FOR4=

HYDROGEN RAGING TEAM DELFT

Final report
IN3405 Bachelor project

Conversion and extension of system
software for the Forze IV hydrogen race car

Authors: Student number: Mentor Forze:

Alexander van Gessel 1287974 P. Danneels

Mark Provo Kluit 1263099

Jan Jaap Treurniet 1308351 Mentor TU:
H.G. Gross
Coordinator:

B.R. Sodoyer

Contents

1 Introduction 4
2 Problem statement and analysis 5
2.1 Problem statement 5
2.2 Techniques e e)
2.3 Research L 5
2.4 Requirementso e e e e e 5
2.4.1 Quality requirements oLl e e 6

2.4.2 Functional requirementso oL L 6

2.4.3 Platform requirements 7

2.4.4 Safety requirements L e 7

2.4.5 Process requirements oL Lo e e e e 8

2.5 Hazard Analysis e 8
2.5.1 Throttle nodes 8

2.5.2 Right rear wheel speed node L L oL 9

2.5.3 Dashboard controller 9

3 Specifications 10
3.1 Drivers. . ..o e 10
311 ADC . . o e e 10

3.1.2 DAC . e 11

3.1.3 SPL e 12

3.1.4 UART . . . oo 12

315 CAN L e 13

3.1.6 PWM . . o 13

3.L.7 PID . .. 13

3. 1.8 MAXGOTE « o oo o 13

3.1.9 LED . .. 14

3.1.10 HLS-440 .« . o L o o e 14

3.2 ECU™S . . .o e 15
3.2.1 Throttle nodes e 15

3.22 Wheel speed nodes L e 15

3.2.3 Dashboard controller e e e e e

3.2.4 Telemetry node L.
4 Design
4.1 SysStem OVEIVIEW v v v vt et e e e e e e e e e e e e
4.2 APDUsofdrivers e
4.3 Tasks of ECU’s o e
4.3.1 Dashboard controller L L L
4.3.2 Telemetry nodeo
4.3.3 Throttlenode
4.3.4 Wheel speed node L
435 DCDCnode. e
4.3.6 Fuel cell controller e
4.3.7 Hydrogen tank node L L
4.3.8 Hydrogen low pressure node
4.3.9 Airnode. e
4.3.10 Coolnode e e
4.4 CAN protocol o e
5 Software quality and testing
5.1 Testing L e e e e
5.2 Documentation
53 MISRA C . . e
5.4 Software metricso e e

6 Implementation
6.1 Porting old software L
6.2 Writing new software e e
6.3 Rate Monotonic Analysis L
6.4 Written software not part of original project description

7 Development process
7.1 Process description L e
7.2 Encountered problems L L
7.3 Fuel cell software

18
18
19
24
25
26
26
27
27
28
29
29
30
30
31

34
34
34
34
34

36
36
36
36
37

38

7.4 Formula Student UK event e

8 Results
8.1 Implementation of requirements and specifications
8.1.1 Requirements
8.1.2 Specifications
8.2 Execution of tests. L
8.2.1 Stack overflow testing L L
8.2.2 Rate Monotonic Analysis
9 Conclusions and recommendations
9.1 Evaluation of development proces e
9.2 Evaluation of results L
9.3 Acquired eXperience e e
9.4 Recommendations e
References

A Project description

B Orientation report

40
40
40
40
41
41
41

42
42
42
42
42

44

45

49

1 Introduction

As team members of the Hydrogen Racing Team Delft have participated in the development and building
of the fourth generation Forze fuel cell powered racing vehicle. The vehicle was intended to compete in
the Formula Student UK class 1A competition for alternative fuel formula cars'. The electronics in the
car have been fully redesigned, and is based on Cortex-M0 and Cortex-M3 microcontrollers. This means
the old software had to be renewed so that it could run on these new microcontrollers. The conversion
and extension of this software is the subject of this bachelor project performed by the authors. This final
report describes how we fulfilled this goal, the experience we acquired, and the extra work we did that
was not part of the original assignment.

We explain the problem and the requirements in Section 2. Given the fact that this bachelor project
involves an embedded system — a fuel cell powered racing vehicle — means that we thought it would
be useful to perform a hazard analysis, which can thus be found in Section 2.5. The specifications of the
drivers and the various ECU’s (Electronic Control Units) can be found in Section 3. Designs of the API’s
of the drivers, the ECU’s, and the CAN protocol can be found in Section 4. The quality and testing of the
software is described in Section 5. The porting of the old software and writing of the new software, along
with a description of our work on the fuel cell software — which was not part of the original assignment
— is written in Section 6. The development proces and the problems we encountered is described in
Section 7. Finally, the results, and conclusions and recommendations can be found in Section 8 and
Section 9.

We would like to thank our mentor from the Forze team, Pieter Danneels, and our mentor from the TU
Delft, Hans-Gerhard Gross, for their help and support during this project.

Thttp://www.formulastudent.com/classla/aboutclassia.aspx

http://www.formulastudent.com/class1a/aboutclass1a.aspx

2 Problem statement and analysis

This section describes the problem in Section 2.1. The techniques we have employed are described in
Section 2.2. Section 2.3 describes the research we did at the beginning of the project. The requirements
we gathered while working on the ‘Plan of Approach’ can be found in Section 2.4. A hazard analysis in
Section 2.5 lists the causes of potential hazards and what can be done to mitigate these.

2.1 Problem statement

The Forze IV’s design includes more than 10 boards of various types that contain microcontrollers of the
families Cortex-M0 and Cortex-M3. An RTOS has been supplied, but for the operation of the vehicle,
the RTOS needs to be configured, drivers for various hardware need to be written and the applications
for these microcontrollers need to be written.

The goal is to deliver the software to make the vehicle ready to race and communicate through the
telemetry node. The full original project description can be found in Appendix A.

2.2 Techniques

The code in this project is written in C. The Segger embOS is used as Real-Time Operating System
for both the M0 and M3 boards, programmed using J-Links. The Segger emFile file system is used to
write log files to a microSD card. TAR Embedded Workbench IDE has support for detecting MISRA C
violations. This tool also has support for the RTOS used, so that it can show a list of running tasks and
their stack usage. This is useful to detect possible stack overflows during testing.

2.3 Research

At the beginning of our bachelor project we did research on a topic that was relevant to our subject of
this project; the system software of a racing vehicle. The topic of the research concerned the “usage of
coding standards for embedded programming in automotive applications”. We choose this topic because
the project assignment required that all software that would be part of the racing vehicle would comply
to the MISRA C coding guidelines where possible. The IDE tool we used, IAR, Embedded Workbench
IDE, has support for detecting violations of rules of the coding guidelines.

We concluded our research that the MISRA C coding guidelines could have a positive effect on the quality
of the software, although the code changes to fix violations of certain MISRA C rules could, ironically,
introduce new errors. We also researched AUTOSAR, which is becoming a de-facto standard in the
automotive industry, but we concluded that it would be too extensive and cost too much time to base
our software on AUTOSAR.

The research described in the ‘Orientation report’ can be found in Appendix B.

2.4 Requirements

In this paragraph we describe the requirements as given and gathered from interviews with the other
team members involved with the hardware parts. These requirements have been taken from Section 2.4
and 2.6 of the document ‘Plan of Approach’, but have been classified according to MoSCoW method.
Additionally, process requirements have been added, which were not explicitly mentioned in the original
requirements, and various components of the assignment — as described in Section 2.4 of the document
‘Plan of Approach’ — have been added to the list of requirements below.

2.4.1 Quality requirements
Must have

e Throttle nodes and dashboard controller should be able to handle hardware and software exceptions,
including illegal CAN messages.

Should have

e Drivers should be designed in such a way that the API is reuseable on different microcontrollers.

2.4.2 Functional requirements
Must have

e Configure the RTOS, Segger embOS for the ARM Cortex-M0 and Cortex-M3.
e Design and write the following drivers for the M0 and/or M3:

UART Used on all M3 and MO boards for configuration, debugging, retrieving data, etc.
CAN Used by all M3 and MO boards for communication
ADC Used by some general-purpose and sensor nodes
DAC To actuate the motor controllers by the throttle pot node

PpwM To control various hardware by the Fuel Cell Controller and to turn on/off the brake light by
one of the wheel speed nodes

sP1 Used by the DAC driver on the M0 and various general-purpose nodes of the Fuel Cell
e Design and write the throttle node application, more specifically:

— Two general-purpose nodes (throttle nodes) each read a throttle pot and send the values over
the CAN2 bus. The values of the two throttle pots are compared so that the power can be cut
if the values differ too much or are not within their expected range (See Figure 1)

— One of the throttle nodes also uses the read value to actuate the motor controllers
e Design and write the dashboard controller application, more specifically:

— The dashboard application reads the input from the buttons that are controlled by the driver,
and gives status information about the fuel cell and other systems, via LED displays

Should have

e Dashboard controller must log data to a microSD card, more specifically:
— Configure microSD card driver and logging system, using Segger emFile
e Design and write the software for the telemetry node, more specifically:

— Being able to transmit sensor data
— Use the JenNet network protocol stack to transmit the data over the 2.4 GHz band

Could have

e Design and write extra software for the telemetry node, more specifically:

— Transmitting a part or the complete data log from the microSD card

— Receiving commands that can be send over the CAN bus, so that the vehicle can be configured
or commanded to perform a certain function

Would be nice to have

e Extend the throttle node software to have the ability to do launch control

yes

o Signal other
»

. . -
Signal in range? node ok?

no no
Only on Throttle Node 1

Throttle Node
<_ Normal Op
no l

Send ‘Lifeline yes
ignal?
offline’ over CAN2 Get ES signal?

A 4

Get critical
heartbeats?

A 4

Log ‘succesfull ES
<reason>’
over CAN2

Cut Lifeline

Y
) 4

Figure 1: Throttle node software overview [1].

2.4.3 Platform requirements
Must have

e Drivers must work on both the Cortex-M0 (LPC11C14) and/or Cortex-M3 (LPC1768) microcon-
trollers, more specifically, following drivers must work on the MO:
— ADC, DAC, SPI, UART, CAN, and PWM

Following drivers must work on the M3:

— ADC, SPI, UART, and CAN

2.4.4 Safety requirements
Must have

e Throttle nodes must cut the lifeline if the values of the two throttle pots read by the two throttle
nodes differ too much, or are out of safe range.

Should have

e All software should comply with the MISRA C guidelines.

2.4.5 Process requirements

Must have

e Deadlines of various parts of the project must be met as described in Section 3.4.1 of the document
‘Plan of Approach’.

2.5 Hazard Analysis

The nature of this bachelor project — creating software for embedded systems of the Forze IV, a racing
vehicle using hydrogen as fuel — means people could get hurt if things go wrong. While a lot of potential
problems can be attributed to hardware, some of the problems may be caused by the software. We have
performed a hazard analysis to identify possible problems and how these can be mitigated.

2.5.1 Throttle nodes

Car accelerates when it gets powered on while standing still

e Causes:

— Could be caused by an incorrectly configured minimum value of the throttle pot.

— Even if the minimum value of the throttle pot is set to a correct value, the car can still
accelerate if the motor controllers are not adjusted for the minimum analog value fed by one
of the throttle nodes, which is 0.2 Volt. This is because the black box — provided by the
organization of FSUK — requires the voltage to be between 0.2 and 4.8 Volt.

e Mitigations:

— This hazard is mitigated by the motor controllers, which will refuse to work if a signal is fed
by one of the throttle nodes while the car is being powered on.

— Motor controllers need to be adjusted for the minimum voltage, which is 0.2 Volt.

Car does not accelerate linearly while increasing the throttle linearly

e Causes:

— The ADC and DAC hardware may not provide sufficient linearity or resolution.

— Software converting the digitized analog signal to the appropriate digital value — ready for
conversion to an analog signal between 0.2 and 4.8 Volt — may cause loss of accuracy.

e Mitigations:

— There are few things that can be done to mitigate this issue, other than choosing better
hardware, which is in our case no option for the Forze IV. One thing that can be done is
measuring the linearity so that it is at least known where the driver can expect any non-
linearity.

2.5.2 Right rear wheel speed node

Brake light is severly dimmed or is not turned on at all while the driver is applying the
brake or enabling regenerative braking

e Causes:

— This could be caused if the brake pressure is not properly calculated by the right rear wheel
speed node or if the dashboard controller does not send on time or not at all the correct CAN
message when the driver presses one of the two buttons that are designated for regenerative
braking.

e Mitigations:

— The calculation of the brake pressure in software must be verified to be correct. Furthermore,
the minimal brake pressure value must be determined during testing. The format of the CAN
messages for regenerative braking must be established and one must verify that both the
dashboard controller and the right rear wheel speed node adhere to it. In case the right rear
wheel speed node uses PWM to turn on the brake light, one must verify that it applies the
correct PWM signal.

2.5.3 Dashboard controller

Dashboard displays a speed that is much higher than the actual speed of the car

e Causes:

— This could be caused if the revolutions per minute of a wheel is not properly measured or
if this number is converted to KM/h in such a way that it results in an incorrect speed or
just loss of accuracy. Another possible cause is that if the dashboard controller has multiple
sources that it could use to calculate the actual speed, that it uses the measured speed of the
wrong wheel or just does not take effects like slip into account.

e Mitigations:

— It must be verified that the number of revolutions per minute of a wheel is measured correctly
and that the conversion is done correctly and does not lead to loss of accuracy. To our current
knowledge, only the speed of the right rear wheel is measured; this makes the problem of
determining which wheel speed to use a non-issue, but also means that effects like slip of the
rear wheels cannot be mitigated.

3 Specifications

This section describes the working of the drivers and the various ECU’s in more detail than some of the
requirements found in Section 2.4. The specifications of the drivers can be found in Section 3.1. The
specifications of the ECU’s in Section 3.2.

Key words signifying requirement levels The key words “MUST”, “MUST NOT”, “SHOULD”,
“SHOULD NOT”, and “MAY”, in this document are to be interpreted as described in RFC 2119.2

3.1 Drivers

Drivers for several hardware found in common MCU’s need to be designed and written. These drivers
must work on the Cortex-M0 (LPC11C14) and/or Cortex-M3 (LPC1768) microcontrollers, but should
be MCU agnostic as much as possible. The platform requirements, found in Section 2.4.3, defines which
drivers must work at least on which microcontrollers.

