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Abstract
Smart grids promise a more reliable, efficient, economically viable, and environment-
friendly electricity infrastructure for the future. State estimation in smart grids plays a
pivotal role in system monitoring, reliable operation, automation, and grid stabilization.
However, the power consumption data collected from the users during state estimation
can be privacy-sensitive. Furthermore, the topology of the grid can be exploited by
malicious entities during state estimation to launch attacks without getting detected.
Motivated by the essence of a secure state estimation process, we consider a
weighted-least-squares estimation carried out batch-wise at repeated intervals, where
the resource-constrained clients utilize a malicious cloud for computation services. We
propose a secure masking protocol based on data obfuscation that is computationally
efficient and successfully verifiable in the presence of a malicious adversary. Simulation
results show that the state estimates calculated from the original and obfuscated
dataset are exactly the same while demonstrating a high level of obscurity between
the original and the obfuscated dataset both in time and frequency domain.

Keywords: State estimation, Smart grids, Data obfuscation, Privacy

Introduction
Smart grids are widely regarded as a key ingredient to reduce the effects of growing
energy consumption and emission levels (Commission 2014b). By 2020, the European
Union (EU) aims to replace 80% of the existing electricity meters in households with
smart meters (Commission 2014b). Currently, there are close to about 200 million smart
meters accounting for 72% of the total European consumers (Commission 2014b). This
smart metering and smart grid rollout can reduce emissions in the EU by up to 9%
and annual household energy consumption by similar amounts (Commission 2014b).
Despite the environment-friendly and the cost-cutting nature of the smart grid, deploy-
ment of smart meters at households actually raises serious data privacy and security
concerns for the users. For example, with the advent of machine learning and data min-
ing techniques, occupant activity patterns can be deduced from the power consumption
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measurement data (Molina-Markham et al. 2010; Lisovich et al. 2010; Kursawe et al.
2011; Zeifman and Roth 2011). Additionally, the configuration of the power network/grid
topology can be used by attackers to launch stealth attacks (Liu et al. 2011). Thus,
despite the apparent benefits, without convincing privacy and security guarantees, users
are likely to be reluctant to take risks and might prefer conventional meters to smart
meters.
State estimation in smart grids enables the utility providers and Energy Management

Systems (EMS) to perform various control and planning tasks such as optimizing power
flow, establishing network models, and bad measurement detection analysis. State esti-
mation is a process of estimating the unmeasured quantities of the grid such as the phase
angle from the measurement data. The operating range of the state variables determines
the current status of the network which enables the operator to perform any necessary
action if required. The state of the system, the network topology, and impedance param-
eters of the grid can be used to characterize the entire power system (Huang et al. 2012).
Traditionally, the centralized state estimation technique with the weighted-least-squares
method yielded a very accurate result (Rahman and Venayagamoorthy 2017). However,
now due to the increased complexity and the scale of the grid size, state estimation in a
wide area grid network requires multiple smart meters from different localities to share
data, some of which could be hosted by a third-party cloud infrastructure (Kim et al. 2011)
due to coupling constraints, superior computational resources, greater flexibility, and
cost-effectiveness.
The problem with the current cloud computation practice is that it operates mostly

over plaintexts (Ren et al. 2012; Deng 2017); hence users reveal data and computa-
tion results to the commercial cloud (Ren et al. 2012). It becomes a huge problem
when the user data contains sensitive information such as the power consumption pat-
terns in smart meters. Moreover, there are strong financial incentives for the cloud
service provider to return false results especially if the clients cannot verify or validate
the results (Wang et al. 2011). For example, the cloud service provider could simply
store the previously computed result and use it as the result for future computation
problems to save computational costs. A recent breakthrough in fully homomorphic
encryption (FHE) (Gentry and Boneh 2009) has shown that secure computation out-
sourcing is viable in theory. However, applying this mechanism to compute arbitrary
operations and functions on encrypted data is still far from practice due to its high
complexity and overhead (Wang et al. 2011). This problem leads researchers to alter-
native mechanisms for the design of efficient and verifiable secure cloud computation
schemes.

Existing work and our contributions

Numerous privacy challenges related to smart grids are pointed out in the literature in
different contexts. Amongst them, the most popular and widely studied is the privacy-
preserving billing and data aggregation problem in smart grids (Molina-Markham et al.
2010; Kursawe et al. 2011; Erkin 2015; Ge et al. 2018; Knirsch et al. 2017; Emura 2017;
Danezis et al. 2013). Our main objective is different from these work since we focus on
the privacy concerns of state estimation in smart grids. Existing literature in smart grid
state estimation problem focuses either on the problem of protecting the grid topology
(Liu et al. 2011; Rahman and Venayagamoorthy 2017; Deng et al. 2017) or on preserving
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the power consumption data of the users separately (Kim et al. 2011; Beussink et al. 2014;
Tonyali et al. 2016). In Liu et al. (2011), the authors present a new class of attacks called
false data injection attacks (FDI) against state estimation in smart grids and show that
an attacker can exploit the configuration of a power network to successfully introduce
arbitrary errors into the state variables while bypassing existing techniques for bad mea-
surement detection. The authors in Deng et al. (2017) propose a design for a least-budget
defense strategy to protect the power system from such FDI attacks. The authors in
Rahman and Venayagamoorthy (2017) extends this problem to a non-linear state
estimation and examines the possibilities of FDI attacks in an AC power net-
work. To preserve the privacy of the user’s daily activities, (Kim et al. 2011)
exploits the kernel of the electric grid configuration matrix. In Beussink et al.
(2014), a data obfuscation approach for an 802.11s-based mesh network is pro-
posed to securely distribute obfuscated values along the routes available via 802.11s.
The obfuscation approach in Tonyali et al. (2016) tackles this problem through
advanced encryption standard (AES) scheme for hiding the power consumption
data and uses elliptic-curve cryptography (ECC) for authenticating the obfusca-
tion values that are distributed within the advanced metering infrastructure (AMI)
network.
Contrary to the above work in smart grid state estimation, we focus on protecting both

the power consumption data of the users and the grid topology. An open problem pointed
out in Efthymiou and Kalogridis (2010); Li et al. (2010); Kim et al. (2011) is to provide a
light-weight implementation of state estimation that can run in a smart meter platform.
In this paper, we attempt to solve this problem by proposing Obfuscate(.), an efficient
secure masking scheme based on randomization. Our scheme obfuscates the measure-
ment data of a collection of smart meters installed in a particular locality and send it to
the lead smart meter in their respective locality. These lead smart meters, in turn, gather
these randomized data and send it to the cloud service provider to perform the required
computations.
The major contributions of our paper are as follows:

