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Summary

Hyperloop is a new high-speed transportation system currently in development. Utilising an electro-
magnetic suspension within a low-pressure tube, this approach eliminates the traditional wheel-track
friction and drastically reduces the air resistance, targeting speeds up to 1000 km/h. Compared to
traditional trains and aeroplanes, the Hyperloop is a more sustainable alternative as it produces no
greenhouse gas emissions and uses ten times less energy than road and aviation transportation. The
Hyperloop, therefore, has great potential to contribute to the goal of achieving climate neutrality by 2050.

Ensuring the stability of the Hyperloop is a critical challenge in its realisation. Multiple instability
mechanisms are present in the system: (1) electromagnetic instability, (2) wave-induced instability,
and (3) aeroelastic effects, such as galloping. Additionally, the imperfections in the guideway, make
the Hyperloop system prone to parametric instability. This thesis primarily investigates how aeroelastic
forces and parametric resonance interact with the electromagnetic and wave-induced instability mech-
anisms, impacting the overall stability of the Hyperloop system.

Based on the results, it can be concluded that the aeroelastic force destabilises the system, where
its impact increases as the velocity rises. As the aeroelastic force continuously injects energy into the
system, the unstable domain expands. Furthermore, parametric resonance, represented by ellipse-
shaped indentations in the stability planes, is observed when the excitation frequency is twice the nat-
ural frequency of the system. Based on the control parameter range used for maglev trains, it is found
that the stable domain is narrow, with only a small region prone to parametric resonance. Therefore,
choosing the control parameters precisely is essential to prevent instability and parametric resonance.

When examining the combined effect of aeroelastic force and the irregular guideway profile, the
results show that the aeroelastic force shifts the overall position of the stability boundaries but it does
not affect the parametric resonance regions. Instead, the amplitude of the guideway’s irregular profile
influences the size of the ellipses and the stable domain. A larger amplitude leads to an expansion
of the unstable domain and an increase in the size of the ellipse; therefore, it is advised to maintain a
smooth guideway.

This thesis further evaluates the capabilities of analytical expressions for the simpler 1.5 degree-of-
freedom (DOF) electromagnetically suspended mass system by comparing it to systems that incorpor-
ate the beam dynamics. The results show that the analytical expressions from the 1.5 DOF system
cannot approximate the position of the ellipses for the more complicated systems across all velocities.
However, beyond the velocities of 1.3v,,., the analytical expressions effectively approximate the ellipse
size. Notably, while the position and size of the ellipse are influenced by the guideway’s surface rough-
ness amplitude, only the size of the ellipse is affected by the amplitude of the oscillations in the 1.5 DOF
system. For the more complicated systems, the analytical expressions of the ellipse size relative to the
amplitude provide accurate results, making the simplified system a valuable approach for estimating
the ellipse size of parametric resonance in systems with beam dynamics.

Keywords: Hyperloop, Stability, Maglev, Wave-induced instability, Electromagnetic instability, Aer-
oelastic force, Galloping, Modulated aeroelastic force, Parametric resonance
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Introduction

1.1. Background

By 2050, the world population is expected to grow by two billion people [33]. As a result, the trans-
portation demand will nearly triple from 44 trillion to 122 trillion passenger kilometres [12]. This demand
will lead to a rise in greenhouse gas emissions, which urgently needs to be mitigated. Expanding road in-
frastructure or increasing air travel will not be the most environmentally sustainable approach. Various
environmentally friendly transport options are being promoted to lower the CO, emissions. Govern-
ments endorse alternative transportation modes such as car-sharing, trains, and cycling with a strong
recommendation to limit air travel. However, these measures alone will not resolve the environmental
problem, as travel for both work and leisure remains necessary. A solution is required to reduce CO,
emissions and meet the European Union’s goal to achieve climate neutrality by 2050 [5]. Moreover,
as the global economy is rapidly evolving and cities are expanding, companies and people are moving
out of the major cities, which increases travel time. Companies and people want to move at higher
velocities to save time and money. The Hyperloop could be the solution to all these challenges.

In 2013, Elon Musk introduced the concept of the *fifth transportation mode’, named the Hyperloop.
The Hyperloop is an innovative transportation system that combines elements of a train system with the
high speeds of an aeroplane. Operating inside a low-pressure tube using an electromagnetic suspen-
sion (EMS), the Hyperloop aims to reach speeds up to 1000 km/h. For instance, a trip from Amsterdam
to Berlin would take ninety minutes with the Hyperloop compared to almost six hours by traditional
train. While the aeroplane would be fifteen minutes faster, the Hyperloop offers greater environmental
benefits. It is claimed that the Hyperloop does not emit greenhouse gases and air pollution, therefore
checking the box to become a climate-neutral solution. Furthermore, the Hyperloop’s energy consump-
tion is ten times lower than road or aviation transportation [8]. However, as the Hyperloop concept is
still in its early stages, further research is required to address the challenges and ensure its success.

1.2. Problem Statement and Research Gap

Although the Hyperloop is still in its early development stages, there is significant interest from the
research community [7]. Stakeholder interest has also grown over the years [22]. There are still uncer-
tainties regarding aspects such as the tube diameter, whether the vehicle will float above the track or
be suspended from it, the final achievable speed, the type of suspension system, and more [23, 25].
These questions show the need for further research and development to realise the Hyperloop.

Various companies worldwide are focused on the development of the Hyperloop technology, with
the aim of creating a sustainable, high-speed transportation system for the future. By 2040, passen-
gers should be able to use the Hyperloop system. However, the high velocities raise concerns about
the vehicle’s stability. With an air gap of only a few millimetres between the vehicle and the guideway,
significant vibrations could cause the vehicle to collide with the guideway or the tube. Additionally, the
continuous oscillations of the vehicles passing over the guideway could lead to fatigue, which is a crit-
ical challenge to the guideway’s durability. Moreover, the comfort of passengers and cargo is another

1
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important consideration. The Hyperloop must offer a comfortable experience for people to choose it as
their transportation mode.

The interactions between the vehicle and the structure influence the vehicle’s stability. The vehicle
and guideway can be modelled as a moving mass on a flexible beam. Aeroelastic forces, electromag-
netic effects, wave-induced mechanisms, and guideway irregularities are among the contributors that
influence the vehicle’s stability.

The interaction between a moving load and a flexible structure has been widely studied. Denisov
et al. [4] were the first to observe that the moving object on a flexible structure can become unstable
when it reaches the critical velocity. Metrikine has also explored the subject of moving load dynamics.
Metrikine [21] found that lateral oscillations of moving objects become unstable when the radiation of
anomalous Doppler waves is larger than the radiation of normal Doppler waves. The moving object
extracts energy from the flexible structure when its velocity exceeds the minimum phase velocity of the
radiated waves. Mazilu et al. analysed the influence of non-contact forces between a moving mass
and an Euler-Bernoulli beam in various systems. Using models with one contact point [18] and multiple
contact points [17], Mazilu et al. found the presence of limit cycles when the masses move at super-
critical velocities.

Researchers have also conducted numerous studies on the behaviour of electromagnetic suspen-
sions and their interaction with flexible structures. Several studies [10, 32, 39] have analysed the
stability of an EMS using a single-degree-of-freedom for the flexible structure. Faragau et al. [6] ana-
lysed the interplay between the electromagnetic and wave-induced instability mechanisms. This thesis
can be viewed as a continuation of that paper.

The number of studies on aerodynamics, galloping and flutter, related to moving objects remains
limited. Most studies on galloping and flutter are focused on fluid mechanics. Wu et al. [36] and Liu
et al. [16] investigated the stability of an electromagnetically suspended mass subjected to aeroelastic
forces while moving over a rigid guideway. To the best of the authors’ knowledge, Yau [40] is the only
researcher that has combined the effects of electromagnetic suspensions, flexible structures and aer-
oelastic forces, where the flexible structure is modelled as a single-degree-of-freedom system.

Moreover, parametric instability related to moving loads has been widely studied in numerous re-
search studies. Metrikine [20] analysed the stability of a moving mass on a periodically supported
string. A notable finding was that both anomalous Doppler waves and normal Doppler waves are ex-
cited simultaneously in the periodically inhomogeneous system, regardless of the velocity. Inoue et al.
[11] investigated an electromagnetic levitation system subjected to a harmonic external force.

1.3. Aim and Scope

This thesis focuses on determining the stable domain of the Hyperloop system within the plane of
control parameters for the PD controller used in the electromagnetic suspension. A parametric study
is conducted to analyse the influence of the various parameters on the stability boundaries. The ex-
amined parameters are the vehicle’s velocity, the bending stiffness, the amplitude and wavelength
of the surface roughness, and the aeroelastic force. This analysis provides an understanding of the
factors affecting the Hyperloop’s stability.

The first objective is to examine the stability of an infinite Euler-Bernoulli beam that is continuously
supported by a viscoelastic foundation and subjected to a moving mass suspended from the beam
through the electromagnetic suspension. The mass is subjected to a constant aeroelastic force. In
this model, the tube is also considered as part of the guideway, therefore disregarding shell dynamics.
This analysis aims to show how the constant aeroelastic force influences the stability of the system, in
combination with the electromagnetic and wave-induced instability mechanisms.
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The second objective is to analyse the stability of an irregular infinite Euler-Bernoulli beam that is
continuously supported by a viscoelastic foundation and subjected to a moving mass suspended from
the beam through the electromagnetic suspension. The irregular profile of the guideway is approxim-
ated using a cosine function. This analysis focuses on the influence of parametric resonance on the
stability boundaries, and how these stability boundaries change when the amplitude and wavelength of
the irregular guideway profile are varied. This system is compared to the 1.5-degree-of-freedom (DOF)
electromagnetically suspended system with an oscillating base to evaluate its accuracy in approximat-
ing the behaviour of more complicated systems.

The third objective is a combination of the first and second objectives, by introducing the constant
aeroelastic force into the system with the irregular guideway profile. This analysis examines how the
constant aeroelastic force influences the regions of parametric resonance induced by the irregular
guideway profile and the interplay between aerodynamic, electromagnetic, and wave-induced instabil-
ities. This model is compared to the 1.5 DOF system that is subjected to a constant aeroelastic force, to
evaluate whether the 1.5 DOF system can approximate the behaviour of the more complicated system.

The fourth objective is to examine the stability of an electromagnetically suspended mass with an
oscillating base that is subjected to a modulated aeroelastic force. This analysis provides insights into
how the parametric resonance region is influenced by the interaction between the oscillating base and
the modulated aeroelastic force, assessing whether these actions suppress or amplify parametric in-
stability.

1.4. Research Questions
The research questions answered in this study are:

1. How does the aerodynamic instability mechanism change the stability of the Hyperloop system,
when initially only considering electromagnetic and wave-induced instability mechanisms?

2. How does the irregular guideway profile impact the stability of the Hyperloop system when con-
sidering the electromagnetic and wave-induced instability mechanisms?

3. How does the aerodynamic instability mechanism impact the stability of the Hyperloop system
when considering the effects of an irregular guideway profile along with electromagnetic and
wave-induced instability mechanisms?

4. How does a modulated aeroelastic force influence the parametric instability of a system subjected
to an oscillating boundary?

5. To what extent is the electromagnetically suspended mass system with an oscillating base cap-
able of approximating more complicated systems that include beam dynamics and an irregular
guideway profile subjected to a constant aeroelastic force?

1.5. Report Outline

This thesis consists of the following chapters:

Chapter 2 provides an overview of the theoretical framework. The solution methods for the various
instability mechanisms are discussed and explained.

Chapter 3 describes the system of the continuously supported Euler-Bernoulli beam with an electro-
magnetically suspended moving mass and constant aeroelastic force. The system is solved in the
Laplace-wavenumber domain, which is also explained in this chapter.
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Chapter 4 describes the irregular Euler-Bernoulli beam with continuous support under an electromag-
netically suspended moving mass and constant aeroelastic force. The system is solved using a com-
bination of the exponential harmonic balance method and Floquet’s theorem, with an explanation of
this method in this chapter.

Chapter 5 focuses on the electromagnetically suspended mass on an oscillating base subjected to a
modulated aeroelastic force. The system is solved using Floquet’s theorem, which is explained in this
chapter.

Chapter 6 presents the results of the systems described in the previous chapters. The results are then
discussed, highlighting the most important observations.

Chapter 7 presents the conclusions, answering the research questions.

Chapter 8 follows with the recommendations for future research.



Theoretical Foundation

This chapter presents the important theories used in the thesis. First, the concept of stability and
instability is explained, how they can be determined and what equilibrium points are. Next, limit cycles
and bifurcations are discussed. Hereafter, the primary instability mechanisms are clarified along with
the equations of motion that are used in the analysis. Finally, parametric instability is described, along
with an explanation of Floquet’s theorem.

