
S. Arash Ostadzadeh

antitative Application Data Flow
Characterization for Heterogeneous

Multicore Architectures

antitative Application Data Flow
Characterization for Heterogeneous

Multicore Architectures

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Del,

op gezag van de Rector Magnificus prof. ir. K.Ch.A.M. Luyben,
voorzier van het College voor Promoties,

in het openbaar te verdedigen

op dinsdag  december  om : uur

door

Sayyed Arash OSTADZADEH

Master of Science in Computer Engineering
Ferdowsi University of Mashhad

geboren te Mashhad, Iran

Dit proefschri is goedgekeurd door de promotor:
Prof. dr. K.L.M. Bertels

Samenstelling promotiecommissie:

Rector Magnificus voorzier
Prof. dr. K.L.M. Bertels Technische Universiteit Del, promotor
Prof. dr. ir. H.J. Sips Technische Universiteit Del
Prof. Dr.-Ing. Michael Hübner Ruhr-Universität Bochum, Duitsland
Prof. Dr.-Ing. Mladen Berekovic Technische Universität Braunschweig, Duitsland
Prof. dr. Henk Corporaal Technische Universiteit Eindhoven
Prof. dr. ir. Dirk Stroobandt Universiteit Gent, België
Dr. G.K. Kuzmanov Technische Universiteit Del
Prof. dr. ir. F.W. Jansen Technische Universiteit Del, reservelid

S. Arash Ostadzadeh
antitative Application Data Flow Characterization for Heterogeneous Multicore Architectures

Met samenvaing in het Nederlands.

Subject headings: Dynamic Binary Instrumentation, Application Partitioning, Hardware/Soware
Co-design.

e cover images are abstract artworks created by the Agony drawing program developed by
Kelvin (hp://www.kelbv.com/agony.php).

Copyright ©  S. Arash Ostadzadeh
All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmied, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the permission of the author.

Printed in e Netherlands
9 789461 860958

ISBN 978-94-6186-095-8

http://www.kelbv.com/agony.php

Dedicated to my dear parents

ⅰ

ⅱ

Abstract

r
ecent trends show a steady increase in the utilization of heterogeneous
multicore architectures in order to address the ever-growing need for com-
puting performance. ese emerging architectures pose specific challenges
with regard to their programmability. In addition, they require efficient

application mapping schemes to fully harness their processing power and avoid bole-
necks. In this respect, it is of critical importance to analyse application behaviour, and
the data communication between tasks, in particular.

In this dissertation, we present a profiling framework that helps developers to gain
an insight into the behaviour of an application. e presented profiling framework is
generic and not restricted to a particular platform, application, or purpose. We utilize
this framework with the primary goal of mapping applications onto a heterogeneous
multicore architecture. e framework includes amemory access profiling toolset, called
Quad, that provides quantitative information regarding the memory accesses in an ap-
plication. Quad utilizes Dynamic Binary Instrumentation (DBI) to detect the actual data
dependencies that occur between the tasks of an application at runtime. Additional-
ly, it also provides accurate memory access measurements, such as the amount of data
transferred between tasks and the memory size required for their communication. Such
information can be utilized to identify critical parts of an application, to highlight coarse-
grained parallelism opportunities, and to guide code optimizations.

As a proof of concept to substantiate the usefulness of the extracted profiling infor-
mation, we utilize the main output of Quad, the antitative Data Usage (QDU) graph,
as the input model to formulate a general application partitioning problem. e formula-
tion of this intractable problem is flexible and accommodates different design objectives
and constraints. Subsequently, we propose a heuristic algorithm to find high quality
partitions of an application in a reasonable amount of time. In addition to the com-
plexity analysis of the proposed algorithm, we present a thorough theoretical analysis
of the application partitioning problem. In order to evaluate the quality of the solu-
tions, we developed a test bench for generating synthetic QDU graphs and compared
the results against the optimal partitions obtained using an exhaustive search. e com-
parison results show that the proposed heuristic algorithm is able to provide optimal or
near-optimal solutions.

To further prove the applicability of the profiling framework, we investigate in de-
tail the utilization of the framework in practice, by mapping two real applications onto

ⅲ

a heterogeneous reconfigurable architecture. To achieve this goal, we propose a hard-
ware/soware partitioning methodology that introduces the concept of merging tightly-
coupled tasks based on the data communication analysis. Moreover, the profiling infor-
mation is utilized to fine-tune the applications and optimize their data flow. e obtained
results show a performance increase of % and %.

ⅳ

Acknowledgements

My interest in computers dates back to , when I managed to get my hands on a
Commodore . I can still vividly recall the day my brother came up with a magic box in
his hands. All it needed was just a "poke" to make my already hypnotized eyes poke out!
and yes, I do remember the magical number aer all these  years! POKE ,<color
code: -> and bingo… you have the desired border color! Simple, but it was more
than enough to cast a spell on me. If I am where I am standing today, it is because of
you, Shervin. I decided to study computer science because I was enchanted by your
programming skills and enthusiasm. I will never forget all those good times when I used
to sit beside you, trying to learn something new about computers. You are not only
a dear friend and a true brother to me, but also a perennial source of inspiration and
fortitude. anks for your selfless support and encouragement through all these years.

is thesis is not only the outcome of my endeavor over the last years, but also the
kind guidance, assistance and support of several individuals, to all of whom I am deeply
grateful. Words fail to stand for the deep gratitude that I wish to express to all of you.
I would like to stress the fact that the order in which I acknowledge the names is not
representative of the value that I place on their roles in this respect.

First of all, I would like to sincerely thank my advisor and promotor, Prof. Koen
Bertels, who gave me the chance to step into the PhD journey. Koen, I kindly value
your continuous support, commitment, and patience, which immensely influenced my
research view. You gave me the opportunity to develop myself in different aspects and
to have a vision for future research. I am grateful for your dedication to guide me along
the entire journey, our fruitful discussions, and the freedom that you granted me to
pursue the research work. I am also thankful for your invaluable comments on my
thesis. I would like to extend my gratitude to my defense commiee for the time that
they invested in reading the thesis manuscript. I appreciate their insightful discussions
and suggestions to improve the quality of this thesis.

I am indebted to my dear friend, Faisal, for all the proofreading of my thesis. Faisal,
I value the time we spent for the research collaboration; but above that, I highly appre-
ciate your genial friendship. anks for the helping hand whenever I needed you. My
appreciation also goes to Roel for the comments and discussions on our collaborative
research work. Roel, thanks for helping me during the recent years in Holland. I would
like to express my gratitude to Imran for his valuable contributions to the extension of
this research work. Imran, you are a smart, dedicated, hardworking researcher that any-
one would cherish working with. At the same time, you are a modest and trustworthy

ⅴ

friend. I would also like to thank Kamana for her friendship and support. I am grateful
to Carlo for all the proofreading of my manuscripts and his comments over the last few
years. I would also like to acknowledge Valery and Marco for their efforts to improve
the Quad toolset, Andrew for kindly proofreading the abstract and propositions of the
thesis, Roel and Moa for their translation into Dutch.

My appreciation goes to Iranian friends in Holland who helped me sele down here
and made me feel at home: Mahmood, Mojtaba, Alireza, Javad, Mehdi, Behnaz, Mahyar,
Rahim, Hamed, Asad, Roya, Mehdi, Gholam Reza, Vahid, Azadeh, Ashkan, Ghazaleh,
Sepideh, Mohammad Reza, Reza, Masoud, Mohammad, Amin, Behzad, Hossein, Hadi,
Arash, Mohamad Reza, Ali, Hossein, and other friends that I have failed to name here.
A special thanks goes to Alireza and Javad for tolerating me when I was falling asleep
where I was not supposed to! … thanks for being supportive through all these years.
Mahyar, I appreciate all your invaluable support and kindness.

I would also like to acknowledge my present and former colleagues in the Computer
Engineering research group at TU Del: Zubair, Luyi, omas, Dimitrios, Sebastian,
Jae, Tariq, Fakhar, Seyab, Aqeel, Mafalda, Innocent, Laiq, Bogdan, Omar, Hamid, Roel,
Saleh, Elena, Cuong, Vlad, Razvan, Muhammad, Chunyang, and Demid. I am grateful to
Lidwina for taking care of all the administrative work during these years. I also wish to
thank Bert, Erik and Eef for their technical support.

I would like to take this opportunity to express my sincere appreciation to all my
teachers who have taught me since I went to school, and to all my wonderful friends in
Iran for their prayers, kind words, and moral support.

Finally, I wish to express my deepest gratitude to my dear parents for their endless
love, support, and commitment throughout my life. Mom, Dad, your incomparable love
gave me the strength to overcome all the troubles that I faced in my life. You were my
one and only motivation to stay and complete this journey. Mom, Dad, I endured just
to see the smile on your face, which means more than the world to me. You will always
be the dearest to my heart. And I am forever thankful to God because of you and all the
blessings that He has given me. He has always been there for me during the saddest and
happiest times of my life. ough I have been into problems, and sometimes into pains,
I have always felt blessed because of believing in God. I am eternally thankful to God for
all the support and guidance, for giving me the courage to face problems, for giving me
the strength to fight the difficulties in life, for allowing me to learn from my mistakes,
and for hearing my prayers and granting me what I wished for.

Arash Ostadzadeh Del, e Netherlands, August 

ⅵ

Table of contents

Abstract ⅲ

Acknowledgements ⅴ

Table of contents ⅶ

List of figures ⅺ

List of tables ⅹⅲ

List of listings ⅹⅴ

List of Acronyms ⅹⅶ

Terminology ⅹⅺ

 Introduction 
. Problem Overview . 

. Research Challenges . 

. Dissertation Contributions . 

. Dissertation Organization . 

 Profiling 
. Program Profiling . 

. Program Tracing . 

. Profiling Usage . 

. Profiling Classification . 

.. Static Analysis . 

ⅶ

.. Dynamic Analysis . 

.. Static vs. Dynamic Analysis . 

. Soware Profiling . 

.. Instrumentation Based Profiling . 

.. Sampling Based Profiling . 

.. Simulation Based Profiling . 

.. Instrumentation vs. Sampling Based Profiling 

. Hardware Profiling . 

. Data Structures for Profiling . 

. Profiling Approaches . 

.. Basic Block Profiling . 

.. Control Flow Profiling . 

.. Value Profiling . 

.. Variational Path Profiling . 

. Summary . 

 Dynamic Profiling Framework 
. Project Context . 

.. Molen Abstraction Layer . 

.. Del Workbench . 

. Q² Profiling Framework . 

.. ipu Modeling Approach . 

.. Quad Memory Access Profiling Toolset 

. Runtime Memory Access Profiling . 

.. Pin Dynamic Binary Instrumentation 

.. Quad-core Development . 

.. Memory Access Tracing . 

.. Identifying Memory-Intensive Kernels 

.. Bulk Data Flow Detection . 

. Memory Access Intensity Profiler (Maip) . 

.. Maip Implementation . 

.. Computation Time vs. Communication Time 

. Runtime Extraction of Source-Level Data 

.. DWARF Debugging Information . 

.. xQuad Implementation . 

ⅷ

. Kernel Ranking Based on Memory Access Intensity (MAI) 

. Summary . 

 Temporal Memory Bandwidth Analysis 
. Background . 

. Temporal Data Extraction . 

. tQuad Implementation . 

. Case Study: Wave Field Synthesis . 

.. Experimental Setup . 

.. Kernels Overview . 

.. antification of Data Communication 

.. Temporal Information Extraction 

.. Phase Detection . 

. Summary . 

 Task Clustering: A Greedy Approach 
. Application Partitioning . 

. Partitioning Methods . 

. Problem Formulation . 

. Multi-Objective Task Clustering . 

.. Input Data Model . 

.. Greedy Algorithm . 

.. Application Partitioning Algorithm 

. Complexity Analysis . 

.. Time Complexity . 

.. Space Complexity . 

. Synthetic Analysis . 

.. Exhaustive Application Partitioning 

.. Experimental Results . 

. MJPEG Case Study . 

. Summary . 

 Utilizing Q² in HW/SW Partitioning: Case Studies 
. HW/SW Partitioning . 

.. HW/SW Co-design: Research Directions and Challenges 

.. HW/SW Co-design Objectives . 

ⅸ

.. Profile-guided HW/SW Partitioning 

. e Q² Partitioning Methodology . 

. Canny Edge Detection . 

.. Edge Detection Overview . 

.. Experimental Setup . 

.. Experimental Analysis . 

.. Observations and Results . 

. Mixed Excitation Linear Prediction . 

.. MELP Overview . 

.. Experimental Setup . 

.. Experimental Analysis . 

.. Observations and Results . 

. Summary . 

 Conclusions 
. Summary . 

. Main Contributions . 

. Research Opportunities . 

Bibliography 

List of Publications 

Samenvatting 

Curriculum Vitae 

ⅹ

List of figures

Chapter 

. An outline of the different chapters, challenges, and contributions in this
dissertation. 

Chapter 

. An outline of the different classes of application profiling. 

Chapter 

. An overview of the Molen Machine Organization. 

. An overview of the Del Workbench toolchain. 

. An overview of the Q² profiling framework in the Del Workbench. . . . 

. An overview of the ipu modeling approach. 

. An architectural overview of the dynamic part of the Q² profiling frame-
work. 

. Implementation overview of the Quad-core tool. 

. An outline of the dynamic trie data structure of base . 

. Partial antitative Data Usage (QDU) graph of a sample application
using the libdwt library . 

. A sample Debugging Information Entry (DIE). 

Chapter 

. An overview of the tQuad implementation. 

ⅺ

. Memory bandwidth usage of the kernels in the hArtes wfs, considering
only the read accesses including the stack area. 

. Memory bandwidth usage of kernels in hArtes wfs, considering only the
write accesses excluding the stack area. 

Chapter 

. Domain vs. functional decomposition. 

. Different application partitioning factors. 

. A typical example of the data dependency among functions in an appli-
cation. 

. e outline of the task clustering algorithm. 

. e generalized harmonic number of order k of  (Hk,1). 

. An example of partitioning a set of five elements. 

. Summary of the experimental results for synthetic data compared with
the optimal partitions. 

. A partitionedQDUgraph of theMotion Joint Photographic Experts Group
(MJPEG) application. 

Chapter 

. HW/SW co-design objectives. 

. e Q² partitioning approach. 

. e steps of the Canny Edge Detection (CED) implementation. 

. QDU graph for the hardware version of the CED application 

. Partial QDU graph of the CED application aer merging. 

. Overview of the live ranges of memory blocks in the CED application. . 

. e Mixed Excitation Linear Prediction (MELP) vocoder block diagram. . 

. Partial QDU graph of the MELP application before merging 

. Partial QDU graph of the MELP application aer the first merging step. . 

. Partial QDU graph of the MELP application aer the second merging step. 

ⅻ

List of tables

Chapter 

. Static Code Analysis vs. Dynamic Code Analysis. 

. Instrumentation vs. sampling based profiling. 

Chapter 

. gprof flat profile of the x application on the Intel x architecture. . . 

. Summary of the data production/consumption of the satd- and sad-
related kernels in the x application. 

. gprof flat profile of the revised x application, both for un-instrumented
and Quad-instrumented binaries. 

. Summary of the data production/consumption of pixel_satd_wxh and
the sad-related functions in the revised version of the x application. . 

. Memory access statistics for the hArtes wfs application, divided in stack,
heap, and data sections. 

. e gprof profiling data for the hArtes wfs application on the Intel x
architecture. 

. Communication vs. computation profiling data of the hArtes wfs appli-
cation on the Intel x architecture. 

. A Ranking based on the MAI of the kernels in the hArtes wfs application. 

Chapter 

. gprof flat profile for the hArtes wfs application. 

. Summary of the data produced/consumed by the kernels in the hArtes
wfs application. 

ⅹⅲ

. gprof flat profile for Quad-instrumented version of the hArtes wfs appli-
cation. 

. Identified phases in the execution path of the hArtes wfs application. . . 

Chapter 

. An overview of various application partitioning approaches previously
appeared in literature. 

. Total number of possible partitions in an exhaustive search of the solu-
tion space regarding different problem sizes. 

. Clusters in the MJPEG application. 

Chapter 

. gprof flat profile for the CED application on the Intel x architecture. . 

. gprof flat profile for the CED application on the embedded PowerPC (PPC). 

. Maip flat profile for the CED application. 

. Area predictions and theoretical speedups for the kernels in the CED
application. 

. Area predictions and theoretical speedups for the merged and optimized
versions of the CED application. 

. Maip flat profile for the MELP application. 

. Area predictions and theoretical speedups for the kernels in the MELP
application. 

. Results of the analysis of the merging options, final merged kernels, and
the actual synthesis results for the MELP application. 

ⅹⅳ

List of listings

Chapter 

. Memory access tracing implementation in Quad-core. 

Chapter 

. tQuad main interface. 

. tQuad instruction instrumentation. 

. tQuad routine instrumentation. 

ⅹⅴ

ⅹⅵ

List of Acronyms

ACO Ant Colony Optimization . 

ANSI-C American National Standards Institute standard for the C programming
language

API Application Programming Interface . 

ASCII American Standard Code for Information Interchange, a
character-encoding scheme.

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction-set Processor . 

AST Abstract Syntax Tree . 

BB Branch and Bound . 

BCS Binary-Constraint Search

bpp bits per pixel

bps bits per second, also wrien as bit/s or b/s

BRAM Block RAM, a local block of RAM on a Virtex FPGA. 

CCU Custom Computing Unit . 

CDFG Control and Data Flow Graph . 

CED Canny Edge Detection . 

CFG Control Flow Graph . 

CISC Complex Instruction Set Computer . 

CMP Chip Multi-Processor . 

CPI Cycles Per Instruction . 

CPU Central Processing Unit . 

CU Compilation Unit . 

DAG Directed Acyclic Graph . 

DBA Dynamic Binary Analysis . 

DBI Dynamic Binary Instrumentation . 

DCA Dynamic Code Analysis . 

ⅹⅶ

DCCPD Data Communication Channel Paern Detection . 

DCT Discrete Cosine Transform . 

DES Data Encryption Standard

DFG Data Flow Graph . 

DFL Dataflow Language, a graphical workflow language for dataflows

DFT Discrete Fourier Transform . 

DIE Debugging Information Entry . 

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

DSE Design Space Exploration . 

DSP Digital Signal Processor or Digital Signal Processing 

DTMF Dual Tone Multi Frequency . 

DWARF Debugging With Aributed Record Formats . 

DWARV Del Workbench Automated Reconfigurable VHDL generator 

DWB Del Workbench

DWT Discrete Wavelet Transform . 

EA Effective Address . 

EFG Execution Flow Graph

ELF Executable and Linkable Format, formerly known as Extensible Linking
Format . 

ESG Extended Syntax Graph

FFT Fast Fourier Transform . 

FPGA Field Programmable Gate Array . 

FSM Finite State Machine . 

GA Genetic Algorithm . 

GCLP Global Criticality/Local Phase . 

GPP General-Purpose Processor . 

GPU Graphical Processing Unit . 

HCDFG Hierarchical Control- and Data-Flow Graph . 

HDL Hardware Description Language . 

HDS Hardware Debug System . 

HDVL Hardware Description and Verification Language . 

HLL High-Level (Programming) Language . 

HLS High-Level Synthesis . 

HPC High Performance Computing . 

HTG Hierarchical Task Graph . 

ⅹⅷ

IBF Interleaving Balance Factor . 

IC Integrated Circuit . 

ILP Instruction-Level Parallelism

ILP Integer Linear Programming . 

IP Intellectual Property . 

IP Instruction Pointer, also called program counter (PC) or Instruction
Address Register (IAR) . 

IPC Instructions Per Cycle . 

IR Intermediate Representation . 

ISE Integrated Soware Environment . 

JIT Just-In-Time . 

KLFM Kernighan-Lin/Fiduccia-Matheyes . 

KL Kernighan-Lin . 

LPC Linear Predictive Coding, a powerful speech analysis technique. 

LUT Look-Up Table

MAI Memory Access Intensity . 

M Memory Access Intensity Profiler . 

MAL Molen Abstraction Layer . 

MAR Memory Access Ratio . 

MAT Memory Access Tracing . 

MELP Mixed Excitation Linear Prediction . 

MILP Mixed Integer Linear Programming

MIMO Multiple-Input and Multiple-Output . 

MJPEG Motion Joint Photographic Experts Group . 

MOR Memory Operand Ratio . 

MPSoC Multi-Processor System on Chip . 

NLOC-MAR Non-Local Memory Access Ratio . 

NLOC-MOR Non-Local Memory Operand Ratio . 

NPP Noise Pre-Processor . 

OSCI Open SystemC Initiative . 

OS Operating System . 

PCM Pulse-Code Modulation, a method to encode digitally sampled analog
signals. 

PE Processing Element . 

PGM Portable GrayMap, an image file format defined by the Netpbm project.

PLD Programmable Logic Device . 

PPC PowerPC . 

ⅹⅸ

PSO Particle Swarm Optimization . 

QDU antitative Data Usage . 

RP Reconfigurable Processor . 

SA Simulated Annealing . 

SCA Static Code Analysis . 

SCM Soware Complexity Metric . 

SDRAM Synchronous Dynamic Random Access Memory

SIMD Single Instruction Multiple Data . 

SISAL Streams and Iteration in a Single Assignment Language

SLDL System-Level Design Language . 

SLIF System-Level Intermediate Format

SoC System on Chip . 

SP Stack Pointer . 

SSA Static Single Assignment

SSE Streaming SIMD Extensions . 

STG State Transition Graph . 

TB Time Base, a counting register to keep track of system time. 

TDFG Task Data Flow Graph

TLM Transaction-Level Modeling . 

UnDV Unique Data Value . 

UnMA Unique Memory Address . 

USDoD United States Department of Defence . 

UVM Universal Verification Methodology . 

VHDL VHSIC Hardware Description Language (VHSIC stands for
Very-High-Speed Integrated Circuit) . 

VLIW Very Long Instruction Word

VLSI Very-Large-Scale Integration

VM Virtual Machine . 

VQ Vector antization . 

WCET Worst Case Execution Time . 

WFS Wave Field Synthesis . 

XDL Xilinx Design Language . 

XML eXtensible Markup Language . 

πISA Polymorphic Instruction Set Architecture . 

ρμ-code configuration microcode, or Reconfigurable Micro-code, used in the Molen
Machine Organization. 

ⅹⅹ

Terminology

In this dissertation, we refer to several terms that are ambiguous and may specifically
cause confusion when used in the context of Computer Science. In the following, we
clarify the most important and frequently used terms.

Quad It stands for antitative Usage Analysis of Data. By data, we mean data that
is communicated (produced, stored, retrieved, and consumed) via main memory
in a computing system between a pair of functions. Apart from the main Quad
tool, called Quad-core, there are three dependent tools that are called: tQuad, cQ
uad, and xQuad. Each of these tools focus on a particular aspect of the analysis.
t denotes Temporal, c marks Communication, and x is for eXactitude. e term
Quad is generally used to refer to the whole Quad toolset. For more details, see
Chapter  and Chapter .

