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Interference Mitigation for Automotive FMCW
Radar Based on Contrastive Learning
With Dilated Convolution

Jianping Wang ™, Member, IEEE, Runlong Li™~, Xinqgi Zhang ~, and Yuan He™, Senior Member, IEEE

Abstract— As one of the crucial sensors for environment sens-
ing, frequency modulated continuous wave (FMCW) radars are
widely used in modern vehicles for driving assistance/autonomous
driving. However, the limited frequency bandwidth and the
increasing number of equipped radar sensors would inevitably
cause mutual interference, degrading target detection and pro-
ducing safety hazards. In this paper, a deep learning-based
interference mitigation (IM) approach is proposed for FMCW
radars by using the dilated convolution for network construction
and a designated contrast learning strategy for training. The
dilated convolution enlarges the receptive field of the neural net-
work, and the designated contrastive learning strategy enforces
to distinguish better between interferences and desired signals.
The results of numerical simulation and experimental data
processing show that the dilated convolution-based IM network,
compared to the traditional convolution-based ones, can achieve a
higher Signal-to-Interference-plus-Noise-Ratio (SINR) and target
detection rate. Moreover, the designated contrastive learning
strategy enables a better and more stable IM performance
without increasing the complexity of the network, which can
facilitate faster signal processing.

Index Terms— Automotive radar, interference mitigation, deep
learning, dilated convolution, contrastive learning.

I. INTRODUCTION

ODERN vehicles are equipped with a variety of sensors
to perceive the surroundings for driver assistant system
(ADAS)/full self-driving [1], [2]. Due to the advantages of low
cost, long detection range, and adaptability to most weather
and light conditions, frequency modulated continuous wave
(FMCW) radar is an indispensable sensor for target’s range or
speed measurement, guard rail detection, etc [3], [4]. However,
with the increasing number of radar sensors mounted on
vehicles and other wireless devices, the probability of mutual
interference has significantly increased [5].
FMCW radar works by transmitting a simple continuous
wave modulated in frequency periodically. The interference
from the aggressor radar with a different sweep slope from
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that of the victim radar may result in increased noise floor,
overwhelming weaker targets and degrading the detection
probability. On the other hand, the interference with the same
sweep slope as the victim radar may cause a ghost target.
Hence, mutual interference of FMCW radars has become a
severe problem, and suppressing the interferences is crucial
to guarantee accurate target detection of the FMCW radar
systems. Due to the very low probability of interference with
the same sweep slope, we will focus on, without loss of
generality, the problem of suppressing the interference with
a different sweep slope in this paper.

The interference mitigation (IM) approaches for FMCW
radars can be classified into three categories: radar system
coordination [6], radar waveform/system design [7], and signal
processing methods [8], [9], [10], [11], [12], [13], [14], [15].
Considering the signal processing methods can be easily
fit into the existing radar system, and the deep learning
(DL)-based approaches have made great progress in signal
processing problems, the DL-based interference mitigation
methods for FMCW radars are investigated. In [9], the received
beat signals after dechirping are used as the input of a
recurrent neural network (RNN) with attention layers, which
outputs the interference-suppressed signal samples. In the
other DL-based approaches, the two-dimensional (2D) fre-
quency spectrum [10], time-frequency (¢-f) diagram [11],
or the range-Doppler (RD) map [12], [13], [14], [15] of the
beat signal contaminated by interferences is fed into a con-
volutional neural network (CNN). Then, the CNN can extract
different features of the targets’ beat signals and interferences,
separating the desired beat signals from interferences for fur-
ther processing. Due to the significantly different distributions
of the targets’ beat signals and the interferences in the 7-f
domain than that in the time domain or frequency domain, [11]
has demonstrated the superior performance of interference
mitigation in the #- f domain compared to approaches imple-
mented in other domains. So, in this paper, the interfer-
ence mitigation operation in the #-f domain would be
adopted.

Although the aforementioned DL-based IM approaches for
FMCW radars have shown a good performance, most of them
chose to use a complex network architecture with many param-
eters (e.g., more than 1.2 million trainable parameters in [16])
to improve the representation capability of the network, which
requires large memory to store the trained parameters and
takes much computational time for inference. Thus, the real-
time performance of the existing DL-based IM approaches
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is still problematic, making it difficult to be implemented in
resource-limited automotive radar systems. This motivates us
to propose a new IM method to improve network performance
without increasing the number of network parameters and
computational complexity.

In the 7- f domain, the received beat signal may exhibit a
long duration time or a wide bandwidth range, which requires
an IM network with a large receptive field to extract stable
local features and process it. In [11], the fully convolutional
network (FCN) constructed by the convolutional layers and
activation layers was proposed and has shown a good IM
performance. However, the receptive field of the FCN was
limited by the depth of the network. To achieve a larger
receptive field, the pooling layer is generally used in clas-
sical CNN-based network architectures (e.g., VGGNet [17]).
In those networks, the operation of taking the maximum
value or the average value of the selected area was used
for pooling, which could degrade the accuracy of recovered
signals (i.e., the signal distortion). The signal distortion would
affect target detection or direction of arrival (DOA) estimation
in the following processing. On the other hand, the convolution
operation can be modified as the deformable convolution [18]
to be more flexible or the dilated convolution [19] to achieve
a larger receptive field. The dilated convolution was proposed
by inserting the zeros between the consecutive coefficients of a
convolution kernel, and thus enlarging its receptive field with-
out increasing the number of parameters. If the dilated rates
are chosen properly layer by layer, the dilated convolution
neural network can extract features by covering continuous
receptive field but avoid the signal distortion caused by the
pooling operation. Thus, the dilated convolution is a better
choice to build the interference mitigation network with a
large receptive field than the traditional convolution followed
by pooling layers.

Moreover, most existing DL-based IM approaches utilized
clean radar signals as labels to realize supervised learning,
and only the differences between clean signals and the corre-
sponding recovered signals are evaluated with the mean square
error (MSE) as a metric. However, interferences of FMCW
radars have certain characteristics [11] and can be synthesized
based on an analytical interference signal model. The prior
feature (i.e., the generated interference signal) has not yet been
exploited for training in the existing approaches.