Additional drivers During the project, it became clear that it would be nice to create specifications
and design API’s for some reuseable software and some hardware found in the vehicle:

PID General PID controller. Used by the fuel cell software.

MAX6675 The MAX6675 is a temperature sensor found on the PCB of the general-purpose nodes. The tem-
perature that it measures can be received via the SpI bus. Used by the fuel cell software.

HLS-440 The HLS-400 is a device that measures the amount of hydrogen near the fuel cell and broadcasts
this information on a CAN bus. Used by the throttle node; the throttle node must kill the lifeline
if the amount of hydrogen detected by the HLS-400 is above 1%.

LED The dashboard consists of a lot of LED’s, connected to four LED drivers controlled via spi. The
software uses the LED driver to turn on and off the LED’s.

Except the LED driver, all of the drivers specified above must work on the Cortex-M0 (LPC11C14). The
LED driver must work on the Cortext-M3 (LPC1768). The pPID and HLS-440 drivers are not dependent
on the hardware of the general-purpose nodes and should be useable on the Cortext-M3 (LPC1768)
platform.

3.1.1 ADC
Functionality
e The ADC driver allows one to convert an analog signal — associated with a so-called ‘channel’” —

to its digital representation.

e The meaning of a ‘channel’ is up to the microcontroller specific part of the driver and MAY
correspond with certain pieces of the hardware of the microcontroller.

e The driver MUST provide an API to start a new conversion of a specific channel, and to return the
last converted digital value of a specific channel.

e The LPC1768 and LPC11C14 specific part of the driver MAY provide an API to configure the
hardware of the ADC unit.

2http://www.ietf.org/rfc/rfc2119.txt

10

e If the driver is requested to convert an analog signal of a specific channel, the driver MUST NOT
accept a channel number not supported by the microcontroller and SHOULD raise an error.

e If requested to convert an analog signal of a specific channel, the driver MUST return a number
that is in range of the supported ADC unit.

e If the client requests the digital value of the last conversion of a specific channel for which no analog
signals have been converted yet, then the value returned by the Apt MUST be undefined. This
means clients SHOULD NOT assume that the analog signal of a channel has been converted at
least once.

e The driver MAY block for an indefinite amount of time if the client requests a new conversion of
the analog signal of a specific channel.

e If the hardware provides multiple ADC units, then the driver SHOULD NOT block a request for
the conversion of the analog signal of a specific channel if the conversion can be handled by a free
ADC unit; that is, by an ADC unit not currently converting the analog signal of another channel.

Quality

e Response time should be as low as possible but MAY depend on scheduling by the RTOS.

3.1.2 DAC

Functional

e The DAC driver converts a digital value to an analog signal — associated with a so-called ‘channel’.

e The meaning of a ‘channel’ is up to the microcontroller specific part of the driver and MAY
correspond with certain pieces of the hardware of the microcontroller.

e The driver MUST provide an API to convert a digital value to an analog signal for a specific channel,
and to disable and enable specific channels repeatedly throughout the lifetime of the application.

e The LPC1768 and LPC11C14 specific part of the driver MAY provide an API to configure the
hardware of the DAC unit.

e Any request to convert a digital value for a specific channel MUST NOT be accepted while the
channel is disabled and the driver SHOULD raise an error.

e The state of the analog signal of a disabled channel is defined by the microcontroller specific part of
the driver. It can float or be pulled to a certain voltage level by the microcontroller implementation
or hardware. The microcontroller specific part of the driver MAY provide an API to configure the
voltage level for the ‘enabled’ and/or the ‘disabled’ state.

e The client SHOULD assume that each specific channel is enabled by default, but the client MUST
NOT assume that a specific channel’s analog signal is set to a certain voltage after startup or after
the client has enabled a specific channel. The microcontroller specific part of the driver MUST
make sure that each specific channel is enabled after startup.

e If the client requests the driver to convert a digital signal for a specific channel, the driver MUST
NOT accept a channel number or a value representing the digital signal not supported by the
targeted microcontroller and SHOULD raise an error.

e After the driver has converted a digital value to an analog signal for a specific channel, it MUST
maintain that analog signal for an indefinite amount of time, until the client requests a conversion
of a different digital value or disables the channel.

e The driver MAY block for an indefinite amount of time if the client requests a new conversion of
the digital signal of a specific channel.

11

Quality

e Response time should be as low as possible but MAY depend on scheduling by the RTOS.

3.1.3 SPI
Functional

e The sp1 driver sends, receives, or exchanges messages over the SPI bus.

e The driver MUST NOT not handle the possibility of multiple slave devices connected to a bus.
This is because it would make the driver highly dependent on a certain PCB if it handles this
possibility. It is up to the client to make sure only one of the slave devices is enabled.

e The driver MUST provide an API to send a message, to receive a message, or to exchange a message;
that is, sending and receiving a message at the same time.

e A ‘message’ is a sequence of bits and its length MUST be defined by the microcontroller specific
part of the driver.

e The driver MUST provide an API to configure the clock polarity, clock phase, and the frequency of
the transmission.

e The driver MUST NOT accept a bus number that is not supported by the microcontroller specific
part of the driver and SHOULD raise an error.

e The driver MAY block for an indefinite amount of time while sending and/or receiving a message.

Quality

e Response time should be as low as possible but MAY depend on scheduling by the RTOS and
will depend on the frequency of the transmission and length of the message that is being sent or
received.

3.1.4 UART

Functional

e The UART driver reads and writes characters over a UART channel.

e The driver MUST provide an API to read and write single characters over UART channels provided
by the PCB.

e A ‘message’ is a sequence of characters with a length provided by the client.
e The driver SHOULD provide an API to write entire messages.
e The driver MAY block for an indefinite amount of time when reading or writing.

e The driver MAY provide an API to allow the client to determine whether reading or writing would
cause the driver to block.

12

3.1.5 CAN

Functional

e The CAN driver sends and receives CAN messages over one or more CAN buses.

e The driver MUST provide a parameter in each part of its API to select the CAN bus to use.
e A ‘message’ is an 11-bit 1D plus a 0-8 byte data-field.

e The driver MUST provide an API to send CAN messages.

e An ‘event’ is a method to inform tasks of 1/0 progress and is provided by the RTOS.

e The driver MUST provide a method for tasks to indicate which CAN 1D’s they are interested in and
which events they wish to receive to be informed of incoming messages.

e The driver MAY provide a method for tasks to de-register for these CAN ID’s.
e The driver MUST provide a method for tasks to retrieve CAN messages that have been received.
e The driver SHOULD NOT block when sending CAN messages.

e The driver MUST NOT block when receiving CAN messages.

3.1.6 PWM

Functional

e The PwM driver converts a digital value to a PWM signal with the given duty cycle.
e The driver MUST provide an API to set the duty cycle.
e The driver MUST be able to control at least 2 channels simultaneously.

e The driver SHOULD have a resolution of at least 1024.

3.1.7 PID

Functional

The PID driver generically calculates output values based on setpoints and measurements.
e The driver MUST provide an API to set the P, I, and D values.
e The driver MUST provide an API to update the setpoint.

e The driver MUST provide an API to generate a new output value based on a new measurement.

3.1.8 MAX6675

Functional

e The MAX6675 driver receives the temperature measured by the MAX6675 chip over the SPI bus.

13

e The driver depends on the SPI driver and MUST internally initialize the SPI bus to which the
MAX6675 chip is connected on the PCB of the general-purpose nodes. The driver MAY assume
that the client does not interfer by using the specific SPI bus used by the driver.

e The driver MUST provide an API to read the latest measured temperature.

e Because the MAX6675 chip returns the temperature at the thermocouple’s hot junction which is
between 0 °C and 1023.75 °C, the Ap1 MUST NOT return a number — representing the temperature
— less than zero.

e The driver MUST configure the clock polarity and clock phase according as specified in the
datasheet of the MAX6675 chip. The frequency of the transmission MUST be configured to be
less than the maximum frequency specified in the datasheet.

Quality
e Response time should be as low as possible but MAY depend on scheduling by the RTOS and will
depend on the frequency of the transmission and length of the SPI message that it receives.

e The client SHOULD NOT request a reading within 250 milliseconds after the previous reading.
This is because, according to the datasheet of the MAX6675 chip, a conversion takes at most 220
milliseconds.

3.1.9 LED
Functional

e The LED driver controls LED’s via chips using SPI on the dashboard.

e The driver depends on the spI driver and MUST internally initialize the required SpI bus. The
driver MAY assume that the client does not interfer by using the specific SP1 bus used by the driver.

e The driver MUST provide an API to turn on or off a single LED.
e The driver MUST provide an API to turn set all LED’s to a certain value in one call.

e The driver MUST NOT turn on more than 16 LED’s at the same time. This is because of hardware
limitations of the PCB of the dashboard controller.

3.1.10 HLS-440
Functional
e The HLS-400 is a device which can measure the amount of hydrogen in the air and can report this
in a specific format over the CAN bus.

e Receiving the CAN messages is not the responsibility of the driver.

e The driver MUST provide an API that allows the client to hand over the data of the CAN message
— which is 8 bytes — in order to extract information out of it later.

e The driver MUST provide an API for the client to retrieve the hydrogen concentration, message
counter, sensor status, and sensor CAN ID.

e The driver MUST NOT, for any of the components, return a number that is outside the range as
specified in the datasheet of the HLS-400. For the hydrogen concentration, this range is from 0.0%
to 4.4%.

14

3.2 ECU’s

This section specifies the working of the various ECU’s.

3.2.1 Throttle nodes

Functional

e The vehicle contains two throttle nodes.

e Fach throttle node MUST regularly read its own throttle pot and perform several safety checks:
whether the value of the throttle pot is within a predefined range, and within a certain predefined
distance of the value of the other throttle pot, read by the other throttle node.

e A throttle node MUST send the read value of its throttle pot over the CAN bus, so that the other
throttle node can compare the values of the two throttle pots.

e The primary throttle node MUST convert the digital value of its throttle pot to a corresponding
analog signal between 0.2 Volt and 4.8 Volt and send this analog signal to the motor controllers if
the digital value is valid according to the performed safety checks.

e Each throttle node MUST Kkill the lifeline if the digital value is invalid according to the performed
safety checks.

e The primary throttle node MUST regularly check whether the lifeline is online or offline and
MUST send a notification over the CAN bus when the status changes, and MAY regularly send a
notification, even when the status has not changed.

e Each throttle node MUST regularly send its ‘heartbeat’ over the CAN bus.
e A ‘heartbeat’ is a CAN message with a CAN ID that is unique to the device that sent it.
e Each throttle node MUST continuously listen for heartbeats sent over the CAN bus by all devices.

e Each throttle node MUST, during the start-up phase, send a notification over the CAN bus that it
has received the heartbeats from all devices once it has received the heartbeats of all of them. Each
throttle node MUST, after its start-up phase, kill the lifeline if it has not received a heartbeat of
some device within a certain time.

e Each throttle node MUST listen for command to kill or activate the lifeline, sent over the CAN bus.

e Each throttle node SHOULD broadcast over the CAN bus when it has tried to kill or activate the
lifeline.

e Fach throttle node MUST regularly measure the speed of its associated front wheel and broadcast
this speed over the CAN bus.

3.2.2 Wheel speed nodes

Functional

e The vehicle contains two wheel speed nodes.
e Each wheel speed node MUST regularly send its ‘heartbeat’ over the CAN bus.

e A ‘heartbeat’ is a CAN message with a CAN ID that is unique to the device that sent it.

15

e Each wheel speed node MUST regularly measure the speed of its associated rear wheel and broad-
cast this speed over the CAN bus.

e The right rear wheel speed node MUST continuously listen for special messages sent over the CAN
bus that indicate that the driver has enabled or disabled regenerative braking. Based on the CAN
message indicating whether 0%, 50%, or 100% regenerative braking should be applied, the right
rear wheel speed node MUST send the appropriate analog signal to the motor controllers.

e The right rear wheel speed node MUST regularly measure the brake pressure and turn on the
brake light if the brake pressure is higher than a predefined minimum pressure or if the driver has
enabled regenerative braking.

Quality

e The right rear wheel speed node SHOULD turn on or off the brake light as soon as possible once
it has determined that the status of the brake light should change because of the measured brake
pressure or the received CAN messages indicating the status of regenerative braking.

3.2.3 Dashboard controller

Functional

e The vehicle contains one dashboard controller.
e The dashboard controller MUST regularly send its ‘heartbeat’ over the CAN bus.
e A ‘heartbeat’ is a CAN message with a CAN ID that is unique to the device that sent it.

e The dashboard controller MUST display the speed in KM /h of the vehicle based on the speed of
the four wheels received over the CAN bus.

e The dashboard controller MUST display the status of the electronics via the “Electronics OK” LED
based on certain received CAN messages sent by the throttle nodes indicating that a throttle node
has received all heartbeats or has detected that the lifeline is offline.

e The dashboard controller MUST turn off the “Electronics OK” LED if it has not received the
heartbeat of one of the throttle nodes within a certain time, and SHOULD send a command to
stop the fuel cell stack to the fuel cell controller over the CAN bus.

e The dashboard controller MUST display the status of the “Lifeline OK” LED based on certain
received CAN messages sent by any of the throttle nodes.

e The dashboard controller SHOULD display the reason on the speed LED’s when it receives a CAN
message from any of the throttle nodes indicating that it has killed the lifeline.

e The dashboard controller MUST display whether the fuel cell stack is operating or not via the “Fuel
cell running” LED and whether the fuel cell controller is standing by via the “Fuel cell standby”
LED based on certain received CAN messages sent by the fuel cell controller.

e The dashboard controller MUST display the states of various components in the car using LED’s:
voltage of boostcaps, temperature of coolant (water), and the pressure and temperature of the
hydrogen tank.

e The dashboard controller MUST measure whether the driver is pushing the “Activate lifeline”
pushbutton and send a command to activate the lifeline over the CAN bus to the throttle nodes
accordingly.

16

The dashboard controller MUST measure whether the driver is pushing the “Stop lifeline” push-
button and send a command to kill the lifeline over the CAN bus to the throttle nodes accordingly.

The dashboard controller MUST measure the status of the “Start/stop fuel cell” flipswitch and
send a command to start or stop the operation of the fuel cell stack over the CAN bus to the fuel cell
controller. The dashboard controller MUST also measure the status of the two other flipswitches
to send commands to the fuel cell controller: prime/standby and cooldown/standby.

