorithm is summarized in Algorithm 1.
For this research the addition of floating point numbers is not actually used, so the
exact details on how to implement the hardware will not be explained. However, the
general steps in the algorithm are quite similar to floating point multiplication and
the discussion about the multiplication hardware should give an idea about how the
addition can be implemented as well.

Algorithm 1 Algorithm for floating point addition.
1: Compare exponents of the two input numbers,
2: Shift the significand of the number with the smaller exponent to the right until the

exponents of the numbers match,
3: Add the significands,
4: Normalize the sum if required: either a right shift by 1 digit, or a left shift of possibly

multiple bits,
5: Adjust the exponent of the result according to the normalization shift,
6: Check the exponent for overflow and underflow, trigger an exception if this is necessary,
7: Round the significand to the required number of bits,
8: Check if the result is still normalized after rounding. If not, repeat from step 4.

2.2.3.2 Multiplication

Before looking at the hardware for floating point multiplication, it is again important
to understand the algorithm. The same decimal example will be used to help explain
it:

9.943 ∗ 103 ∗ 7.435 ∗ 101 = 9.943 ∗ 7.435 ∗ 103+1 = 73.926205 ∗ 104

As can be seen from this example the exponents can just be added, and the significands
multiplied. For both of these operations integer hardware is used. What is important
to note here is that floats use a biased exponent, as discussed in Section 2.1.2. After

32

the addition of the exponents the bias will be in the result twice, and needs to be
compensated by subtracting the bias: (x+ bias)+ (y+ bias)− bias = x+ y+ bias. The
significands do not need to be aligned as is the case for addition, so their multiplication
can be handled in parallel of the exponent computation. As seen in Section 2.2.1, an
integer multiplier has a longer delay than an integer adder. This means the delay of
compensating the bias is hidden from the critical path of the floating point multiplier:
the multiplication of the significands will take longer.
As for addition, the result of significand multiplication is not necessarily normalized.
In this case however, normalization can only require a single digit right shift: the
significands are in the range [1, 2), so their product is in the range [1, 4) in the binary
case. If normalization is required the exponent needs to be incremented, before it is
checked for overflow and underflow. Then, the significand needs to be rounded to the
appropriate number of bits, after which another normalization may be required.
Finally, the sign of the result needs to be set. This can be handled separately from the
other computations. The sign will be positive if the signs of the input operands are
the same and negative otherwise. This can be computed using a single XOR gate. The
algorithm is summarized in Algorithm 2.

Algorithm 2 Algorithm for floating point multiplication.
1: Add the exponents and subtract the bias value,
2: Simultaneously, multiply the significands,
3: Normalize the significand if required: shift to the right by 1 digit and adjust the exponent,

4: Check the exponent for overflow and underflow, trigger an exception if this is necessary,
5: Round the significand to the required number of bits,
6: Check if the result is still normalized after rounding. If not, repeat from step 3.
7: Set the sign of the result to the XOR of the input signs.

Using this algorithm the hardware for the floating point multiplier can be designed.
The high level design can be seen in Fig. 2.15, where the addition, subtraction, and
multiplier are integer components. An incrementer is a dedicated adder where the
input is increased by 1, which can be smaller in hardware utilization than a regular
adder. The input from the normalization is used to determine whether the exponent
should be incremented or not. To reduce the delay, it is also possible to precompute
the incremented exponent and use the signal from normalization to select either the
incremented exponent or the exponent that has not been incremented.
Rounding can be done using the round and sticky bits as discussed in Section 2.2.2, the
guard bit that is used during addition is not required because the result is never left
shifted. Instead of performing rounding as a separate step, it can also be incorporated
into the multiplication [15]. As seen in Section 2.2.1.3, the least significant bits of the
result are available first. These are also the bits that need to be rounded, so instead of
waiting for the entire multiplication to be finished they can already be rounded. Because
a normalization shift may still be required, the final rounding step only becomes known
after the entire significand multiplication is done.

33

Figure 2.15: Floating point multiplier.

2.2.4 Posits

Calculation with posits is more complicated than with floating point, primarily because
of the variable length of each of the fields. However, the posit intermediate format (PIF)
is really quite similar to floating point: it is basically an exponent and a fraction that
determine the value of the number, as discussed in Section 2.1.3.3. The first step
in computations is to decode the posit number into the intermediate representation.
After the computation is done, the result can again be encoded into the standard posit
format.

2.2.4.1 Decoding

The most important field to decode posit numbers is the regime, since it is run length
encoded and with that also determines the position and length of the exponent and
fraction fields. This also means that the exponent and fraction can only be handled
after the value of the regime is determined, rather than decoding all the fields in parallel.
The schematic of a decoder can be seen in Fig. 2.16, and is explained in this section.
Posit numbers adhere to the 2’s complement standard [11], meaning the 2’s complement
should be taken if the sign is negative. This is done to prevent a representation for

34

Figure 2.16: Posit to PIF decoder, where clog is the ceiling of the log: ⌈log2(x)⌉.

negative zero as well as the complications that come with having two representations
for the same real value. The 2’s complement can be calculated by using a XOR gate
on each input bit with the sign, and an adder to add the sign to the ULP.
The next step is to determine the length of the regime field. It has a minimum length
of two bits, and a maximum length of N−1 bits. The first bit after the sign determines
whether the regime is a sequence of unset bits terminated by a set bit, or the other way
around. Conceptually the easiest method to determine the regime value is to use both
a leading one counter (LOC) and a leading zero counter (LZC), and use the result of
one of them according to the first bit of the regime. However, these modules are quite
expensive in area so there is an alternative that is cheaper to implement, as also shown
in Fig. 2.16.
Instead of using a separate LOC, a single LZC can be used that counts the number of

35

zeros in sequence at the most significant end of the input bits. If the first bit of the
regime is set, all the bits are negated before being input to the LZC, such that the first
bit is again zero. This negation is selectively done using the XOR gates in Fig. 2.16
and the first regime bit. The final value of the regime is then determined using (2.21),
where ZC is the zero count. Because the regime can be negative, it requires an extra
bit compared to the zero count.
Note that the bit length of ZC is indicated in the figure to be ⌈log2(N)⌉, while the final
length of the regime has a bit length of ⌈log2(N − 1) + 1⌉. This is because the value of
ZC can only be N in case it is all-1’s: the all-0’s regime indicates either zero or NaR
and is detected separately. In case the regime starts with a set bit, a 1 is subtracted
from the zero count value. After this subtraction the its maximum value is N−1 which
always fits in ⌈log2(N − 1)⌉ bits, but an extra bit is added to represent the sign. This
number of bits also corresponds to the value found in Section 2.1.3.3.

regime =

{
ZC − 1, if first bit set (1)
−ZC, if first bit unset (0) (2.21)

Now that the regime is known, it can be shifted out of the 2’s complemented input by
shifting it to the left. The exact number of bits to shift is slightly flexible, since the
minimum length of the regime is known to be two bits. Say that the regime is 0001,
in which case the zero count is 3. If the input is shifted by 3 bits, the first bit of the
output needs to be skipped since it is the set bit that is still part of the regime. Instead,
the input could also be shifted by 4 bits, in which case the exponent bits are in the
most significant positions. The third option is to shift the input only 2 bits, and skip
the 2 most significant bits when determining the exponent and fraction bits.
Which of these options is the best choice depends on the implementation trade-offs,
and the way the other components are implemented. Since the hardware to compute
ZC − 1 is already present to compute the final regime value, this seems like a valid
option to use for the shift as well. It has the additional benefit that the left shifter
can be smaller because it has less input bits. Dependent on which shift is chosen, the
exponent bits can be determined, which are followed by the fraction bits. By shifting
in zeros from the right during the left shift, it is ensured that exponent and fraction
bits that are not present in the input number are interpreted as being zero.
Generally speaking the exponent in PIF is biased, just like the exponent in floats and
for the same reasons: easy zero detection and magnitude comparison. This means
the exponent should still be biased after the circuit shown in Fig. 2.16, implying an
addition to the exponent.

Leading Zero Counter There are different ways to implement a leading zero counter
(LZC) [21], but a basic circuit is briefly discussed here for completeness. Optimizing the
implementation towards a certain design goal can be important to achieve maximum
performance in a specific metric. An often used method is to make use of a tree
structure, as described in [27]. The idea is to design a small module that counts the
number of leading zeros for a small input vector of for example 2 or 4 bits. A truth
table for a 4 bit input module is given in Table 2.8, where position indicates the position
of the first set bit, which is equivalent to the leading zero count, and valid indicates

36

whether or not the first set bit has already been encountered. Two of these modules
can then be combined to count the leading zeros for an 8 bit input vector, and so on.
This is shown in Fig. 2.17. This approach results in a modular and structured design.

Table 2.8: Truth table for a 4 input leading zero counter.

Input Position Valid
1XXX 00 1
01XX 01 1
001X 10 1
0001 11 1
0000 XX 0

Figure 2.17: 8 bit input leading zero counter using 2 modules with 4 bit inputs.

Barrel Shifter A constant shift can be achieved in hardware by rewiring the bits to
their shifted position. In the decoder however, the shift amount depends on the length
of the regime and is therefore different for each number that is being decoded. This
means a variable shift is required, which requires more hardware than just a rewiring.
A common design for such a shifter is called a barrel shifter, and is composed of 2 input
multiplexers in multiple stages [28]. An example 8 bit input, three stage barrel shifter
is shown in Fig. 2.18. The number of input bits can be doubled by adding another
stage.

2.2.4.2 Addition & Multiplication

The PIF is similar to floating point in that it has an exponent and a fraction. As such,
the basic hardware to compute addition and multiplication is similar to floating point

37

Figure 2.18: An 8 bit barrel shifter design.

hardware for posits, with the exception that posits first need to be decoded before the
computation. This decoding adds delay and area overhead to the computation. Of
course, the field lengths of the PIF are different to the field lengths of floating point
numbers, so the width of the computational elements need to be adjusted for posit
computation.
Of course, the exception cases for posit and float are quite different: in posit there are
only two bit sequences that are interpreted differently than the rest: zero and NaR.
This means that exception handling is simpler for posit than it is for floating point.
The exact differences between posit and floating point computation are explained and
compared in more detail in Section 2.2.5. Nevertheless, the algorithms and hardware
to compute addition and multiplication is very similar.
After the computation using posits is done, the PIF result can be encoded back to
regular posit encoding. This encoder is described in Section 2.2.4.3. When using the
quire for exact accumulation though, it is not necessary to perform any normalization,
rounding or encoding on the results of addition and multiplication. All of the computed
bits need to be stored to ensure the accumulation can happen exactly, with only a single
rounding after the entire computation is done. How this is done is explained in Section
5.2 in more detail. Essentially, the multiplied significands are shifted to be aligned with
the fixed point quire value according to the value of the exponent. Then they can be
added to the quire value using a large adder.

2.2.4.3 Encoding

After the computation, the result is still in the PIF. In order to store the result as a
posit, which requires less memory and bandwidth than the intermediate representation,
the number needs to be encoded again. The schematic of an encoder can be seen in
Fig. 2.19, and is explained in this section. The assumption in the figure is that the
bias that is used for the exponent representation in the PIF is already subtracted again

38

before the input.

Figure 2.19: PIF to posit encoder.

The first step is to prepend the exponent bits to the fraction bits. Then, either 01
or 10 is prepended to the exponent and fraction bits, depending on the sign of the
regime being negative or positive respectively. These form the last two bits of the final
regime. This is achieved in Fig. 2.19 by prepending the regime sign to the exponent
and fraction, and then prepending the inverse of the regime sign to this value. Adding
these two bits as a separate step simplifies encoding the rest of the regime [29].
If the regime is positive it starts with a set bit, and its value k is equal to the number
of consecutive set bits minus 1. This means a logic right shift equal to the magnitude
of the regime can be used to correctly extend positive regimes, as the first set bit has
already been added. A logic right shift implements sign extension, meaning it will
duplicate the most significant bit and prepend it.
If the regime is negative it starts with an unset bit, and its value k is equal to the num-

39

ber of consecutive unset bits. Because the first unset bit has already been prepended,
a logic right shift of |k| − 1 is required. As the regime is represented in 2’s complement
representation, this value can be cheaply computed by bitwise inversion in case the
regime is negative: say the regime value is −3. | − 3| − 1 = 2 unset bits need to be
prepended to obtain the correct regime for the encoded posit number. In 2’s comple-
ment representation, −310 = 1012′s complement. Performing a bitwise inversion the right
shift will be 0102 = 210 bits, where the subscripts indicate the base of the number.
Finally, posits are represented in 2’s complement representation. This is computed
using the input sign, and the sign prepended to complete the encoding from PIF to
posit.

2.2.5 Hardware Comparison

In this section a comparison is made between the different hardware that is required
to compute with the different number systems.
From the previous description of the hardware should be obvious that integer, and
with that also fixed point, computation is the easiest. It can also be implemented using
the smallest hardware: in fact, integer addition and multiplication are both required
operations to implement floating point and posit arithmetic units. This also means
that fixed point computation is faster compared to the other number systems. On top
of that, fixed point hardware is also simplest, meaning there is a smaller possibility
for implementation errors in the hardware. There are examples where floating point
hardware that computed incorrect results for some corner case made it into production
[30], which is difficult and expensive to correct. Of course the downside of the fixed
point number system is the limited accuracy and dynamic range, offering a clear design
trade-off.
If either the dynamic range or accuracy of the fixed point number system is insufficient
for an application, one of the more complicated number systems can be used. Floating
point hardware has been around for a long time and is readily available: it has become
the standard for real number computation. Many different hardware designs exist that
focus on high speed, low energy, or small hardware area. This makes it easy to use
floating point number computation in a design, without having to worry about the
implementation details.
A downside of the IEEE 754 floating point number system is that there are relatively
many exceptions, as well as different representations for the same thing. Each of the
different exceptions needs to be detected and handled by the hardware. Signed zero
and infinity do not follow the general rule for interpreting the value of a number, so
these also fall into this category along with NaNs. Detecting each of the different cases
can be quite expensive in terms of hardware area. Handling them during computation
can also be complicated: when two NaNs are checked for equality the result should be
false, even if the bit patterns are exactly identical. This is just an example, a lot of
specific rules exist regarding the results of computation using NaNs, signed zero and
signed infinity [10]. Correctly handling subnormal values can also come at a significant
cost and is sometimes not supported by hardware to make it simpler and reduce the
hardware area, reducing the accuracy of the smallest magnitude numbers [21]. Of
course, this is a trade-off that depends on the application of the hardware.

40

The recent introduction of the posit number system means that high effort hardware
designs are relatively sparse, making it more difficult to use them in a design. While
posit and floating point hardware is similar in that they both use an exponent and
a fraction, posits first need to be decoded into fixed size fields before computation
can start. Even though extra hardware is required to decode posits, the exception
detection and handling is a lot simpler than for floats and there are no subnormal
numbers: only zero and NaR are interpreted differently, and can be easily detected
using mostly the same hardware. It has been found that the hardware to compute with
posits and floats is quite similar in area for the same precision, as also discussed in the
next section. For some applications however, smaller precision posits can be used to
achieve similar results to floats, as discussed in Section 3.3. On the other hand, there
are also applications where the use of posits is not so suitable, and floating point offers
better performance [24].
A downside of the posit hardware is that the hardware needs to use an extended internal
precision in order to accommodate the maximum length of the exponent and fraction
fields. To illustrate this with an example, consider a (32, 2)-posit number. As described
in Section PIF, the maximum exponent width is 1+es+⌈log2(N−1)⌉ = 8 bits and the
maximum fraction width is N − (3 + es) = 27 bits. While the exponent and fraction
can never be this wide for the same 32 bit number, the hardware needs to be able to
calculate with the longest possible values for each of the fields. Since these components
need to be wider, they will also consume more area and introduce more delay into the
computation.

2.3 Related Works: Posit Hardware

Here some of the hardware designs that have been presented since the recent intro-
duction of the posit number system are discussed. Jaiswal and So [31] were one of
the first to present posit hardware, in the form of an arithmetic generator for FPGA
implementation. The design had parameterized precision and exponent size, such that
it can be used for any posit configuration. Designs for converting both IEEE float to
posit, and posit to float are proposed, along with an adder/subtractor and multiplier.
Similarly, Podobas and Matsuoka [29], propose hardware designs for FPGA imple-
mentation for decoding, addition/subtraction, multiplication, and encoding of posit
numbers. They compare their posit adder/subtractor and multiplier to two different
floating point intellectual property (IP) modules by Intel and FloPoCo. For both the
adder and multiplier, the posit hardware operates at only slightly lower frequencies at
more than 500 MHz for most of the bit widths. To achieve this the design of the posit
multiplier is heavily pipelined, with between 33 and 38 stages. The posit multiplier also
consumes about 6× more area than the floating point hardware, but does use only 1
DSP block compared to 2 for floats. While these results are not looking too promising
for posit hardware, the authors also point out that this is a first design that has a lot of
room for improvement to reduce area overhead: fine tuning and reducing the number
of pipelining stages should result in a significant area reduction. Yet these hardware
designs still outperform the software emulation of the posit number system by several
orders of magnitude on three different linear algebra functions.

41

Similar results are reported in [32] by Chen et al., that implement a matrix-multiply
unit for posit. Exact accumulation using the quire is implemented, splitting the quire in
multiple blocks and using a carry-save format for faster carry resolution during compu-
tation. The module for (32,2)-posit MAC computation is compared to a single precision
floating point multiply-adder as implemented by Vivado IP core. It operates at 200
MHz, compared to 300 MHz for the float hardware, and uses about 3× as much LUT
modules in the FPGA implementation. It does, however, use less flip-flops, about 80%
of the ones used by the float implementation. Again, it is reported to be about 1000×
faster than posit implementation in software.
In [33], area utilization figures for posit adder and multiplier hardware are presented
that are comparable to both their single and half precision floating point counter-
parts. The datapath delay is slightly increased compared to the floating point hard-
ware. Chaurasiya et al. emphasize that smaller precision posits can be used to obtain
performance similar to floats, due to the larger dynamic range and accuracy of posits.
This reduces the costs of posit, potentially making them more attractive for certain
applications.
In [34], a MAC generator for posits is proposed targeting DNN applications, that per-
forms the accumulation exactly. The generator is written in C for high-level synthesis
(HLS), and uses a parameterized bit width and exponent size. It also offers the option
to generate combinational hardware or with 5 pipeline stages to increase operation fre-
quency. For 8 bit, 16 bit, and 32 bit floating point MAC units are also implemented to
compare the posit hardware to. The posit hardware is reported to have worse perfor-
mance in terms of area, delay, and power consumption for the same precision: in the
case of 8 bits posit consumes 28% more area, has a 67% longer delay, and uses 15%
more power. However, Zhang et al. argue that for the deep learning applications they
target, 8 bit posits might be sufficient instead of 16 bit floats. This would still result
in efficient hardware designs.
PACoGen, developed by Jaiswal and So [12], provides detailed, pipelined computational
flows for posit hardware and is the first to discuss division. Compared to the hardware
designs described in [33] these new designs are reported to be slightly larger, but can
run at an increased clock frequency. They are also compared to their IEEE compliant
counterparts and show comparable performance, the exact comparison depending on
whether the floating point hardware supports subnormal numbers and which design
trade-offs have been made in their design. This is attributed to the fact that posits
need to be decoded and encoded before and after computation, but the core arithmetic
is simpler as there are no subnormals and a lot less exceptions that need to be detected
and handled.
In [17], Uguen et al. present a hardware design for computation using the quire for ex-
act accumulation. It is compared to Kulisch accumulators for IEEE floats, and shown
to be very similar in terms of area cost and performance.
In [35], Sarkar et al. propose a hardware implementation of an adder and multiplier
with reconfigurable exponent size to dynamically make the trade-off between dynamic
range and accuracy, specifically targeting signal processing applications. To achieve
this, the decoding is done using content addressable memory. They report significant
increase in signal-to-noise ratios compared to floating point of more than 25dB. The

42

performance gain strongly depends on the chosen exponent size, highlighting the ben-
efits of making that configurable after implementation. The optimal exponent size is
also different for their two sample computations. A similar idea is proposed in [36]
implementing a MAC unit. However, instead of using a content addressable memory,
several shifters are introduced in the design to correctly compute with different es val-
ues.
Shang and Ko focus on the posit multiplier in [37]. As the number of fraction bits is
variable in the posit number system, the entire width of the multiplier is not always
required. In order to lower the power consumption it is decomposed into groups, such
that groups that are not required for the computation can be disabled. This technique
reduces power by more than 20% for 16 and 32 bit posits, at very minimal cost in terms
of area and delay.
All this work shows that there is a lot of interest in developing hardware for the posit
number system, allowing to discover its full potential in a range of different applica-
tions. The general trend is also that the more high effort posit designs offer comparable
performance to their IEEE floating point counterparts. More work on posit hardware
exists that has not been discussed here, some examples include [38, 39, 40, 41] if the
reader is interested. Work that uses posit number system for neural network applica-
tions is discussed in more detail in Section 3.3.