Different from the supervised learning, contrastive learning
(CL) provides an alternative to utilize the prior feature of
interferences. In CL, the input samples consist of an input
sample, “positive” sample, and “negative” sample. The “pos-
itive” sample means a sample with similar characteristics to
the input sample, which usually belongs to the same category.
The “negative” sample is a sample of a different category than
the input sample. Then, the CL compared those in a feature
space. Trained with the contrastive loss, the optimizer target
to pull together the input sample and the “positive” sample,
and pull apart the input sample from the “negative” sample
in the feature space. Thus, the neural network can extract the
feature of data without labeling.

The traditional CL-based applications focus on classifica-
tion, where the “positive” sample is the input sample after
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data enhancement (e.g., rotation), and the “negative” samples
are samples other than the input sample in a batch. Another
network specifically designed for the downstream task is used
to output the results. In recent years, contrastive learning
has been extended to address regression problems, where the
loss function is composed of the supervised loss and the
contrastive regularization [20], [21]. For image dehazing [20],
the hazy image and the corresponding clear image are used as
the “negative” sample and the “positive” image, respectively,
for contrast learning. Through the contrastive regularization,
it achieves a better performance than that trained with a
single supervised loss. However, the hazy images used as
the “negative” samples contain the information of the desired
image, which would cause the network to learn and abandon
certain features of desired images and deteriorate the quality
of recovered image. Moreover, the supervised loss includes
the penalty of the difference between the output and the label,
which makes the contrastive regularization partly redundant.
Meanwhile, it is hard to choose a suitable hyper-parameter to
make a trade-off between the two terms.

In this paper, we presented a DL-based interference miti-
gation approach for FMCW radars in the ¢- f domain. Unlike
existing works that use a more complex network to improve
the representation ability, in this paper, our contributions to
improve IM performance without increasing the complexity
of the network are two-fold: (1) the dilated convolution with
a proper dilated rate is selected to build the network to realize
a larger receptive field, with which the IM network is then
trained by the contrastive learning; (2) a new contrastive
loss function is proposed for removing the additional feature
extraction network and hyper-parameter, which can achieve a
better and more stable performance than that in [20]. Thanks
to the introduced prior feature of interferences through con-
trastive learning, the target’s beat signal can be better separated
from the interferences and noise.

The remainder of this paper is organized as follows.
Section II briefly presents the signal model of interfered
FMCW radars and the signal processing flow of our proposed
IM approach. Section III elaborates the built IM network
based on the dilated convolution and the proposed optimal
setting of the dilated rate in each convolutional layer in
the network, along with the contrastive loss function and
contrastive strategy. In Sections IV, the numerical simulation
setting for data synthesis is described, and the experimental
results of the proposed method on the simulated data are
presented. Section V shows the comparison results of the
proposed method with state-of-the-art IM approaches, and the
superiority of the proposed method was further demonstrated
through a qualitative IM result in the complex traffic scenario.
After that, the generalization performance of the proposed
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Fig. 2. Signal processing flow of our proposed approach for automotive radar interference mitigation (IM).

approach is demonstrated through the measured data in Sec-
tions VI. Finally, conclusions are drawn in Section VII.

II. RADAR SIGNAL MODEL

The block diagram of an interfered FMCW radar system
is shown in Fig. 1. FMCW radar works by transmitting
continuous waves, whose operating frequency increases or
decreases linearly in a period during the measurement. The
transmitted signal impinges upon targets and then scattered
signals are reflected back to the receiver. At the same time,
transmitted signals from surrounding aggression radars may
also be received at the receiver of the victim radar.

After dechirping and low-pass filtering, the acquired beat
signal affected by interferences can be expressed as [22]:

N
1
y(t) = Z(fk exp |:j27'r (—fcrk — Kt + EKTkZ)i|

k=1

M
+ Fip [ P50 D fu@) | +0(0) )

m=1

where j = +/—1 is the unit of imaginary number. N (or
M) is the number of targets (or interferences). §; means the
amplitude of the received beat signal of k" target. 7 is used as
a variable to represent fast time and 0 < ¢ < Ty with sweep
duration Tyy,. f. is the center frequency, K is the chirp rate of
the FMCW waveform p(¢) of the victim radar, and 7% is the
time delay of the scattered signal from the k™ target relative
to the transmitted one. p*(¢) is the complex conjugate of p(t)
and used for dechirping, f,(z) denotes the m™ interference
and J,, is the low-pass filtering (LPF) operator. n(¢) represents
thermal noise and measurement errors.

To suppress the interferences and noise in the received beat
signal, the signal processing flow of our proposed IM method
is shown as Fig. 2. After dechirping and low-pass filtering,
the Short-time Fourier Transform (STFT) algorithm is used
to transfer the received beat signal in each single chirp into
a corresponding ¢-f diagram. The obtained ¢-f diagram of
the interfered beat signal is fed into the IM network. After
being processed, the Inverse Short-time Fourier Transform
(ISTFT) can be applied to the recovered spectrogram, and the
interference-suppressed beat signal in each chirp is obtained.
Then, the 2D Range-Doppler processing can be done with
the recovered signal in a frame, obtaining the interference-
suppressed RD map for target parameter estimation.

III. METHODOLOGY

In this section, the dilated convolution is reviewed and used
to build the interference mitigation network with a larger
receptive field, and the selection of the dilated rate in each
convolutional layer in the proposed network is discussed in

IM Network Recovered signal —» [ _ o
t-f diagram in a chirp 2
é2e
i~
ER%
P
£
5
=
o it
r-1
_Zk k+H(k-1)*(r-1)
— = <=
r-1
@ > (b) t—

Fig. 3. Comparison of the traditional convolution operation with the dilated
convolution: (a) traditional convolution (i.e., dilated convolution (r=1)),
(b) dilated convolution whose dilated rate is . The red area marks the
receptive field of one pixel in the convolutional layer.

Section III-A. After that, the contrastive loss function and con-
trastive strategy are demonstrated in Section III-B, followed by
a detailed description of the training procedure.

A. Dilated Convolution

In traditional convolutional neural networks, convolutional
kernels can only extract the features of the spectrum elements
adjacent to the center of the kernel, i.e., within the receptive
field of the kernel size (see Fig. 3 (a)). Although it is possible
to enlarge the receptive field by increasing the depth of the
convolutional layers, each additional layer can only increase
the receptive field by k& — 1 (if the kernel size is k x k).
So, increasing the receptive field of the network based on the
traditional convolutional kernel is inefficient.