The dashboard controller MUST measure the status of the two pushbuttons indicating whether
the driver wants to apply 50% or 100% regenerative braking and send the status over the CAN bus
to the right rear wheel speed node.

The dashboard controller SHOULD request diagnostics from the motor controllers via the CAN3
bus and send this forward over the CAN2 bus.

3.2.4 Telemetry node

Functional

The telemetry node sends various data over a wireless UART to a basestation in the pits.
A ‘heartbeat’ is a CAN message with a CAN ID that is unique to the device that sent it.
The telemetry node MUST regularly send its ‘heartbeat’ over the CAN bus.

The telemetry node SHOULD send all relevant data to the basestation in the pits.

The telemetry node MAY accept commands from the basestation in the pits.

17

4 Design

This section gives a detailed design description of the software developed in the project. We start with
an overview of the system in Section 4.1. Section 4.2 shows the API’s of the drivers we implemented. In
Section 4.3 an list of the different ECU’s in the car and their tasks can be found. Section 4.4 shows the
CAN protocol used for communication between these ECU’s via the CAN bus.

4.1 System overview

An overview of the system is shown in Figure 2. The fuel cell and dashboard controllers are boards
containing an ARM Cortex-M3 microcontroller (LPC1768), which is a 32-bit MCU operating at up to
100 MHz. The ARM Cortex-M0 microcontroller (LPC11C14) operates at up to 50 MHz and is used by
the other components; the general-purpose and sensor nodes.

Fuel Fuel Cell Fuel Cell
Cell Stack Air Node Cool Node MO Board

Fuel Cell | Fuel Cell
LP Node Tank Node M3 Board
Hardware
Fuel Cell L CANI— Hydrogen e
Controller Sensor
!
DCDC
node
CAN2
Throttle Throttle Pot
Pot 1 Node 1
- Telemetry
e Node
Throttle Throttle Pot
Pot 2 Node 2
+5V Left Rear
Wheelspeed

Motor Node
Controller 1 Controller 2

|—CAN 3——

Right Rear
Wheelspeed

Dashboard Node
Controller

Figure 2: Overview of the system. M3 boards contain an ARM Cortex-M3 microcontroller. M0 boards
are smaller and contain a Cortex-M0 microcontroller.

18

4.2 APJTI’s of drivers

This section shows the API’s of the drivers we implemented.

PWM

/KKK sk ok ok ok ok ok sk ok ok ok sk ok sk ok ok sk ok ok sk ok ok ok ok sk s ok ok sk ok ok ok ok sk ok ok sk ok ok sk ok ok ok ok ok s ok ok sk o ok ok sk ok ok ok ok ok ok ok kR ok ok ok ok ok \
* Initialize the chosen PWM channel.

* Must be called before any of the below functions can be used.
N\ sk ke ok sk s ok sk ok sk ok K ok ok 3 ok sk 3k ok K oK ok 5 ok 3k 3k ok 3 ok sk 3 ok K 3k ok K ok sk e ok K ok ok 3 ok sk 3 ok 3 3k ok 3 ok sk 3 ok 3k ok ok 3 ok k ok 3 ok ok ok sk ok ok ok k /

void pwm_init(unsigned int channel);

[/ skskoskok ok sk sk ok sk ok ok sk ok sk ok ok sksk sk ke ok sk sk sk s ok sk sk sk sk ok sk sk ok sk sk ke ok sk sk sk s ke sk sk s ke sk sk sk sk ke sk sk sk sk ok sk sk sk sk ok sk sk ok sk ook \
* Set PWM value for the given channel. Value can be an integer between 0

* and 65535.
**/

void pwm_set(unsigned int channel, unsigned int value);

LED

/KKK sk ok ok ok ook ok sk ok ok ok sk ok sk ok ok sk ok ok sk ok ok ok ok sk s ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok kR ok ok ok ok ok \
* LED Driver
* This driver controls the LEDs connected to the four TLC5925 LED
* controllers on the dashboard.
**/

/**\

* This function initializes the LED drivers.
N\ sk sk sk ok ok sk sk o ok ok sk o ok ok sk K 3k ok ok K ok ok K K ok ok sk K 3 ok ok 3 ok ok K K ok ok ok 3 ok ok K K ok ok oK K ok ok K ok ok K ok ok ok ok ok ko ok ok ok k ok ok /

void led_init(void);

[/ skskoskok ok sk sk ok sk ok ok sk ok sk ok sk ok sk ke ok sk sk sk s ok sk sk sk sk ok ok sk sk ke ok sk ok e ok sksk sk s sk sk sk s sk sk sk sk ke sk sk sk sk e ok sk sk sk sk sksk ok sk ook \
* Turn the given LED on or off. id can be 0 to 63. status should be 0 to

* turn off, 1 to turn on.
N\ sk sk sk ok ok sk sk o ok ok K ok ok oK K ok ok ok 3 3 ok ok 3 K ok ok ok K 3 ok ok 3 ok ok K K 3k ok ok 3 3 ok ok K K ok ok ok K ok ok 3 ok ok K ok ok ok K ok ok ok ok ok Kok ok /

void led_set(unsigned int id, unsigned int status);

/**\

* Set status of all LEDs. Each bit in status sets the status of a led.
N\ sk sk sk ok ok sk sk o ok ok ok ok ok sk K 3k ok ok K 3 ok ok 3K K ok ok ok K 3 ok ok 3 ok ok K K ok ok ok K 3 ok ok K K ok ok oK K K ok ok 3 ok ok K ok ok ok ok ok ok ok ok k ok ok /

void led_set_all(unsigned long long status);

/**\

* Get the status of the given LED.
N\ stttk sk stk s sk ook sk sk ok skl sk ok sksksk sk ok sk sk sk ok sk ok skeskok s ok sksksk sk sk sksk ok ok skskosk ok skskok sk ksksksk sk koksk sk sk ok okok /

unsigned int led_get_status(unsigned int id);
[oKk Kok Kok ok Kook ok ok ok ok ok ok ok sk ok sk ok sk ok sk ok sk ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok \

* Get status of all LEDs.
N\ sk sk sk ok ok sk sk o ok sk sk o ok ok sk ok 3k ok sk K o ok ok K ok ok ok K 3 ok ok 3 ok ok oK K sk ok ok K 3 ok ok Kk ok ok oKk 3k ok sk K ok ok Kk ok ok ok ok ok sk ok ok ok k ok ok /

unsigned long long led_get_status_all(void);

ADC

19

/s kokokoskok sk ok sk ok stk kst ke stk s ok ok sk ok sk sk sk st ket s kol sk ok ok sk ok sk st st stk sk ok sk sk ok sk sk kst stk stk sk ok okok \
* Initialize the ADC.
* Must be called before any of the below functions can be used.
stk ek ks sk sk sk sk ks ok sk s ksl o sk sk sk sk sk sk s ok sk sk sk sk sk sk sk ok sk sk ok sk sk ks e sksk sk sk sk ok sk ok /
void adc_init(void);

/Fkokokok ok skt sk sk sk sk ok ok ok o o o ok ke ok ok ok sk sk sk sk sk sk sk ok o o s s ok ok ok sk sk skl sk sk sk s o o s ok ok ok ok sk sk sk sk sk sk sk ok ok ok okok
* Return a new value converted by the ADC. This function blocks until
* the ADC has completed the conversion.
* The maximum delay is:
* <channels active> * <clocks per conversion> / <clockspeed of ADC>
* MO example: 3 * 11 / 4 MHz = 8.25 us
N\ kb ok ok ok ok stk sk ok ok ok oo ok o o e ke ok ok ok sk sk sk sk sk sk ok o o o o ko ok sk sk sk sk sk sk sk sk oo o o o ko ok ok sk sk sk sk sk sk ok ko ko ok ok ok /
unsigned int adc_read_new_value(unsigned int channel);

[/ kokokok sk sk sk sksksk sk sk sk sk sk sk ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk s ke ke ok ok ok sk sk sk sk sk sk sk sk sk sk s s ok ke okok ok ok sk sk sk sk sk sk sk sk sk sk sk kokokokok ok \
* Retrieves the last value converted for this channel.
* This value is *not* guaranteed to be recent, or even to be converted at
* all.
* This function is entirely dependent on adc_read_new_value for updates.
N\ skokeokeofe ok ok ki sk skesksksk sk sk s s o ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok okeok ok sk sk sk sksksksk sk sk sk o sk ok kokokok ok sk sk sk sk sk sk sk sk sk sk sk kokokok ok ok /
unsigned int adc_get_last_value(unsigned int channel);

SPI

[/ kokokokok sk sk sksksksksk sk sk sk s ok ok ke ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok ke okok ok sk sk sk sksksksk sk sk sk sk ok ke kok ok ok sk sk sk sk sksksk sk sk sk sk kokokokokok
Initialize the SPI bus.

CPOL and CPHA defines the clock polarity and phase with respect to

the data. The configuration of the polarity and phase depends on what

the slave expects. You can usually find the information for this in the
datasheet of the slave device.

CPOL:
0 means clock is low between frames and high during frames
1 means clock is high between frames and low during frames

CPHA:

0 means data lines are stable during first change of clock and switch
during second change of clock

1 means data lines change during first change of clock and are stable
during second change of clock

CLOCK: _/__/__

CPHA

DATA: < >
CPHA
* DATA: _<___>___

N\ ok ok ok ok sk sk sk sk ok o o ok ok ok ok ok ok sk sk ok ok o o ok ok ok ok ok sk sk sk ok ok o o o ok ok ok ok ok sk sk ok ok o o ok ok ok ok ok ok sk sk ok ok ok o ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok /

¥ X X X X X X X X XK X X X X X X X X X *
]
o

1]
-

void spi_init(unsigned int bus, unsigned int cpol, unsigned int cpha);

/**\

* Send an SPI message over the bus.
N\ stk ok ootk o s ok ok sk sk sk ok sk sk ok ok skskosk sk ok sk sk sk ok sk ok skeskok ok skskok sk sk sk sk sk skskosk ok sk sksk ok ksksksk sk sk sk sk sk ok ok ok /

void spi_send_message(unsigned int bus, struct spi_message message);

20

[k ok skkok ok sk okok ok skokok ko skokokok ok okokok ok skokok ok skokok ok sk okokok ok skokok ok skokok ok sk okok ok sk okokok ok okokok ok ok \
* Receive an SPI message sent by a slave over the bus.

N\ kst s sk o s ok sk ok ok ok stk ok s ok stk ok s ok sk sk s ok sk o ok stk ok s ok stk sk sk skok o ok stk o s ok stk ok sk ok skokok sk e skokok sk ook /
struct spi_message spi_receive_message(unsigned int bus);

/Fkokokok ok skt sk sk sk sk ok ok ok o o o ok ke ok ok ok sk sk sk sk sk sk sk ok o o s s ok ok ok sk sk skl sk sk sk s o o s ok ok ok ok sk sk sk sk sk sk sk ok ok ok okok
* Send and receive an SPI message received and sent, respectively, by
* a slave over the bus.
stk okeofe ok ok ki sk sksksksk sk sk sk s o ok ofeokeok ok sk sk sk sk sk sksk sk sk sk sk sk ok okeok ok sk sk sk sksksksk sk sk sk sk ok kkokok ok sk sk sk sk sk sk sk sk sk sk sk ko kokok ok ok /
struct spi_message spi_exchange_messages(unsigned int bus, struct spi_message
message) ;

DAC

[/ F ook ok ok koo ok skokok ok skokok ok ok skok ok ok ok skskok ok ok skokok ok skakok sk ok sk ko ok sk koo ok skskok sk ok skskok ok e skok ok skskokok ok ook \
* Initialize the DAC.
* A1l channels are disabled by default. Before a digital value can be
* converted to an analog signal for a channel, it first needs to be enabled.
* Must be called before any of the below functions can be used.
N\ kskeskook o sk ok o ook sk o ok koo o ok skeakok s ok kb ok skokok ok skakok s ok skakok o sk skok o ok skokok s ok skokok ok o skokokok o okokokok ok okok /
void dac_init(void);

[/ skskskok sk sk sk sk sk sk sk sk sk sk ok ok o ok ke ok ok ok sk sk sk sk sk sk sk sk sk sk sk o ok ke sk sk sk sk sk sk sk sk sk sk sk sk sk ok o ok sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk ko ke skskokokok
* Set a new digital value to be converted to an analog signal by the
* DAC unit.
* The channel must not have been disabled or else an error might
* potentially be raised.
kst sk sk ok sk sk sk sk sksk sk sk sk sk sk ok o ok ke sk ok ok sk sk sk sk sk sk sk sk sk sk sk o ke sk sk sk sk sk sk sksksksk sk sk sk sk ok o ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ko ko skok ok ok /
void dac_write_new_value(unsigned int channel, unsigned int digital_signal);

[koK kok ok ok ok ok sk ks ok sk ko ok sk ko sk ok sk sk sk ok sk ok sk ok sk ok sk ok sk sk ok ok sk sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok \
* Enable the channel.

N sk ok sk sk ook ook ook ok o sk oK ook ook oK o ok oK oK ook oK ok ok oK oK o ok K ok ok oK oK ook K ok oK o oK oK ok Kok oK ok oK oK ok ok Kok ok oK ok ok

void dac_enable_channel(unsigned int channel);

[KoK o Kok Kok ook ook ok oK ok o oK ook ok oK ok oK oK oK o ok ok oK ok K oK oK o K ok o ok o oK o sk ok K ok o oK ok ok K ok K ok o ok oK ok ok oK ok ok Kok ok ok ok \
* Disable the channel. After calling this function, any call to
* dac_write_new_value() will potentially raise an error until the channel
* is enabled again.
N\ sk sk ok ko o ok ook ook ok oK ok oK ok ook ok oK ok o ok oK o ok ok oK ok o oK 3ok ok Kok o ok oK o Kok oK ok ook ok ok Kok ok ook ook ok Kok ok ok ok Kok ok Kok ok /
void dac_disable_channel (unsigned int channel);

//Fkokokok ok skt sk sk ok sk ok ok o o o o ok ke ok ok ok sk sk sk sk sk sk sk sk o o s s ok ok ok sk sk sk sk sk sk sk s o s ke ok ok ok sk sk sk sk sk sk sk ok sk koo okok
Return whether the channel’s analog output is set to a certain voltage
level by a call to dac_write_new_value().