2.1. Stability and Instability of Two-Dimensional Linear Systems

2.1.1. Equilibrium Points
Differential equations of dynamical systems can be written in the form [14]:

i = f(z,i,t) or i=f(z,) (2.1)

Where z is the displacement, # is the velocity, # is the acceleration and f is the applied force, which
may or may not depend on time, ¢. These differential equations are categorised into two types [14].

» Autonomous differential equations do not have time dependence explicitly in the forcing.

» Non-autonomous or forced equations where time appears explicitly in the forcing.

A mechanical system is in equilibrium when its state remains unchanged over time. This condition is
met when & and # are zero, such solution is called a constant solution or fixed point. Non-autonomous
equations usually do not have equilibrium states because of the continuous input of energy through the
forcing term, although equilibrium states can still occur [14].

The constant solutions can be obtained by solving the problem [14]:

f(z,0)=0 (2.2)

The general solution of linear autonomous plane systems is obtained by analysing the determinant
of the matrix representing the linear system [14, 31]. Consider the system:

t=ar+by, y=cxr—+dy (2.3)
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This system can be written in matrix-vector form:

&= Az with A:{“ b}, d,»:m, a::m (2.4)
c d Y y
The solutions of the two linear differential equations have the form [14]:
z(t) = vie, y(t) = vpe™ (2.5)

where )1, )\ are the eigenvalues and v, v, are the corresponding eigenvectors. A;, A2, v1 and
v, are determined by setting the determinant of matrix A to zero, providing nonzero solutions for the
variables [14].

a—A b
[A—AI]:det[ . dA] =0 (2.6)
This results in the characteristic equation:
A —pA+q=0 (2.7)
where
p=a+d, q=ad-—bc (2.8)
Put
A=p?—4q (2.9)
The eigenvalues are then given by:
Moo = 2(p+ AV?) (2.10)

The stability of equilibrium points can be categorised into different types, known as phase paths of
linear autonomous plane systems, illustrated in Figure 2.1. The values for p, ¢ and A determine the
classification of the equilibrium point [14].

N Stable spirals
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— Z W
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Figure 2.1: Classification of the equilibrium points
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The classification of the equilibrium points can also be based on the eigenvalues. Referring to the
solutions 2.5, the exponent in the solutions determines whether it grows or decays over time, which
is an important criterion that is used in the stability analysis. Assuming A\; > Ao, Table 2.1 shows the
classification for equilibrium points based on the eigenvalues [14].

Equilibrium state | Eigenvalue
Saddle point A <0< )\
Stable node 0>X >\
Unstable node 0< A <)
Stable spiral A =—a+fi, da=—a— i
Unstable spiral M =a+ b, o=a—[Fi
Centre AL =01, Ao = —0i

Table 2.1: Classification of the equilibrium points based on eigenvalues

Nonlinear systems

The state of nonlinear systems can be analysed similarly to linear systems by first linearising them
at the equilibrium points. After applying a small perturbation to the system, the response either returns
to the equilibrium point or deviates from it, revealing the stability of the equilibrium point, and making
the equilibrium point an important aspect of the analysis. Linearisation can be performed using Taylor
expansion. Performing Taylor’s expansion at point x yields [13]:

O (@ — o) + O(22) 2.11)

Performing Taylor’s expansion for a function of two variables, in point (x,yo) gives:

fz(20,%0) (z

o Bltwi) ) o) voud)  @12)

f(z,y) = f(wo,0) +

After linearisation, the characteristic equation can be formulated to determine the eigenvalues and
describe the state of the system.

N-dimensional linear system

Linear systems can have more than two dimensions. To determine the equilibrium state of an n-
dimensional linear system, the Jacobian matrix, similar to that used for the two-dimensional system
must be formulated. The matrix is now n x n with n eigenvalues. The same approach applies to non-
linear systems with n-dimensions, which must first be linearised at the equilibrium point [14].

2.1.2. Limit Cycle
Limit cycles are closed isolated paths, meaning that there are no other closed paths near the limit
cycle. There are three types of limit cycles.

1. Stable limit cycles: When a system is perturbed from its regular oscillatory state, it returns to
the limit cycle. This indicates stability for perturbations applied on either side of the limit cycle.

2. Unstable limit cycles: When perturbed, the trajectories repel away from the limit cycle on both
sides, indicating instability.

3. Half-stable limit cycle: The system returns to the limit cycle on one side and repels away on the
other side when perturbed.
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stable unstable half-stable
limit cvcle limit cycle limit cycle

Figure 2.2: Limit cycles

Limit cycles are phenomena where a system oscillates in the absence of an external periodic forcing,
occurring only in nonlinear systems. While linear systems can also have closed paths, these paths are
not isolated. Therefore, a closed orbit z(¢) in a linear system can be surrounded by multiplications of
that closed orbit, cx(t) by any constant ¢ # 0. In linear systems, the initial conditions determine the
amplitude of the oscillations. For limit cycles, however, the oscillations are determined by the charac-
teristics of the system, making them independent of the initial conditions. [31].

Figure 2.3: Higher order of the closed orbits for linear systems

2.1.3. Bifurcations

The stability of systems can change when the control parameters are changed. The transition from
stability to instability happens when the real part of one of the eigenvalues becomes positive, leading
to a qualitative change known as bifurcations. Several bifurcations exist, for example saddle-node
bifurcation, transcritical bifurcation, pitchfork bifurcation, homoclinic bifurcation, hetroclinic bifurcation
and Hopf bifurcation. The properties of the Hopf bifurcation are highlighted in this section [31].

Hopf bifurcations can occur for systems with two or more dimensions. There are two types of Hopf
bifurcations: supercritical Hopf bifurcations and subcritical Hopf bifurcations [31].

Consider a system that depends on the control parameter . For small values of y, the system
shows damped oscillations. As p increases, it can influence the system’s stability. When p exceeds a
critical value p., the equilibrium state loses stability because the real part of an eigenvalue has become
positive. Figure 2.4 illustrates the formation of limit cycles around the previously stable steady state.
This phenomenon is known as a supercritical Hopf bifurcation [31].
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NN~ @ pu<p,

(b) > p,

Figure 2.4: Amplitude variation in a system undergoing a supercritical Hopf bifurcation

Supercritical Hopf bifurcation can also be visualised using a phase portrait. Consider the following
system in polar coordinates:

6=-1 (2.13)

7= T(,u - T2)7

Figure 2.5 shows that when p < 0, the origin is a stable spiral. However, when p > 0, the origin
becomes an unstable spiral surrounded by a limit cycle [14].

7 /
7
N

), )

0 u=0

Figure 2.5: Development of a limit cycle in a supercritical Hopf bifurcation

I u

In contrast to the supercritical Hopf bifurcation, the changes of the subcritical Hopf bifurcation are
more unexpected and can result in more dangerous situations in engineering applications. After the
subcritical Hopf bifurcation, the trajectories may shift to a distant attractor, which could be a fixed point,
another limit cycle, infinity, or — in systems with three or more dimensions — a chaotic attractor. To il-
lustrate the occurrence of a subcritical Hopf bifurcation, consider the following two-dimensional system

where . is the control parameter [31]:

5 (2.14)

F=pr 41—

0=w+brd (2.15)

The phase portraits show that for i < 0, two attractors are present: a stable fixed point and a stable
limit cycle, with an unstable limit cycle in between them. The position of the unstable limit cycle shifts
as p changes. As pu increases, the amplitude of the unstable limit cycle decreases until the cycle en-
circles the stable fixed point at the origin. At p = 0, a subcritical Hopf bifurcation occurs, where the
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amplitude of the unstable limit cycle has reduced to zero, surrounding the origin. As a result, the limit
cycle becomes the only attractor, as illustrated in Figure 2.6 [31].

<0 © >0

Figure 2.6: Transition of a subcritical Hopf bifurcation

2.2. Harmonic Balance Method

Nonlinear systems are complicated to solve analytically. To address this challenge, nonlinear ap-
proximation theories can be used. Harmonic balance is a powerful method to approximate a periodic
solution of nonlinear systems by assuming that the solution takes the form:

k
x(t) = ap + Z(akcos(k‘wt) + bsin(kwt)) (2.16)
k=1

The objective is to determine the parameters ag, ax, b and w. For example, take the general equation:

i+eh(z,z)+x=0 (2.17)
The solution for z(t) is looked for in the form acos(wt), so h(x,4) can be expressed as a Fourier series.
h(z,z) =~ h(acos(wt), —awsin(wt)) = Ay (a)cos(wt) + Bi(a)sin(wt) 4+ higher harmonics (2.18)

where

2ﬂ/w
Ai(a) = / h(acos(wt), —awsin(wt))cos(wt) dt
0

ENRS

SRS

271'/w
/ (acos(wt), —awsin(wt))sin(wt) dt
0

The equation becomes:

(1 — w?)acos(wt) + €A (a)cos(wt) + eBy(a)sin(wt) + higher harmonics = 0 (2.19)
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The equation is valid for all ¢ only if

(1—wHa+eAi(a)=0 and Bi(a) =0 (2.20)

A;(a) and By (a) are represented by the Fourier series. The accuracy of the solutions depends on
the number of harmonics, with higher harmonics providing a more accurate solution to the nonlinear
system [14].

The harmonic balance method can also be applied using the exponential form [15]. The steps
remain the same as those used with the trigonometric functions. The only difference is that the approx-
imated periodic solution is now expressed as:

k
= Z arexp(ikwt) + bpexp(—ikwt)) (2.21)

2.3. The Instability Mechanisms

2.3.1. Electromagnetic Instability

Hardt Hyperloop uses an EMS that relies on attraction towards the track [8]. The EMS generates a
nonlinear force, connecting the vehicle to the guideway. The controller used by Hardt is not the same
as the one applied in this thesis. To understand the system’s fundamentals, a simplified PD controller
is used in the analysis. The governing equations for the electromagnetic force are described in [36].

Feas(t) = O Eg (2.22)

I(t)+ 2(0)(R 2C ((t))> (t) = Z(—QU(t) (2.23)
U(t) =Ugs + Kp(z(t) - Zss) + Kdz.f(t) (224)
c=" NzA’” (2.25)

The EMS uses a PD controller to maintain the vehicle at a specified distance from the track, de-
noted as z,, which is set to 0.015 m by Hardt Hyperloop. PD controllers use both position and velocity
feedback, represented by the variables K, and K, respectively. K, corresponds to the proportional
gain, controlling the error at time ¢ and can be interpreted as the coefficient that controls the present
state of the system. K, is proportional to the derivative of the error, controlling the rate of change of
the error, influencing the future state of the system [1].

Furthermore, the nonlinear electromagnetic force, Fi(t), is a function of the current intensity ()
and the position of the vehicle z(¢). C is a constant that depends on the magnetic permeability in va-
cuum i, the number of coils IV, and the pole area of the electromagnet A,,,. U (t) represents the voltage
applied to the system, which depends on the voltage required to maintain the vehicle at the desired
distance from the guideway, noted as U,,. Equation 2.24 shows that the PD controller is applied to the
voltage.
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2.3.2. Wave-induced Instability

Wave-induced instability is the phenomenon where waves are generated in the beam by a moving
object, causing vibrations in both the beam and the moving object itself. Wolfert has analysed the effect
of moving point loads in depth [35]. Using the frequency-wavenumber relation and the kinematic invari-
ant, valuable insights can be gained regarding the behaviour of waves in one-dimensional elements.
For an Euler-Bernoulli beam supported by a continuous Winkler foundation and subjected to a moving
point load, the governing equation can be written as:

pAw(x,t) + ETw"" (z,t) + kyw(z,t) = —Pd(z — vt) (2.26)

P is the magnitude of the force. w(x,t) is the displacement of the beam as a function of position
x and time t. k; is the stiffness of the Winkler foundation, pA is the mass per unit length of the beam,
and E1 is the bending stiffness. The Dirac delta function, §(z — vt), marks the location of point load P,
atz = vt.

The dispersion curve and kinematic invariant are derived by rewriting the equation of motion into
the frequency-wavenumber domain. This transformation is obtained by applying the Fourier transform
with respect to both position = and time ¢. This results in the dispersion curve and kinematic invariant:

E* — pE—il_wQ + % =0 and w=kv (2.27)

Figure 2.7: Dispersion graph with kinematic invariants

In Figure 2.7, three kinematic invariants are illustrated, each corresponding to different velocities of
the moving load. The first kinematic invariant has a subcritical velocity, where the velocity of the load
is lower than the critical velocity (v < v..). In this report, v.,. refers to the velocity at which the moving
vehicle becomes supercritical. The critical velocity is expressed as:

S
&
~

(2.28)
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At subcritical velocities, the dispersion graph and kinematic invariant do not intersect, meaning there
are no propagating waves in the beam. Only localised waves, also known as evanescent waves, are
present around the point load. No significant energy is transferred into the beam through propagating
waves. The evanescent waves decay exponentially but travel along with the point load [35].