43

44

Deep Neural Networks 3
Machine learning is a subset of artificial intelligence (AI) that uses algorithms that
build a model based on examples, often called the training data. This enables the
algorithms to make decisions or predictions about new data without explicit program-
ming concerning these decisions or predictions. A deep convolutional neural network
(DCNN), often called deep neural network (DNN) for brevity, is a specific machine
learning (ML) algorithm that uses an artificial neural network (ANN) with multiple
convolutional layers. The fact that the networks consist of multiple layers is why they
are called deep. A network is called convolutional if at least one of the layers performs
a convolution operation. Convolution is an attractive operation to use as it is able to
exploit spatial or temporal correlation in the data.
CNNs do not only exist of convolution operations, the other components are discussed
in Section 3.1.2 along with a more detailed explanation of convolution. Before that, in
Section 3.1.1 two networks are discussed that played a significant role in the develop-
ment of DNNs. As there are plenty of books and surveys that discuss the history and
evolution of DNNs, this is not discussed in detail here [4, 5, 42].
After having explained the basics of DNNs, the hardware that can be used to compute
with these algorithms is discussed in Section 3.2. This is also where a comparison is
made between the different number systems that have been discussed in Chapter 2 for
use in neural network applications. Related work that uses posits for DNN applications
is discussed in Section 3.3.

3.1 Deep Neural Networks

In many machine learning tasks DNNs have achieved state of the art performance, for
example in object detection [43] and image classification [3]. It can be proven that
a neural network with only a single hidden layer and a finite number of neurons can
approximate any continuous function [44]. However, it turns out to be quite difficult
to train such a network efficiently. For this reason, deeper networks are used as these
are more easily trainable [4].
In a DNN the first layer accepts the input data and the last layer provides the output.
All the layers in between are called hidden layers: their inputs and outputs are not
seen from outside the model. The use of multiple layers also enables the extraction
of features in the data on different levels, extracting low, mid and high level features
of the input data in different layers, where high level features are more abstract and
extracted in the final layers of the network. Basically, the algorithm is building more
complex representations from simpler representations.

45

3.1.1 Two Network Architectures

In this section two different DNNs are discussed, namely AlexNet [3] and VGG [45].
These networks are chosen as AlexNet popularized the convolutional neural network
(CNN) model by achieving record-breaking accuracy in the ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC) in 2012 [46]. VGG showed that increasing the
network depth can result in an increased accuracy that can be achieved by the network.

3.1.1.1 AlexNet

Since 2010, the ImageNet project hosts an annual competition called the ILSVRC [46].
The goal of this competition is to achieve the highest accuracy in object detection
and image classification tasks using machine learning techniques. By taking on the
same challenge this also allows researchers to compare their progress and learn from
each others approaches. To this end, ImageNet also provides a large data set of 1.2
million images, hand labeled into 1.000 different categories that can be used to train
the networks.
AlexNet was the winning entry for the 2012 iteration of ILSVRC, achieving a top-5 error
rate of 15.3% on the test data. The second best entry that year achieved an error rate
of 26.2%, which is significantly higher. The AlexNet network consist of 5 convolutional
layers followed by 3 fully connected layers. The network consists of 650.000 neurons
and 60 million parameters.
One of the reasons that it could achieve such high accuracy was that it was trained using
an optimized implementation on two GPUs, enabling the training of a larger network.
It was found that removing one of the convolutional layers, each of which contains no
more than 1% of the models trainable parameters, resulted in inferior performance.
This already suggests that the depth of the network is important, but at the time the
size was limited by the available hardware to perform the computations.
The architecture of the AlexNet network is shown in Table 3.1, each of its components
is explained in Section 3.1.2.

3.1.1.2 VGG

A number of different VGG networks are designed in [45] that use a different number
of convolutional layers. By fixing other parameters of the networks, a comparison can
be made that evaluates the effect of the network depth on the achievable error rate of
the networks. Networks of 11, 13, 16, and 19 layers have been trained and evaluated in
[45], each containing the same number of max pooling layers and the three final layers
are identical, fully connected layers.
Increasing the depth from 11 to 13 to 16 layers continuously reduced the error rate that
was achieved by the network, but saturated for the network using 19 layers. Even so,
deeper networks can still be beneficial for larger datasets. VGG19 achieved a final top
5 error rate of 7.1%, compared to 7.2% for VGG16.
The architecture of the VGG16 network is shown in Table 3.2, which consists of 138
million parameters.

46

Table 3.1: The architecture of the AlexNet network, where the input propagates from the top
to the bottom.

Layer type Activation
function

Input size,
kernel size or
of neurons

of kernels Stride Padding

Input 224×224×3
Convolution 1 ReLU 11×11 96 4 0
Max. pooling 3×3 2 0
Convolution 2 ReLU 5×5 256 1 2
Max. Pooling 3×3 2 0
Convolution 3 ReLU 3×3 384 1 1
Convolution 4 ReLU 3×3 384 1 1
Convolution 5 ReLU 3×3 256 1 1
Max. pooling 3 2 0

Fully connected 1 ReLU 4096 neurons
Fully connected 2 ReLU 4096 neurons
Fully connected 3 1000 neurons

3.1.2 Network Components

In this section the different component from which neural networks can be built are
discussed briefly. As the goal of this research is not to improve network architectures,
the level of detail will not be too large. It is, however, important to understand the
basic components of different networks such that the hardware to compute with them
can be optimized accordingly.

3.1.2.1 Fully Connected Layer

In a fully connected layer, also called a dense layer, each neuron receives data from every
neuron in the previous network layer. This is displayed in Fig. 3.1. Fully connected
layers are typically added to the end of DNNs to take care of the final classification of
the features that have been extracted from the input data.

Neuron In a fully connected layer the output of each neuron depends on the output
of all the neurons in the previous layer. How much the input from the neurons in the
previous layers contributes to the output depends on the weights of the connections
between the different neurons. On top of that, a single bias value is also added that
is independent of the output of the previous neurons. Both the biases and the weights
are parameters of the model that need to be trained using training data.
The output of a neuron is computed using (3.1), where f(x) is an activation function
and the indices are according to Fig. 3.1. The reason the activation function is used
is explained in the next section. Because of the use of this activation function, the
final output of a neuron is also called its activation. Except for the bias, the input to
the activation function is the dot product of the activation and weight vectors for each

47

Table 3.2: The architecture of the VGG16 network, where the input propagates from the top
to the bottom.

Layer type Activation
function

Input size,
kernel size or
of neurons

of kernels Stride Padding

Input 224×224×3
Convolution 1 ReLU 3×3 64 1 1
Convolution 2 ReLU 3×3 64 1 1
Max. pooling 2×2 2 0
Convolution 3 ReLU 3×3 128 1 1
Convolution 4 ReLU 3×3 128 1 1
Max. Pooling 2×2 2 0
Convolution 5 ReLU 3×3 256 1 1
Convolution 6 ReLU 3×3 256 1 1
Convolution 7 ReLU 3×3 256 1 1
Max. pooling 2×2 2 0
Convolution 8 ReLU 3×3 512 1 1
Convolution 9 ReLU 3×3 512 1 1
Convolution 10 ReLU 3×3 512 1 1
Max. pooling 2×2 2 0

Convolution 11 ReLU 3×3 512 1 1
Convolution 12 ReLU 3×3 512 1 1
Convolution 13 ReLU 3×3 512 1 1
Max. pooling 2×2 2 0

Fully connected 1 ReLU 4096 neurons
Fully connected 2 ReLU 4096 neurons
Fully connected 3 1000 neurons

neuron.

n1j = f(bias1j +
N−1∑
i=0

n0i ∗ wij) (3.1)

Activation Function Activation functions are used to introduce non-linearity into the
decision making process. In the past, the hyperbolic tangent or the sigmoid function, as
in (3.2), were typically used for this [3, 47]. Recently, however, the rectified linear unit
(ReLU) function is more popular: f(x) = max(0, x). Krizhevsky et al. demonstrated
that networks using the ReLU activation function instead of the hyperbolic tangent can
be trained several times faster [3]. The ReLU function is also a lot cheaper to compute.

f(x) =
1

1 + e−x
(3.2)

48

Figure 3.1: An example of a fully connected layer.

3.1.2.2 Convolutional Layer

As opposed to a fully connected layer, neurons in a convolutional layer are only con-
nected to local neurons of the previous layer. An example of a convolutional layer is
shown in Fig. 3.2, where the single set of red connections helps indicate the neurons
that are connected to the next layer. The number of connections each neuron has to the
previous layer determines the number of different weights: this set of weights is often
called the kernel. The size of the kernel is also called the receptive field size. Multiple
different kernels are often applied to the same layer, to allow for different features to
be extracted from the same layer for the same data. This corresponds to the number
of kernels as shown in Tables 3.1 & 3.2. The set of kernels for a specific layer is called
the filter, though the terms kernel and filter are often used interchangeably.
In a convolutional layer there are less connections between two layers than for a fully
connected layer. On top of that, the same kernel is used for each neuron: this is
often called weight or parameter sharing. This means that the number of trainable
parameters is significantly lower for a convolutional layer than a fully connected layer,
as well as the storage requirement for the parameters. As related features in the input
data are often spatially local, it is often unnecessary to use a fully connected layer for
feature extraction.
The benefit of these kernels that are used for different neurons is that the exact position
of a feature in the input data can change position yet still be detected: this is called
equivariance to translation: translated features can still be detected [5]. Basically,
what this means is that an image classifier can classify images independent of the exact
location of the subject of an image: a picture of an apple can be classified whether the
apple is located in the top left corner of the input image, the center, or anywhere else.

49

Figure 3.2: An example of a convolutional layer.

Stride Besides the receptive field size, another important parameter of a convolutional
layer is the stride: it describes by how many neurons the kernel is shifted before being
applied again. Fig. 3.2 uses a stride of 1. By using a larger stride the amount of
overlap between kernels can be reduced, resulting in a downsampled convolution [5].
With a larger stride features will be extracted less fine grained, with the benefit of a
lower computational complexity.

Padding Padding can be used at the edges of the input data to increase its size.
Without padding, the size of the representation decreases by kernel size − 1 after
every layer. Padding can be used to prevent the output to shrink due to convolution,
which is especially a problem for larger receptive field sizes. Typically, zeros are used
for padding. The amount of padding relative to the kernel size determines if and how
much the output size shrinks compared to the input of a layer.

3.1.2.3 Pooling

Pooling layers are often added after each, or after every few, convolutional layers, as
also seen in Tables 3.1 & 3.2. The goal of pooling is to progressively reduce the size
of the representation, as more high level features are being represented in the deeper
layers. As such, pooling provides a sort of summary of neighbouring neurons. It also
introduces some invariance to translation [5]. By reducing the size of the representation,
the number of network parameters is reduced, and with that also the computational

50

complexity and the memory footprint. Pooling is a method of downsampling, where
several non-linear functions can be used.
Max pooling is most commonly used, though there are many different functions that
can be used as well like average pooling [4]. An example of max pooling with a receptive
field size and stride of 2 can be seen in Fig. 3.3: the output of each receptive field is
assigned the maximum value that is present in its input. This is helpful in increasing
the invariance to translation. As can be seen from the figure, using a receptive field
size and stride of 2 reduces the number of outputs by 75%.

Figure 3.3: An example of the max pooling operation.

3.2 Inference Computation

The process of using a DNN to make decision or predictions about new data is called
inference. It is preceded by training the network using training data, to teach it to
perform its task accurately. As training is a process that is quite different from inference,
and it is not the focus of this research, training will not be discussed here.
DNNs that are designed to complete challenging tasks need to be larger than for simpler
tasks [5]. As such, the networks are becoming bigger and bigger, to handle more difficult
tasks and to increase the accuracy that they can achieve. This means that the inference
process also becomes increasingly expensive, as the computational complexity and size
of the networks increases. At the same time, it can be interesting to run the inference
process on edge devices, like a drone that can follow a target or an autonomous car that
needs to detect traffic. In these cases, energy efficiency and a small delay are important
to maximize flight time and safety.
Different compute architectures that can be used for DNN inference are discussed in
the next section, with the systolic array architecture being explained in Section 3.2.2.
In Section 3.2.4 the process of quantization is discussed, which can help reduce the
computational complexity and energy consumption of inference computation, with an
intermezzo about energy consumption of memory accesses compared to compute in
Section 3.2.3.

3.2.1 Compute Architectures

The most straightforward way to perform inference computation would be to use the
central processing unit (CPU) of a PC. It consists of a few general purpose cores that
perform the computation, and can be easily programmed. However, due to the limited
number of cores, the inference process can take a long time even for smaller networks.

51

The computation that is performed most is the vector or matrix multiplication of
weights and activations, which can be parallelized for more efficient computation. This
is where the use of a graphics processing unit (GPU) can provide a benefit: they consist
of many, relatively simple compute cores that can be used for parallel computation.
GPUs started out as a piece of hardware specifically optimized to handle graphics in
a PC, but have over time become more programmable [48]. GPUs are now a general-
purpose, programmable processor consisting of many compute cores, making them very
suitable for parallel computation. One of the reasons AlexNet was so successful was
that it was trained on two GPUs, allowing a larger network to be trained efficiently [3].
One of the downsides of using general-purpose hardware is that efficient computation
is limited to the number systems that have been implemented to compute with in
hardware. For GPUs this is typically single precision floating point, which may not
be required for inference as discussed in Section 3.2.4. While it is possible to compute
with different number systems using software solutions, this will come at a cost in speed
[39]. On top of that, GPUs are notorious for being power hungry, which is not ideal
for inference on edge devices. Using application specific hardware can be a solution
to improve performance: as DNN inference is memory and compute intensive, this has
become a popular approach.

3.2.1.1 Application Specific Hardware

To improve performance of a compute system, optimized hardware can be used that is
specifically designed for a target application. This is less flexible, but can significantly
improve performance compared to using general purpose hardware. There are two op-
tions: programmable hardware in the form of a field programmable gate array (FPGA),
or implementing an application-specific integrated circuit (ASIC). While ASICs offer
the best performance in both speed and energy, developing them is a very expensive
process that can in most cases only be justified when producing a large volume of chips:
the one-time engineering cost is high, while the production cost of each chip is rela-
tively low. FPGAs typically offer worse performance, but they are more cost efficient
than ASICs for smaller volumes: the non-recurring costs are lower, while each unit is
typically more expensive than a dedicated chip. The hardware in an FPGA can be con-
figured, after manufacturing, to fulfill the desired behavior. This means that the same
chip or development board can be used to implement different hardware structures,
making FPGAs very suitable for prototyping and small volume hardware production.
Other benefits include a shorter time to market than ASICs, and the ability to repro-
gram FPGAs after they have been deployed to fix design errors or update systems to
new state of the art. In the case of ASICs it is not possible to make corrections after
fabrication, making design errors very expensive to correct if that is required.
In general, the desired circuit is implemented in an FPGA using lookup table (LUT)
instances in the programmable logic blocks: by programming the desired output of
the LUTs for a specific input, the required logic function can be implemented. Pro-
grammable logic blocks often also include flip-flops (FFs) to provide sequential logic
and memory. Besides the programmable logic blocks, many FPGAs also include dedi-
cated resources that can be used to speed up the implemented design and to save other
resources. Some examples include Block RAM (BRAM) to efficiently implement larger

52

memories, digital signal processing (DSP) units to perform computations like multipli-
cation, and specific bus connections for high speed I/O connections.
The popularity of DNN systems has motivated a lot of research to develop dedicated
hardware for its computation. The most important operation for both convolutional
and fully connected layers are the MAC operations, which can be easily parallelized
to increase throughput. Examples include Google’s tensor processing unit (TPU) [49],
which is a server scale ASIC designed to accelerate machine learning applications, the
DianNao family of accelerators [50], the Eyeriss accelerator [51], and Facebook Zion
that allows the integration of accelerators with CPUs for data center scale training
[52]. What is notable about these examples is that most use a hardware architecture
known as a systolic array for the computation, and use smaller precision numbers than
the typical single or double precision floating point that is often used for computational
applications. These concepts are elaborated on in Sections 3.2.2 & 3.2.4, respectively.

3.2.2 Systolic Arrays

A specific architecture that is a good fit for DNN computation is that of a systolic array
(SA): an array of processing elements (PEs) as shown in Fig. 3.4, that is designed or
programmed to compute different algorithms. SAs have a simple and regular structure,
where each PE is only locally connected to its neighbors. Computation is typically
triggered by the arrival of new data, rather than by instructions. Input data is received
from neighboring PEs, and passed on in the next clock cycle. Partial results can also
be propagated through the array to be used by downstream PEs. This reuse of data
significantly lowers the amount of required memory accesses, as only the PEs at the
edge of the array communicate input and output data to outside of the SA. As each PE
is computing simultaneously and independently, a SA offers high concurrency. While
the example given in Fig. 3.4 is 2 dimensional as suggested by the term ”array”, 1 or
multidimensional architectures are also possible. A downside of using a systolic array
is that the latency is quite long: the result needs to propagate through the array before
it is available at the output. This makes SAs more suitable for applications where
throughput is important, rather than short response times.
The computation that is executed in each of the PEs is arbitrary and depends on the
application the SA will be used for. The functionality of PEs is not limited to combi-
national circuits, but can contain local memory as well. For the PEs a trade-off needs
to be made: to keep them simple to minimize hardware area and the required control,
at the cost of the SA being less flexible. In the case of DNN applications the most
important operation for both convolutional and fully connected layers is the multiply-
accumulate (MAC), or possibly a fused multiply-add (FMA), to compute the output
of each neuron. This operation requires minimal branching and therefore also little
control for correct computation. There are multiple strategies to correctly compute the
required results, depending on how the data propagates through the array [13].

3.2.2.1 Data Flows

For DNN applications there are four different data flows that are most interesting:
output stationary (OS), weight stationary (WS), one called no local reuse (NLR), and

53

Figure 3.4: Example of a 5× 4 systolic array.

row stationary (RS) [47]. These are by no means all the possible data flows to achieve
correct results, but these have some attractive properties that are briefly discussed.
The choice of data flow impacts how different data is being reused, which affects the
number of required accesses to different levels of the memory hierarchy. Memory that
is closer to the compute is cheaper to access in terms of latency and energy, but is
also smaller in size. Reusing data that has already been moved to the lower levels of
the memory minimizes the number of required accesses to the more expensive levels
of memory. This means that choosing the correct data flow for the application is
important to optimize performance and minimize energy consumption.
In the output stationary data flow, the accumulated partial sums for each of the output
activations remain stored locally in each of the PEs, while weights and input activations
are propagated through the SA. This minimizes the reading and writing of partial sums
to memory. After the accumulation is done, the final results need to be propagated out
of the array, before the next computation can start. It may also be possible to overlap
the output of results with the start of the next computation, to reduce the latency.
In the weight stationary data flow, the weights are loaded and stored in each of the PEs
to be reused for as many computations as possible, minimizing the energy consumption

54

caused by reading weights. The input activations and partial results are propagated
through the SA. In order to store the weights, there are two options: either propagate
them through the SA, or broadcast the required weights to their corresponding PEs.
The second option has a smaller latency for storing the weights in the PEs, but it
does require more interconnect: each PE needs to be connected to the edge of the PE.
The increased amount of interconnect reduces the compute density and the regularity
of the SA and the longer interconnect increases energy consumption. Whether using
broadcasting is worth the extra costs depends on the size of the SA and the application
it is being used for. The same approach can actually also be used to read the results
in an OS dataflow.
In the no local reuse data flow, none of the data is stationary inside the PEs: everything
is propagated through the SA. While the local storage in each of the PEs is cheap in
terms of energy consumption, it is expensive in terms of area. Instead of having storage
in each of the PEs, this area is used for the on-chip buffer memory to maximize its
capacity. As the weights, input activations, and partial sums need to be propagated,
this will lead to increased traffic to and from the on-chip memory. By maximizing
on-chip memory, the off-chip memory bandwidth can be minimized.
In the row stationary data flow, the aim is to maximize the reuse of all different data: the
weights, input activations, and partial sums. This is done to minimize the total energy
consumption, rather than minimizing it for either the weights or partial sums. The
downside is that the mapping of the computation to the hardware structure depends
on the architecture of the DNN. This means the hardware needs to be configured for
different mappings to optimize the computation of different network layers [51], which
complicates both the software work flow and the hardware.
Using the SCALE-Sim systolic accelerator simulator Samajdar et al. showed that even
though network architecture and SA dimensions affect which data flow is optimal, there
is not a dramatic difference in terms of energy consumption and the required number of
execution cycles for different data flows [53]. For this reason, designing a systolic array
with a fixed data flow should not cause a significant increase in execution time or energy
consumption. However, if an accelerator is designed targeting a single, specific network,
it of course makes sense to choose the optimal data flow for that application. To reach
this conclusion they have simulated the runtime in cycles and energy consumption for
seven different workloads using OS, WS, and input stationary (IS) data flows in square
SAs of five different sizes. The IS data flow is similar to WS, but instead of the weights
being stationary the input activations are. NLR is not explicitly modeled as it is argued
to be any of the other data flows without memory in the PEs.