If the channel has no analog value, then the channel either has been
disabled or enabled but dac_write_new_value() hasn’t been called yet.

In this case one should not trust the value returned by

dac_get_value(); the implementation may either let the analog output

* float or pull it towards some voltage level.
N\ skokeofeofeoke ok sk sk sk sksksksk sk sk sk o o ok ke okok ok sk sk sk sk sk sk sk sk sk ok sk s ok ok kok ok sk sk sk sksksk sk sk sk sk sk sk ok sk kok ok ok sk sk sk sk sk sk sk sk sk sk sk ko okokokok ok /

* ¥ X X ¥

unsigned int dac_has_analog_value(unsigned int channel);

/**\

21

* Get the current digital value of the DAC unit.
* Preferably one should call dac_has_analog_value() first and if it returns
**/

unsigned int dac_get_value(unsigned int channel);

TS

/e kokokok ok skt sk sk ok sk ok ok ok o o o ko ok ok sk sk sk ske sk sk sk ok o o s sk e ok ok ok sk sk sk sk sk sk sk s o o o s ke ok ok ok sk sk sk sk sk sk sk ok sk ok okokokok
* Initialize the thermo couple driver.
* Must be called before any of the other functions can be called.
N\ skokeokeofe ok ok sksksksksksksk sk sk sk s o ok ofeokok ok sk sk sk sk sk sk sk sk sk sk sk sk ke ok okok ok sk sk sk sksksksk sk sk sk sk sk ok kokok ok ok sk sk sk sk sk sksk sk sk sk sk kokokok ok ok /
void ts_init(void);

/] oksksk sk sk sk sk sk sk sk sk sk sk sk ok ok o ok sk ke ok ok sk sk sk sk sk sk sk sk sk sk sk o ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok s ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ko ks skskokok
* Read a value from the thermocouple and returns it. Should not be called
* with a frequency higher then 4 Hz, because conversion can take up to
* 220 ms.

sk ko ofe ok ok skt ok oo o o o ok ke ok ok ok sk sk sk sk sk sk sk sk o o s s ok ok ok sk sk sk sk sk sk s s o o s ke ook ok ok sk sk sk sk sk sk sk ok ok sk sk koo ok ok /

unsigned int ts_read_new_value(void);

HLS-440

/* Data structure to make it easier to extract specific information
* from the body of the HLS-440’s CAN message.
*/
typedef union {
struct {
/* byte 0 x/
unsigned int h2_concentration : 8u;

/* byte 1 */
unsigned int protection_value_1 : 8u;

/* byte 2 x/

unsigned int : 2u;

unsigned int ack_upper_limit : 3u;
unsigned int ack_lower_limit : 3u;

/* byte 3 x/
unsigned int crcl6_byte_1 : 8u;

/* byte 4 */

unsigned int protection_value_2 : 2u;
unsigned int sensor_can_id : 3u;
unsigned int : 3u;

/* byte 5 */
unsigned int message_counter : 8u;

/* byte 6 x/

unsigned int : 1lu;

unsigned int sensor_status : 2u;
unsigned int part_number : 5u;

22

/* byte 7 */
unsigned int crcl6_byte_2 : 8u;
} read;
struct {
unsigned long long value : 64u;
} write;
} hls440_message;

CAN

/K 3Kk ok ok sk sk ok ok sk o ok ok oK K ok ok ok K ok ok K K ok ok ok K 3 ok ok 3 K ok ok K K 3k ok ok K 3 ok ok K ok ok ok K K ok ok K ok ok K K ok ok ok ok ok kK sk ok kok ok \
* This function initializes the CAN interfaces.

* It must be called before any of the other functions can be used.
stk ke sk sk o s ok sk ok sk ok sk sk e ok sksk sk s ok oksk sk s ok sk sk ke ok sk ok e ok sk sk ok s sk sk ok s ke ok sk sk sk ek sk sk sk ek sk sk sk sk sksk ok sk ok okok /

void can_init(unsigned long bitratel, unsigned long bitrate2);

/oo kot sk sk sk ok ok sk sk sk ok skl sk ok stk sk sk ok sk sk sk ok stk ok ok stk s ok sksksk sk sk sksk ok ok skskok ok sksksk sk ok sksk sk sk ok sksk sk sk ook \
Add an event for the given CAN bus and CAN id. The event will be signaled

when a message with the specified id is received.

Mask Ox7FF (all bits) means only that specific id.

Mask 0x0 (no bits) means catch-all.

Mask 0x0 (no bits) means catch-all.

A message only triggers one event. Narrower masks precede wider ones.

Adding an id/mask pair that already exists is considered an error.

Multiple received messages are not guaranteed to generate more than 1 event.
* Multiple received messages with the same id are overwritten by the latest message.

sk ok ok ok ok ok skt ok oo o o o ok ok ok ok ok sk sk sk sk sk sk sk ok o o s s o ok oksk sk sk sk sk sk sk s o s e ke ook ok ok sk sk sk sk sk sk sk ko sk ko ook ook /

* X ¥ X X X %

void can_add_event(unsigned int bus, unsigned int id, unsigned int mask, char event, OS_TASK* task);

/**\

* Remove the given event for the given CAN id.
N\ stk sk stk s sk ook sk sk ok ok sksksk ok skskosk sk ok ki sk ok sk ok skeskok ok skskok sk sk skskok sk skskok ok skskok sk ksksksk sk ok sk sk sk ok ok ok /

void can_remove_event(unsigned int bus, unsigned int id, unsigned int mask, char event);

/KKK ook sk ok ok ok sk ok ok ok sk ok ok ok ok sk ok ok sk ok ok ok ok ok s ok ok sk ok ok ok ok sk ok sk ok ok ok sk ok ok ok ok sk ok ok ok ok ok sk ok sk ok ok ok ok ok kR ok ok ok ok ok \
* Send a message on the specified CAN bus.

N\ sk sk sk sk ok sk sk o ok sk sk o ok ok sk ok ok ok sk sk ok ok ok ok ok ok K 3 ok ok ok ok ok sk ok sk K 3 ok ok ok ok ok ok sk ok sk ko ok ok ok ok ok ok sk K ok ok ok ok ok ok sk ok ok /

void can_send(unsigned int bus, unsigned int id, char *data, unsigned count);

[kokokokokok sk sk sk sk sksk sk sk ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk ok ke skok ok sk sk sksksksk sk sk sk sk ok s ok sk skok ok sk sk sk sk sk sk sk sk sk sk sk ko kkokokokok

Read the last received message for the given CAN id.

id points to the integer matching the id from the event.

Due to masking, the actual id read can differ, so it gets written into *id.

When no message can be found, UINT_MAX is returned.

Multiple received messages are not guaranteed to generate more than 1 event.
Multiple received messages with the same id are overwritten by the latest message.

The recommended way to call can_read() is this:
event = 0S_WaitEvent (my_event);
if (event & my_event) {

can_id = can_id_block;
can_mask = can_id_mask;

¥ XK X X X X X X X X X X *

23

while (can_read(CAN_BUS_ID, &can_id, can_mask, data) != UINT_MAX) {
-- Do something here with the data
can_id = can_id_block;

* ¥ ¥ ¥ *

* }
* Note: the statement can_id = can_id_block at the end of the while loop is
* not necessary if can_mask is equal to CAN_MASK_ALL, because then can_id

* will always be the same.
N\ steokeokeofe ok ok ki sksksksksk sk sk sk s ok ke ok ok ok sk sk sk sk sk sksk sk sk sk sk sk ok okok ok sk sk sk sk sksksk sk sk sk ok ok kokokok ok sk sk sk sk sk sksk sk sk sk sk ok kokokok ok ok /

unsigned can_read(unsigned int bus, unsigned int *id, unsigned int mask, char *data);

UART

/K kok kok ok ok ok ok sk ok ok ok sk ok sk ok ok sk o ok ok sk ok ok ok ok ok sk ok ok sk ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ko kok ok ok ok ok \
* This function initializes this UART interface.

* It must be called before any of the other functions can be used.
stk stk o sk ook sk sk ok ok sk sk ok ok sksk sk sk ok sk sk sk ok ok sk ok stk ok skskok sk sk sksk ok sk skskosk ok skskosk sk ok sk sk sk sk ok sk sk sk sk ok ok ok /

void UARTO_Init(unsigned long baud);

/**\

* Read a single character from the UART channel.
N\ stk ok sk sk s ok sk sk sk ok ok sk sk ok sksk sk sk ok sk sk sk ok sk ok skeskosk ok sksksk sk sk sksk sk sk skskosk ok sk sksk ok sk sk sk sk ok sk sk sk sk ok ook /

char UARTO_Getchar(void);

/**\

* Write a single character to the UART channel.
stk ke sk sk o s ok ok sk o sk ok sk sk ke ok sksk sk s ok sk sk sk ok sk ok ke ok sk ok ke ok sksksk sk ke sk sk sk sk skl sk ke sk sk sk sk ok sk sk sk sk ok sk sk ok sk ok okok /

void UARTO_Putchar(char cdata);

/**\

* Write the specified number of characters to the UART channel.
stk e ke sksk o s ok sk ok sk ok sk sk e ok sksk o e ok sk sk sk ok sk sk ok sk sk e ok sksk sk s sk sk s ok sk sk sk ke sk sk sk sk ok sk sk sk sk ok ok sk ok sk ok ok ok /

int UARTO_Write(const char *data, int length);

/**\

* Returns whether calling UART_Getchar would return immediately instead of blocking.
N\ skokeokeofe ok ok sk skeskesksk sk sk sk s s o ke ofe ok ok sk sk sk sk sk sksk sk sk sk sk sk ke okok ok sk sk sk sksksksk sk sk sk o s ok kokokok ok sk sk sk sk sk sk sk sk sk sk sk kokokok ok ok /

unsigned char UARTO_RxAvailable(void);

/**\

* Flushes the read and write buffers.
N\ skt ok ok ok sk sk ok ok sk o ok ok sk o sk ok ok sk o ok ok sk o ok ok ok sk s ok ok ok ok ok ok ok sk ok ok sk ok ok sk o ok ok ok ok sk ok ok sk o ok ok sk ok ok ok ok ok ook ok ok ok ok ok ok ok ok /

void UARTO_Flush(void);

4.3 Tasks of ECU’s

This sections describes which tasks run on the various ECU’s and what each task does. The functionality
of the fuel cell nodes is not described here, because when we started working on this parts, we did not
have enough time left to write them down as much in detail as the other parts of the system.

24

4.3.1 Dashboard controller

The dashboard controller presents information to the driver and communicates requests from the driver
to other parts of the system. A listing of the tasks that run on the dashboard controller can be seen in
Table 1.

Like all other ECU’s, the dashboard controller sends a ‘heartbeat’ — over the CAN2 bus — 10 times per
second. This heartbeat is mainly meant for the two throttle nodes, but is also received by the fuel cell
controller.

In the task “Receive CAN” the dashboard controller listens for a lot of CAN messages like messages indi-
cating the status of the lifeline, heartbeats of some ECU’s, and sensor values. It turns on the “Electronics
OK” LED when it receives a message from one of the throttle nodes that it got all the heartbeats, and it
turns the LED off when it has not received the heartbeats from the two throttle nodes within a certain
time. It does something similar with the “Fuel cell running” and “Fuel cell standby” LED’s depending on
the messages it receives from the fuel cell controller. The task updates the LED’s of the hydrogen tank
pressure and hydrogen tank temperature based on messages sent by the hydrogen tank node. The 32
LED’s indicating the voltage of the boostcaps are updated when it receives the message containing the
voltage level sent by the DCDC node. The LED’s of the coolant (water) temperature are updated when
receiving the appropriate message from the cool node.

As a debugging feature, the “Receive CAN” task starts and retriggers several timers when certain CAN
messages arrive. For example, if the dashboard controller receives a “Successful activate lifeline” message
from one of the throttle nodes, then it expects a “Lifeline online” message within 250 milliseconds. If
this does not happen, a timer expires, resulting in executing a certain function where the developer can
place a breakpoint. These timers do not have any influence on the behaviour of the car and should only
be used to detect the absence of certain expected CAN messages.

The task “Measure Switches” measures the state of some pushbuttons and flipswitches 20 times per
second. Two pushbuttons are used to activate or kill the lifeline. If it measures that both pushbuttons
are pushed by the driver at the same time, it does nothing. If the electronics are OK, it sends a CAN
message to activate the lifeline if the driver pushes the corresponding pushbutton. The three flipswitches
are used to start/stop the fuel cell, to send a command to cool down, or to prime.

The tasks “Display Speed” and “Update Speed Display” are used to update the speed shown on the
speed display, found between the two rows of boostcap LED’s. The first task is used to calculate the
actual speed to display to the driver, based on the measured speed of the four wheels. The other task
then continuously updates and refreshes the first, second, or third digit of the LED display. Because the
LED display hardware can only show one digit at a time, the “Update Speed Display” needs to cycle
with a very high frequency.

The “Knight Rider” task is a task that turns on all the LED’s in a specific sequence for a couple of
seconds when the PCB is powered on. The “MC Diagnostics” task requests diagnostic data from the
motor controllers over the CAN3 bus, processes it and sends it on via the CAN2 bus.

Task Type (average) frequency Misc
Send Heartbeat periodic 10 Hz
Receive CAN sporadic -
Measure Switches periodic 20 Hz
Display Speed aperiodic 15 Hz
Update Speed Display periodic 500 Hz
Knight Rider startup -
MC Diagnostics periodic 1 Hz

Table 1: Tasks running on the dashboard controller

25

4.3.2 Telemetry node

The telemetry node is used to gather telemetry and send this over the air via the JenNet protocol by
communicating with a chip via UART. A listing of the tasks that run on the telemetry node can be seen
in Table 2.

The telemetry node send its ‘heartbeat’ over the CAN bus 10 times per second in the “Send Heartbeat”
task.

The “Send Telemetry” task sends content of a buffer — prepared by the “Gather Telemetry” task — via
UART to the chip that will transmit the data over air. It does this 10 times per second. The “Gather
Telemetry” task just listens for certain messages that it receives over the CAN bus and adds this to the
buffer.

Task Type (average) frequency Misc
Send Heartbeat periodic 10 Hz
Send Telemetry periodic 10 Hz

Gather Telemetry aperiodic -

Table 2: Tasks running on the telemetry node

4.3.3 Throttle node

The two throttle nodes measure the amount of throttle that the driver applies and send an appropriate
analog signal to the motor controllers. They also measure the wheel speed of the front wheels and
perform several functions relevant to the lifeline. A listing of the tasks that run on the two throttle
nodes can be seen in Table 3.