Application A computer soware or simply a program that is developed to perform a
specific task.

Source Code Any collection of computer instructions (possibly with comments) writ-
ten using some human-readable computer language, usually as text. e term
‘code’ may also be used as the short form of ‘source code’, but usually used where
the nature of the code is not relevant, thus ‘code’ can be in any format.

Function Part of a source code that is an independent unit in relation to the rest of the
source code, with clearly defined inputs (formal parameters) and outputs (results).
A function can be executed as a whole by calling the function with a set of para-
meters. Other terms that may be used, in the general sense, for function include:
(sub)routine, procedure, or method. Caution should be taken as these terms can
have their own specific meanings in different contexts, which distinguishes them
from the term function.

Kernel A code segment in the context of a larger application which performs a set of
operations. It contributes to a relatively independent task in the context of the
application algorithm. A kernel can be a function or a loop nest. Usually, a kernel
consists of consecutive instructions of a program, however, this should not be re-
garded as a restriction. Since we introduce the idea of merging code segments in
this thesis, in the general sense, a kernel may refer to a collection of inconsecutive
code segments. Furthermore, we mostly use ‘kernel’ to refer to a candidate for

ⅹⅺ

hardware acceleration in reconfigurable systems. In this dissertation, the terms
‘function’, ‘kernel’, and ‘code segment’ are used interchangeably when no confu-
sion arises.

Self-contribution e self-contribution of a function refers to the execution time re-
quired by the function alone, without considering the time spent in its descendants
(the functions invoked by that function). We use the expression ‘entire contribu-
tion’ to denote the whole execution time needed for the function including its
descendants. In the case of direct recursion, the execution time of a recursive
function denotes the entire contribution, and self-contribution makes no sense in
this respect.

ⅹⅻ

CHAPTER1
Introduction

“If something is to be done, I have a feeling that I should start doing it.” †

— Ehsan Yarshater

c
omputing systems today face some big challenges, at the same time, they
provide exciting opportunities, due to the end of single-processor per-
formance scaling, new demands imposed by High Performance Comput-
ing (HPC), embedded computing, and mobile computing. Furthermore,

there is an ever increasing need for energy efficiency across the computing spectrum in
general. In this respect, multidisciplinary research is becoming increasingly important,
as the boundaries between hardware/soware and general-/special-purpose processing
blur in today’s heterogeneous systems, as the architectures and capabilities of computing
systems are becoming ever more varied, and most importantly, as applications continue
to expand, both in terms of requirements and sophistication.

e growing disparity of the speed between processor(s) and the memory residing
outside the chip(s), referred to as the Memory Wall¹, has created a severe obstacle in
the performance gain of computing systems. An important reason for this disparity is
the limited communication bandwidth across chip boundaries. From the mid s to the
beginning of the ᵗʰ century, the speed of the Central Processing Unit (CPU) improved
at a rate of approximately % each year, while the rate of improvement for memory
speed was only %. Given these trends, it was apparent that the memory latency would
(potentially) become an overwhelming boleneck in the performance of the computing
systems. Today, improvements in the CPU speed have significantly decelerated, part-
ly due to major physical obstacles, and partly due to the fact that contemporary CPU
designs have already hit the memory wall to some extent. Intel, the world’s prominent

† oted from "A Lifetime est to Finish a Monumental Encyclopedia of Iran", An article by Patricia
Cohen, e New York Times, published on th August .
¹ e term was initially coined by Wulf and McKee in  (Hiing the Memory Wall: Implications of the
Obvious) []



http://www.nytimes.com/2011/08/13/books/ehsan-yarshaters-encyclopedia-of-iranian-history.html

Chapter  INTRODUCTION

chip manufacturer, has highlighted this issue in its Platform  White Paper², which
describes the evolution of the Intel’s microprocessor architecture over the decade from
 to :

In the past, performance scaling in conventional single-core processors has
been accomplished largely through increases in clock frequency (accounting
for roughly  percent of the performance gains). But frequency scaling is run-
ning into some fundamental physical barriers. First of all, as chip geometries
shrink and clock frequencies rise, the transistor leakage current increases, lead-
ing to excess power consumption and heat. Secondly, the advantages of higher
clock speeds are in part negated by memory latency, since memory access times
have not been able to keep pace with increasing clock frequencies. ird, for
certain applications, traditional serial architectures are becoming less efficient
as processors get faster (due to the so-called Von Neumann boleneck), fur-
ther undercuing any gains that frequency increases might otherwise buy. In
addition, resistance capacitance delays in signal transmission are growing as
feature sizes shrink, imposing an additional boleneck that frequency increas-
es do not address.

Sequential computing has dominated the computer architecture landscape for about five
decades. Designers were able to design and build faster and faster computers by relying
on improvements of fabrication technologies and architectural/organization optimiza-
tions. However, due to the aforementioned critical limitations, computing systems now
need to achieve performance gains by other means than increasing the clock speed of
Processing Elements (PEs). e main idea is that rather than performing operations in
a sequence at an extremely high clock frequency, multiple PEs execute large quantities
of operations in parallel at moderate clock rates to achieve increased performance. is
implies that the running application should somehow be divided into (many) concurrent
operational blocks and distributed among the PEs. is radical shi in application de-
velopment and execution has already forced the industry to move into and promote the
concurrency era.

e switch to multiprocessor systems has elevated concurrency as a major issue in
utilizing the ever increasing number of PEs in computing systems. As a result, the most
important direction in microprocessor architecture pertains to increasing parallelism for
increased performance. e progress initially started with superscaler architectures, then
came the multiprocessing functionality, and it continued with some influential capabil-
ities such as out-of-order execution and hyper-threading. ese features all laid the
tiles for a major milestone in microprocessor architecture, the movement away from a
monolithic processing core to multiple cores on a single chip. Chip manufactures are mak-
ing multicore processor-based platforms mainstream. ese platforms started with two
cores and are now evolving to many more. Processors containing dozens and even hun-
dreds of cores are already envisioned in the near future. ere is no doubt that Chip
Multi-Processors (CMPs) will gain control over the future microprocessor architectures,
delivering excellent performance scaling, while, at the same time, solving the power
consumption problem.

² Platform : Intel® Processor and Platform Evolution for the Next Decade []



PROBLEM OVERVIEW Section .

Recently, there has been a substantial growth in applications that require special
types of processing in addition to conventional general-purpose and/or high-performance
processing. is requirement, in turn, created a trend for the fabrication of chips with
specialized functions, such as signal processing, media processing, and network process-
ing. Furthermore, it even brought about versatility and adaptability as major factors in
General-Purpose Processors (GPPs) to enable them to dynamically match their capabili-
ties to a diverse range of applications. Hardware acceleration is an umbrella term that en-
compasses the idea of this special form of processing. Generally, hardware acceleration
refers to the exploitation of specialized hardware to perform a function more efficiently
than is possible in soware running on a GPP. Examples of hardware acceleration in-
clude motion compensation in Graphical Processing Units (GPUs), matrix operations in
Digital Signal Processors (DSPs), and instructions for dealing with complex numbers in
conventional CPUs.

In the meantime, reconfigurable architectures have also aracted considerable aen-
tion due to the fact that they are identified as powerful alternatives for creating highly
efficient computing systems. Reconfigurable architectures offer substantial performance
improvements via custom design and reconfiguration capabilities, compared against tra-
ditional processing architectures. Reconfiguration is characterized by the ability of hard-
ware devices to rapidly alter the functionalities of their components and the interconnec-
tion between them as needed. e primary advantage of these emerging architectures
is the ability to increase performance with accelerated hardware implementation, while
maintaining the flexibility of a soware solution. is is generally accomplished bymap-
ping computationally intensive parts of an application onto reconfigurable hardware.
e most widely-used example of reconfigurable devices are Field Programmable Gate
Arrays (FPGAs) []. FPGA devices are commonly perceived as co-processing units
coupled with GPPs to provide hardware acceleration functionalities. In fact, a consider-
able share of hardware accelerators are built on top of FPGA devices. For example, they
are used in automotive navigation systems and rear-seat displays, ultrasound imaging
systems, robotically-assisted surgical systems, -D televisions, and sophisticated mobile
communication systems. Xilinx [] and Altera [] are the world’s leading providers
of FPGA fabrics, which have control over % of the whole market³.

. Problem Overview

Heterogeneous multicore systems have gained increasing aention over the last couple
of years, because the end of era for single-processor computing systems is imminent. In
this respect, multiprocessor systems utilizing reconfigurable fabrics are in the focus of
aention because they constitute a very interesting coupling between the performance
of hardware and the flexibility of soware. Reconfigurable fabrics such as FPGAs can
be used as stand-alone processors or in combination with GPPs. e functions executed
on the reconfigurable fabric can be changed (at runtime or at compile time) with respect
to the target application. However, for this technology to really be adopted on a large
scale, a number of important gaps have to be bridged, of which some are considered to
be difficult. One of these challenges is the need for a machine organization that provides

³ Xilinx, by itself, had nearly % of the market share in .



Chapter  INTRODUCTION

a generic way in which different components such as a GPP and various reconfigurable
devices can be combined in a transparent way. Another challenge is that we need the
necessary tools to transform (existing or new) applications in such a way that we can
ultimately unleash the performance of these systems to the full extent.

We need such tools because application development in this context no longer lends
to the conventional sequential model. Furthermore, there is a wide range of legacy ap-
plications that need to be mapped onto these emerging architectures. us, in the first
place, there is a critical need to thoroughly understand and analyse what is happening
inside the application. In this respect, the memory access behaviour of the application is
of critical importance, as it turns out that data communication is the primary obstacle in
achieving the anticipated speedups in parallel systems. Moreover, application develop-
ers require detailed information about the memory accesses in applications to fine-tune
and customize them for maximum performance on any given architecture.

e complexity of non-trivial applications makes it difficult to manually find the
required information, hence there is an obvious need for tools to help developers in pin-
pointing performance bolenecks. Extracting the potential coarse-grained parallelism
to efficiently map an application onto these systems is only possible if quantitative infor-
mation about the inter-task data dependencies are available. is, in turn, necessitates
the development and usage of tools than can provide these information. Furthermore,
an appropriate partitioning approach is needed in order to use these information for
mapping the application in such a way that design objectives are met.

. Research Challenges

e problem of mapping an application onto a heterogeneous reconfigurable architec-
ture has various aspects. is includes parallelism detection, application partitioning,
Design Space Exploration (DSE), among others. In this work, we do not address all the
aspects of this research domain. For that reason, we only focus on some specific chal-
lenges, which were briefly mentioned earlier in this chapter and are highlighted in the
following.

Challenge  — How to formulate the partitioning of an application to allow
dealing with different design objectives, requirements, and purposes?
While heterogeneous multicore architectures are excellent candidates for paral-
lel processing, there is an important problem not solved yet. It is not easy nor
straightforward tomap an existing sequential application onto these systemswhile
fully utilizing their processing potential. As these systems have multiple PEs and
diverse shared resources, the problem of balancing the workload among multi-
ple cores becomes critical. e performance of the system is not only determined
by the workload of the application tasks, but also by the way these tasks com-
municate and share the available resources. It is not obvious how to reasonably
assign tasks to each PE so that there will be no boleneck which compromises the
performance of the system. Furthermore, not all the mapping objectives are with-
in the same direction, which makes the application partitioning, and subsequent
mapping, even more complex. As an example, optimizing energy consumption in



RESEARCH CHALLENGES Section .

these systems may prefer the idleness of some PEs on the availability of extra re-
sources for certain application. is is incongruous with the workload balancing
strategy among all available PEs. In this thesis, we formulate a general applica-
tion partitioning problem, where various objectives are taken into account to find
an appropriate solution for the partitioning problem. is will let the application
developer efficiently program a heterogeneous multicore system to unleash its po-
tential.

eproblem of general application partitioning is formulated in Chapter  and a prac-
tical methodology to address HW/SW partitioning for a heterogeneous reconfigurable
system is discussed in Chapter .

Challenge  —How canwe accuratelymeasure the amount of data that is trans-
ferred between different parts of an application?

e availability of parallel processing can potentially offer extra processing power
compared to sequential processing. However, while an application conventionally
exploits the full capacity of a single processor, it is hard to decompose and distrib-
ute the application in a way that it actually runs faster on some parallel system.
emajor problem inherent in the application is data dependencies between tasks
or communication costs, which limit the achievable speedup. A critical research
problem for heterogeneous multicore systems is how to measure the amount of
data that is transferred between a pair of tasks. is is not easy since the exact
amount, in most cases, can only be determined dynamically during the execution
of the application. What makes the problem complicated is the fact that we have
to keep track of all the memory accesses occurring during the execution of an
application in order to have an accurate estimation of inter-task data communi-
cation. e dynamic profiling framework presented in this thesis addresses this
problem by identifying the actual data dependencies arising during the execution
of an application.

e dynamic memory access profiling toolset is presented in Chapter . An extension
of the profiling toolset to extract temporal information is described in Chapter .

Challenge  — How can different partitioning algorithms be evaluated in terms
of the quality of solutions and the execution time?

One major problem regarding different application partitioning algorithms is the
lack of a robust and fair basis of comparison. is research has not been appropri-
ately addressed since it is difficult to compare the results of different partitioning
strategies. is is due to the different input models, objective functions, assump-
tions, test cases, and target architectures that are used in each research work. e
diversity of critical factors in these works is such that it is nearly impossible or
very difficult and unclear to prefer one over another. Even worse, there is no
standard metric to assess the quality of the results. Apart from limited research
work that propose deterministic methods to find the optimal solution, for heuristic
methods, no solid proof is given to validate the quality of the found solutions. In
this thesis, we present a synthetic test bench that can be used as a starting point



Chapter  INTRODUCTION

to allow the comparison of various partitioning algorithms.

e synthetic test bench for the comparison of partitioning algorithms and a strategy
to estimate the quality of the found solutions is discussed in Chapter .

. Dissertation Contributions

e focus of this dissertation is on memory access profiling and application partitioning.
In these areas of research, we have made the following contributions.

Contribution  — An efficient memory access profiling framework that enables
the extraction of detailed quantitative information from applications.
Wedevelop a set ofmemory access profiling tools, which are based on theDynamic
Binary Instrumentation (DBI) mechanism to inspect the behaviour of an applica-
tion. We introduce the antitative Data Usage (QDU) graph as the primary out-
put of the toolset. It not only reveals the actual data dependencies between the
functions of the application, but also provides profiling data which quantifies the
data communication between those functions. e information measured by this
toolset is quite accurate and verified in several cases where real applications are
used. Moreover, the framework is designed in a structured way to make further
improvements simple and straightforward. We show how the extracted profiling
information can be used in different aspects, including source code optimizations
and function merging, among others.

Contribution  —e runtime extraction of the relative timing information en-
ables the identification of different execution phases in an application.
Although not in the primary focus of the profiling framework, the developed
toolset allows the extraction of the relative temporal information during the exe-
cution of an application. is information improves the perception of the user in
the sense that he can inspect at what time a particular memory access behaviour
occurs in the application, or how the data communication between functions pro-
ceeds over time. Furthermore, the extracted temporal information can be utilized
to give an account of the memory bandwidth requirements of the application dur-
ing its execution. is is of particular importance in exploring task mapping and
scheduling opportunities in multicore systems. However, in this work, we do not
investigate these issues, instead we only use the temporal information to identify
different phases in the application.

Contribution  — A heuristic solution for the general application partitioning
problem with a customizable objective function.
e extracted information regarding the actual data dependencies in an applica-
tion along with additional quantitative profiles can be beneficial for a number of
purposes. Data dependency detection triggers parallelism exploitation, which, in
turn, initiates the concept of application partitioning. In our work, we first formu-
late the application partitioning problem in a general and flexible way, and then
propose a heuristic approach to solve the problem. Although the proposed ap-
proach may not eventually converge to the optimal solution — as non-heuristic



DISSERTATION ORGANIZATION Section .

approaches would inherently do — the intractability nature of the problem puts
our approach on the plus side for large problem sizes.

Contribution  — An elaborate validation of the quality of the solutions pro-
vided by the partitioning algorithm through an exhaustive search of the
solution space.
In case a heuristic algorithm is proposed to address an optimization problem, it
would be assumed a severe flaw if we cannot assess the quality of the found so-
lutions. is is because there is no guarantee that the optimal solution is found.
us, one should not only care about finding a solution which meets the defined
constraints, but also should set the criteria to estimate the value of the found so-
lution among all possible solutions. As such, the first step involves defining the
metric against which the quality of the found solution is examined. For this pur-
pose, we present a complete theoretical analysis of an exhaustive solution search
for the proposed partitioning model. Subsequently, we perform extensive simula-
tions — using synthetically generated input data — to investigate the actual stand-
ing position of the heuristically-found solution against all the possible solutions.
is, undoubtedly, represents the best quality assessment for such a partitioning
algorithm. e simulation results show that, for the majority of cases, the found
solutions stand in acceptable positions in the solution space to be considered as
near-optimal ones.

Contribution  — Two case studies, where the memory access profiling toolset
is utilized to analyze and partition an application.
In order to evaluate the practical usage of the developed profiling framework, we
present two case studies regarding application analysis and partitioning. e first
application is a well-known edge detection algorithm from the domain of image
processing. e second application is an advanced voice codec featuring good
voice quality even at extremely low bit rates. Based on the extracted profiling in-
formation, we proposed a hardware/soware partitioning methodology to formu-
late the applicationmapping procedure. is information is used to guide merging
relevant tasks of each application together, while ensuring the feasibility of port-
ing the application to the target platform at hand.

. Dissertation Organization

e remainder of this dissertation is organized in several chapters. First, we present
an overview of application profiling in Chapter . en, in Chapter , we describe the
developed profiling framework and further detail the dynamic memory access profiling
toolset. Aer that, we describe the extraction of timing information during the runtime
of an application in Chapter . Subsequently, we discuss in detail the problem of ap-
plication partitioning in Chapter . Chapter  presents two detailed case studies where
the profiling framework is validated in practice. Finally, we conclude this dissertation
in Chapter .

A visual outline of this dissertation is depicted in Figure .. is figure concisely
presents the relation between different chapters, the research challenges, and the con-



Chapter  INTRODUCTION

Contribution 1

Contribution 2

Contribution 3

Contribution 4

Contribution 5

Challenge 2

Challenge 1

Challenge 3

Figure .: An outline of the different chapters, challenges, and contributions in this dissertation.
Chapter  presents only some background materials. Chapter  and Chapter  are both related
to the development of the dynamic memory access profiling framework. While Chapter  deals
with theoretical analysis of the application partitioning problem, Chapter  focuses only on the
practical aspect of partitioning in reconfigurable systems. e dashed lines indicate the possibility
of skipping intermediate chapter(s), as it will not interfere with understanding the contents.

tributions of this work. In the following, we present a brief summary of each chapter.

Chapter  — Profiling
In Chapter , we start by describing the concept of profiling an application and
discuss how profiling helps to analyse the behaviour of the application. We set
out stressing the importance of such analysis in understanding the behaviour of
applications, which, in turn, is of great value to application developers and com-
puter architects. Profiling tools are a necessity to evaluate how well applications
perform on different platforms as well as to identify the critical parts which pose
potential bolenecks for the performance of a system. Additionally, we explain
the idea of application tracing in contrast to profiling and how their objectives
differ in the context of application analysis. Furthermore, we describe the differ-
ent aspects in which profiling can be useful. Subsequently, we list different types
of data structures that are used in various profiling and tracing techniques. e
choice of proper data structures has crucial effect on the performance of profilers
as well as on the execution time of the profiled application itself. We describe
the two main categories of profiling, namely the static analysis and the dynamic
analysis. From a different perspective, we subsequently discuss the differences



DISSERTATION ORGANIZATION Section .

between soware and hardware profiling. In particular, we concisely explore dif-
ferent instrumentation techniques. e chapter also provides a brief account of
several existing profiling tools used in analysing applications.

Chapter  — Dynamic Profiling Framework
e Quad memory access profiling toolset is introduced in Chapter . In this
chapter, we first present the project context of our work, focusing on the Molen
Abstraction Layer (MAL), the Del Workbench tool platform, and the Q² profiling
framework. e chapter continues with a detailed description of the development
issues in the dynamic part of the profiling framework. In particular, we elaborate
on the description of the PinDBI framework, and the implementation of theQuad-
core tool, the Memory Access Tracing (MAT) module, Memory Access Intensity
Profiler (Maip), and the xQuad tool. Furthermore, using the profiling information
extracted by Maip, we set out to estimate the time spent on memory operations
in distinction of the time spent on computations. Based on this estimation, we
propose a ranking strategy that provides a preliminary assessment of the critical-
ity of a function regarding its memory access intensity. In order to demonstrate
how the profiling information can be interpreted and used in different aspects, we
investigate three real-world applications as case studies. For each application, we
highlight some major observations followed by detailed comments.

Chapter  — Temporal Memory Bandwidth Analysis
Chapter  presents the tQuad tool as an extension to the Quad toolset. It en-
ables Quad to extract relative timing information from an application during its
execution. is is of critical significance, particularly with respect to task sched-
uling and mapping in heterogeneous multicore systems. e original Quad-core
tool provides no track of temporal information, mainly because of the high in-
strumentation overhead. e tQuad tool collects the relative timing profiles as an
indication of the progress of the application. We present a concise overview of
how this functionality is implemented in tQuad. In the presence of the memory
access data, the extracted temporal profiles by tQuad give an account of the mem-
ory bandwidth usage of the functions in an application over time. Additionally,
we utilize the extracted temporal information to discover the different phases of
an application. e chapter ends with a detailed case study of a real application
to demonstrate the potential and the applicability of tQuad in practice. It should
be stressed that the extracted timing profiles primarily target temporal task parti-
tioning, in contrast to the spatial task partitioning, which does not fit within the
scope of this thesis. us, the extracted timing information is not used in sub-
sequent chapters. Nevertheless, one may opt to utilize this extra information as
hints for identifying related functions in task clustering.

Chapter  — Task Clustering: A Greedy Approach
e focus of Chapter  is on the problem of the coarse-grained application par-
titioning in its general sense. We present a detailed investigation into the fac-
tors that characterize a partitioning scheme and the methods that are utilized to
perform partitioning. In addition to a comprehensive formulation of the general
application partitioning problem, we propose a heuristic approach to tackle this
intractable problem with the aim of working out a near-optimal (or optimal) so-
lution in a feasible amount of time. e proposed partitioning approach utilizes



Chapter  INTRODUCTION

a greedy strategy with the primary objective of minimizing (and maximizing) the
inter-cluster (intra-cluster) data communication, and the uniformity of the pro-
cessing workload. An application partitioning algorithm is susceptible to failure
without a proper input model to fully capture the data transfers in the application.
To address this critical issue, we utilize the QDU graph to drive the partitioning
procedure. Furthermore, we provide a detailed complexity analysis of the pro-
posed partitioning algorithm, both in terms of time and space. We also present
a thorough analysis of the application partitioning problem from a combinatorial
mathematics perspective. is is required to conduct an exhaustive search of the
solution space in order to have a strictly accurate assessment of how close we can
get to the optimal solution. e chapter concludes with experimental results for a
real-world application as well as for synthetic data in comparison with the optimal
solution.