In the classical architectures of CNNs (e.g., ResNet [23]),
the pooling layer or a stride greater than 1 in the convolutional
layer is used to reduce the size of feature maps and enlarge
the receptive field. However, the signal may be distorted due
to pooling by taking the average or the maximum value in
the selected area. A possible better solution is to utilize the
dilated convolution [19], where a dilation rate of r is set.
Different from the traditional convolution, r — 1 zeros are
inserted between the consecutive coefficients of a convolution
kernel, as shown in Fig. 3 (b). Through this modification,
the convolutional kernel can extract features of the spectrum
elements over a greater field of view, and the receptive field
of a convolutional layer with a kernel of size k x k can be
increased from k x k to [(k — D(r — 1) + k]?>. Moreover,
if the dilated rates are set to a group of proper values, all the
spectrum elements can be processed (i.e., perceived) without
signal loss. Hence, useful local and global features would
be extracted by the kernel, resulting in better interference
mitigation performances of the network. It should be noted that
the inserted zeros are only used to explain the increasement of
the receptive field of the dilated convolution kernel, but do not
change the number of its effective kernel coefficients and do
not need extra computation. Therefore, the dilated convolution
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Fig. 4. Discussion about the setting of the dilated rate in each convolutional layer in the Dilated Convolution Block: (a) is the previous layer. (b)(c)(d) is the
current layer using the dilated convolution with a different dilated rate: (b) r < k, (¢c) r = k, (d) r > k. The red area marks the receptive field of one pixel in
the previous layer, and the total area of blue and red marks the receptive field of one pixel in the current layer.

does not introduce additional complexity in terms of both
training parameters and computational load.

The setting of the dilated rate (i.e., ) in each convolutional
layer would determine the receptive field of the network. The
purpose of choosing an appropriate value of dilated rate is to
enlarge the receptive field as much as possible and keep all
the elements in the matrix processed. If the dilation rates in all
the convolutional layers are set to a fixed value greater than 2,
there would be a gridding effect [24], and a large portion of
information would be lost. In theory, a) only when the greatest
common divisor of the dilated rates is no more than 1, all the
elements in the matrices can be processed without information
loss. Since the convolution operation satisfies the commutative
law, b) the case where the dilated rate increases layer by
layer was considered for discussion. Based on the condition
a) and the assumption b), a Dilated Convolution Block can be
constructed following the two guidelines below.

1) The dilated rate in the first convolutional layer of the
Dilated Convolution Block has to be set to one;

2) From the second layer and on, if the receptive field of
a previous layer is m x m, then the current layer takes
a dilated rate r < m, which leads to a receptive field
m + 2r for each sample (pixel) in the output of the
current layer. However, if a dilated rate r > m is taken
in the current layer, there would be a gap (i.e., white
cells in Fig. 4 (d)).

According to the previous experiments in [11], the FCN
with 11-layer convolution showed the best performance in
FMCW radar interference mitigation. Thus, based on the
FCN, the DFCN(rq,r,73) was constructed by including the
dilated convolution, where r; represents the dilated rate in
i™ convolutional layer of the Dilated Convolution Block. The
network architecture is shown in Fig. 5, where Conv(k, k, n, r)
represents the convolution layer with a kernel size of k x k and
a dilated rate of r, and the number of filters is n. The kernel
size of 3 x 3 (i.e., k = 3) is used in this paper. As described
before, we suggest that the dilated rate of each convolutional
layer in the Dilated Convolution Block is set to 1, 3, and 9,
which can guarantee no “hole” and achieve a larger receptive
field compared to the setting of 1, 2, and 5 [25], [26], [27],
[28], [29] (the common choices in dilated convolution-based
networks). In the following experimental part, due to the used
dilated rates (r;) are all single digits, the DFCN(ry, r2, r3) will
be denoted as DFCN(rr>r3) for simplicity.

-~ conv33.321),ReLU | rE3
vy
[ conv(3332.1).ReLU | rE:s
v
—— Conv(3,3,32,1), ReLU RF:7
p 5 L ( ) J
| Convolution | M
< | conv(3332,1), ReLU | rE9
1 Block 1 v
_____ | conv(3332.1).RelU | rr:11
v
| Conv(3,3,32,1), ReLU | RE:13
v
[ conv(3332.1),ReLU | rF:15
v
Conv(3,3,32,1), ReLU RF:15+25
Dilated \4
Convolution Conv(3.3,32.13), ReLU RF:1542(7; +15)
Block \
Conv(3,33213), ReLU RF:1542(7; + 13 +15)
1 _O_t _t R Y
utpu
Conv(3.3.2,1), ReLU RE:1742(7; + 1, +1,
| Block ng [ ( ) ] itntn)
| v
Fig. 5. He network architecture of the proposed dilated convolution based

fully convolutional network (DFCN(ryrpr3)).

B. Contrastive Learning

1) Contrastive Loss Function: in [20], the dehazing net-
work (similar to the IM network) was first used to output
the recovered image. Then, an additional feature extraction
network was implemented to extract the feature of the output
image (i.e., recovered image), the “positive” image (i.e., clean
image), and the “negative” image (i.e., hazy image), which
would be compared in the representation space. The loss
function is composed of a supervised loss function and a
contrastive regularization. The supervised loss function is used
to calculate the difference of the output and the label while
the contrastive regularization can restrain the distance of the
three feature vectors. The complete loss function is expressed
as follows:

LA= Y —Ypl%+ - D(G(Yp), G(¢(Y))) @)
D(G(YN), G(¢(Y)))

CEINNT

where Yp, YN, and Y denote the “positive”, “negative”, input
samples, respectively. ¢ (Y) denotes the output of the dehazing
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network, G(x) is the feature extraction network, and D(a, b)
calculate the euclidean distance between the feature vector
a and b. Thus, the neural network G would determine the
features of samples for comparison and affect the stability
of the performance during training. Moreover, the hyper-
parameter A of the regularization term is also hard to choose.