Just like the dashboard controller, the throttle nodes send their ‘heartbeat’ over the CAN bus 10 times per
second. The “Receive Heartbeats” task listens for heartbeats from the ECU’s connected to the CAN2 bus.
It expects to receive a heartbeat from each ECU within a certain time after the last received heartbeat
from that same ECU. It kills the lifeline if a heartbeat is not received in time or not at all.

The “Lifeline Status” task — which runs only on throttle node 1 — measures whether the lifeline is
online or offline and send a notification over the CAN bus when the status changes. The “Process ES”
task activates or kills the lifeline if it receives a corresponding CAN message or if signaled by another
task.

The “Throttle Control” task measures the throttle pot that is associated with the throttle node. The
throttle nodes perform some safety checks, including comparing the measured values from the two throttle
pots. If the measured values are not valid, the throttle nodes try to kill the lifeline. If the measured
values pass the safety checks, only throttle node 1 then send the appropriate analog signal to the motor
controllers.

In the “Wheel Speed” task, each throttle node regularly measures the speed of their associated front
wheel and broadcast this information over the CAN bus.

26

Task Type (average) frequency Misc

Receive Heartbeats aperiodic 100 Hz

Send Heartbeat periodic 10 Hz

Throttle Control periodic 100 Hz Controlling MC by TN1 only
Lifeline Status periodic 10 Hz TN1 only

Process ES sporadic -

Wheel Speed periodic 5 Hz

Table 3: Tasks running on the throttle nodes

4.3.4 Wheel speed node

The two wheel speed nodes measure the speed of the rear wheels. The right rear wheel speed also turns
on the brake light if it measures that a certain amount of brake pressure is being applied or if the driver
is requesting regenerative braking. The right rear wheel speed is also responsible for send an analog
signal to the motor controllers for regenerative braking. A listing of the tasks that run on the two wheel
speed nodes can be seen in Table 4.

The wheel speed nodes send their ‘heartbeat’ over the CAN bus 10 times per second in the “Send
Heartbeat” task. In the “Wheel Speed” task, each wheel speed node regularly measures the speed of
their associated rear wheel and broadcast this information over the CAN bus.

The other three tasks are only performed by the right rear wheel speed node. In the “Brake Pressure”
task, the right rear wheel speed node measures the brake pressure 100 times per second. The task can
then send a signal to the “Brake Light” task if the pressure becomes higher or lower than the minimum
brake pressure. The “Regen Braking” task listens for CAN messages sent by the dashboard controller
indicating whether the driver wants to apply 0%, 50%, or 100% regenerative braking. Because the
dashboard controller’s “Measure Switches” task has a frequency of 20 Hz, this task, in practice, also has
a frequency of 20 Hz. When this condition changes, the task signals the “Brake Light” task, which can
then turn on or off the brake light. The “Regen Braking” task also sends an appropriate analog signal
that indicates the requested amount of regenerative braking to the motor controllers.

Task Type (average) frequency Misc

Send Heartbeat periodic 10 Hz

Wheel Speed periodic 5 Hz

Brake Pressure periodic 100 Hz Right only
Regen Braking aperiodic 20 Hz Right only
Brake Light sporadic - Right only

Table 4: Tasks running on the wheel speed nodes

4.3.5 DCDC node

The DCDC node performs some functions that control and monitor the DCDC hardware that can be found
in the vehicle. A listing of the tasks that run on the DCDC node can be seen in Table 5.

The DCDC node send its ‘heartbeat’ over the CAN bus 10 times per second in the “Send Heartbeat” task.
In the “Receive Heartbeat” task it listens on the CAN bus for the heartbeat of the fuel cell controller.

The “Receive Current” task listens for messages — sent by the fuel cell controller — containing a current
on the CAN bus and converts it to an analog value on the DAC.

The “Send Values” task sends the current and voltage in and out values read from the DCDC converter

27

over the CAN bus.

The “Enter Standby” task sets the Required Current on the DAC to the standby current if it does not
receive the heartbeat of the fuel cell controller within a certain time.

Task Type (average) frequency Misc
Send Heartbeat periodic 10 Hz
Receive Heartbeat aperiodic 10 Hz
Receive Current aperiodic 4 Hz
Send Values periodic 10 Hz
Enter Standby sporadic -

Table 5: Tasks running on the bCcDC node

4.3.6 Fuel cell controller

The fuel cell controller reads the stack voltage and controls the other nodes in the fuel cell. A listing of
the tasks that run on the fuel cell controller node can be seen in Table 6.

The “Voltage Monitoring” continously reads out the voltage for every cell in the stack, and calculates
the average of all cells.

Using the “CAN Receive” task this controller receives sensor values and other messages from nodes in
the fuel cell, and commands from the dashboard.

The “Diagnostics” task checks if all sensor values are in range, and takes action if one of them is not.
Depending on the sensor and how far it is out of range, this causes a shutdown of the fuel cell, an
emergency shutdown of the fuel cell or a warning to the driver.

Real control of the fuel cell is done by the “Run Control” task. This task periodically sets the actuators
in the fuel cell, and keeps the power from the fuel cell at the level needed to keep the boostcaps as full
as possible.

The “Statemachine” task controls the state machine.

A blink LED on the controller flashes with a frequency depending on the current state, controlled by the
“Blinky” task.

The command shell used for some diagnostic information and debugging runs in the “Command” task.

Task Type (average) frequency Misc
Send Heartbeat periodic 10 Hz
Receive Heartbeats aperiodic 60 Hz
Voltage Monitoring periodic 4 Hz
CAN Receive aperiodic 150 Hz
Diagnostics periodic 10 Hz
Run Control periodic 4 Hz
Statemachine sporadic -
Blinky periodic 8/2/1 Hz
Command sporadic -

Table 6: Tasks running on the fuel cell controller

28

4.3.7 Hydrogen tank node

The hydrogen tank node monitors the hydrogen tank and calculates an approximate mass flow to detect
leaks upstream of the fuel cell. A listing of the tasks that run on this node can be seen in Table 7.

The hydrogen tank node send its ‘heartbeat’ over the CAN bus 10 times per second in the “Send Heart-
beat” task. In the “Receive Heartbeat” task it listens on the CAN bus for the heartbeat of the fuel cell
controller.

The “Check Massflow” task measures the pressure and temperature of the tank and uses a one-minute
history to calculate the average mass flow over the past minute. It sends each of these values over the
CAN bus and sends the “kill lifeline” command to close the tank if any of them is out of their safe range.

The “Coolant Temperature” task measures the temperature of the coolant at the inlet of the stack and
sends this over the CAN bus.

Task Type (average) frequency Misc
Send Heartbeat periodic 10 Hz
Receive Heartbeat aperiodic 10 Hz
Check Massflow periodic 1 Hz
Coolant Temperature periodic 4 Hz

Table 7: Tasks running on the hydrogen tank node

4.3.8 Hydrogen low pressure node

The hydrogen low pressure node measures the flow, pressure and temperature of the hydrogen in the low
pressure system and controls the speed of the recirculation pump and the state of the inlet and purge
solenoids. A listing of the tasks that run on this node can be seen in Table 8.

The hydrogen low pressure node send its ‘heartbeat’ over the CAN bus 10 times per second in the “Send
Heartbeat” task. In the “Receive Heartbeat” task it listens on the CAN bus for the heartbeat of the fuel
cell controller.

The “Purge Hydrogen” and “Set Flow” tasks control the purge valve and the recirculation pump in
response to CAN messages.

The “Read Flow”, “Read Pressure” and “Read Temperature” tasks read the mass flow into the low
pressure system and the pressure and temperature inside it and send these values on the CAN bus.

The “Process Stateswitch” and “Receive Stateswitch” tasks control the statemachine.

Task Type (average) frequency Misc
Send Heartbeat periodic 10 Hz
Receive Heartbeat aperiodic 10 Hz
Purge Hydrogen sporadic -
Set Flow sporadic -
Read Flow periodic 4 Hz
Read Pressure periodic 4 Hz
Read Temperature periodic 4 Hz

Process Stateswitch sporadic -
Receive Stateswitch — sporadic -

Table 8: Tasks running on the hydrogen low pressure node

29

4.3.9 Air node

The air node controls the airflow, measures its temperature and controls the pressure of the low pressure
hydrogen system based on the air pressure. A listing of the tasks that run on this node can be seen in
Table 9.

The air node send its ‘heartbeat’ over the CAN bus 10 times per second in the “Send Heartbeat” task.
In the “Receive Heartbeat” task it listens on the CAN bus for the heartbeat of the fuel cell controller.

The “Pressure Regulator” task measures the air pressure and updates the hydrogen pressure setpoint to
be equal to the air pressure plus 20 kPa and sends these values on the CAN bus.

The “Flow Setpoint” task controls the air mass flow setpoint based on CAN messages from the Fuel Cell
Controller.

The “Air Flow” task measures the air mass flow and controls the air compressor with this value and the
setpoint using PID. The mass flow is also sent over the CAN bus.

The “Air Temperature” task measures the air temperature at the stack inlet and sends this on the CAN
bus.

The “Process Stateswitch” task controls the statemachine.

Task Type (average) frequency Misc
Send Heartbeat periodic 10 Hz
Receive Heartbeat aperiodic 10 Hz
Pressure Regulator periodic 5 Hz
Flow Setpoint sporadic -
Air Flow periodic 100 Hz
Air Temperature periodic 4 Hz

Process Stateswitch sporadic -

Table 9: Tasks running on the air node

4.3.10 Cool node

The “Coolant Temperature” and “Massflow Coolant” tasks reads the coolant temperature at the outlet
of the stack and the coolant mass flow and sends them via the CAN bus. A listing of the tasks that run
on the cool node can be seen in Table 10.

This temperature is also used by the “Cool” task to control the fan on the radiator via the DAC. In
running mode, the fan is turned off until the coolant temperature at the outlet of the stack is below
55°C, and fully turned on when the temperature is above 65 °C. Between these temperatures, the fan
speed is increased linearly. When the node is in Cooldown mode, the fan is turned on as long as needed
to get the temperature below 30 °C.

The “Process Stateswitch” and “Receive Stateswitch” tasks control the statemachine by commands sent
by the Fuel Cell controller over CAN.

30

Task Type (average) frequency Misc

Send Heartbeat periodic 10 Hz
Receive Heartbeat aperiodic 10 Hz
Coolant Temperature periodic 4 Hz
Massflow Coolant periodic 4 Hz
Cool periodic 1 Hz
Process Stateswitch sporadic -
Receive Stateswitch sporadic -

Table 10: Tasks running on the cool node

4.4 CAN protocol

All nodes in the vehicle communicate with each other using several CAN (Controller Area Network)
buses. The CAN protocol defines messages of up to 8 bytes long, with an 11 bit message ID. The 1D
also determines the priority of a message: a lower ID means a higher priority. A listing of all the CAN
messages can be seen in Table 11.

We decided to use the following conventions:

e All CAN ID’s are unique over all CAN buses found in the system. In other words, the ID’s are not
related in any way with the bus from which they originate.

e Every message category has one or more blocks of 16 IDs that can be used for messages within this
category.

e Every message type (sensor value etc) has its own ID in one of these blocks.

The cAN 1D of the HLS-440 hydrogen sensor is set fixed to 0x640; this means that all messages with a
lower priority must have higher 1D’s. Only the message that is used to kill the lifeline and the heartbeats
have a higher priority than these sensor values. Throttle and wheel speed values have the next highest
priority, because the software that sends and receives these kind of messages must have a very short
response time. After this, sensor and command messages from the fuel cell follow. The lowest priority
goes to the motor controller diagnostic values, because these values are purely diagnostic and are used
for logging only.

D Type Description Value
0x500 Command Kill lifeline -
0x584 Heartbeat Throttle node 1 -
0x585 Heartbeat Throttle node 2 -
0x590 Heartbeat Dashboard controller -
0x591 Heartbeat Telemetry node -
0x592 Heartbeat Left rear wheelspeed node -
0x593 Heartbeat Right rear wheelspeed node -
0x594 Heartbeat DCDC node -
0x5c0 Heartbeat Fuel cell controller -
0x5cl Heartbeat FC Air node -
0x5c2 Heartbeat FC Tank node -
0x5c¢3 Heartbeat FC H2 low pressure node -
0x5c4 Heartbeat FC Cool node -
0x640 Sensor HLS-440 Hydrogen Sensor See API

0x650 Command Activate lifeline -
0x661 Status Successful Emergency shutdown 1 byte char (reason)
0x662 Status Successful Activate lifeline -

31

0x663 Status Lifeline offline -

0x664 Status Lifeline online -

0x665 Status Got all heartbeats -

Ox6al Sensor Throttle pot 1 2 byte unsigned short
O0x6a2 Sensor Throttle pot 2 2 byte unsigned short
0x6d1 Sensor Left front wheel speed 4 byte unsigned int (RPM)
0x6d2 Sensor Right front wheel speed 4 byte unsigned int (RPM)
0x6d3 Sensor Left rear wheel speed 4 byte unsigned int (RPM)
0x6d4 Sensor Right rear wheel speed 4 byte unsigned int (RPM)
0x701 Command Regenerative braking 0% -

0x702 Command Regenerative braking 50% -

0x703 Command Regenerative braking 100% -

0x731 Setpoint Air mass flux setpoint 8 byte double (SL/min)
0x732 Setpoint Mass flux h2 setpoint 4 byte unsigned int (I (5V/1024))
0x733 Setpoint Hydrogen pressure setpoint -

0x737 Command FC Purge 4 byte unsigned int (ms)
0x741 Setpoint Current required 8 byte double (A)

0x747 Command FC H2 low pressure mode 4 byte unsigned int (mode)
0x748 Command FC Air mode 4 byte unsigned int (mode)
0x749 Command FC Cool mode 4 byte unsigned int (mode)
0x74b Command FC Start -

0x74c Command FC Stop -

0x74d Command FC Standby -

0x74e Command FC Prime -

0x74f Command FC Cooldown -

0x751 Status FC started -

0x752 Status FC stopped -

0x753 Status FC in standby -

0x761 Status Air/H2 pressure diff too high -

0x762 Status Air pressure sensor inoperative -

0x770 Sensor H2 pressure 8 byte double (bar)