3.2.3 Energy: Memory vs. Compute

As is well known, power has become the limiting factor in increasing the performance
of compute platforms: chips generate too much heat to be cooled efficiently [8]. In
the era of dark silicon not all available transistors on a chip can be run at maximum
performance as this would create more heat than can be dissipated [54]. This means
that to improve performance, the energy consumption per operation needs to be reduced
to keep the power consumption constant. Parallel computation is more power efficient,
which was the major reason for moving to multicore processors to increase performance:

55

each core can have lower peak performance to increase energy efficiency, yet increasing
overall performance by using multiple cores. This is also the reason why dedicated
accelerators are being added to compute platforms, for example for handling encryption
algorithms: they are more energy efficient for the task they are optimized for, and
consume minimal power when they are idle.
In [8], the energy consumption of cache and DRAM accesses are compared to compute
operations for a 45nm technology. 64 bit L1 cache accesses are reported to consume
roughly 10 pJ of energy, L3 cache 100 pJ, while a DRAM access consumes roughly 1.3-
2.6 nJ. 32 bit floating point compute cost roughly 3.7 pJ for multiplication, and 0.9 pJ
for addition. Integer compute is even cheaper, at 3.1 pJ and 0.1 pJ for multiplication
and addition respectively. The Eyeriss SA [51] shows similar results, where memory
access energy consumption is compared to a MAC operation performed in each PE:
off chip DRAM access consumes 200× as much energy, on chip buffer access 6×, and
inter-PE communication twice as much energy as the MAC computation.
These results show that moving data around on chip, and especially off chip to DRAM,
is a lot more energy consuming than the actual computations. This in turn implies
that reducing memory access energy consumption can be very important to improve
performance of the system. This is one of the reasons the SA architecture is so popular:
the reuse of data between the PEs means there are less accesses to the memory hierarchy,
reducing energy consumption.

3.2.4 Quantization

DNNs are often trained using single precision floating point numbers, as the accuracy
of the numbers is important for the backpropagation algorithm that is typically used
for training [22]. However, it has been found that smaller precision numbers can often
be used for inference without incurring a significant reduction in inference accuracy.
The process of converting a number in a certain representation to a number in a differ-
ent representation with a smaller set of quantization levels is often called quantization.
The benefits of doing this are that it reduces the required memory size and bandwidth,
as the data that needs to be stored and moved consists of fewer bits. Data that consists
of fewer bits also means that either fewer memory accesses will be required as a single
access can contain more data points, or memory accesses can contain fewer bits in
total. As was discussed in Section 3.2.3, this can have a huge effect on the total energy
consumption of the system. Quantization also reduces the computational complexity
as the numbers to compute with are smaller, which in turn increases the processing
speed that can be achieved while reducing the hardware area.
Of course the benefits of quatization do not come for free: smaller precision numbers
either have a smaller dynamic range, accuracy, or both. This can affect the inference
accuracy that can be achieved, if the quantization error becomes too large: the error
that is introduced by representing a number in fewer bits. Quantization can also cause
overflow, if the magnitude of the number is too large to be represented in the new num-
ber system. This makes it important to make a proper trade-off between the number
precision and the required inference accuracy.
Google introduced the bfloat16 floating point format, which is a truncated version of
IEEE single precision numbers: it uses 8 exponent bits and 7 fraction bits, where IEEE

56

half precision uses 5 and 10 bits, respectively [55]. This retains almost the same dy-
namic range at the cost of a reduced accuracy, which should be a better fit to DNN
applications than half precision floats according to [55]: reportedly, accuracy using
bfloat16 is similar to single precision floats for a wide range of deep learning models.
It has the added benefit that the multipliers are significantly smaller, as their width
depends on the number of fraction bits.
Instead of using floating point numbers, fixed point numbers can be used for inference
as well. This has the added benefit that fixed point, or integer, computation is cheaper
in terms of latency and energy consumption than floating point computation. 8 bit
numbers are often used for inference, yet the possibilities are endless: some have taken
it as far as using a single bit to represent weights and activations [56], and different
quantization techniques can be applied to the weights and activations [56], or different
precision numbers can be used for different layers [57, 58].
In [9], the authors take a model that is trained using floating point numbers and quan-
tize it to use fixed point numbers. To this end they use dynamic fixed point numbers:
as the number distribution can be different for weights and activations, as well as for
different network layers, the number of integer and fraction bits can be different even
for numbers of the same precision. A trade-off needs to be made between overflow error
and quantization error: more integer bits reduce the overflow error but less fraction
bits remain, which increases the quantization error. Dynamic fixed point allows this
trade-off to be made for weights, activations, and each network layer independently. As
the weights are static after training, the number of integer bits should accommodate
the dynamic range of the parameters. After determining the number of integer and
fraction bits, the numbers are quantized using round to nearest. The statistical in-
formation of the activations can be gathered by performing the network computations
using some representative input data, and storing the activations of each layer.
The results in [9] show that static fixed point inference accuracy start to degrade signif-
icantly when using less than 17 bit numbers, for a quantized model based on AlexNet
(specifically, CaffeNet) using the ImageNet dataset. The top-1 accuracy for single pre-
cision floats is reported to be 56.9%. 8 bit dynamic fixed point achieved an inference
accuracy of 55.8%, a degradation of only 1.1%. By performing fine-tuning, the inference
accuracy can be further improved to 56.0%. Fine-tuning is a technique where a trained
network is trained again for a number of iterations, taking into account the desired
quantization in the weight updates to account for the quantization error. This is done
to reduce the inference accuracy drop that may be caused by performing inference with
the quantized network [59].
Rather than using the same precision for every network layer, the Stripes accelerator
allows the precision to be selected per layer [58]. To this end it uses bit-serial com-
putations, instead of bit-parallel computation that is more typically used: instead of
computing with all bits of the input operands in one cycle, each cycle computes partial
results on 1 bit of each operand and require as many cycles as there are bits in the
input numbers to complete the computation. This also allows for an on-the-fly energy
and performance trade-off to be made, by changing the precision of the numbers: lower
precision numbers have a lower latency and energy consumption, at the cost of being
less accurate. For convolutional layers, this approach resulted in an average speedup of

57

2.26× compared to DaDianNao [50] that is used as reference, while achieving the same
inference accuracy. At the same time, Stripes is reported to be 57% more energy effi-
cient. It does have an increased area, being 34% larger than the reference accelerator.
Additional performance increase can be achieved if a small inference accuracy degrada-
tion is acceptable: with a maximum relative error of 1%, average speedup increases to
2.48× and increased energy efficiency increases to 68%. While these results are promis-
ing, it would be hard to achieve similar results using bit-parallel computation, because
input operands are typically limited to powers-of-2.
Lin et al. [57] give a strong theoretical background of the effect quantization noise
has on the signal to noise ratio in DNN applications. With that the minimal required
number of bits per layer is optimized to maintain the inference accuracy, achieving
more than 20% model size reduction. A hardware platform to compute with different
precision numbers efficiently is not described in the paper.
In [56], Rastegari et al. take it a step further by representing weights using a single
bit in Binary-Weight-Networks (BWN), and representing both weights and activations
using a single bit in XNOR-Networks. As the weights are represented by a single bit,
the network are approximately 32× smaller than than equivalent networks using single
precision numbers, making them very suitable to be computed on edge devices. In
BWN, the multiplication required for convolution can be approximated by just addi-
tion or subtraction as weights are binary, resulting in approximately 2× speedup. In
the case of XNOR-Networks, multiplication can even be reduced to XNOR and bit
counting operations, hence the name. This results in approximately 58× speedup in
CPUs. Compared to single precision AlexNet, BWN incurs only 0.8% top 5 accuracy
degradation, XNOR-Net achieves 69.2% top 5 accuracy which is a quite significant
degradation of 11%.
Besides the benefits that have already been mentioned for quantization, it can also act
as a regularization in neural networks. Generalization is the capability of a trained
network to correctly make predictions about new data [5]. In general, regularization
techniques can be applied during training to make sure the network generalizes well
to new input data, rather than overfitting to the training data. Examples exist where
DNNs perform inference more accurately after quantization, possibly with fine-tuning,
than with the baseline number system the network was trained with. This implies that
the quantization has helped the network to generalize, acting as a regularization. [60]
shows a reduction in test set error rate when using 8 bits for the errors and gradients
during training, rather than 16 bits. In [57], the error rate is reduced by 0.2% when
using 8 bit fixed point numbers for the activations, compared to single precision floating
point. This is after 30 epochs of fine-tuning to account for the quantization though.
The use of the posit number system for DNN applications is discussed in the next
section.

3.3 Related Works: Posit in DNNs

When the posit number system was introduced, it was soon recognized that it was
well suited to be used in DNN applications: it offers both high accuracy and dynamic
range, and the precision is flexible. Using low precision fixed point has become standard

58

practice for DNN inference, yet the small dynamic range is a drawback in using this
number system. The number distribution of posits has been shown to be similar to the
distribution of weights in neural networks, as shown in Fig. 3.5 [1], making it a very
good fit for the application.

(a) (7,0)-posit number distribution. (b) AlexNet weight distribution.

Figure 3.5: A comparison between the distribution of posit numbers and the weight distribu-
tion in a DNN. Figures from [1].

Langroudi et al. [61] were one of the first to use posits for DNN inference: weights are
stored in the posit format, and converted to single precision floats for computation on
general purpose hardware. Inference accuracy is compared for three different networks
and classification tasks, where the reference uses fixed point quantization. With the
posit number system 2-4 bits smaller precision can be used, while incurring less than
1% accuracy degradation. This is reported to reduce memory utilization by 23 to 36%.
With Deep Positron, Carmichael et al. [1] take it a step further: they implement an
exact MAC unit using the quire, and compare it to exact accumulation performed using
fixed point and floating point number systems. Their posit and floating point imple-
mentation have comparable delay and energy consumption, while fixed point is faster
and consumes less energy. The posit hardware does pose a larger area consumption.
On three different (low-dimensional) data sets, the 8 bit posit MAC is shown to achieve
the same or higher inference accuracy than both 8 bit floating point and fixed point
inference. On one of the data sets, it even matches the performance of single precision
floating point, and for another it causes only 0.4% accuracy degradation. This work
is continued in [62], evaluating the quantization error introduced by each of the num-
ber systems in each network layer. For both MNIST and Fashion MNIST, (8,1)-posit
matches the performance of single precision floating point. Posit does require more
power than the other 8 bit number systems.
In [23], Johnson introduces a logarithmic number system using the same tapering that
is used as in the posit number system. Multiplication can be computed by addition
thanks to the logarithmic representation, preventing the need for the most power and
area consuming component of a MAC unit: the multiplier. The products are then
converted to a linear representation and accumulated exactly in a Kulisch accumula-

59

tor (or quire), though the conversion of the product from log to linear representation
is not exact. The ResNet-50 network is used for accuracy testing, on the ImageNet
validation set. The 8 bit logarithmic representation introduced in the paper achieves
a top 5 accuracy degradation of only 0.20% compared to 32 bit floats. Using 8 bit
posits, (8,1)-posit is reported to perform better than exponent sizes 0 or 2, resulting
in a top 5 accuracy degradation of 0.19%. The floating point reference is computed
using FMA operations rather than MACs, and no retraining is done to account for the
quantization.
There is also work focussing on training DNNs using the posit number system, in order
to reduce the memory requirements and computational complexity of that process by
using lower precision. Examples include [63], that shows networks trained with posits
outperform floating point trained networks for both 16 and 32 bit precision. Using 16
bit posit for training results in an accuracy degradation of 1.7% compared to single pre-
cision floating point on the Fashion MNIST dataset. In [64], an accuracy degradation
of 0.11% is reported for training using 8 bit posit compared to single precision using the
ResNet-18 network for ImageNet classification. Results showing less than 1% accuracy
degradation for different networks and classification tasks are also presented.

3.4 Methodology: Hybrid Hardware

There are two important approaches to increasing the performance of a systolic array:
scaling-up and scaling-out [53]. In a scale-up approach a single SA is made bigger by
adding more PEs to increase the performance. The scale-out approach uses multiple
arrays and divides the compute between them. Which of these approaches results in
the smallest runtime and memory utilization depends on the application that is being
computed [53]. In the research group where this graduation project is being fulfilled,
a systolic array accelerator for DNN inference is being developed for object detection
in autonomous vehicles. It uses a scale-out approach, using 9 SA tiles as shown in Fig.
3.6, where each tile is a systolic array of 9× 8 PEs and the selection multiplexers take
care of the data flow between the tiles.
It has been found that when quantizing a DNN, the input and output layer are most
sensitive to the quantization error that this introduces [57, 65]. In order to minimize
the accuracy degradation due to quantization, these layers can be computed with larger
precision numbers. One of the benefits of using the scale-out approach is that the tiles
do not need to be homogeneous: in this design, the tiles in the first column (tiles #0,
#3, and #6) compute using 16 bit fixed point numbers, while the remaining tiles use
8 bit fixed point. The first column of SA tiles can be used to compute the first and
last network layers, the rest is used for the hidden layer computation at a reduced
computational complexity compared to 16 bit precision. Of course it would be a waste
to have the 16 bit hardware idle during hidden layer computation, so to increase the
throughput it can be used for hidden layer computation by padding the input data to
a length of 16 bits.
From the design of this system, the idea was hatched to replace the 16 bit fixed point
tiles with 8 bit posit SA tiles. The posit number system has been shown to be very
suitable for the use in DNN systems, as discussed in Section 3.3, which should enable

60

Figure 3.6: 9 tile systolic array design.

the use of lower precision data when using posits. The most important reason to do
this is that the reduction in data precision should result in an energy consumption
reduction, as memory accesses consume a lot more energy than the actual compute.
This was discussed in Section 3.2.3. This is especially helpful for the last network layer,
as a lot of the network weights are in the fully connected layers that are typically used
for the final layers. The area of the posit hardware will be larger compared to the fixed
point tiles that are replaced, but in the era of dark silicon this is probably a worthwhile
trade-off to increase energy efficiency. For the hidden layer computations the 8 bit
fixed point tiles are maintained, as these have a lower computational complexity and
area utilization, and the quantization error in these layers has a smaller effect on the
inference accuracy.
Another benefit of using 8 bit data in each of the compute tiles is that the entire
memory hierarchy can be optimized for this, rather than also having to account for 16
bit data. This reduces the complexity of the memory accesses, and a smaller memory
bandwidth should be sufficient to supply the SA with the required data.
As different data types are being used in the different SA tiles, it is no longer straight-
forward to perform the hidden layer computations on all of the tiles. To this end,
the posit decoder is modified such that it can encode fixed point numbers to the PIF.
While this means that the higher complexity posit hardware is used to compute on
fixed point data, the increase in throughput that can be achieved by this approach is
probably worthwhile for many applications.
To the best of my knowledge there is no other work that describes the use of both posit
and fixed point data in the computation of the same network: all previous work using
posits has done so for all network layers. Therefore, in the next chapter the effect this
has on the network inference accuracy is investigated.

61

62

Inference Accuracy Analysis 4
In this chapter the effect of using different quantization techniques in the same network
is investigated, using both posit and fixed point numbers. The baseline network uses 16
bit fixed point numbers for the first and last network layers, and 8 bit precision for the
hidden layers. Then, the first and last network layer are quantized to posits instead, to
quantify how this affects the inference accuracy that is achieved.
To achieve this, a software model is developed in PyTorch [66], capable of both fixed
point and posit quantization of different precisions. The goal here is not to improve
the performance in the software flow, but to check whether this approach of mixing
number systems does not cause a large degradation of the inference accuracy of the
network. Using a simulation in software it is also possible to perform a design space
exploration, to get a general idea of the network performance when using certain number
representations for different network layers, without having to implement any dedicated
hardware.

4.1 Network: VGG16

The first step is to decide which network to use for this verification step. In the end,
the goal is to use the hardware designed in this thesis in an accelerator meant for
object recognition. Therefore it makes sense to use a network designed for such a task.
Progress in this field is quite fast so it makes sense to use a modern network for this
evaluation because older networks can be obsolete already. Taking these requirements
into account, the choice is made to use the VGG16 network [45]. While there are
different options that might be newer, like ResNet [67] and variations, the benefit of
VGG16 is that it has relatively few network layers, making the addition of quantization
layers easier and more clear. It is also a network that is often used in the literature,
allowing for easy comparisons. The goal is to write the software as generic as possible,
to allow the same verification to be done for different networks if required.
The structure of the VGG16 network can be seen in Fig. 4.1a, where each convolution
is 3×3 and the number indicates the number of channels for each layer. Instead of using
large receptive field sizes, Simonyan et al. decided to use multiple consecutive smaller
convolutions of size 3×3, without pooling in between. By stacking multiple convolutions
without intermediate pooling, the effective receptive field of the convolution is increased:
three consecutive 3 × 3 convolutions have an effective receptive field of 7 × 7. This
approach introduces more non-linearity and decreases the number of parameters in the
model, compared to a single 7 × 7 convolution [45]. The convolutional layers all have
a stride of 1. The last three network layers are fully connected, to perform the final
classification of the detected features.
There are three types of data in a network calculation: the trained weights and biases,

63

and the computed activations. Since the computations are done on general purpose
hardware, it is not possible to perform the computations using optimized hardware: all
of the data is represented using single precision floating point, similar to [61]. This also
means exact accumulation is not supported. It is however possible to use only those
values of single precision floats that can also be represented in the desired number
representation. When, for example, the floating point number with a value of 0.6 needs
to be represented in a fixed point format with only two fractional bits, it can not be
exactly represented: the ULP of the fixed point format has a value of 0.25. Therefore,
the number needs to be rounded to be represented in the fixed point format, where
it will have a value of 0.5. Because the hardware can not compute with this custom
number type, the data will still be stored as a single precision float but with the new
value of 0.5, instead of 0.6.
The quantization to posit values can not be easily implemented to be performed on
GPU, meaning this process is performed on CPU instead. For this reason the choice is
made not to perform any fine-tuning to account for the quantization, as this would result
in a lot of workload. While this may not result in optimal inference accuracy, the results
are obtained under the same conditions. This results in a valid comparison between
the different quantization techniques. The pre-trained network from the TorchVision
PyTorch package is used for simplicity. This pre-trained model contains the network
architecture, as well as the weights and biases for each network layer. First, these
weights and biases are quantized to the correct number representation. Then, the
network is modified such that the computed activations are also quantized to the correct
number representations during inference.

64

(a) VGG16 network architecture.

(b) VGG16 network with quantization layers.
The feedback loops are used to simplify the fig-
ure, in reality they are different layers with their
own weight sets.

Figure 4.1: VGG16 before and after adding quantization layers.