Due to these shortcomings, we reconsidered how the con-
trastive loss function should be constructed. Firstly, the feature
extraction network was used for high-level feature extraction
of natural images and following comparison. However, the
t- f diagram of radar signals is relatively simple to understand
than the natural images, which follows that the ¢- f diagrams
of beat signals can be directly compared without the feature
extraction network. Secondly, since the recovered signal and
the label have been compared using the euclidean distance
in the contrastive regularization, the supervised loss function
and the hyper-parameter were not needed. Thus, we proposed
a new and more simple contrastive loss function:

_ D{¥p, ¢(Y))
D(YN, ¢(Y))

Instead of using an additional network for feature extraction,
the output of the IM network is directly compared with
the “positive” sample and the “negative” sample. Meanwhile,
the supervised loss function can be removed and the hyper-
parameter is not needed, which enables a more stable training
performance.

Compared with only using MSE as the loss function in the
existing DL-based IM approaches, the proposed contrastive
loss can not only calculate the distance between the “positive”
sample (i.e., the label) Yp and ¢(Y), but also the distance
between the “negative” sample Yn and ¢ (Y) (see Fig. 6). The
closer between the recovered spectrogram and the “positive”
sample and the larger between the recovered spectrogram and
the “negative” sample, the smaller the loss function would be.
Due to the additional comparison with the “negative” sample,
the extracted features of input samples can be further away
from the interferences. The residual interference can be further
removed, and the network can achieve a better IM performance
than that trained with only MSE.

2) Contrastive Strategy: in [30], the authors have
researched the key components of the success of the con-
strastive learning. One of them is to construct the “positive”

LB 3)

sample and the “negative” sample to be compared. For the
IM task, the clean reference signal is the desired signal and
utilized as the “positive” sample. Considering the interfered
signal includes the desired beat signal, the recovered signal
may be away from the target’s beat signal if we push away
the recovered signal from the interfered signal. In particular,
in the high Signal-to-Interference-plus-Noise-Ratio (SINR)
cases, there are weak interference and noise in the interfered
signal, and then pushing the recovered signal away from the
interfered signal is not crucial. To avoid this, we only use the
generated interferences and noise as the “negative” sample.
By comparing the recovered signal with various interferences,
the network can pay attention to the residual interference
components in the recovered signal and remove them. In the
following experiments, the DFCN(r| r; r3)-CL(LA/interfered)
means the DFCN trained with CL using the LA loss and the
interfered signal as the ‘“negative” sample. DFCN(rq r; r3)-
CL(LB/interfered) means the DFCN trained with CL using
the LB loss and the interfered signal as the “negative” sample.
DFCN(r; rp r3)-CL(LB/interference) means the DFCN trained
with CL using the LB loss and the interference and noise as
the “negative” sample.

C. Training Procedure

For the network training, the ¢- f diagrams of received radar
signals are preprocessed (i.e., data split and normalization)
as described in [11]. The Adam optimizer was adopted for
training with a fixed learning rate of 0.001 and 12 input
samples per batch. The training procedure was ended after
100 epochs when good convergence was observed. Moreover,
the code was implemented using Keras and TensorFlow tools,
and all the models were trained on a single NVIDIA GeForce
RTX 3090 graphics processing unit (GPU). Each network was
trained five times and the results were averaged to reduce the
variance.

IV. SIMULATION RESULTS

In this section, the setups of numerical simulations for data
synthesis are first introduced, and then the evaluation metrics
are given. After that, the FCN was used for IM in the - f
domain to show its effectiveness. Then, the DFCNs were
implemented to demonstrate the better performance caused by
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TABLE I
PARAMETERS OF THE VICTIM RADAR

Parameter Value Parameter Value
Center frequency 76.5 GHz Moving speed Om/s
Duration of a sweep Tsw 25 s Window type Hamming
Bandwidth 0.4 GHz Window length 256
Chirp rate K 16 MHz/pus  Overlap length 255
Sampling frequency 40 MHz FFT points 256
Maximum detection distance ~ 168.75m
TABLE II
PARAMETERS OF THE TARGETS AND INTERFERENCES
Parameter Val Parameter of Val
of Targets alue Interferences alue
Number u{0,20} Number u{1,20}
Distance U(8,168.75)m  Amplitude? U(0,3)
Amplitude>  2(0, 3) Center frequency  76.5 GHz
Phase U(0,2m) Chirp rate U(—2K,2K)
Velocity U(0,30) m/s Duration U0, Tow)
Delay time u ( 75’“’ , %)

1 2 means the uniform distribution.
2 Note that the amplitude is a relative value instead of a true value.

t-f diagram of interfered t-f diagram of clean signal

0 20 0
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20 20
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-40 -40
60 = 60
2 .10
-80 -80
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-100 -100
15 20
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i1 10 15 20
Time [ps]

5 10
Time [ps]

(a) (b)
Fig. 7. t-f diagrams of (a) a simulated beat signal contaminated by
interferences and (b) its label.

dilated convolution and the superiority of the proposed optimal
setting of dilated rates. Finally, the contrastive learning was
used for training, verifying the advantages of the proposed
contrastive loss function and contrastive strategy.

A. Simulated Datasets

Due to the difficulties of collecting labeled experimental
data with radars, we use the simulated radar signals for
training, and both the simulated and measured radar signals
for testing.

The similar approach as in [11] is used for data synthesis
for automotive radars. To simulate the automotive FMCW
radar (i.e., millimeter wave radar), the parameter setting of a
victim radar is illustrated in Table I. Meanwhile, the detailed
intervals of the values of the parameters of targets and
interfering signals are illustrated in Table II, where K and
Tsy refer to the chirp rate and sweep duration of the victim
radar in Table I. After synthesizing the beat signal in the
time domain, the STFT was used to transform it into a #-f
diagram. The parameters of the STFT algorithm are listed in
Table I. In practice, a large dataset is generally hard to be
acquired for the deep-learning-based radar signal processing
methods. Considering this reality and, meanwhile, evaluating
the generalization capability of the related DL-based methods,

a small set is used for training while a relatively large dataset
is used for test. Specifically, 540 and 180-chirp radar signals
(with a ratio of 3:1) are generated as training and validation
data sets, respectively. For adequate quantitative evaluation,
a relatively large number of signal samples (1440 chirps) are
generated for quantitative testing. As an example, the 7-f
diagrams of a simulated interfered radar signal and its clean
counterpart are shown in Fig. 7.