9@

v

Figure 2.8: Steady-state solution at subcritical velocities

The second kinematic invariant corresponds to the supercritical case, where the velocity of the load
exceeds the critical velocity (v > wv.,.). In this case, the kinematic invariant intersects the dispersion
graph four times, indicating that waves propagate both in front of and behind the moving load. Waves
propagate in front of the moving load when the group velocity of the waves is higher than the load ve-
locity. Waves propagate behind a moving load when the group velocity is lower than the load velocity.
The group velocity of the waves is the angle between the dispersion curve and the kinematic invariant
at the intersection point [35].

-

P
v
v b

Figure 2.9: Steady-state solution at supercritical velocities

The wave propagation at supercritical velocities shows a significant difference from the subcritical
case, where only evanescent waves were present. At supercritical velocities, the moving load gener-
ates a more complex wave pattern with both leading and trailing waves, indicating a higher level of
interaction between the moving load and the beam.

When the load velocity equals the critical velocity (v = v,,.), the kinematic invariant becomes tan-
gent to the dispersion graph. In this case, resonance occurs, where the frequency of the generated
waves matches the beam’s natural frequency. As a result, energy is continuously transferred to the
beam, causing the response of the beam to grow unbounded. Therefore, a steady-state solution does
not exist [35].

To this point, the focus has been on oscillations in the Euler-Bernoulli beam caused by the moving
load. However, the oscillations in the Euler-Bernoulli beam can also influence the oscillations of the
moving object. Metrikine [21] found that the oscillations of the moving object depend on the waves
radiated by the beam. The types of waves that can be radiated are either normal Doppler waves or
anomalous Doppler waves. The radiation of normal Doppler waves reduces the energy associated with
the lateral oscillation of the moving object because of the energy dissipation in the beam, resulting in
more stable oscillations of the moving object. In contrast, anomalous Doppler waves increase the en-
ergy of the lateral oscillation. The continuous input of energy into the moving object has a destabilising
effect, potentially leading to instability.
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2.3.3. Galloping

Galloping is an aerodynamic instability mechanism that commonly occurs in bluff bodies, where the
structure oscillates perpendicular to the wind direction. When a structure moves vertically with velocity
v and is subjected to a horizontal wind with velocity V, it experiences the wind at an angle tan‘l( Z), as
illustrated in Figure 2.10. In the case of the Hyperloop, the wind velocity is assumed to be equal to the
velocity of the vehicle, meaning that influences from outside the tube are neglected. When galloping
occurs, the load can maintain itself through the motion, but this depends on the shape of the structure,
the wind velocity and the damping characteristics [3, 30].

Forc®

Vv

=3
Y {' = v wir

Figure 2.10: Horizontal wind and a circular cross-section moving downwards

A structure subjected to aeroelastic forces experiences two primary wind components. The first
component is the wind factor parallel to the wind direction, known as drag, which resists the horizontal
motion of the structure. The second component is the wind factor perpendicular to the wind direc-
tion, known as lift, which can either stabilise or destabilise the structure, depending on the interaction
between the wind and the shape of the structure. The expressions for the drag and lift force are as
follows:

Fr, = = pair Ay C1, (2.29)

1
2
1
Fp 2,0&7,"141)1) Cp (2.30)

C, refers to the lift coefficient, Cp is the drag coefficient, A, is the frontal area of the structure, pg;,
is the density of air and v is the wind velocity.

The vertical force component is required for the calculations, which is the resultant of the drag force
and the lift force, depending on the angle of attack « [30].

F, = Fr(a)cos(a) + Fp(a)sin(a) (2.31)

For small values of «, the following approximation is made:

1
F, = 7pairAvU2 (dCZ> (232)
0

2 do

The sign of (4Z=)  determines the damping characteristics of the system. If (%=) > 0, it indicates
that the aeroelast|c force and motlon are in opposite directions, reducing the amplitude of the oscillation
and stabilising the system. If ( o ) < 0, the force and motion are in the same direction. This leads to
an amplification of the oscillations, making the system unstable. In this thesis, the aeroelastic force is
assumed to be destabilising [30].
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dCz> >0 (Positive damping) (2.33)
da /
dc, . .
< 0 (Negative damping) (2.34)
da /

2.4. Parametric Instability

Perfect constructions do not exist in reality. Guideways contain imperfections due to factors such
as the foundation or surface roughness. These imperfections can sometimes be present in a periodic
pattern, introducing time-dependent variations to the system parameters. These small periodic vari-
ations can generate a significant response or even resonance, also known as parametric resonance
[20, 24].

Parametric resonance poses a more dangerous risk compared to classical resonance. In classical
resonance, the amplitude of the oscillations increases linearly. However, with parametric resonance,
the amplitude grows exponentially, leading to a rapid and potentially catastrophic response.

An important discussion is the role of damping on the two types of resonances. In classical res-
onance, damping can significantly reduce the oscillation amplitude, stabilising the system. In contrast,
damping does not eliminate parametric resonance but it shifts the conditions under which it occurs.
Metrikine [20] discovered that an increase in the damping can actually widen the main instability zone.

2.4.1. Floquet Theory

Linear ordinary differential equations with periodic parameters can be analysed using Floquet’s
theorem. To determine the stability boundary for a multi-degree-of-freedom system, the Floquet ei-
genvalues are evaluated. The stability of the system depends on the real part of one of the Floquet
eigenvalues. If the real part is positive, the system is unstable; if the real part is negative, the system
is stable. Multi-degree-of-freedom systems with time-dependent parameters can be expressed in the
following form:

&=Az, Alt)=A(lt+T), T="— (2.35)

where x is a vector with length 2N, A(t) is a 2V x 2N periodic matrix and {2 is the oscillation fre-
quency. Floquet's theorem states that the fundamental matrix solution U (t) can be expressed as:

U(t) = P(t)exp(tF) (2.36)

where P(t) = P(t+1T')is a 2N x 2N matrix periodic in time, and F' is a complex-valued, time inde-
pendent 2N x 2N matrix. The Floquet eigenvalues of matrix F' determine the stability of the system. If
any of the Floquet eigenvalues has a positive real part and is greater than zero, then U (¢) grows over
time, indicating instability. If all Floquet eigenvalues are negative, the system remains stable.

The Floquet eigenvalues can be determined numerically by introducing a state transition matrix in
the following form:

B(t,tg) = U U () (2.37)
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The fundamental matrix solution is periodic in time. Therefore, evaluating the system’s response
over one period T is sufficient. After substituting ¢t = 7" and ¢, = 0 into equation 2.36. This expression
can then be substituted into equation 2.37, resulting in:

®(T,0) = P(T)exp(TF)P~(0) = P(0)exp(TF)P~'(0) (2.38)

The beauty of linear systems is that the stability is independent of the initial conditions. Thus, any
initial conditions can be selected to evaluate the Floquet eigenvalues of matrix F'. For convenience,
the identity matrix is chosen as the initial conditions, resulting in U(0) = P(0) = I. This simplifies
equation 2.38 to:

®(T,0) = exp(TF) (2.39)

This final expression is referred to as the Floquet multiplier. A system is considered stable when
the absolute value of the Floquet multiplier is smaller than 1, and unstable when it exceeds 1.

The exponential harmonic balance method can be used in combination with Floquet’s theorem, us-
ing the principle that the transition between stable and unstable states occurs when the absolute value
of the Floquet multiplier equals 1. To determine the system’s stability state, the solutions of the field
quantities can be written as non-decreasing and bounded solutions, aligning with Floquet’s theorem:

z(t) = ( > Xkexp(iwkt))exp(z'wt) (2.40)

k=—N

wr = kwy

where exp(iwt) is the Flogquet multiplier evaluated at 1, and N denotes the number of harmonics
considered, and w; is the excitation frequency. After setting up the assumed solutions for all field quant-
ities, they can be substituted in the equations of motion. To create a square system of equations, the
equations of motion are multiplied with exp(iw,,t) and integrated over T'. This approach groups the
terms with the same components, which is similar to the orthogonality theorem. To assess the sys-
tem’s stability, the determinant of the resulting matrix must be set to zero, which allows solving for the
unknown natural frequency w. In chapter 4, this theorem is applied to our specific problem.



Stability of a Continuously Supported
Euler-Bernoulli Beam with an
Electromagnetically Suspended Moving
Mass and Constant Aeroelastic Force

3.1. Model Formulation

The system consists of a continuously supported, infinitely long Euler-Bernoulli. The beam has a
bending stiffness, FI, and a mass density per unit length pA. The foundation includes both springs, &y,
and dashpots, ¢;,. The vehicle is modelled as a point mass, M, and is suspended from the beam via
an electromagnetic force, Fig(t), which operates in attraction. The mass moves in the z-direction at
a constant velocity v. Since the tube is not completely vacuum-sealed, the vehicle experiences a con-
stant aeroelastic force with the same velocity as the vehicle’s. Gravitational acceleration is denoted by
g. The beam’s displacement is a function of both space and time denoted by w(z, t). The displacement
of the mass is measured relative to the beam and depends only on time and is denoted by z(t). This
system is referred to as system 1 through the thesis.

Figure 3.1: System schematics - Continuously supported infinite Euler-Bernoulli beam subjected to an electromagnetically
suspended moving mass under a constant aeroelastic force

The equations of motion of this system are given in Chapter 2 and summarised here. The moving
reference frame is used for convenience [6]. £ is the position of the mass and is expressed as £ = = —wt.
The displacement of the beam is represented in the moving reference frame as w(¢, t).

pA(D — 20 + v*w”) + ETw” + ey — vw') + kyw = Frar(£)5(€) (3.1)

17
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MZi(t) = —Fpum(t) + Mg + pi(t) (3.2)
Fru(t) =C ;((tt)) (3.3)
) + A%) (R _2C AAQ(zg))I(t) _ AQ%)U(t) (3.4)
where

A(t) = =(t) - wo(t) (3.6)
Ass = Zss — Wo,ss (37)
uw= %pm—rvAv (gg) (3.8)

0

The electromagnetic force, Fpj(t) depends on the constant C, the current I, and the air gap A,
which is the distance between the mass and the beam. Therefore, the displacement of the beam at the
location of the moving mass is considered, denoted as wy = w(§ = 0). The aeroelastic term, 1 acts as
negative damping, injecting energy into the system. It is assumed that the vehicle’s horizontal velocity
is significantly larger than its vertical velocity, allowing the use of the given formula for . Moreover, it
is assumed that the vehicle moves at a constant velocity.

This model is a simplification of reality. The tube and columns are not included explicitly. Their
effects are included in the beam’s mass and the foundation stiffness. This approach follows that in
the paper of Faragau et al. [6]. The tube is modelled as a beam with an additional 10% to account
for the mass of the guidance system. The mass of the columns is also considered in the calculation
of the beam mass, where 10% of the column mass is distributed over the span length. The stiffness
of the viscoelastic foundation depends solely on the columns. To account for the soil’s flexibility, 50%
of the column stiffness is considered. This stiffness is then divided by the span length to model the
continuous foundation.

3.2. Solution Method

The system is nonlinear because of the electromagnetic force. To analyse the stability of the system,
the linearised form is used. An equilibrium point is selected for the linearisation because the system
can have multiple equilibrium points. Around the steady state, a perturbation is added, denoted by the
subscript "tr”, which is applied to describe the system’s response and analyse its stability.

wo(t) = wo,ss + Wo,¢r(t) (3.9)
2(t) = zss + 20 (1) (3.11)

](t) =Is + Itr(t) (312)
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Equations 4.3 - 4.5 are linearised using Taylor expansion. For the displacement of the beam,
Green’s function is applied, leading to the following expressions:

t
wo,ir(T) = /0 Go(t — T)Fyr (1) dT (3.13)
MZ4, (1) = —Fir(T) + p124,(7) (3.14)
2
F.(1) = zggss (?S: L (7) — 2ze(7) + wo,fm(r)) (3.15)

g

In(7) = 5 (—Itr(T)R + Ky (20 (1) — wo.ur (7)) + (Kd + 225) Gar(T) — wo,tr(T))) (3.16)

S8

The equations are linearised around the equilibrium point, (zss, Iss). When the system is disturbed
near the equilibrium point, its response depends on the stability of that point. In the case of a stable
equilibrium point, the system returns to equilibrium after disturbance. However, if the equilibrium point
is unstable, the system diverges. By examining the eigenvalues at this point, a stability analysis can
be performed, reducing the complexity of the problem.