Chapter  — Utilizing Q² in HW/SW Partitioning: Case Studies
We demonstrate how the dynamic profiling framework can be applied in real sce-
narios by investigating two realistic cases in Chapter . For this purpose, we pro-
pose the Q² partitioning methodology which divides an application into hardware
and soware parts. We evaluate the Canny Edge Detection (CED) application,
a well-known edge detection algorithm, and the Mixed Excitation Linear Predic-
tion (MELP) application, a high-grade voice coder targeting very low bit rates.
Both applications are mapped onto the Molen heterogeneous platform. To this
purpose, an elaborate analysis of each application is performed beforehand. Dur-
ing the analysis phase, memory access profiling information provided by Quad
is utilized for source code modifications and optimizations. We employ the QDU
graph as the main reference to analyse the data transfers between functions, find
memory bolenecks and deficiencies, and spot opportunities to merge functions.

Chapter  — Conclusions
In Chapter , a summary of the work in this dissertation is presented. Several
conclusions with respect to the contributions anticipated in the introduction are
drawn. Subsequently, the chapter lists several open issues and opportunities for
future research.

Although the authors have made an aempt to document in this dissertation the work
that has been carried out in the context of this research, it simply cannot be fully repre-
sentative of what has been done. It is our sincere hope that an enthusiastic reader refer
to the accompanying source code, which is — with no doubt — an inseparable part of
this work. As Jeff Atwood perfectly puts it in a post at Coding Horror : no matter what
the documentation says, the source code is the ultimate truth, the best andmost
definitive and up-to-date documentation you’re likely to find!⁴

⁴ Learn to Read the Source, Luke, Jeff Atwood, April , .



http://www.codinghorror.com/blog/2012/04/learn-to-read-the-source-luke.html

CHAPTER2
Profiling

“Indeed, researchers love to find problems to work on.” †

— Dennis M. Ritchie

In this chapter, we discuss program profiling as the primary technique to investigate the be-
haviour of an application in order to highlight performance issues. In addition to describing
its usage, we present a classification of different profiling techniques. A particular aention
is given to instrumentation as the main technique used in the development of our dynamic
profiling framework.

o
ptimizing an application to execute as fast as possible on a given comput-
ing platform has never been a trivial task. Conventionally, programmers
achieved such goal by carefully studying the system details, trying to find
the proper combination of machine instructions that would result in the

level of desirable performance. In the past, it was relatively easy for a programmer
to decide on the types of code adjustments that would work best on a given architec-
ture, partly because computing systems were functioning in a completely deterministic
way. However, in the recent decade, the soware development landscape has evolved
dramatically, as the general public has embraced computing devices of all types and be-
come increasingly reliant on them to accomplish everyday tasks. As the demand for
more sophisticated applications increased, developers turned to use High-Level (Pro-
gramming) Languages (HLLs) and frameworks in order to reduce development costs
and remain competitive in the marketplace. Accordingly, applications have grown in-
creasingly complex in terms of both code size and the interactions that occur inside them
[]. While this layered approach to development may save time and money in the short
run, it complicates the task of determining whether an observed performance issue is
internal to an application or caused by the framework that it is built upon.

† Reflections on Soware Research,  Turing Award Lecture, Communications of the ACM, Vol. , No.
, August , pp. -.



http://awards.acm.org/images/awards/140/articles/2898606.pdf

Chapter  PROFILING

On top of that, computer hardware has changed drastically to keep up with the con-
tinuous demand for computing power. e simple single-issue processors of the past
surrendered to super-scalar designs capable of executing multiple instructions in a sin-
gle cycle, while simultaneously reordering operations to maximize the overall perfor-
mance. us, the instructions fed into the processor have become merely a guideline
for execution, as opposed to the wrien rules they were viewed as in the past. Since a
developer now has no way to determine precisely how the processor will operate, the act
of hand-tuning an application at the assembly code level is no longer a straightforward
task [].

For the last three decades, researchers have been aware of these trends in comput-
ing and have started developing tools to automate the task of application performance
analysis. e initial tools, much like the computers of the time, were simple in na-
ture and capable of gathering only basic performance statistics []. Furthermore, due
to technical limitations, the early tools focused exclusively on quantifying application-
level performance, and were unable to characterize the effects of items such as library
code or the Operating System (OS) itself. As computers became more complex, however,
advanced tools were developed to cut through the layers of abstraction caused by the
use of advanced OSs and other development frameworks in order to gain meaningful
performance statistics for the entire soware system [, , ]. More recently, hard-
ware designers have begun to embed counters inside the Central Processing Unit (CPU)
that can record cache hit statistics and other meaningful information, thus allowing de-
velopers to obtain various performance profiles for their applications [, , ].

In the last couple of years, the emergence of multicore systems in general, and het-
erogenous reconfigurable systems in particular, is raising new requirements for their
application development. ese requirements appear in terms of performance, cost-
efficient development, low power, functional flexibility and aainability. is increas-
es the design complexity in terms of performance improvement, memory optimization,
power optimization, etc. In order to obtain these goals, during the development process,
it is necessary to identify what application or parts of an application can be implemented
on different Processing Elements (PEs). In accordance with the Amdhal’s law [], in or-
der to achieve performance improvement, it is important to identify the critical parts of
the application to address potential bolenecks. is indeed requires a comprehensive
analysis of the application.

It is known that an application tends to spend most of its execution time in a small
fraction of code, a feature known as the "- rule", i.e. % of the execution time
comes from % of the code [, ]. However, based on the application, it is generally
difficult to identify at compile time where this small portion of the code lies. In order to
identify the critical part(s) of the code, one needs to profile the application. Analysing an
application at the high-level code is the first step towards any optimization. Information
derived from the application analysis, such as the number of times a function has been
invoked, exposes new optimization opportunities that are not visible in a traditional code
optimization.

In the following, we present an overview of different application analysis techniques
and their usage in today’s computing systems. e remainder of this chapter is orga-
nized as follows. In Section ., we present the concept of profiling as the main technique
to measure the performance of an application. Section . discusses tracing an applica-



PROGRAM PROFILING Section .

tion to record a sequence of events that occur during its execution. Profiling usage is
discussed in Section .. Section . presents a thorough classification of different pro-
filing techniques and briefly describes each class. e two main categories of dynamic
profiling, namely soware and hardware profiling, are further detailed in Section . and
Section ., respectively. In Section ., we list the common data structures that are used
in application profiling. Section . is devoted to different approaches used to profile ap-
plications. Finally, Section . concludes this chapter.

. Program Profiling

An application is the key contributor to the performance of any computing system in
terms of CPU time, memory, power consumption, etc. Application analysis is extreme-
ly important for understanding such application behaviors. Computer architects need
program analysis tools to evaluate how well programs perform on a given architecture.
Similarly, soware developers need these tools to analyze their programs and identify
critical parts of the code, and compiler developers oen use such tools to find out how
well their techniques, such as instruction scheduling or branch prediction, are perform-
ing. Generally, the output of any program analysis tool is a statistical summary of the
events observed, called a profile, or is in the form of a sequence of recorded events,
called a trace.

Profiling is a commonly-used technique for evaluating the performance of an appli-
cation. Code profilers maintain a statistical summary of performance metrics such as
the execution time. ese statistics are further analyzed to evaluate the performance of
the program. is information is subsequently used to identify program hotspots in the
code. e hotspots can then be analyzed further to pinpoint performance defects and/or
bolenecks.

A program hotspot is the point or segment in a program where there is a significant
amount of activity. ese points can be anywhere in the program, such as a memory
address, an OS process, an OS thread, an executable file or module, a function, a line
of code, or an instruction. e activities can vary from the time spent in processing to
any kind of internal processor event. When it comes to profiling, the fact that what are
these activities and exactly where they appear is the main concern. However, the fact
that these activities occur infrequently or frequently is not that much of interest.

In its most common form, program profiling involves obtaining the execution time of
a program, basically within the soware code level (at the function level, the statement
level, or the loop level) and analyzing it to get an idea of where the processor is spend-
ing most of its time. is will help to answer the questions like: which lines of the code
are responsible for the bulk of the execution time? how many times a loop is executed?
which approach is more efficient to code a block? and so on. From the implementa-
tion viewpoint, program profiling is the process of recording the summary information
during program execution, e.g., execution time, number of function calls, hardware sta-
tistics in order to reflect the performance behavior of program entities such as functions,
loops, basic blocks, user defined semantics, etc. In summary, program profiling reflects
the performance behavior of program entities, such as functions, loops, and basic blocks.
is mechanism is useful for performance evaluation and code optimization.



Chapter  PROFILING

One of the traditional ways for code optimization is to reduce the execution time
by removing the redundant code (e.g., dead code elimination, common sub expression
elimination, and copy propagation). is kind of analysis can be done is various stages
of the program: algorithm construction, program compilation or program execution.
Another way of optimizing code is to move frequently executed program regions to
infrequently executed program regions, such as loop induction variable elimination and
loop invariant code removal.

. Program Tracing

Unlike program profiling, which mainly concerns exposing the behavior of a program
by monitoring its execution, program tracing focuses on recording a sequence of events
occurring during the execution. In application analysis terminology, the tracing problem
refers to recording enough information about the execution of a program in order to be
able to reproduce the entire execution []. A straightforward way to solve this problem
is to monitor each basic block so that whenever it executes, a unique token (also called
a witness) is wrien to a trace file. In this case, to regenerate the execution, one only
needs the trace file.

e difficulties in obtaining a complete program trace stem from the high cost of
recording every instruction and/or data address during the execution of the program.
In addition, program tracing usually results in large trace files. Straightforward, but
inefficient, tracing systems examine every instruction as a program executes. e tracing
overhead can be reduced by modifying either the computer hardware or the application
soware to record subsets of the data. Although these modifications can significantly
improve tracing performance, the overhead still remains too high for many applications.
Detailed program traces are used for various simulation purposes, e.g., in the design of
processor instruction sets and memory systems, the study of storage reclamation and
virtual memory page-replacement algorithms, and the analysis of input to parallelizing
compilers. Some early approaches for capturing detailed program traces are discussed
in [].

e main problem with trace-driven simulations is that they are both time- and
space-consuming, which makes them sometimes impractical. To address this problem,
the execution of a program can be modeled by a statistical profile in order to gener-
ate a synthetic benchmark trace from it. is technique is used to accelerate the de-
sign process. Due to the statistical nature of this technique, performance characteristics
quickly converge to a steady state solution during simulation, which makes it appropri-
ate for fast Digital Signal Processors (DSPs) [, ].

. Profiling Usage

Program analysis tools are extremely important for understanding the program behavior
in general, while runtime program profilers are crucial for understanding the dynamic
behavior of programs. In this respect, profiling can be used in various aspects:



PROFILING CLASSIFICATION Section .

• Profiling provides insight into a program’s resource utilization and helps a pro-
grammer to identify performance bolenecks in the program code.

• Profiling is used to guide code optimizations for compiler development. e feed-
back from the profile information is a usefulmechanism for providing the compiler
with information about how the code behaves at runtime. Having this information
can lead to significant improvements in the performance of the application.

• Profiling helps to evaluate how well programs will perform on new or existing
architectures from computer architecture point of view.

• Profiling is used to check the implementation of an algorithm. It helps to assess
how the code carries out a given task and to check whether or not the algorithm
behaves correctly. Furthermore, profiling may be used to suggest algorithm opti-
mizations by avoiding costly implementation.

• Information obtained from profiling can also be used for program debugging and
testing.

. Profiling Classification

Basically, there are two different ways of analyzing programs: Static Code Analysis
(SCA) and Dynamic Code Analysis (DCA). In the following, we discuss each type in
more detail.

.. Static Analysis

In Static Code Analysis (SCA), the source code of a program is analysed without actually
executing the program. Inmost cases, the static analysis is performed on some version of
the source code, and in the other cases, it is performed on some form of the object code.
e ability to predict, at compile time, the probability of a particular branch being taken
provides valuable information for several optimizations. However, the sophistication
of the static analysis performed varies from those that only consider the behavior of
individual statements and declarations, to those that include the complete source code
of a program in their analysis.

Several static profiling techniques are discussed in [, , , , , , , ],
in which static estimates are derived by examining the structure of the programs, loop
nests, conditional branch expressions, static call graphs, etc. In static profiling, a compil-
er usually applies several program-based heuristics to determine the most likely path of
each branch. [] presents a discussion of some of these heuristics. Using the heuristics
in [], [] discusses several branch prediction techniques. For this purpose, first, sev-
eral heuristics are combined to estimate the branch probabilities, and then these branch
probabilities are propagated along each procedure’s Control Flow Graph (CFG) to obtain
local block and edge frequencies. Finally, these local estimates are used to compute func-
tion call and invocation frequencies. Furthermore, in [], the authors present a series
of static estimation techniques and measure their accuracy by comparing them to run-
time program profiles. Several heuristics, similar to the ones defined in [], are utilized



Chapter  PROFILING

in a compiler to turn Abstract Syntax Tree (AST) structure and data flow information
into branch predictions. e obtained results show that static estimates are competi-
tive with those derived from runtime profiles. In [], the authors present an extensive
collection of SCA techniques for computing reliable information about the dynamic be-
havior of programs. It provides an overview of the different major approaches for SCA,
such as data flow analysis, constraint-based analysis, and abstract interpretation.

Apart from predicting the dynamic behaviour of an application, SCA can also be used
to produce estimates for different hardware resource utilization based on some heuris-
tics. For example, analyzing the number of multiplications or additions can indicate the
number of multipliers or adders that need to be instantiated in hardware. For a detailed
discussion of using SCA to predict hardware resources refer to [].

.. Dynamic Analysis

In Dynamic Code Analysis (DCA), a program is analysed while it is actually executing.
is involves investigating the behavior of the program using the information gathered
as the program runs. A usual goal of DCA is to determine which parts of a program can
be optimized for speed and/or memory usage. Conventionally, in DCA, a profiler keeps
track of the events that occur during the execution of the program. It involves the process
of selecting a set of inputs for the program, executing the program with these inputs,
and recording its runtime behavior. As an example, a compiler can use these profiles
in subsequent recompilation of the program to determine the most frequent direction
of each branch. In a very general sense, profiling information can be gathered in two
ways: profilers that present counts of statements or routine invocations, and profilers
that extract timing information about statements or routines. However, with regard
to the methods for data collection, profilers use a wide variety of techniques to collect
data, including hardware interrupts, code instrumentation, OS hooks, and performance
counters.

.. Static vs. Dynamic Analysis

Using static program analysis for optimization has several advantages over dynamic pro-
filing. e most significant advantage is speed. With static analysis, there is no need to
profile the program and then recompile it again. Additionally, static analysis is feasible
in all environments, as it does not require runtime information. Similarly, static analysis
is independent of the input data sets, allowing coverage of all branches. However, static
profiles are less accurate, as they are based more on estimations. Nevertheless, runtime-
independent information can best be gathered by static analysis, e.g., the number of
multiplications, existence of floating points, recursions, etc. Furthermore, when hard-
ware implementation of a program is the purpose of the profiling, hardware resource
estimation does not necessarily require runtime information (see Section ..).

Dynamic analysis, on the other hand, has the benefit of accuracy in predicting branch
directions as dynamic analysis is performed during the execution of the program. Fur-
thermore, runtime information is essential when making predictions for speedup and
latency of the hardware implementation of a program. Nevertheless, there are sever-



SOFTWARE PROFILING Section .

Table .: Static Code Analysis vs. Dynamic Code Analysis.

Analysis Type Advantage Disadvantage
SCA -fast (no program recompilation and

execution)
-applicable in all environments (no
runtime information required)
-independent of the input data (covers
all execution paths)

-inaccurate (uses branch prediction
heuristics; not fully precise)
-restricted in scope (cannot be imple-
mented for all purposes)

DCA -accurate (runtime data collection en-
sures accuracy provided that appropri-
ate input is used)
-unrestricted in scope (can be imple-
mented for any purpose)

-slow (may be slow due to the execu-
tion overhead)
-unapplicable in some environments
(not all environments support DCA)
-dependent on the input data (the ex-
ecution flow is dependent on the in-
put data; profilesmay not be completely
representative of the program’s behav-
ior)

al disadvantages associated with dynamic profiling. First, the process of compilation,
profiling, and recompilation in dynamic analysis is extremely time-consuming. Second,
it requires programmer intervention, i.e. a programmer must instrument the program
with some measurement code. ird, dynamic analysis may not be applicable in all en-
vironments, specially in embedded system environments, where gathering the dynamic
profiling data is usually infeasible. Finally, with dynamic analysis, the prediction of the
program flow (such as branch prediction) is dependent on the input data. When the pro-
gram input changes, the process has to be repeated again with a new set of input data in
order to get precise information. is is because the profiling information obtained with
the new input set can be (significantly) different from the initial one. As a result, when
the input data set changes, the recompilation process has to be repeated over. Table .
presents a summary of the comparison between SCA and DCA.

Based on the method used for data collection, profilers can be divided into two cate-
gories: soware profilers and hardware profilers. Soware profilers collect the profiling
information in various ways, e.g., with instrumentation, sampling, or simulation. How-
ever, hardware profilers use special hardware units to collect profiling information. In
the following, we elaborate on these two categories.

. Soware Profiling

In soware profiling, a compiler adds statements to a program that take time measure-
ments as the program is running. For this purpose, it adds statements to capture the
current time at the beginning and the end of a function. e time difference between
these two is measured to find the time spent in the function. At the end of the program,
the percentage of the program time spent in the function is calculated by dividing its to-
tal time by the total execution time of the program. Soware profiling can be somehow
inaccurate, as it has profiling overhead that can change the behavior of the examined
program. Various methods are used to extract profiling information from programs. In



Chapter  PROFILING

the following, we briefly describe each method.

.. Instrumentation Based Profiling

Profiling based on instrumentation works by inserting (or injecting) special code packets
— called instrumentation code — at points of interest, such as function entry/exit, basic
blocks, or edges in the flow graph of the application to be profiled. When the injected
code is executed, it generates events, such as method entry/exit or object allocation. is
data, usually in the processed form (e.g., the total time spent in each method or the total
number of allocated objects for each data type), is eventually presented to the user. e
main advantage of the instrumentation based profiling over other known techniques is
its flexibility. Virtually any kind of data, ranging from low-level events to high-level
data, can be collected with the instrumentation approach. Instrumented hooks record
the exact number of events, such as method invocations. Moreover, they are capable of
measuring precise timings, depending on the type of the instrumentation performed.

One of the problems associated with the instrumentation based profiling is that it has
usually high performance overhead. is overhead can be substantially reduced if only
a small part of the target application — e.g., one that has previously been identified as a
performance boleneck — is instrumented, while the rest of the application runs at full
speed. Such an approach may also solve scalability issues caused by a high volume of
profiling information generated by the instrumented code []. In an instrumentation
based technique, the instrumentation code introduced into a program can change its
behavior, which, in turn, can lead to skewed information being collected, i.e. the profiling
information does not represent the original uninstrumented program. is problem,
however, can be mitigated to some extent by minimizing the amount of inserted code.

e advantage of instrumentation based profiling is that the instrumentation code
is executed exactly before and aer a profile region is entered and exited, respectively.
is means that the differential profile metrics can be accurately aributed to the region
enclosing the entry and exit instrumentation code. Instrumentation based profiling is
more useful in the cases when it is required to profile a number of short-running and
infrequently executed methods. In the case when profiling is required for the whole
application, other techniques such as sampling — which generally has less overhead
than instrumentation — might result in a more acceptable overhead.

In general, instrumentation can be performed in the following ways:

Manual Instrumentation - Manual instrumentation is done by the programmer, e.g.,
by adding user instructions to explicitly calculate runtime information.

Compiler Assisted Instrumentation - In compiler assisted instrumentation, compil-
er adds instrumentation code. User just has to run the compiler with special op-
tions provided for this purpose, e.g., running gcc with -pg option for instrumen-
tation.

Binary Instrumentation In this approach, an instrumentation tool adds instrumenta-
tion code to a compiled binary. Binary instrumentation can be done statically or
dynamically. Static binary instrumentation was pioneered by ATOM []. Static



SOFTWARE PROFILING Section .

approach is easy to use, however, with static instrumentation, there is a possibility
to mix code and data in an executable, and these instrumentation tools may not
have enough information to distinguish between the two. In order to avoid this
problem, researchers suggest dynamic approach, in which the instrumentation is
done dynamically, thus these tools can rely on the execution to discover all the
code at runtime. ere are two classes of dynamic binary instrumentation. ese
are described as follows.

Dynamic Runtime Instrumentation - is approach works by dynamically compil-
ing the binary. It can insert the instrumentation code or calls anywhere in the
binary. In this approach, the program code is instrumented directly before the
execution. e program execution is fully supervised and controlled by the tool,
e.g., Pin [] and Valgrind [].

Dynamic Runtime Injection - is kind of instrumentation works by dynamically
replacing instructions in the original program with program hooks that branch to
the instrumentation code. is is more light weight than runtime instrumentation.
e program code is modified at runtime to have jumps to helper functions, e.g.,
Dyninst [, ].

.. Sampling Based Profiling

In the sampling based profiling, also known as stochastic profiling, the profiler probes
the Instruction Pointer (IP) of the target program at regular time intervals, using OS
interrupts. Sampling profiles are typically less accurate and specific to particular system
architecture, but allow the target program to run at nearly full speed. Sampling based
approaches avoid the high runtime overhead of instrumentation. In these approaches, a
timer is set up to generate an interrupt at the required time interval. is time interval is
associated with different program constructs, such as function calls or loops, depending
on the location determined by the IP. Sampling based profiling is less accurate than
instrumentation based profiling, since it approximates the association of the sampling
interval to a program construct enclosing the IP value at the instant when the sample is
taken.

e resulting data obtained with this kind of profilers is not exact, but a statistical
approximation. e actual amount of error is usually more than one sampling period.
In fact, if a value is n times the sampling period, the expected error is the square root of
n sampling periods. e most commonly used statistical profilers are GNU gprof []
and Intel VTune [].