B. Evalution Metrics

The interference mitigation operation is one of the steps in
the radar signal processing flow. The quality of the recovered
signal after IM is critical for performance evaluation of the
IM approach and further processing including target detection,
DOA estimation, etc. Hence, the SINR and the correlation
coefficient p of the recovered signal relative to its clean
reference are used to evaluate its accuracy, and their definition
can be seen in [11]. The SINR can show how much residual
interference exists in the recovered signal and the signal
distortion. Meanwhile, the correlation coefficient can measure
the similarity of the recovered signal with its clean reference.

Besides, the target detection performance and the parameter
estimation accuracy of the recovered signals were evaluated
after further signal processing operations. Without loss of gen-
erality, the recovered signals after IM were further processed
with the Fast Fourier Transform (FFT) to obtain the range
profiles of targets. Note that the signal samples were padded
with seven times more zeros before the aforementioned FFT
operation, which would result in smooth range profiles and
facilitate the estimation of targets’ distances later. Then, the
cell-averaging constant false alarm rate (CA-CFAR) detector
was used to detect the targets on the range profiles. Specif-
ically, the numbers of training cells and guarding cells were
set to 150 and 14, respectively. The false alarm rate was fixed
to 1 x 10™%. After that, the distances of detected targets were
estimated by extracting the positions of the related peaks in
the range profiles.

For quantitative evaluation, the detection rate and the range
estimation error are used as metrics to indicate the target
detection performance and the accuracy of the estimated
ranges of detected targets with the recovered signals after IM,
respectively. The range estimation error (REE) is defined as:

N
1 ~
— _ _ 2
REE = Nk_EI|Rk Ry | 4)

where N is the number of targets. Ry denotes the range of the
k™ target, and Ry is its estimated counterpart.

C. Effects of Dilated Convolution

Here, the effectiveness of the dilated convolution and the
performance improvement introduced by the proposed optimal
setting of dilated rates are demonstrated.

Firstly, we used the normal FCN without dilated convo-
lution to process the interference-contaminated beat signals.
The performance results are shown in Fig. 8. The proposed
FCN can suppress the interference components and noise in
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Fig. 8. Interference mitigation performance of the proposed FCN using the
normal convolution: (a) the SINR of recovered signals, (b) the target detection
rate after IM.

the ¢-f diagram of received beat signals. It is obvious that
the recovered signals after IM show a higher SINR than
that without IM, and the target detection rate improves. The
average SINR of the interfered signal is -9.5056 dB. After IM,
it improves to 7.1266 dB. As the SINR of the interfered beat
signals is between -40 dB and -20dB, the target detection rate
of the beat signals without IM is zero. After using the FCN
for IM, more targets can be detected, and the average target
detection rate increases to 37.69% in the low SINR cases.
Then, the dilated convolution was implemented to build the
IM network (i.e., DFCN). We set the dilated rate of each
convolution layer in the Dilated Convolution Block according
to three different strategies: (a) 1, 2, and 5, (b) 1, 2, and 7,
and (c¢) 1, 3, and 9. Specifically, (a) is the commonly used
in dilated convolution-based network architectures, and (b)
is the improved version based on (a) through our analysis.
(c) is proposed in Section III-A and the optimal setting of
dilated rates. The performance comparison of the networks
built based on the three strategies are shown in Fig. 9 and
Table V. Both the evaluation results and the receptive field of
each network are listed. It is obvious that using the dilated
convolution can enlarge the receptive field and improve the
IM performance without increasing the number of parameters
of the network. Using the dilated convolution with the setting
of (a), compared to the FCN using the normal convolution, the
average SINR increases from 7.1266 dB to 7.6382 dB, and the
target detection rate can be improved from 74.36% to 78.86%.
Moreover, among the IM networks with the three settings
of dilated convolutions, the settings (b) and (c) can achieve a
larger receptive field than the setting (a). Both the achieved
SINR and the target detection rate improve with the increase
of the receptive field. Specifically, the IM network with the
dilated convolution of the setting (c) has the largest receptive
field (43) compared to the settings (a) and (b) (with receptive
fields of 33 and 37, respectively); thus, it achieves the best
SINR of the recovered signals (i.e., 7.8791 dB) and the detec-
tion rate of targets (i.e., 79.03%). By contrast, the IM networks
with the dilated convolutions of settings (a) and (b) result in
similar SINRs of recovered signals (7.6392 dB and 7.6429 dB)
and the detection rate of targets (78.86% and 78.29%) due to
their comparable receptive fields (33 and 37). The DFCNs
with a larger receptive field can remove more interferences
than the normal FCN, and the noise floor of the recovered
signal processed by the DFCNs decreases even more. A larger
difference of amplitude between targets’ beat signals and the
noise floor (i.e., a larger SINR of the recovered signal after IM)

achieves a significantly higher detection rate of the DFCNS.
Besides, the range estimation error of the IM networks is
compared. The signals recovered with the DFCNs and the
normal FCN lead to almost equally small range estimation
error (i.e., about 0.06m).

Thus, the dilated convolution is an effective method to
improve the IM performance of the neural networks by
increasing the receptive field. Although the dilated convolution
has been utilized in previous research, most of the networks
chose to use the setting of dilated rates (a) (i.e., 1, 2, and 5),
which is not optimal as revealed by our experiments. To the
best of our knowledge, it is the first time to implement the
dilated convolution in the FMCW radar interference mitigation
task, and verify the strategy of how to choose the dilated rate in
each convolutional layer, which can provide a good guideline
for further research of dilated convolution-based applications.

D. Effects of Contrastive Learning

In this part, the interference signal was added as the input of
the network, and we used the contrastive learning for training.
The performance of the network trained with contrastive
learning and the one trained with only MSE are compared.
Meanwhile, the contrastive loss function and strategy in [20]
were also implemented for comparison to verify the superiority
of the proposed contrastive loss and the contrastive strategy.