The stability analysis is conducted through an eigenvalue analysis in the Laplace domain. First,

equations 3.13 - 3.16 are transformed into the Laplace domain. After this, the equations are expressed
in matrix form. In the Laplace domain, the equations of motion are noted as:

Wi = Gpp(s)Fi(s) (3.17)
. 2012, 2012, 201, -
Fir(s) = A5 Do — A?’RS fr R0 Iy (3.18)
2012, 2012, R Te) A .
A3 Wo tr + (M32 - us) 2 + ATI” = M(520,tr + 20,¢r) (3.19)

(KpAﬁs T (K4A2, + 20155)5) ) (K,,Ais + (KaA2 +2C1,,)s )Z
0,tr — tr

20 A —2CAq
AR K4 A2 +2CT (3:20)
ss 2 d ss
Ly = —2 —=— — I
+ (8 + 20 ) tr QCASS (ZO,tr wO,t'r‘) + 0,tr
The system of equations, in matrix form, is expressed as:
A 2C12, A 2012, A Cl.e
1-Grs(s) 5 Gep()xr  —Cen(9)5) fig, 0
% Ms?2 — % — ps % Zitr = M(SZQ_’W + 730,1&7")
KpA% +(KaA2 42C1L,)s  K,A2 +(KqAZ.4+2C1,,)s AR I;, v
2CA., —2CA.,, s+ 5E

| K42+ 201,

U = 5CA.. (20,tr — Wour) + Lo.tr
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The characteristic equation is derived by equating the determinant of the matrix to zero. In the mat-
riX, zo.tr, 20,4 @nd Iy 4 are the initial conditions of the mass and current at = = 0. Since the stability is
independent of the initial conditions, it is assumed that the mass and beam are initially undisturbed. The
eigenvalues must be computed numerically since the characteristic equation is neither a polynomial nor
a transcendental equation, which implies that there are a finite number of roots. To determine the ei-
genvalues, Matlab’s built-in function fsolve is used. This solver makes use of the Newton-Raphson
method to find the zero crossings. Therefore, it requires initial guesses for s to begin the search for the
solutions. Combinations of K, and K, with a positive real part are stored to form the stability boundary.

3.2.1. Green's Function

The Green'’s function represents the system’s response to a Dirac delta pulse. The advantage of
using Green'’s functions is that they are system-dependent. This allows for the determination of the sys-
tem’s response to any applied force. The Green’s function is derived using Cauchy’s integral theorem.

The Green'’s function is derived in the Laplace domain. First, the Laplace transform with respect to ¢
and the Fourier transform with respect to £ are applied. The boundary conditions are that the system’s
response is zero at infinity, because of the viscoelastic foundation. Since the stability is independent of
the initial conditions, it is assumed that w(&,0) = w(£,0) = 0. The Fourier and Laplace transform are
[19]:

oo

Wio(kys) = /_ Vil s)exp(—ike)de, Vi(€,s) = / w(E, t)exp(—st)dt (3.21)

— 00

Applying these transformations to equation 3.1 results in the following expression:

(3.22)

2 . . 2 n
4 pAv* o B 2ipAvs + icpv pAs® + ky + cps _ Fpum(s)
<k Tl TR EI Wik, s) = =57

The solution in the Laplace domain is obtained by applying the inverse Fourier Transform to the expres-
sions, resulting in:

V&) =S%Er | Dik,s)

dk (3.23)

where

o pAv? 2 2ipAvs + icbvk n pAS? 4+ ky + cps

Dk s) El El El

(3.24)

Since the response is determined at the contact point, £ = 0 is substituted in equation 3.23, leading
to the following result:

V(0,8) = Fn(s)gep(0,5), gep(0,5) = 27T1EI [ D(; s)dk (3.25)
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gen(0,s) is the Green’s function for the Euler-Bernoulli beam in the Laplace domain, which, as ex-
pected, is independent of the applied force. The integral can be computed using Cauchy’s integration
formula, giving the following result:

A, k= kn
955(0.9) = 51 2 0 GG Rk~ k) R

(3.26)

The equation D(k, s) = 0 has four roots, denoted as &, and can be located in the complex plane as
illustrated in Figure 3.2. At ¢ = 0, the response in front of and behind the moving load is symmetric,
this allows for the use of either of the planes for the contour integration. For these calculations, only
the poles in the upper half of the plane are considered. In the summation, m is set to two, reflecting
the number of poles used in the contour integration.

Im(k)

Re(k)

Figure 3.2: Contour C in the upper half of the complex plane with an example of the k-roots



Irregular Euler-Bernoulli Beam with
Continuous Support under an
Electromagnetically Suspended Moving
Mass and Constant Aeroelastic Force

4.1. Model Formulation

Figure 4.1 illustrates the irregular Euler-Bernoulli beam, where the only difference compared to
system 1 is the addition of irregularities in the guideway. Most equations remain the same. Time-
dependency is now introduced in A,,, I,; and Uss. This system is referred to as system 2. The irregu-
larity is characterised by a cosine function.

kp
w, _‘-ﬁ_‘ .
r(x) pA, EI
— |,

2(8) | @_.E pE—
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Figure 4.1: System schematics - Continuously supported irregular infinite Euler-Bernoulli beam subjected to an
electromagnetically suspended moving mass under a constant aeroelastic force

r(z) = %A(l —cos(kz)), k= 2% (4.1)

The irregular guideway profile influences the air gap at the contact point, x = vt. The equations of
motion now become:

pA(i — 201 + v*w") + ETw™ + kyw = Far (1)8(z — vt) (4.2)

ME(t) = —Fpu(t) + Mg + pi(?) (4.3)

22
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Fpu(t) = C 52((?) (4.4)

I(t) + A%) (R —2C AAQ((%)I(t) = AQ%?U(t) (4.5)

U(t) = Uss + Kp(A(t) = Ags(t)) + Ka(A(t) — Ays(t)) (4.6)
A(t) = 2(t) — wo(t) — ro(t) (4.7)

wo(t) = w(z = vt, 1) (4.8)

ro(t) = r(z = vt) = %A(l — cos(wit)), wi = kv = 2%“ (4.9)
Ays(t) = zss — wo,ss — 1o() (4.10)

Note that z;; and wy s are time-independent. wy s, is the steady state response of an Euler-Bernoulli
beam under a moving constant load. Assuming that z,, is constant, the steady-state field parameters
are given in the following form:

Mg ™ 1 C(w\' A, ke
Woss = o 0ET /_Oo Aoy “@v)= (v) B T EI (4.11)
2
L.(f) = ,/%ss(t) (4.12)
Uss(t) = RI,o(1) (4.13)

The system without the constant aeroelastic force is also analysed. Figure 4.2 illustrates the system.

kp

X g

pA,EI

Figure 4.2: System schematics - Continuously supported irregular infinite Euler-Bernoulli beam subjected to an
electromagnetically suspended moving mass

The only difference in the equations of motion for this system is the absence of the constant aer-
oelastic force in the equation of motion of the mass:

MZ%(t) = —Fpu(t) + Mg (4.14)
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4.2. Solution Method

System 2 is solved using a combination of Floquet’'s theorem and the exponential harmonic balance
method. The linearised equations for system 2 are noted as:

pAty,. + ETwy) + kywy, = Fyd(z — vt) (4.15)
Mz, (t) = —Fir(t) + pzer(t) (4.16)
2
Fur(t) = QZ;fjg) <§:$ I(t) - Aﬂ(t)) (4.17)
_ RA(t) Ayt KyAg(t)  Agg(t)Ies(t)
Bt = (= 55 g e+ (B - S5 )20 @.18)
KAoo(t)  Io(t)\ ; '
+( 50 +Ass(t)>Atr(t)
where
Atr(t) = Ztr(t> - wO,tr(t) (419)

The solutions for the field parameters are assumed in a non-decreasing and bounded form in line
with Floquet’s theorem, as described in chapter 2. The solutions for the field parameters are expressed
as:

N

2 (t < Z Z,exp zwkt)>exp(iwt) (4.20)
N

Fp.(t < Z Frexp zwkt)> exp(iwt) (4.21)

wo tr( ( Z Wiexp( zwkt)> exp(iwt) (4.22)

k=—N

I (t) = < Z Ikexp(zwkt)> exp (iwt) (4.23)

k=—

To find the stability boundary, the Floquet multiplier is evaluated at 1, since this value represents the
threshold value between stability and instability. In the equations, the natural frequency w is unknown,
and wy, is:

Wi = kwy = k% (4.24)

The assumed solutions can be expressed in a form that satisfies the equations of motion for both
the beam and the mass.
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N
2e(t) = Y Zrexp(iwyt) (4.25)
k=—N
N N
Fu(t)= Y Fexpliopt)= > (D,%M+iua;k)2kexp(iazkt) (4.26)
k=—N k=—N
N N
wour(t) = Y Frwpexpliopt) = (wiMHM@k)kakexp(mt) (4.27)
k=—N k=—N
N
Ip(t) = ) Ivexp(iot) (4.28)
k=—N

Note that wp = w + wy. In the equations, wj, is the response of an Euler-Bernoulli beam subjected
to a moving oscillatory unit load, which can be derived analytically, using Cauchy’s integration formula.

. . 1 L e 1 _ W 4 pA 2 ky
’U)k(ﬂ: = Ut,t) = mexp(zwkt) /;Oo m, A(w,wk,v) = < v ) —ﬁw + ﬁ (429)

The unknown variables in the equations are Fj, I, and w. These unknowns can be determined
from the expressions 4.17 and 4.18. The expressions can be reformulated to:

Fpr(t) = fi(t) Ity — f2(t)(2er — wo,tr) (4.30)
jtr + fS(t)Itr = f4(t)(ztr - wO,tT) + f5(t)('étr - wO,tr) (431)
where
 20I,(t) KAt At (1)
"0 =80 MO="5%0 " A (32
_ QCISQS(t) _ KdAss (t) Iss(t)
R0 =530 PO= "5 T AL 3
_ RAZ(t) — 20A(t)
f3(t) = 20D (4.34)

Substituting the assumed solutions into equations 4.30 and 4.31 results in the following equations:

a . N . al 1 .
k;N Frexp(iwgt) = fi(t) k;N Iyexp(iwgt) — fa(t) (k_z_:N (sz i wk) erxp(zwkt)> =0
(4.35)
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N

al 1
> (i@k + f3(t) Ivexp(icgt) = f4(t)< > ( —wk>erxp(z’wkt)>
k=—N

ey M3 + ipiy,

N (4.36)
+f5() ( Z (ka ¥ i —wk)i@kaexp(iwkt)>: 0

The Floquet multiplier can be factored out and dropped because it is present in all the terms, sim-
plifying the equations to:

al N
k:Z_N Frexp(iwgt) = k_Z_N Iexp(iwgt) — ( Z (ka i — wk> erxp(iwkt)> =0
(4.37)
N N '
Z (i + f3(t)) Ixexp(iwpt) = fa(t) ( Z (]\/[oﬂ—l—z — wk) wap(z‘wﬂ))
- o e (4.38)

N
+/f5(t ( Z (ka ¥ i - wk)i@kaexp(iwkt)> 0

The natural frequency w is unknown, except at parametric resonance. The following choices are made:

T :w= (4.39)
Th:w=-w (4.40)

For the remaining part of the stability boundary, w is unknown. Therefore, a squared system of
equations is formed using expressions 4.37 and 4.38. These expressions are multiplied by exp(iw,,t),
where m = —N...N, and integrated over the period T' = f}—” This procedure isolates terms where
k = m which results in a fully populated matrix. By setting the matrix’s determinant to zero, the un-

known frequency w can be determined. Matlab is used to perform these calculations.

The parameters used in this research are presented in Table 4.1. These values are obtained from
the paper of Faragau et al. [6] and company Hardt Hyperloop [8].
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Parameter | Symbol | Value |  Unit
Mass per unit length pA 1.44x103 kg/m
Bending stiffness EI 2.50x10° Nm?
Foundation damping ch 2.00x10* Ns/m?
Foundation stiffness ky 2.76x107 N/m?
Vehicle mass M 7650 kg
Total resistance of coil R 9.71 Ohm
Constant C 0.05 Nm?2/A?
Desired airgap Zss 0.015 m
Initial voltage Uss 177.97 \
Air density Pair 1.29 kg/m3
Front area of vehicle A, 5.73 m?
Angular dependent air coefficient (%) -1.00
0
Surface roughness amplitude A 0.008 m

Table 4.1: Parameter values



Electromagnetically Suspended Mass
on an Oscillating Base Under a Varying
Aeroelastic Force

5.1. Model Formulation

Figure 5.1 illustrates the third system, where a Hyperloop vehicle with mass M is suspended from
an oscillating rigid base with frequency €, through the electromagnetic force Fr/(t). The mass is
subjected to a time-varying airflow, which introduces a time-dependent aeroelastic force F,(t). This
system is referred to as system 3. The equations of motion for the electromagnetic force are similar to
those of systems 1 and 2. However, due to the oscillating base, the air gap distance varies, which also
changes the equation for the voltage.