.. Simulation Based Profiling

Simulation is another method for collecting profiling information about the behavior
of a program. In simulation based profiling, an application is run on an instruction set
simulator, such as the SimpleScalar simulator [], with the simulator keeping track of
detailed profiling information. Despite being accurate, simulation based profiling is ex-
tremely slow, especially when simulating a System on Chip (SoC), where simulating an
application for several hours may cover only a few seconds of the real time, hence lim-



Chapter  PROFILING

Table .: Instrumentation vs. sampling based profiling.

Profiling Type Advantage Disadvantage
Sampling Based
Profiling

-It works with unmodified executable and
requires no special hardware support.
-As compared to instrumentation, sampling
is easy to use, as it is an external tool and
no user intervention is required for the pro-
gram code.
-It is not affected by threading.

-It needs enough samples to be accu-
rate.
-It is not useful for the applications
that execute quickly (data sampling is
difficult).
-It requires an external tool to take
samples.

Instrumentation
Based Profiling

-It delivers highly precise and accurate re-
sults.
-It does not need a separate sampler.
-It does not require debugging information
to interpret the data.

-With instrumentation, an applica-
tion must be recompiled for profiling.
-Results obtained may be skewed by
the insertion of profiling hooks.

iting how much of an application’s execution can be realistically profiled. Furthermore,
seing up such simulations can be difficult, if not impossible for embedded systems, due
to the complex external environments that may also need to be modeled. In summary,
although simulation is flexible, it is very slow compared to other profiling techniques
(instrumentation or sampling based). Moreover, it is complicated and not readily ap-
plicable in all environments.

.. Instrumentation vs. Sampling Based Profiling

e instrumentation and sampling based profiling approaches each have their own ad-
vantages and disadvantages. e biggest advantage of instrumentation based profiling
is that it can provide highly precise timing data when the necessary hardware support is
available. However, the major drawback is that the insertion of the profiling code may
significantly alter the performance characteristics of the application, and the extracted
profile data — while very precise — may not accurately reflect the true application per-
formance. In other words, the application with the profiling hooks is not the same as
the original application.

e biggest advantage of sampling based profiling is that it requires no modification
of the application, only line number debugging information is enough for the profiler
to correlate the recorded IP locations to the source code of the application. Another
advantage of sampling is that it is system-wide, i.e. one can see the activity in the OS
code, including drivers, and not just the user application. However, in order to provide an
accurate picture of the application performance, it needs to have enough samples, thus
it is unusable for applications that execute quickly. Table . summarizes the advantages
and the disadvantages of instrumentation and sampling based profiling. Furthermore,
the combination of these two approaches is also reported [].



HARDWARE PROFILING Section .

. Hardware Profiling

In the hardware profiling, measurements are taken with hardware. Hardware perfor-
mance counter based profilers, such as Intel VTune, are used to determine program
regions that incur a large number of cache misses and branch mispredictions. Many
modern processors include hardware counters for profiling. ere are specific hardware
components aached to themotherboard that take timingmeasurementswithout chang-
ing how the program executes. A soware can then sample these counters to find infor-
mation, such as delay in cycles or number of cache misses. e hardware counters are
used to record counts and then generate an interrupt to the soware. e soware does
the random sampling of the interrupts and records information for later use. Processors,
such as Lucent K, ARM, Philips Trimedia, are provided with typical hardware support,
called Hardware Debug System (HDS), which is used for program debugging. is spe-
cial hardware is connected to the program address bus, which allows monitoring the
activity of the processor. A profiler can use this hardware to collect a number of in-
teresting program metrics, such as cycle counts, dynamic instruction counts, execution
counts, jump and call counts, by placing the address of the data collection routine in
the interrupt routine address register. Some profiling techniques that rely on hardware
features of the processors are presented in [, , , ].

Figure . depicts the different classes of the application profiling. At the highest lev-
el, program analysis is either static (not via execution, usually based on the source code
or some Intermediate Representation (IR)) or dynamic (requires to execute the program).
Static analysis is performed to estimate parameters related to either soware or hard-
ware. On the other hand, profiling measurements collected in the dynamic analysis are
either via hardware facilities integrated in computing systems or they are totally based
on soware. Soware based profiling is further divided into three categories based on
the approach utilized to inspect the execution of the program. It is either taking sam-
ple measurements in predefined moments in time — thus, not completely covering the
execution of the program — or the measurements are taken while the application is exe-
cuted in a simulator, or they are taken by inserting extra code into the application, called
instrumentation. Instrumentation can be performed manual in the source code by the
user, or automatic by the compiler, or on the binary code of the application. In static
binary instrumentation, application has to be recompiled, however, in dynamic binary
instrumentation, the extra code is inserted in the program during the execution. ere
are two approaches to achieve this goal: ) the instructions are instrumented directly
before the execution, ) the instructions are replaced in the original program with hooks
to jump into instrumentation routines.

. Data Structures for Profiling

Different profiling and tracing techniques use different types of data structures for cap-
turing system information. Several data structures might capture different aspects of a
system and they might have different levels of efficiency. Selecting an appropriate data
structure significantly affects the performance of the application as well as the applica-
tion analyzer. In the following, we briefly describe the common data structures used in



Chapter  PROFILING

Profiling

Static Analysis Dynamic Analysis

Hardware Based
Profiling

Software Based
Profiling

Simulation Based
Profiling

Sampling Based
Profiling

Instrumentation
Based Profiling

Software Based
Profiling

Software Based
Profiling

Software Based
Profiling

Software Based
Profiling

Hardware Based
Profiling

Software Based
Profiling

Software
Estimation

Hardware
Estimation

Instrumentation
Based Profiling

Sampling Based
Profiling

Instrumentation
Based Profiling

Simulation Based
Profiling

Sampling Based
Profiling

Instrumentation
Based Profiling

Simulation Based
Profiling

Sampling Based
Profiling

Instrumentation
Based Profiling

Simulation Based
Profiling

Sampling Based
Profiling

Instrumentation
Based Profiling

Simulation Based
Profiling

Sampling Based
Profiling

Instrumentation
Based Profiling

Manual
Instrumentation

Binary
Instrumentation

Compiler Assisted
Instrumentation

Software Based
Profiling

Software Based
Profiling

Hardware Based
Profiling

Software Based
Profiling

Hardware Based
Profiling

Software Based
Profiling

Static Binary
Instrumentation

Dynamic Binary
Instrumentation

Dynamic Runtime
Injection

Dynamic Runtime
Instrumentation

Figure .: An outline of the different classes of application profiling. Generally, profilers are
either static (do not execute the program) or dynamic (based on the execution of the program).
Dynamic program analysis is performed by utilizing hardware facilities or is completely soware-
based. On the basis of the used approach to take measurements, soware based profiling is further
classified into sampling, simulation, or instrumentation. Furthermore, instrumentation is either
performed manual by the user, or automatic by the compiler, or by a dedicated instrumentation
framework (toolkit). An instrumentation framework may statically instrument the binary code
of the application before the actual execution or it may perform this task dynamically during the
execution. In dynamic binary instrumentation, which is the most efficient one, the instructions
are either instrumented right before the execution or they are replaced by other instructions to
jump into instrumentation routines.

the analysis of a program.

Directed Acyclic Graph (DAG)

A DAG is a directed graph with no directed cycles. at is, it is formed by a collection of
vertices and directed edges, such that there is no way to start at some vertex v and follow
a sequence of edges that eventually loops back to v again. DAGs have many important
applications in the construction of parse trees for compilers and their optimizations.
DAGmay be considered as a compact and lossless representation of the dynamic control
flow of a program.



DATA STRUCTURES FOR PROFILING Section .

Control Flow Graph (CFG)

A CFG is a graph representation of all the paths that might be traversed through a pro-
gram during its execution. Each node in the graph represents a basic block, i.e. a straight
line piece of code without jumps or jump targets. Jump targets start a block and jumps
end a block. Directed edges are used to represent jumps in the control flow. In most
representations, there are two specially designated blocks: the entry block and the exit
block. e control enters into the flow graph through entry block and leaves through
exit block. CFG is the most widely-used data structure for many compiler optimizations
and analysis tools.

Data Flow Graph (DFG)

A DFG is a graph where nodes represent operations and edges represent data paths.
It represents data dependencies between operations. DFGs are used as an intermedi-
ate representation between the algorithmic programming language and the circuit-level
Field Programmable Gate Array (FPGA) configuration. DFG makes data dependencies
explicit and it is a convenient representation for many compiler optimizations. DFGs
are transferred to VHSIC Hardware Description Language (VHDL) circuits by mapping
edges onto wires and nodes onto VHDL components.

Control and Data Flow Graph (CDFG)

A CDFG is a DAG in which a node can be either an operation node or a control node
(representing a branch, a loop, etc.). e directed edges in a CDFG represent the transfer
of values or control from one node to another. An edge can be conditional, representing
a condition while implementing if/case statements or loop constructs. In general, the
nodes in CDFG can be classified as one of the following types:

• Operational nodes are responsible for arithmetic, logic, or relational operations.

• Call nodes denote calls to subprogram modules.

• Control nodes are responsible for operations, such as conditionals and loop con-
structs.

• Storage nodes represent assignment operations associated with variables.

Most compilers have an IR that can easily be transformed into a CDFG. Data flow analy-
sis techniques, such as reaching definitions, live variables, and constant propagation, can
be applied directly to CDFGs.

Hierarchical Control- and Data-Flow Graph (HCDFG)

A HCDFG is an extension of the CDFG. is representation enables multi-level gran-
ularity specification and characterization. It captures control constructs as nodes in a
DFG. A loop then becomes a node in a DFG, while loop body is represented as a DFG
on a lower level.



Chapter  PROFILING

Hierarchical Task Graph (HTG)

A HTG is a directed graph that consists of three types of nodes. Single nodes represent
nodes that have no sub-nodes, which are used to encapsulate basic blocks. Compound
nodes are hierarchical in nature, i.e. they contain other HTG nodes. ey are used to
represent structures, such as if-then-else blocks, switch-case blocks, or a series of HTGs.
Loop nodes are used to represent various types of loops (for, do-while, while-do). A loop
node consists of a loop head and a loop tail that are single nodes and a loop body that is
a compound node. CFGs are mostly useful for traversing the design during scheduling,
while HTGs are used for moving operations hierarchically across large pieces of code,
without visiting each intermediate node.

State Transition Graph (STG)

A STG is a directed graph whose nodes represent the states and the edges represent
the transitions between the states. One or more actions (outputs) may be associated
with each transition. e diagram is mainly used to represent a Finite State Machine
(FSM). As such, they require that the system be composed of a finite number of states;
sometimes, this is indeed the case, while at other times, this is a reasonable abstraction.

Abstract Syntax Tree (AST)

An AST is a finite and labeled directed tree, where the internal nodes are labeled by
operators and leaf nodes represent the operands of the operators. It is oen used as an
internal representation of a program in compilers or interpreters, while the program is
being optimized. Furthermore, the program code is generated from the AST.

. Profiling Approaches

In the simplest form, a profiler places a counter at every function, basic block, or each
line of code. Every time a corresponding execution of the designated element takes place,
the counter value is incremented. Not all the profiling approaches adopt only this simple
technique to monitor the behaviour of an application, however, it reflects the basis of
quite some techniques used in different profilers. In the following, we briefly describe
some of the common approaches used for profiling and tracing.

.. Basic Block Profiling

Basic block profiling is a simple approach that places a counter at every basic block to
count the number of times each basic block executes. Another variation of this approach
is to measure the time taken to execute each basic block by placing time measurement
counters at the start and the end of a basic block. However, there are two drawbacks
of such approach: ) too many counters are used, ) the total number of increments
during an execution is larger than necessary. In order to avoid these overheads, various
algorithms have been proposed.



PROFILING APPROACHES Section .

.. Control Flow Profiling

Most profile-guided optimizations depend on CFG profiles, which can be gathered via
code instrumentation (see Section ..) or statistical sampling (see Section ..). ere
are three basic types of control flow profiling: edge profiling, vertex profiling, and path
profiling.

Edge Profiling

In edge profiling, the profiler counts the number of executions of each edge in a CFG.
Edge profiling determines the transition frequency between basic blocks by increment-
ing a counter each time a branch instruction is executed. It determines the most fre-
quently executed paths through an application by following the highest frequency edges.

Vertex Profiling

Vertex profiling counts the number of executions of each vertex at the basic block level
in a CFG. Vertex profiling counts how many times each basic block is executed during a
run of the application. In edge profiling with edge counters, the profiler places a counter
on the outgoing edges of each predicate vertex, while in the vertex profiling with vertex
counter, the counter is placed on each predicate vertex. Edge profiling demonstrates a
clear advantage over vertex profiling, as it provides more accurate information about the
behavior of branches, which is extremely important for many optimizations [].

An edge profile can determine a vertex profile, as a vertex counter can always be
replaced by counters on all its outgoing edges to an equal cost (kircho’s law), hence,
there is no need to consider vertex counters. An optimal solution to edge profiling with
edge count never has lower cost than an optimal solution to vertex profiling with edge
count. e profile of a vertex is either the sum of the profile of all incoming or all out-
going nodes. If all unknown edges connected to a node lead either to or from the node,
the profile can be computed by using the nodes in the opposite direction. Various algo-
rithms to efficiently collect profiling information by using these concept are discussed
in [].

Path Profiling

In path profiling, the number of times each path is executed in a CFG is calculated. e
performance of large complex systems can be improved by identifying heavily executed
paths and streamlining them into fast paths. Basic block and edge profiles are inex-
pensive and widely available, but they do not always correctly predict frequencies of
overlapping paths. Path profiling counts how many times each acyclic path in a routine
executes. Knowing the edge frequency is not sufficient to find the efficient profile infor-
mation in the cases where there are possibilities of two or more common paths. Several
techniques to determine high frequency paths are discussed in []. Path profiling uses
a spanning tree to determine a minimal, low-cost set of edges to instrument. Edge pro-
files are generally thought to be easier and cheaper to collect than path profiles. On the
other hand, there are several evidences that suggest that path profiles are superior to



Chapter  PROFILING

edge profiles in practice. In [], the authors compare edge profiling and path profiling,
and determine when edge profiling and path profiling are good predictors of hot paths
and when they are poor predictors.

Several other variations of path profiling are available in literature, e.g., targeted path
profiling [] and practical path profiling []. Targeted path profiling collects profiling
information by avoiding counting paths whose frequencies can be derived unambigu-
ously from edge profiles, thus reducing the number of possible potential paths with the
elimination of cold path counts. For this purpose, a criterion is defined for cold path
that removes cold edges being a part of the potential path if the ratio of that edge’s ex-
ecution frequency to its source block is below some provided threshold. Practical path
profiling is the continuation of the targeted path profiling, which counts the paths in a
similar way, with more restrictions on cold path elimination. Along with the existing
criterion for cold edges, an edge is considered to be cold and will be removed from the
potential path if its frequency, as a percentage of the total program flow, falls below a
threshold. ere is another variation of path profiling that is called whole program path
[]. e approach records a complete control flow of a program. At first, it produces a
trace of the acyclic paths executed by a program, and then transforms them to a compact
form by finding their inherent regularity (i.e. repeated code) in order to identify heavily
executed hot paths.

.. Value Profiling

If it is known that certain values occur very frequently at certain program points, it may
be possible to take advantage of this information to improve the performance of the pro-
gram. is kind of information is generally given by a value profiler, which is a (partial)
probability distribution on the values taken on by a variable when control reaches the
program point under consideration at runtime. e invariant behavior is identified by
a profiler, which can then be used to automatically guide compiler optimizations and
dynamic code generation. Value profiling concentrates on profiling at the instruction
level, finding the invariance of the wrien register values for instructions. A value pro-
filer collects two types of information: ) the invariance of an instruction, ) the top
results for an instruction or a popular range of values. Value profiling is discussed in
[, ].

.. Variational Path Profiling

Variational path profiling [] finds the acyclic control flow paths that vary the most
in execution. For this purpose, the profiler records the execution time that it takes to
execute frequent acyclic control flow paths using hardware counters. e hardware
cycle counter is recorded at the start of the path’s execution and again at the end of
its execution. Variational path profiling takes these timing measurements and finds a
program path that can have significant variation in its execution time across different
dynamic traversals in the same program run. is value represents the potential speedup
one could achieve if these variations are optimized.



SUMMARY Section .

. Summary

In this chapter, we described the concept of program profiling in order to inspect the
behaviour of an application. It is mainly used to find the performance bolenecks of the
application and optimization opportunities in addition to ensuring the correct execution
of the application. We presented a classification of different profiling techniques and
described each technique briefly. Furthermore, we gave an overview of different data
structures used in application profiling and tracing techniques. In the end, we described
various approaches used in profiling an application.





CHAPTER3
Dynamic Profiling Framework

“… I could havemademoney this way [joining the proprietary soware world],
and perhaps amused myself writing code. But I knew that at the end of my
career, I would look back on years of building walls to divide people, and feel I
had spent my life making the world a worse place.” †

— Richard M. Stallman

is chapter presents an overview of the proposed profiling framework in the context of the
DelWorkbench platform. As themain focus of this thesis, the dynamic part of the profiling
framework, comprising the Quad toolset¹, is detailed. In particular, we describe the design
and implementation of the efficient Memory Access Tracing (MAT) module, which serves
at the core of our dynamic memory profiling toolset. e usability of Quad is demonstrated
through examples from real-world applications.

m
ulticore architectures, especiallywhen containing heterogeneous PEs, pose
specific challenges regarding their programmability. Programming such
platforms implies, among other issues, determining what parts of the ap-
plication should be mapped on what PEs. Various criteria can drive this

mapping, such as the nature of the computation or the number of cycles required by
individual tasks. However, in multicore platforms, data communication is oen the pri-
mary boleneck in achieving the anticipated speedups. is is especially true for legacy
applications, which have to be ported to such platforms. Furthermore, in the case of
reconfigurable architectures, the application development process involves building and
synthesizing hardware blocks, which is quite time-consuming. As a consequence, there
is a need for fast and early predictions of the hardware costs of different parts of an
application.

† oted from Open Sources : Voices from the Open Source Revolution, st Ed., O’Reilly , Jan. , also
cited in Free Soware, Free Society, Selected Essays of RichardM. Stallman, nd Ed., Free Soware Foundation,
Inc, ch. , p. , .
¹ QUAD is open source and available on sourceforge at: hp://sourceforge.net/projects/quadtoolset/



http://oreilly.com/catalog/opensources/book/stallman.html
http://www.gnu.org/doc/fsfs-ii-2.pdf
http://sourceforge.net/projects/quadtoolset/

Chapter  DYNAMIC PROFILING FRAMEWORK

In order to facilitate the complex task of mapping an application onto these systems,
there is a clear need for tools that investigate the use of critical resources, such as memo-
ry and hardware area. For this purpose, we have developed the Q² profiling framework. It
consists of twomain parts: a) a runtimememory access profiling toolset, which provides
detailed information on the data communication that occurs inside an application, and
b) a statistical modeling part, which makes hardware area predictions early in the design
phase based on soware metrics. e ultimate goal of the Q² profiling framework is to
efficiently partition an application into hardware and soware parts (see Section .).
e extracted profiling information is utilized to guide developers to reduce the data
communication between the hardware and the soware components so as to maximize
the potential speedup, while satisfying resource constraints.

e remainder of this chapter is organized as follows. In Section ., we describe
the context of our research work. is includes Molen as our heterogeneous reconfig-
urable architecture, andDelWorkbenchwhich is a tool platform to develop applications
for such an architecture. Section . talks about the profiling framework in the Del
Workbench, which is comprised of static and dynamic parts. Subsequently, we further
elaborate on the dynamic part of the profiling framework, which is the main focus of
this work. In particular, we detail the development of the Quad-core tool in Section .,
the Memory Access Intensity Profiler (Maip) in Section ., and the xQuad extension in
Section .. How to assess the criticality of candidate functions based on their memory
access intensity, is discussed in Section . using a real case study. Finally, Section .
summarizes this chapter.

. Project Context

Prior to describing the developed profiling framework in more details, in this section, we
briefly describe some essential background and the context of our framework. First, the
Molen Abstraction Layer (MAL) is presented, which has an important role in practical
utilization of the profiling framework (see Section . and Section .). e abstraction is
critical for programming the Molen heterogeneous platform. Subsequently, we discuss
the Del Workbench, which is a semi-automatic toolchain platform targeting hetero-
geneous computing systems containing reconfigurable components. e work in this
thesis is carried out as an integral part of this toolchain platform.

.. Molen Abstraction Layer

eMAL is an abstraction for programming heterogeneous platforms. eMAL ensures
sequential consistency, which means that the execution of the program will produce the
same results as when the program would have been executed sequentially. In order
to provide sequential consistency, the MAL adopts the shared memory paradigm. It
provides a unified presentation of the memory, removing the need to manually write
complex memory management code. Furthermore, the MAL takes care of the configu-
ration, placement, and parallel execution of accelerated program parts. e result is that
application developers can focus on mapping compute-intensive parts to different PEs
using familiar program annotations and APIs, such as OpenMP [] or OpenCL [].



PROJECT CONTEXT Section .

e MAL consists of a programming paradigm and a machine organization, which will
be discussed in the following sections.

Molen Programming Paradigm

e Molen programming paradigm [] was devised to address several problems in
the domain of Reconfigurable Computing. is domain allows for many different ac-
celerators to be incorporated in a computing system through reconfiguration, greatly
increasing the need for new instruction opcodes. In addition, the flexibility of reconfig-
urable architectures allow for changing numbers of input and output parameters, puing
additional pressure on the instruction encoding. e Molen programming paradigm ad-
dresses these problems by introducing the following one-time Polymorphic Instruction
Set Architecture (πISA) extension that can support any number of processor extensions
with variable numbers of arguments:

• SET. In order to configure the different coprocessors in theMolenMachine Organi-
zation, this instruction loads a configurationmicrocode (ρμ-code), which performs
the actual configuration. In this way, different types of reconfigurable units can
be configured without the need to change the Molen Machine Organization. is
ρμ-code is loaded into the ρμ-unit and the reconfiguration is initiated;

• EXECUTE. Aer the reconfiguration is finished, the loaded configuration can be
executed using this instruction. In order to support complex accelerators, this
instruction loads execution microcode at a certain address and executes it on the
specified Custom Computing Unit (CCU) or PE;

• MOVTX / MOVFX. Data can be exchanged among PEs through the main memory,
which can be rather slow. Instead these instructions allow the exchange of data
among PEs through the exchange registers;

• BREAK. As the MAL supports parallel execution of different CCUs, it is impor-
tant to introduce synchronization points in order to ensure sequential consistency.
is instruction denotes such a synchronization point.