65

4.1.1 Weight & Bias Quantization

The pretrained weights and biases are loaded from the TorchVision package. Since these
parameters remain constant during inference they can be quantized before evaluation
starts, without any changes to the architecture of the model.
For the quantization to fixed point format, the Utee Python package [68] is used.
Dynamic fixed point quantization is used, as in [9], meaning the trade-off between
overflow error and quantization error is made for every layer independently. Using more
integer bits reduces the overflow error but less fraction bits remain, which increases the
quantization error. Looking at all the weights for a single layer, it computes how
many integer bits are needed to prevent overflow in the fixed point representation after
quantizing the number. The Utee package can allow a certain percentage of the weights
to overflow after quantization, to prevent a few outliers from increasing the integer part
of the numbers at the cost of fraction bits. The bits that are not used to represent the
integer part or the sign represent the fractional part of the fixed point number. After
deciding on the number of integer and fraction bits, each weight value is quantized to a
value that is representable in this fixed point representation. The same process is done
for the biases, and repeated for each network layer.
This process can be clarified with an example. Say that the set of weights of a certain
layer consists of the following values, which need to be quantized to 8 bit fixed point:

{1.78, 0.63, 0.20,−0.91, 0.03,−0.64,−0.09, 0.83, 0.07}

The largest magnitude number of this set is 1.78, which can be represented with
⌈log21.78⌉ = 1 integer bit. Accounting for the sign bit, this leaves 6 bits to repre-
sent the fractions for a total precision of 8 bits. Using this number system, some
examples of the quantized weight values would be quantize(1.78) = 1.78125 and
quantize(0.07) = 0.0625. Now, say that 10% of the quantized number are allowed
to overflow for the sake of this example. In that case the largest magnitude number to
represent would be −0.91, which can be represented with ⌈log20.91⌉ = 0 integer bits.
This means an extra bit will be available for the fraction of each number.
Using dynamic fixed point quantization makes sure that an optimal integer/fraction
bit ratio is used for each layer individually, given a fixed width of the total number
representation. Since integer hardware is typically used to compute with fixed point
numbers, it should be feasible to use different parameters for each layer in hardware
as well. If that is not the case, the code written for this software verification can rel-
atively easily be modified to compute the optimal fixed point parameters considering
the weights and biases of all layers. This would cost accuracy in the layers that could
be computed with a smaller integer part, since these now have a shorter fractional part.
For the quantization to posit numbers, the Julia language SigmoidNumbers library is
used [69, 70]. This library is chosen because it is fully parameterized: posits of any
bit width and exponent size can be computed with. A lot of the other software imple-
mentations of posit numbers only offer a few possible configurations. It is also chosen
because one of the supervisors of this project had a positive experience using this li-
brary. Using the Julia library PyCall [71], Julia functions can be called from Python
such that they can be used with the PyTorch DNN model. A function was written that
quantizes an input floating point number to a posit with the given width and exponent

66

size parameters, and then converts it back to single precision floating point data type.
This function can then be called from python to quantize the weights and biases of the
first and last network layer to the posit number system.
While it is not ideal to convert the quantized posit values back to single precision, this
should not be a source of large inaccuracies in this case. For example, minpos of (8,2)-
posit is 2−24 which should be representable as a subnormal single precision value, but
not a normal one. For posits of larger precision or with a larger maximum exponent
size this problem becomes more pronounced, as more posit values will be outside of the
representable range of single precision floats. However, for the small precision posits
that are of interest here, almost all values should be exactly representable as a single
precision float. (8,1)-posits for example are in the range ±[2−12, 212], all of which are
exactly representable as floats. The choice is therefore made not to use a more compli-
cated software emulation of the posit number system during the inference process, to
prevent the longer run times this would cause.

4.1.2 Activation Quantization

The computed activations during inference should also be quantized to the desired
number representations. This can not be done beforehand, since the computed values
are obviously not known then. This means that the quantization should be incorporated
into the network in order to do it during inference. To achieve this, additional layers
are added in between the existing layers of the network model. Instead of performing
convolution or pooling, these layers quantize the activations to the desired number
format before the next computation. How the network looks after these quantization
layers have been added can be seen in Fig. 4.1b.
For the posit quantization a new Torch class is implemented that calls the same Julia
function as for weight and bias quantization during a forward pass through the network.
This means that the computed, single precision, activation values are all quantized to
their corresponding posit values before being used as an input for the next layer.
For the quantization to fixed point, an extra step is required before inference can start:
the number of integer bits in the representation need to be decided for each layer, which
should be based on the number distribution of the activations of each layer. To do this,
a certain number of input images are used to calculate their activations. For the first
input image, for each layer the number of required integer bits is calculated according
to the same process as for weight and bias quantization, but now for the computed
activation values of each layer. The output of the quantization layers is equal to their
input during this process, to make sure the deeper network layers can also correctly
calculate the required fixed point integer bits. Then the same is done for a second
input image and the number of integer bits is updated for a layer if the second image
requires a larger number of integer bits. How many images are used for this can easily
be changed, but is at 10 by default. After this process, the network is ready to be used
for inference where the calculations are done in the desired number formats.

67

4.2 Verification Dataset

After implementing the necessary changes to the network, the next step is to feed it
labeled images to see what the achieved inference accuracy is. For this, the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) dataset [46] is used. This dataset
contains more than 1.2 million training images classified into 1000 categories, as well
as 50.000 validation images: 50 from each of the categories. This dataset is chosen
because it is often used to train and validate image classification networks, and it is
also the dataset that the VGG16 network was trained on. During training, the images
were scaled and cropped to a size of 224×224 pixels, so this is also done for the images
used for verification. For this verification, a subset of the validation images is used in
order to reduce the test time: 5000 random validation images are used instead of the
complete set. The same images are used for each of the experiments, to make sure the
results are consistent.

4.3 Results

The first computation to run is the baseline VGG16 network using single precision
floating point, in order to compare the networks to that use different quantization
techniques. After that, the experiment is performed again under the same conditions,
but with different quantization techniques: the hidden layers are quantized to 8 bit
fixed point, while the first and last network layers are quantized to different number
systems. Because the maximum exponent size has quite a large impact on the number
distribution of posit numbers of the same precision, the exponent size is varied for the
same precision as well to find the optimal value: the exponent size is set to zero first
and incremented until the achieved accuracy starts to decrease.
Table 4.1 shows the obtained results, including both top-1 and top-5 accuracy. If
the image is assigned to the correct class with the highest probability, this is counted
towards the top-1 accuracy. ILSVRC however, ranks the challenge entries on top-5
accuracy. This means the correct class is assigned one of the five highest probabilities
of being the correct one by the network. The reason for choosing this metric is that
there might be multiple objects in an image while it is assigned only a single label [46]:
a picture of a bowl of fruit can contain both an apple and a pear but will only be labeled
as one of the two. However, the correct class should in this case be assigned a high
probability because the network should detect both the apple and pear. Therefore, the
labeled category should be in the top-5 classifications.
As can be seen from the results in Table 4.1, the same parameters result in the lowest
accuracy degradation when considering top-1 and top-5 accuracy for 8 and 9 bit posits.
For 10 bit posits there is even an instances where the inference accuracy has increased
compared to using single precision floating point numbers, indicated by a negative
degradation. This can probably be attributed to the regularization effect quantization
can cause, as discussed in Section 3.2.4. For 10 bit posit, an exponent size of 0 results
in the smallest top-5 accuracy degradation, while an exponent size of 2 results in the
smallest top-1 accuracy degradation. Because of the large difference between top-1
accuracy and negligible difference in top-5 accuracy, (10,2)-posit is probably the best

68

Table 4.1: Simulation results for different number systems, where the hidden layers are quan-
tized to 8 bit fixed point numbers. The single precision baseline uses no quantization in any
layer.

First & last
layer

Top-1
accuracy [%]

Top-5
accuracy [%]

Top-1
degradation [%]

Top-5
degradation [%]

Single precision
floating point 71.92 89.80 Baseline Baseline

16-bit
fixed point 71.50 89.72 0.42 0.08

(8,0)-posit 61.98 88.90 9.94 0.90
(8,1)-posit 68.16 89.48 3.76 0.32
(8,2)-posit 68.06 89.42 3.86 0.38
(9,0)-posit 67.80 89.68 4.12 0.12
(9,1)-posit 70.94 89.76 0.98 0.04
(9,2)-posit 70.86 89.52 1.06 0.28
(10,0)-posit 70.92 89.80 1.00 0.00
(10,1)-posit 71.60 89.70 0.32 0.10
(10,2)-posit 72.02 89.78 -0.10 0.02
(10,3)-posit 71.22 89.40 0.70 0.40

option according to these results.
These results were obtained by using the activations of 10 input images to decide the
fixed point parameters for the activations. Furthermore, none of the numbers were
allowed to overflow due to quantization to fixed point, meaning a single outlier could
cause an extra integer bit to be used for the fixed point representation, at the cost of
a fraction bit. By changing these parameters, it is likely that marginally better results
could be achieved for the same number precisions. Since it would require a lot of extra
run time to perform all the experiments, these optimization have not been pursued
here: it should not have a large impact on the comparison of the different quantization
techniques.
For (8,1)-posit, the top-1 accuracy degradation is quite significant at 3.34% compared
to the network using 16 bit fixed point quantization for the first and last network layers.
However, according to the designers of the ImageNet dataset and the accompanying
challenge [46], the top-5 accuracy is more important as a metric to rate the network
performance. This shows a degradation of only 0.24% compared to the fixed point
network, which is probably an acceptable degradation to reduce the required memory
size and bandwidth for inference, and with that reduce the energy consumption as well.
If this amount of accuracy degradation is not acceptable for a certain application, 9 or
10 bit posit can be used instead. This does come at the cost of increasing the required
memory size and bandwidth, and hardware cost. This is also a nice example of one of
the beauties of the posit number system: the designer has total freedom in choosing the
required precision. If 8 bits are not sufficient, 10 bits can be used. If a lower accuracy
would still be acceptable, perhaps 7 bits of precision would also suffice.
While these results already look quite promising, especially for (10,2)-posit, they are

69

not a fully accurate representation of the results that could be achieved using optimized
hardware. These computations are done using general purpose single precision hard-
ware, and as such the accumulations are not computed in an exact manner. The exact
accumulation in the quire is an important feature of posit arithmetic that could have
a large impact on the accuracy of the computed result, as discussed in Section 2.1.3.4.
For the final application, it would also make sense to perform some form of fine-tuning
of the parameters to account for the network quantization. This should help reduce
the accuracy degradation.

70

Hardware Designs 5
In this chapter the design of a parameterized posit processing element performing ex-
act accumulation is discussed, as well as its use in a parameterized systolic array. This
means a rectangular systolic array of any size can be generated that computes exact
dot products with arbitrary (N,es)-posit numbers. On top of that, the SA should be
compatible to be used in a system that also contains hardware that performs fixed point
computations as discussed in Section 3.4. To this end, a hybrid decoder is designed
that converts fixed point inputs to the PIF, as well as a quire to fixed point converter.
In this chapter the hardware designs are discussed: first, the design of the SA is dis-
cussed in Section 5.1, followed by the design of the PEs in Section 5.2. The verification
and results of the hardware implementation are discussed in Sections 5.3 & 5.4, respec-
tively.

5.1 Posit Systolic Array Design

In this section the design of the systolic array (SA) is described, as well as some trade-
offs that will be evaluated. The size of the SA is parameterized for easy design space
exploration and for the design to be easily used in different applications. First, the
used data flows through the SA are explained. Then in Section 5.1.2 two different
approaches for the decoding of the posit numbers are discussed.

5.1.1 Data Flow

In the processing elements accumulation is done exactly, which means that intermediate
results are a lot larger than the input operands. For this reason, the choice is made
to implement an output stationary data flow in the SA. The goal of implementing the
posit SA is to reduce the memory access energy consumption compared to using a
fixed point representation of a larger precision. Having to store partial quire results in
memory would therefore defeat the purpose of using the posit number system in the
first place.
The general structure of an output stationary SA can be seen in Fig. 5.1, where the
array size N × M is 5 × 4. The first input A is fed into the SA from the left and
propagates to the right, the second input B propagates from the top to the bottom.
While the data flow is output stationary, the outputs C still need to be read from the
SA after the computation is finished. When this happens, the outputs propagate in the
same direction as input B, as indicated in Fig. 5.1. Another approach is to read all the
outputs in a single cycle, but this would increase the amount of required interconnect
and memory bandwidth, and reduce the regularity of the SA architecture.
The output of each PE is stored in registers, to be output to the next PE in the next

71

clock cycle. This is in accordance with the designs discussed in Section 5.2.1.

Figure 5.1: Output stationary systolic array of size 5× 4.

5.1.2 Edge & Distributed Conversion

In the SA, there is data reuse of the two input numbers. This also gives rise to different
approaches of how to handle the decoding, such that the numbers can be computed
with: they can be decoded in each of the PEs, or they can be decoded before entering
the array. The same is true for the conversion of the quire result to a shorter number
representation. Both techniques are explained and evaluated.
The SA in which the decoding and quire conversion is done in each of the PEs is called
distributed here: the decoding and quire conversion are distributed over the SA. This
design can be seen in Fig. 5.2a. In the communication between the different PEs the
encoded posit numbers and converted quire results are used, and N ×M decoders and
quire converters are required to perform these operations in each PE.

72

(a) Systolic array with distributed posit decoding and quire con-
version.

(b) Systolic array with edge decoding and quire conversion.

Figure 5.2: Two different approaches to handle posit decoding and quire conversion in a
systolic array architecture.

73

With edge conversion, the posit numbers are decoded before being input into the SA:
at the edges. The full quire is propagated through the SA when the result is ready, and
is converted at the edge of the array. This is shown in Fig. 5.2b, where the communi-
cation between the different PEs is now done in the posit intermediate format and the
full quire precision. Only N +M decoders and M quire converters are required in this
case.
Of course there is a trade-off that needs to be made when deciding between these two
different approaches to handle the conversion of data in the SA. The benefit of using
edge conversion is that less decode and quire conversion modules need to be present in
the hardware, which should reduce the hardware utilization compared to distributed
conversion. This is especially true for larger SA sizes. The downside lies in the fact that
the PIF consists of more bits than encoded posit numbers: this increases the number
of registers required in each of the PEs to store the data, as well as the amount of
interconnect that is required between the PEs. By decoding the data in each of the
PEs this can be avoided.
However, in the case of distributed conversion, registers are present to store both the
full precision quire, as well as the converted quire. Depending on the number systems
that are being used, this may end up costing a similar amount of registers as are saved
by storing the encoded posit numbers. For this reason two different distributed PEs
are designed, one of which reuses the full precision quire registers to store the converted
quire result. This reduces the register utilization at the cost of some extra logic. The
PE designs are discussed in Section 5.2.1.2.
The exact impact of this trade-off is evaluated by implementing the different architec-
tures. Which of the approaches is more appropriate depends on the specific application:
if the number of available flip-flops is limited on a target device, or a lot of them are
required for a different part of the system, it may be more attractive to use distributed
decoding because it should require less flip-flops. If minimizing the amount of combi-
national hardware is more important, edge conversion is probably more suitable.

5.2 Posit Processing Element Design

In this section, the design of a PE that can compute with the posit number system is
discussed. The design of a hybrid decoder is also discussed, which can convert both posit
and fixed point input numbers into the PIF. The implementation of the designs is done
at the register-transfer level (RTL) in SystemVerilog [72], and is fully parameterized
to make sure it is easy to use and to perform design space explorations. Then, some
variations of the PE are discussed, in order to evaluate different trade-offs that can be
made in the design.

5.2.1 Processing Element Design

The design of the PE is split into two parts, in order to separate the data flow through
the PE from the computation. This prevents the need to check the correctness of the
computation when a change is made to the data flow. The top-level PE that takes care
of the data flow is described in Section 5.2.1.2, first the computational functionality is

74

discussed in the next section.

5.2.1.1 Computational Processing Element

In the basic PE, there are three inputs and a single output. The inputs are the multi-
plicand and multiplier in the PIF, and the current accumulator value in quire format.
The single output is the result of adding the product to the quire input. The design
can be seen in Fig. 5.3.

Figure 5.3: Posit processing element for exact accumulation.

The first step in this module is to multiply the two PIF inputs: the exponents are
added and the significands multiplied. To this end a set bit is prepended to the input
fraction before multiplication. The accumulation is done exactly, as such there is no

75

need to perform rounding or normalization on the multiplication results. By choosing a
smart bias value for the exponent representation in the PIF, the compensation step to
account for the bias after computing with biased exponents can be prevented. This is
explained in more detail in Section 5.2.2.2. Since the PIF contains flags indicating the
sign, and whether the number is zero or NaR, these conditions can easily be detected
for the result of the multiplication: if either of the operands is zero or NaR, so is the
result. If this is the case, the exponent and fraction are also set to zero accordingly.
After the multiplication the 2’s complement of the fraction is taken if the sign after
multiplication is negative. This is because the fractions only represent a magnitude
after decoding, the sign is represented separately. The same is therefore true for the
fraction result after multiplication. The quire, however, is represented in 2’s comple-
ment representation for easy addition of negative products. The number that is added
to the quire is a shifted version of the fraction product, so therefore it first needs to be
converted to the 2’s complement representation. After the conversion the fraction is
sign extended for a correct alignment to the quire. Because the amount it is extended
is related to the exponent bias, it is also discussed in Section 5.2.2.2 in more detail.
The fraction is then shifted to the left, where the shift amount is dictated by the value
of the exponent of the product: as the location of the binary point in the quire is
fixed, it does not influence the required shift amount. As the amount of this shift is
not constant, a barrel shifter is required. After the shift the fraction is exactly aligned
with the fixed point quire and can be added to it. In the current implementation this
addition is done rather naively using a ripple-carry adder. Because the quire is wide
compared to the precision of the input numbers, in order to accommodate exact accu-
mulation, replacing this adder with a different type that introduces less delay could be
worthwhile.

5.2.1.2 Top-Level Processing Element

The top-level processing element instantiates the computational module discussed in
the previous section and takes care of the data flow through the systolic array. The
benefit of making this distinction in functionality is that it becomes easier to locate
potential errors in the design, and it makes sure that the computational correctness
of the PE does not need to be verified again after making a change to the data flow.
The data flow described here is an output stationary one, as discussed in Section 5.1.1,
which means the computed quire will remain in the same PE until the computation is
finished. It also makes it easier to design the different PEs that are required for the
edge and distributed SAs that were discussed in Section 5.1.2.

Distributed Processing Element The design of the top-level PE with the decoding
and quire conversion included can be seen in Fig. 5.4. First, the input posit numbers
are decoded into the PIF, which is then used as input for the computation. The quire
value that was computed in the previous cycle is used as input for the computation to
continue the accumulation. The encoded input posits and the newly computed quire
are stored in registers. The posit inputs are passed on to the next PEs in the next clock
cycle that will use them again for computation.

76

Figure 5.4: Top-level distributed processing element for an output stationary data flow.

Depending on what number representation is required in the next computation, the
fixed point quire is converted to another representation before the output. The loss in
accuracy that is possibly caused by this conversion is the only loss of accuracy in the
PE, before that the result is exact. This conversion can for example be to a floating
point number, a posit number, or a fixed point number. It is also possible to use the
entire quire as output, if the next computation can handle the large precision of this
number. The conversion used here is explained in Section 5.2.4.
What happens with the quire depends on the required operation. During normal com-
putation in an output stationary flow, the quire is fed back to be used for computation
in the same PE in the next clock cycle. The current quire is also converted, the result
of which is sent to the next PE in the array, where it is stored in a register. Then, when
the accumulation is finished, this converted quire value can be immediately propagated
to the next PE, using the control signal enableMulOrShift.
Alternatively, the full precision quire register can be reused to store the converted quire
results when the computation is finished, as shown in Fig. 5.5. This reduces the reg-

77

ister utilization, but does require an extra set of multiplexers to select which signal to
store in the registers. A small, two state finite-state machine (FSM) is also required to
select the output of the PE: the converted result of the current PE, or the result that
was already converted in a previous PE. This increases the logic utilization compared
to the approach shown in Fig. 5.4. Both of these approaches are evaluated, and the
second one is referred to as the distributed PE with FF reuse.

Figure 5.5: Top-level distributed processing element for an output stationary data flow, that
reuses the quire registers for the converted results.