• We propose Obfuscate(.), the first batch-wise state estimation scheme in smart grids
with the goal of protecting both the power consumption data of the consumers and
the grid topology. Our scheme is based on secure masking through obfuscated
transformation and is proven to be efficient with no major computational overhead
to the users.

• We evaluate the performance of Obfuscate(.) with real-time hourly power
consumption dataset of different smart meters. We use the dataset under the
assumption that these meters are connected to an IEEE-14 bus test grid system and a
fully measured 5 bus power system. Furthermore, we evaluate the illegibility of the
obfuscated dataset with respect to the original dataset.

In the rest of the paper, first we discuss the necessary prerequisites on state estima-
tion in smart grids and the adversarial models in “Background information” section. In
“Secure state estimation with Obfuscate(.)” section, we explain Obfuscate(.) in detail.
In “Analyses of Obfuscate(.)” section, we present the correctness, privacy, verification
and complexity analyses of our scheme. In “Simulation results” section, we present the
simulation results and we conclude the paper in “Conclusions and future work” section.
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Background information
Static state estimation in electric grids

The static state estimation (SSE) in smart grids is a well established problem with well-
known techniques that rely on a set of measurement data to estimate the states at regular
time intervals (Schweppe and Wildes 1970; Schweppe and Rom 1970; Schweppe 1970).
The state vector x =[ x1, x2, · · · xn]T ∈ R

n represents the phase angles at each electric
branch or system node, and the measurement data z ∈ R

m denotes the power readings of
the smartmeters. The state vector x and themeasurement data z are related by a nonlinear
mapping function h such that z = h(x) + e, where the sensor measurement noise e is a
zero-mean Gaussian noise vector. Typically, for state estimation a linear approximation of
this equation is used (Kim et al. 2011; Liu et al. 2011; Gera et al. 2017) as z = Hx+e, where
H ∈ R

m×n is the full column rank (m > n) measurement Jacobian matrix determined
by the grid structure and line parameters (Liang et al. 2017). The matrix H is known as
the grid configuration or the power network topology matrix (Kim et al. 2011; Liang et al.
2017; Gera et al. 2017). In an electric grid m � n (Zimmerman et al. 2009) and the best
unbiased linear estimation of the state (Wood and Wollenberg 1996) is given by

x̂ =
(
HTWH

)−1
HTWz, (1)

where W−1 ∈ R
m×m represents the covariance matrix of the measurement noise. W−1

is taken to be a diagonal matrix W−1 = σ 2I (Wood and Wollenberg 1996), so Eq. 1
reduces to

x̂ =
(
HTH

)−1
HTz. (2)

The SSE technique reduces the computational complexity of performing state esti-
mation in smart grids, where the estimates are usually updated on a periodic basis
(Huang et al. 2012). Measurement devices in current transmission systems are
installed specifically catering to the needs of SSE (Krause and Lehnhoff 2012). The
recent evolution of phasor measurement units (PMUs) are able to measure voltage
and line current phasors with high accuracy and sampling rates. However, deploy-
ment of a large number of PMUs across the system requires significant investments
since the average overall cost per PMU ranges from $40k to $180k (Department
of Energy 2014). Hence SSE will remain an important technique to estimate the
state variables at medium and low voltage levels (Cosovic and Vukobratovic 2017).
Practically, state estimation is run only for every few minutes or only when a significant
change occurs in the network (Cosovic and Vukobratovic 2017; Monticelli 2000).

Badmeasurement detection (BMD)

Bad measurements may be introduced due to meter failures or malicious attacks. They
may affect the outcome of state estimation and can mislead the grid control algorithms,
possibly causing catastrophic consequences such as blackouts in large geographical areas.
For example, a large portion of the Midwest and Northeast United States and Ontario,
Canada, experienced an electric power blackout affecting a population of about 50million
(n.a. 2003). The power outage cost was about $80bn in the USA and usually, the utility
operators amortize it by increasing the energy tariff, which is unfortunately transferred
to consumer expenses (Salinas and Li 2016). Thus, BMD is vital to ensure smooth and
reliable operations in the grid.
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The most common technique to detect bad measurements is to calculate the L2-norm∥∥z − H x̂
∥∥, and if

∥∥z − H x̂
∥∥ > τ , where τ is the threshold limit, then the measurement

z is considered to be bad. The reason is that, intuitively, normal sensor measurements
yield estimates closer to their actual values, while abnormal ones deviate the estimated
values away from their true values. This inconsistency check is used to differentiate
the good and the bad measurements (Liu et al. 2011). However, this is not always the
case, as exposing H could make the grid vulnerable to stealth attacks (Liu et al. 2011).
Liu, Reiter and Ning proved that a malicious entity can exploit the row and column prop-
erties ofHwhen exposed, and launch false data injection attacks without getting detected
(Liu et al. 2011). TheHmatrix includes the arrangement of of loads or generators, trans-
mission lines, transformers, and status of system devices and is an integral part of state
estimation, security, and power market design (Gera et al. 2017). Thus, there is a strong
need to protect not just the power consumption data but also the power network topology
during state estimation.