Molen Machine Organization

eMolenMachineOrganization [], depicted in Figure . is an architectural template
that implements the πISA proposed in the Molen Programming Paradigm. It follows the
processor-coprocessor template, which means that the main control of an application
is located in the Core Processor, while the other PEs operate as slaves controlled by the
Core Processor. is organization can be imposed on any heterogeneous system in or-
der to address the system using the MAL. e overall operation of the Molen Machine
Organization is as follows:

. Arbiter. First, instructions are fetched from the main memory and partially de-
coded by the arbiter. e arbiter then decides where to redirect each particular
instruction. Regular instructions are redirected to the Core Processor. e SET and



Chapter  DYNAMIC PROFILING FRAMEWORK

Main Memory

Instruction

Fetch

Data

Load/Store

Arbiter
Data

Memory

Mux/Demux

Core

Processor

FPGAFPGA

Reconfigurable

Microcode Unit
CCU1 CCUk

...

DSP

Register

File

Exchange

Registers

Figure .: An overview of the Molen Machine Organization.

EXECUTE instructions are redirected to the target PEs or the ρμ-unit. eMOVTX
and MOVFX instructions are either processed directly or translated to equivalent
instructions in the Core Processor. Finally, the BREAK is processed by the Arbiter
itself.

. Core Processor. is master General-Purpose Processor (GPP) executes all the non-
accelerated code and runs any available OS, interrupts, and management code.
πISA instructions are translated to NOPs.

. Reconfigurable Processor (RP). e RP consists of several CCUs and a ρμ-unit. e
CCUs consist of reconfigurable hardware and memory, and can contain configu-
ration bit-streams for an accelerator. e ρμ-unit processes the ρμ-code and the
execution microcode that configures and executes the hardware on the CCUs.

. Exchange Registers. ese registers are used for passing the function arguments
and return values for the accelerated application code.

. DSP. Apart from an RP, the Molen Machine Organization supports multiple other
PE components. For example, one or more DSP processors could be included.

. Data Load/Store and Memory (DE)MUX. e transfer of data to and from the main
memory is handled by the load/store unit. e parallel access to the memory by
all the PEs is handled by the memory multiplexer/demultiplexer.

.. Del Workbench

e profiling framework presented in this thesis is within the context of the Del Work-
bench (DWB), a semi-automatic tool platform for integrated hardware/soware co-design
targeting heterogeneous computing systems containing reconfigurable components [].



PROJECT CONTEXT Section .

gc
c

gc
c

struct my_msg_st {
long int my_msg_type;
char some_text[BUFSIZ];

};
int main(void)
{
int running = 1;
int msgid;
struct my_msg_st some_data;
long int msg_to_recieve = 0;
/* Let us set up the message
queue */
msgid = msgget((key_t)1234,
0666 | IPC_CREAT);
if (msgid == -1) {

perror("msgget failed with
error");

exit(EXIT_FAILURE);
}
…

struct my_msg_st {
long int my_msg_type;
char some_text[BUFSIZ];

};
int main(void)
{
int running = 1;
int msgid;
struct my_msg_st some_data;
long int msg_to_recieve = 0;
/* Let us set up the message
queue */
msgid = msgget((key_t)1234,
0666 | IPC_CREAT);
if (msgid == -1) {

perror("msgget failed with
error");

exit(EXIT_FAILURE);
}
…

Memory (…)
Execution (…)
HW Area (…)
Power (…)
…

Memory (…)
Execution (…)
HW Area (…)
Power (…)
…

Target Platform
Description

Architecture (…)
Master processor
(…)
Available Area
(…)

Target Platform
Description

Architecture (…)
Master processor
(…)
Available Area
(…)

B
in

ar
y

C
od

e
B

in
ar

y
C

od
e

MAIN
struct my_msg_st {

long int
my_msg_type;

char
some_text[BUFSIZ]; };
int main(void)
{
#pragma FPGA int F1
}
…

MAIN
struct my_msg_st {

long int
my_msg_type;

char
some_text[BUFSIZ]; };
int main(void)
{
#pragma FPGA int F1
}
…

struct my_msg_st {
long int

my_msg_type;
char

some_text[BUFSIZ];
};
int main(void)
{
#pragma FPGA int F1
}
…

struct my_msg_st {
long int

my_msg_type;
char

some_text[BUFSIZ];
};
int main(void)
{
#pragma FPGA int F1
}
…

struct my_msg_st {
long int

my_msg_type;
char

some_text[BUFSIZ];
};
int main(void)
{
#pragma FPGA int F1
}
…

struct my_msg_st {
long int

my_msg_type;
char

some_text[BUFSIZ];
};
int main(void)
{
#pragma FPGA int F1
}
…

struct my_msg_st {
long int

my_msg_type;
char

some_text[BUFSIZ];
};
int main(void)
{
#pragma FPGA int F1
}
…

struct my_msg_st {
long int

my_msg_type;
char

some_text[BUFSIZ];
};
int main(void)
{
#pragma FPGA int F1
}
…

Partitioning & MappingRun-/Compile-Time Profiling

B
in

ar
y

C
od

e

#pragma FPGA 1

#pragma FPGA 2

#pragma DSP1

R
un

tim
e

Su
pp

or
t

Figure .: An overview of the Del Workbench toolchain.

e project provides application developers with a comprehensive set of tools that sup-
port the design and implementation of such heterogeneous systems. e Del Work-
bench has several research objectives from every level of the design process. Each ob-
jective targets a specific process in the design flow, as depicted in Figure .. In the
following, we describe these objectives within their context:

. Profiling and Cost Modeling
In order to identify which parts of an application should be moved to hardware,
important aspects of these parts need to be characterized, such as their perfor-
mance, resource requirements, or power needs. is stage aims to prune the de-
sign space by identifying which parts of an application are of interest. Further-
more, the information gathered in this stage drives the subsequent partitioning,
mapping, and optimization stages.

. HW/SW Partitioning and Mapping
Given the heterogeneous nature of the target platform, it is important to map
the parts of an application to the various PEs that are available. In case there
is no specific architecture defined yet, HW/SW partitioning can be used to map
application parts to the general domains of hardware and soware. Later, in the
design process, when an architecture has been defined, more specific application
mapping can be performed.

. Graph Transformations and Optimizations
In order to make code more suitable or efficient for hardware implementation, the
DWB employs code transformations and optimizations, like loop transformations
and partial evaluation. ese transformations can be general or tailored for the
hardware domain or specific PEs.

. Retargetable Compilation
e DWB provides a retargetable compiler, making it possible to combine config-
uration bit-streams, GPP code, DSP code, and other binaries. Furthermore, the



Chapter  DYNAMIC PROFILING FRAMEWORK

compiler schedules the configuration and execution of the different components
without compromising sequential consistency.

. Hardware Generation
In order to alleviate the effort in translating C-code to Hardware Description Lan-
guage (HDL), it is important to either automatically generate HDL or select ap-
propriate Intellectual Property (IP)-cores from a library. e DWB Automated Re-
configurable VHDL generator (DWARV), a C-to-VHDL compiler, was developed
to address this problem within the DWB context.

. Runtime Support
Finally, the DWB aims to provide a runtime support system that enables OSs to
support reconfiguration in a multi-tasking environment and applications to adapt
to dynamic behavior and real-time changes.

. Q² Profiling Framework

As briefly mentioned in the Del Workbench overview (Section ..), profiling consists
of characterizing an application with respect to criteria such as execution time, data
communication, or resource consumption with the purpose to drive subsequent parti-
tioning and mapping onto a heterogeneous platform. Based on this characterization,
the potential candidates are identified for mapping, while the infeasible parts are ruled
out. e goal is thus to end up with certain parts that will be accelerated as CCUs and
the remaining parts of the application will be executed on a regular GPP. A part of an
application can be a whole function but it can also be any group of instructions or code
segments that are scaered throughout the application. e partitioning itself will be
determined in view of predefined objectives, such as increased performance, reduced
power consumption or smaller footprint.

Even though the primary objective dictates the ultimate decision criterion, more as-
pects can come into play as well. e code that will be accelerated must not only fit on
the available area of the reconfigurable chip, the cycle time should not be affected too
much. is cycle time can go down as the code segment executed on the reconfigurable
device grows in size, resulting in an overall slower execution. So one of the trade offs the
designer has to make is to choose between larger accelerated code segments and higher
performance improvement but then also more area and longer cycle time. Furthermore,
data bandwidth usage, which is mainly affected by the amount of data transfer between
the hardware-soware boundary, should adhere to the physical limitations of the mem-
ory devices, both for on- and off-chip memories. ese different trade offs that have to
be taken into account, combined with the large number of possible code segments, make
the design space very large.

e primary concern of Q² is to provide essential profiling information in order to dri-
ve efficient application mapping onto heterogeneous reconfigurable systems. As shown
in Figure ., Q² has two main parts: static and dynamic². e static part provides esti-
mations of reconfigurable resource consumption for each part of the application, while

² Q² is coined to denote the union of the two acronyms, Quad+ipu, each referring to one of the parts of
the profiling framework.



Q² PROFILING FRAMEWORK Section .

Partitioning FrameworkProfiling Data
(XML)

Quantitative Data
Usage Graph

Dynamic ProfilingStatic Profiling

Code Revision

R
es

ou
rc

e
U

sa
geK
er
n
el

Li
b
ra
ry

Figure .: An overview of the Q² profiling framework in the Del Workbench. e static profil-
ing part extracts code characteristics from the application source code. ese characteristics are
used by linear models to make fast and early predictions of reconfigurable implementation details.
e dynamic profiling part extracts memory access related information as well as data communi-
cation between functions by examining the runtime behavior of the application, thus it is not as
fast as the static part.

the dynamic part is concerned with the data communication that occurs inside an ap-
plication. e main goal is to partition the application into hardware and soware, in
order to maximize the potential speedup, while adhering to the resource constraints. For
this purpose, we characterize an application by determining the computational hotspots,
the communication bolenecks, and the resource-intensive parts within an application
(refer to Section .). In the following sections, we describe the static and dynamic parts
of the profiling framework in more details.

.. ipuModeling Approach

In order to provide resource estimates for various toolchains and platforms, the static
profiling part of Q² contains a generic approach for building prediction models, called
ipu []. ipu is a high-level quantitative prediction modeling approach for early
Design Space Exploration (DSE). ipu models are able to predict the important hard-
ware aspects of kernels to be mapped to reconfigurable components. ey take a HLL
description (C code) as input and estimate area, interconnect, static power, clock period,
and other FPGA-related measures for a particular combination of a platform and a tool-
chain. ipu generates models that accurately capture the relation between hardware
and soware metrics, based on linear regression, neural networks, and other statistical
techniques. e ipu modeling approach is not restricted to any platform or toolchain
and appropriate ipu models can be generated in different contexts. By using linear
prediction models based on Soware Complexity Metrics (SCMs), the time required by
ipu prediction models to determine estimates becomes several orders of magnitude



Chapter  DYNAMIC PROFILING FRAMEWORK

Figure .: An overview of the ipu modeling approach. e tools that are signified with thick
borders are part of ipu, and the boxes with dashed borders indicate the accompanying tools.

smaller than the time-consuming process of hardware synthesis required to obtain the
final results. Consequently, developers can quickly evaluate the costs of different parts
of their applications in the final design, or select the right PEs for these parts. Further-
more, resource estimates have a crucial role in optimizations such as loop-unrolling,
code parallelization, or recursive variable expansion, due to the restrictions on resource
availability.

ipu modeling approach is based on statistical analysis, thus, to generate realistic
and accurate prediction models, it is critical to use an independent dataset of measure-
ments. Modeling hardware from C code necessitates ipu to quantify the characteris-
tic aspects of soware descriptions. For this purpose, SCMs are utilized to characterize
soware descriptions. SCMs are indicators of different aspects of the source code under
consideration. Currently,ipu uses a set of  different SCMs, most of which are simple
counts of different operations available in ANSI-C. In addition, ipu includes several
metrics that are related to Soware Measurement, such as the Cyclomatic complexity,
and more complex data flow metrics.

Figure . presents an overview of the ipu modeling approach, which is divided
into the following parts:

• Model Generation is mainly utilized when ipu models need to be generated
for a certain toolchain or platform. As an example, when a new version of the
synthesis toolchain is released. Although the process can be time-consuming, it
is only executed once for a particular combination of a tool and a platform.

• Hardware Estimation is used to provide fast and early estimates during DSE. As
such, it is utilized far more oen compared to Model Generation.

As shown in Figure ., ipu consists of a set of tools and a kernel library, which
are described in the following:



Q² PROFILING FRAMEWORK Section .

Kernel Library - In order to generate sufficient data points for the modeling process,
ipu gathers SCMs and hardware performance indicators from its extensive ker-
nel library. It is a database of  kernels from  real applications, which consti-
tute a wide scope of different domains. is library is the main reason why ipu
is able to produce generally applicable models. Furthermore, this large number of
kernels allows for the generation of domain-specific models as well. ipu con-
tains several scripts that traverse the library. ese scripts contain the necessary
hooks where target tools can be inserted. In addition, similar scripts are provided
for the synthesis of the generated HDL descriptions. Detailed information about
the kernels in the library is provided in [].

Metrication Tool - e SCMs are implemented in the ipu Metrication Tool, which
produces an eXtensible Markup Language (XML) file containing SCM measure-
ments for each kernel. is tool is wrien as an engine in the CoSy compiler
system []. CoSy contains a large set of optimizations and is easily extensible by
writing engines that can be plugged into the system.

Hardware Measurement Tool - is tool gathers necessary hardware performance
indicators from outputs of different synthesis toolchains. For some toolchains,
this is as simple as finding the right data in the report files, but for others this is
not trivial. As an example, in order to count the number of wires in Xilinx designs,
ipu provides an Xilinx Design Language (XDL) parsing tool that extracts this
and other relevant data from the XDL file.

Modeling Scripts and Prediction Tool - e gathered SCMs and hardware measure-
ments are utilized by a set of modeling scripts that automatically evaluates the
different modeling techniques described in regression. e output model XML file
can be used in Hardware Estimation, where, based on SCM inputs, the ipu Pre-
diction tool provides estimates of any required hardware aspects. All intermediate
files in the Hardware Estimation are saved in XML format for easy integration.
Additionally, the results of runtime profilers, such as Quad, are also integrated in
the output XML file, as depicted in Figure ..

e ipu models can be used in several contexts. In the first place, developers can
use the predictions for kernels in order to find problems with potential placement on
hardware. If a kernel is predicted to occupy a large amount of slices on a particular
platform, the developer might move to split the kernel in several parts, or address the
primary cause of the large area (e.g., a large local array). Additionally, a tailored ipu
model may drive the optimization pass in a hardware compiler by predicting the hard-
ware size of the contained basic blocks at different unroll factors. In this way, the hard-
ware compiler can automatically choose a beneficial unroll factor. Most importantly,
a hardware/soware partitioning algorithm can use ipu models to evaluate different
partitionings at an early stage of application mapping in heterogeneous environments.

.. Quad Memory Access Profiling Toolset

e Quad toolset consists of several dynamic profiling tools, which are developed to
demonstrate a comprehensive overview of the memory access behavior of an applica-



Chapter  DYNAMIC PROFILING FRAMEWORK

tion as well as to provide fine-grained detailed memory access related statistics. As
depicted in Figure ., Quad-core is designed and implemented as the primary profil-
er to extract useful quantitative information about the data dependencies between any
pair of communicating functions in an application. Data dependency is estimated in the
sense of producer/consumer bindings. More precisely, theQuad-core tool reports which
function is consuming data produced by another function. It measures the exact amount
of data transfer³ in bytes and the size of required communication buffer based on Unique
Memory Address (UnMA).

Quad-core contains a fast and efficient Memory Access Tracing module, which de-
tects and traces all the memory accesses made during the execution of an application. It
implements a kind of shadow memory mechanism for the whole access space of the ap-
plication. Considering the fact that MAT structures the shadow memory in such a way
to make tracing as fast as possible, the size of the space overhead can be very huge. MAT
is also utilized in cQuad tool to monitor, in comprehensive detail, each and every data
transfer event occurring between a pair of communicating functions. is data commu-
nication can be viewed as a dedicated virtual channel for transferring data items from
the producer side to the consumer end. e Data Communication Channel Paern De-
tection (DCCPD) module thoroughly analyzes the extracted raw profile data to compute
several critical metrics that can classify and describe the paern of the communication
between the two functions. ese metrics include the Interleaving Balance Factor (IBF),
spatial and temporal localities, and data communication paern complexity. In gener-
al, the information is extracted to reveal the coupling intensity and paern regularity
between the communicating functions in an application. ese metrics can possibly be
useful in understanding the behavior of the functions with regard to their data depen-
dencies and requirements, as well as, in mapping and scheduling potential parts of the
application onto heterogeneous multicore system.

e xQuad tool augments the memory access analysis of the application by provid-
ing very detailed, fine-grained intra-function information. e extended memory access
information is provided based on the application source code data object granularity. In
this respect, developers can utilize this information to fine-tune the application regard-
ing it memory access references. e main motivation for this extension to the Quad
toolset is that a coarse view of the memory accesses makes it difficult for application de-
velopers to aribute the extracted information to particular user-defined data objects at
the source code level. Hence, source code revision/optimization becomes a burdensome
task.

tQuad is another component in the Quad toolset. It was developed to disclose the
temporal information of memory accesses at the runtime. As a result, the memory band-
width usage of functions are estimated during the execution of the application. e in-
formation extracted by tQuad can lead to the recognition of the main execution phases
within an application, which can be used subsequently to identify the related functions
in each phase. Most probably, each execution phase corresponds to a specific and well-
defined (sub)task based on a high-level algorithm of the application code. Even though
the exact phases of the algorithm are clear for the programmers, tQuad enables users to

³ Regarding the concept of data dependency in Quad, we use, when no confusion arises, the terms ‘data
communication’ and ’data transfer’ interchangeably, which implies the data that is produced by some function
and consumed later by some function.



Q² PROFILING FRAMEWORK Section .

Instrumentation API
JIT

Compiler

Emulation
Unit VMD

is
pa

tc
he

r

C
od

e
C

ac
he

OS

Hardware

Memory Address Space

Pin

M
A

TD
W
A
R
F

Q
U

A
D

 T
oolset

DCCPD

Figure .: An architectural overview of the dynamic part of the Q² profiling framework. e Q
uad toolset — consisting of Quad-core, cQuad, xQuad, tQuad, and Maip — utilizes the Pin DBI
framework to instrument the application at runtime. e xQuad tool uses DWARF to find source-
level information about the data objects in the application. Being runtime profilers, all the tools
only need application binaries, nevertheless, the debugging information should be available inside
the binaries.

have a more solid view on the steps the application actually takes to perform its task. In
addition, the extracted data can serve as valuable hints for the application developers to
understand the (re)usability scope of the functions, hence, initiating code optimizations.
As an example, tQuad may determine that a (general-purpose) function is utilized at
different phases of an application. It suggests that the function may be a good candidate
for replacement with several specific-purpose customized functions.

Traditionally, a general profiler, such as GNU gprof [], is employed to identi-
fy computationally-intensive functions in an application. e gprof profiler provides
sample-based execution timing estimates in addition to an accurate call graph. On the
other hand,Maip, its counterpart in the Q² profiling framework, provides accurate mea-
surements for the contribution percentage of individual functions with respect to the
whole execution time of an application. Unlike gprof , Maip can distinguish between
memory access operations and computational operations as well. is enables Maip to
provide several useful detailed statistics about the memory access behaviour of an ap-
plication.

All the tools in the dynamic part of the Q² profiling framework are implemented
using the Pin [] DBI framework. However, Pin does not provide any Application
Programming Interface (API) function for retrieving data object information in an ap-
plication. us, source-level information about data objects should be extracted directly
from binary file(s) of the application using the DWARF [] debugging format. Figure .
illustrates the architectural overview of the Quad toolset along with the PinDBI compo-
nents. At the highest level in the Pin soware layer, there is a Virtual Machine (VM), a
code cache, and an instrumentation API. e VM consists of a Just-In-Time (JIT) compil-



Chapter  DYNAMIC PROFILING FRAMEWORK

er, an emulator, and a dispatcher. Aer Pin gains control of the application, the VM co-
ordinates its components to execute the application. e JIT compiles and instruments
the application code, which is then launched by the dispatcher. e compiled code is
stored in the code cache. Entering (leaving) the VM from (to) the code cache involves
saving and restoring the application register state. e emulator interprets instructions
that cannot be executed directly. It is used for system calls that require special handling
from the VM.

Since Pin does not reside in the kernel of the operating system, it can only capture
user-level code. As depicted in Figure ., three binary objects are present when an in-
strumented application is running: ) the to-be-profiled application, ) Pin, and ) the
Quad toolset. Pin is the engine that instruments the application. Quad contains in-
strumentation and analysis routines, and it is linked with a library that allows Quad to
communicate with Pin.

. Runtime Memory Access Profiling

Profiling, succinctly put, refers to measuring where programs consume resources, most
notably, the processor time andmemory. Runtime profilers analyse the behavior of an ap-
plication during its execution in order to extract useful information related to the perfor-
mance of the application. e extracted information helps developers identify the types
of optimizations that can be carried out on the application and/or the target architec-
ture. General profilers, which analyse an application at the function-level such as gprof,
provide execution time profiles to identify application hotspots. However, they do not dis-
tinguish between the computation time and memory access time. Accordingly, they
cannot efficiently be employed to locate potential memory-related bolenecks, particu-
larly when targeting heterogeneous reconfigurable systems. As an example, in [, ],
the authors provide target-independent execution performance estimations. However,
they lack a thorough analysis of memory access behavior, which is vital for performance
optimizations in reconfigurable architectures.

e way an application interacts with the memory has a huge impact on its perfor-
mance. To express it differently and more elaborately, the memory access behavior of
an application, at the most basic level, depends on the intrinsic nature of the application.
However, the developer still has considerable flexibility in manipulating the algorithms,
data structures, and the structure of the application to modify its memory access behav-
iour for performance improvements []. In the case of mapping an application onto
a heterogeneous reconfigurable system, the amount of data that is transferred between
different tasks is vital. is is due to the fact that the communication overhead of the ap-
plication, which is a serious performance obstacle, is mostly influenced by the amount
of data that has to be communicated between the HW/SW boundary. It is clear that
accurate measurements of this property can be greatly beneficial for developers to effi-
ciently perform the DSE and mapping tasks. Nevertheless, this is not easy to achieve,
since it needs a profiling tool that accurately monitors all the memory accesses in the
application.

Most of the memory access profilers focus on detecting memory faults, bugs, or leaks
and do not provide detailed information about the inherent data dependencies in a pro-



RUNTIME MEMORY ACCESS PROFILING Section .

gram’s memory access behavior [, ]. Notwithstanding, there are some works that
perform exhaustive memory access analysis. One early profiling tool developed for un-
derstanding memory access paerns of Fortran⁴ programs is presented in []. e tool
instruments a program and produces a flat trace file of all memory accesses which can be
visualized later. Similarly, a toolset is presented in [] to reveal the paern of memory
accesses. It generates a set of histograms for each memory access in a program with
respect to the strides of references. In [], the authors present a quantitative approach
to analyse parallelization opportunities in applications with irregular memory access
paerns. Applications are classified into three categories with low, medium, and high
dependence densities. Embla [] allows the user to discover the data dependencies in a
sequential program, thereby exposing opportunities for parallelization. It performs off-
line dynamic analysis and records dependencies as they arise during program execution.