A cos(Qt)

I [/ /1]
Fgu (t)
2(6) ) @ RN

Fa(t)@@ Mg Y

Figure 5.1: System schematics - Electromagnetically suspended mass subjected to a modulated aeroelastic force

A(t) = z(t) — Acos(§2t) (5.1)
Ass(t) = 255 — Acos(2t) (5.2)
U(t) = Uss + Kp(A(t) = Ass (1) + Ka(A() — Ay (1)) (5.3)

With the addition of the oscillating base, the system has a time-dependent parameter, introducing
the possibility of parametric instability.

In reality, the airflow is not constant. In this system, the mass is subjected to an oscillating aer-
oelastic force. Interestingly, dolphins are capable of changing their body size to increase or decrease

28
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their frontal area, which helps maintain a laminar flow around their bodies and regulate body heat [29].
Inspired by this concept, a variable frontal area of the Hyperloop could potentially be explored to mit-
igate the effects caused by the aeroelastic oscillations. This concept might be applied in the future
as technology continues to advance. The oscillations of the aeroelastic force are represented by the
aeroelastic parameter, u:

w(t) = p1 + pocos(§2) (5.4)

Itis important to remember that the aeroelastic force acts as a destabilising input. When introducing
the oscillations to p, it is essential that . does not become negative. This would imply positive damping,
which could have a stabilising effect on the system. However, for completeness, the case where p5 is
bigger than p; is also analysed.

5.2. Solution Method

The stability of system 3 is analysed using Floquet’s theorem. Compared to system 1, the linearised
equations for system 3 are slightly different because of the time-dependent parameters. The equations
are noted as:

Mz (t) = —Fir(t) + p(t)Zer (1) (5.5)
20T (t) [ Ass(t)
F — SS “ I _ .
t’f(t) Ags(t) ( Iss(t) tT(t) ZtT‘(t) (5 6)
r K, Aéb(t) Asé(t)lss(t) KdAss(t) Ias(t) .
1 = ' -
i) ( 2C A )0\ T TaLw )W 5.7)
RA() Ayt '
+ ( 50 + An(l) I ()
The equations are written in state-space form, resulting in the following matrix:
. 0 1 0
Zf,(t) 20 T? Ztr (t)
(zjtr(o) = AL 1 — A% 20 (t)
L (1) Kyl _ ASZI%:(t) Kb | Joo _Bly | A I (1)

According to Floquet's theorem, analysing the system’s response after one period is sufficient to
determine the stability. A 3x3 identity matrix is used for the initial conditions since the initial conditions
do not change the system’s stability. Using Matlab’s built-in ODE45 solver, the response at T' is de-
termined, where T' = %” The final step is to calculate the eigenvalues and look for the combinations
of K, and K, where at least one of the eigenvalues has a positive real part.



Results and Discussion

6.1. Results used for Comparison

In this section, the results from Faragau et al. [6] and Paul et al. [27] (not published yet) are presen-
ted as the baseline for comparison made later in this chapter. These studies are used as a reference
to analyse the effects of the aeroelastic force and the irregular guideway profile on the system’s stability.

6.1.1. Stability of a Continuously Supported Euler-Bernoulli Beam with an Elec-

tromagnetically Suspended Moving Mass

In the paper presented by Faragau et al. [6], it was observed that the system has five eigenvalues,
of which three determine the system’s stability. Figure 6.1 illustrates the eigenvalues across the velocity
spectrum. Two of the five eigenvalues only appear within v ~ 0.7—1.3v.,.. The eigenvalue analysis can-
not fully describe the infinite guideway coupled with the moving vehicle because the integrals along the
branch cuts also contribute to the system’s dynamic behaviour. The eigenvalues provide information
about the system’s stability and the rate at which stability changes as the velocity varies. The lowest
real part of the complex-valued eigenvalues is observed at approximately 0.7v.,., indicating that as the
vehicle initially accelerates, the system’s stability improves. The system remains stable up to a velocity
of approximately 1.3v,,., where the real parts of the complex-valued eigenvalues become positive. The
loss of stability happens through a supercritical Hopf bifurcation. As the velocity continues to increase,
stability is regained at v ~ 1.7v,,..
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Figure 6.1: The eigenvalues versus relative velocity of the vehicle. K, = 2.0 x 10* V/m, K4 = 4.0 x 10* Vs/m
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Figure 6.2 illustrates the stability planes obtained by Faragau et al. [6]. The grey areas indicate
instability and the white areas indicate stability. For velocities in the range of 1.3 — 2.0v,.,., the unstable
domain lies to the right of the stability boundary. For all velocities, there is a minimum value for K,
below which the system is always unstable. The controller is not able to respond quickly enough to
counter the gravitational pull of the vehicle. At subcritical velocities, as the vehicle accelerates, it be-
nefits the stability of the system by reducing the unstable domain. This trend aligns with the behaviour
observed in the eigenvalues. However, from 0.8v.,. onwards, the unstable domain expands again. At
subcritical velocity, instability is mainly caused by the electromagnetic suspension. The beam dissip-
ates energy because of the Doppler waves. A significant change happens between 1.2v.,. and 1.3v,,,
due to the increased energy from the anomalous Doppler waves, which radiate energy back to the
vehicle. Beyond the critical velocity, the kinematic invariant intersects the dispersion graph in the third
quadrant, where both the frequency and wavenumber are negative, leading to the presence of anomal-
ous Doppler waves. These waves contribute to the wave-induced instability. As the velocity surpasses
1.3v., the stable domain enlarges once again.

A 104 -10%

K4 (Vs/m)

Ky (V/m) 10% Ky (V/m) 10
v=0.1 -11v, m/fs v=12 - 2.0v, m/s

Figure 6.2: Stability planes against the control parameters for different velocities [6]. Instability happens in the grey areas. For
the velocities, 1.5 — 2.0v., instability is to the right of the stability boundary.

6.1.2. 1.5 DOF Electromagnetically Suspended mass with Oscillating Base

First, the 1.5 DOF system without the constant aeroelastic force is discussed. The results for the 1.5
DOF system with an oscillating base are used as a comparison point for system 2 without the constant
aeroelastic force. Paul et al. [27] derived analytical expressions for the coordinates of the centre
and the size of the ellipse-shaped indentations in the stability boundary that represent the parametric
resonance region. After eliminating I, from the equation of motion 4.16 (without the aeroelastic term),
4.17, and 4.18, the following simplified equation of motion is obtained:

M M . . .
2 (C’KM / ‘% - gMR> Ay + 2CKq1/ %A" + 2ee MRAy + 20M Ay — Acos(U)MRAy =0 (6.1)
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Hill's determinant method is then used to obtain Hill's matrix, which is used to find the stability bound-
ary. The air gap between the perturbed mass and the perturbed base, denoted as Ay is expressed by
the following complex Fourier series:

Ay = Z d,, exp(inwt); Q = kw;n, k € Z (6.2)

n=—oo

The expressions for the centre of the ellipse (h1, hs), the major axis k1, and the minor axis &, are:

(Kp—h1)®  (Kq—hy)®

= 1 .
E = (6.3)
R (2\/093M + \ﬁchzss(%)z)

= 2Cg
hy = —CM (ﬂ>2

Vg V2 (6.4)

_(wi)?

P = ( 2 ) &
AR

2 16Cg

Furthermore, they also managed to derive analytical expressions for the 1.5 DOF system that is sub-
jected to an aeroelastic force. In the paper, the expressions are obtained for an oscillating aeroelastic
force. For now, the oscillating term is left out to focus on a constant aeroelastic force. The same
procedure is taken as previously to obtain the expressions for the ellipse. Now, the aeroelastic term
is included in equation 4.16. The expressions for the centre coordinates, major axis and minor axis are:

; 2y/Cg3M3R + \/C’g]V[?’RzSS(%)Q -2 C3gMM(%)2
11 =

2CgM
py — YOIMER (2201t +4/C3gM3 (4 )?
o 4CgM (6.5)
=) w
k2 _ \/AQRQ (#2 +M2(%)2)
16CgM
Minaor axis

k;
(hy, hzj

Major axis

Figure 6.3: Definition of the major and minor axis

Appendix B and C illustrate the stability boundaries for the 1.5 DOF system and system 2.
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6.2. Stability of a Continuously Supported Euler-Bernoulli Beam with
an Electromagnetically Suspended Moving Mass and Constant
Aeroelastic Force

In this section, the results for system 1 are illustrated and discussed. The eigenvalues of the sys-
tem are presented, along with the stability planes corresponding to different velocities and situations.
Finally, the time-history of a limit cycle is presented, showing the response of both the mass and the
beam at the contact point. When it is mentioned that the system is stable or unstable, it only refers to
the stability of the equilibrium point at which the system is linearised.

A comparison is made between the results from Faragau et al. [6] and those obtained in this thesis.
Figure 6.4 illustrates the eigenvalues for the same combination of K, and K, used in the paper [6],
showing how the system’s stability state changes across varying velocities. The constant aeroelastic
force varies with the velocities as described by equation 3.8. Similar to the findings of Faragau et al.
[6], five eigenvalues are identified, of which two eigenvalues only appear in the range v ~ 0.7 — 1.3v,,..
These five eigenvalues consist of one real-valued eigenvalue and two pairs of complex-conjugate ei-
genvalues. Again for the stability analysis, only three eigenvalues determine the system’s stability state.
The real-valued eigenvalue remains constant across the velocity spectrum, as seen in the horizontal
lines in Figure 6.4b. However, the complex-conjugate eigenvalues show significant variation across the
velocity spectrum. Similar to the reference study [6], the real parts of the complex eigenvalues reach
their lowest value at approximately 0.7v.,., where the system’s vibrations decay the fastest, bringing the
system back to its equilibrium. Below 0.7v.,., the decay rate increases, stabilising the system. Above
0.7v.,, the decay rate decreases. At approximately 1.3v.,., the real parts of the complex eigenvalues
become positive, leading to a loss of stability through a supercritical Hopf bifurcation. As the velocity
continues to increase, the real parts of the complex eigenvalues reach their highest point at approxim-
ately 1.4v,,., after which the vibrations start to decay again, while remaining unstable. Stability is not
regained before 2.0v,,.

The aeroelastic force does not significantly change the eigenvalues across the velocity spectrum.
However, the most important difference to highlight is the supercritical velocity at which the system
re-stabilises. In this thesis, the system does not regain stability before 2.0v,.,., while in Faragau et al.’s
paper [6], the system stabilises again at approximately 1.7v.,.. The eigenvalues at the lower velocities
remain unchanged, indicating that the aeroelastic force has a greater impact at higher velocities. This
conclusion is further supported by the stability planes.
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Figure 6.4: The eigenvalues versus relative velocity of the vehicle. K, = 2.0 x 10* V/m, K4 = 4.0 x 10* Vs/m.
uw= %pai,-Avv(%>0 and is calculated for every velocity.
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Figure 6.5 illustrates the stability planes for the control parameters at different velocities. The grey
domains indicate instability, while the white domains indicate stability. The unstable domains for ve-
locities between 1.3 — 2.0v,,. are to the right of the stability boundary and are not shaded in grey to
maintain a clear overview of the results. For all velocities, there is a minimum value for K, below
which the system is unstable for any value of K;. The reason is that the controller cannot respond
quickly enough to counteract the effect of gravity pulling the vehicle down. Figure 6.5a shows the sta-
bility planes for velocities up to 1.1v.,.. As the velocity increases, the stable domain expands, having
its smallest domain at 0.8v.,.. Beyond 0.8v,., the stable domain begins to shrink. At lower velocities,
instability is mainly caused by the electromagnetic suspension and the constant aeroelastic force. The
beam dynamics do not contribute to instability yet because the energy of the Doppler waves is greater
than that of the anomalous Doppler waves. This ensures that the waves remain restrained within the
guideway, preventing energy from radiating back into the vehicle and avoiding wave-induced instability.

When the velocity increases, as illustrated in Figure 6.5b, the stability planes show significant
changes. The shifts in the stability zones become more pronounced with each velocity increment.
At 1.2v,,., the stability boundary curves around 1.8 x 10* V/m, indicating that the system can either
be stable or unstable depending on the value of K,;. The transition from 1.2v,,. to 1.3v,,. is especially
noteworthy. The stable domain now becomes enclosed by the stability curve and the minimum value
for K,,. As the velocity increases further, the stable domain expands again. The significant changes in
the stability domains are primarily caused by the interaction between the moving vehicle and the guide-
way. When the velocity becomes supercritical, anomalous Doppler waves are present in the system.
The energy of the anomalous Doppler waves increases, surpassing the energy of the Doppler waves.
The anomalous Doppler waves feed back energy into the vehicle, amplifying the vehicle’s oscillations,
which expands the unstable domain.
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Figure 6.5: Stability planes against the control parameters for different velocities. Instability is indicated with the grey areas.
For the velocities, 1.5 — 2.0v., instability is to the right of the stability boundary.