Edge Processing Element As discussed in Section 5.1.2, it could be beneficial to
implement a PE where the decoder is not included, but instead the inputs are already
decoded posits. This prevents the need to decode the same numbers in each of the
PEs. The same can be done for the final conversion of the quire to another number
representation. The design of this top-level PE is very similar to the one that does
include the decoding, and can be seen in Fig. 5.6.

78

Figure 5.6: Top-level edge processing element for an output stationary data flow.

5.2.2 Open-Source Posit Hardware

Some of the work described in Sections 2.3 & 3.3 describes hardware designs that are
made open-source [17, 23, 31, 12]. Before rushing into designing all the hardware from
scratch, it makes sense to check out some of the designs that have already been made.
If anything can be used as a base, this would save a lot of design and debugging time.
Of the designs mentioned before, only [17, 23] implement support for using the quire.
However, [17] has performed the designs in a C++ library targeting HLS, while this
work targets RTL implementation in order to have more control over the implementa-
tion details.
This leaves the Deepfloat design developed by Jeff Johnson at Facebook AI Research
[23]. In that paper, Jeff Johnson makes a comparison of the ResNet-50 network [67]
performance using single precision floats using fused multiply-add, and different posit
configurations of 7, 8, and 9 bit precision using exact accumulation. For a precision
of 8 bits, (8,1)-posit achieves the best accuracy on the ImageNet validation set [46],
similarly to the results discussed in Section 4.3, with a top-5 accuracy degradation of
0.19%.
Upon inspection of the Deepfloat designs that are written in SystemVerilog [72], they
are parameterized, modular and easy to understand. This makes them easy to modify
to the needs of this project and to evaluate different design trade-offs. For this reason,
the choice is made to use these designs as a base during this project, to save time im-
plementing and testing the basic hardware components. This means there will be more

79

time to investigate design choices at a higher level, to provide insight into different
trade-offs that can be made.
The Deepfloat design suite is quite large, and also contains modules and interfaces for
different number systems than posit. The most important components that are used
here consist both of interfaces that group certain signals together, and hardware mod-
ules that perform the computations: the most important components for the PE are
the decoder from posit to the intermediate format, the multiplier, and the adder to
the quire. For the correct addition of the multiplier result to the quire, there is also
a conversion module that takes care of correctly shifting the operands and detecting
overflow. A posit PE is also present that instantiates these components, but there is no
testbench to verify correct functionality. More details about the hardware components
are discussed in Section 5.2.2.2, some details about the interfaces are given next.

5.2.2.1 Deepfloat Interfaces

Interfaces are a construct in SystemVerilog that enables the encapsulation of different
signals into one, enabling design reuse and easy integration of different components. It
also allows the designer to define functions on interface signals, for example to easily
read or write signals that are part of the interface.
The interfaces that are used are those that represent posit numbers, decoded posits
in the intermediate format, and the quire for exact accumulation. The posit interface
is parameterized by its width and the maximum exponent size, and the only signal it
contains is a bit vector of the given length. The reason for defining this as an interface
is to make use of the functions: for example to return a posit of value zero for easy
reset, or a posit of maximum magnitude that can be used in case of overflow. Using
these functions makes the hardware designs more clear, and less prone to errors.
The decoded posit interface is a bit more involved: it is again parameterized by its
width (N) and maximum exponent size (es), and is similar to the PIF as discussed in
Section 2.1.3.3, containing the following signals:

• isZero on 1 bit, to indicate a zero value posit,

• isInf on 1 bit, to indicate a NaR posit. isNaR would have been more accurate,

• sign on 1 bit, indicating the sign,

• exponent on 1 + es+ ⌈log2(N − 1)⌉ bits, indicating the biased scaling factor,

• fraction on N − (3 + es) bits, indicating the fraction.

Functions are defined for example to read the regime part of the scaling factor, and to
calculate the unbiased scaling factor.
Finally, there is the Kulisch interface that describes the wide fixed point number that
is used for exact accumulation. In posit arithmetic this is typically called the quire, as
discussed in Section 2.1.3.4. It is parameterized by the number of integer and fraction
bits it contains, and has the following signals:

• isInf on 1 bit, to indicate that at least one NaR value has been added to it,

80

• isOverflow on 1 bit, to indicate the accumulator has overflown,

• overflowSign on 1 bit, to indicate the sign of the accumulator before overflow
occured,

• accumulator on 1 + integer + fraction bits, indicating the current value of accu-
mulation.

The additional bit in the accumulator holds the sign: as the quire is represented in
2’s complement representation the sign is not represented separately. The functions
include ones to read the fraction and integer bits separately, read the sign, and set the
accumulator value.

5.2.2.2 Deepfloat Hardware Implementation

As already hinted at in Section 5.2.1.1, some choices can be made in the design of the
PE that affect the exact implementation details of the hardware. Here, some of those
design choices made in the Deepfloat hardware are discussed.
First off, in the Deepfloat design there is already a split between the computation and
data flow of the PE. However, the feedback of the new quire value back to the input to
be used during the next computation is already done in the computational part of the
design. This limits the flexibility of the design, so this was changed to be done in the
top-level PE. This makes it easier to change the data flow, if this is required.
An important design choice that was made in the Deepfloat designs was to interpret
posit numbers as being in sign & magnitude representation, rather than the standard
2’s complement representation. For positive numbers this has no effect, but negative
numbers now get assigned a different magnitude than what would be expected according
to the standard posit interpretation. This was done to make the decoding easier: the
step of taking the 2’s complement can be skipped, which saves a negation and an
addition for negative numbers. Because the two representations for zero in a sign &
magnitude representation are interpreted differently for posit anyway, this does not
introduce a positive and negative zero in the posit representation. In theory this makes
the optimization worthwhile, because the decoder can be optimized without there being
a real drawback. However, it is quite a significant change to how the numbers are
interpreted while the benefit is small compared to the area and delay of the other
computational modules, as shown in Section 5.4.1. Therefore, it may make more sense
to adhere to the expected posit interpretation according to the standard number system
at the cost of a small area and delay overhead.
An important optimization that is in the Deepfloat design is the choice of the bias value
for the exponent representation in the PIF. According to Section 2.1.3.3, the typical
choice is to use bias = (N − 2) ∗ 2es + 1 where N is the precision, in order to let the
smallest representable exponent be represented by an unsigned value of 1 in the biased
representation, similar to the floating point standard. For floating point numbers this
is done because the unsigned exponent value 0 is used to represent subnormal numbers
and zero. However, because there is a separate flag to indicate a zero value in the PIF
and there are no subnormal numbers in the posit number system, the exponent of value
0 does not need to be reserved for this. By making the bias used in the Deepfloat design

81

equal to biasDeepfloat = (N−2)∗2es, the smallest representable exponent becomes equal
to 0 in the biased representation. This bias value is equal to the exponent magnitude
of minpos and maxpos.
The benefit of choosing this bias is that the summation of two biases in the exponent
is exactly equal to the number of fraction bits of the quire: 2 ∗ (N − 2) ∗ 2es. This
means that if the binary point of the significand product is aligned to be after the
least significant quire bit, the biased exponent result can be used to correctly align the
product to the quire for addition. This can be achieved by sign extension as mentioned
in Section 5.2.1.1, and saves the cost of an extra addition to the exponent that would
otherwise be required to compensate for the bias. It also means that the alignment
shifter only needs to be able to shift to the left, as the product fraction is already
aligned to the right side of the quire. To achieve this, the significand product is sign
extended to the length of the quire, plus an additional number of bits equal to the
number of fraction bit in the quire. This should become more clear by the use of an
example.

Table 5.1: Alignment of a product to the quire.

Integer part Fractional part
Significand product si1i0. f−1f−2f−3f−4

Quire si7i6i5i4i3i2i1i0. f−1f−2f−3f−4

Extended to
quire length sssssssi1i0. f−1f−2f−3f−4

Extended additional
fraction (4) bits sssssssss. ssi1i0 f−1f−2f−3f−4

(4,0)-posit is used for this example, to keep the number of bits small for the sake of
clarity. For this number system, the minpos = 2−(N−2)∗2es = 2−2 which means that
the smallest possible product is minpos2 = 2−4, which requires 4 bits to be represented
exactly in the quire. As maxpos2 = 24, the number of integer bits is 1+ (4− 1)+5 = 9
bits as shown in Table 5.1, accounting for the sign bit and N−1 bits to prevent overflow.
The bias for (4,0)-posit is biasDeepfloat = (N − 2) ∗ 2es = 2. After the product, the bias
will be in the exponent twice, as shown in (5.1), meaning it will have a value of 4:
exactly equal to the number of fraction bits in the quire.

2x+bias ∗ 2y+bias = 2x+y+2∗bias (5.1)
The result of a single product of two fractions can be represented as in the first row of
Table 5.1, with a sign bit, 2 integer bits and 4 fraction bits. The number of integer bits is
independent of the chosen parameters for the posit number system: as the significands
are in the range [1, 2) their product will be in the range [1, 4). To understand the amount
of sign extension, the product minpos2 = 001.0000 ∗ 2−4 can be used as example: it
will have a biased exponent with value −4 + 2 ∗ bias = 0. If this is to be directly
used as the required left shift of the significand product, the least significant integer
bit of the significand product should be aligned with the LSB of the quire to be added
to the quire correctly. This can be achieved by extending the significand product to
the length of the quire, plus another quire fraction bits, as shown in Table 5.1. This

82

extension also works for all other products than minpos2: when the product is larger
and has a non-zero biased exponent, the significand product is left shifted according to
the exponent value.
As seen from the table, this extension does shift the fraction bits of the significand
product beyond the precision of the quire. After correctly aligning the product to the
quire by shifting it to the left, the extra fraction bits are truncated to make the length
equal to the quire length again. The truncated bits will always be zero, either due to
the tapered precision of posits, reducing the number of fraction bits, or because the
fraction bits have been left shifted into the quire range. After truncation, the product
can be added to the quire.
Another benefit of this bias is that in the decoder it can be added to the PIF exponent
before concatenation of the es bits, meaning a shorter adder can be used to add the
bias during decoding. The decoder that is used is also more optimized compared to the
one discussed in Section 2.2.4.1. For more details on the decoder refer to Section 5.2.3,
where the design is discussed in more detail because more changes will be made to it.
Subtleties like using this value for the exponent bias demonstrate the benefit of using
an existing design, instead of starting a design from scratch. Realizing that such an
optimization can be made from something simple as changing the exponent bias value
can be hard, while it does offer multiple benefits. On top of that, the paper for which
Deepfloat was developed [23] focuses on the effects the posit number system has on
DNN inference accuracy, not on the implementation details of the hardware that has
been designed. It would therefore be easy to miss such an optimization if one is not
extensively studying and using the hardware designs.

5.2.3 Encode Fixed Point Numbers to PIF

In order to increase the throughput of the compute system it would be beneficial to be
able to use the posit SA tiles to compute on fixed point data, as discussed in Section
3.4. The benefit of doing this is that the posit hardware does not have to be idle during
the hidden layer computations, increasing the maximum throughput during this stage
of computation. However, this effectively uses more complex hardware than required by
the data, which comes at a cost in power and delay. Whether this increase in complexity
and cost is worth it to achieve a higher throughput is a trade-off that depends on the
application and design goals.
The first approach to achieve fixed point computation using posit hardware that springs
to mind is to use the significand multiplier for the fixed point numbers directly. This
would require modifications to be made to the alignment shift for correct addition to the
quire, or changing the interpretation of the quire in case of fixed point accumulation. As
the significand multiplier uses unsigned operands, more changes would be required than
just increasing its precision to accommodate signed fixed point computation. Another
approach is to encode the fixed point numbers to the PIF: doing this, the rest of
the hardware components of the PE will not need to be changed. This simplifies the
modifications that need to be made, and limits them to a single component. This
approach is further investigated here.
The PIF that the posit hardware computes on consists of an exponent and fraction
part, representing fixed point numbers in this format is not a straightforward operation.

83

However, many components of the posit decoder can be reused to convert fixed point
input numbers to the posit intermediate representation, as is shown later in this section.
First, the Deepfloat decoder design is described as it is a more optimized version than
the one discussed in Section 2.2.4.1. Then, the PIF field length is reevaluated in order
to accommodate the representation of fixed point data in Section 5.2.3.2. Finally, a
new decoder design is described that can convert both posit and fixed point inputs to
the PIF in Section 5.2.3.3.

5.2.3.1 Deepfloat Decoder Design

The first major difference to the decoder described in Section 2.2.4.1 is that the Deep-
float hardware interprets posit numbers as being sign & magnitude instead of 2’s com-
plement, as mentioned before in Section 5.2.2.2. The second difference is that XOR
gates are not used to selectively invert bits if the regime starts with a set bit, but
instead are always used to XOR the neighboring bits of the input, as shown in Fig.
5.7. This works as shown in Table 5.2: the XORed signal always starts with zeros, even
when the regime starts with set bits.
There are multiple benefits to using this approach, the first being that one less XOR
gate is required, slightly reducing the hardware area. As there is one less gate, the
XORed signal has a length of N − 2, reducing the required size of the leading zero
counter by 1 bit as well. It also means that the result of counting the sequence of
most significant zeros returns the length of the regime −2. This is beneficial because
the minimum length of the regime is known to be 2 bits, so there is no need to shift
these bits out to correctly access the exponent and fraction bits of the number that is
being decoded. This means the size of the shifter can be reduced, again saving some
hardware area.

Table 5.2: The functionality of the neighboring bit XOR.

Input bits S0000011 S1111001
Neighboring XOR 000010 000101

This change in input to the leading zero counter also means the count should be inter-
preted differently in order to assign the exponent the correct value. A summary of the
regime bits, their value, and the intermediate signal is shown in Table 5.3. The reason
the all-0’s regime does not get a defined value is because it is only used to indicate zero
and NaR in the posit system. For the LZC(XOR) and the regime value rows in the
table the 2’s complement representation of the unsigned integer values is also shown,
to make it obvious that the negative regime values can be obtained simply by inverting
the leading zero count. The leading zero count is unsigned and is represented in the
hardware with only 2 bits in this case, but is extended in the table for the sake of
clarity. The sign is prepended in the hardware as in Fig. 5.7. This inversion is signif-
icantly cheaper than the subtraction or 2’s complement conversion that is required in
the simpler decoder described in Section 2.2.4.1.
As the bias value that is being used is (N − 2) ∗ 2es, there is an alternative to adding
the complete bias to the final exponent. Instead, a value of N − 2 can be added to the

84

Figure 5.7: The Deepfloat decoder design.

value of the regime before the es bits are appended that are determined by the shift.
The appending of the es bits then takes care of correcting the value of the bias. The
benefit is that the adder can be es bits shorter, saving both area and delay.

5.2.3.2 PIF Field Lengths

The PIF will now not only be used to represent decoded posit numbers, but fixed point
numbers as well. This means that the length of the fraction and exponent fields may
need to be longer than required to only represent posits. During the design of this
decoder two assumptions are made with regard to the chosen parameters:

1. The bit width of the fixed point numbers will not be wider than the posit numbers,

85

Table 5.3: How the leading zero count of the XORed input signal is interpreted, where LZC()
is the leading zero count. The signals in brackets are the 2’s complement representation of
the signed integers.

Regime
bits 0000 0001 001x 01xx 10xx 110x 1110 1111

Neighbor
XOR 000 001 01x 1xx 1xx 01x 001 000

LZC(XOR) 3 (011) 2 (010) 1 (001) 0 (000) 0 (000) 1 (001) 2 (010) 3 (011)
Regime
value x -3 (101) -2 (110) -1 (111) 0 (000) 1 (001) 2 (010) 3 (011)

2. The bit width of the fixed point numbers can be shorter than the posit numbers.

Assumption 1 is justified from the main reason for using posit numbers for the first
and last layer computation: to decrease the size of memory accesses, to reduce energy
consumption. Allowing a wider fixed point input would undo a lot of the work done to
achieve this goal. Making the design with assumption 2 will increase the flexibility of the
final design, meaning it can be used in more cases and allows for a larger design space
exploration. As is discussed later, this may affect the PIF field size. Furthermore, it is
important to note that the number of integer bits used in the fixed point representation
is an input to the decoder, not a parameter. This means that the same hardware can
be used to compute with a different number of bits for the fraction and integer parts.
While this complicates the design, it makes the hardware significantly more flexible.
The equations to compute the PIF fraction and exponent field lengths are repeated
below for convenience, in (5.2) & (5.3) respectively, where Nposit is the total bit width
of the posit number, and es the maximum length of the exponent field. When also
encoding fixed point numbers into the PIF, it may be necessary to extend the fraction
and exponent fields in order to accurately represent the fixed point numbers.

wF−posit = Nposit − (3 + es) (5.2)

wE−posit = 1 + es+ ⌈log2(Nposit − 1)⌉ (5.3)

For a fixed point number of width N , one bit is used for the sign and the first set bit is
used as the implicit bit of the significand. This means that the first set bit after the sign
determines the magnitude of the exponent when represented in the PIF and is not part
of the fraction. This makes the required fraction width wF−fixed point = Nfixed point − 2,
and the complete equation to determine the PIF fraction width as in (5.4) where N
describes the width of the subscripted input type. For (8,1)-posit and 8 bit fixed point,
for example, this would make wF = MAX(4posit, 6fixed point) = 6 bits, as required by
the fixed point number system. The number of bits used to represent the integer part
of the fixed point number does not influence the fraction in PIF representation, but
will affect the length of the exponent. Effectively, if the fraction size is increased to
accommodate the fixed point numbers, this means the significand multiplier needs to

86

be made larger as well. This increases the hardware area of the PEs.

wF = MAX(Nposit − (3 + es), Nfixed point − 2) (5.4)
The maximum exponent value required to represent a fixed point input in the PIF
depends on the number of bits used to represent the integer part of the number. The
representable range of a fixed point 2s complement number is [−2I , 2I − 2−F], where
I is the number of integer bits, F the number of fraction bits and the total length of
the number including the sign is 1 + I + F . The ULP for this number system has
a value of 2−F and the number with the largest magnitude is −2I . This makes the
required exponent width, including its sign, as in (5.5). The reason for rounding down
the logarithm of I while rounding up the logarithm of F originates from the asymmetric
range of 2’s complement integers: −4 can be represented using 3 bits, while +4 requires
an extra bit.

wE−fixed point = 1 +MAX(⌊log2(I)⌋+ 1, ⌈log2(F)⌉) (5.5)
Comparing this equation to (5.3), it can be seen that the fixed point exponent can
only be larger than required by the posit numbers when es = 0 and either the fixed
point integer or fractional part takes up almost all of the bits except the sign. Because
es > 0 always achieves better inference accuracy as shown in Section 4.3, these are not
cases that are of interest for this application. Therefore, the decision is made to design
this unit without taking into account the fact that the exponent field may need to be
expanded when using es = 0. This can always be added later on, if it is needed for a
different use case.

5.2.3.3 Hybrid Decoder Design

When encoding a fixed point number to the PIF, it needs to be encoded to a fraction
and an exponent value. These values can be determined by locating the most significant
set bit: this can be used as the implicit bit of the significand, meaning the remaining
bits represent the fraction. The location of the most significant set bit also determines
the magnitude of the number, from which the exponent can be calculated.
The assumption here is that the fixed point numbers is in 2’s complement representa-
tion, as this is the most widely used representation for signed numbers. To determine
the fraction and exponent field, the magnitude of negative numbers needs to be deter-
mined before the encoding can start. It therefore makes sense to also use this conversion
for decoding posit input values, instead of interpreting them as sign & magnitude num-
bers as in the Deepfloat design: the hardware for the conversion needs to be present
for fixed point interpretation anyway.
To detect the first set bit after the sign, a leading zero counter can be used. The
number of leading zeros can be used to determine the value of both the fraction and
the exponent. By shifting out the bits that are to the left of the first set bit, only the
significand remains from which the fraction can be easily determined: the significand
is 1.fraction. This requires the use of a barrel shifter. The exponent depends both on
the leading zero count and the number of integer bits in the fixed point representation.
In case the first bit after the sign is set in the fixed point representation, the exponent

87

is 2integer bits−1. When the first set bit is more to the right, the leading zero count
should be subtracted from the exponent: 2integer bits−LZC−1. This can be clarified using
an example.
For example take a fixed point representation using 3 integer bits and 2 fraction bits, ig-
noring the sign for simplicity. The number 101.10 can be represented using an exponent
and fraction as 22∗1.0110, where the exponent is indeed 23−0−1. When the number does
not start with a set bit the leading zero count does influence the exponent value: 010.11
can be represented as 21∗1.0110 where the exponent is 2integer bits−LZC−1 = 23−1−1. This
also works when the first set bit is to the right of the binary point: 000.011 can be
represented as 2−2 ∗ 1.1000 where the exponent is 23−4−1.
From this description can already be seen that the most important components of the
regular decoder can be reused for fixed point to PIF conversion: the leading zero counter
and the barrel shifter. The hardware structure for the hybrid decoder can be seen in
Fig. 5.8, where the posit and fixed point inputs have the same width for simplicity.
The is FxP input signal indicates whether the input should be interpreted as a posit
(’0’) or fixed point number (’1’). In order to accommodate the fixed point input width,
the leading zero counter and left shifter need to be widened. To compensate, the input
of these modules for regular posit decoding needs to be padded to the correct length.
If the fixed point precision is smaller than the posit precision, the size of the leading
zero counter and shifter can be reduced, as well as the amount of posit padding.