0x771 Sensor H2 temperature 8 byte double (°C)

0x772 Sensor H2 mass flux 8 byte double (SL/min)
0x773 Sensor Air mass flux 8 byte double (SL/min)
0x774 Sensor Air pressure 8 byte double (bar)

0x775 Sensor Air temperature 8 byte double (°C)

0x77a Sensor Coolant in temperature 8 byte double (°C)

0x77b Sensor Coolant out temperature 8 byte double (°C)

0x77c Sensor Coolant mass flux 8 byte double (SL/min)
0x780 Sensor H2 tank pressure 8 byte double (bar)

0x781 Sensor H2 tank temperature 8 byte double (°C)

0x784 Sensor DCDC current in 8 byte double (A)

0x785 Sensor DCDC voltage in 8 byte double (V)

0x786 Sensor DCDC current out 8 byte double (A)

0x787 Sensor DCDC voltage out 8 byte double (V)

0x788 Logging Average cell voltage 8 byte double (V)

0x789 Logging Cell voltage factor 8 byte double (-)

0x7d0 Other Motorcontroller left receive -

0x7d1 Other Motorcontroller left send -

0x7d2 Other Motorcontroller right receive -

0x7d3 Other Motorcontroller right send -

0x7e0 Sensor MC Left PWM 1 byte char

Ox7el Sensor MC Right PWM 1 byte char

0x7e2 Sensor MC Left Rotation 1 byte char

0x7e3 Sensor MC Right Rotation 1 byte char

32

0x7ed
0x7eb
0x7e6
0x7e7
0x7e8
0x7e9
Ox7ea
0x7eb
0xTec
0x7ed
0x7ee
Ox7ef

Sensor
Sensor
Sensor
Sensor
Sensor
Sensor
Sensor
Sensor
Sensor
Sensor
Sensor
Sensor

MC Left Motor temperature

MC Right Motor temperature

MC Left Controller temperature

MC Right Controller temperature
MC Left FET high-side temperature
MC Right FET high-side temperature
MC Left FET low-side temperature
MC Right FET low-side temperature
MC Left error code

MC Right error code

MC Left current percentage

MC Right current percentage

1 byte char
1 byte char
1 byte char
1 byte char
1 byte char
1 byte char
1 byte char
1 byte char
2 byte unsigned short
2 byte unsigned short
1 byte char
1 byte char

Table 11: List of all the CAN messages

33

5 Software quality and testing

In this section we explain how we assure good software quality, and how we test the software to be sure
everything works as required. In Section 5.1 we describe our what kind of tests we will perform. In
Section 5.2 the system used for software documentation. In Section 5.3 we discuss MISRA compliance.

D.
Section 5.4 sets our software metrics goals.

5.1 Testing

The kind of tests we will execute are the following:

e Manual unit testing of drivers and ECU functionality on development boards and final PCB hardware
using a digital oscilloscope, multimeters, and a special device that can monitor CAN messages that
get broadcasted over a CAN bus.

e Checking for possible stack overflows using the IAR Embedded Workbench IDE

e Using Rate Monotonic Analysis to determine whether a set of tasks on an ECU that might result
in a processor utilization that is too high

e Testing integration of the various ECU’s by taking the vehicle for several test runs

5.2 Documentation

Good documentation for software is essential for software maintainability. If future programmers want to
fix bugs, make changes or re-use code in other project, they will need an explanation of how the software
we wrote works, and why it was implemented this way.

Our software documentation consists of two important parts:

e This report functions as a source of ‘global’ documentation. The design of the full systems can be
found here, including argumentation why certain decisions were made.

e The specification of the driver API's can be found in the driver header files. All functions are
described here with an explanation of what their parameters and return value is.

5.3 MISRA C

MISRA C is used as required by the project description and to detect code that could be the source of
possible bugs. However, Segger embOS — the RTOS we used — is known to be not MISRA C compliant
and did lead to many warnings that could only be removed by changing code in the the RTOS itself;
something that was obviously impossible. Our research showed that some rules of the coding guidelines
can be interpreted in multiple ways and code changes to remove warnings may introduce new bugs.
However, we did follow more of the rules that deal less with the syntax and more with the semantics.
For example, we did not use dynamic memory allocation or dangerous pointer arithmetic. Following
these rules proved to be more useful than, for example, adding an ‘u’ character after every unsigned
integer literal.

5.4 Software metrics

The obvious things to look at when quantifying software is lines of code, modules, functions and combi-
nations like average lines of code per function. Other things that can be measured are parameter counts,

34

maximum nesting depth and cyclomatic complexity.

With regard to embedded software, things like the maximum stack size of a task are relevant.

35

6 Implementation

In this section we give some details about the actual implementation we did, according to the designs
as found in Section 4. Sections 6.1 and 6.2 explain which software was actually ported and which was
written new. Section 6.3 explains the method used to determine which priority tasks should have. Section
6.4 explains which software that was not part of the original assignment.

6.1 Porting old software

Our initial expectation was that a lot of software could be ported from the Forze III applications.
However, already during the design phase it became clear that only a few small parts could be re-used.
Because the new boards use a new family of microcontrollers, the directly hardware-related parts were
outdated. The API’s of the old drivers were not as good as we wanted them, if present at all.

Most of the application software was not reusable too. The fuel cell control application was very simple
in the Forze III, and only had to send some CAN commands and check some CAN diagnostic messages.
The dashboard application was running on a PDA, where the dashboard controller in the Forze IV was
directly connected to LED’s, LED displays and hardware buttons.

Eventually, in only two parts of the software substantial amounts of code could be re-used:

e The CAN driver uses the old implementation to send and receive CAN messages. The API however,
was fully redesigned and rewritten.

e The UART driver was almost completely compatible with our requirements, so it was reused nearly
unchanged. We also reused the command shell structure for testing and debugging.

6.2 Writing new software

As stated in Section 6.1, porting of software was hard or impossible for most of the software. That means
a lot of new software had to be written from scratch. This gave us the advantage of being free in chosing
how we wanted to design and implement these parts, but at the same time meant we had more work
than we expected.

6.3 Rate Monotonic Analysis

Rate Monotonic Analysis was used to assign fixed priorities in such a way that the set of tasks on an
ECU would be schedulable — as described by Liu and Layland [3]. In other words, that the processor
utilization of the set of tasks is lower than the least upper bound — which depends on how many tasks
a set contains — so that all real-time tasks will always meet their deadlines.

The analysis makes a number of assumptions and does not handle aperiodic tasks, sporadic tasks, task
synchronization, I/O blocking, priority inversion, non-zero task switching times, interrupts, and non-
preemptable code segments. Even though the basic analysis has some drawbacks, we used RMA as a
guideline to determine which priorities to assign. We applied RMA with the following two additional
considerations:

1. For two tasks that have the same period, the task that is considered to be more ‘critical’ is given
a higher priority.

2. As suggested by the article [4] and Lehoczky et al. [2], all the tasks are given harmonic frequencies if
possible so that the least upper bound for the set of tasks is 100%. If harmonic frequencies are not

36

possible, the average bound for a randomly generated set of tasks is shown to be 88% by Lehoczky
et al. [2], which improves our confidence that an ECU will be able to schedule all real-time tasks.

6.4 Written software not part of original project description

The following parts of the final software were not part of the original project assignment or the design
we made:

e SPI driver. Because the hardware designs were not finished in time, we did not know we needed
spI for the DAC, thermocouple and LED driver controllers. When it became clear all these controllers
needed this protocol, we decided the best way to handle this was to write a separate spI driver and
let the other drivers use this driver.

e LED driver. Like the sp1 driver, we had not enough details about the hardware to know the need
for a LED driver. However, the sP1 driver made the LED driver fairly simple to implement.

e Fuel cell control software. When starting the project, we knew this software had to be written.
However, this software was not part of the project assignment and we were told that another
team would write this software, therefore we did not take the process of designing and writing this
software into account for the project planning. More details about the reason we designed and
wrote this software can be found in Section 7.3.

37

7 Development process

In this section we describe the development process that has taken place during the project. We describe
the process in Section 7.1. Section 7.2 gives an overview of problems encountered during this process. A
separate Section 7.3 is written about the fuel cell control software. Section 7.4 is about the FSUK event
we participated in with the car.

7.1 Process description

The first days of the project we were busy setting up a workplace, getting to know the other team
members we had to work together with and installing and configuring the development environment.
After we were finished with this we started working on the orientation report and plan of approach.

The next step was designing and implementing the various drivers. At the same time, more and more
hardware prototypes became available, so we could start testing these boards and try out the drivers on
the target hardware and help the hardware designers to fix bugs in their boards.

When the drivers were finished, we started with the design and implementation of the application software
that had to be written for the dashboard, throttle nodes, and telemetry node. About a week before the
scheduled end of the project, it became clear that no other team members would be available for the
development of the fuel cell control software (see Section 7.3 for more information). To get the car
working in time we started working on this parts of the software too.

This meant a lot of work had to be done in the last week of the project. We worked every possible hour
and tried to finish the software in time. When we had to leave to the UK we did not have a working
car, and the team could not get it to work during the event (see also Section 7.4). After the event
we continued working to get the car ready to drive. And with good results: at August 16th we did a
successful FTA world record attemt for hydrogen vehicles at the Beatrixlaan in The Hague!

The final step was writing this report. Although we planned to work on the report during the development
process, the large amount of work took all the time we had, so the report had to be written in the last
weeks before the presentation could be given.

7.2 Encountered problems

During the development of the software, we encountered some problems:

e The specifications of the various systems in the car that had to be controlled were not as detailed
as needed, so we needed a lot of time to speak to the people who designed and built these parts,
and had to wait for the answers to our questions.

e Our development hardware had some bugs, so we had to figure out wat was wrong with them and
even grab the soldering iron to fix these bugs.

e Because the target hardware was fully newly designed, we had to test whether the hardware really
did what it needed to do. Several problems were found in the designs of the PCB’s of the hardware
and it costed a lot of time waiting for new revisions of the boards. This also meant we could not
test our software on the target hardware for a long time, so debugging of the software on the target
hardware started very late.

38

7.3 Fuel cell software

Writing the fuel cell controller software was not a part of the original assignment as described by Forze.
Another team promised to write this software, but the board could not contact them anymore when
the software really had to be written. Because the team really wanted to finish the vehicle in time, we
decided to throw a little extra effort and started designing and writing the fuel cell software.

However, we started with this software only two weeks before the FSUK competition would start. We
worked really hard to finish the software in time, but unfortunately we did not finish it in time. After
this, the code had become a real mess, so we decided to rewrite the fuel cell control software after FSUK.
With the extra knowledge we had developed during these weeks, this rewrite was done surprisingly fast:
within two days of work the software was rewritten and the fuel cell was running for some minutes for
the first time.

A big issue during the development of the fuel cell controller was domain knowledge: knowledge about
the working of a fuel cell appeared to be necessary to write the software to control it. We solved this
by working closely together with the fuel cell engineer from the team, and a lot of work and study to
expand our own knowledge.

7.4 Formula Student UK event

Our main activity at the competition at Silverstone Circuit was getting the fuel cell software to work.
Unfortunately, some mistakes were made when connecting components, so hardware was damaged and
we lost valuable time fixing hardware and waiting for hardware to be fixed. We could not get the car
working to compete in the dynamic events.

Figure 3: Fuel cell testing at Formula Student UK Competition.

We also had some problems calibrating the two throttle nodes and comparing the values, so after the
competition we decided our safety measures are good enough that it allowed us to remove one of the
nodes and control the throttle with only one node.

Although we could not show the car driving, everyone was very enthousiastic about the first Formula
Student hydrogen fuel cell car. Even the scrutineers and judges were impressed by the quality of the car
we built and help was offered from all sides as everyone really wanted to see our car driving.

39

8 Results

In this section we describe the results of this project. We give an overview of which requirements are
met and which not in Section 8.1, and give the results of the execution of the test plan in Section 8.2.

8.1 Implementation of requirements and specifications

There is no HLS-440 driver per se, as much as there is a structure describing what each bit of the CAN
messages it sends means. As this ‘driver’ is used in only two places and the lack of functions requires
the client to add only three simple lines of code, this not a terrible trade-off.

Logging to sD card has only been partially implemented. The filesystem driver works and a dummy
logger is functional on the development boards, but as there was no SD card connector present on
target hardware, implementation of the actual logging tasks was delayed in favor of more immediate
requirements.

The double throttle node system was eventually removed. There were problems calibrating the nodes
and eventually the hardware was required for a different node, as we ran out of spare PCB’s.

8.1.1 Requirements

Of the two quality requirements found in Section 2.4.1, most of the API’s of the drivers are resuable
on the Cortex-M0O and Cortex-M3 microcontrollers. ECU’s have been implemented in such a way that
unexpected CAN messages are simply ignored or an error will be raised during debugging. However, most
code does not check that CAN messages have a payload with the expected number of bytes. The software
simply copies the expected number of bytes from the buffer to a variable. This should only result in
incorrect values, rather than a crash. Fortunately, the design of the CAN protocol describes the length
of the data of each CAN message.

All items of “Must have” of the functional requirements found in Section 2.4.2 have been achieved. Of
the “Should have” only the items concerning the telemetry node has been achieved. The items of “Could
have” and “Want have” have not been achieved due to having been assigned a lower priority because
the whole team needed to get the vehicle ready to drive on time for FSUK.

All platform requirements in Section 2.4.3 and the items of “Must have” of the safety requirements in
Section 2.4.4 have been achieved. Most of the deadlines — as specified in the process requirements in
Section 2.4.5 — have not been achieved because some drivers required more time for testing, or required
the availability of the final PCB’s of the general-purpose nodes hardware. Perhaps these deadlines were
too tight to begin with.

8.1.2 Specifications

Most of the items of the specifications of the drivers in Section 3.1 have been implemented. The DAC
driver does not provide an API to configure the voltage level for the ‘enabled’ and ‘disabled’ states. (This
is a ‘MAY’, however) The sp1 driver does not allow one to set the frequency of the transmission; this
is currently hardcoded to 4 MHz. The HLS-440 driver does not provide an API to get some data from
the message sent by the HLS-440 device. It does, however, provide a data structure that makes it easy
enough to extract the data.

The items of the specifications of the ECU’s in Section 3.2 have been implemented. The item that specifies
that the dashboard controller should request diagnostics from the motor controllers was implemented
after FSUK.

