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Abstract: With the automotive industry moving towards automated driving, sensing is increasingly
important in enabling technology. The virtual sensors allow data fusion from various vehicle sensors
and provide a prediction for measurement that is hard or too expensive to measure in another way
or in the case of demand on continuous detection. In this paper, virtual sensing is discussed for the
case of vehicle suspension control, where information about the relative velocity of the unsprung
mass for each vehicle corner is required. The corresponding goal can be identified as a regression
task with multi-input sequence input. The hypothesis is that the state-of-art method of Bidirectional
Long–Short Term Memory (BiLSTM) can solve it. In this paper, a virtual sensor has been proposed
and developed by training a neural network model. The simulations have been performed using an
experimentally validated full vehicle model in IPG Carmaker. Simulations provided the reference
data which were used for Neural Network (NN) training. The extensive dataset covering 26 scenarios
has been used to obtain training, validation and testing data. The Bayesian Search was used to
select the best neural network structure using root mean square error as a metric. The best network
is made of 167 BiLSTM, 256 fully connected hidden units and 4 output units. Error histograms
and spectral analysis of the predicted signal compared to the reference signal are presented. The
results demonstrate the good applicability of neural network-based virtual sensors to estimate vehicle
unsprung mass relative velocity.

Keywords: virtual sensor; automotive control; active suspension; vehicle state estimation; neural
networks; deep learning; long-short term memory; sequence regression

1. Introduction

Nowadays, the automotive industry focuses intensely on Automated Driving (AD)
as a promising solution to improve safety and comfort. The main functional components
related to AD include perception, decision-making and vehicle control. New generation
vehicles will need more information to accomplish these three tasks and ensure safe driving
without human involvement. The required data can be gained using standard and novel
sensors, Vehicle to Everything (V2X) communication and sensor fusion.

Sensors are crucial components needed for AD, as they provide the data required
to perceive the environment and vehicle state estimation [1]. The first group includes
laser imaging detection and ranging (LIDAR), radio detection and ranging (Radar) [2],
ultrasonic distance sensor and a camera. These sensors are placed outside the vehicle, and
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measurement accuracy may be affected if covered by dirt, snow or ice. Cameras can be
installed inside the cabin, which may prevent the disadvantages mentioned above. They
can be applied to detect and track traffic objects, vision-based localisation and navigation,
and capture textures and colours. Usage of stereo and infrared cameras can expand their
uses for geometric parameter estimation, capturing objects in dark lighting and more [3–5].
The other group of sensors used for vehicle state estimation involves a global navigation
satellite system (GNSS), inertial measurement unit (IMU), accelerometers, displacement
sensors and wheel encoders. These sensors gather data about geolocation, vehicle position,
angular rates and body’s accelerations. In addition, some novel sensors for wheel load
reconstruction have been recently proposed [6,7]. To preprocess and filter the data, sensor
fusion of multiple sensors’ data provides more reliable and accurate input data. For
example, combining GNSS and IMU provides vehicle information about global position and
velocity. Camera and LIDAR or Radar fusion provides 3D environment representation [1,2].

With an increasing number of measured, estimated and received data, virtual sensing
emerged. The virtual sensor (VS) is a pure software sensor that estimates signals by
combining and aggregating signals that it receives from physical or other VSs [8,9]. The
VS is an abstraction for various types of underlying algorithms, including but not limited
to Kalman filter estimators and Artificial intelligence-based regression and prediction
algorithms. Virtual sensors have broad use cases. They are very useful in deriving physical
quantities that cannot be measured directly [10,11], e.g., indexes of performance and
efficiency. VS can also be used to replace or provide redundancy for cases where the
installation of a physical sensor is challenging or sensors are unreliable or expensive.
For example, pressure measurement in a shock absorber or force measurement in wheel
carrier/bearing [12,13]. VS technology requires additional development costs but reduces
repetitive maintenance costs [10]. At the same time, a decrease in the system’s physical parts
increases the overall reliability. Diagnostic applications could be incorporated by observing
and predicting the system’s state in advance or detecting machine degradation [14–17].
In the case of synthetic data use for VS, preparing a mathematical model requires high
competencies and skills. A mismatch between the model and the actual system leads to
failure and high inaccuracy. When experimental data are used for VS training, computing
structures on which sensors operate require accurate measurements and large datasets that
cover as many real-life cases as possible, including the rare ones. An insignificant error can
generate a significant drift in the estimated signals [10,18].