What we require in the profiling stage of the DWB is more than just discovering
the data communication relations between the functions in the application. In order to
efficiently improve the application mapping, comprehensive profiling information is re-
quired to quantify the data transfers performed during the execution of the application.
In particular, we are interested in the amount of data transfers and the size of the actu-
al memory blocks needed for this purpose. e Quad-core tool is able to discover the
actual data dependency, which can be different from the conventional data dependen-
cy referred to in similar tools. By definition, data dependency indicates a situation in
which a program segment⁵ refers to the data of a preceding segment. By actual data
dependency, we want to stress the fact that the data is indeed accessed by the succeed-
ing segment. is situation arises, for example, when a function requires the data that is
produced by another function earlier. Put in other words, the common argument pass-
ing by the caller function to the callee does not necessarily imply that the data will be
indeed used in the called function.

In this section, we describe theQuad-core tool in detail. It is a runtimememory access
profiler that provides a quantitative analysis of the memory access paerns of an applica-
tion with the primary goal of detecting the actual data dependencies at the function-level.
Quad-core abstracts away from the properties of the data dependency detection of an
application on a particular architecture. Furthermore, any restriction of detecting data
dependency based on hierarchies of function calls (commonly depicted with call graph)
is completely relaxed, as Quad-core exhaustively traces data transfers via memory ad-
dresses and does not rely on the control dependencies of tasks to detect potential data
dependencies. Mostly, the prior research in data dependency detection are focused on
the discovery of parallelization opportunities. However, in our profiling framework, we
do not primarily target parallel application development. Even though Quad is general
enough and quite efficient to be used for spoing coarse-grained parallelism, it provides
a more general-purpose profiling framework. is framework can be utilized in vari-
ous optimization directions for application development. As an example, estimating the
amount of UnMAs provides valuable information for designers to come up with efficient
on-chip interconnections to maximize the application performance [].

Accessing memory locations sequentially or within defined strides can substantially

⁴ A general-purpose programming language that is especially suitable for numeric computations. Fortran is
a blend derived from the IBM Mathematical Formula Translating System.
⁵ segment in its general sense, which may refer to an instruction, a block, or a whole function.



Chapter  DYNAMIC PROFILING FRAMEWORK

contribute to the efficiency of applications, particularly in cache-based computing sys-
tems. In most cases, it is possible for application developers to restructure data or code
in order to achieve beer memory reference behavior. From a different perspective, Q
uad can also be useful in diagnosing coding problems and inefficiencies related to mem-
ory, such as referencing beyond the boundaries of allocated memory blocks, detection
of unused data, etc. Furthermore, Quad can be easily ported to other platforms as long
as a primitive toolkit can be found to provide the basic memory access (read/write) in-
strumentation capabilities, such as BIT [] which instruments java byte codes.

e main features of the Quad-core profiler are listed in the following:

• It detects the actual data dependency at the function-level with the highest degree
of accuracy. e data dependency information provided by Quad-core can be
different compared to the conventional data dependency detection by other similar
tools.

• An accurate list of memory addresses used in data transfers is extracted by Quad-
core tool. is enables us to measure the actual size of required memory blocks
for data communication between a pair of functions.

• It does not require the source file(s) of an application nor it requires any modifi-
cation of the application binaries; it has no compiler dependence other than the
availability of debugging information. Furthermore, it abstracts away from the
properties of a particular architecture.

e rest of this section is organized as follows. First, in Section .., we briefly intro-
duce the instrumentation framework used in the development of our dynamic profiling
toolset. Section .. presents some highlights about theQuad-core tool implementation.
In Section .., we describe the Memory Access Tracing module. Next, in Section ..
and Section .., we explain the usage of the Quad-core tool in practice, using two real
applications. In each case study, we comment on some observations that are extracted
from the profiling information.

.. Pin Dynamic Binary Instrumentation

Instrumentation is a technique for inserting extra code into an application to observe its
behavior. is process can be performed at various stages either in the source code, or at
compile time, or at post-link time, or at runtime. Runtime instrumentation means that
the code is injected into the application during the execution. e primary advantage of
this kind of instrumentation is that, in order to profile an application, only unmodified
binary executable would suffice. Quad-core is a Dynamic Binary Analysis (DBA) tool
that analyses an application at the machine code level, as it runs. DBA tools can be built
from scratch or be implemented using a Dynamic Binary Instrumentation framework. In
a DBI tool, instrumentation is performed at runtime on the compiled binary files. us,
it requires no recompiling of source code and can support instrumenting programs that
dynamically generate code.



RUNTIME MEMORY ACCESS PROFILING Section .

Quad-core is implemented as a Pintool⁶. By using Pin, we have the benefit of working
transparently with unmodified Linux,Windows andMacOS binaries on Intel ARM, IA,
-bit x, and Itanium architectures. anks to the instrumentation transparency, Pin
preserves the original behavior of the application. us, the application uses the same
addresses (both instruction and data) and the same values (both register and memory)
as it would in an un-instrumented execution. Furthermore, Pin does not modify the
application stack, as some applications may deliberately reference memory addresses
beyond the top of the stack. is transparency, vital for correctness, results in accurate
data collection.

Dynamic instrumentation is particularly beneficial for this type of tools. It captures
the execution of arbitrary shared libraries in addition to the main program, and it has
no dependence on the instrumented application’s compiler. Requiring only a binary and
being compiler-independent does not imply that the source code is not needed for pro-
gram revisions. Instead, it provides flexibility for the tool to be language-independent
and it can be used with any compiler toolchain that produces a common binary format.
Furthermore, it does not require the user to modify the build environment to recompile
the application with special profiling flags. Pin adopts the dynamic compilation tech-
nique that uses a JIT compiler to (re)compile and instrument the application code on
the fly. is capability provides the benefits of portability, transparency, and efficiency
to the end user. In summary, the reason we adopted Pin is that it supplies a fast instru-
mentation framework, which is able to work with unmodified executables in addition to the
preservation of the application’s original un-instrumented behavior.

Two types of routines are defined in Pintools, namely instrumentation routines and
analysis routines. Instrumentation routines determine where, in the application code, to
place calls to analysis routines. Analysis routines are customizable by the user and they
are called while the program executes. e arguments to analysis routines can be, for
example, the instruction pointer, the effective memory address of the instruction, the
memory value, the address of branch instruction, the system calls values, and others.
e actual instrumentation is performed by the JIT compiler. Pin intercepts the very
first instruction of the application and re-compiles the executable generating basic blocks
code starting at that instruction, and instrumenting the code according to the specified
instrumentation type. e generated code sequence is almost identical to the original
one, except that it runs under the control of Pin. When a branch exits a basic block, Pin
generates more basic blocks code for the branch target and it continues the execution.
e JIT generated code and its instrumentation are saved in a code cache for future
execution of the same sequence of instructions to improve performance.

Instrumentation with Pin can be done at different levels of granularity. e finest
level is instrumentation at the instruction level, i.e. instrumenting the application one
instruction at a time. It is also possible to instrument code at the trace level⁷, at the
routine level, and at the entire image level. Image instrumentation enables the tool to
inspect and instrument an entire image, when it is first loaded. Subsequently, the tool
can walk the sections of the image, the routines of a section, and the instructions of a

⁶ e tools created using the Pin DBI framework are called Pintools. Pin is proprietary soware, but it is
available free of charge for non-commercial use from: hp://www.pintool.org/.
⁷ A trace in Pin is defined as a straight-line sequence of instructions executed sequentially. Pin guarantees
that traces only enter at the top, but may have multiple exits.



http://www.pintool.org/

Chapter  DYNAMIC PROFILING FRAMEWORK

routine. In general, instrumentation routine can be inserted so that it is executed before
or aer a routine is executed, or before or aer an instruction is executed.

e execution of an instrumented application usually shows a considerable slow-
down. is depends on the nature of the instrumented application as well as on the
overhead caused by the analysis routines in the tool. It appears that most of the slow-
down is caused by the execution of the code, rather than on the fly code compilation,
which includes the insertion of the instrumentation code. In Pin, some performance im-
provements are done during the compilation phase of the application. Improvements are
performed on register reallocation, inlining, liveness analysis, and instruction schedul-
ing. is results in an instrumented code, which run very fast compared to other DBI
frameworks.

.. Quad-core Development

e QUAD-core tool, is the fundamental part of the dynamic profiling framework in
Q², which is designed to provide useful quantitative memory access information. Its
main goal is to accurately measure the actual data dependencies between any pair of
communicating functions in an application. Data dependency is extracted in the sense
of producer/consumer bindings. More precisely, Quad-core reports which function is
consuming data produced by another function. e exact amount of the data transfer
and the number of UnMAs used in the transfer are extracted. Monitoring and keeping
records of all the memory access activities is made possible with an efficient Memory
Access Tracing module, which is developed from scratch based on a tree-like data struc-
ture. Utilizing the MAT module, a variety of memory access related statistics can be
measured, e.g., the ratio of local to global memory accesses in a particular function call.

e interfaces to most DBI frameworks are API calls that allow developers to hook in
their instrumentation routines. In Pin, the API call to INS_AddInstrumentationFunction()
allows a user to instrument programs based on a single instruction while the RTN_Add
InstrumentFunction() provides instrumentation capability at the routine granularity. Q
uad-core uses these two API routines to set up calls to the instrumentation routines
Instruction() and UpdateCurrentFunctionName(). ese two instrumentation routines, in
turn, call the two main analysis routines RecordMemRef() and EnterFunc() which are
responsible for updating tracing information of memory accesses and maintaining an
internal call graph, respectively. Since Quad-core relies on runtime instrumentation
and it is compiler-independent, detecting the producers or consumers of the data must
be performed in the absence of any kind of control/data flow information. In order
words, the detection is only based on the information available during a conventional
execution of the application. As a consequence, Quad-core implements and maintains
its own customized call graph during the execution of the application. is graph also
provides the flexibility to implement some of the profiling options available in Quad.

e details of the Quad-core implementation modules can be found on the project
home page⁸. In the following, we only discuss some highlights. Figure . illustrates an
implementation overview of the Quad-core tool. e initialization process in the main
module includes Pin initialization, command line options parsing, internal call graph

⁸ hp://sourceforge.net/projects/quadtoolset/.



http://sourceforge.net/projects/quadtoolset/

RUNTIME MEMORY ACCESS PROFILING Section .

Instrumentation

Analysis

IP
EA
R/W
SIZE
Pflag
ESP

Main Module

Figure .: Implementation overview of the Quad-core tool. e main module contains the pre-
processing and instrument registration routines. It also handles the DBI process. e instrumen-
tation and analysis modules contain the memory access instrumentation and analysis routines,
respectively. Instrumentation in Quad-core is performed at two different granularity levels. e
QDU graph is the primary output of the tool.

initialization, and some output XML file preprocessing. e Instruction() instrumenta-
tion routine sets up the call to RecordMemRef() routines every time an instruction that
references memory is executed. When Pin starts the execution of an application, the
JIT compiler calls Instruction() to insert new instructions into the code cache. If the in-
struction references memory (read or write), Quad-core inserts a call to RecordMemRef()
before the instruction, passing the IP, Effective Address (EA) for the memory opera-
tion, a flag indicating whether it is a read or write operation, number of bytes read or
wrien, and a flag showing whether or not the instruction is a prefetch. e analy-
sis routine returns immediately upon detection of a prefetch state for an instruction.
INS_InsertPredicatedCall() injects the analysis routine and ensures that the analysis rou-
tine is invoked only if the memory instruction is predicated true. ere is also a separate
RecordMemRef() analysis routine for the case that we are interested to trace local mem-
ory references in the stack region. In this case, the value of the Stack Pointer (SP) is
also passed to the analysis routine for further investigation. Instruction() also monitors
the ret⁹ instruction to leave a function and upon detection, it calls a different analysis
routine that updates the internal call graph, if necessary.

e main objective of RecordMemRef() is to identify the function responsible for the
current memory reference, and to pass the required information to the MAT module.
e instrumentation at the routine granularity in Quad-core is responsible for pushing
the name of the currently called function onto an internal call stack. e respective
popping is later performed upon detection of the ret instruction. In particular, Quad-
core requires to maintain its own call graph because one may not be interested to dive
into library routines or routines that are not included in the main binary image file. In
these cases, Quad-core assumes the most recent caller routine from the main image as
the one responsible for issuing memory references.

e memory access information gathered by the Quad-core tool during the exe-
cution of the application is reported in two separate formats. e producer/consumer
binding information is output to a text file using standard portable XML format. is

⁹ return.



Chapter  DYNAMIC PROFILING FRAMEWORK

makes it easy for third-party applications to import the data for further interpretation
and processing. e actual data dependency information is also provided in the form of
the QDU graph. e output graph can be easily rendered using any application which
can interpret the DOT graph description language, such as Graphviz graph visualization
package [].

.. Memory Access Tracing

e main component that enables Quad-core to efficiently monitor memory accesses,
is the Memory Access Tracing (MAT) module. It is responsible for building and main-
taining dynamic data structures in order to trace memory accesses as fast as possible,
while adhering to a reasonable memory footprint. e dynamic data structure is based
on trie¹⁰ [], which is customized to implement a shadow memory for the entire address
space of an application. More specifically, the Quad-core tool actually shadows, in so-
ware, every byte of the memory accessed in an application by annotating it with extra
information. It is very difficult to create an efficient implementation of such a shadow
memory. Nevertheless, it is a very powerful technique with various applications in pro-
filing tools; e.g., detecting critical errors, such as, bad memory accesses, data races, and
referencing un-initialized data objects. In a DBA tool which implements shadow memo-
ry, an analysis routine is responsible for querying, and if required updating, the shadow
memory in reaction to eachmemory access. e data maintained in the shadowmemory
is subsequently used to report profiling information to the user. e granularity of the
shadowing can vary, but usually every used memory byte or word has a shadow mem-
ory value, and each shadow memory value may itself be one bit, a few bits, one byte, or
even more, depending on the profiler [, ].

Implementing an efficient and robust shadow memory is complicated since there
is always a major trade off between the tracing time and the space overhead. On one
side, shadow memory is inherently expensive, particularly if large amounts of extra da-
ta should be maintained. Furthermore, all (or most) read/write operations should be
instrumented to keep the shadow memory state up-to-date. is unavoidably increases
the total amount of executed code, increases the application’s memory footprint, and
degrade the locality of its memory accesses. us, profiling tools that implement shad-
ow memory typically experience a slowdown factor up to × []. On the other side,
shadow memory should be squeezed into the address space alongside the original mem-
ory in a way that does not interfere with it and does not modify the behaviour of the
application. is requires considerable flexibility in the shadow memory structure and
layout. It also inevitably reduces the amount of available main memory for the applica-
tion itself.

In MAT, we define trie structures with base , which is representative of memory
addresses in hexadecimal format. Each hexadecimal digit in a -bit memory address
corresponds to one level in the trie data structure, leaving  levels deep in the hierarchy
for complete address tracing. e same structure can be generalized to accommodate
-bit memory addresses. is will create a trie whose depth is . e idea is depicted
in Figure .. Additionally, the trie data structure is implemented in such a way that it

¹⁰ e term trie comes from retrieval. Following the etymology, the inventor, Edward Fredkin, pronounces it
/ˈtriː/ (tree). However, it is now widely pronounced /ˈtraɪ/ (try) [].



RUNTIME MEMORY ACCESS PROFILING Section .

 Trie Root

Figure .: An outline of the dynamic trie data structure of base  for tracing -bit memory
accesses. Each level in trie represents a -bit value (a hexadecimal digit) in the memory address.
Taking a memory address, the trie crawls  levels deep to fully trace the address as quickly as
possible w/o a naive array-based method using statically-reserved space. Along the way, required
levels are dynamically created on demand.

grows dynamically on demand so as to reduce thememory footprint as much as possible.
ismeans that if a particularmemory address is fed to theMATmodule for the very first
time, the levels required to trace that particular address are created in the trie. us, no
space is allocated for unused memory addresses. e space saving is substantial because
the data structure can become gigantic, and it is very probable to run out of the main
memory for its storage if it is not dynamically increased in size.

Listing . presents the source code of the RecordMemoryAccess() routine of the MAT
module. Since this routine is a critical component of the tracing mechanism, it is imple-
mented purely in C language and completely from scratch for optimum performance.
Any deficiency in the implementation, such as the usage of any template library func-
tions, would result in huge overhead, and hence considerably slows down the instru-
mentation.

e memory reference recording process is accomplished in two distinct phases. In
the first phase, we trace an -level trie for a particular memory address. For each mem-
ory reference three different arguments are specified: the memory address, the function
identifier, and the read/write flag. In the case of write access, the corresponding shad-
ow memory address in the trie is labeled with the caller (producer) function identifier.
When a read access is detected, the function identifier responsible for the most recent
write access to that memory location is retrieved. Subsequently, the producer function
identifier is passed along with the consumer function identifier to the second phase of
tracing, where a data communication binding (record) is created.



Chapter  DYNAMIC PROFILING FRAMEWORK

 #define trieHeight 8
 struct trieNode
 {
 struct trieNode * list[16];
 } *trieRoot=NULL;


 struct AddressSplitter
 {
 unsigned int h0:4; unsigned int h1:4;
 unsigned int h2:4; unsigned int h3:4;
 unsigned int h4:4; unsigned int h5:4;
 unsigned int h6:4; unsigned int h7:4;
 };


 int RecordMemoryAccess(ADDRINT addy, ADDRINT func,bool writeFlag)
 {
 int i,retv,currentLevel=0;
 struct trieNode* currentLP;
 struct AddressSplitter* ASP= (struct AddressSplitter *)&addy;
 unsigned int addressArray[trieHeight];


 addressArray[0]=ASP->h0; addressArray[1]=ASP->h1;
 addressArray[2]=ASP->h2; addressArray[3]=ASP->h3;
 addressArray[4]=ASP->h4; addressArray[5]=ASP->h5;
 addressArray[6]=ASP->h6; addressArray[7]=ASP->h7;


 if(!trieRoot) /* create the first level in trie */
 if(!(trieRoot=(struct trieNode*)malloc(sizeof(struct trieNode)))) return 1;

/* memory allocation failed */
 else for (i=0;i<16;i++) trieRoot->list[i]=NULL;


 currentLP=trieRoot;
 while(currentLevel<trieHeight-1) /* proceed to the last level */
 {
 if(! (currentLP->list[addressArray[currentLevel]])) /* create a new level

on demand */
 if(!(currentLP->list[addressArray[currentLevel]]=(struct trieNode*)

malloc(sizeof(struct trieNode)))) return 1; /* memory allocation
failed */

 else for (i=0;i<16;i++)
 (currentLP->list[addressArray[currentLevel]])->list[i]=NULL

;
 currentLP=currentLP->list[addressArray[currentLevel]];
 currentLevel++;
 } /* reached the last level for the address tracing? */


 if(!currentLP->list[addressArray[currentLevel]]) /* create a new data bucket to
save access info */

 if(!(currentLP->list[addressArray[currentLevel]]=(struct trieNode*)malloc(
sizeof(ADDRINT)))) return 1; /* memory allocation failed */

 else /* no write access has been recorded yet. */
 *((ADDRINT*) (currentLP->list[addressArray[currentLevel]]))=0;


 if (writeFlag) /* only record the last write access */
 *((ADDRINT*) (currentLP->list[addressArray[currentLevel]]))=func;
 else /* record the producer -> consumer binding */
 if (RecordCommunicationInQDUGraph(*((ADDRINT*) (currentLP->list[addressArray

[currentLevel]])),func,addy)) return 1; /* memory exhausted */


 return 0; /* successful tracing */
 }

Listing .: Memory access tracing implementation in Quad-core. e implementation is based
on a dynamic trie data structure to create an efficient shadow memory for each memory address
used in the application.



RUNTIME MEMORY ACCESS PROFILING Section .

.. Identifying Memory-Intensive Kernels

In order to inspect and verify the extracted profiling information by the Quad-core tool,
we conducted several experiments using real applications. In this section, we discuss
the experimental results of the x [] video codec. e goal is to have an initial un-
derstanding of the application behavior regarding its data communication, memory usage,
and memory requirements. e information provided by Quad-core can be further used for
partitioning and mapping, as well as for providing hints to developers how to optimize and
tune the code for a particular platform. For more detailed and practical usage of the pro-
filing information extracted by the Quad toolset refer to Chapter . x is a free library
for encoding H./AVC video streams. e version used in this work is a modified x
r encoder tailored for Molen (see Section ..) taking into account the restrictions
in terms of coding rules accepted by the Del Workbench Automated Reconfigurable
VHDL generator (DWARV) hardware compiler [].

Experimental Setup

All the experiments were executed on an Intel -bit Core adCPUQ@ .GHz
with the main memory of GB, running Linux kernel v..-...el. e x source
code was compiled with gcc v.. and with the profiling option enabled. We used gprof
as an auxiliary tool to interpret execution timing information. e standard command
line options used to run the -bit compiled version of x was the following:

. –no-ssim - to disable the computing of Structural SIMilarity (SSIM) index which is
used as a video quality metric;

. rate control -q - to indicate almost lossless compression;

. –no-asm - to disable all stream processing optimizations based on CPU capabili-
ties. Using Streaming SIMD Extensions (SSE) technology enables Single Instruc-
tion Multiple Data (SIMD) to speed up streams processing. e library provided
by x is capable of utilizing this technology and its former MMX¹¹ one. As a
result, the kernels called are somehow different from the normal processing func-
tions. is option has been intentionally disabled, since it may not be applicable
to the target architecture.

e -bit version of Quad-core was used with the following command line options:

. ignore_stack_access - to ignore all the memory accesses to the stack region. is
gives a clear view of the data transferred via non-stack region.

. use_monitor_list - to include only some critically potential functions in the report
files, due to the high complexity and the size of the x application.

akiyo_qcif was used as the input data file for encoding. It is a raw YUV :: file with the
resolution of × pixels, containing  frames. e output was in raw byte stream
format. No subsequent encoding of the raw output file was performed.

¹¹ Officially, MMX is meaningless. However, it has been unofficially cited as MultiMedia eXtension, Multiple
Math eXtension, or Matrix Math eXtension.



Chapter  DYNAMIC PROFILING FRAMEWORK

Table .: gprof flat profile of the x application on the Intel x architecture.

Kernel %time Self Calls Self Total
seconds ms/call ms/call

pixel_satd_wxh . .   
x_cabac_encode_decision . .   
get_ref . .   
block_residual_write_cabac . .   
x_pixel_sad_x_x . .   
x_frame_filter . .  . .
x_pixel_sad_x_x . .   
refine_subpel . .   
motion_compensation_chroma . .   