First, the fixed point datapath is explained, then the impact this has on the posit
datapath is discussed. First, the magnitude of the input number needs to be calculated,
which is done by selectively computing the 2’s complement conversion when the input
number is negative. This is the same for both fixed point and posit inputs. The expo-
nent of fixed point input is computed using the equation exp = integer bits−(LZC+1),
so it would be beneficial to directly compute LZC + 1 in order to save an addition.
This can be achieved by prepending an extra zero to the leading zero counter input: at
the cost of a 1 bit wider leading zero counter, only one subtraction is required rather
than two. This should be cheaper in terms of area and delay.
The result of the leading zero counter is shorter than one might expect from the input
width: ⌈log2(N−1)⌉ bits instead of ⌈log2(N+1)⌉ bits. This is because the extra output
bit is only required to represent the leading zero count output in case of an x0 . . . 0 fixed
point input, in which case the leading zero count is not used anyway.
The result of the leading zero counter can then be used to shift the input to determine
the fraction bits. By performing this variable shift, the fraction bits are located as the
most significant bits of the shifter output. During this left shift, unset bits are inserted
at the least significant end. This ensures that the length of the fraction remains correct,
and does not change its value. Finally, the exponent is determined by subtracting the
leading zero count from the input number that indicates how many integer bits are
being used in the fixed point number representation. As the exponents in the PIF are
biased, the bias is then added to the exponent.
The range of fixed point numbers is asymmetrical, which makes that the smallest
representable number needs to be handled separately. This number has a value of
−2integer bits, with binary representation 10 . . . 0. As this is equal to one of the excep-
tions of the posit numbers, the same hardware can be used to detect it. The exponent

88

Figure 5.8: Hybrid decoder design that can convert both posits and fixed point input numbers
to the PIF. Posit and fixed point precision is assumed to be equal.

value for this number should be integer bits+ bias: this can be achieved by setting the
input to the subtractor to zero, as in Fig. 5.8.
As for the posit dataflow, the neighboring XOR of the 2’s complement of the input is
computed, as discussed in Section 5.2.3.1. The length of this signal is N − 2, while
the input to the leading zero counter has a length of N bits to accommodate the fixed
point inputs. Therefore, the neighboring XOR signal is padded with set bits to make
it the correct length: zeros are being counted, so the set bits will not affect the result
of the leading zero counter.
In the regular posit decoder, the input to the shifter has a length of N−3: the sign and
first two regime bits do not need to be shifted out as their location is known beforehand.
As the shifter has a length of N − 1 for the fixed point numbers, only excluding the
sign, the posit input to this module again needs to be padded. Here, it is padded with
unset bits: the shifter also shifts in unset bits in order not to affect the result. However,

89

instead of increasing the shift amount by 2, this padding can be done for free.
The output of the leading zero counter can be used the same as for the regular posit
case, except that extra multiplexers are required to ensure that the bias is added to
the correct exponent. The es bits obtained from the shifter are appended before the
bias is added to the exponent: the bias adder needs to be wide enough to add the
complete bias in this case due to the fixed point dataflow, and this approach simplifies
the indexing of the results.
The set of multiplexers takes care of correctly indexing the shifter output to determine
the final fraction bits. For larger es values, the output of the shifter may need to be
extended with zeros when decoding posits to fill the extended fraction field of the PIF.
When encoding fixed point inputs, the least significant bits may not be required to
correctly compute the fraction, as there are no es bits in the shifter output, and would
result in a fraction that is too long. This is all solved with the set of multiplexers before
the fraction field output.
As mentioned, the assumption in Fig. 5.8 is that the input widths of posit and fixed
point numbers is equal. When using shorter fixed point numbers, the width of the
shifter and leading zero counter also changes, as well as the required padding to all the
signals. From the description above it should be clear what these changes entail, so
they are not further discussed. The developed hardware description in SystemVerilog
accepts the fixed point precision as a parameter, so different precision results will be
discussed.

5.2.4 Quire to Fixed Point

After the accumulation is finished, an activation function will be applied to the quire
result. As the activation function expects a fixed point input, the quire needs to be
converted to this format as well. The quire is basically a wide fixed point number, so
this can be achieved by correctly indexing the result. However, the number of integer
bits used in this representation should again be variable, to allow a trade-off to be made
between the accumulated range and accuracy. Therefore, a shifter needs to be used to
access the correct bits of the quire. How this can be achieved is explained using an
example.
Using the (4,0)-posit as example again, the quire will have 2∗ (N −2)∗2es = 4 fraction
bits, N + 2 ∗ (N − 2) ∗ 2es = 8 integer bits, and a bit for the sign, as shown in Table
5.4. The quire will be converted to a 6 bit fixed point number. First, the number is
padded with extra zero’s equal to the maximum number of integer bits in the fixed
point representation: Nfixed point−1. This is to make sure none of the required fraction
bits are lost during the shift, and that after the shift the required bits can be easily
accessed.
The extended quire is then arithmetically shifted to the right by an amount equal to
the number of integer bits desired in the fixed point result. After this shift, the most
significant result bit is at index quire fraction bits + Nfixed point − 1, where the −1
accounts for the sign in the result. As the required bits are now always in the same
location, they can be accessed by wiring the correct indices of the shifter output to the
output signal. This is shown in bold for 6 bit fixed point using 2 and 3 integer bits in
Table 5.4.

90

The bits more significant than the resulting number can be used to detect overflow:
they should all be equal to the sign bit in case there is no overflow. The bits that are
less significant could be used to round the fixed point result, in case any of them are
non-zero. However, this would come at the cost of an adder and a long OR reduction,
while the effect on the inference accuracy is expected to be very limited. Therefore the
decision is made to just truncate these bits to save on these costs. A proper rounding
scheme can always be added if required, or to investigate the impact this would have
on the system accuracy and cost.
As the circuit schematic for the quire to fixed point conversion is rather straightforward
it is omitted here. The implementation details should be clear from the discussion
above.

Table 5.4: Quire to fixed point example using (4,0)-posit quire and 6 bit fixed point.

Signal Bits
Quire si7i6i5i4i3i2i1i0.f−1f−2f−3f−4

Extended Quire si7i6i5i4i3i2i1i0.f−1f−2f−3f−400000
Shifted by 2 sssi7i6i5i4i3i2i1i0.f−1f−2f−3f−4000
Shifted by 3 ssssi7i6i5i4i3i2i1i0.f−1f−2f−3f−400

5.2.5 Shorter Quire

The quire size prescribed by the posit standard draft [2] requires that N − 1 extra
bits are used for the integer part of the quire. This is done to ensure that at least
2N−1−1 products can be accumulated into it without causing an overflow. Taking into
account the number distributions of the application as seen in Section 3.3, it seems a
bit excessive to use so many bits for the integer part of the quire. Reducing the size of
the integer part of the quire would require less registers to store it, and a smaller shifter
and adder for the addition of the products. By making the number of integer bits that
are used for the quire a parameter in the hardware designs, it can be easily changed for
different application. This allows the effects of using a shorter integer part for the quire
to be explored. Using less integer bits does increase the chance of overflow, especially
for the accumulation of many products. This means it is important to make a proper
trade-off between the risk of overflow and the benefits of using a shorter quire. If the
integer part is reduced by more than N − 1 bits, even a single product can cause the
quire to overflow.
Aside from reducing the integer part of the accumulator, it is also a possibility to reduce
the size of the fractional part. Instead of increasing the probability of an overflow, this
reduces the accuracy of the result: if there is a single product with a magnitude that can
not be represented in the fractional part of the quire, the result of the computation will
no longer be exact. Unless truncation is used, this also means a rounding method would
need to be implemented, which would cost hardware and introduce delay, undoing the
benefit of using a shorter quire in the first place. As exact accumulation is an important
concept in posit arithmetic, the effect of reducing the fraction size of the quire is not
investigated here.

91

5.2.6 Pipelining

A technique that is often used to shorten the critical path of a compute module, and
with that increase the maximum clock frequency, is to add pipelining to the module.
Instead of doing the entire computation and storing the final result in a register during
a single clock cycle, extra registers are added in the module that are used to store inter-
mediate signals and results. These extra registers reduce the amount of computation
that needs to be finished within a single clock cycle, which in turn increases the max-
imum achievable clock frequency, at the cost of an increased latency. Increasing the
clock frequency is beneficial to maximize the utilization of all the hardware, as shown
in Fig. 5.9 with an example.
Say, the first component A takes 6 ns to compute a specific signal required by the
second component B, which in turn computes for 5 ns before storing its result in a
register. If the clock period is 11 ns to allow for all of the computation to finish in
a single clock cycle, component A computes for 6

11
ths of the time, and component B

for the remaining 5
11
ths. By introducing an extra register on the dotted line, the clock

period can be reduced to 6 ns. This increases the utilization of component A and B to
6
6
ths and 5

6
ths, respectively.

Figure 5.9: Simple pipelining example.

In the PEs the addition to the quire is quite wide compared to the multiplication
operands, so introducing a pipelining register between these two operations is probably
a good place to start. Whether the sign extension and shifting of the significand product
should be placed in the first or second stage depends on which of the two stages has
more delay: the goal is to make the delay in both stages as equal as possible. In Fig.
5.10 a simplified schematic of the PE is shown, where the three dotted lines indicate
the potential position of the pipelining registers. Of these, the middle one is most
expensive: the sign extended significand product contains more bits than the quire,
requiring a lot of register in order to be stored. The first option is cheapest, as the
exponent and significand product will contain less bits than the quire.
The quire is explicitly not stored in the pipelining register, as it is already stored in
the top-level PE to be used in the next cycle. If there is a second copy of the quire
in pipelining registers, two separate accumulators would be computed that would then
need to be summed after the computation is done, increasing the complexity and delay
of the module. On top of that, it would cost extra registers to store both accumulators.
By not pipelining the quire value all of this extra complexity can be prevented.
From here, the delay of the first stage can be further decreased by pipelining the
multiplier. As discussed in Section 2.2.1.3 this is quite straightforward for an array
multiplier. For the addition to the quire, an adder with a shorter delay can be utilized:

92

Figure 5.10: Simplified schematic of a processing element, where the dotted lines indicate
potential locations to introduce pipelining registers.

[19] gives an example to increase the speed of carry resolution by splitting the quire
into smaller blocks and using a flag to indicate whether each block will consume a carry
or propagate it through the entire block. This is similar to the discussion of carry-skip
adders in [15]. Another approach is discussed in [32], that also splits the quire into
multiple blocks. The carries generated by each block are stored during accumulation
using some extra bits for each quire block, and full carry propagation is only done
after the entire computation is finished. This reduces the maximum length of carry
propagation during accumulation, reducing the delay.
In the case of the distributed PE, where the decoding of the posit is done inside the
PE, it is probably worthwhile to put the decoding in a separate pipelining stage as well.
The same is true for the SA with edge decoding: if there are no registers between the
decoding and the inputs to the SA, each PE will pay a speed penalty. This is because
the decoding logic would essentially be part of the PEs at the edge of the SA, requiring

93

a longer clock period to finish the computation.

5.3 Verification

After designing and implementing the hardware, its correctness needs to be verified to
make sure the behavior of the implemented hardware matches the desired behavior.
This can be done by writing a testbench for the module that needs to be tested.
In the testbench the module is instantiated, and input signals are applied. In this
case, the input data is read from a file, which also contains the expected result of the
computation. The expected results from the file are used in the testbench to compare
to the output data of the device under test (DUT). If the output computed by the DUT
differs from the result that is read from the data file, there is an error in the hardware
design.

5.3.1 Generating Verification Data

The in- and output data that are used in the testbench to verify the hardware first needs
to be generated. For this, the Julia SigmoidNumbers library [69, 70] is used again, just
as in Chapter 4. This library is capable of performing the exact accumulation as is
done by the designed hardware, and as such can be used to generate the verification
data.
Before the data can be generated, it is important to come up with a testing strategy.
The naive way to test the correct functionality of a module would be to apply each
of the possible input combinations and check whether the computed output is correct.
However, because of the width of the data inputs this is not a viable method: the
number of input combinations would be too large to test all of them within a reasonable
amount of time, so an alternative needs to be found.
A simple approach to test the general behavior of the hardware is to use random input
data: this provides an easy way to test the overall correctness, but does not guarantee
that the corner cases are tested. The corner cases include for example the addition of
a zero product to the quire, addition of NaR, and quire overflow. Testing these cases
is important to make sure the functionality is also correct in case a computation is
executed that may not be very common: the behavior always needs to be correct.
The approach that is used here to verify the correct functionality of the processing
elements is to use 10.000 random posit pairs, the products of which are accumulated.
After each addition to the quire, its current value is compared to the expected value.
This is useful to pinpoint at which point in the computation an error might be located,
instead of only knowing that the final accumulation result is incorrect. Besides these
random input data, two corner cases are tested separately: the addition of a NaR value
to the quire, and quire overflow. In both these cases a separate flag in the interface
needs to be set, rather than performing the regular computation. To make sure this
functions correctly, they are tested separately. The addition of a zero product is most
likely covered using the random data, as 20.000 numbers are used with a length of 8 or
9 bits.
To generate the random input data two uniformly random, integer numbers from the

94

range [0, 2posit width) are generated, excluding the number that represents NaR which has
an unsigned value of 2posit width−1. This number is excluded because its functionality is
checked separately. The binary representations of these two random numbers are then
interpreted as (N,es)-posit numbers using the SigmoidNumbers library [70]. Using the
library function for the fused dot product, the product of the two numbers is computed
and added to the quire exactly. This is repeated 10.000 times, to test a wide range of
inputs.
Effectively, more data is used to verify the correctness of the hardware designs though,
as it is parameterized for different precision and exponent sizes. If an error is found in
one of the configurations, the same case might also be erroneous in a different number
system, and fixing the error also corrects the hardware for the other configurations.
In the SigmoidNumbers library the quire is represented as 64 unsigned integers of 64
bits each, for a total of 4096 quire bits. This size was chosen to be able to accommodate
a quire for (64,4)-posit numbers, as well as the quire for smaller posit number systems.
The fixed point is placed in the middle, after 32 unsigned integers. In order to interpret
the quire, to be able to use it to verify the correctness of the hardware, a function is
written that makes a single vector of all the quire bits instead of representing them as
64 separate values. From this single vector of bits, only the quire bits that are required
for the used posit number system are read. This correctly sized quire value is then
written to a file, along with the two random posit input numbers.
Because the Deepfloat hardware designs interpret posits as being in sign & magnitude
representation instead of the more typical 2’s complement representation that is used in
the SigmoidNumbers library, two separate files are generated: one in sign & magnitude
and one in 2’s complement representation. This way the same data can be used to
verify the correctness of both number interpretations, and the cost of using the 2’s
complement interpretation can be evaluated. By generating two separate files, there is
no need to perform the conversion in the testbench. The quire is always represented in
2’s complement representation.
The processing elements that are used in the systolic arrays have already been verified
to be working correctly. Therefore, it is only required to verify the correctness of the
data flow through the systolic array here. On the other hand, because random input
data has been used to verify the processing elements this is a nice opportunity to verify
their correctness using some more data. Two more data files containing 10.000 input
data pairs and accumulation results are generated, which are then used as input data
along with the data file that was generated for the verification of the processing element.
Using this data, the data flow through the systolic array is checked, as well as an extra
verification of the processing elements.
To make sure the PEs function correctly when using the hybrid decoders that also
convert fixed point inputs to the PIF, some reference data is also generated in integer
format. This can then be interpreted to any fixed point format of the same precision.
Exact accumulation can be achieved by using more bits to represent the accumulator
than would be required to store a single product. For the fixed point data 5.000 random
data pairs are generated for each precision.
A brief manual check of the generated data confirms that some zero products will be
computed, to make sure this functionality is correct. The quire is also checked to both

95

have a positive and negative value during accumulation, to ensure that both function
correctly.

5.4 Results: Synthesis & Timing Analysis

For simulating and synthesizing the hardware designs, Xilinx Vivado version 2020.2 is
used, and the results in this section target implementation on the Zedboard develop-
ment board FPGA, using the Zynq-7000 XC7Z020-CLG484-1 SoC. The first step is
to verify the functional correctness of the designed modules. This is done by writing
a testbench that instantiates the module, feeds it the generated input data and clock
signal, and reads and checks the output data. If there is an error in the functional sim-
ulation, it means the hardware is not correctly designed or there is an implementation
error. When these errors have been solved, the next step is to synthesize the design.
In Vivado, going from the RTL hardware designs to an FPGA implementing the hard-
ware is done in three distinct steps: synthesis, implementation, and generating the
bitstream to program the FPGA. During synthesis, the RTL description is translated
into a netlist of library modules that can be used during implementation, for example
LUTs and DSPs. Synthesis also includes many optimizations, for example to prevent
implementing hardware of which the output is not used by any other module. The syn-
thesized netlist can then be implemented, which includes the placement and routing of
the hardware modules on the FPGA board. After implementation the exact resource
utilization is known, as well as an accurate prediction of the interconnect and logic
delays. By generating a bitstream, the implemented design can be programmed onto
the hardware. However, this last step is skipped here: everything is simulated to check
correctness but not implemented on an actual FPGA board.
The first step before running the synthesis of a design is to check the functional correct-
ness of the hardware description. This can be done by using the previously generated
verification data and applying it to the DUT in a testbench that instantiates the mod-
ule. This step will also point out any syntax errors that may be present in the code. If
this behavioral simulation is incorrect the design can be corrected before having per-
formed the synthesis and implementation, which can be time consuming processes. If
it is correct, the synthesis and implementation steps can be run.
For synthesis and implementation it is important to include design constraints, for
example to indicate the desired clock frequency for the design. These are taken into
account during synthesis and implementation, to make sure the implemented design
adheres to these constraints within reason: while it would be possible to pose a very
short clock period constraint for a large, non-pipelined design, the tool will not be able
to achieve non-realistic constraints. On the other hand, using constraints that are too
loose may prevent that the design is properly optimized.
After implementation, it is important to check that the implemented hardware still has
the correct behavior. To verify this, the same testbench and data can be used to check
that the behavior is the same as before the implementation. It is important to note
that for every design of which the results are reported here, the full quire precision has
been verified to be correct, not only the reduced precision output.
Then, it is also important to the check timing correctness by running a timing simu-

96

lation. Actually, two different timing simulations are required to fully verify that all
timing requirements are met: one to verify the setup time, and one for the hold time.
This is to make sure that each signal is constant long enough both before and after
each register, to allow the signal value to be stored correctly.
As the final designs will again be incorporated into a larger design, a wrapper-module
is made for each of the designs for which results are reported. This wrapper makes sure
that the input and output signals to the DUT are buffered, to make the timing results
representative of how the final hardware will be used. The resource utilization of these
wrappers is not included in the reported results, as they will not be present in the final
hardware.
All of the hardware is implemented using only the LUTs that are available on the
FPGA, not the DSP blocks. The DSPs could be used to speed up the significand
multiplication and the addition to the quire. However, the designed hardware is pa-
rameterized, and the parameters affect the width of the operands in both these cases.
The addition to the quire can also be too long to fit in the adder that is provided in the
DSPs, which makes it less straightforward to use it for that addition. To make sure all
of the results can be easily and fairly compared to each other, only the LUT hardware
is used for implementation.
Results are shown primarily for (8,1)-posit, according to the results of Chapter 4.
However, for the hybrid PEs and final SA implementation, different exponent sizes and
number precision are also reported, to evaluate and compare their resource utilization
and maximum operating frequency. All the discussed hardware has been verified to be
correct for the following set of number systems: (8,es)-posit with es = {0, 1, 2} and
(9,1)-posit. Results are evaluated based on their LUT and flip-flop (FF) utilization, as
well as the maximum clock frequency that the hardware can be operated at.