VS are classified according to their development approach [10,14]: (i) measurement
characteristics-based, (ii) modelling methods-based and (iii) application purpose-based.
Measurement characteristics-based VSs are used to represent the system’s steady-state
or transient measurements. Steady-state modelling is defined by the instant response
to input variables and moderate changes in measured values compared to the system’s
dynamics. A transient state type reacts slower due to complexity but allows a faster rate
of change in input values. Modelling methods-based VS can be divided into data-driven,
model-based or rule-based, considering modelling methods. Data-driven VSs are derived
from historical data gathered by physical sensors. Emerging artificial intelligence methods
such as neural networks have made breakthroughs in this type of VS. Model-based sensors
operate using fundamental physical laws and mathematical relations between variables,
which are the main part for equations used for Kalman filter estimators and other similar
adaptive filtering approaches that use known models for estimation. Lastly, the rule-based
VS utilises both approaches and relies on physical parameters and empirical models.

Virtual sensing is intensively used for automotive applications, for example, for
passenger thermal comfort, the tire pressure monitoring system, powertrain applications,
sprung mass state estimation [19,20] and others. VS may be a key technology of advanced
control algorithms, enabling customisation of vehicle–human interaction.

The vehicle–human interaction by AD needs to be carefully designed and evaluated,
taking into account different aspects. This requires revising ride comfort and safety of the
vehicles in urban and countryside conditions as part of the task. The suspension design
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has a crucial influence on the ride comfort and handling of the vehicle [21]. The tuning of
the passive suspension has limited applicability to improve the vehicle’s ride quality, as
comfort and handling are conflicting objectives [22,23]. As a solution, semi-active or active
suspension controlled by specialised control algorithms should be used.

During the last few decades, many strategies for suspension control have been
developed. The majority of them use the velocity of sprung mass and velocity of un-
sprung masses as input parameters. In commercial systems, velocities are evaluated
using integrated data from an IMU sensor placed on vehicle sprung mass and inte-
grated/differentiated data from an accelerometer and displacement sensor placed on
the vehicle unsprung mass. The accelerometer and displacement sensor combination is of-
ten used for unsprung mass velocity estimation. There is a lot of noise in the measurement
data, and it is not easy to obtain acceptable results using only one sensor. The development
of virtual sensors may solve the need for physical sensors on unsprung mass. Only a few
works in this field have appeared in recent years.

One of the first works was Milanese et al. [24]. The authors investigated the problem
of designing suitable linear virtual sensors focusing on the estimation of the relative vertical
position and velocity between chassis and wheel, using the data from the accelerometer
placed on the chassis or wheel. For the task, the Direct Virtual Sensor design technique has
been proposed. In 2014, Pletschen and Badur [25] presented a new nonlinear suspension
state estimation approach based on Kalman Filter theory and Takagi-Sugeno modelling.
Wang et al. [26] proposed the Adaptive Kalman Filter to accurately estimate a vehicle’s
suspension system state under different road conditions. Jeong et al. [27] proposed a
strategy for relative suspension velocity estimation. The method consists of mathematical
modelling and direct measurements provided by an IMU sensor. Vertical front suspension
forces are calculated using governing equations combined with heave, roll and pitch
accelerations measured by the sensor. Out of these forces, relative suspension velocity is
derived. Vazquez et al. [28] provided a suspension state, road profile and transfer load
estimation methodology using deflection sensors, accelerometers and gyrometers. The
observation scheme used is a linear Kalman filter. Despite the approach’s simplicity, its
robustness against uncertainty is remarkable.

As it can be seen, the most commonly used techniques for suspension state estimation
involve a Kalman Filter; we propose a new approach in this investigation. Investigation
of the feasibility of a Neural Network (NN) model-based virtual sensor for an unsprung
mass relative velocity estimation is provided in this paper. NNs are increasingly used for
sequence regression tasks, including mechanical state prediction [29] and lateral vehicle
velocity estimation [30,31]. This leads to the assumption that similar methods can be used
for virtual sensor development to estimate unsprung mass relative velocity. Based on [30],
the Bidirectional Long–Short Term Memory (BiLSTM)-based NN model may provide a
better performance compared to two layers of Long–Short Time Memory (LSTM) and
1-dimensional convolutional NN (1D CNN). Therefore, BiLSTM was selected for the NN-
model of a proposed virtual sensor for unsprung mass relative velocity estimation in the
presented research. The main advantage of such a data-driven VS is that the model for
a physical process that connects input sensors with reference data is learned in a process
called deep learning and requires no handcrafted equations that relate all input signals
to output signals. This allows consideration of many more input sensors that were not
considered earlier because no model included them. Neural network-based models can
also provide robustness in relation to input data by reducing dependence on a single sensor.
BiLSTM, as much as LSTM, are recurrent neural networks that are able to consider the last
output, new input and state of the neuron to estimate output. They can consider a number
of past samples and, if needed, may compensate for computation overhead by making
estimations in advance. In addition, so far, during the research review, no research on VS
based on the NN model for vehicle unsprung mass relative velocity estimation was found.