Cryptographic preambles

To understand the privacy goals of our problem, we state the following definitions:
Obfuscation (Shoukry et al. 2016) is the procedure of transforming the data into

masked data through randomization and performing the necessary operations on this
masked obfuscated data. The obfuscated data can be unmasked by inverting the random-
ized transformation using the respective private keys.
Semi-honest Adversary (Lindell and Pinkas 2009) is an adversary who correctly fol-

lows the protocol specification but keeps track of all the information exchanged to
possibly analyze it together with any other public information to leak sensitive data. It is
also known as honest-but-curious or passive adversary.
Malicious Adversary (Lindell and Pinkas 2009) is an adversary who can arbitrarily

deviate from the protocol specification. Here the attacks are no longer restricted to eaves-
dropping since the adversary might actually inject or tamper with the data provided. It is
also known as active adversaries.

Secure state estimation withObfuscate(.)
In this section, we explain our secure state estimation protocol Obfuscate(.) along with
the setup and the threat model.

Setup

Let an area A consist of two localities1 denoted by L1 and L2 as shown in Fig. 1. The
symbol Sij refers to the smart meter installed at the household j situated in locality Li and
Xi ∈ R

ni×T denotes the state sequences of all the smart meters installed in Li for a given
batch of time duration T. The electric grid configuration matrix of Li is represented asHi
and the coupling matrices between Li and Lj are denoted as Hij and Hji respectively. The
symbol [ ·] denotes the obfuscation of a vector or matrix. For example, [Zi] represents the
obfuscated value of the matrix Zi ∈ R

mi×T wheremi is the number of smart meters in Li.
The participating entities in our design are as follows:

1For brevity, here we assume that the area consists of only two localities. The protocol presented in this paper can easily
be extended to an area consisting of more than two localities.
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Utility Provider 

Verify

Cloud 

Abort

0

1

Decrypt and
Matrix Addition

Security Keys passed to every smart meter
                   in both the localities

Secure and Private Channel

Fig. 1 Proposed solution framework

Utility Provider U : provides utility services to A and has access to the grid configura-
tion matrix H. U generates all the keys to initiate Obfuscate(.) and distributes a selected
portion of these keys to the smart meters at each locality through a private channel to
carry out obfuscation.U is a decision-making entity performing any necessary action after
receiving the state variables at regular intervals.
Lead Smart Meter Si1 receives the randomized masked data from the other meters

connected to it and obfuscates the dynamics of the power consumption pattern of all the
meters in its locality. Then, sends it to the cloud for state estimation. The lead meter at
every locality is assumed to be a trusted node in the local network. A similar entity was
proposed in Kim et al. (2011) where the leadmeter is connected to all the meters based on
the mesh topology network. The lead meter, for instance, could be the local distributed
system operator (DSO) of a particular locality.
Other Smart Meters Sij (∀j �= 1) are all the other meters in Li. They obfuscate their

measurement data and send it to the lead meter Si1 to avoid leaking information about
their respective consumptions to any potential eavesdropping.
Cloud C is computationally super efficient and hence provides computation services

forA performing state estimation. As pointed out before, since most of the current cloud
computations are performed in plaintext, modeling the cloud as a malicious entity is
crucial in practice.

Threat model

The smart meters in Li and Lj, where j �= i, are considered to be semi-honest to each other
i.e., clients living in different localities are curious about each other consumption data.
This means that people who are situated geographically apart may try to learn informa-
tion about people in other localities such as energy usage consumption pattern, pricing,
etc. Also, households living in the same locality are modeled to be honest-but-curious.
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Albeit, it is natural for people living in the same locality - next to each other to have at
least some prior knowledge about each other’s activity pattern, it is not acceptable if the
neighbors can deduce the usage of a particular appliance at a given time-stamp applying
techniques such as non-intrusive load monitoring (Zeifman and Roth 2011) to the origi-
nal power consumption data. Thus, all the smart meters in a particular locality securely
mask their consumption data before sending it to their respective lead meter.
Unlike the problem of protecting the user power consumption data from the utility

provider for billing, data aggregation and other statistical purposes (Kursawe et al. 2011;
Erkin 2015; Ge et al. 2018; Knirsch et al. 2017; Emura 2017; Danezis et al. 2013), here we
study the problem of carrying out secure state estimation by outsourcing the data to an
untrusted third party. These state variables with high accuracy are essential to the util-
ity provider for effective decision-making and providing good quality services such as
demand forecasting, optimal power flow, and contingency analysis. Hence U here is not
considered to be an adversarial entity and is non-colluding in nature. The utility provider’s
main objective is to earn the consumer trust by protecting their privacy and encouraging
more user participation to install smart meters for business and commercial purposes.
Investment in smart metering technology is directly impacted by customer trust in
the utility operators (Commission 2014a). To protect the privacy of consumers, utility
providers make use of secure communication channels and databases with access control
(Kim et al. 2011). In addition, with EU’s newly devised General Data Protection Regula-
tion (GDPR), energy companies are liable to pay large penalties up to e20m (Hunt 2017),
if customer data are misused. One might argue about the need to apply a similar compli-
ance factor to the cloud service provider. However, the major problem specific to cloud
computation services is that, with the current technology, most of the computations in
the cloud are performed in plaintext (Ren et al. 2012; Deng 2017). Arbitrary computations
on encrypted data using FHE schemes are still under active research for effective imple-
mentation (Tebaa and Hajji 2014). Providing data in the clear makes the cloud vulnerable
to both active and passive attacks. According to the latest Microsoft security intelligence
report (Simos 2017), the number of attacks in the cloud environment has increased by
300% which further justifies considering the cloud as a malicious entity in our problem
setup.

Obfuscate(.)

The aim of our scheme is to protect the privacy of the power consumption data of the con-
sumers Z and the grid configuration matrixH during state estimation, while outsourcing
these pieces of information to an untrusted malicious third party cloud. Our design goals
are as follows:
Input/Output Privacy: Neither the input data sent nor the output data computed by

the cloud should be inferred by the cloud.
Correctness: Any cloud server faithfully following the protocol must be able to

compute an output that can be verified successfully.
Verification: If the cloud server acts maliciously, then it should not be able to pass the

utility-side verification test with a high probability.
Efficiency: Computational overhead for the clients (U and Sij) should be minimal.
Nevertheless it is important to note that local smart meters in the localities can-

not estimate the states on their own due to the coupling constraints (See Eq. 3). The
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efficiency criteria is mainly considered to exploit the nearly unlimited computational
resources of the cloud. Furthermore, since the smart meters in different neighbor-
hoods are semi-honest to each other, the designed protocol should also guarantee
a very low probability of a particular neighbour inferring any sensitive information
through eavesdropping and combining any other publicly available information of the
localities.