5.4.1 Using Different Decoders

First, the different decoders are compared. The results are shown in Table 5.5, for
the standard posit decoder using sign & magnitude and 2’s complement interpretation,
and for the hybrid decoder that accepts fixed point inputs as well. The hybrid decoder
interprets both posit and fixed point inputs to be in 2’s complement representation, as
this is the standard to represent fixed point numbers. It therefore makes sense to also
interpret the posit numbers according to thier original definition, as the 2’s complement
computation needs to be present anyway. As the number of different possible inputs
is limited for small precision numbers, all decoders have been tested exhaustively for
each input posit, and fixed point where applicable.
From the number of fraction bits in the PIF, MAX(Nposit−(3+es), Nfixed point−2), an
interesting fixed point precision can be found: when using Nfixed point = Nposit−(1+es)
there is no need to extend the fraction field to accommodate fixed point numbers. As
the fraction length also determines the width of the multiplier, this should have a
positive effect on the area utilization of the PE. Therefore, the results for the hybrid
decoder for both 8 bit and 6 bit fixed point are shown: to see what the impact is of
having to extend the fraction field for 8 bit fixed point. This extension not required for
6 bit fixed point inputs.
As can be seen from these results, the 2’s complement interpretation is relatively quite

97

Table 5.5: Decoder implementation results.

Number
System Type # LUTs # FFs fmax[MHz]

(8,1)-posit Sign &
magnitude 19 0 564.3

(8,1)-posit 2’s comp-
lement 30 0 429.0

(8,1)-posit Hybrid,
8 bit FxP 55 0 230.5

(8,1)-posit Hybrid,
6 bit FxP 60 0 340.4

a lot more expensive than the sign & magnitude interpretation of posit numbers, both
in terms of area utilization and clock frequency: the LUT utilization increases by 58%,
while the frequency decreases by 24%. This is probably why the Deepfloat hardware
interprets posits as being sign & magnitude. Due to the longer width of the leading
zero counter and shifter, and the extra subtractor, the hybrid decoder is larger again
than the 2’s complement posit decoder.
The fact that the 6 bit fixed point hybrid decoder is larger than the one that accepts 8
bit fixed point inputs is an unexpected result. No clear reason for this has been found.
However, it does operate at a significantly higher frequency as expected.

5.4.2 Quire Conversion

The quire is converted to a shorter fixed point representation after the accumulation
is completed. The area utilization and maximum clock frequency of this module is
reported in Table 5.6. From this can be seen that the module is quite small. As
expected, the hardware to convert the quire to 6 bit fixed point is a bit smaller and
faster than to convert to 8 bits.

Table 5.6: Quire to fixed point converter.

Number
System

Output
type # LUTs # FFs fmax[MHz]

(8,1)-posit 8 bit FxP 28 0 349.0
(8,1)-posit 6 bit FxP 24 0 371.0

5.4.3 Processing Elements

In this section the results for the different processing elements are discussed. The dif-
ferent optimizations are added incrementally, such that their effect on the performance
can be evaluated. Each time the results are provided for processing elements both
including and excluding decoding and quire conversion, indicated with distributed and
edge conversion respectively: they are used in either the SA with the conversions done

98

in each PE, or at the edges. When discussing the distributed PEs that reuse the quire
registers to store the converted quire this is mentioned explicitly. This was discussed
in Section 5.1.2.
During the design and verification process of the processing element, the use of DSP
blocks for the multiplication and addition to the quire was briefly explored. The
use_dsp attribute was used for this, and it was noticed that having this attribute
present in the hardware description reduced the LUT utilization significantly, even
when it is set not to use DSPs. Removing the attributes from the hardware description
resulted in larger designs. As the smaller designs function correctly, all the reported
results are with these attributes in place, set not to use the DSP blocks. Having the
attributes present in the hardware description probably triggers an optimization during
the synthesis process, but the synthesis logs do not provide any information about this.

5.4.3.1 Regular Posit Decoding

First, the implementation results of the PEs using regular posit decoding are presented.
The input posits are interpreted to be in 2’s complement representation. These can
be used as a reference to see what the impact is of using the PEs for fixed point
computation as well. In these results the quire is converted to an 8 bit fixed point
number when the computation is finished. As can be seen in Table 5.7, the distributed
PE consumes more LUTs and has a longer critical path. This makes sense, as more
computations need to be performed than in the edge PE. Due to the fact that extra
registers are used to store the converted quire in the distributed PE, the FF utilization
is comparable to the edge PE. By reusing the full quire registers to store the converted
quire, the FF utilization of the distributed PE can be reduced, as shown in the last row
of Table 5.7. This does come at the cost of a slightly higher LUT utilization, as well
as a longer critical path.
However, the distributed PE with FF reuse does actually offer a trade-off compared to
the edge PE: the distributed PE with separate registers to store the converted quire
performs worse in all three metrics compared to the edge PE. While the distributed
PE with FF reuse can be operated at a lower maximum frequency and requires more
LUTs, it does use less FFs than the edge PE.

Table 5.7: Implementation results of processing elements using regular posit decoding.

Number
System PE type # LUTs # FFs fmax[MHz]

(8,1)-posit Edge 177 84 98.1
(8,1)-posit Distributed 285 87 83.5

(8,1)-posit Distributed
FF reuse 307 78 81.9

5.4.3.2 Hybrid Processing Element

Here, the regular posit decoder is replaced with the hybrid decoder that was discussed
in Section 5.2.3.3. To see what the effect is of extending the fraction field of the PIF

99

to accommodate the fixed point numbers, results are also shown for 6 bit fixed point
precision as these do not require a longer fraction to be represented in the PIF than
(8,1)-posit. The quire results are converted to the same fixed point precision as the
input numbers. The results are shown in Table 5.8.

Table 5.8: Hybrid processing element results for different fixed point bit widths.

Number
System PE type FxP

precision # LUTs # FFs fmax[MHz]

(8,1)-posit Edge 8 259 88 79.4
(8,1)-posit Distributed 8 390 87 64.9

(8,1)-posit Distributed
FF reuse 8 433 78 61.0

(8,1)-posit Edge 6 177 84 98.1
(8,1)-posit Distributed 6 314 85 84.8

(8,1)-posit Distributed
FF reuse 6 349 78 77.1

Comparing these results to the ones in Table 5.7, it can be seen that the results for the
edge PE using 6 bit fixed point is exactly the same as with regular decoding. This is as
expected, as the fraction length is the same and the decoding is handled outside of the
PE: nothing changes to the PE hardware. The two distributed PEs do consume some
more LUT resources, due to the larger decoder sizes.
When using 8 bits precision fixed point inputs, the fraction length of the PIF needs to
be extended by 2 bits. This means that some components in the PE need to increase
in size as well, the multiplier having the largest impact on the area. Being able to
compute with 8 bit fixed point numbers comes at a cost of 46%, 37%, and 41% LUT
utilization increase for the edge, regular distributed, and distributed with FF reuse
PEs, respectively, compared to the results reported in Table 5.7.
The overhead from going from 6 bit to 8 bit fixed point input is an increase of LUT
utilization of 46%, 24%, and 24% for the edge, distributed, and distributed with FF
reuse PEs respectively. The maximum operation frequencies are reduced by respec-
tively 19%, 23%, and 21%.
For the hybrid PEs the FF utilization is again comparable between the edge and dis-
tributed case, while the edge PE uses less LUTs and can operate at a higher maximum
frequency. The distributed PE with register reuse for the converted quire results in the
lowest FF utilization, but has the longest critical path and highest LUT utilization.

Different Number Systems For the sake of comparison, the hybrid PE is also im-
plemented for some different parameter number systems, as shown in Table 5.9. What
can be seen from the 8 bit posits with different maximum exponent sizes, is that the
exponent size has a large impact on the hardware utilization and clock frequency. This
is because a larger exponent size increases the dynamic range of the number system,
and with that increases the number of quire bits that are required to accommodate
exact accumulation. The quire sizes for 8 bit posit are 33, 57, and 105 bits for (8,0)-
, (8,1)-, and (8,2)-posit respectively. This directly affects the size of the significand

100

shifter and adder, as well as the required registers to store the quire, and the size of
the quire converter.

Table 5.9: Hybrid processing element results for different parameters, where the fixed point
input precision is set to 8 bits.

Number
System PE type # LUTs # FFs fmax[MHz]

(8,0)-posit Edge 164 62 86.5
(8,0)-posit Distributed 305 63 71.8

(8,0)-posit Distributed
FF reuse 323 54 62.0

(8,2)-posit Edge 326 138 73.6
(8,2)-posit Distributed 464 135 58.8

(8,2)-posit Distributed
FF reuse 528 126 56.3

(9,1)-posit Edge 243 97 80.9
(9,1)-posit Distributed 400 98 59.8

(9,1)-posit Distributed
FF reuse 458 89 58.3

An interesting result here is that the (9,1)-posit edge PE consumes less LUTs and can
be operated at a slightly higher frequency than the (8,1)-posit edge PE. It does require
9 extra FFs to store the longer quire that has a length of 66 bits. Both distributed PEs
do require more LUTs than their 8 bit counterpart, and can be operated at a lower
maximum clock frequency.

5.4.3.3 Reduced Quire Size

To reduce the hardware utilization of the processing elements, the size of the quire can
be reduced as discussed in Section 5.2.5. In Table 5.10 the results can be seen when the
size of the quire is such that a single product can always be exactly accumulated. The
N−1 extra integer bits that are added in the posit standard draft [2] to prevent overflow
are not used in this case, reducing the size of the shifter and adder, and reducing the
number of required registers to store the quire. Depending on the application it can be
possible to reduce the quire size further, but in that case a single product can already
cause an overflow. The reduction applied here should be quite safe for the use in DNNs,
and the effect of reducing the quire size further could be easily explored.
Comparing these results to the 8 bit fixed point PEs in Table 5.8 can be seen that
the FF reduction is exactly equal to the reduction in the quire size, as expected. The
LUT utilization is also reduced, by 15%, 4%, and 7% for the edge, distributed and
distributed with FF reuse PEs respectively. Strangely, the maximum clock frequency
is slightly reduced for both distributed PEs.

101

Table 5.10: Hybrid PE results using a shorter quire. The fixed point input precision is 8 bits.

Number
System PE type Quire

reduction # LUTs # FFs fmax[MHz]

(8,1)-posit Edge 7 220 81 81.3
(8,1)-posit Distributed 7 375 80 64.2

(8,1)-posit Distributed
FF reuse 7 403 71 58.5

5.4.3.4 Pipelined Processing Element

In order to increase the maximum clock frequency the designs can be operated at,
pipelining register can be added to the PEs at the cost of a higher FF utilization.
Three different options for pipelining the computational PE are discussed in Section
5.2.6. The middle of these options is discarded, as it would require an excessive number
of registers to store the extended significand product, for a relatively small difference
in delay between the pipelining stages. After implementation the first option turns out
to provide the most balanced pipelining stages, at least for (8,1)-posit: the significand
multiplication and exponent addition results are stored in registers, before the 2’s com-
plement conversion, shifting, and addition to the quire are done in the next clock cycle.
In the distributed PEs, the decoder is also placed in a separate pipelining stage. The
results are shown in in Table 5.11, where the critical path is through the quire adder
in each of the cases.

Table 5.11: Pipelined PE implementation results. The fixed point input precision is set to 8
bits.

Number
System PE type Quire

reduction # LUTs # FFs fmax[MHz]

(8,1)-posit Edge 0 222 112 129.5
(8,1)-posit Distributed 0 340 137 147.3

(8,1)-posit Distributed
FF reuse 0 410 124 138.9

(8,1)-posit Edge 7 225 104 117.1
(8,1)-posit Distributed 7 331 130 149.4

(8,1)-posit Distributed
FF reuse 7 398 121 141.1

When comparing the PEs that use the full quire to their non-pipelined version, the
LUT utilization is reduced by the use of pipelining: 14%, 13%, and 5% for the edge,
distributed, and distributed with FF reuse PEs respectively. As there is no change to
the logic of the PEs, this is probably caused by an optimization performed by the tool
during the synthesis or implementation process.
What is strange in these results is that the edge PE with the shorter quire actually
consumes a few more LUTs, and it has a lower operating frequency than the edge PE
with the full quire. This is not the case for both distributed PEs, yet the reduction in

102

LUT utilization and increase in fmax is also quite small for these.
Due to the extra pipelining registers that are added after the decoder in the distributed
PEs, these use more FFs than the edge PE. However, it also makes that the critical path
is shorter, resulting in a higher fmax. This is probably because the registers are placed
closer to the compute in case of the distributed PEs, resulting in shorter interconnect
delays. The distributed PE with separate registers for the converted quire achieves the
highest maximum operating frequency, at the cost of the highest FF utilization. It does
require less LUTs than the distributed PE that reuses the registers though.

5.4.4 Systolic Arrays

Now that the implementation results of the individual PEs has been discussed, their
performance in the SA is evaluated here. This is first done for the SA without pipelining,
where the only registers that are present take care of the correct dataflow through the
array. Then the pipelining is added to increase the operating frequency.
The size of the SA is set to 9 × 8 for all the results presented in this section. This
size was chosen as it is the same size as the fixed point SA tiles in the scale-out SA
system that this design may be used in, as discussed in Section 3.4. As the designs are
parameterized, the results for different array sizes could be easily obtained.

5.4.4.1 Non-Pipelined Systolic Arrays

The results of the SA implementation without pipelining are shown in Table 5.12, both
for 8 bit and 6 bit fixed point inputs.

Table 5.12: Non-pipelined 9× 8 systolic arrays, with different input fixed point precision.

Number
System SA type FxP

precision # LUTs # FFs fmax[MHz]

(8,1)-posit Edge 8 18827 5954 55.8
(8,1)-posit Distributed 8 22644 5945 52.2

(8,1)-posit Distributed
FF reuse 8 24489 5223 49.6

(8,1)-posit Edge 6 14302 5700 73.9
(8,1)-posit Distributed 6 21824 5790 69.5

(8,1)-posit Distributed
FF reuse 6 23830 5222 64.4

What can be seen from these results is that the SA with edge conversion has a signif-
icantly lower LUT utilization than both distributed PEs, as expected: there are less
decoders and quire converters present in the SA. The FF utilization is comparable be-
tween the edge and distributed PEs, but is lower for the distributed PE that reuses the
full precision quire registers to store the converted quire result. For both fixed point
input precisions the edge SA can be operated at the highest frequency.
The increase in LUT utilization from having to increase the fraction field size by 2 bits
to accommodate 8 bit fixed point is larger in the case of the edge SA: an increase of

103

31.6%, against 3.8% and 2.8% for the distributed and distributed with FF reuse SAs re-
spectively. The increase of the fraction field also means the multiplier width increases,
which increases the length of the critical path compared to the 6 bit fixed point input
implementations.
For the distributed SA with FF reuse the increase of fixed point precision does not af-
fect the FF utilization. This makes sense, because the decoded numbers are not stored
in registers, so the increase of the PIF fraction field does not affect the FF utilization.

5.4.4.2 Pipelined Systolic Arrays

The implementation results of the pipelined SAs can be seen in Table 5.13. For these
results, the decoding is placed in a separate pipelining stage for both the edge and
distributed SAs. This results in a three stage pipeline: decoding, multiplication of
significands, and the addition of the product to the quire. Again, the critical path is
through the addition to the quire for every implementation.

Table 5.13: Pipelined 9× 8 systolic array implementation results for different bit widths and
with reduced quire sizes.

Number
System SA type FxP

precision
Quire
reduction # LUTs # FFs fmax[MHz]

(8,1)-posit Edge 8 0 19519 7848 104.6
(8,1)-posit Distributed 8 0 23191 9546 123.4

(8,1)-posit Distributed
FF reuse 8 0 24633 8826 102.4

(8,1)-posit Edge 8 7 18980 7339 112.0
(8,1)-posit Distributed 8 7 22495 9037 127.3

(8,1)-posit Distributed
FF reuse 8 7 23975 8313 112.1

(8,1)-posit Edge 6 0 17372 7272 126.5
(8,1)-posit Distributed 6 0 20862 8814 135.2

(8,1)-posit Distributed
FF reuse 6 0 22804 8244 119.8

(8,1)-posit Edge 6 7 16386 6768 129.6
(8,1)-posit Distributed 6 7 20829 8309 142.9

(8,1)-posit Distributed
FF reuse 6 7 22355 7739 124.1

As the decoding is placed in a separate pipelining stage, the FF utilization of both
distributed SAs is larger than for the edge SA. The same trends as for the PEs can
be seen in these results: the LUT and FF utilization is reduced by shortening the
integer part of the quire, and increased due to having to extend the PIF fraction field
to accommodate 8 bit fixed point computation.
The clock frequency is the highest for the distributed SAs with separate registers to
store the converted quire results, followed by the edge SA. While in the previous results
the distributed PE with FF reuse offered a trade-off due to the lower FF utilization,

104

this is not the case for the pipelined SAs. The edge SA outperforms the distributed SA
with FF reuse in all three metrics, except for a negligible increase in fmax in the case
of 8 bit fixed point inputs and a reduced quire size.
A trade-off does exist between the edge and distributed SAs though: the distributed SAs
require more LUTs and FFs to implement, but can be operated at a higher frequency.
For 8 bit fixed point inputs and reduced quire size, LUT and FF utilization are increased
by 18.5% and 23.1%, respectively, resulting in an increase in operating frequency of
13.7%. Whether this trade-off is worth it depends on the application the hardware will
be used in.

Different Number Systems Finally, the results for some different parameters are
also presented, in each case for 8 bit fixed point inputs and with reduced quire sizes,
and can be found in Table 5.14.
Table 5.14: Pipelined 9×8 systolic array implementation results for different parameters and
with reduced quire sizes, where the fixed point input precision is set to 8 bits.

Number
System SA type Quire

reduction # LUTs # FFs fmax[MHz]

(8,0)-posit Edge 7 13783 5400 125.2
(8,0)-posit Distributed 7 17264 7086 137.1

(8,0)-posit Distributed
FF reuse 7 18481 6376 123.2

(8,2)-posit Edge 7 28836 11011 93.1
(8,2)-posit Distributed 7 28441 12709 103.7

(8,2)-posit Distributed
FF reuse 7 31748 11997 94.8

(9,1)-posit Edge 8 20165 7920 105.5
(9,1)-posit Distributed 8 24813 9741 113.9

(9,1)-posit Distributed
FF reuse 8 26618 9023 99.8

For (8,0)-posit and (9,1)-posit the results are comparable to the (8,1)-posit: the edge
SA has the lowest LUT and FF utilization, while the distributed PE can be operated
at the highest frequency. The distributed SA with FF reuse is outperformed by the
edge SA in all three metrics.
For (8,2)-posit the results are slightly different: the edge SA has a slightly higher LUT
utilization than the distributed SA. Contrary to the other number systems, the max-
imum operating frequency of the SA with FF reuse is marginally higher than for the
edge SA. This difference can probably be attributed to the length of the quire, as ex-
plained next.
What can be seen from the 8 bit posits with different maximum exponent sizes, simi-
larly to the PE results, is that the exponent size has a large impact on the hardware
utilization and clock frequency. The reduced quire sizes for 8 bit posit are 26, 50, and
98 bits for (8,0)-, (8,1)-, and (8,2)-posit respectively. This directly affects the size of
the significand shifter and adder, as well as the required registers to store the quire,

105

and the size of the quire converter. A longer quire also requires more interconnect,
which can also affect the area utilization and routing, especially in the edge SA where
the full precision quire is communicated between the PEs.
An interesting comparison to make is (8,1)-posit with (9,1)-posit, to see how expensive
it is to increase the accuracy of posits by 1 bit. With regular decoding the size of
the fraction would be increased by 1 bit. However, both also accept 8 bit fixed point
numbers in this case, meaning the size of the fraction field in the PIF remains the
same. This means the size of the multiplier is not affected. The quire size, however,
will increase from 50 to 58 bits. For the edge SA, the LUT and FF utilization increase
by 6.2% and 7.9% respectively, and the clock frequency decreases by 5.8%. According
to the results in Section 4.3, this would result in a top-5 inference accuracy increase
of 0.28%. In the case of the distributed SA, the LUT and FF utilization increases by
10.3% and 7.8% respectively, and the clock frequency decreases by 21.6%.