The main contributions of the research presented in this article are as follows. A data-
driven VS for real-time application for vehicle unsprung mass relative velocity estimation
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using multiple sensor data of selected sample window size was developed in this research.
Additionally, the proposed NN model-based virtual sensor was validated and tested
on simulated data, with error data analysis, including time and frequency domains. In
addition, error distribution was analysed using an error histogram. The model has a low
enough computational overhead to provide output signal estimation for input data that
were sampled at 100 Hz. Designed VS eliminates the need for physical sensors on vehicle
unsprung masses. The output can be used for semi-active/active suspension control. The
contributions of this article prove the feasibility of neural network-based virtual sensors
for vehicle unsprung mass relative velocity estimation and provide a base for further
research and implementation of VS for unsprung mass velocity estimation in the field
of the automotive industry. The further structure of the paper is as follows. In Section 2,
we present (i) a vehicle model, (ii) manoeuvres used for dataset creation and (iii) the
BiLSTM-based Deep NN model and its optimisation algorithm. Section 3 provides the
results of vehicle model validation. Hyperparameter optimisation and BiLSTM-based
DNN structure selection are also provided in this section. Finally, we analyse virtual sensor
validation and testing results using the Root Mean Squared Error (RMSE) of unsprung
mass relative velocity and compare the accuracy of developed VS with results achieved by
other researchers. Additionally, in Section 4, the discussion is performed, main conclusions
are presented and further steps for system development are presented.

2. Materials and Methods

This section describes materials and methods used for data acquisition and develop-
ment, validation and testing of the virtual sensor for vehicle relative velocity of unsprung
mass. First, the vehicle mathematical model is presented, including software descriptions
and scenarios. Second, an NN-model used for the virtual sensor is described, including the
model structure and hyperparameter optimisation method.

2.1. Virtual Sensor for Vehicle Unsprung Mass Relative Velocity Estimation

For vehicles equipped with semi-active or active suspensions, the velocities of sprung
and unsprung masses are required to implement a control strategy. Sprung mass velocity
can be measured using an IMU sensor placed on the sprung mass. The velocity of unsprung
mass is commonly evaluated using data from accelerometer and displacement sensors.
Our approach for VS creation was supervised learning with selected sensors input and
recorded relative unsprung mass velocity data (Figure 1). In the picture, Żrel1,2,3,4 are the
relative velocities of the unsprung masses in the vertical directions for the front left (FL),
front right (FR), rear left (RL) and rear right (RR) wheels; Żu1,2,3,4 refer to the unsprung
masses; Żs,1,2,3,4 indicate sprung mass velocities; Zw1,2,3,4 are road roughness.

The vehicle model of a Sport Utility Vehicle (SUV) was built in the IPG CarMaker
simulation platform. The model has been parametrised and validated using field test data
from the proving ground; vehicle parameters are presented in Table 1. It is a modified
electric Range Rover Evoque vehicle with onboard electric motors. The tire parametrisation
using experimental data was performed to simulate tire dynamics.

Simulation data included 14 parameters as inputs: sprung mass accelerations in
3 directions (x, y, z), angular rates around these three axes, longitudinal vehicle velocity,
front wheels’ steering angle and overall vehicle steering angle from steering system, angular
velocities of the wheels. The vertical velocities of four unsprung masses were used as
an output.
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Figure 1. SUV dynamic model.

Table 1. Data used in mathematical model.

Parameter Symbol Value

Wheelbase L 2.675 m
Distance between front axle and COG b 1.439 m
Distance between rear axle and COG a 1.236 m

Height of COG above ground h 0.65 m
Vehicle mass m 2442 kg

Total unsprung mass mu 126.2 kg
Distance between left track and COG d 0.778 m

Distance between right track and COG c 0.847 m
Track width T 1.625 m

Wheel rotational inertia J 0.9 kg m2

Tire stiffness Kt 225,368 N/m
Loaded tire radius Rl 0.343 m

Tire size 235/55/R19
Pitch inertia 642.3 kg m2

Roll inertia 2892 kg m2

Yaw inertia 3231 kg m2

Test tracks and manoeuvres were selected with consideration of data collection for
NN training and validation. More dynamic data must be collected for training; therefore,
three scenarios were chosen from the standard scenarios in IPG CarMaker (Figure 2).