% time is the percentage of the total execution time of the program used by the function; Self seconds
is the number of seconds accounted for by the function alone; Calls is the number of times a function
is invoked; Self ms/call is the average number of milliseconds spent in the function per call; Total
ms/call is the average number of milliseconds spent in the function and its descendants per call.

Experimental Analysis

x contains over two hundreds functions. e set of functions that are actually called
is determined based on different options selected by the user or by the input/output file
specifications. On the basis of the computationally-intensive kernels identified by gprof ,
we chose a number of functions (or series of functions) for further inspection. e main
criterion was the suitability for the DWARV compilation tool. Table . presents part of
the flat profile.

As specified in Table ., pixel_satd_wxh is the main kernel of the application ac-
counting for % of the total execution time. It was initially selected as the main can-
didate kernel for hardware mapping along with the sad-related functions. Although
x_cabac_encode_decision is the most frequently called function, each call has a
smaller contribution compared to pixel_satd_wxh. As a result, the overall contribution
of x_cabac_encode_decision drops considerably. ere are several satd-related
functions defined in the form of macros corresponding to various block sizes. ese
macros, when expanded, create different functions calling the pixel_satd_wxh, hence,
making it a very critical function on the execution path. Table . summarizes the re-
sults of memory access tracing for the satd- and sad-related functions. As expected,
pixel_satd_wxh is the top consumer on the list (in total more than MB), as all the
other satd-related functions call this kernel to perform their tasks.

It is worth noting that some of the sad-related functions (the ones with  rows and/or
columns) do not exhibit any data transfers, which is an indication that they are not called.
As mentioned before, this depends on the input file characteristics and options used. Al-
though the kernels are intensely reading (writing) data from (to) memory, the number
of UnMAs used in data transfers is limited (MBs data transfer vs. KBs locations). is
indicates the possibility of allocating memory buffers, e.g., on FPGA BRAM to improve
performance. It is worth to note that Quad-core can also provide a detailed map of the
used memory addresses for investigating mapping opportunities on a target architec-



RUNTIME MEMORY ACCESS PROFILING Section .

Table .: Summary of the data production/consumption of the satd- and sad-related kernels in
the x application.

Kernel IN IN UnMA OUT OUT UnMA

pixel_satd_wxh    
x_pixel_satd_x    
x_pixel_satd_x    
x_pixel_satd_x    
x_pixel_satd_x    
x_pixel_satd_x    
x_pixel_satd_x    
x_pixel_satd_x    

x_pixel_sad_x    
x_pixel_sad_x    
x_pixel_sad_x    
x_pixel_sad_x    
x_pixel_sad_x    
x_pixel_sad_x    
x_pixel_sad_x    

IN represents the total number of bytes read by the function; IN UnMA indicates the total
number of unique memory addresses used in reading; OUT represents the total number
of bytes read by any function in the application from memory locations that the specified
function has wrien to those locations earlier; OUT UnMA indicates the total number of
unique memory addresses used in writing.

ture. e auxiliary functions communicating with kernels are recognized and presented
in the QDU graph. ese auxiliary functions can be a source of further investigation.
For example, one might investigate mapping tightly-coupled functions on FPGA, and
create a buffer to facilitate data transfer, or merge auxiliary function(s) with the prima-
ry kernel to cut off data transfers between the functions. In case of pixel_satd_wxh,
mc_copy_w is tightly coupled with the main kernel, and it is responsible for produc-
ing approximately  MB of data (k UnMA). Further inspection of mc_copy_w
reveals that it belongs to the motion compensation library and merely calls the built-in
memcpy routine of the C language library, in a loop, to create a block of pixels from a
flat set of pixels with a predefined stride. Hinted by this, it seems feasible to rewrite the
routine from scratch and to combine it with the kernel.

e sad-related routines are also defined in the form ofmacros corresponding to vari-
ous block sizes. Unlike the satd-related functions, these macros–when expanded–create
different functions with separate bodies. In order to evaluate the impact of an identi-
cal kernel routine for the sad-related functions, we created a new function called pix-
el_sad_wxh and revised all the sad-related functions to call this critical kernel. It seems
to be a more suitable candidate for implementation on FPGA.

Table . depicts part of the flat profile for x aer the introduction of the new
pixel_sad_wxh kernel. pixel_sad_wxh now gets the dominant position with the exe-
cution time contribution of about .%. Note that it is also called nearly double of the
times compared to the second dominant kernel, pixel_satd_wxh. e gprof flat profile
of the Quad-instrumented binary is also provided. e considerable increase in the self-



Chapter  DYNAMIC PROFILING FRAMEWORK

seconds contribution of each kernel is due to the overhead introduced by the Quad-core
instrumentation and analysis routines. However, the ranking provided in this version
is somehow more representative of the real execution time, stressing the data commu-
nication between the functions via non-local memory. Non-local memory accesses are
filtered out¹², because only upon the detection of a non-local memory access, Quad-core
initiates the time-consuming tracing process in MAT.

Table . summarizes the memory profiling results of pixel_satd_wxh and the sad-
related kernels in the revised version of the x application. As expected, the commu-
nication load of pixel_sad_wxh dominates the former main kernel pixel_satd_wxh.
Nevertheless, there is a substantial increase in the total amount of bytes consumed by
this new kernel (about  MB) compared to the total amount of bytes consumed by the
sad-related functions in the original version. is is due to the fact that the sad-related
functions have to pass extra arguments to the new kernel. e new kernel uses the extra
information to distinguish between the sad-related functions for different block sizes.
e number of bytes consumed in pixel_sad_wxh can be further reduced by optimizing
the code to minimize this overload. e total number of bytes produced and consumed
beside the UnMAs used inside individual sad-related functions are significantly reduced,
because the load is shied to the new pixel_sad_wxh kernel.

Including the local memory accesses in the tracing would also reveal notable ob-
servations. By including stack area accesses, pixel_satd_wxh becomes the dominant
kernel once again (.% of the total execution time contribution). is indicates that if
one has no intention to place the local temporarymemory blocks in hardware, and fetch-
ing data from external memory is expensive, most probably, mapping pixel_satd_wxh
onto hardware is preferred than pixel_sad_wxh.

.. Bulk Data Flow Detection

In another case study, we examine libdwt¹³, which is a cross-platform Discrete Wavelet
Transform (DWT) library. It was primarily implemented in C, currently available in
other languages as well. e library is available for common personal computing plat-
forms (basic and optimized implementations), embedded processor platforms, hardware
platforms (FPGA), and a combined environment (EdkDSP). libdwt implements a fast
wavelet transform algorithm using liing scheme. e fourth-order (with four vanish-
ingmoments) biorthogonal spline wavelets, also known as Cohen-Daubechies-Feauveau
wavelets, were used in the experiments [].

Here, we use the Quad-core tool to pinpoint the main data flows that occur during
the execution of the application. For this purpose, the primary output of the profiler,
the QDU graph, is inspected to visually track the bulk of the data as it passes among
the functions. It should be noted that what we discuss here is absolutely derived from
the graph only, i.e. the flow detection is carried out with no review of the source code.
As such, Quad enables users to have an insight of the main path of data transfers in
the application, particularly the ones who have no precise knowledge of the application

¹² To be more precise, their effect is considerably diminished.
¹³ It is open source and the code is available from the Computer Graphics Research Group (VZ
GRAPH), Department of Computer Graphics and Multimedia, FIT, Brno University of Technology, at
hp://www.fit.vutbr.cz/research/view_product.php?id=.



http://www.fit.vutbr.cz/research/view_product.php?id=211

RUNTIME MEMORY ACCESS PROFILING Section .

Ta
bl

e
.
:

gp
ro
ffl

at
pr
ofi

le
of

th
e
re
vi
se
d
x


ap
pl
ic
at
io
n,

bo
th

fo
r
un

-i
ns
tr
um

en
te
d
an
d
Q
ua

d-
in
st
ru
m
en
te
d
bi
na
ri
es
.

K
er
ne

l
%
ti
m
e

Se
lf
se
co

nd
s

C
al
ls

R
an

k
%
ti
m
e(
+Q

ua
d)


Se
lf
se
co

nd
s

R
an

k(
+Q

ua
d)



pi
xe

l_
sa
d_

w
xh


.


.











.



.



pi
xe

l_
sa
td
_w

xh


.


.









.



.



x


_f
ra
m
e_

fil
te
r

.


.






.



.



ge

t_
re
f

.


.









.



.



m
ot
io
n_

co
m
pe

ns
at
io
n_

ch
ro
m
a

.


.








.



.



bl
oc

k_
re
si
du

al
_w

ri
te
_c

ab
ac

.


.








.



.



x


_c

ab
ac

_e
nc

od
e_

de
ci
si
on

.


.










.



.



x


_m

ac
ro
bl
oc

k_
ca

ch
e_

lo
ad

.


.








.



.



x


_c

ab
ac

_e
nc

od
e_

by
pa

ss
.


.









.



.







e
ex

ec
ut
io
n
ti
m
e
as

re
po

rt
ed

by
gp

ro
f
fo
r
th
e
Q
ua

d-
in
st
ru

m
en

te
d
ve

rs
io
n
of

th
e
ap

pl
ic
at
io
n.




e
ex

ec
ut
io
n

ti
m
es

of
th
e
ke

rn
el
s
fo
r
th
e
Q
ua

d-
in
st
ru

m
en

te
d
ve

rs
io
n

of
th
e
ap

pl
ic
at
io
n

is
so

m
eh

ow
di
ff
er
en

t
fr
om

th
e
or

ig
in
al

ap
pl
ic
at
io
n.

A
ll
th
e
no

n-
lo
ca

l
m
em

or
y

ac
ce

ss
es

ar
e
no

w
au

gm
en

te
d
by

a
fa
ct
or

on
th
e
ac

co
un

t
of

th
e
ti
m
e-
co

ns
um

in
g
an

al
ys

is
ro
ut
in
e
in

Q
ua

d-
co

re
.
gp

ro
f
no

ti
ce

s
th
is

ex
tr
a
bu

rd
en

,a
nd

th
us

,r
ep

or
ts

su
bs

ta
nt
ia
lly

in
cr
ea

se
d
ex

ec
ut
io
n
ti
m
e.


e
ra
nk

s
ar
e
de

ri
ve

d
ba

se
d
on

th
is

ne
w

ob
se
rv

at
io
n,

w
hi
ch

so
m
eh

ow
st
re
ss

th
e
m
em

or
y
ac

ce
ss

ti
m
e
in

th
e
w
ho

le
ex

ec
ut
io
n
ti
m
e.



Chapter  DYNAMIC PROFILING FRAMEWORK

Table .: Summary of the data production/consumption of pixel_satd_wxh and the sad-
related functions in the revised version of the x application.

Kernel IN IN UnMA OUT OUT UnMA

pixel_sad_wxh    
pixel_satd_wxh    
x_pixel_sad_x    
x_pixel_sad_x    
x_pixel_sad_x    
x_pixel_sad_x    

code. is is one of the important advantages of Quad to provide a clear overview of the
bulk data transfers in any application. Subsequently, the observations can be verified
by inspecting the source code and performing any optimization that is hinted at by the
profiling information.

e libdwt implementation has  functions. A sample application that uses the lib-
dwt library was executed several times with different test cases. Each test case was
based on a different input image size (×, ×, ×, ×), which
is defined by the SIZE macro in the source code. Figure . depicts part of the output
QDU graph corresponding to the image size of ×. We have omied several
nodes and some edges for the sake of clarity, as the original graph is quite dense and
difficult to present here. e top critical functions are shown in the graph along with
their execution time contributions.

By inspecting the graph in Figure ., two types of intense data transfers are spoed
in the application:

. Several functions (addr_s, addr_const_s, addr_s) are intensely transferring data
which seems to be hard-coded (statically defined) in the application and passed
through formal arguments to these functions. Although the communication is in-
tense–which can be due to high number of calling times–the number of UnMAs
used in transfers is low. is indeed means that the number of data items trans-
ferred should be limited to few. As an optimization hint, these functions should be
inlined in the code, if possible, or constant values should not be passed as formal
parameters to these functions.

. e bulk flows of data transfers are within two paths. ese may become the
causes of memory bolenecks, and should be addressed in case of any memory
constraint and/or deficiency.

dwt_util_test_image_fill_s =⇒ dwt_cdf_f_ex_stride_s =⇒ dwt_cdf_i_ex_stride_s

Examining the amount of data transferred as well as the number of UnMAs re-
veals that the image data is passed along this path¹⁴. Reviewing the QDU graphs

¹⁴ e resolution of the input image (×) makes it easy to verify the number of transferred bytes:
×× bytes= MB.



RUNTIME MEMORY ACCESS PROFILING Section .

�
�
�
�
�
�
�
�
�
�
�
�
�

�
	

�
��
�

�
�
��
�
�
�
�

��
�
�
�
�

�
�
��
�
��

�
�
�
�
�
�
�
�
�
��

��
�
�	

�

�

�
	

�
�

�
��
��
�
�
�
��
�
�

�!
�
��

�
�
�
�
�
�
�
�
��

��
�	

�

�

�
	

�
�

�
��

�
�

�
��
�
"
�
�
#
�
��
�
�
�

�
$
��
%
��

�
�
�
�
�
�
�
�
�
�
��

��
�
�
�	

�

�

�
	

�
��
�

�
�
��
�
�
�
�

��
�
�
�
�

�
�
��
�
��

�
�
�
�
�
�
�
�
�
��

��
�
�	

�

�

�
�
�
�
�
�
�
�
��

��
�
�
�
�
�
�
�
�	

�

�

�
�
�
�
�
�
�
�
��

��
�
�
�
�
�
�
�
�	

�

�

�
�
�
�
�
�
�
�
�
��

��
�
�	

�

�

�
�
�
�
�
�

�
�
��

���
�
�
�
�
�
�
�
��

��
�	

�

�

�
�
�
�
�
�
�
�
��

��
�
�
�
�
�
�
�
�	

�

�

�
�
�
�
�
�
�
�
��

��
�
�
�
�
�
�
�
�	

�

�

�
�
�
��
�
��
&
�

�
�

�
'
��
!
��

�
�
�
�
�
��

��
�
�	

�

�

�
�
�
�
�
�
�
�
�
��

��
�
�	

�

�

�
�
�
��
�
�

�
'
��
!
��

�
�
�
�
�
�
��

��
�
�	

�

�

�
�
�
�
�
�
�
�
�
��

��
�
�	

�

�

�
�
�
�
�
�
��

��
�
�	

�

�

�
�

�
�
��

(
�

�
�
�&
��
��
�
�

�
�
�
�
�
�
�
��

��
�
�
�	

�

�

�
�
�
�
�
�
��

��
�
�	

�

�

�
�
�
�
�
�
�
�
�
��

��
�
�
�	

�

�

�
�
�
�
�
�
��

��
�
�
�	

�

�

�
�
�
�
�
�
�
�
�
��

��
�
�	

�

�

�
�
�
�
�
�
�
�
�
��

��
�
�	

�

�

�
	

�
�

�
��

�
�

�
��
�
"
�
�
��
��
�
�

��
�
��

�
�
�
�
�
�
��

��
�
�	

�

�

�
�
�
�
�
�
�
�
�
��

��
�
�
�	

�

�

�
�
�
�
�
�
�
�
��

��
�
�
�
�
�
�
�
�	

�

�

�
�
�
�
�
�
�
�
��

��
�
�
�
�
�
�
�
�	

�

�

�
�
�
�
�
��

��
�
�	

�

�

 �
�
�
�
�
��

��
�
�	

�

�

�
�
�
�
�
�
�
�
��

��
�
�	

�

�

�
�
�
�
�
��

��
�
�	

�

�

�
�
�
�
�
�
�
�
�
��

��
�
�
�	

�

�

�
�
�&

!
�!
!
��

�
�
�
�
�
�
�
�
��

��
�	

�

�

�
�
�
�
�
�
�
�
�
��

��
�	

�

�

�
�
�
�
�
�
�
�
�
��

��
�	

�

�

�
�
�
�
�
�
�
�
�
��

��
�	

�

�

Fi
gu

re
.
:

Pa
rt
ia
lQ

D
U
gr
ap
h
of

a
sa
m
pl
e
ap
pl
ic
at
io
n
us
in
g
th
e
lib

dw
t
lib

ra
ry
.

e
m
ai
n
bu

lk
of

da
ta

tr
an
sf
er
s
ar
e
hi
gh

lig
ht
ed

in
th
e
gr
ap
h.

W
he
ne
ve
r
Q

ua
d
de
te
ct
s
th
at

da
ta

is
re
ad

fr
om

a
m
em

or
y
ad
dr
es
s
fo
r
w
hi
ch

no
fu
nc
ti
on

ha
s
se
t
th
e
va
lu
e
be
fo
re
,i
t
is
in
te
rp
re
te
d
as

C
O
N
ST

A
N
T_

D
A
TA

.O
ut

of
th

e
m

ai
n
sc

op
e
m
ea
ns

th
at

no
ta

us
er
-d
efi

ne
d
fu
nc
ti
on

is
re
sp
on

si
bl
e
fo
r
th
e
pr
od

uc
ti
on

(b
ei
ng

se
tb

y
an

O
S
ro
ut
in
e)
.T

o
in
te
rp
re
tt
he

da
ta

tr
an
sf
er
s,
pa
rt
ic
ul
ar

a
en
ti
on

ha
s
to

be
gi
ve
n
to

U
nM

A
s.


e
va
lu
es

co
rr
es
po

nd
to

th
e
te
st
ca
se

w
it
h
th
e
in
pu

ti
m
ag
e
si
ze

of


×


.



Chapter  DYNAMIC PROFILING FRAMEWORK

for other test cases indeed verifies this concept.

dwt_cdf_i_ex_stride_s =⇒ dwt_util_compare_s ⇐= dwt_util_test_image_fill_s

dwt_util_compare_s receives two sets of image data, one from dwt_cdf_i_ex_stride_s
and the other one from dwt_util_test_image_fill_s in order to compare them.

Any memory optimization and tuning for the application source code should be fo-
cused around these intense data transfers because these have the potential to become
bolenecks for the overall system performance.

. Maip

Generally, profilers — including the most commonly used gprof — provide a cumulative
execution time estimation for functions, failing to distinguish between the time spent
on computations and the time spent on memory operations. is makes it inaccurate to
assess the critically of the candidates in the context of heterogeneous multicore systems.
e reason simply lies in dealing with the communication time overhead when data
access accounts for a substantial share of the whole execution time. To address this
deficiency, we developed an standalone general profiler, called Maip, in the Q² profiling
framework.

Memory Access Intensity Profiler aims to provide several unprocessed basic profiling
items with the main objective of revealing the intensity of memory access operations.
Furthermore, Maip can be utilized as an alternative to (or in conjunction with) the com-
mon gprof profiler, allowing accurate measurements for programs which have only a
small execution time. e problem with gprof is that the derived runtime figures are
based on sampling process. Hence, besides being subject to statistical inaccuracy, there
is a prey good chance that gprof overlooks a function in action in case it runs for only a
small amount of time. Only if the total execution time of an application is large enough,
a small measured value by gprof truthfully indicates that the function’s contribution is
an insignificant fraction of the application’s whole execution time. Otherwise, nothing
valuable can be inferred from this observation at all. e extracted raw data by Maip
can be further processed to get valuable information, such as the ratio of memory access
instructions to the total executed instructions.

e basic profiling data that are measured by Maip are classified into three main
classes: instructions, operands, and bytes. Each class is subsequently divided into Read-
/Write and Stack/Non-stack subcategories. A variety of parameters is computed to as-
sess the intensity of the memory access operations within an application. is is done by
intercepting and inspecting every memory access instruction for detailed information.
Specifically, Maip extracts the following profiling data for each function:

• e total number of instructions executed within each function call.
If there is more than one call instance for a particular function, the aggregate
value of this parameter is used in subsequent processing to have a more accurate
estimation.



Maip Section .

• e total number of memory access instructions executed within each function call.
As before, if there is more than one call instance for a particular function, the
aggregate value of this parameter is used in subsequent processing.

• Memory Access Ratio (MAR)
is is the percentual ratio of the total number of memory access instructions to
the total number of instructions.

• Non-Local Memory Access Ratio (NLOC-MAR)
is is similar to the previous parameter. However, here we only consider memory
access instructions within the heap and global data regions. is parameter tends
to provide a more accurate estimation of the MAR, when the cost of local memory
access is considered to be low compared to the expensive external memory access.

• Memory Operand Ratio (MOR)
is is the percentage ratio of the total number of memory access operands to the
total number of operands.

• Non-Local Memory Operand Ratio (NLOC-MOR)
is is similar to the previous parameter. However, here we only consider the
operands of the memory access instructions referencing the heap and the global
data area.

• Stk Ratio
is is the percentage ratio of the total number of memory access instructions
referencing the stack area to the total number of memory access instructions.

• Flow Ratio
is is the total number of bytes read minus the total number of bytes wrien
divided by the total number of bytes accessed. An extreme value of - means a
write-only function, + represents the counterpart read-only function, and  rep-
resents a balanced R/W inert function.

• NLOC-Flow Ratio
is is similar to the previous parameter. However, here we only consider memory
accesses referencing the heap and the global data areas.

• Byte-wise-Stk ratio
is is the percentage ratio of the total number of bytes accessed by the memory
access instructions referencing the stack area to the total number of bytes accessed.

• Bytes/Acc. ratio
is indicates the average value of the number of bytes accessed within eachmem-
ory access instruction.

In the interpretation of these parameters, it should be generally noted that in some
architectures, a single memory operand can be both read and wrien, for instance incl
(%eax) on IA-. In this case, instrumentation is performed once for read and once for
write. e same holds for combined R/W instructions.