Figures 6.6 and 6.7 illustrate the contributions of different instability mechanisms for the following
cases: (1) solely electromagnetic instability, (2) electromagnetic instability and galloping, (3) electro-
magnetic instability combined with wave-induced instability, and finally (4) the combination of electro-
magnetic instability, wave-induced instability, and galloping.

Each scenario shows how the different instability mechanisms contribute to the system’s overall
stability. The electromagnetic suspension shows a specific unstable domain, which changes when
combined with either the constant aeroelastic force or wave-induced effects. The constant aeroelastic
force has a destabilising effect, which intensifies as the velocity increases, expanding the unstable
domain. At subcritical velocities, the influence of the constant aeroelastic force differs, depending on
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whether the beam dynamics are included or not. The constant aeroelastic force has a greater destabil-
ising effect when only electromagnetic instability is considered, compared to when the wave-induced
instability mechanism is also considered, as illustrated in Figure 6.7a. At 1.7v..., the expansion of the
unstable domain for both the case with solely electromagnetic instability and when the wave-induced
instability is included becomes more comparable. For subcritical velocities, the wave-induced induced
instability mechanism initially has a stabilising effect that counters the destabilising effect of the con-
stant aeroelastic force. However, at supercritical velocities, both the wave-induced instability and the
constant aeroelastic force are destabilising, amplifying one another and leading to a greater expansion
of the unstable domain. The addition of the constant aeroelastic force does not result in qualitative
changes in the stability boundaries compared to a system that only considers the electromagnetic and
wave-induced instability mechanisms [6]. While the overall shape of the stability boundaries remains

the same, quantitative differences are present.
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Figure 6.6: Comparison of electromagnetic instability, wave-induced instability and aeroelastic force under different
combination scenarios
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Figure 6.7: Comparison of electromagnetic instability, wave-induced instability and aeroelastic force under different
combination scenarios

The previous plots do not show any presence of limit cycles, but they are present. By selecting the
control parameters within the limit cycle zone, the top panel of Figure 6.8 illustrates how the vehicle
oscillates around the equilibrium point. The control parameters are chosen near the stability boundary.
When K, increases, the oscillations become larger, due to the stronger position feedback regulation.
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Further increases in K, eventually lead to a collision between the vehicle and the guideway. For the
electromagnetic force, a collision with the guideway leads to an infinite force, as can be seen in equa-
tion 4.4, because of the air gap approaching zero, creating a division by an infinitely small value. The
combination of control parameters and velocity used in Figure 6.8 is not the only situation where limit
cycles occur because of the presence of electromagnetically induced instability [6].
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Figure 6.8: Time-history response of the mass and beam: v = 1.0v¢, m/s, Kp = 4.0 x 10* V/m, and K4 = 2.0 x 10* Vs/m

Summary

In this section, the influence of the constant aeroelastic force on the stability of the Hyperloop
is analysed when taking into account both the electromagnetic and wave-induced instability
mechanisms. When comparing the eigenvalues of the systems with and without the constant
aeroelastic force, no qualitative changes are observed. The eigenvalues remain nearly identical
at subcritical velocities. The only noticeable difference is the velocity at which the system
regains stability. For the system that excludes the constant aeroelastic force, stability is regained
at approximately 1.7v.,. for the selected control parameters, while the system that included
the constant aeroelastic force does not regain stability before 2.0v.,.. This indicates that the
destabilising effect of the aeroelastic force increases at higher velocities.

The stability planes further show the impact of the constant aeroelastic force as the velocity
increases. At subcritical velocities, the wave-induced instability mechanism has a stabilising
effect because of the Doppler waves, which do not radiate energy back into the vehicle.
However, at supercritical velocities, the energy of the anomalous Doppler waves increases,
radiating energy back into the vehicle and destabilising the system at the selected equilibrium
point. Across all velocities, the constant aeroelastic force expands the unstable domain, as it
continuously injects energy into the system, with the energy feedback increasing alongside the
velocity. Although the constant aeroelastic force affects the stability quantitatively by expanding
the unstable domain, it does not introduce qualitative changes to the overall shape of the stability
boundaries, as compared to a system subjected solely to electromagnetic and wave-induced
instability mechanisms.

Close to the stability boundary, limit cycles are present. The limit cycle zones cannot be
visualised using the eigenvalue analysis. Due to the electromagnetic instability mechanism, limit
cycles are present across all velocities and different combinations of K, and K.
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6.3. Irregular Euler-Bernoulli Beam with Continuous Support un-
der an Electromagnetically Suspended Moving Mass

In this section, the results for system 2, excluding the constant aeroelastic force, are presented, to
analyse the effect of the irregular guideway profile on the system’s stability. The influence of the time-
dependent parameters on the stability boundaries is highlighted by the appearance of ellipse-shaped
indentation within the stability boundary, representing the regions of parametric resonance. Different
scenarios are analysed to understand the effect of the time-dependent parameters on both the stability
boundary and the size and position of the ellipses. When it is stated that the system is stable or un-
stable, it only refers to the stability of that equilibrium point at which the system is linearised.

6.3.1. Constant Wavelength with Changing Velocity

In reality, irregularities in the guideway are stochastic, with variations in the surface roughness
wavelength and surface roughness amplitude, as highlighted by Chen et al. [2]. As noted in Chapter
4, the excitation frequency induced by the irregular guideway profile depends on both the vehicle’s ve-
locity and the surface roughness wavelength. In this section, the wavelength of the irregular guideway
profile is fixed to examine the stability boundaries at different velocities. Fixing the wavelength gives
insights into the stable and unstable control parameter combinations as the vehicle accelerates and
decelerates. This allows for the selection of the control parameters that ensure stability throughout
the vehicle’s operation. Figure 6.9 illustrates the impact of the wavelength on the stability planes at
various velocities, using approximately the same wavelength and amplitude reported by Chen et al. [2].
Appendix A further illustrates the stability planes for wavelengths of 20 m, 80 m, and 120 m.

The shape of the stability boundaries does not change across the varying wavelengths. However,
the size and position of the ellipses change for different velocities and wavelengths. Notably, the stabil-
ity boundary for 0.1v,..,. disappears at higher wavelengths. For a wavelength of 20 m, the stability bound-
ary is visible, and the corresponding ellipse is very small. Moreover, at supercritical velocities, there are
no regions of parametric resonance for the chosen range of K, and K, for a wavelength of 20 m. The
position of the ellipse depends on both the wavelength and the velocity. As the wavelength increases
for a given velocity, the ellipse shifts downwards. As the velocity increases for a given wavelength, the
ellipse shifts upwards. The shift of the ellipses is due to the changes in the excitation frequency. As
the wavelength changes, the excitation frequency changes, which affects the dynamic behaviour of
the system. The higher the excitation frequency, the higher the ellipse is along the stability boundary,
resulting in a larger ellipse. On the contrary, the lower the excitation frequency, the lower the ellipse
is along the stability boundary, resulting in a smaller ellipse. Increasing the velocity also increases the
excitation frequency, amplifying the dynamic behaviour and enlarging the ellipse. A lower velocity has
the opposite effect on the dynamic behaviour. As the velocity decreases, the excitation frequency also
decreases. This leads to a smaller ellipse that shifts downward along the stability boundary.

The ellipses shift along the stability boundary because the natural frequency of the system varies
along the boundary. Parametric resonance occurs when the excitation frequency is twice the natural
frequency. This means that if the excitation frequency changes with variations in velocity or wavelength,
the ellipse shifts to maintain this ratio.
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Figure 6.9: Stability planes for varying velocities and a constant wavelength of the surface roughness

To analyse the risk of parametric resonance, the range for control parameters used in maglev trains
is employed. Based on the reviewed literature [9, 16, 26, 34, 38], it is observed that the PD controller is
generally applied to the current rather than the voltage. Wu et al. [37] implements the controller to the
voltage. In the references, the control parameters are given in units of A/m. For comparison, the con-
trol parameters are converted to V/m using the coil’s resistance. The range for the control parameters is:

Control parameter | K, [V/m] | Ky [Vs/m]
Range | 0—12x 10* | 0—0.4 x 10*

Table 6.1: Range for the control parameters

Figure 6.10 illustrates the stability plane for a wavelength of 100 m and 120 m, focusing on the spe-
cified control parameter range. When considering the control parameter range found in the literature,
only a limited domain remains where the system is stable. In the analysed stability planes, parametric
resonance is absent for velocities of 1.2v.,. and above. However, parametric resonance may occur at
velocities below 1.1v,.,. as shown for the subcritical velocities. Because of the limited stable domain,
parametric resonance can occur depending on the combination of K, and Kj.
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Figure 6.10: Close up of the stability boundaries for the control parameter range as identified in the literature

6.3.2. Maintaining Constant Frequency by Adjusting Wavelength and Velocity

The figures in Appendix C illustrate the stability planes for a constant excitation frequency at differ-
ent velocities and wavelengths. As the velocity changes, the wavelength must change accordingly to
keep the excitation frequency constant at 80 rad/s. These results are compared to the response of the
1.5 DOF system with an oscillating base that is not subjected to an aeroelastic force. This comparison
gives insights into the effects of the beam dynamics on the ellipses and whether the 1.5 DOF system
is a suitable simplified model to approximate the beam model’s behaviour. As discussed in Chapter 4,
the base oscillations differ from the irregularities in the guideway. The amplitudes for the oscillations
are adjusted so that the ellipses match in size, using an amplitude of 0.008 m for the irregular guideway
profile and 0.004 m for the oscillating base.

The results show that the ellipses are located around 1.0 x 10* Vs/m, where the ellipses for system
2 are positioned slightly higher than those of the 1.5 DOF system. At a velocity of 1.7v.,., the horizontal
position of the ellipses shows minimal differences. Comparing the results of the irregular guideway
profile to the results in Figures 6.6 and 6.7, it is observed that the unstable domains in Figures C.1
and C.2 are slightly larger when irregularities are introduced. Figure 6.11 illustrates these positional
differences between the stability boundaries at the location of the centre of the ellipse. In the results of
Faragau et al. [6], no ellipses were observed, in this analysis the value of K, at K; = 1.0 x 10* Vs/m
is extracted to illustrate the horizontal shift of the stability boundary. Compared to the 1.5 DOF system,
the stability boundary for Faragau et al.’s system aligns closer at subcritical and supercritical velocities
than system 2. Around the critical velocity, there is an upward shift in X, which occurs approximately
at the velocity where the real parts of the complex eigenvalues reach their lowest value. After this point,
K, starts to decrease until it reaches its minimum at approximately the velocity where the system be-
comes unstable, according to the eigenvalues.

The radiation of Doppler and anomalous Doppler waves causes the shifts around critical velocities.
As the velocity increases, the energy of the Doppler waves increases, reducing the size of the unstable
domain. In Figure 6.11 the shrinkage of the unstable domain is visualised with the upward shift of the
K, values. When the velocity becomes supercritical, the unstable domain expands due to the radiation
of the anomalous Doppler waves. This causes the value of K, to shift downwards. Finally, the analysis
shows that the irregularities in the guideway contribute to the dynamic effects of the system. System 2
consistently has a larger unstable domain compared to the system described in the paper of Faragau
et al. [6], indicating that the irregularities also increase the instability domain besides the addition of
parametric resonance.
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Figure 6.11: The values of K, at the centre points for system 2 and 1.5 DOF system, at an excitation frequency of w; = 80
rad/s. For the system analysed by Faragau et al. K, is extracted at K4 = 1.0 x 104 Vs/m

The influence of the irregular guideway profile on the size of the ellipse is analysed by looking at
the length of the major axis. Figure 6.12 illustrates the length of the major axis for system 2 without
the constant aeroelastic force at different velocities, in comparison to the length of the major axis for
the 1.5 DOF system without aeroelastic force. The results show that the size of the ellipse increases
up to 0.7v.,. before it decreases. After a slight increase, the length of the major axis shrinks again
at 1.3v.,., where it matches the length of the major axis for the 1.5 DOF system. Beyond 1.3v,,, the
length of the major axis can be predicted using the analytical expression derived by Paul et al. [27],
which is not the case for the subcritical velocities. At subcritical, the length of the major axis deviates
from the analytical prediction. This behaviour can be related to the dynamic amplification factor (DAF)
of the Euler-Bernoulli beam [28]. As the velocity increases, energy accumulates at the contact point,
amplifying the dynamic response of the beam. This also affects the parametric instability, as shown in
Figure 6.12. The length of the major axis was expected to increase until the critical velocity, however,
this is not the case. After the critical velocity, the DAF decreases because the moving load travels faster
than the energy, leaving the energy behind. As a result, the deflection of the beam at the contact point
reduces, showing similarities to the behaviour observed with a rigid boundary. This is demonstrated by
the fact that the analytical expression for the 1.5 DOF system provides an accurate approximation for
the length of the major axis in system 2 at supercritical velocities.
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Figure 6.12: Length of the major axes at different velocities for ET = 2.50 x 10'° N'm2, at an excitation frequency of w; = 80
rad/s.
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6.3.3. Changing Bending Stiffness

The bending stiffness is a critical parameter in the beam dynamics because it directly influences
the natural frequency of the system. The ellipses that represent parametric resonance are positioned
where the excitation frequency is twice the natural frequency. Figures 6.13 and 6.14 illustrate how al-
tering the bending stiffness influences both the stability boundary and the ellipses’ position. Changing
the bending stiffness directly affects the critical velocity of the beam, as demonstrated in equation 2.28.
When the bending stiffness changes while the velocity remains constant and independent of v,,., the
overall shape of the stability boundaries shifts. This behaviour is similar to that observed in Section 6.2,

where the bending stiffness is fixed and the velocity is altered.