Hockenheimring track located in Germany has an overall length of 2.6 km. It is a one
directional racing track with some straight sections and various corners. There all road
can be used for manoeuvres such as hard cornering. Various speeds up to 120 km/h and
driving manners were applied to cover most vehicle dynamics. Secondly, a two-line rural
road roundabouts scenario was selected. This scenario contains braking and acceleration
manoeuvres, lane changes and driving around the constant radius turns. The overall length
driven by the vehicle on this track is 1.76 km, and the maximum speed was 75 km/h.
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Furthermore, a model of Heilbronn road located in Germany was used. It has one lane
for each direction. This curvy road contains inclinations and declinations. Additional user-
defined stopping sections were used to induce acceleration and deceleration manoeuvres.
The overall track length covered was 5.79 km with an average speed of 55 km/h. The
driver model was modified to three different parameter sets featuring defensive, normal
and aggressive driving styles in all mentioned test scenarios. Different longitudinal, lateral
acceleration levels and varying cruising speeds define each driving style.

Data from Heilbronn and rural road tracks were used for training and Hockenheimring
for validation. Additionally, constant radius cornering (ISO 4138:2012), obstacle avoidance,
Sine with Dwell (ISO 19365:2016), bumpy road and slalom manoeuvres were simulated for
NN dataset creation (see Section 3.3), and the data were used for NN testing.

2.2. BiLSTM-Based Deep Neural Network Model

To take advantage of sequential sensor data, a Bidirectional Long–Short Term Memory
(BiLSTM)-based recurrent network was used. This neural network (NN) is attributed to
recurrent neural networks (RNN) and can learn sequential data models and base predic-
tions on past and current signal values. Model structure, the hyperparameter selection
experiment and the results of validation and testing are presented in this section.

The structure of the selected RNN includes six layers; see Figure 3. NN model
layers include sequence input layer, BiLSTM layer, one hidden fully connected (FC) layer,
Dropout layer, one output FC layer and regression output. The sequential input layer lets
in data from all input channels as a sample sequence of length defined by the window
size parameter. This layer takes a sample count of M = 14 input signals. The count of
samples equals selected window size W. These samples are fed into the BiLSTM layer.
This layer includes extended LSTM units that propagate signals forward and backwards.
This may improve model performance compared to LSTM. The BiLSTM layer consists of a
memory cell and gates controlled by trainable neurons that learn when to forget, update
and output the cell value considering cell memory value, last input value and current input
value. BiLSTM output given for the last sample is taken as signal features extracted for a
supplied sequence of input signals of window size W. This result is supplied to the hidden
FC layer. This layer, together with the output FC layer, processes features extracted in the
BiLSTM layer. The units count of the Output FC layer is equal to the outputs count of
the virtual sensor. The dropout layer is between the hidden FC and the output FC layer.
The dropout layer randomly zeros inputs of the next layer with defined probability. The
proposed network used dropout with 0.5 probability. This reduces NN dependence on
single features from BiLSTM as any future can be dropped, and at least two features are
required to decide as the dropout probability is set to 0.5. Regression output provides
estimations for the output signals.
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The network’s input is sequential samples of all inputs M for window size W. Input
data consists of 14 sensor data defined in Section 2.1. Table 2 provides input and output
signal names and units that are used for the NN model. The input data samples are fed to
the network sequentially, and only the output of BiLSTM for the last input sequence sample
is forwarded to the next layer. Therefore, calculation duration in the BiLSTM layer depends
linearly on window size W. As each BiLSTM unit performs the same calculations, matrix
and vector calculation is used. As a result, calculation speed depends less on the overall unit
count in NN layers such as BiLSTM and FC. All operations can be performed in one cycle of
the parallel processing unit and especially graphical processing units (GPU). This network
model used in the real-time situation would require holding input data samples that cover
selected window size W. The model unit counts are limited to 512 and window size to
51. Therefore, model implementation on low-power devices and automotive onboard
computers is feasible.

Table 2. Input and output sensor data used for training NN model.