Proposed scheme

Consider the proposed scheme depicted in Fig. 1. The equation z = Hx + e, can be
rewritten as :

[
Z1
Z2

]
=

[
H1 H12
H21 H2

]

︸ ︷︷ ︸
H

[
X1
X2

]
+

[
e1
e2

]
, (3)

whereH1 ∈ R
m1×n1 andH2 ∈ R

m2×n2 are the grid configuration matrix of L1 and L2. The
matrix H12 ∈ R

m1×n2 and H21 ∈ R
m2×n1 denote the coupling matrices. The measure-

ment data and the states of Locality Li are represented by Zi ∈ R
mi×T and Xi ∈ R

ni×T

respectively. The solution to Eq. 3 is given by Eq. 2.
In general, the configuration of the power network H is not time-varying dur-

ing the state estimation process (Schweppe and Wildes 1970; Schweppe and Rom
1970; Schweppe 1970; Wood and Wollenberg 1996), and hence the matrix H+ =
(HTH)−1HT can be pre-computed during the offline stage. Typically, this information
is computed during the creation of the power network by the utility provider using a
trusted party. Hence, the state estimation can be recast and reduced into X̂ = H+Z,
where X̂ ∈ R

n×T , Z ∈ R
m×T and H+ ∈ R

n×m with m = m1 + m2 and n =
n1 + n2. Thus, our privacy-aware state estimation problem can be recast into solv-
ing a matrix multiplication securely. The matrix H+ can be rewritten block-wise as
follows:

H+ =
⎛
⎝

[
H1 H12
H21 H2

]T [
H1 H12
H21 H2

]⎞
⎠

−1 [
H1 H12
H21 H2

]T

=
[
F1 F12
F21 F2

]
, (4)

where F1 ∈ R
n1×m1 , F2 ∈ R

n2×m2 , F12 ∈ R
n1×m2 and F21 ∈ R

n2×m1 . The exact expression
of the F matrix is omitted here due to space constraints. Notice from X̂ = H+Z that
it is not possible for the lead meter in each locality to carry out the estimation process
locally due to the coupling constraints generated by the matrices H12 and H21. Namely,
the state estimate X̂1 also depends on the consumption data of the other locality Z2 and
vice versa. Thus, the lead meter collects all the obfuscated measurement data from the
other meters in its locality and sends it to the cloud. The matrix H+ is obfuscated by the
utility provider and sent to the cloud. However, it is important that the matrix H+ is not
completely randomized using a single key but is randomized block-wise with different
keys for different blocks (see Eq. 4). The estimation problem can be further broken down
into

[
X̂1
X̂2

]
=

[
F1 Z1 + F12 Z2
F21 Z1 + F2 Z2

]
. (5)
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Let us denote the matrix

Y =
[
F1Z1 F12Z2
F21Z1 F2Z2

]
=

[
Y1 Y12
Y21 Y2

]
. (6)

Using Eq. 5 for estimating the states, we solve the matrix multiplication of each blocks
in Eq. 6 privately and then perform matrix addition.
The matrix multiplication is a fundamental problem in cryptography and several

solutions have been proposed to solve it (Atallah and Frikken 2010; Atallah et al.
2012; Fiore and Gennaro 2012; Zhang and Blanton 2014). However, these proto-
cols are not designed for the cloud environment and hence do not consider the
computational asymmetry of the cloud server and the client. Another drawback
is that these protocols use advanced cryptography to encrypt the input and out-
put dataset, which makes them unsuitable for the computation on the cloud with
large datasets due to high overhead. Furthermore, the verification of the result,
which is an essential requirement in a malicious cloud setting, is not considered
in these protocols (Kumar et al. 2017). A secure multiparty computation (MPC)
approach was considered in Dreier and Kerschbaum (2011); López-Alt et al. (2012),
where the computation is divided among multiple parties without allowing any par-
ticipating entity to access another individual’s private information. However, this
approach is not feasible for our problem setup since all the parties are required
to have a comparable computing capability. Also, in MPC approach, the result ver-
ification is often troublesome since it requires expensive zero-knowledge proofs
(Saia and Zamani 2015; Goldwasser et al. 2015).
Recently, a privacy-preserving, verifiable and efficient outsourcing algorithm for matrix

multiplication to a malicious cloud was proposed in Kumar et al. (2017) utilizing linear
transformation techniques. In our paper, we adopt a similar approach to the one pre-
scribed in Kumar et al. (2017) to outsource the multiplication of block matrices in Eq. 6
securely to the cloud. However, Obfuscate(.) is not a straightforward application of the
protocol in Kumar et al. (2017). Kumar et al. (2017) considers only a single client and
a cloud setup, where the client performs the key generation, problem transformation,
re-transformation and verification on his/her own. In our scheme, there are multiple
smart meters installed in different neighborhoods. The keys cannot be generated locally
by the individual households because the smart meters have access only to their respec-
tive consumption data which forms only a part of the information required for state
estimation. Hence, besides the key generation we also propose KeyDist - a key distri-
bution scheme as shown in Fig. 2 used by U to distribute keys to the smart meters.
Obfuscate(.) comprises of eight subalgorithms which are explained in the rest of this
section.
KeyGen(1λ,m1, n1) algorithm (Algorithm 1) takes as input the security parameter λ and

generates a total of n1 +m1 non-zero random numbers each of bit size λ. These numbers
are used to generate the key matrices of size Rm1 and R

n1 . Table 1 shows the entire keys
that are generated per batch.
After the KeyDist() (Algorithm 2), matrix transformation ψK () is carried out by

the respective entities using their respective keys K. For every new input matrix,
ψK () is invoked to securely mask the input through linear transformation in
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Utility Provider