1) Contrastive Loss Function: firstly, the contrastive loss
proposed in [20] (i.e., LA) was used as the loss function.
In [20], the feature extraction network was utilized to extract
the high-level feature of the output sample of the IM network,
the “positive” sample and the “negative” sample. Then, they
were compared in a specific feature space using the Euclidean
distance. As a result, the feature extraction network would
determine the features for comparison. If an improper network
was used, the feature comparison operation would be invalid,
resulting in no improvement or worse performance. Besides,
the additional feature extraction network was trained together
with the interference mitigation network, which would affect
the convergence and performance of the IM network. More-
over, the LA was composed of the MSE and a contrastive
regularization. A hyper-parameter was used to adjust the ratio
between them. The hyper-parameter was hard to choose for
training, and this causes more difficulties during the network’s
training.

To verify the performance of the LA loss, in our experiment,
several classical CNN-based networks including the VGGNet
[17] and ResNet [23], and the lightweight networks including
the EffectiveNet [31] and MobileNet [32] were used as the
feature extraction network because of their good performance
in past tasks. The hyper-parameter was selected from {0.1,
1, 2, 5, 10}. The interfered signal was used as the “negative”
sample, and the clean reference signal as the “positive” sample.
The input sample was compared with only a “positive” sample
and a “negative” sample.

The performance of the networks trained using contrastive
learning with LA is shown in Tables III and IV. When the
hyper-parameter A = 1, the results in Table III show that
the recovered signal with a higher SINR is obtained by using
the ResNet or MobileNet as the feature extraction network.
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RESULTS OF THE FCNS TRAINED WITH LA USING DIFFERENT FEATURE EXTRACTION NETWORKS

Feature

Method Hyper-parameter Extraction Network SINR (dB) | ol /p [rad] detection rate REE[m]
- 7.1266 0.7244 0.2319 0.7436 0.0601
VGGNet 6.6080 0.7128 0.2278 0.7263 0.0607
FCN-CL(LA/interfered) 1 ResNet 7.1831 0.7251 0.1907 0.7509 0.0599
EfficientNet 5.6249 0.6954 0.2598 0.7066 0.0592
MobileNet 7.2554 0.7266 0.2217 0.7523 0.0611
TABLE IV
RESULTS OF THE FCNS TRAINED WITH LA USING DIFFERENT HYPER-PARAMETERS
Method Feature Hyper-parameter SINR (dB) | p|  Zp[rad] detection rate REE[m]
etho Extraction Network yper-p P P etectio
0.1 7.1185 0.7230 0.2386 0.7447 0.0585
1 7.2554 0.7266 0.2217 0.7523 0.0611
FCN-CL(LA/interfered) MobileNet 2 6.9487 0.7146 0.2269 0.7288 0.0589
5 6.9785 0.7243 0.2343 0.7439 0.0614
10 7.0064 0.7207 0.2473 0.7230 0.0602
TABLE V
RESULTS OF THE ABLATION EXPERIMENTS
Dimensions of .
Method receptive field SINR (dB) | p| Zp [rad] detection rate = REE[m]

FCN 23 7.1266 0.7244 0.2319 0.7436 0.0601
FCN-CL(LA/interfered) 23 7.2554 0.7266 0.2217 0.7523 0.0611
FCN-CL(LB/interfered) 23 7.2476 0.7264 0.2395 0.7519 0.0612

FCN-CL(LB/interference) 23 7.3184 0.7279 0.2329 0.7528 0.0627
DFCN(125) 33 7.6382 0.7559 0.2178 0.7886 0.0614
DFCN(125)-CL(LA/interfered) 33 7.8810 0.7590 0.2248 0.7939 0.0620
DFCN(125)-CL(LB/interfered) 33 7.8839 0.7521 0.2358 0.7863 0.0619
DFCN(125)-CL(LB/interference) 33 7.8856 0.7615 0.2246 0.7977 0.0619
DFCN(127) 37 7.6429 0.7526 0.2240 0.7829 0.0612
DFCN(127)-CL(LA/interfered) 37 7.8223 0.7533 0.2246 0.7847 0.0617
DFCN(127)-CL(LB/interfered) 37 8.1077 0.7630 0.2266 0.7988 0.0594
DFCN(127)-CL(LB/interference) 37 8.0888 0.7619 0.2289 0.7992 0.0602
DFCN(139) 43 7.8791 0.7575 0.2276 0.7903 0.0615
DFCN(139)-CL(LA/interfered) 43 7.9063 0.7573 0.2275 0.7896 0.0619
DFCN(139)-CL(LB/interfered) 43 8.0009 0.7563 0.2320 0.7915 0.0610
DFCN(139)-CL(LB/interference) 43 8.1564 0.7619 0.2300 0.8008 0.0614

of X lead to a big difference in network performance. When
the hyper-parameter A = 1, the trained network gets the best
performance. So, in the following experiments, the MobileNet
would be used as the feature extraction network and the

Among them, the MobileNet achieves the highest SINR of
7.2554dB and target detection rate of 75.23%. Similarly,
in Table IV, the IM results of the networks trained using
LA with X\ of different values are presented. Different values
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recovered signals, (b) target detection rate after IM, (c) range estimation error after IM.

hyper-parameter A = 1 is used for performance comparison
with our proposed approach (LB loss function).

Further, the results of the networks trained with LA under
different settings of dilated rates are illustrated in Table V.
In the cases of different settings of dilated rates, all the net-
works trained using contrastive learning with the MobileNet as
the feature extraction network can get the SINR improvement,
which shows the effectiveness of the contrastive learning in the
interference mitigation problem.

Finally, we used our proposed contrastive loss (i.e., LB) for
training. As described in Section III-B, the feature extraction
network and the hyper-parameter are not needed. For compar-
ison, the interfered signal was firstly used to be the “negative”
sample. The performance comparison between the proposed
contrastive loss function (i.e, LB) and LA can be seen in
Table V. In general, the network trained with LB can achieve
a better IM performance (both the achieved SINR and target
detection rate) than the one trained with LA, which is the best
result obtained through parameter search. This is because that
the more accurate the recovered signal, the higher its SINR,
and thus the higher the detection rate of targets. Meanwhile,
the networks trained using the contrastive learning (LA/LB
loss) show a similar range estimation error as the networks
trained using the MSE. Since there is no hyper-parameter
to adjust and no feature extraction network to select, the
proposed loss function can achieve a more stable experimental
performance. Besides, the feature extraction network in LA
would inevitably increase the computational complexity (i.e.,
the training time). Using LA as the loss function, it takes
1.75 hours to train the network for 100 epochs. However, only
1.46 hours are needed without the feature extraction network.
Thus, it is a better solution to use our proposed contrastive
loss function for training.