Input Parameters Output Parameters

Input Nr. Name Units Output Nr. Name Units

1 Sprung mass acceleration (X axis) m/s2 1 Unsprung mass relative
velocity (Z axis) front left m/s

2 Sprung mass acceleration (Y axis) m/s2 2 Unsprung mass relative
velocity (Z axis) front right m/s

3 Sprung mass acceleration (Z axis) m/s2 3 Unsprung mass relative
velocity (Z axis) rear left m/s

4 Sprung mass angular rate (X axis) deg/s 4 Unsprung mass relative
velocity (Z axis) rear right m/s

5 Sprung mass angular rate (Y axis) deg/s
6 Sprung mass angular rate (Z axis) deg/s
7 Vehicle’s longitudinal velocity m/s
8 Steering angle of front left wheel deg
9 Steering angle of front right wheel deg

10 Wheel speed of front left wheel m/s
11 Wheel speed of front right wheel m/s
12 Wheel speed of rear left wheel m/s
13 Wheel speed of rear right wheel m/s
14 Vehicle’s steering angle deg

Even a tiny artificial NN has at least some hyperparameters. They are defined before
training and are not optimised during the training process. However, hyperparameters
have a significant impact on NN performance and need careful selection or optimisation.
As hyperparameters are changed before training, NN training and validation operations
are performed for each combination. Therefore, training itself is a long operation, and
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selecting hyperparameter takes longer. In order to formalise the process of hyperparameter
selection, unique optimisation methods are used.

There are three main methods for hyperparameter optimisation: grid search, random
search and Bayesian search. Grid search is the simplest but most computationally expen-
sive. It involves iterating through the defined multi-dimensional grid of hyperparameters
combinations. If the step size in this grid is small, the iterations count can become enor-
mous, and this type of optimisation may take a very long time and many computation
resources. It is possible that the grid is too sparse and will not provide the best possible
solution. In addition, significant time will be spent on unpromising combinations. Random
search has no defined grid, and parameter combinations are generated randomly; the
random process may be faster compared to grid search if the probability distribution is
uniform. Random search has shown that it can find good combinations faster compared
to grid search. Bayesian optimisation is similar to random search. Instead of randomly
selecting pairs, it analyses previous combination results, builds the Gaussian probability
model and makes a new combination selection to improve the model (see Figure 4). It
saves all combinations, always saving the best; it also provides an estimate that may not be
tested yet but provides an even better performance. Hence, time is reduced and avoids the
drawbacks of grid search.
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test.

3. Results
3.1. Vehicle Model Validation and Dataset Generation

The vehicle model was parametrised and validated on an IPG CarMaker-based sim-
ulation platform using field tests data from the proving ground [32]. The obstacle avoid-
ance manoeuvre is presented in Figure 4 as a validation example, achieved accuracy
RMSE = 0.39 m/s2. The test was performed to determine vehicle nature at a severe lane-
change manoeuvre. Overall track length was 61 m. All sections were marked with cones of
a minimum height of 500 mm. ISO 3888–2:2011 [33] does not specify a minimum or limit
velocity level, but throttle application was stopped in 2 m after entering Section 1.

After vehicle model validation, the dataset was generated for NN training, validation
and testing. All the roads and manoeuvres are described in Section 2, as well as input and
output data.
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3.2. Results of Hyperparameter Optimisation

The predefined window size for data samples and selectable unit counts in BiLSTM
and FC layers were used during hyperparameter optimisation of the selected NN model.
The window sizes of 3, 7, 11, 17, 19, 21, 25, 31 and 51 have been used. The bigger the window
size, the more features can be extracted from the signals, especially the lower frequency and
more complex features. On the other hand, a bigger window linearly increases computation
duration to obtain the model’s final output of the sequence. Therefore, a trade-off between
the duration of computation and accuracy should be introduced. The number of layers
and their order in the network were selected manually, inspired by reviewed articles. First,
we choose the smallest possible NN model to reduce computational overhead.

During the Bayesian Search, the unit counts in BiLSTM and FC layers are selected
from range [1, 512]. The models with each selected combination of unit counts are trained
and validated using MATLAB on a Nvidia Geforce 2080 Ti graphical processing unit (GPU).
An adaptive moment estimation (ADAM) optimiser used for training with 0.001 learning
rate and training was limited to 30 epochs. One epoch is one round of training on all
available data, so 30 epochs mean 30 repetitions; each repetition lets us better choose the
connection weights between artificial neurons inside the NN model. For each window size,
the mini-batch size is selected to fill the GPU memory as much as possible, as models are
pretty small and in cases of small window size do not utilise GPU completely. The total
count of trained combinations was around 350.

RMSE of unsprung mass relative velocity was used as a metric for optimisation. As
two parameters were optimised and one metric was used, a 3D mesh can be drawn to show
the optimisation process. In Figure 5, hyperparameter optimisation mesh for a window
size of 21 is shown.
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Training and validation error graphs showed that RMSE reduces mainly in 15 epochs
and not much after 25 epochs. There was no overfitting detected in graphs of the training
process. The hyperparameter optimisation process wrapping the training would reject
overfitting networks based on validation RMSE after each training.