Lead Meter Other Meters

Secure and Private Channel

Fig. 2 A triangular key distribution scheme for a locality Li

Algorithm 1 KeyGen
1: Input λ,m1, n1
2: N1 →R {α1,α2 · · ·αn1}
3: M1 →R {β11,β12 · · ·β1m1}
4: for i = 1 to n1 do
5: di = αi.I(i,i)
6: end for
7: Set D1 = diag(d1, d2, · · · dn1)
8: for i = 1 tom1 do
9: bi = β1i.I(i,i)

10: end for
11: Set A1 = diag(b1, b2, · · · bm1).
12: Output: D1 and A1.
13: Repeat 1 to 10 per batch.

order to preserve the privacy. This operation dominates the client-side computa-
tion cost, but is not significant compared to the computations performed by the
cloud. The matrix transformation for a given input matrix F1 and Z1 are given by
Algorithm 3 and 4, respectively. Table 2 summarizes the complete matrix transformation
protocol.

Table 1 Key generation protocol run by U per batch

Protocol Output

KeyGen(1λ , n1,m1) D1, A1
KeyGen(1λ , n2,m2) D5, A2
KeyGen(1λ , n2, A1) D3, A1
KeyGen(1λ , n1, A2) D6, A2
KeyGen(1λ , T) D2

KeyGen(1λ , T) D4
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Algorithm 2 KeyDist
1: Input: Ai,D2.i
2: Set aij = 1

βij
3: for j = 2 tomi do
4: Send aij to Sij through private channel {i, j}
5: end for
6: Send ai1 and D2.i to Si1 through private channel {i, 1}
7: Repeat 1 to 6 per batch.

Algorithm 3MatrixTrans ψK (F1)
1: Input D1, A1
2: for i = 1 to n1 do
3: [F1(i, :)] = D1(i, i).F1(i, :)
4: end for
5: for i = 1 tom1 do
6: [F1(:, i)] = F1(:, i).A1(i, i)
7: end for
8: Output [F1]

Algorithm 4MatrixTrans ψK (Z1)

1: Input D2 � Here i =1 considering first locality.
2: for j = 2 tom1 do
3: Send z′1j = a1j.z1j to S11.
4: end for
5: S11 constructs Z′

1 = A−1
1 .Z1. � a1j = 1/β1j

6: for i = 1 to T do
7: [Z1(:, i)] = Z′

1(:, i).D2(i, i)
8: end for
9: Output [Z1]

Next, the obfuscated matrix H+ and the masked measurement matrix Zi are sent
by U and Si1, respectively to C to perform Computeψ([F1] , [Z1]) algorithm given in
Algorithm 5. This algorithm performs the computation on the cloud server. It computes
MM as ψ([F1] , [Z1]) = (D1F1A1).

(
A−1
1 Z1D2

)
. Table 3 shows the Computeψ() protocol

run by the cloud server for estimating the state samples.

Table 2Matrix transformation protocol run per batch

Protocol Keys Run by Output

ψK (F1) D1, A1 U [F1]

ψK (F2) D2, A2 U [F2]

ψK (F12) D6, A2 U [F12]

ψK (F21) D3, A1 U [F21]

ψK (Z1) D2, A
−1
1 S11 [Z1]

ψK (Z2) D4, A
−1
2 , S21 [Z2]
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Algorithm 5 Computeψ
1: Input [F1] , [Z1]
2: C computes [Y1] = [F1] . [Z1]
3: Output [Y1]

Upon computing the Y matrix, the cloud sends the computed result to the utility
provider U to execute the verification step. Verify([Y ] , γ ) algorithm computes Q =
([ F] ·([Z] ·γ )) − ([Y ] ·γ ), where γ is a binary key matrix of size T i.e. γ ∈ {1, 0}T . The
algorithm introduces the binary columnmatrix key γ to minimize the complexity of com-
putation since the matrix-vector multiplication only cost quadratic time. The verification
protocol for Li is given in Algorithm 6.

Algorithm 6 Verify([Yi] , γi)
1: Input: [Yi], [Fi], [Zi]
2: U generates γi ∈ {0, 1}T and sends it to Si1 through a private channel.
3: Si1 computes Zγi = [Zi] .γi and sends it to U .
4: U computes Qi = [Yi] .γ − Fi.Zγi

5: if (Qi == {0, 0, · · · , 0}T ) then
6: return (1)
7: else
8: return (0)
9: end if

It is important to note that the verification step serves as the BMD test in our setup
and is run for all the four block matrices given by Eq. 6. Table 4 presents the verification
protocol. The results are accepted only if the cloud server passes all the four verification
tests. If the verification is positive, then it means that no false data has been injected into
the measurements by the cloud which is conclusive to the absence of bad measurements
in the network.
After positive verification, Unmask(Y ,K) algorithm (Algorithm 7) is run by U . This

algorithm returns the original values of the states X̂ by de-randomizing Y using their
respective keys K. Table 5 summarizes the Unmask() protocol carried out for all the four
block matrices. Once, all the four blocks of Y are unmasked, U carries out the protocol
given in Algorithm 8 to reach the final state estimates.

Table 3 Computation protocol run by C per batch

Protocol Output

Computeψ([F1] , [Z1]) [Y1]

Computeψ([F2] , [Z2]) [Y2]

Computeψ([F21] , [Z1]) [Y21]

Computeψ([F12] , [Z2]) [Y12]
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Table 4 Verification Protocol run byU per batch

Protocol Output

Verify([Y1] , γ1) Q1

Verify([Y2] , γ2) Q2

Verify([Y12] , γ2) Q12

Verify([Y21] , γ1) Q21

Algorithm 7 Unmask([Y1] ,K)

1: Input [Y1] and the respective keys D1 and D2
2: Compute D−1

1 and D−1
2

3: Compute Y1 = D−1
1 . [Y1] .D−1

2
4: Output Result Y1

Algorithm 8MatrixAdd(Y )

1: Input Y1, Y2, Y12, Y21
2: Compute X̂1 = Y1 + Y12
3: Compute X̂2 = Y21 + Y2
4: Output Result X̂1, X̂2

Analyses ofObfuscate(.)
In this section, we show that Obfuscate(.) complies with the design goals stated in
“Secure state estimation with Obfuscate(.)” section which are correctness, privacy, verifi-
ability, and efficiency.