106

Conclusions 6
Deep neural networks can be used for many different applications, and performing the
computations on edge devices poses new challenges in their implementation. Quanti-
zation is a technique that is often used to reduce the computational complexity and
energy consumption, and to increase throughput. Using low precision fixed point num-
bers for this is popular, as high inference accuracy can still be achieved using this
number system. The recent introduction of the posit number system offers an attrac-
tive alternative, as it offers a larger dynamic range and accuracy compared to floating
point numbers of the same bit width. The designer is completely free in choosing the
required number of bits to represent their data. Recent work using the posit number
system in DNN applications has shown that 8 bit posits can achieve similar accuracy
as using 32 bit single precision floating point numbers.
In this work the posit number system is used in order to reduce the memory access
energy consumption of an inference accelerator. For a scale-out SA design that uses
both 16 bit and 8 bit fixed point systolic array tiles, a posit SA is designed that can
replace the 16 bit fixed point tiles. In the fixed point system the 16 bit hardware is
used to compute the first and last network layers, as the inference accuracy benefits
from the increased accuracy provided by the larger bit width in these specific layers.
An inference accuracy analysis of replacing the 16 bit tiles with low precision posit
numbers is performed, and shows that using (8,1)-posit for the first and last network
layer computation results in a top-5 accuracy degradation of 0.24% on the ImageNet
image classification task using the VGG16 network. For the hidden layers, 8 bit fixed
point numbers are being used. This is in comparison to the same network that uses 16
bit fixed point for the first and last network layer computations.
While using posits increases the computational complexity of the first and last network
layer, 8 bit data can now be used throughout the network, instead of also using 16 bit
data. It has been shown that memory accesses consume significantly more energy than
performing the actual compute, up to 200× more for off-chip memory accesses. By
reducing the data precision, this energy consumption can be reduced. Additionally, it
also reduces the complexity of the memory hierarchy, as it does not have to accommo-
date two different data precisions.
To achieve this, the design of a posit processing element is described. The design is
parameterized, such that it can be used for different bit widths and with different ex-
ponent sizes. This is done to increase the flexibility of the design and to allow for
easy design space exploration. To increase the hardware utilization of the system dur-
ing hidden layer computation, a hybrid posit decoder is designed that can also encode
fixed point input data to the posit intermediate format. This way, the posit hardware
can also be used to compute with fixed point data, rather than being idle during the
hidden layer computation. The posit PE computes exact accumulation, meaning only
the final result of a vector dot product is rounded. This increases the accuracy of the

107

result, and is an important aspect of posit arithmetic.
Three different PE designs are described, that allow a trade-off to be made between
combinational and sequential hardware component utilization. One of them is used in
a SA design that performs the decoding of posits and conversion of the quire accumu-
lator at the edge of the SA. The distributed SA designs include the decoding and quire
conversion in each of the PEs in order to reduce the flip-flop utilization at the cost of
using more LUTs.
While this trade-off is shown to work for a non-pipelined SA with a low clock frequency,
the efficient pipelining of the distributed SA requires extra pipelining registers after the
decoder. This increases the FF utilization to be larger than the edge SA, which means
the edge configuration can be implemented using the least hardware. However, the
distributed SA can be operated at a higher frequency. If the area constraints allow for
it, this can be an attractive option to use.

6.1 Future Work

There are multiple different opportunities that can be explored in order to improve the
work described in this thesis.
First off, an accurate analysis and comparison of the energy consumption of the fixed
point and hybrid compute systems has not been provided in this thesis. The reason for
this is that the memory hierarchy is a complicated system, consisting of multiple levels
of on-chip and off-chip memory. Making an accurate analysis of the energy consump-
tion in this system would require modeling every component, their interactions, and
the computational flow of the target application. As the bit width of the data changes,
the size of the memory components may also require changes. The higher complexity
of the posit hardware compared to the fixed point hardware should also be taken into
account in this comparison. This is an extensive process, that was outside of the scope
of this project. Performing this analysis is therefore left for future work.
An interesting exploration that could build on the work described in Chapter 4 would
be to make a more fine grained split in which number system and which precision are
used in each of the network layers. For a network that is quantized to only fixed point
numbers, it has been shown that tuning the number precision for each layer separately
can decrease the required precision for some layers without (significantly) reducing the
inference accuracy [57, 58]. Using this technique, and extending it to also optimize the
posit parameters, could be very interesting to optimize the obtained results. It would
also be interesting to see the result of mixing number systems within the same layer,
for example only using 8 bit posit for the weights and biases to reduce the required
memory size and bandwidth, while using 16 bit fixed point for the activations.
While the hardware designs have been pipelined, there are opportunities to further
increase the clock frequency that have not been pursued due to time constraints. Cur-
rently the addition to the quire is implemented using a simple ripple-carry adder, which
is not especially fast for such a wide addition. Multiple techniques are discussed in the
literature to speed up this process, for example in [19, 32]. The significand multiplica-
tion can be sped up by pipelining the module.
It can also be interesting to further reduce the quire size, as such large accumulator

108

values are likely very rarely used in DNN applications. This can further reduce both
the combinational and sequential hardware utilization, at the risk of a single product
causing an overflow. By implementing the hardware and using it for computations of
the target application, it would be possible to track how many quire bits are actually
being used in the application. This way a safe and more informed trade-off could be
made.
Finally, a logical next step would be to integrate the hardware design discussed in this
thesis into a scale-out SA system along with fixed point SA tiles. Implementing it on a
FPGA would enable the compute system to be used for DNN inference, and to quantify
the achievable performance.

109

110

Bibliography

[1] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson, and
D. Kudithipudi, “Deep positron: A deep neural network using the posit number
system,” Design, Automation & Test in Europe Conference & Exhibition (DATE),
March 2019.

[2] “Standard for Posit Arithmetic, Posit Working Group 3.2-Draft,” June 2018.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, June 2012.

[4] F. Emmert-Streib, Z. Yang, H. Feng, S. Tripathi, and M. Dehmer, “An introduc-
tory review of deep learning for prediction models with big data,” Frontiers in
Artificial Intelligence, vol. 3, February 2020.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
Available: https://www.deeplearningbook.org/ [Accessed: Dec. 22nd 2020].

[6] T. Lee, S. Mckeever, and J. Courtney, “Flying free: a research overview of deep
learning in drone navigation autonomy,” Drones, vol. 5, June 2021.

[7] J. Kocić, N. Jovičić, and V. Drndarević, “An end-to-end deep neural network
for autonomous driving designed for embedded automotive platforms,” Sensors,
vol. 19, May 2019.

[8] M. Horowitz, “Computing’s energy problem (and what we can do about it),” IEEE
Int. Solid-State Circuits Conf. Dig. of Tech. Papers (ISSCC), February 2014.

[9] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented approximation of con-
volutional neural networks,” October 2016.

[10] IEEE Standard for Floating-Point Arithmetic, IEEE 754-2008. August 2008.

[11] J. L. Gustafson, “Posit arithmetic,” October 2017.

[12] M. K. Jaiswal and H. K.-H. So, “PACoGen: a hardware posit arithmetic core
generator,” IEEE Access, vol. 7, June 2019.

[13] H. T. Kung, “Why systolic architectures?,” Computer, vol. 1, January 1982.

[14] E. L. Oberstar, “Fixed-point representation & fractional math,” August 2007.

[15] B. Parhami, Algorithms and Design Methods for Digital Computer Arithmetic.
New York, USA: Oxford University Press, international 2nd ed., 2012.

[16] Y. Uguen, ”High-Level Synthesis and Arithmetic Optimizations,”. PhD thesis,
Univ. de Lyon, 2019.

111

https://www.deeplearningbook.org/

[17] Y. Uguen, L. Forget, and F. de Dinechin, “Evaluating the hardware cost of the posit
number system,” 29th Int. Conf. on Field Programmable Logic and Applications
(FPL), September 2019.

[18] U. Kulisch, Computer Arithmetic and Validity: Theory, Implementations, and
Applications, vol. 33. Berlin, Germany: De Gruyter, second ed., 2013.

[19] U. Kulisch and G. Bohlender, “High speed associative accumulation of floating-
point numbers and floating-point intervals,” Reliable Computing, vol. 23, July
2016.

[20] J. Koenig, D. Biancolin, J. Bachrach, and K. Asanović, “A hardware accelerator
for computing an exact dot product,” IEEE 24th Symp. on Computer Arithmetic
(ARITH), July 2017.

[21] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes, V. Lefèvre,
G. Melquiond, N. Revol, and S. Torres, Handbook of Floating-Point Arithmetic.
Cham, Switzerland: Birkhäuser, 2nd ed., 2018. Available from: https://link.
springer.com/book/10.1007%2F978-3-319-76526-6#toc.

[22] D. D. Lin and S. S. Talathi, “Overcoming challenges in fixed point training of
deep convolutional networks,” 33rd Int. Conf. on Machine Learning - Workshop
on On-Device Intelligence, July 2016.

[23] J. Johnson, “Rethinking floating point for deep learning,” 32nd Conf. on Neural
Information Processing Systems (NIPS), Montréal, Canada, 2018.

[24] F. de Dinechin, L. Forget, J.-M. Muller, and Y. Uguen, “Posits: the good, the bad
and the ugly,” hal-01959581v3, May 2019.

[25] R. Morris, “Tapered floating point: a new floating point representation,” IEEE
Transactions on Computers, vol. C-20, April 1971.

[26] J. L. Gustafson and I. Yonemoto, “Beating floating point at its own game: Posit
arithmetic,” Supercomputing Frontiers and Innovations: an International Journal
(SCFI), vol. 4, June 2017.

[27] V. G. Oklobdzija, “An algorithmic and novel design of a leading zero detection
circuit: Comparison with logic synthesis,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, March 1994.

[28] M. R. Pilmer, M. J. Schulte, and E. G. W. III, “Design alternatives for barrel
shifters,” Proc. SPIE 4791, Advanced Signal Processing Algorithms, Architectures,
and Implementations XII, December 2002.

[29] A. Podobas and S. Matsuoka, “Hardware implementations of posits and their appli-
cation in fpgas,” IEEE Int. Parallel and Distributed Processing Symp. Workshops,
May 2018.

112

https://link.springer.com/book/10.1007%2F978-3-319-76526-6#toc
https://link.springer.com/book/10.1007%2F978-3-319-76526-6#toc

[30] T. R. Nicely, “Pentium FDIV flaw,” August 2011. Available: https:
//web.archive.org/web/20190618044444/http://www.trnicely.net/
pentbug/pentbug.html, [accessed: Sep. 5th 2021].

[31] M. K. Jaiswal and H. K.-H. So, “Universal number posit arithmetic generator on
FPGA,” Design, Automation and Test in Europe Conf. and Exhib. (DATE), March
2018.

[32] J. Chen, Z. Al-Ars, and H. P. Hofstee, “A matrix-multiply unit for posits in revon-
figurable logic leveraging (Open)CAPI,” Proc. of the Conf. for Next Generation
Arithmetic (CoNGA), March 2018.

[33] R. Chaurasiya, J. Gustafson, R. Shrestha, J. Neudorfer, S. Nambiar, K. Niyogi,
F. Merchant, and R. Leupers, “Parameterized posit arithmetic hardware genera-
tor,” IEEE 36th Int. Conf. on Computer Design (ICCD), October 2018.

[34] H. Zhang, J. He, and S.-B. Ko, “Efficient posit multiply-accumulate unit generator
for deep learning applications,” IEEE Int. Sym. on Circuits and Systems (ISCAS),
May 2019.

[35] S. Sarkar, P. M. Velayuthan, and M. D. Gomony, “A reconfigurable architecture
for posit arithmetic,” 22nd Euromicro Conf. on Digital System Design (DSD),
October 2019.

[36] N. Neves, P. Tomás, and N. Roma, “Dynamic fused multiply-accumulate posit unit
with variable exponent size for low-precision DSP applications,” IEEE Workshop
on Signal Processing Systems (SiPS), September 2020.

[37] H. Zhang and S.-B. Ko, “Design of power efficient posit multiplier,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs, vol. 67, March 2020.

[38] J. Hou, Y. Zhu, S. Du, and S. Song, “Enhancing accuracy and dynamic range of
scientific data analytics by implementing posit arithmetic on FPGA,” Journal of
Signal Processing Systems, vol. 91, November 2018.

[39] L. van Dam, J. Peltenburg, Z. Al-Ars, and H. P. Hofstee, “An accelerator for posit
arithmetic targeting posit level 1 BLAS routines and pair-HMM,” CoNGA: Proc.
of the Conf. for Next Generation Arithmetic, March 2019.

[40] N. Neves, P. Tomás, and N. Roma, “Reconfigurable stream-based tensor unit with
variable-precision posit arithmetic,” IEEE 31st Int. Conf. on Application Specific
Systems, Architectures and Processors (ASAP), July 2020.

[41] R. Murillo, A. A. D. Barrio, and G. Botella, “Customized posit adders and multi-
pliers using the FloPoCo core generator,” IEEE Int. Symp. on Circuit and Systems
(ISCAS), October 2020.

[42] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent
architectures of deep convolutional neural networks,” Artificial Intelligence Review
53, April 2020.

113

https://web.archive.org/web/20190618044444/http://www.trnicely.net/pentbug/pentbug.html
https://web.archive.org/web/20190618044444/http://www.trnicely.net/pentbug/pentbug.html
https://web.archive.org/web/20190618044444/http://www.trnicely.net/pentbug/pentbug.html

[43] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: a survey,” May
2019.

[44] K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neu-
ral Networks, vol. 4, October 1990.

[45] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” 3rd International Conference on Learning Representations,
April 2015.

[46] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet
Large Scale Visual Recognition Challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[47] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient processing of deep neural
networks: A tutorial and survey,” Proc. of the IEEE, vol. 105, August 2017.

[48] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: the
Hardware/Software Interface. Massachusetts, USA: Morgan Kaufmann (an im-
print of Elsevier), 5th ed., 2013. Appendix C, concerning GPUs, is available
from: https://booksite.elsevier.com/9780124077263/appendices.php [Ac-
cessed: Jan. 3rd 2021].

[49] N. P. Jouppi, C. Young, N. Patil, and D. Patterson, et al., “In-datacenter perfor-
mance analysis of a tensor processing unit,” 44th Int. Symp. on Computer Archi-
tecture (ISCA), June 2017.

[50] Y. Chen, T. Chen, Z. Xu, N. Sun, and O. Temam, “DianNao family: energy-
efficient hardware accelerators for mahine learning,” Communications of the ACM,
vol. 59, November 2016.

[51] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: a spatial architecture for energy-
efficient dataflow for convolutional neural networks,” ACM/IEEE 43rd Annu. Int.
Symp. on Computer Architecture (ISCA), June 2016.

[52] M. Naumov, J. Kim, D. Mudigere, S. Sridharan, X. Wang, W. Zhao, S. Yilmaz,
C. Kim, H. Yuen, M. Ozdal, K. Nair, I. Gao, B.-Y. Su, J. Yang, and M. Smelyan-
skiy, “Deep learning training in Facebook data centers: design of scale-up and
scale-out systems,” August 2018.

[53] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna, “SCALE-Sim:
systolic CNN accelerator simulator,” February 2019.

[54] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Dark
silicon and the end of multicore scaling,” 38th Annu. Int. Symp. on Computer
Architecture (ISCA), June 2011.

[55] D. Chen, C. Chou, Y. Xu, and J. Hsue, “BFloat16: The se-
cret to high performance on cloud TPUs,” August 2019. Available:

114

https://booksite.elsevier.com/9780124077263/appendices.php

https://cloud.google.com/blog/products/ai-machine-learning/
bfloat16-the-secret-to-high-performance-on-cloud-tpus, [accessed:
Aug. 27th 2021].

[56] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet
classification using binary convolutional neural networks,” August 2016.

[57] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quantization of
deep convolutional networks,” Proc. of the 33rd Int. Conf. on Machine Learning,
vol. 38, June 2016.

[58] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos, “Stripes:
bit-serial deep neural network computing,” 49th Annu. IEEE/ACM Int. Symp. on
Microarchitecture (MICRO), October 2016.

[59] S. Mittal, “A survey of techniques for approximate computing,” ACM Computing
Surveys, vol. 48, March 2016.

[60] S. Wu, G. Li, F. Sheng, and L. Shi, “Training and inference with integers in deep
neural networks,” 6th Int. Conf. on Learning Representations ICLR, February
2018.

[61] S. H. F. Langroudi, T. Pandit, and D. Kudithipudi, “Deep learning inference
on embedded devices: fixed-point vs posit,” 1st Workshop on Energy Efficient
Machine Learning and Cognitive Computing for Embedded Applications (EMC2),
March 2018.

[62] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson, and
D. Kudithipudi, “Performance-efficiency trade-off of low-precision numerical for-
mats in deep neural networks,” Proc. of the Conf. for Next Generation Arithmetic
(CoNGA), March 2019.

[63] H. F. Langroudi, Z. Carmichael, and D. Kudithipudi, “Deep learning training on
the edge with low-precision posits,” July 2019.

[64] J. Lu, C. Fang, M. Xu, J. Lin, and Z. Wang, “Evaluations on deep neural networks
training using posit number system,” IEEE Transactions on Computers, vol. 70,
April 2020.

[65] S. Anwar, K. Hwang, and W. Sung, “Fixed point optimization of deep convo-
lutional neural networks for object recognition,” IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), April 2015.

[66] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-
tala, “Pytorch: An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32 (H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035,
Curran Associates, Inc., 2019.

115

https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus

[67] K. He, X. Zhang, and S. R. J. Sun, “Deep residual learning for image recognition,”
December 2015.

[68] A. Chen and G. Smith, “Utee: PyTorch Fixed Point Quantization,” Available:
https://github.com/aaron-xichen/pytorch-playground/tree/master/utee.

[69] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach
to numerical computing,” SIAM Review, vol. 59, no. 1, pp. 65–98, 2017.

[70] I. Yonemoto, “Sigmoid Numbers for Julia,” 2016. Available: https://github.
com/interplanetary-robot/SigmoidNumbers.

[71] S. G. Johnson, “PyCall: Calling Python functions from the Julia language,” Avail-
able: https://github.com/JuliaPy/PyCall.jl.

[72] IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and
Verification Language, IEEE 1800-2017. February 2017.

116

https://github.com/aaron-xichen/pytorch-playground/tree/master/utee
https://github.com/interplanetary-robot/SigmoidNumbers
https://github.com/interplanetary-robot/SigmoidNumbers
https://github.com/JuliaPy/PyCall.jl

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Thesis Goals
	Approach
	Thesis Contributions
	Outline

	Number Systems & Arithmetic
	Number Systems
	Fixed Point
	IEEE 754 Floating Point
	Posits
	Rounding
	Number System Comparison

	Arithmetic Operations & Hardware
	Integer Computation
	Rounding
	Floating Point
	Posits
	Hardware Comparison

	Related Works: Posit Hardware

	Deep Neural Networks
	Deep Neural Networks
	Two Network Architectures
	Network Components

	Inference Computation
	Compute Architectures
	Systolic Arrays
	Energy: Memory vs. Compute
	Quantization

	Related Works: Posit in DNNs
	Methodology: Hybrid Hardware

	Inference Accuracy Analysis
	Network: VGG16
	Weight & Bias Quantization
	Activation Quantization

	Verification Dataset
	Results

	Hardware Designs
	Posit Systolic Array Design
	Data Flow
	Edge & Distributed Conversion

	Posit Processing Element Design
	Processing Element Design
	Open-Source Posit Hardware
	Encode Fixed Point Numbers to PIF
	Quire to Fixed Point
	Shorter Quire
	Pipelining

	Verification
	Generating Verification Data

	Results: Synthesis & Timing Analysis
	Using Different Decoders
	Quire Conversion
	Processing Elements
	Systolic Arrays

	Conclusions
	Future Work