In Figure 5, it can be observed that blue dots correspond to tested combinations, black
for following possible combination, the red star shows the feasible model minimum point
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and red mesh shows the model mean. Under that mesh, there is a 2D graph with isolines
of various colours. Blue points represent low values and yellow ones correspond to high
values of the estimated objective, RMSE. This model helps the search algorithm to select
the following points in hyperparameter space. However, the 2D graph of observed and
estimated objective function value on the y axis and trial number on the x-axis is provided.

After a Bayesian search for 30–60 iterations for each window size, only the best net-
work models were selected for each sample window size. The best models are presented
with their hyperparameters, RMSE and relative calculation duration in Table 3. The cal-
culation duration is based on sequential calculation (minibatch size of 1) of all validation
samples, 19,800 minus (window size-1). As duration depends on processor speed, the
presented calculation durations are considered only relatively, and calculation time is
presented compared to the smallest sample window as a baseline. The calculation time
measurement has been performed three times because of temporal dependencies on hard-
ware performance. It is not possible to compare computation overhead to other methods
reported in other articles because hardware, code and runtime environment optimisations
differ and would not provide a reliable comparison. The current implementation of the
proposed algorithm runs on Nvidia GTX 2080 Ti GPU. Real-time target machines are
used for prototyping such algorithms in the automotive industry. Proposed VS may run
considerably faster when running on the central processing unit (CPU), field programable
gate array (FPGA) or digital signal processor (DSP) of a real-time target machine such as
dSpace, because there will be no such latencies as are introduced by data transfer between
CPU and GPU on personal computers.

Table 3. Hyperparameter optimisation results with performance and calculation duration comparison for each window
size.

Window Size
Selected Parameters

RMSE Relative Error,
%

Calculation
Duration,

ms/Sample

Relative
Calculation
Duration, %BiLSTM Units FC Units

3 360 403 0.0171 100.0 1.89 100.0
7 502 295 0.0127 74.3 1.96 103.5
11 202 312 0.0115 67.3 2.16 114.2
17 512 111 0.0091 53.2 2.42 127.8
19 167 256 0.0081 47.4 2.47 130.5
21 137 298 0.0082 48.0 2.49 131.6
25 207 511 0.0090 52.6 2.63 139.4
31 116 345 0.0096 56.1 2.88 152.1
51 137 298 0.0100 58.5 3.58 189.3

The results show that RMSE reduces when window sizes from 3–19 are used. There-
fore, accuracy is being improved, and relative calculation time increases with sample
window size growth. The graphs of relative performance and calculation duration are
shown in Figure 6. This graph demonstrates that the size of the window of 19 brings the
best improvement in performance compared to the increase in calculation duration; longer
sample windows bring diminishing returns.
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In Figure 6, the best RMSE improvement compared to windows size W = 3 is achieved
using window size 19. RMSE improvement in percent and calculation duration delta
shows that the most significant positive delta is achieved at a window size of 7 and 19.
After evaluating these graphs, the conclusion can be made that the best sample window
size is 19. This also brings the best compromise between accuracy and computation
duration. Therefore, validation and testing results are provided for the window size 19 in
the next section.

3.3. Virtual Sensor Validation and Testing

This section provides and analyses virtual sensor outputs on validation and testing
data compared to reference data, which are unsprung mass relative velocities provided as
part of simulated vehicle parameters. The developed virtual sensor estimates unsprung
mass relative velocity in the vertical direction. The time series and frequency diagrams of
the original and predicted vertical velocity of the unsprung mass are presented in Figure 7.

The time-domain graphs of actual simulation output and NN model output for one
wheel are provided for validation simulation of Hockenheimring with the normal driving
scenario in Figure 7a.

In order to better present an actual difference between actual and estimated velocity,
the corresponding absolute error is shown in Figure 7b. The max. absolute error is about
0.11 m/s while RMSE is 0.0081. The spikes in absolute error correspond with higher-
frequency changes in unsprung mass relative velocity and acceleration.

Frequency analysis has been performed to understand how the difference is spread
over the spectrum of measurable frequencies. The spectrum relative error was calculated
as the delta between predicted and reference signal spectrums divided by the spectrum
of the reference signal. The results are shown in Figure 7c. Measurements are made at
100 samples per second; we provide graphs from 0–15 Hz based on primary and secondary
ride quality assessment. The observed relative error is mostly between 0–10 Hz. The max.
relative error is concentrated around 3 Hz. Additionally, in Figure 8, the error histogram
shows how predicted signal error values are distributed.
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In addition to Figure 7b, Figure 8 shows that most errors are between −0.01384 and
0.01402 m/s. A small disbalance around zero is related to the asymmetric bin ranges,
considering that the form of distribution meets Gaussian distribution.