Correctness analysis

If the smart meters, utility provider, and the cloud correctly follow Obfuscate(.) as
per the protocol, then Obfuscate(.) produces correct results for all the four matrix
multiplications. This follows from a simple proof:

Proof U first transforms the matrix F1 into [F1] = D1F1A1 and the lead smart meter in
L1 transforms the matrix Z′

1 = A−1Z1 into [Z1] = A−1
1 Z1D2. The cloud server computes

[Y1] = [F1] · [Z1] = (D1F1A1) ·
(
A−1
1 Z1D2

)
= D1Y1D2. Then, in the de-randomization

step, U computes Y1, where Y1 = D−1
1 [Y1]D−1

2 = F1 · Z1.

The above analysis holds for all the Computeψ(.) presented in Table 3, thereby proving
the correctness of Obfuscate(.).

Table 5 Unmasking Protocol run byU
Protocol Keys Output

Unmask([Y1] , K) D1,D2 Y1
Unmask([Y2] , K) D5,D4 Y2
Unmask([Y21] , K) D3,D2 Y21
Unmask([Y12] , K) D6,D4 Y12
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Privacy analysis

Input Privacy: Since C has only access to the masked input matrices [ F] and [Z], it can-
not not retrieve the original input matrices F and Z. Furthermore, the keys generated as
in Table 1 do not leak any information about the original input since the keys are com-
pletely random devoid of dependency on the topology and the power consumption data.
This can be seen from the following proof:

Proof The key matrix A1 and A2 are diagonal matrices with each element being a ran-
dom real number of λ bit long. There are 2miλ possibilities of Ai matrix where i ∈ {1, 2}.
For diagonal matrices D1 and D2, there are in total 2n1λ+Tλ possibilities. Thus for a single
block F1 in Y, there are a total of 2(m1+n1+T)λ possible choices of key matrices, which is
an exponential bound quantity in terms of (m1, n1,T).

For example, consider a practical scenario where a locality has m1 = 1000, n1 =
600,T = 400 for which we have 22000λ possibilities. Thus, with increase in m1, n1 and T,
the cloud does not recover any meaningful information.
Output Privacy: Similar to the input privacy analysis, the output result is also pro-

tected. The resulting obfuscated matrix does not leak any information to C , even if it
records all the computed results. Besides, for every batch, U generates new keys given
in Table 1 which makes our protocol resistant to any known-plain-text attack (KPA) or
chosen-plain-text-attack (CPA) (Kumar et al. 2017).

Verification analysis

Since in a malicious threat model, the cloud server may deviate from the actual instruc-
tions of the given protocol, we equip Obfuscate(.) with a result verification algorithm to
validate and verify the correctness of the result. The proof that a wrong or an invalid result
never passes the verification step follows from the total probability theorem as followed
in Kumar et al. (2017); Lei et al. (2013).

Proof If the cloud produces the correct result say Y1, then Q1 = ([F1] · [Z1] − [Y1]) =
[ 0, 0, · · · 0]T . If the cloud produces the wrong result, then Q1 · γ1 �= [F1] [Z1] · γ − [Y1] .γ ,
i.e. there exists at least a row in Q1 which is not equal to zero, Q1γ1 =[ q1, · · · qm1 ]T . Let
the row qi �= 0, where

qi =
T∑
j=1

Q1i,j · γj = Q1i,1 · γ1 + · · ·Q1i,k · γk + Q1i,T · γT .

There exists at least one element in this row which is not equal to zero. Let Q1i,k �= 0,
qi = Q1i,k · γk + 	 where 	 = ∑T

j=1Q1i,j.γj − Q1i,k .γk . Applying the total probability
theorem yields,

Pr(qi = 0) = Pr[ (qi = 0)|(	 = 0)] Pr[	 = 0]+Pr[ (qi = 0)|(	 �= 0)] Pr[	 �= 0]
(7)

Pr[ (qi = 0)|(	 = 0)]= Pr[ γk = 0]= 1/2 (8)

Pr[ (qi = 0)|(	 �= 0)]≤ Pr[ γk = 1]= 1/2
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Substituting (8) in (7), we derive

Pr[ (qi = 0)] ≤ 1/2 Pr[	 = 0]+1/2 Pr[	 �= 0] ,

Pr[ (qi = 0)] ≤ 1/2(1 − Pr[	 �= 0] ) + 1/2 Pr[	 �= 0] ,

Pr[ (qi = 0)] ≤ 1/2.

(9)

If the verification process is run p times, then Pr[ (qi = 0)]≤ 1/2p.

The value p reveals the trade-off between computational efficiency and verifiability.
Theoretically p ≥ 80 is sufficient to ensure negligible probability for the cloud to pass the
verification test despite producing wrong result. However, in practice, p = 20 is accept-
able with 1/220 ≈ 1 million (Kumar et al. 2017; Lei et al. 2013). The verification process
fails to detect a wrong result one in a million times.

Efficiency analysis

In this section, we carry out the computation complexity analysis to prove the efficiency
ofObfuscate(.). The computational cost of each step inObfuscate(.) is analyzed in Table 6.
KeyDist() protocol introduces an additional communication cost of O(m) since U dis-
tributes the key aij to all the smart meters through a private channel for obfuscating their
measurement data. In Table 6, it is clear that the computations performed by the client
side are substantially lower than that of the cloud server. Due to the diagonal structure
of the key matrices, the problem transformation step given by Algorithms 3 and 4 only
costs O(nm + mT). The asymptotic complexity of the client side computation is only
O(nm + mT + nT) (Kumar et al. 2017). Thus, outsourcing the computation yields a per-
formance gain of O

( 1
n + 1

m + 1
T

)
. Clearly, when n, m, and T increases, the clients will

achieve a higher performance gain. Especially, with the increase in the number of smart
meters m by the year 2020 as aimed by the EU (Commission 2014b), Obfuscate(.) will
significantly reduce the computational overhead of its clients in the long run.