2) Negative Sample Selection: in [20], the authors chose to
use the hazy image as the “negative” sample, which includes
the desired pixels. In our experiments, the SINR of the
interfered signal ranges from -40dB to 20dB in the dataset.
In the high SINR scenarios (e.g., the SINR >= 10dB), there is
much weaker interference and noise in the interfered signal.
If we push the recovered signal away from the “negative”
sample, it may lead to a wrong convergence direction.

Instead, we use only the interference and noise as the “neg-
ative” sample to avoid the problem. Then, the performance
comparison is demonstrated in Table V. The network trained
using the interference signal as the “negative” sample can

TABLE VI

COMPARISON OF THE SELECTED DL-BASED IM APPROACHES

Method  Parameters M(;I/E;); y GFLOps Averzz%;)s INR
CNN 10194 0.22 1.283 29118
ResNet 1229442 14.6 154.920 3.7352
U-net 540154 6.41 2.076 6.4648
RV-FCN 84418 0.69 11.022 7.1266
CV-FCN 42370 0.37 11.022 6.8511
Ours 84418 0.69 11.022 8.1564

achieve a higher SINR and target detection rate than the one
using the interfered signal as the “negative” sample. As the
dilated rates were set to 1, 3, and 9, the SINR of the recovered
signals can be improved from 8.0009 dB to 8.1564 dB, and the
target detection rate increases to 80.08%, achieving the best
performance in all the trained networks.

In conclusion, we used the contrastive learning for training
in this part, which shows a better performance than the one
trained with only MSE. Moreover, a new contrastive loss
function and the choice of the “negative” sample are proposed
and studied. The results show it can realize the superior
performance and more stable training convergence.

To facilitate the comparison of the effect of the dilated
convolution and contrastive learning, the evaluation results of
the FCN, DFCN(139), and DFCN(139)-CL(LB/interference)
are presented together in Fig. 10. It clearly shows the improve-
ment of the IM networks with the dilated convolution and
contrastive learning in terms of both the SINR of recovered
signals and the target detection performance. Moreover, the
dilated convolution can be easily integrated into the existing
CNN-based networks, which means only the change of the
dilated rate in the convolutional layer is enough. Meanwhile,
the proposed contrastive learning does not need to modify the
network architecture and introduces no additional parameters.
The only expense is that the interference signal was needed
during the training of contrastive learning. Thus, the proposed
approach would become an easy-to-implement performance
improvement method for DL-based interference mitigation.

V. COMPARISON EXPERIMENTS

The performance comparison of DL-based IM approaches
and traditional signal processing methods in [11] shows that
the DL-based approaches can generally achieve much better
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Fig. 11. The interference mitigation performance comparison of the proposed IM approach with the selected DL-based interference mitigation approaches:
(a) the SINR of the recovered signals, (b) target detection rate after IM, (c) range estimation error after IM.
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FCN. (g)-(h) the results of IM using the DFCNs with different settings of dilated rates. (i) and (j) the result of IM (z- f diagram and signal waveform) using
DFCN(139)-CL(LB/interference). (k) displays the corresponding range profiles obtained after IM.

results. So, here we mainly focus on the comparison of approaches including the CNN [12], RV-FCN [11], CV-FCN
the proposed approach with the state-of-the-art DL-based IM  [11], ResNet [16], and U-Net [14]. All the networks were
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The target detection results on the RD maps of (a) the interfered signal, (b) the clean reference signal, (c) the recovered signals processed

by the FCN using the normal convolution, (d) the CNN-based approach, (e) the U-Net-based approach, (f) the CV-FCN-based approach, (g) the

DFCN(139)-CL(LB/interference), and (h) the ResNet-based approach.

trained using only 540-chirp signal samples. The CV-FCN
was trained using the prior-guided loss function [2] where the
hyper-parameter was set to 256. The CNN, RV-FCN, ResNet,
and U-Net were trained using MSE as the loss function.
The DFCN proposed in this paper was trained using the
contrastive loss function. Their performances are compared
and shown in Fig. 11. The number of total parameters (i.e.,
scalability), memory usage, Giga Floating-point Operations
(GFLOps) (i.e., computational complexity), and the achieved
average SINR of these methods are listed in Table VI.
Compared to the traditional CNN and ResNet-based IM
networks, the U-Net, RV-FCN, CV-FCN-based method, and
our proposed method have shown better IM performance.
The U-Net-based IM method is built based on the encoder-
decoder architecture, and has more than 540kilo parameters.
As pooling layers are used to reduce the size of feature
maps in the U-Net, its computational complexity is relatively
small. However, the pooling operation may lead to signal loss,
affecting the further DOA estimation, etc. Compared to the
U-Net, the RV-FCN uses fewer filters in each convolutional
layer; thus, it has fewer parameters. However, the RV-FCN
shows a higher textitaverage SINR than the U-Net, but the
SINR of the recovered signal processed by the RV-FCN is

lower than that of the U-Net in the low SINR scenarios.
Meanwhile, the CV-FCN is constructed based on the complex-
valued fully convolutional network. By using the prior-guided
loss function for training, the CV-FCN with only 42370 param-
eters shows the highest SINR and target detection rate in the
low SINR scenarios among all the networks. However, the
IM performance of the CV-FCN depends on a hyperparameter
whose optimal value is not easy to choose. By contrast, the
proposed IM network with the dilated convolution can realize a
larger receptive field and get better elimination of interference
components with the help of contrastive learning. As a result,
the proposed approach achieves the highest average SINR and
target detection rate. Regarding the range estimation error, the
ResNet-based IM approach achieves the best performance,
followed by our proposed method. The ResNet eliminates
interferences and noise by learning their features rather than
directly learning the features of the desired beat signals.
Although it does not remove interferences and noise very well
(i.e., lower SINR and target detection rate), the ResNet causes
less distortion to the desired beat signal, thus resulting in a
lower range estimation error of targets, especially in the high
SINR scenarios. In summary, the comparisons have shown
that our proposed IM approach achieves the best performance.
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obtained after IM. All the models were trained using only simulated data.