4]

As the bending stiffness increases, the v/v,., ratio decreases, making the stability boundaries be-
have more like those at subcritical velocities. Contrarily, when the bending stiffness decreases, the
v /v, ratio increases, resulting in stability boundaries similar to those observed at supercritical velocit-
ies. As the bending stiffness changes, the ellipses shift horizontally due to the change in the overall
shape of the stability boundary. A slight vertical shift is also observed, which is driven by the change
in the natural frequency as the natural frequency of the system varies along the stability boundary.
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Figure 6.13: Stability planes for different bending stiffness values at a constant velocity
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6.3.4. Changing the Surface Roughness Amplitude

The amplitude of the surface roughness is an essential parameter because of the high velocities and
the small air gap of the Hyperloop system. The surface roughness amplitude influences the dynamic
response, potentially leading to greater oscillations of the vehicle. These irregularities also influence
the air gap distance, which is critical for the electromagnetic suspension. The influence of surface
roughness amplitude is analysed to understand its effect on the stability boundaries and the ellipses.

Figure 6.15 illustrates the influence of the surface roughness amplitude on the stability plane and
the parametric resonance ellipses. As the surface roughness amplitude increases, the size of the el-
lipse grows, increasing the chance of parametric resonance. Paul et al. [27] also observed that the
size of the ellipse depends on the amplitude of the surface roughness. Furthermore, increasing the
roughness amplitude expands the unstable domain, which was not observed in the 1.5 DOF system.
Paul et al. [27] observed that the position of the stability boundary is independent of the oscillation
amplitude. The beam dynamics makes the position of the stability boundary dependent on the surface
roughness amplitude. This behaviour can either be due to reduced energy dissipation of the beam or
due to the increased energy input from the electromagnetic suspension reacting to the irregularities.
Because of the high velocities and the small air gap in the Hyperloop system, it is necessary to minim-
ise the irregularities in the guideway. Large roughness amplitudes are undesired because they expand
the unstable domain and increase the change of parametric resonance. In Section 6.3.1, it is stated
that the stable domain for the control parameter combinations in maglev trains is already narrow. The
roughness amplitude can potentially further narrow the already limited stable domain.
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Figure 6.15: Stability plane for different surface roughness amplitudes at v = 1.0v., m/s

The ellipses shift horizontally as the overall stability boundary shifts, but their vertical position re-
mains constant because of the maintained ratio - = 1 . The excitation frequency and natural frequency
remain unchanged when the roughness amplltude changes Figure 6.16 illustrates the position of the
centre of the ellipse at critical velocity for system 2, compared to the ellipse of the 1.5 DOF system
without the aeroelastic force, as well as the value of K, at K; = 1.0 x 10* Vs/m from Faragau et al.’s
paper. The centre points of the ellipses for system 2 are located between the results from the other
two systems. As the roughness amplitude approaches zero, the position of the stability boundary for
system 2 aligns with the results from Faragau et al. [6]. The horizontal position of the ellipse, against
the surface roughness amplitude, now depends on the flexibility of the beam. The ellipse of the 1.5
DOF system is positioned closer to the y-axis compared to system 2 because the Doppler waves dis-
sipate more energy in the beam, causing the stability boundary to bend to the right, which results in the
horizontal shift of the ellipse.
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Figure 6.16: Values of K, at the centre points for system 2 and 1.5 DOF system as a function of the amplitude, at an excitation
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Figure 6.17 illustrates that the length of the major axis for system 2 is almost identical to that of the
1.5 DOF system. The relationship between the length of the major axis and the surface roughness
amplitude is minimally affected by the flexibility of the beam. The analytical expression for the length of
the major axis derived for the 1.5 DOF system provides an accurate approximation for the length of the
major axis of the ellipse for system 2 when the aeroelastic force is excluded. This makes the 1.5 DOF
system a valuable system for estimating the ellipse size of more complicated systems, that include the

beam dynamics.

4000 r

3500

w
o
o
o

Length of major axes

500

2500

2000 ¢

1500 r

-
o
o
o

o
e
9/
9
[«24
o//
o'/
0/
9/
9/
o
/O’
o
°/
D/
,0/
A o System 2
L4 ---1.5DOF
0.005 0.01 0.015
A [m]

Figure 6.17: Length of the major axis as a function of the oscillation amplitude, at an excitation frequency of w; = 80 rad/s.
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Summary

A comparison is conducted between the irregular Euler-Bernoulli beam without an aeroelastic
force (system 2), the 1.5 DOF electromagnetically suspended mass system with an oscillating
base (without an aeroelastic force) at a frequency matching that of system 2, and the system
discussed by Faragau et al. For the velocities up to 0.7v.. and beyond 1.5v.,., the stability
boundary at 1.0 x 10* Vs/m for the system discussed by Faragau et al. [6] aligns with the
analytical predictions for the 1.5 DOF system’s centre point. However, this does not hold for
system 2. While system 2 and the system discussed by Faragau et al. [6] do not show qualitative
differences, quantitative differences are present, indicating that the irregular guideway profile not
only expands the unstable domain but also introduces ellipse-shaped indentations in the stability
boundary that indicate the parametric resonance regions.

Further comparisons between the major axis lengths in system 2 and the 1.5 DOF system show
that the length of the major for system 2 increases as the velocity increases. This behaviour

is explained by looking at the dynamic amplification factor (DAF) of the Euler-Bernoulli beam.

As the velocity increases, the dynamic response at the contact point increases due to the
accumulation of energy. At supercritical velocities, the vehicle moves faster than the rate at
which the energy propagates, leaving behind the energy. As a result, the deflection at the contact
point reduces, showing similar behaviours to that of a rigid boundary. At velocities of 1.3v,,
and above, the length of the major axis can be accurately approximated using the analytical
expressions for the 1.5 DOF system.

Bending stiffness directly changes the critical velocity. To analyse this effect, the bending
stiffness was varied while keeping the velocity of the vehicle constant and independent of the
critical velocity. An increase in the bending stiffness raises the critical velocity, reducing the
v/v- ratio. This reduction makes the stability boundaries more comparable to those observed
at subcritical velocities when the bending stiffness is maintained constant. Conversely, as the
bending stiffness decreases, the critical velocity also decreases. The v/v., ratio increases,
making the stability boundaries resemble those found at supercritical velocities for a constant
bending stiffness. Vertical shifts in the ellipses are observed due to the variations of the natural
frequency along the stability boundary. Since the bending stiffness directly influences the natural
frequency, adjustments of the bending stiffness cause the ellipses to shift vertically.

Increasing the surface roughness amplitude not only enlarges the ellipses but also expands the
unstable domain. This can either be due to the reduced energy dissipation by the beam or the
altered response of the electromagnetic suspension to the irregular guideway profile. This can

increase the electromagnetic energy input, leading to the enlargement of the unstable domain.

As the surface roughness amplitude approaches zero, the stability boundary at K; = 1.0 x 10*
Vs/m aligns with the position found by Faragau et al. [6] at a velocity of 1.0v.,.. Additionally,
comparing the length of the major axis of system 2 and the 1.5 DOF system shows that the
analytical expression for the 1.5 DOF system provides an accurate approximation of the length
of the major for system 2 when the aeroelastic force is excluded.

For the control parameter combinations commonly used in maglev trains, the remaining stable
domain is relatively limited. Given this constraint, the surface roughness amplitude becomes an
important parameter. As the roughness amplitude increases, it both enlarges the ellipse size and
expands the unstable domain. This increases the chance of instability and parametric resonance.
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6.4. Irreqgular Euler-Bernoulli Beam with Continuous Support un-
der an Electromagnetically Suspended Moving Mass and Con-
stant Aeroelastic Force

Figures 6.18 and 6.19 illustrate the stability planes for different velocities at a constant roughness
amplitude and wavelength for system 2. Similar behaviours are observed in sections 6.2 and 6.3 at
velocities below and up to 1.1v.,.. As seen in the previous systems, 0.8v.,. has the smallest unstable
domain, after which it increases for 1.0v.,. and 1.1v.,.. At supercritical velocities, the anomalous Dop-
pler waves become dominant, feeding energy back into the vehicle, and further expanding the unstable
domains. The stability planes change significantly for velocities up to and beyond 1.2v.,.. Notably, the
stable domain for 2.0v,, is absent in the figures. At 1.3v.,, 1.5v.,., and 1.7v,,. only a narrow stable do-
main is present. Both the irregular guideway profile and the constant aeroelastic force contribute as
destabilising factors, amplifying the instability more than in the previous systems.
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Figure 6.18: Stability planes for different velocities at L = 100 m
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Figures 6.20 and 6.21 illustrate the effects of the constant aeroelastic force by comparing the res-
ults with those in section 6.3, where the system is not subjected to a constant aeroelastic force. The
excitation frequency is kept constant at 80 rad/s to solely analyse the aeroelastic effects. As expected,
the results show that the constant aeroelastic force has a destabilising effect, with the unstable domain
expanding as the velocity increases. The influence of the constant aeroelastic force becomes more
pronounced at higher velocities, contributing more to the overall stability of the system.
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Figures 6.21a and 6.21b show the minimal vertical movement of the ellipses, while the horizontal
movement is visualised in Figure 6.22. This Figure compares system 2 with and without the constant
aeroelastic force to the 1.5 DOF system with an oscillating base and a constant aeroelastic force. The
ellipses are nearly aligned at a velocity of v = 0.1v.,.. This indicates that the constant aeroelastic force
has little impact, aligning with the stability planes where the stability boundaries almost overlap. As the
velocity increases, the distance between the stability boundaries increases gradually, as observed in
the previous stability planes. System 2 shows a trend similar to that of the 1.5 DOF system at both
subcritical and supercritical velocities.
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Figure 6.22: Value of K, at the centre point for the 1.5 DOF system with a constant aeroelastic force, and for system 2 both
with and without the constant aeroelastic force, at an excitation frequency of w1 = 80 rad/s. For the system analysed by
Faragau et al., K, is extracted at Ky = 1.0 x 10* Vs/m.

Regarding the size of the ellipses, no significant differences are observed with the addition of the
constant aeroelastic force. Figure 6.23 shows that the lengths of the major axes are nearly identical,
apart from some minor differences. The same discussion holds here as for Section 6.3.
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Figure 6.23: The length of the major axis with and without the constant aeroelastic force
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Summary

The addition of the constant aeroelastic force to the system with the irregularities in the
guideway leads to quantitative changes in the stability boundary but no qualitative changes
are introduced. The most noticeable difference is the significant expansion of the unstable
domains at supercritical velocities. Both the constant aeroelastic force and parametric instability
are destabilising factors, causing the size of the stable domain to reduce significantly. At a
velocity of 2.0v.,, no stable domain remains within the selected range for K, and K. This high-
lights the combined destabilising effect of the constant aeroelastic force and parametric instability.

Notably, the addition of the constant aeroelastic force does not influence the size of the ellipse
compared to the system without the constant aeroelastic force.
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6.5. Electromagnetically Suspended Mass on an Oscillating Base
Under a Varying Aeroelastic Force

In this chapter, the results for system 3 are presented. First, the Floquet eigenvalues are provided
and analysed to understand the system’s stability behaviour. Furthermore, the stability plane is illus-
trated, focusing on examining the impact of the modulated aeroelastic force.

Figure 6.24 illustrates the Floquet eigenvalues for the system with the oscillating boundary and a
modulated aeroelastic force, along the orange line in figure 6.25. The system has three eigenvalues:
one real-valued and two complex-valued eigenvalues. At K, ~ 1.2 x 10* V/m, the real parts of the
Floquet eigenvalues are negative, indicating stability. However, the value of K, at which the system
regains stability depends on the aeroelastic parameter p..