Simulation results
In this section, we evaluate the degree of obscurity of Obfuscate(.) using two case stud-
ies: a fully measured 5-bus system and the IEEE 14-bus system with real-time power
consumption data. We start with a fully measured 5-bus system and the structure of the
H matrix for this system can be found in the Appendix. In this case, the total number
of meters m = 10 and the state variables n = 4. We consider m1 = 4, m2 = 6 and
n1 = n2 = 2 and the duration of every batch to be 13 hours. Note in practice, smart

Table 6 Computation complexity analysis of the protocol

Client side computations Cloud computations

Utility providerU Si1 Sij

KeyGen - O(m + n + T) – – Computeψ([F1] , [Z1]) - O(n1m1T)

MatrixTrans ψK (.) -
O(n1m1 + n1m2 + n2m1 + n2m2) = O(nm)

O(miT) O(1) Computeψ([F12] , [Z2]) - O(n1m2T)

Verify - O(n1T + n2T) = O(nT) O(miT) – Computeψ([F12] , [Z2]) - O(n2m1T)

Unmask - O(n1T + n2T) = O(nT) – – Computeψ([F2] , [Z2]) - O(n2m2T)

MatrixAdd - O(n1T + n2T) = O(nT) – – Computeψ (
[
H+]

, [ Z] ) -,O(nmT)

Total client-side computation cost ≈ O(nm + mT + nT) Total cloud computation cost = O(nmT)
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meters can sample at much higher frequencies (Chen et al. 2011). Research on disaggre-
gating electricity load has been conducted on smart meter readings with a fine granularity
of frequency between 1 Hz to 1 MHz (Chen et al. 2011). The authors in Kim et al. (2011)
collected real-time power consumption data of both residential and office spaces with a
sampling rate of 1 Hz. Hence in practice the number of data points collected per batch T
could be in order of tens of thousands. However, due to the unavailability of such high-
frequency measurement data, we restrict the size of T. Since, we had access to only hourly
power consumption data we restrict T = 13. Although the size of the matrix Z ∈ R

m×T is
smaller than in practice, the state estimation still cannot be performed locally due to the
coupling constraints between the two localities. Upon inspecting the power consumption
values of all the meters, we found these values are mostly 4 to 5 decimal digits long. To
mask this data securely, we use a key size of length λ = log2(105) ≈ 16 + 80 ≈ 96 bits.
The additional 80 bits ensures that Obfuscate() follows the National Institute of Stan-
dards and Technology (NIST) recommendations2 to securely mask the data. Based on the
present computational capabilities, it is not possible to break our scheme, thereby proving
it’s robustness in terms of attack from a malicious adversary.
Figure 4 shows the illegibility of the Obfuscate(.) for a fully measured 5-bus power sys-

tem. Illegibility measures the level of difficulty of interpreting and mining data to the
malicious cloud server (Kim et al. 2011). In Fig. 4a, we can see the original power con-
sumption data of a household (blue) is always positive, whereas, the obfuscated data
(red) show negative power readings and behave more as random variables. The degree
of obscurity becomes more clear when transforming these datasets into the frequency
domain. Figure 4b plots the Fast Fourier Transform (FFT) coefficients against various
frequencies and shows that the original data consists mostly of low-frequency compo-
nents, whereas the obfuscated data exhibits high-frequency components. This can also
be inferred from the power spectral density plot shown in Fig. 4c. Clearly, we can see that
the original data (top) consists of a higher power in low-frequency regions, whereas the
obfuscated dataset (bottom) behaves exactly the opposite consisting of a higher power in
high-frequency regions. Nevertheless, as it can be seen from Fig. 4d, the estimated states
from these obfuscated dataset are exactly the same as that of the original measurement
data. Thus, Obfuscate(.) does not degrade the quality of the estimate of the state vari-
ables. Furthermore, to evaluate the resilience of Obfuscate(.), we estimate the Pearson’s
correlation coefficient. The Pearson’s correlation coefficient gives us the measure of the
degree of similarity between two signals. The correlation coefficient between two identi-
cal signals in phase is always 1 while two identical signals out of phase (phase difference
= 180 °) is −1. Figure 3 depicts the plot showing the Pearson correlation coefficient of all
the metering points of the 5-bus systems. It can be seen that the correlation between the
original and the obfuscated datasets are mostly smaller than 0.2 for almost all the meter-
ing points. This implies that it is very hard for any pattern recognition and data mining
algorithm to infer information about the original power consumption pattern of the smart
meters from the obfuscated datasets (Kim et al. 2011).
Next, we evaluate the degree of obscurity for an IEEE 14 bus system. The H matrix for

the 14 bus system is extracted from MATPOWER (Zimmerman et al. 2011), an open-
source tool for solving steady-state power system simulation and optimization problems.