Complete testing procedure involved 3 validation and 20 testing simulations, and
RMSE results calculated for each wheel (unsprung mass) relative velocity prediction
separately (FL, FR, RL, RR) and overall RMSE of simulation. The results are shown in
Table 4. Furthermore, the training RMSE was included to validate the training correctness,
as RMSE on the training set should be smaller than on the validation and testing sets.
There was not much noise in the higher frequency (Figure 7c). Therefore, the assumption is
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that augmenting input sensor data with simulated sensor and process noise may improve
generalisation.

Table 4. RMSE achieved in various training, validation and testing scenarios for each wheel and overall.

Scenario
RMSE Accuracy,

%FL FR RL RR Overall

Heilbronn track, Aggressive driver (training) 0.0034 0.0033 0.0035 0.0034 0.0034 96.5
Heilbronn track, Offensive driver (training) 0.0021 0.0020 0.0021 0.0020 0.0021 97.5
Heilbronn track, Normal driver (training) 0.0027 0.0026 0.0027 0.0026 0.0027 97.1
Rural track, Aggressive driver (training) 0.0068 0.0069 0.0072 0.0071 0.0070 94.1
Rural track, Offensive driver (training) 0.0027 0.0028 0.0028 0.0029 0.0028 96.9
Rural track, Normal driver (training) 0.0045 0.0046 0.0042 0.0044 0.0044 96.0

Hockenheimring track, Aggressive driver (validation) 0.0167 0.0180 0.0157 0.0158 0.0166 92.4
Hockenheimring track, Offensive driver (validation) 0.0053 0.0054 0.0046 0.0050 0.0051 96.7
Hockenheimring track, Normal driver (validation) 0.0086 0.0091 0.0070 0.0078 0.0081 95.8

Constant turn with radius of 100 m at 50 km/h (testing) 0.0013 0.0013 0.0013 0.0013 0.0013 98.9
Constant turn with radius of 100 m at 75 km/h (testing) 0.0025 0.0036 0.0044 0.0041 0.0037 97.5

Constant turn with radius of 100 m at 100 km/h (testing) 0.0393 0.0296 0.0500 0.0500 0.0431 69.4
Constant turn with radius of 30 m at 30 km/h (testing) 0.0008 0.0011 0.0011 0.0011 0.0010 98.5
Constant turn with radius of 30 m at 50 km/h (testing) 0.0148 0.0125 0.0189 0.0203 0.0169 81.0
Constant turn with radius of 60 m at 50 km/h (testing) 0.0008 0.0010 0.0012 0.0012 0.0011 99.0
Constant turn with radius of 60 m at 75 km/h (testing) 0.0313 0.0252 0.0397 0.0411 0.0349 68.4
Double lane change (ISO-3888-2) at 30 km/h (testing) 0.0014 0.0013 0.0017 0.0014 0.0015 97.6

Sine with Dwell 60 deg at 40 km/h (testing) 0.0029 0.0020 0.0031 0.0022 0.0026 97.2
Sine with Dwell 60 deg at 60 km/h (testing) 0.0101 0.0061 0.0108 0.0067 0.0087 93.3
Sine with Dwell 60 deg at 80 km/h (testing) 0.0189 0.0133 0.0203 0.0138 0.0169 90.3
Sine with Dwell 80 deg at 40 km/h (testing) 0.0037 0.0028 0.0043 0.0025 0.0034 96.3
Sine with Dwell 80 deg at 60 km/h (testing) 0.0130 0.0081 0.0145 0.0081 0.0113 91.7
Sine with Dwell 60 deg at 80 km/h (testing) 0.0284 0.0226 0.0312 0.0231 0.0266 84.8

Bumpy road at 15 km/h (testing) 0.0154 0.0164 0.0209 0.0146 0.0170 75.1
Bumpy road at 25 km/h (testing) 0.0223 0.0236 0.0298 0.0209 0.0223 77.9
Bumpy road at 32 km/h (testing) 0.0347 0.0359 0.0472 0.0390 0.0395 74.3
Slalom 18 m at 15 km/h (testing) 0.0013 0.0014 0.0016 0.0013 0.0014 96.2
Slalom 18 m at 25 km/h (testing) 0.0012 0.0013 0.0013 0.0012 0.0012 98.8
Slalom 18 m at 35 km/h (testing) 0.0025 0.0017 0.0024 0.0019 0.0021 97.5

Accuracy of all tracks combined 91.2

Besides the RMSE, Accuracy was calculated from normalised RMSE (NRMSE) as
proposed in [25]:

NRMSE =

√
1
N ∑N

n=1 (
.̂
Zrel −

.
Zrel)

2

√
1
N ∑N

n=1 (
.
Zrel)

2
, (1)

Accuracy = 100 · (1 − NRMSE), (2)

where
.
Zrel—reference unsprung mass relative velocity on Z axis,

.̂
Zrel—estimated rela-

tive unsprung mass relative velocity on Z axis, N—total samples in the tested scenario,
n—current sample. Accuracy metric lets us compare the proposed method to other
methods [25,26].