With much fewer parameters compared to the ResNet and
U-Net, the proposed network uses less memory and takes only
2-3ms to process the signal in a sweep with 1000 points.

As shown in Fig. 12, a complex highway scenario is consid-
ered to demonstrate the interference mitigation performance
of the proposed approach. The IM results of an interfered
beat signal of six point targets at the distance of [100, 70,
40, 20, 20, 20] m are illustrated. Due to strong interferences,
the weak targets are almost immersed in the raised noise
floor (see Fig. 12(a)-(c)). After being processed with the FCN
using the normal convolution, the interferences and noise are
significantly suppressed. However, some residual interference
components and noise are still observed (Fig. 12(d)-(f)).
By contrast, the proposed FCN with the dilated convolution
and contrastive learning strategy further mitigates the residual
interferences and noise (Fig. 12(g)-(j)); consequently the noise
floor of the range profiles decreases as well (Fig. 12(1)).

To further evaluate the effects of the proposed IM approach
on range Doppler processing, the beat signals in the 256 con-
secutive sweeps were generated for the scenario above with
six point targets at [100, 70, 40, 20, 20, 20] m. The targets’
Doppler velocities were set to [0, 0, 0, 3, 0, -10] m/s relative to
the primary radar, and three aggressor FMCW radars moved

away from the primary radar with Doppler velocities of 0 m/s,
3m/s and -10m/s, respectively. To evaluate the detection
performance and the accuracy of speed estimation on the RD
maps of the beat signals, the CA-CFAR detector and the peak
grouping algorithm were utilized for detection.

The detection results on the RD maps of the interfered
signal, the clean reference signal and the recovered signals
processed by the FCNs and other IM approaches are shown
in Fig. 13(a)-(h). The center of the white rectangle indicates
the point if the detector labels it as a target. Due to strong
interferences, only the target with a Doppler speed of 3 m/s is
detected in the RD map of interfered signal, and all the other
five targets are missing (Fig. 13(a)). Although most targets
can be detected in the RD map after IM with the FCN, the
target at the distance of 20m with a Doppler speed of O m/s
is still missing (Fig. 13(c)), which is caused by the residual
interferences near the missed target. By contrast, the RD maps
after IM processing by the CNN, U-Net, and CV-FCN lead to
the same detection results (see Fig. 13(d)-(f)). By using dilated
convolutions and the proposed contrastive learning strategy,
the interferences around the target at the distance of 20m
is further suppressed (Fig. 13(g)). Consequently, all the six
targets can be detected, and the range/velocity estimation error
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with all the recovered signals processed by the IM approaches
is zero in this case. Although all the targets are detected in the
RD map after IM processing with the ResNet-based approach,
residual interferences can still be observed (Fig. 13(h)), which
may cause false alarms in interference-dense scenarios.

VI. MEASURED RESULTS

In this section, the measured radar signals collected using
the PARSAX radar in the A13 highway with traffic flow in
Delft [11] were used to test and verify the generalization
of the proposed method. Due to the fact that the clean
reference cannot be obtained with the radar system, which
is generally the case in practice, the qualitative interference
mitigation results on the radar signals collected on the high-
way, including the signal waveform in the time domain, the
t- f diagram, and range profiles of beat signals, are shown
in Fig. 14. As shown in Fig. 14(a) and (c), four large pulses
(corresponds to four inclined thick lines in the ¢- f diagram)
caused by strong interferences can be observed. Then, the
interferences lead to increased noise floor in the range profiles
of received beat signals, and the two weaker targets cannot be
detected (see Fig. 14(b)). To overcome the missed detection
of targets caused by the strong interferences, the proposed
IM approaches were used to suppress the interferences in
measured radar signals. Note that the networks were trained
using the dataset including only simulated radar signals.

The ¢- f diagram of the recovered signal processed by the
normal FCN is shown in Fig. 14(d). The interferences are
entirely removed in the negative frequency, but there are still
residual interferences mixed with the desired spectrum of
targets in the positive frequency. In contrast, with the receptive
field of the network gradually increasing, the DFCNs show a
slightly better IM performance (Fig. 14(e)-(g)). Furthermore,
with the contrastive learning, the interference in the positive
frequency can be removed as shown in Fig. 14(h). After
IM, three peaks of the targets can be clearly seen in the
range profile (Fig. 14(i)). Moreover, the DFCN trained with
contrastive learning shows a significantly lower noise floor.

The experimental results on measured radar signals col-
lected in the real-world scenes have shown a good gen-
eralization performance of the proposed method. Moreover,
we want to mention that the PARSAX radar in TU Delft
uses an arbitrary waveform generator (AWG) to generate
an FMCW waveform with a central frequency of 125 MHz
and then it is up-converted by mixing with a synchronized
stable local oscillator (LO) at a frequency 3.315GHz for
transmission. In our simulation, the center frequency of the
FMCW waveform is set to 76.5 GHz. Although there exists
a difference in radar parameters, the networks trained using
only simulated data can still show good interference mitigation
performance in the measured radar signals. Furthermore, one
can see the effectiveness of the contrastive learning in helping
the neural networks to remove the residual interferences and
noise in measured radar signals.

VII. CONCLUSION

In this paper, the DL-based interference mitigation approach
in the ¢- f domain is proposed for automotive FMCW radar.

The dilated convolution was used to build the network
(i.e., DFCN). Meanwhile, the optimal setting of the dilated
rate in each convolutional layer is proposed. The proposed
DFCN(139) shows a significantly higher SINR than the normal
FCN. Then, the contrastive loss function and strategy were
designed. No feature extraction network and hyper-parameter
are needed. The networks trained using contrastive learning
show better performance than the one trained with only MSE.
Besides, even though the frequency bands of simulated and
measured signals are different, our method still shows good
results on the measured data. The proposed dilated convolution
and contrastive learning can be easily integrated into existing
DL-based IM methods without increasing the network com-
plexity. Therefore, the proposed IM approach can be better
applied into the actual radar system.

In the future, the deformable convolution with dilated rate
would be considered in the interference mitigation problems
to realize a more flexible IM network.
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