40

8.2 Execution of tests

All individual PCBs and drivers were tested extensively by hand and several subsystems — the throttle
nodes and the fuel cell — were tested as a whole, but full integration testing was not possible until the
wiring harness and final assembly were finished, which did not happen until FSUK.

We could not write and execute unit test cases — as is done in typical non-embedded software devel-
opment — for the drivers because the drivers interface with the hardware and sometimes because the
hardware could not be found on the development boards, but only on the specific PCB’s — produced by
the electrical department. One example is the DAC driver for the Cortex-MO0, which requires a specific
chip that can only be found on the PCB’s of the general-purpose nodes.

The testing we did do was a lot of checking with the oscilloscope that analog signals on certain pins
were as expected. Furthermore, we used a special device that could read broadcasted messages on the
CAN bus and display the 1D, value and frequency of each message. This device was very useful to verify
the functionality of the CAN driver and that the several ECU’s sent the correct messages with the correct
frequencies.

In the beginning, the hardware problems of the development boards and a missing robust CAN bus,
sometimes withholded us from proper testing. However, later these problems were fixed. Another
problem was that the final hardware only became available very late during the project or sometimes
was not even available; the dashboard was finished by other team members very late and there were a lot
of electrical problems with many boards, which meant that we had to wait until the electrical department
had fixed these or produced new boards, before we could continue testing certain drivers or ECU’s.

8.2.1 Stack overflow testing

The IDE we used has support for the Segger embOS RTOS; it can show a list of tasks, their state, and their
stack usage. The debugging build of the RTOS can monitor the stack usage and detect stack overflows,
although not reliably. We hit some stack overflows during testing; we remedied a stack overflow by
doubling the stack, monitoring the stack usage of the task that caused the stack overflow, and then
gradually reducing the stack again a couple of times until there was a safe margin between the stack
usage and the maximum available stack.

8.2.2 Rate Monotonic Analysis

RMA was mostly used to assign the fixed priorities of the real-time tasks, but was also used to see
whether the microcontrollers would be able to handle the cPU load. Because we measured how long the
microcontroller needed to execute a certain code segment — which uses system calls from the RTOS —
the processor utilization time is only an estimate and not a guarantee. The processor utilization of the
set of tasks appeared to be no problem; we had more trouble with the memory usage of the tasks on the
Cortex-MO because of the severe memory limitation of this specific microcontroller.

41

9 Conclusions and recommendations

In this final section, our conclusion about this project can be found. We evaluate what could have been
done better in Section 9.1, look at the final results in Section 9.2 and what we have learned in the last
months in Section 9.3. In 9.4 we give some recommendations for the team to build an even better car
next year.

9.1 Evaluation of development proces

When looking at the complete development process, we can say it was far from optimal. The specifications
available at the start were insufficient, and during the process we decided to write a lot more software
than we had initially planned. Of course, this had consequences for the amount of time available for
testing: this was very much limited. Also, the pressure on the programmers in the final phase was very
high because of the deadlines of the roll-out and FSUK, which resulted in bungled work and quite complex
code.

9.2 Evaluation of results

When looking at the final results of the project, we can be satisfied. The main goal of getting the Forze
IV ready to drive has been achieved. The quality of the software, according to the Software Improvement
Group, is average. This means future team members have a foundation to build on, but also that there
is a lot to improve in the future.

9.3 Acquired experience

Before we started working on this project, none of us had substantial experience with embedded pro-
gramming using a RTOS, other than one course on Embedded Programming in the second year. After the
project we know what it is to build a fairly complex embedded system, distributed on about 10 different
boards spread across a race car.

Because the hardware was developed in-house and we also had to write the software to test it working close
together with electrical engineering students, we learned a lot about measuring, testing, and debugging
hardware and software that works closely with that hardware.

Another interesting point is the working of a hydrogen fuel cell. To be able to design and write the control
software for this system requires a lot of domain knowledge about hydrogen fuel cells. We acquired this
knowledge by interviewing team members who had built the fuel cell.

We also aquired experience on non-technical aspects: being a member of a student race team is a learning
experience. We learned how to organize and support events where the car had to be driven or to be
showed to interested visitors. We learned to keep an eye on safety during these events, while working
with highly flammable hydrogen gas.

9.4 Recommendations

We have the following recommendations for the team to make the software development process for next
year’s vehicle more easy than this year:

e The hardware design should be more simple. For example, 5 separate boards to control just the
fuel cell makes software development and debugging a lot harder than just one or two larger boards.

42

The hardware designs should be available more early, before the software design starts, to make a
realistic estimate of how much work has to be done to develop software to control it.

The hardware should be more robust and fool-proof. Too much hardware was damaged by just
small mistakes during testing.

It would be a good idea to have some advice from more experienced embedded programmers
during the design and development phases. Team members who have worked on previous cars
could be asked to have a few meetings where the current programmers can show their designs and
implementations and receive feedback.

The software design and development should start more early. Because the team works with
volunteers, it is possible people quit with few ways to force them to finish their work. When more
time is available, other programmers can be found to complete their jobs.

43

References

[1] Hydrogen Racing Team Delft. Risk assessment Greenchoice Forze. 2011.

[2] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact characterization
and average case behavior. In Real Time Systems Symposium, 1989., Proceedings., pages 166-171.
IEEE, 1989.

[3] C.Liuand J. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environment.
Journal of the ACM (JACM), 20(1):46-61, 1973.

[4] D. Stewart and M. Barr. Rate monotonic scheduling. Embedded Systems Programming, page 79,
2002.

44

A Project description

45

—~
- Green FORv4=

Hyorocen Facme Team Deer

Assignment description

Software Electronics Forze 4
2010-2011

Bachelor Project Tl
Alexander van Gessel

Mark Provo Kluit

Introduction:

The hydrogen racing team delft is developing and building its 4" generation vehicle this year. It is
intended to compete in the Formula Student UK class 1A competition for alternative fuel formula cars.

The Forze 4 is a hydrogen fuel cell powered vehicle build by TU Delft students from various faculties.
More than 50 students are involved in this project from September 2010 until august 2011.

During previous seasons a modular electronics system has been developed and used with great success.
This way the separate systems can be spread around the car to each perform its specific task. Many
small boards also makes the system easier to debug, cheaper to replace and easier to adapt or expand.
To achieve al the tasks in the Forze 4 vehicle 4 types of boards are used.

- Dashboard controller: reads input from driver, gives feedback to driver, does data logging

- Fuel cell controller: controls all fuel cell related tasks

- Sensor nodes: tiny board, reads out sensors, put data on CAN bus

- General purpose nodes: same as sensor nodes but also has some outputs to drive equipment

- Specific purpose nodes: telemetry node, inertial measurement node, throttle node,...

Last year 2 microcontrollers were used:
- ARM7 LPC2119 (small boards)
- ARM7 LPC2388 (big controller boards)

These hardware designs are updated to fit our needs and new controllers were selected:
- Cortex M3 LPC1768 microcontrollers for the dashboard and fuel cell controllers
- Cortex MO0 LPC11C14 microcontrollers for the nodes

Because of this hardware update new software is needed, last year’s software can be used as a
guideline.

F———_
Page1lot3

f'\ P
A Green FOR"4>

Assignment:

The assignment parts below should be completed in the order they are listed below and are essential for
the good working of the vehicle.

Write a plan of approach for the project and a requirements plan clearly stating the different
requirements and the consequences if a requirement is not met (in time).

Configure the operating system (delivered with support files for our controllers) to run on our hardware.
- Segger embOS (M3 and MO)
Configure, write drivers for
- UART (M3 and MO)
- CANbus (M3 and MO0)
- ADC (M3 and MO)
- DAC, PWM (M3 and MO)
Configure SD card drivers and logging system
- Segger emFile (Only M3)
Telemetry system
- Write an application for the telemetry node pulling messages of the CAN bus and putting it on
the UART connection to the wireless module.

The following assignment parts are on application level and also essential for the good working of the
vehicle. This should be very easy if the previous assignments are completed successfully.
- Write the dashboard controller application:
o Read inputs from switches and put this information on the CAN bus
o Display essential information on the dashboard (status LEDs etc.)
- Write the throttle node application:
o Accept emergency stop commands from other systems and cut car lifeline
o Read out throttle position sensor and check if it is within limits
o Compare throttle position sensor value with secondary sensor

If time is left the assignment can be expanded to for example:
- Configuration tool for telemetry node and sensor nodes
- Supporting the fuel cell application team
- Enabling two way communications on the telemetry system to change the vehicle settings from
the paddock to save time during test sessions
- Enabling wireless download of the log file over the telemetry system

All software should comply with the MISRA guidelines wherever possible.

]
__ TUDelft

f——-‘
Page 2 of 3

T —

~ —
-4 Green FOR"4>

Extra info:

- We prefer the report to be written in English so future (international) team members may use it
as a reference.

- The assignment can be changed by Greenchoice-Forze if they deem this necessary for the
vehicle to be ready on time.

- The source code or parts of it is not to be published in the report or any other document
without the written permission of the board of Stichting Formula Zero Team Delft.

Best regards,

NN

Pieter Danneels

Chief Electronics Department
Greenchoice Forze
www.greenchoice-forze.com

p.danneels@greenchoice-forze.com
+31 (0)6 26567339

]
TUDelft

P‘—-—__
Page 3 of 3

B Orientation report

49

s
- Green FOR4=

Orientation report
IN3405 Bachelor project

Usage of coding standards for
embedded programming in
automotive applications

Authors: Student number: Mentor Greenchoice Forze:
Alexander van Gessel 1287974 P. Danneels
Mark Provo Kluit 1263099
Jan Jaap Treurniet 1308351 Mentor TU:
H.G. Gross
Coordinator:

B.R. Sodoyer

Contents

1 Introduction 2
2 About coding standards and guidelines 3
3 MISRA C 4
3.1 What is MISRA C? 4
3.2 Drawbacks. 4
3.3 Compliance testing 5
3.4 Results of MISRA C compliance 5
4 AUTOSAR 6
4.1 What is AUTOSAR?o oo o o 6
4.2 Drawbacks.o 7
4.3 Compliance and accreditation 7
44 Results. e 7
5 Other coding standards and language subsets 9
51 EC—— . o 9
52 Cyclone e 9
5.3 JSF Air Vehicle C++ Coding Standards 9
54 1ISO Standards Lo 9
6 Conclusion 11
References 12

1 Introduction

This orientation report was written at the start of our bachelors project on
the development of embedded software at Greenchoice Forze. The assignment
of this project was to develop embedded software for a Formula Student 1A
class hydrogen race car for the Formula Student UK 2011 competition. One of
the requirements given was compliance to the MISRA C coding guidelines where
possible.

Some research about the contents of these guidelines learned that writing com-
pliant code would mean an extra effort, so the authors started wondering if
these guidelines would really improve the quality of the product, if there would
exist any other coding standards that could be used, what the differences are
between these coding standards and if there are any results available of using
them.

In this report we will give an overview of existing guidelines and standards for
embedded software development, based on research in the existing literature.
In Section 2 we explain why one would use a coding standard, and how coding
standards can be used. In Section 3 we describe the MISRA C standard, discuss
it’s drawbacks and present any results from research to the effectiveness of these
guidelines. In Section 4 we do the same for AUTOSAR. In Section 5 we briefly
discuss some other coding guidelines and standards we found. Our conclusion
can be found in Section 6.

2 About coding standards and guidelines

The concept that certain programming constructs can be detrimental to code
quality is nothing new, with the ’goto’ statement being questioned as early as
the 1960s [5]. Embedded software is of particular concern, as it tends to have
higher reliability requirements, and is usually written in C, which is notorious
for having a large amount of unsafe constructs [9, 17].

This means it makes sense to avoid these constructs in an embedded software
project, which can be done in different ways. A body of rules restricting the use
of certain features of a programming language — and specifying the ways other
features should be used — is known as a coding standard. Another option is to
formally describe a subset of the C language, which lacks most of the constructs
that one deems harmful [8]. Such a subset can then be extended with features
that make it easier to write safe programs than it would be in C. The resulting
language can be called a safe dialect [12].

Separately from coding standards, one can use formal methods for the speci-
fication and design of the system. These ensure that, if the specifications are
properly implemented, (part of) the system is provably correct — there also
exist methods to prove the implementation, but these are very time-consuming.
The problem with formal methods is that using them takes a great deal of time
and that, while they are widely believed to improve code quality, the empirical
proof for this is lacking [16]. Another problem is that a system that is com-
pletely correct, is not necessarily a safe system. If the specifications are wrong,
catastrophic failure can still occur, as the Ariane 5 flight 501 shows [18].

It is commonly assumed that writing safe software is more expensive than nor-
mal software, but there are known cases where the safe software had lower
development costs. It has been suggested that the effort expended designing
the system can reduce complexity, and a simpler system tends to be safer, more
reliable and easier to implement [18].

3 MISRA C

In this section we we will discuss the MISRA C guidelines. In Paragraph 3.1 we
will describe the MISRA C guidelines, and in Paragraph 3.2 we give an overview of
it’s drawbacks. In Paragraph 3.3 we discuss MISRA compliance, and Paragraph
3.4 describes results of research to the effectiveness of compliance.

3.1 What is MISRA C?

The full description of MISRA C is Guidelines for the use of the C language in
critical systems. MISRA C is a development standard for the C programming
language. The standard has been developed by MISRA (the Motor Industry
Software Reliability Association), originally for use in the automotive industry.
Nowadays MISRA C is also used by many developers in other industries that
have a safety-critical component [7].

The current version, MISRA-C:2004 consists of 141 rules. 121 of these rules are
marked as required and 20 are advisory. The rules are divided in 21 groups, for
example: [19]

e Language extensions
o Documentation
e Control flow

e Runtime failures

3.2 Drawbacks

There is a lot of literature containing drawbacks of the MISRA € guidelines. We
will mention the most important below.

MISRA C contains rules that have several possible interpretations [15]. This can
cause programmers to choose the wrong interpretation, and not implement the
correct solution. This multi-interpretability also causes problems when checking
compliance. We will discuss this in Paragraph 3.3.

Les Hatton [9] compares MISRA €:1998 and MISRA €:2004. He finds that the
signal-to-noise-ratio (the number of MISRA violations that actually cause soft-
ware faults) of MISRA €:2004 is, although higher than in MISRA €:1998 [7], still
very low. Also, he states the fixing of MISRA violations is likely to lead to more
faults because every code change has a non-zero probability of introducing new
errors, a phenomenon noticed by E. Adams as early as in 1984 [1].