Based on Table 4, first, aggressive driving increases RMSE, which may be related to
higher acceleration and jerk in vehicle motion, as unsprung mass movement depends on
road profile and driver’s behaviour. Second, higher vehicle speeds increase the RMSE of
prediction, as higher speed means higher frequencies, which can be explained by the fact
that higher speed increases the frequency of change in unsprung mass relative velocity.
Higher frequency signals caused by abrupt manoeuvres may include signal frequencies
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beyond Nyquist frequency for 100 Hz sampling rate, which may lead to aliasing in the
spectrum.

In research performed by other researchers, authors use different vehicles, road types
and manoeuvres. In [25], authors achieved an accuracy of 97.7% for relative vertical velocity;
however, it is true only for one road type—rough country road and vehicle velocity of
50 km/h. In [26], the authors used absolute wheel velocity as the output. Their achieved
results fall in the range from 30.6–95.9%. The best accuracy of the NN-based method
proposed in this research is 99% for a constant turn with a radius of 60 m at 50 km/h test;
it is the best result if we compare it with those available in the literature. Moreover, the
average accuracy for all the tests is 91.2%. For bumpy roads, results are constantly low
and vary from 74.3–77.9%. The worst results were achieved during a constant turn with a
different radius at extremely high speeds. Similar road types may be added to the training
dataset to increase accuracy; this will be solved in the future.

4. Discussion and Conclusions

This research aimed to develop a data-driven virtual sensor for unsprung mass relative
velocity prediction based on other vehicle movement characterising sensor data, including
IMU and steering-related sensors. The hypothesis was that this problem could be solved as
a sequential signal regression task. A literature review showed that state-of-art multi-input
sequence regression could be implemented using recursive NN, and BiLSTM-based models
are currently achieving impressive results.

In order to implement an NN-based virtual sensor, training, validation and testing
datasets are needed. These datasets were generated using an experimentally validated
vehicle model, developed using software for advanced simulation of vehicle dynamics IPG
Carmaker. The simulations covered two tracks and three various driving styles for training,
one track and three different artificial driving styles for validation and five manoeuvres for
testing with various parameters and road profiles.

The NN structure has been selected for multi-input sequential regression. The hy-
perparameter optimisation using Bayesian search was made to select the best parameters.
The experiment evaluated the developed models’ performance as main metrics RMSE
and relative calculation time were selected. Based on the simulations, the NN model
with a window size of 19 provides the best performance improvement compared to the
computation duration increase.

During the simulation studies, virtual sensor output signals were compared to the ref-
erence and analysed in the time and frequency domain. The best NN model demonstrates
that the predicted signal is close to reference with an RMSE of 0.0081 and a maximum error
of 0.11 m/s. Most errors are concentrated between −0.01384 and 0.01402 m/s, and the
error distribution is Gaussian. Frequency domain analysis shows that most of the error is
between 0–10 Hz, with peak values at 3 Hz.

The best accuracy of the NN-based method proposed in this research is 99%; it is the
best result compared to the ones available in the literature. Moreover, the average accuracy
for all the tests is 91.2%.

It can be concluded that VSs using an NN model such as BiLSTM are viable for un-
sprung mass relative velocity prediction. The final NN consists of 167 BiLSTM, 256 hidden
FC units and 4 output FC units. This virtual sensor running on a computer with Nvidia
Geforce 2080 Ti GPU can process one sample per 2.5 ms and provide up to a 400 Hz sample
rate. The proposed algorithm implemented on a real-time target machine may provide
even greater performance, which is part of future research. The ability of the NN model
to provide prediction in advance may also be used to compensate for most computation
overhead.

In the future, the development of a virtual sensor using a 1D Convolutional NN and
comparison with the one developed in this research is planned. During the next steps,
recorded experimental data from a car running on the proving ground will be used in
addition to the simulation data that were used in this research. The sensitivity of VS on
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each input and robustness to sensor malfunction will be analysed. During the final stages of
future research, the proposed virtual sensor will be assessed on a dSPACE real-time target
machine during an on-road test. Additional future research may be required to account for
any shortcomings prior to possible implementation in production vehicle systems.
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