The smaller the value of u,, the lower the value for K, at which the system becomes unstable
again. For py = 0, instability occurs at K, ~ 2.1 x 10* V/m, while for > = 2000, instability occurs at
K, ~ 2.3 x 10* V/Im. Another key observation is the distance between the Floquet eigenvalues as y»
varies. At uy =0, the real parts of the complex Floguet eigenvalues are furthest apart. As u» increases,
the real parts converge until they nearly overlap, transitioning into complex-conjugates. When s in-
creases beyond 1.1, the real parts of the eigenvalues deviate again. The transition between stability
and instability, as well as the distance between the real parts of the Floquet eigenvalues, can be seen
in the stability planes.

0.5 1 15 2 25 3
K, [Vs/m] x10*

Figure 6.24: Real part of the Floquet eigenvalues for the oscillating base for various aeroelastic coefficients us, with
w1 = 3000, evaluated at different values for K, and K4 = 1.02 x 10* Vs/m

In Chapter 5, it was explained that parametric instability can result from time-dependent parameters
within the system. The ellipse-shaped indentation in the stability plane signifies regions where the ex-
citation frequency is twice the system’s natural frequency, potentially leading to parametric instability.
The black line in Figure 6.25 represents the stability boundary for system 3 without the aeroelastic force,
where only the oscillating base with the electromagnetic suspension is considered. Both the size and
position of the ellipse depend on the aeroelastic coefficients. The stability boundary shifts as a result
of the constant aeroelastic parameter, p;. Parameter p5 influences the size of the ellipse. When ps is
zero, the ellipse maintains its original size, as the oscillating boundary only causes parametric instabil-
ity. As us increases, the ellipse shrinks until it disappears. Looking back at the Floquet eigenvalues at
e = 3000, it is observed that the real parts of the Floquet eigenvalues are slightly separated, indicating
that an ellipse is still present. At us = 4000, the ellipse appears again. However, this is unlikely to
happen because the aeroelastic force cannot take away energy from the system.
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The observation made in the real parts of the complex eigenvalues can be connected to the stability
planes. The distance between the real parts of the complex Floquet eigenvalues corresponds to the
width of the ellipse at the same value for K. This width illustrates the range of K, values where para-
metric resonance can occur. The region extending from the vertical boundary to the edge of the ellipse
represents the range where the real parts of all Floquet eigenvalues are negative, indicating stability.
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0.985 1z = 3000

Hy = 4000

0.5 1 1.5 2 2.5 3
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Figure 6.25: Stability plane for the control parameters for different values of the aeroelastic coefficient, pi2

Figure 6.26 illustrates the time-history response of system 3 for a specific combination of K, and
K4 positioned to the left of the green ellipse in Figure 6.25. The amplitude of the oscillations varies over
time, with periods of high and low amplitudes. The variations are influenced by the gravitational pull
and the movement of the base. These factors can either amplify or dampen the oscillations depending

on their relative phase.

0.012 |
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Figure 6.26: Time-history response for system 2 with parameters x; = 3000, w2 = 1000, K, = 2.1 x 10* V/m and
K4z =1.0 x 10* Vs/m
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Summary

The 1.5 DOF system without an oscillating base or modulated aeroelastic force has three
eigenvalues, with two of them being complex-conjugates. When the oscillating base is intro-
duced, the two complex-conjugate eigenvalues values lose their symmetry. The addition of the
modulated aeroelastic force caused a shift in the real parts of these complex eigenvalues. As the
aeroelastic parameter - increases the real parts of the complex eigenvalues shift towards each
other until they overlap. However, increasing 1 further shows that the eigenvalues deviate again.

The stability boundaries reveal that u; has an impact on the position of the stability domain,
while uo impacts the size of the ellipse-shaped indentations in the stability boundary. As ps
increases the ellipse shrinks until it almost vanishes. When sy increases further, the ellipse
expands again. This observation is similar to what happens with the distance between the real
parts of the complex eigenvalues.

When the control parameters are selected close to the stability boundary, the time response
shows the presence of a limit cycle, with a fluctuating oscillation amplitude over time. This
behaviour depends on the relative phase between the oscillating boundary and the oscillations
of the mass, with their interaction either amplifying or dampening one another.



Conclusion

This thesis investigates the instability of the Hyperloop system through different models. Five re-
search questions are addressed to clarify the influence of aeroelastic forces, electromagnetic suspen-
sion, wave-induced effects, and guideway profile irregularities on the system’s stability. Through the
models, this thesis provides insights into how each factor, both individually and in combination, influ-
ences the stability of the Hyperloop system.

How does the aerodynamic instability mechanism change the stability of the Hyperloop system,
when initially only considering electromagnetic and wave-induced instability mechanisms?

Compared to the results obtained by Faragau et al. [6], no qualitative differences in the stability
boundaries are observed, however, quantitative differences are present. The system still loses stability
through a supercritical Hopf bifurcation. The constant aeroelastic force has a destabilising effect on
the system across all velocities, and its effect intensifies as the velocity increases. The severity of the
destabilising effect also depends on the system parameters, such as the bending stiffness.

How does the irregular guideway profile impact the stability of the Hyperloop system when
considering the electromagnetic and wave-induced instability mechanisms?

The irregular guideway profile introduced ellipse-shaped indentation within the stability boundary,
indicating regions of parametric resonance. These ellipses are located where the excitation frequency
is twice the natural frequency. As the natural frequency varies along the stability boundary, the ellipses
may shift accordingly, driven by changes in the excitation frequency, among other factors. Furthermore,
the amplitude of the surface roughness expands the unstable domain and enlarges the ellipses.

How does the aerodynamic instability mechanism impact the stability of the Hyperloop system
when considering the effects of an irregular guideway profile along with electromagnetic and
wave-induced instability mechanisms?

Introducing a constant aeroelastic force expands the unstable domain, with its destabilising effect
increasing as the velocity increases, aligning with the previous findings. When the constant aeroelastic
force is combined with the effects of the irregular guideway profile, the unstable domain expands sig-
nificantly, particularly at supercritical velocities. Both the constant aeroelastic force and the irregular
guideway profile contribute to the destabilisation of the system, where the irregular guideway profile
also introduces the risk of parametric instability. The constant aeroelastic force does not affect the size
of the ellipse-shaped indentation within the stability boundary. This feature remains solely influenced
by the guideway’s irregular profile and the beam’s bending stiffness.
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How does a modulated aeroelastic force influence the parametric instability of a system
subjected to an oscillating boundary?

The aeroelastic force now consists of both a constant and oscillating part, affecting the size of the
ellipse-shaped region, while also enlarging the overall unstable domain. Specifically, the constant term
influences the size of the unstable domain, while the modulated aeroelastic part influences the size of
the ellipse. Without the aeroelastic force, parametric instability is induced solely by the oscillating base.
However, adding the modulated aeroelastic force shows an interplay between the aeroelastic force
and the oscillating base within the parametric resonance region. The modulated aeroelastic force can
mitigate the parametric instability caused by the oscillating base, potentially eliminating it. The mod-
ulated aeroelastic force and oscillating base can also work together and enlarge the ellipse-shaped
indentation in the stability boundary. Furthermore, limit cycles are present near the stability boundary.
These limit cycles are characterised by an amplitude that varies over time, influenced by the relative
phase between the oscillating boundary and the oscillations of the mass.

To what extent is the electromagnetically suspended mass system with an oscillating base
capable of approximating more complicated systems that include beam dynamics and an
irregular guideway profile subjected to a constant aeroelastic force?

Paul et al. [27] derived analytical expressions to approximate the position and size of the ellipse-
shaped indentation within the stability boundary. When the frequency of the oscillating base is equal
to the excitation frequency from the guideway’s irregular profile, the results show that the analytical
expressions do not approximate the position of the ellipses across all velocities, and therefore also
the stability boundary. However, for velocities beyond 1.3v.,., the analytical approximations provide an
accurate approximation.

When beam dynamics are included, the position of the stability boundary becomes dependent on
the amplitude of the irregular profile, which also affects the position of the ellipse-shaped indentation.
This is not the case for the 1.5 DOF electromagnetically suspended mass system. Despite the added
complexity, the size of the ellipse, as a function of the oscillation amplitude, can be accurately approx-
imated using the analytical expressions.

[ Final Statement on Parametric Instability

The interaction between the guideway’s irregular profile and the aeroelastic force significantly re-
duces the stable domain, limiting the range of stable control parameters. Within this limited stable
range, the parametric resonance regions only appear at subcritical velocities and are relatively small
compared to the stable control parameter domain. The surface roughness amplitude is crucial in de-
fining both the stable domain and the extent of parametric resonance. A larger surface roughness
amplitude increases the risk of instability and parametric resonance. To reduce the likelihood of in-
stability and parametric resonance, the guideway should be manufactured as smoothly as possible.



Recommendations for Further
Research

To expand this thesis and develop a more accurate model of the Hyperloop system, the following
recommendations are proposed:

do
which is now assumed to be -1. However, both drag and lift forces are influenced by the pres-

sure inside the tube. To determine this relationship, a finite element model (FEM) model of the
Hyperloop vehicle within a pressure-regulated tube can be developed. By linking the drag and lift
coefficients to the pressure, the internal pressure could be optimised to maintain high velocities
without changing the dynamics of the system. This allows for the optimisation of the vacuum
pumps to save as much energy as possible.

1. The resultant of the drag and lift forces is angle-dependent, represented by the coefficient (dcz )O,

2. An energy analysis can be performed to visualise the contribution of the different instability mech-
anisms to the overall instability across the different velocities. By identifying the biggest contrib-
utor to the instability, specific mitigation methods can be implemented to reduce the impact of
that instability mechanism.

3. In this thesis, the tube and guideway are modelled as a beam. However, the dynamic behaviour
of the tube is not captured with a beam model. Considering the tube and guideway separately,
where the guideway is attached to the tube through springs, would be a more realistic model.
Additionally, modelling the guideway as a Timoshenko beam instead of the Euler-Bernoulli beam
would capture the shear deformation and rotation inertia, proving more accurate results. To ap-
proximate reality further, periodic ring stiffeners could be placed in the tube by varying the stiffness
at specified locations.

4. In this thesis, the foundation is modelled as a continuous viscoelastic foundation. However, the
tube is supported periodically by piles. Replacing the continuous viscoelastic foundation with peri-
odic springs introduces the possibility of parametric instability. Examining the interaction between
the irregular guideway profile and the periodic supports could reveal interesting effects on the
stability boundaries and the ellipse-shaped indentations. The next step could be to combine the
periodic supports with the model described in the third point.

5. In reality, irregularities are random and cannot be represented by a cosine function. To achieve
a more accurate model, a random signal could be implemented for these irregularities. The influ-
ence of random surface roughness on the region of parametric instability can be compared to the
results of the cosine function to understand the effect of more realistic imperfections.
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6. The final recommendation is to investigate the effects of a modulated aeroelastic force in com-
bination with wave-induced instability, electromagnetic instability mechanisms, and profile irreg-

ularities in the guideway. This analysis would provide insight into how these combined factors
influence the instability and the regions of parametric resonance.
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Appendix A

The stability planes are illustrated for wavelengths of 20 m, 80 m, and 120 m for the irregular Euler-
Bernoulli beam with continuous support under an electromagnetically suspended moving mass. These
stability planes show how the stability boundaries change for various velocities and wavelengths.
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Figure A.1: Stability planes for varying velocities and a constant wavelength of the surface roughness
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Figure A.2: Stability planes for varying velocities and a constant wavelength of the surface roughness
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Figure A.3: Stability planes for varying velocities and a constant wavelength of the surface roughness
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Appendix B

The previous figures show that the ellipses, which represent parametric resonance, shift as the
wavelength of the irregularity changes. In this section, the wavelength is varied systematically to un-
derstand the relation between the wavelength and the region of parametric resonance, and whether
the varying wavelength influences other aspects of the stability boundary.
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Figure B.1: Stability planes for different surface roughness wavelength at v = 1.0v.,, m/s

The results are also compared to the 1.5 DOF system, where the excitation frequencies are changed
to match those of the irregular guideway profile. This comparison gives insights into the accuracy of
the 1.5 DOF system and the influence of the beam dynamics on the stability of the system.
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Appendix C

These stability planes illustrate the comparison between the irregular Euler-Bernoulli beam with con-
tinuous support under an electromagnetically suspended moving mass and the 1.5 DOF electromag-
netically suspended mass. In this comparison, the excitation frequency from the irregular guideway
profile matches that of the oscillating base.
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Figure C.1: Stability planes with an excitation frequency maintained at 80 rad/s by changing the surface roughness wavelength
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