Figure 1 shows transgression rates for MISRA C rules in different software projects.
For some rules, transgression rates are very high, while it is unlikely that these
projects will contain this much faults. This illustrates the high signal-to-noise
ratio as described above.

MISRA rule transgression rates

.
g 1000.00
o 800.00
o
Eg 600.00
€2 400.00 I
2 200.00 l §
|‘_‘E 0.00 j—rrrrrrrrrrrrl—ﬂll'ﬂ—n—rrrrﬂwrﬁlir‘rrm'lu nulmun—r!ﬁ—rrn-rm-n’v-v-rrv'rn-m$u|unuﬂu'm R e —
- O v~ © v © = © v © v~ © v~ © ~ © v © ~ O »~ © +» W » ©
- - AN N M O & F B0 0N O O MMM OO OO0 O O T T N A
Rule number
B Racing car system B Java script interpreter O Set top box O Car instruments
m Car instruments m Satellite comms m Government agency

Figure 1: Transgression rates for MISRA €:1998 rules [7].

3.3 Compliance testing

A formal MISRA certification process does not exist. Any company can claim
MISRA compliance for their code. Compliance to most of the MISRA guidelines
can be checked automatically using static code analysis, and several tools that
exist that claim to check conformance to these guidelines.

A comparison of MISRA C testing tools by Parker et al. [15] show big differences
between the tested tools. One of the causes for differences is the interpretation
of MISRA rules by the tool vendors. This might cause problems in situations
where a company tests its code using a tool and claims compliance based of the
results, while another tool might still find violations.

3.4 Results of MISRA C compliance

Boogert and Moonen [3] performed an empirical study about the effectiveness of
following MISRA rules on the TV on Mobile project, looking for the correlation
between violation of MISRA rules and faults in software. They did this by
analysis of the source code (including history) and problem reports for the code.
This study had a remarkable result: only 18 out of the 72 rules investigated had a
positive influence on the number of faults. For 25 rules they found no correlation
between the rule and the number of faults, and 29 rules even had a negative
influence on the number of faults. Of course, these results are valid only for a
certain project, but they show it is important to be careful when selecting code
guidelines, and not just blindly implement all rules.

4 AUTOSAR

In this section we will discuss the AUTOSAR architecture. In Paragraph 4.1 we
will describe the AUTOSAR architecture, and in Paragraph 4.2 we give a brief
overview of it’s drawbacks. In Paragraph 4.3 we discuss AUTOSAR compliance
and accreditation, and Paragraph 4.4 describes results of research to the effec-
tiveness of compliance.

4.1 What is AUTOSAR?

AUTOSAR, standing for A UTomotive Open System A Rchitecture, is an open
and standardized architecture for automotive software [10]. It was developed
by automotive companies such as BMW Group, Ford, GM, PSA, Toyota and
Volkswagen. AUTOSAR tries to cope with the increasing functional scope by
defining a software architecture which promotes modularity, scalability, and
reusability [10] and by defining a methodology for a number of steps in the
software design process.

AUTOSAR separates applications from the hardware-dependent system software
via a RTE (Run Time Environment) (see Figure 3) and provides standardized in-
terfaces for application software to communicate with each other. This increases
modularity and reusability of application software in different ECU’s (Electronic
Control Units) [20]. The standard gives a layered software architecture for ap-
plications that should be used, and guidelines on how the components should
be implemented, including a list of implementation rules for C code. Figure
2 shows an overview of AUTOSAR’s separation of application software and AU-
TOSAR basic software. Figure 3 shows the layered architecture of the basic
software components [4].

AUT@S NDNAR Hardware independent

application functions, e.g.
= Adaptive Cruise Control
= Lane Departure Warning
= Advanced Front Lighting System

Application Software

Standardized infrastructure
AUTOSAR functions, e.g.
Basic Software = Communication stack

= Memory stack

= Diagnostic services
= QOperating system
Hardware

Figure 2: Separation of application software from infrastructure functions [4].

ApplicationLayer

sw
Components

AUTOSAR Runtime Environment(RTE) BSW Layers

e

Figure 3: AUTOSAR’s layered software architecture [4].

A

Basic Software

Microcontroller

ECU
Resources

4.2 Drawbacks

One of the drawbacks of AUTOSAR is that it does not address timing problems,
according to Espinoza et al. [6]. However, the TIMMO project — which stands
for TIMing MOdel — attempts to address this issue by defining a timing
framework which complements the AUTOSAR standard.

Espinoza et al. also claims that one of the identified deficiencies of AUTOSAR
is the limited abstraction: “AUTOSAR covers only the lower two layers of the
EAST-ADL! for the automotive domain developed in the ATESST project-
layered architecture modeling proposal” [6].

4.3 Compliance and accreditation

Software can be tested for conformance against the AUTOSAR specifications by
a CTA (Conformance Test Agency). The AUTOSAR organization provides con-
formance test specifications for CTAs (Conformance Test Agencies). AUTOSAR
provides specifications and rules for CTAs and accreditation bodies for CTAs.
Also, the possibility for self declaration of conformance exists for parts of the
specifications where the certification process cannot be fulfilled because the
conformance test process has not been finished, or where no CTA has been
accredited yet.

4.4 Results

We have not found any information about the effectiveness of AUTOSAR so
far with respect to the software architecture and methodology, although it has

LEAST-ADL is a modeling language for the architecture of electronic systems in automotives

been identified that AUTOSAR lacks a definition of a timing model. This may
be attributed to the fact that AUTOSAR only exists since a couple of years. On
a positive side note, AUTOSAR was created by large players in the automotive
industry and is continuously being improved.

5 Other coding standards and language subsets

In this section we will briefly describe some other coding standards and language
subsets we found during our research. We will not discuss them as much in depth
as the MISRA C and AUTOSAR standards in the previous sections, but only give a
short explanation and the reasons why we think they are not as much applicable
for our project.

51 EC—-

EC—— is a subset of ISO C, constructed by Leslie Hatton [3]. The goal was to
define a small number of rules to avoid faults, and to avoid any rules for which
automated checking is impossible. The rules are based on fault occurrence rates
found in other surveys. No effectiveness results or checking tools are available.

5.2 Cyclone

Cyclone is designed as a dialect of C, trying to prevent safety violations in
programs. It uses a combination of static analysis and inserted run-time checks
[12]. The goal is to provide a safety level equal to high-level languages like Java,
but still accommodate the low-level programming style from C. Like EC——, no
effectiveness study has been performed and no checking tool is available.

5.3 JSF Air Vehicle C++ Coding Standards

The Joint Strike Fighter Air Vehicle Coding Standards are designed by Lock-
heed Martin for the development of C++ software for Air Vehicles, but also
recommended for non-Air Vehicle C++ software [14].

The guidelines do not only contain hard coding rules, but also rules about
optimization of programming code, for example Rule 216:

The overall performance of a program is usually determined by a
relatively small portion of code. This is often referred to as the
80-20 Rule which states that 80% of the time is spent in only 20%
of the code. Thus, design and coding decisions should be made
from a safety and clarity perspective with efficiency as a secondary
goal. Only after adequate profiling analysis has been performed
(where the true bottlenecks have been identified) should attempts
at optimization be made.

5.4 ISO Standards

We found the following ISO standards that have to do with software quality:

e ISO/IEC 9126 — Software engineering - Product quality

e ISO/IEC 25010 — Systems and software engineering - Systems and soft-
ware Quality Requirements and Evaluation - System and software quality
models

e ISO/FDIS 26262 — Road vehicles - Functional safety
ISO 9126 defines a model for measuring software quality in six characteristics:

e Functionality

Reliability

e Usability

Efficiency

Maintainability

e Portability

The standard also describes three types of metrics to be used when measuring
quality: internal metrics, external metrics and quality in use metrics [13, 2].

ISO 25010 revises ISO 9126 and incorporates the same characteristics with some
amendments, and more extensive information about testing whether the quality
of a product is good sufficient [11].

ISO 26262 is a specific standard about the functional safety of road vehicles,
providing a full safety life cycle for automotive products, and requirement for
the validation of all steps to ensure the required safety level is achieved.

These standards are no coding standards or guidelines, but give a more concep-
tual approach to software quality and safety.

10

6 Conclusion

We found that MISRA, despite its drawbacks that are mainly rules with a very
small effectiveness, can have a positive impact on the quality of software.

Also, we found that AUTOSAR is a promising architecture for automotive sys-
tems. The architecture is developed by large car manufacturers and their sup-
pliers. The architecture covers more than just coding standards: it supplies
a full model for the development of all components in an automotive product.
However, not much specific information about the results and effectiveness is
available in literature.

Other coding standards we found are experimental and have not proven to be
working better (EC——, Cyclone) or are not suitable for our project (JSV AV
C++ Coding Standards) because they are designed for another language. The
applicable ISO standards are mainly focused on general aspects of software
quality, and not specifically on writing code.

The Formula Student rules still require us to follow the MISRA guidelines, but we
will keep the results of this study in mind when developing, and use the newly
gathered knowledge to make wise decisions about deviating from the MISRA
guidelines.

The AUTOSAR architecture is too extensive to be fully implemented in this
project, because it is designed for much larger systems. The modular approach,
however, is also useful for a smaller system like the Forze 4, so we will try to
use this in our project where possible.

11

References

[1]

2]

[11]

[12]

E. N. Adams. Optimizing preventive service of software products. IBM
Journal of Research and Development, 28(1):2 —14, jan. 1984.

W. Basalaj. Correlation between coding standards compliance and software
quality. IEE Seminar Digests, 2005(11311):46-46, 2005.

C. Boogerd and L. Moonen. Assessing the value of coding standards: An
empirical study. In Software Maintenance, 2008. ICSM 2008. IEEFE Inter-
national Conference on, pages 277 —286, 28 2008-oct. 4 2008.

S. Bunzel. AUTOSAR - the Standardized Software Architecture. Infor-
matik Spektrum, 34(1):79-83, 2011.

E. W. Dijkstra. Letters to the editor: go to statement considered harmful.
Commun. ACM, 11:147-148, March 1968.

H. Espinoza, K. Richter, and S. Gérard. Evaluating MARTE in an Industry-
Driven Environment: TIMMO’s Challenges for AUTOSAR Timing Model-
ing. In Conf. on Design, Automation and Test in Europe (DATE), MARTE
Workshop, 2008.

L. Hatton. Safer language subsets: an overview and a case history, MISRA
C. Information and Software Technology, 46(7):465 — 472, 2004.

L. Hatton. EC—— a measurement based safer subset of ISO C suitable
for embedded system development. Information and Software Technology,
47(3):181 — 187, 2005.

L. Hatton. Language subsetting in an industrial context: A comparison of
MISRA C 1998 and MISRA C 2004. Information and Software Technology,
49(5):475 — 482, 2007.

H. Heinecke, K. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh, J. Leflour,
J. Maté, K. Nishikawa, and T. Scharnhorst. Automotive open system
architecture-an industry-wide initiative to manage the complexity of emerg-
ing automotive e/e architectures. 2004.

ISO, Geneva, Switzerland. Systems and software engineering - Systems
and software Quality Requirements and Evaluation - System and software
quality models, 2011.

T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang. Cyclone: A Safe Dialect of C. In Proceedings of the General
Track of the annual conference on USENIX Annual Technical Conference,
pages 275288, Berkeley, CA, USA, 2002. USENIX Association.

Y. Kanellopoulos, P. Antonellis, C. Makris, E. Theodoridis, C. Tjortjis,
and N. Tsirakis. Code quality evaluation methodology using the iso/iec
9126 standard. CoRR, 2010. to appear.

Lockheed Martin. Joint Strike Fighter Air Vehicle C++ Coding Standards
for the System Development and Demonstration Program. Document Num-
ber 2RDU00001, Rev C, 2005.

12

[15]
[16]

[17]

[18]

S. Parker. Comparison of MISRA C testing tools, 2001.

S. L. Pfleeger and L. Hatton. Investigating the influence of formal methods.
Computer, 30:33—-43, February 1997.

A. Sangiovanni-Vincentelli and M. Di Natale. Embedded system design for
automotive applications. Computer, 40(10):42 51, oct. 2007.

M. J. Squair. Issues in the application of software safety standards. In
Proceedings of the 10th Australian workshop on Safety critical systems and
software - Volume 55, SCS 05, pages 1326, Darlinghurst, Australia, Aus-
tralia, 2006. Australian Computer Society, Inc.

The Motor Industry Software Reliability Association. Guidelines for the
Use of the C Language in Critical Systems, 2004.

S. Voget and P. Favrais. How the concepts of the Automotive standard”
AUTOSAR” are realized in new seamless tool-chains. In Embedded Real
Time Software and Systems conference (ERTS? 2010), Toulouse, France,
2010.

13

	Introduction
	Problem statement and analysis
	Problem statement
	Techniques
	Research
	Requirements
	Quality requirements
	Functional requirements
	Platform requirements
	Safety requirements
	Process requirements

	Hazard Analysis
	Throttle nodes
	Right rear wheel speed node
	Dashboard controller

	Specifications
	Drivers
	ADC
	DAC
	SPI
	UART
	CAN
	PWM
	PID
	MAX6675
	LED
	HLS-440

	ECU's
	Throttle nodes
	Wheel speed nodes
	Dashboard controller
	Telemetry node

	Design
	System overview
	API's of drivers
	Tasks of ECU's
	Dashboard controller
	Telemetry node
	Throttle node
	Wheel speed node
	DCDC node
	Fuel cell controller
	Hydrogen tank node
	Hydrogen low pressure node
	Air node
	Cool node

	CAN protocol

	Software quality and testing
	Testing
	Documentation
	MISRA C
	Software metrics

	Implementation
	Porting old software
	Writing new software
	Rate Monotonic Analysis
	Written software not part of original project description

	Development process
	Process description
	Encountered problems
	Fuel cell software
	Formula Student UK event

	Results
	Implementation of requirements and specifications
	Requirements
	Specifications

	Execution of tests
	Stack overflow testing
	Rate Monotonic Analysis

	Conclusions and recommendations
	Evaluation of development proces
	Evaluation of results
	Acquired experience
	Recommendations

	References
	Project description
	Orientation report