2https://www.keylength.com/en/
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Fig. 3 Pearson correlation coefficients for all the metering points in a 5-bus power network

In this case, the number of metering points m = 31 and the number of state variables
n = 13. We further partition the number of meters and state variables for L1 and L2 as
m1 = 15,m2 = 16 and n1 = 6, n2 = 7. Figure 5 depicts the time domain, frequency
domain data and the estimated states from the original and obfuscatedmeasurement data.
Comparing Figs. 4 and 5, we arrive at similar conclusions for a 14-bus system to that of
a 5-bus system. Figure 6a shows the correlation coefficients of all the 31 metering points
for T = 13 and it can be seen that the values are lesser than 0.3. Note from Fig. 6b that as
expected when the number of measurement data samples is increased i.e., when the value
of T was increased from 13 to 360, the correlation coefficient was found to be lesser than
0.2 which makes this scheme practically secure for estimation with fine granular high-
frequency meter readings. Also, in this case, since each key size is 96 bits, a semi-honest
neighbor trying to infer the power consumption of a household in the same locality has
about 296 = 7.92×1028 possibilities for every batch. Naturally, when the time duration per
batch drops down to every few minutes with high-frequency datasets, the task becomes
almost impossible for a semi-honest adversary to deduce the appliance usage patterns of
his/her neighbor living in the same locality.
However, Obfuscate(.) still has a shortcoming since it cannot preserve the privacy of

zero elements. The power grid topology matrix H is, in general, a full column rank and a
sparse matrix. However,H+ is less sparse thanH and is likely to be dense. Upon inspect-
ing the sparsity pattern of H+ for both the 5-bus and 14-bus power system, we found
that H+ for the 14-bus was about 20% sparse, whereas H+ for the 5-bus power system
was completely dense. Exposing the sparsity pattern of H+ to the cloud may, in turn,
reveal some information about the structure of H which is undesirable. Thus, to con-
front such sparse attacks, we introduce the matrix H+


 = H+ + 
, where the matrix 


is 100% dense. The utility provider U sends H+

 instead of H+ to the cloud which com-
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(a) (b)

(c) (d)
Fig. 4 Illustration of data Obfuscation in a 5-bus power network. a Original and Obfuscated Time Domain
Data from Meter #1. b Original and Obfuscated Frequency Domain Data from Meter #1. c Power Spectral
Density of True and Obfuscated Measurement Data. d Estimate State Value at Branch #1. Estimation error
between true and obfuscated dataset = 0

putes X
 = (H+ + 
)Z. Then, U computes the product 
Z by invoking Obfuscate(.)
again. Later, the original state estimates can be retrieved by U as X̂ = X
 −
Z. Note that
this step does not incur any major computational overhead on the utility provider since it
requires another simple invocation of Obfuscate(.).

Conclusions and future work
In this paper, we considered a privacy-aware batch-wise state estimation problem in
power networks with the objective of protecting both the grid configuration and power
consumption data of the smart meters. We formulated a weighted least-squares problem
and reduced the state estimation problem of a power grid into a matrix multiplication
problem of four block matrices. Our proposal, Obfuscate(.), exploits highly efficient and
verifiable obfuscation-based cryptographic solutions. It supports error-free estimation
between the original and obfuscated dataset without compromising the accuracy of the
state variables essential to the utility provider and is proven to be correct and privacy-
preserving. Complexity analysis shows the efficiency and the practical applicability of
Obfuscate(.). We further evaluated the performance of Obfuscate(.) in terms of its illegi-
bility and resilience with a real-time hourly power consumption data. Simulation results
demonstrate a high level of obscurity making it hard for the malicious cloud server to
infer any behavioral pattern from the obfuscated datasets. We also discussed the problem
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(a) (b)

(c) (d)
Fig. 5 Illustration of data obfuscation in IEEE 14-bus power network. a Original and Obfuscated Time Domain
Data from Meter #27. b Original and Obfuscated Frequency Domain Data from Meter #27. c Power Spectral
Density of True and Obfuscated Measurement Data. d Estimate State Value at Branch #7. Estimation error
between true and obfuscated dataset = 0

of revealing the sparsity structure of the pseudo-inverse of network topology matrix and
proposed a solution to resist such sparse attacks.
Currently, our scheme does not take into account that the grid configuration matrix

H, although time invariant during the state estimation process may still be susceptible to
changes all the time. For example, consider a person living in a particular locality is now
motivated to install a smart meter at his home due to good security reasons or a person

(a) (b)
Fig. 6 Pearson Correlation Coefficients of all the metering points in IEEE 14 bus system. a T = 13. b T = 360
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living in one locality is nowmoving to another locality. Such situations clearly result in an
extra row addition or deletion of the existing Hmatrix, and assuming a pre-computation
of H+ at every stage is not reasonable. Hence, to deal with such instances, we require
a protocol computing the matrix A = (HTH)−1 for secure outsourcing of large matrix
inversion to the cloud ensuring the privacy of sparsity pattern of the matrix. It is also
important to point out that the proposed solution can be applied only to those classes of
state estimation which essentially boils down to solving a matrix multiplication problem
batch-wise or recursively.
Although the behavioral pattern and the power dynamics of the other smart meters in

every locality are hidden from the malicious cloud, the respective lead meter has access
to this information. The lead meter can access to the scaled measurements z′ = aij · z
(Pearson coefficient = 1) whose dynamics are exactly the same as z. Hence, it was essen-
tial in our problem setup to consider a single non-collusive trusted node in every local
network termed as the lead meter to initiate the obfuscation of the measurement data
dynamics. Future work may involve developing privacy-aware protocols without any such
assumptions. Another possible future work is developing a statistical measure to quan-
tify the degree of obscurity introduced by these obfuscation schemes to understand how
indistinguishable the obfuscated datasets are compared to the original measurement
datasets.

Appendix
A fully measured 5-bus power system is shown in Fig. 7. The total number of meters m
is 10 and the meter measurements are z =[ F12, F23, F24, F35, F45,P1,P2,P3,P4,P5]T where
Fij represents the branch (i, j) active power flow and Pj represents bus j active power injec-
tion. The structure of the measurement matrixH is given in Eq. 10, where bij denotes the
susceptance of the transmission line (i, j) (Deng et al. 2017). The susceptance is the imagi-
nary part of admittance and the admittancematrix is obtained from (McCalley 2018). The
H+ is pre-computed fromH and the F blocks are partitioned according to their respective
dimensions.

Fig. 7 A fully measured 5-bus power system. Taken from (Deng et al. 2017)
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H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b12 0 0 0
−b23 b23 0 0
−b24 0 b24 0
0 −b35 0 b35
0 0 −b45 b45
b12 0 0 0

−b12 − b23 − b24 b23 b24 0
b23 −b23 − b35 0 b35
b24 0 −b24 − b45 b45
0 −b35 −b45 b35 + b45

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)
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