Chapter  DYNAMIC PROFILING FRAMEWORK

.. Maip Implementation

Maip is implemented using the Pin DBI framework, which provides interfaces to inspect
various system resources, including the CPU registers. Like the Quad-core tool, Maip
also requires instrumentation at instruction and routine granularities. However, we only
utilize RTN_AddInstrumentFunction() to directly register the instrumentation function
at the routine level. If only a routine seems to be of interest for inspection (the ones
specified in the monitor list file), we set off to instrument the instructions contained in
the routine. In this way, the profiling runs much faster. Instruction instrumentation is
carried out via traversing every single instruction within each routine and inserting a
call to an external function, which gathers necessary data for generating the profiling
report file.

e main function in Maip initializes the Pin runtime system and parses the com-
mand line arguments. e command line arguments support the filtering of specific
functions for further processing, and the report file specifications. Inspecting only a se-
lected list of functions speeds up the profiling task. Otherwise, the cost of instrumenting
all the functions in an application can be huge, and the execution slowdown degrades
the performance of the profiler. e routine instrumentation function sets up the call
to a corresponding analysis function every time a function is called. is is necessary
because,Maipmaintains its own internal call stack to avoid entering the library routines
as well as undesirable functions. Furthermore, Maip ignores updating the internal call
stack for the functions that are not in the main image file of the application. e call
stack is also used to keep the required data for each function under inspection. It is vi-
tal to retain an accurate measurement as the application moves around nested function
calls.

e instruction instrumentation function keeps track of the number of instructions
and operands seen so far. It also iterates over each memory operand of the instruction,
if any, to gather appropriate information. e task is performed for both read and write
operands. A call to an analysis routine is set up every time an instruction references a
memory location. e analysis routine updates the collected memory access data based
on the properties of the instruction, being read or write, within stack area or non-local,
etc.

e IP, the value of the SP, the EA and the size of the accessed memory location, and
a flag indicating whether or not the instruction is a prefetch, are passed to the analy-
sis routine. ese arguments are necessary for the collected profiling data update. e
analysis routine returns immediately upon detection of a prefetch state. A dedicated
mechanism is also implemented to ensure the accuracy of the data when an instruc-
tion with a combined R/W operation is processed. Furthermore, the ret instruction is
specifically monitored to maintain the integrity of the internal call stack. Detection of
this instruction also implies the finalization of the collected profiling information for the
current (to-be-terminated) function.

.. Computation Time vs. Communication Time

Finding the exact time that is spent on each memory access, if possible at all, is a very
difficult task. is is because memory access time depends extensively on the intrinsic



Maip Section .

nature of the underlying platform and its instantaneous state. It becomes even harder
when targeting Complex Instruction Set Computers (CISCs), as no easy way exists for
measuring the time taken for a particular memory access. Using the profiling infor-
mation extracted by Maip, we make an initial aempt to formulate — for a simplified
scenario — the estimation of the time spent on memory operations in distinction of the
time spent on computations.

Assume that for each kernel k , the time needed for accessing the memory system
(τcomm) is proportional to the total number of issued memory accesses during the exe-
cution of that kernel (ηma):

∀k : τcomm(k) ∝ ηma(k). (.)

Furthermore, the time needed for accessing the memory can be estimated by Equa-
tion (.), assuming a completely primitive flatmemory architecturewithout considering
any hierarchies, caches, compiler optimizations, and other complexities:

τcomm(k) ≈ ξ×τg pr o f (k)×M AR(k) (.)

≈α×τstk (k)+β×τheap (k)+γ×τd at a(k), (.)

where τg pr o f (k) is the total cumulative time reported by gprof for the kernel k and
MAR is the ratio of the total number of memory access instructions (ηma) to the total
number of instructions. τstk denotes the communication time accessing the stack area.
Accordingly, τheap refers to the heap and τd at a to the data areas of thememory. α, β and
γ reflect cost factors for accessing data objects in stack, heap, and data areas, respectively.
Using the profiling data provided by Maip, we can revise τcomm(k) as follows.

τcomm(k) ≈ τg pr o f (k)×M AR(k)×
(
α× ηstk (k)

ηma(k)
+β× ηheap (k)

ηma(k)
+γ× ηd at a(k)

ηma(k)

)
. (.)

In the context of reconfigurable systems, it makes sense to consider two distinctive
types of memory accesses. Local data objects, commonly limited in size, are allocated
in the on-chip memory (BRAMs and/or LUTs) and all the other global and dynamically
allocated data objects, rather large in size, are put on any kind of off-chip memory, e.g.,
SDRAMs. ese can be addressed with the terms, local data, usually referring to the
data objects in the stack area, and non-local data, which commonly refers to the data
objects in the global scope and heap areas. In this respect, we rewrite Equation (.) as
the following:

τcomm(k) ≈ τg pr o f (k)×
(
α×M AR(k)× ηstk (k)

ηma(k)
+ζ×M AR(k)× ηheap (k)+ηd at a(k)

ηma(k)

)
≈ τg pr o f (k)×

(
α×M AR(k)×

(
StkRati o

)
+ζ×M ARnl oc (k)

)
, (.)

where M ARnl oc (k) is the ratio of the non-local memory access instructions to the total
number of instructions executed in the kernel k . α and ζ reflect cost factors for accessing



Chapter  DYNAMIC PROFILING FRAMEWORK

data objects in local and non-local areas, respectively. We define the Memory Access
Intensity (MAI) of a kernel as a metric to distinguish between the intensity of kernels
with respect to their memory access operations.

M AI (k) = τcomm(k)

ηma(k)
. (.)

In order to evaluate the criticality of kernels, using the MAI metric is preferred over
the execution time metric (see Section .). MAI captures the communication time prop-
erty of kernels, which is unavailable in the plain execution time metric.

. Runtime Extraction of Source-Level Data

eQuad-core tool lacks the ability to relate the extractedmemory access information to
the individual data objects defined in an application source code. is deficiency implies
that a troublesome burden is imposed on the application developers to revise the code
based on the extracted information. In other words, it is complicated for developers to
discretize exactly where, inside a kernel, a certain memory access behavior appears.

xQuad enhances the memory access profiling by revealing the correspondence be-
tween data objects defined in the application source code and the relevant runtime
memory access information. For this purpose, it first retrieves source code represen-
tations (identifiers) of data objects from the Debugging With Aributed Record For-
mats (DWARF) debugging section of executables. is is necessary as Pin does not pro-
vide any information about data object identifiers. xQuad performs two types of analy-
sis: ) a detailed data object analysis for each function, and ) a global memory access
usage analysis of the entire application.

Performing such a detailed analysis at this fine level of granularity (data objects in
the source code) can produce profiling data, which can soon become unmanageable,
both in terms of the contents and the required time. us, it is necessary to implement
the feature for selective filtering according to the user need and preference. is is
implemented by feeding a text-based input file to the tool upon analysis start. e user
can specify the functions to be profiled as well as the list of specific, or all, local data
objects to be analysed. Furthermore, it is also possible to include global data objects
in the analysis. e extracted information is output in flat text files, which allows the
user to inspect these files later for desired information via postprocessing. e extracted
information can also be visualized with third-party visualization tools to get a general
outline of the memory usage. To facilitate postprocessing, the text files have a simple
format, which makes it possible to parse them for extracting specific information, such
as the frequency of accesses on a particular data object.

In the following, we first describe the DWARF debugging file format, which is used
by many compilers and debuggers to support source level debugging, and then briefly
talk about the implementation of xQuad.



RUNTIME EXTRACTION OF SOURCE-LEVEL DATA Section .

.debug_info
 COMPILE_UNIT<header overall offset = 306>:
 <0><11> DW_TAG_compile_unit

DW_AT_stmt_list 218
DW_AT_high_pc 0x8048571
DW_AT_low_pc 0x80483e4
DW_AT_comp_dir /comp/dir/dwarf
<1>< 686> DW_TAG_subprogram

DW_AT_sibling <867>
DW_AT_external yes(1)
DW_AT_name main
DW_AT_low_pc 0x804845e
DW_AT_high_pc 0x8048571
<2><715> DW_TAG_variable

DW_AT_name s
DW_AT_decl_file 1
DW_AT_decl_line 53
DW_AT_type <238>
DW_AT_location DW_OP_fbreg -44

<2><699> DW_TAG_subprogram

DW_AT_name function_sample
<2><715> DW_TAG_variable

DW_AT_name m
DW_AT_decl_file 1
DW_AT_type <238>

Figure .: A sample Debugging Information Entry (DIE). DIE is the basic descriptive entity in
DWARF. e DIE type is specified by a tag. Additionally, a DIE contains a set of aributes which
describe types, names, source line numbers, location addresses, or a references to another DIE —
e.g., a variable’s reference to a data type specification.

.. DWARF Debugging Information

e Pin DBI framework provides no API for retrieving information about source-level
data objects, including identifiers referencing variables. erefore, this information
should be extracted directly from the Executable and Linkable Format (ELF) object file.
By compiling the application with debugging information flag on, gcc augments the
ELF object file with a debugging section, whose format is, unless specified otherwise,
DWARF [, ]. DWARF provides debugging entries to define representations at the
source code level, like, among others, information about source code types, function and
object names, line numbers, instruction addresses, and EA offsets. ese information are
stored in different sections, all prefixed with the debug_ keyword. e most important
section is .debug_info, which is the DWARF core data structure containing the actual
debugging information. e debugging information is, in turn, structured in tree-like
Debugging Information Entry (DIE), as depicted in Figure .. We modified the data
layout to resemble the tree structure of the .debug_info section.

As most modern programming languages are block structured, DWARF also follows
this model. Hence, each DIE, except the topmost root DIE representing the Compilation
Unit (CU) of the source file, is contained in or owned by a parent DIE, and may have
sibling DIEs or children DIEs. DIEs are tree nodes, which may represent data types,
variables, functions, and everything else which participates in the formation of the ob-
ject code. A DIE has a tag, which specifies what the DIE describes, and a list of aributes
which fill in details and further describes the entity. Aributes may contain a variety
of values: constants (such as a function name), variables (such as the start address for a
function), or references to another DIE (such as for the type of a function’s return val-



Chapter  DYNAMIC PROFILING FRAMEWORK

ue). Following the DWARF structure, source-level information is retrieved by using the
libdwarf consumer library interface []. is library abstracts away from the DWARF
low-level routines, by defining wrap functions that ease the process of retrieving debug-
ging information from object files.

.. xQuad Implementation

xQuad consists of the following three parts:

• a module for retrieving DWARF debugging information;

• instrumentation functions based on the Pin API;

• the Quad-core’s analysis functions, which are called in the instrumentation func-
tions.

In the following, we provide an overview of the most important routines and pecu-
liarities in the xQuad implementation. Aer the initial preprocessing, xQuad processes
the debugging information that is read from the object file(s). Debugging information
processing is completely transparent, which means the user is not aware of the process
and the only requirement is that the object file(s) should include debugging informa-
tion–which is indeed a compulsory prerequisite. Using the libdwarf library, the DWARF
process is initialized and, aerwards, each CU inside the application is analysed. Fol-
lowing the tree structure of the DWARF format, individual CUs are examined through
a depth-first traversal algorithm. During the traversal, only the information interest-
ing for the user (according to the previously defined list of functions and variables) is
further processed. e processing involves saving variable names and their offsets with
respect to the current frame base pointer into a table, which is kept temporarily in the
main memory.

Aer reading the debugging information, xQuad starts the instrumentation process
by using relevant APIs from the Pin DBI framework. Using the instrumentation at rou-
tine granularity, xQuad retrieves the name of each function by using the API routine
RTN_name(). Note that unlike data object identifiers, Pin is able to make the name of
the functions available for the user. Function names are stored in the internal stack data
structure maintained by Quad-core. e internal call stack is used in various aspects of
the memory access analysis, such as the implementation of the routine count function-
ality and the implementation of the memory map file. It also enables Quad to find out
whether or not the current executing function is called for the first time.

Using the instrumentation at the instruction level, xQuad catches are memory ac-
cesses. Each time an instruction references memory (read or write), the tool calls an
analysis routine that inspects whether or not the current memory address belongs to a
data object of interest defined earlier. is is done by checking if the examined func-
tion matches a function in the table created during the DWARF information extraction
phase. When a memory access instruction is executed, various parameters are passed
to the analysis routine RecordTrace(), such as REG_GBP representing the current base
pointer. To calculate the actual memory address of the variable in question, the offset



KERNEL RANKING BASED ON MAI Section .

stored in the table of the offset-variable name pairs, is added to the base pointer. Fur-
thermore, the EA of the instruction is passed to the analysis routine, along with the
current function name. Using these parameters, another table is built which consists of
the pairs variable name and variable address. Finally, the INS_IsPrefetch() parameter is
used to indicate if the current instruction is a prefetch instruction. Provided that it is
the case, the analysis routine returns immediately, because we are only interested in the
actual memory operations.

Another analysis routine is defined for the purpose of keeping a count of the exe-
cuted instructions. is analysis function is called for every instrumented instruction,
regardless of being memory access related or not. Keeping the record of executed in-
structions allows xQuad to have an estimation of the time a certain memory operation
is executed. is temporal data can then be postprocessed to gain useful information
about the lifetime of data objects defined in the application source code.

. Kernel Ranking Based on MAI

e intensity of a kernel with respect to its memory access behaviour serves as a critical
parameter when it comes to mapping the kernel onto the hardware. Based on the pro-
filing information extracted by Quad, we develop a ranking method to define a memory
access penalty factor for the execution time retrieved by gprof . is will be an indica-
tion of the memory access intensity of a kernel relative to its execution time. However,
the ranking per se does not reflect any particular quantitative value of measurement.
It only specifies an index by taking the ratio of the memory accesses over the memory
access related part of the gprof execution time. As a result, this index is only applicable
for comparison purposes between kernels. We elaborate on this through a real-world
application example, hArtes wfs.

In the audio domain, a primary source wavefront can be created by secondary audio
sources (plane of speakers) that emit secondary wavefronts, the superposition of which
creates the original one. e Wave Field Synthesis (WFS) [] is a D spatial audio ren-
dering technique characterized by the creation of virtual acoustic environments. WFS is
based on the Huygens principle, which, informally, states that each point in a wavefront
can be considered as a primary source for the creation of new secondary waves, which, in
turn, become a primary source for other waves. Hence, an advancing wave can be con-
structed by the summation of all the secondary waves arising from previously primary
source waves. is principle is reproduced by loudspeaker arrays that generate a com-
plete sound field in the listening zone, which is identical to an appropriate real sound
event. Each of these speakers is activated at the exact time when the desired virtual
wavefront passes through it to reproduce the original wavefront of the audio source. e
hArtes wfs application provided by Fraunhofer IDMT [] implements a self-contained
wave field synthesis system.

General Observations. We used the Quad toolset to profile the hArtes wfs application.
Some preliminary observation are made by inspecting the memory access profiles of the
hArtes wfs application for the three distinctive areas, namely the stack, the heap, and
the data. It turns out that from the beginning until approximately half of the execution,



Chapter  DYNAMIC PROFILING FRAMEWORK

Table .: Memory access statistics for the hArtes wfs application, divided in stack, heap, and
data sections.

Stack Heap Data
Kernel # # # # # # #

DO ADD ACC ADD ACC ADD ACC

wav_store       
d       
DelayLine_processChunk       
bitrev       
zeroRealVec       
AudioIo_setFrames       
perm       
cadd       
cmult       
Filter_process       

#DO is the number of local data objects defined in the kernel; #ADD is the total number of distinct
addresses referenced during the application execution; #ACC is the total number of accesses for
data objects.

there is a sparse usage of heap memory addresses, while during the second half of the
execution, this usage becomes quite intense for a certain range of addresses in the heap
memory. Intensive heap usage is accounted for the wav_store kernel, which becomes
active approximately in the middle of the execution, and it is the only active function
until the end. Source code examination reveals that wav_store saves the output audio
signals from the buffers allocated in the heap memory to an output file. To accomplish
this, it uses mostly individual heap addresses, which explains the intense heap usage.

Table . summarizes all the memory references of the hArtes wfs application along
with the number of individual memory addresses used¹⁵. e detailed profiling data pro-
duced by xQuad contains the memory addresses referenced during a kernel’s execution,
the corresponding data object name, the kernel’s call number, and the timestamp when
the reference is issued. e number of data objects presented in Table . refers to the
local variables defined in the kernel, excluding the formal parameters. e recorded ac-
cesses are based on variables, which can have different sizes. erefore, xQuad does not
reveal the actual number of bytes accessed during the execution of a kernel. To have
an aggregate estimation of this value, tQuad can be used (see Chapter ). e detailed
memory usage information of each data object defined in the source code is not present-
ed here. e data in Table . is recorded with a time slice length of  instructions.
To put in other words, these profiling data are describing almost completely the actual
memory usage of the application through the time. Selecting a larger time slice results
in the reduction of the analysis time and the output file size¹⁶. However, the choice of
a too large time slice should be avoided, as this would cause the loss of some valuable
information.

From Table ., we can see that the number of individual memory addresses for ac-

¹⁵ Only the top ten kernels of the application with the largest execution time contributions are listed.
¹⁶ e output memory map file for the hArtes wfs application with a time slice of  instructions is almost
 MB. By storing the profiling data for each instruction, the file can grow up into GBs, which may make the
postprocessing of the data impractical.



KERNEL RANKING BASED ON MAI Section .

Table .: e gprof profiling data for the hArtes wfs application on the Intel x architecture.

Kernel %time Self Calls Self Total
seconds ms/call ms/call

wav_store . .  . .
d . .  . .
DelayLine_processChunk . .  . .
bitrev . .  . .
zeroRealVec . .  . .
AudioIo_setFrames . .  . .
perm . .  . .
cadd . .  . .
cmult . .  . .
Filter_process . .  . .

cessing the non-local memory is considerably higher forwav_store compared to the oth-
er functions. Examining the detailed xQuad profiling data reveals that, in the case of
stack area, more than one third of the total accesses are due to a local variable that acts
as a sentinel for the main loop which stores the specifications of wave frames to the out-
put file¹⁷. Another interesting observation is that the primary load of the local accesses
in DelayLine_processChunk originates from a rather large data object, which collects the
necessary data for delay update. Should the kernel be implemented in the hardware,
on-chip allocation of this data object in addition to two small counters, results in more
than fiy percent reduction in the total external memory accesses.

AudioIo_setFrames is responsible for copying interleaved audio signal parts into the
corresponding audio frames. e hArtes wfs application uses  secondary sources, i.e.
an array of  loudspeakers, thus, AudioIo_setFrames needs  distinct addresses for do-
ing this task. e data presented in Table . can bemisleading per se, particularly for the
stack area, as it does not take into account the number of times that a function is called.
erefore, the gprof profiling data is also presented in Table . to indicate the execution
frequencies of the functions and their execution times. At a first glance, bitrev shows a
high frequency of stack usage, as presented in Table .. Nevertheless, this function is
called over two million times, which implies that the number of local memory accesses
are only a few instances per call.

MAI Ranking. Using Maip, it is possible to distinguish between the computation and
the communication parts of the kernels in the hArtes wfs application. Table . presents
a partial summary of the Maip profiling results. In case a kernel shows different be-
haviors in subsequent calls, an average value is calculated. Almost all the kernels had
similar behaviors in recurring calls and the differences were negligible, except for zero-
RealVec which acted significantly different in one case. As Table . shows, for most of
the kernels, more than half of the whole executed instructions are due to memory ac-
cess operations. is memory communication load can increase up to nearly the whole
execution time for strictly memory-bound kernels, such as AudioIo_setFrames.

¹⁷ e detailed xQuad profiling data is not included in Table ..



Chapter  DYNAMIC PROFILING FRAMEWORK

Table .: Communication vs. computation profiling data of the hArtes wfs application on the
Intel x architecture.

Kernel MAR NLOC Total Total Stk # Unique
MAR Inst. MA Inst. Ratio Exec.

wav_store . .   . 
d . .   . 
DelayLine_processChunk . .   . 
bitrev . .   . 
zeroRealVec . .   . 
AudioIo_setFrames . .   . 
perm . .   . 
cadd . .   . 
cmult . .   . 
Filter_process . .   . 

MAR is the percentage ratio of the memory access instructions to the total instructions executed in
the kernel; NLOC-MAR is the same as MAR except that only references to the non-local area are
considered; Stk Ratio is the percentage ratio of the memory access instructions within the local area
to the total memory access instructions; # Unique Exec. is the total number of distinct statistical data
recorded for different calls of the kernel.

Using Equation (.), we propose a ranking to evaluate the criticality of kernels with
respect to their communication time. In a simple scenario, suppose that the cost of ac-
cessing the local memory area is totally insignificant compared to the non-local memory
area, i.e α is close to zero in Equation (.). Table . presents an order of the kernels
based on the probable suitability for mapping onto hardware. Lower value for MAI
indicates that the kernel is more appropriate for hardware implementation. e total
execution time is retrieved from the gprof profiling data as presented in Table ., while
the total number of memory accesses is extracted from Table .. In Table ., the stack
accesses of the kernels are not taken into account, as most time penalty is expected to
be for accessing the heap and data segments of the memory. e ηma column reports
the total number of memory accesses for the heap and the data areas, while τcomm(k) is
an estimate of the time spent for executing memory operations. e ordering is based
on the inverse values of the MAI for the kernels.

As seen in Table ., cadd and cmult get the top positions in the ranking. ese
tiny frequently-used kernels are responsible to do mathematical addition and multipli-
cation for complex numbers. A thorough inspection of the source code also justifies
the placement. e reason lies in the fact that cadd consists of only two floating point
addition operations (computation workload) and six memory access operations in to-
tal, four memory reads and two memory writes (communication workload). A similar
scenario applies to cmult with five additions, three multiplications, and sixteen memory
accesses. It should also be stressed that mapping these kernels to hardware still does not
affect the overall performance considerably, because they are only responsible for a very
small fraction of the whole execution time of the application. Apart from these kernels,
wav_store still accounts as one of the most appropriate kernels for mapping onto the
hardware. Interestingly, fftd and DelayLine_processChunck, which had top positions
in the gprof profiling list, drop down to near the last position in the ranking. e dis-
tinct case of AudioIo_setFrames, which is the strictly memory-bound kernel in the list, is
quite interesting. is kernel somehow gets now its actual position in the ranking. It is



SUMMARY Section .

Table .: A Ranking based on the MAI of the kernels in the hArtes wfs application.

Kernel ηma τcomm (MAI)−1 Rank

wav_store  .  
d  .  
DelayLine_processChunk  .  
bitrev  .  
zeroRealVec  .  
AudioIo_setFrames  .  
perm  .  
cadd  .  
cmult  .  
Filter_process  .  

ηma is the total number of memory accesses instructions during the execution
of the kernel and τcomm is the time needed for accessing the memory system.

identified as the worst candidate for the hardware mapping. Examining the source code
reveals that AudioIo_setFrames merely copies interleaved audio signal parts to a frame
by invoking the memcpy library function. is means that the time spent for memory
accesses relative to the computation time is dominating, thus, making it an inappropriate
candidate for hardware implementation.

. Summary

e gap between the processor and the memory performance still continues to be the
major challenge for computing systems. It is even intensified with the emergence of
today’s heterogeneous multicore systems, not to mention the rich repository of lega-
cy applications that have been inherited from the earlier platforms. is demands the
development of tools to help developers in mapping and tuning applications for the
maximal performance gain of these systems. In this chapter, we presented the Q² pro-
filing framework which, in general, plays a crucial role in mapping applications onto
any heterogeneous multicore platform. We detailed the dynamic part of the profiling
framework, the Quad toolset, which aims to provide a comprehensive analysis of the
memory access behavior of an application. Utilizing a Dynamic Binary Instrumenta-
tion technique to find the actual data dependencies between functions, Quad is able to
detect coarse-grained parallelism opportunities as well as to extract useful information
regarding the memory requirements of an application.

We further demonstrated the usefulness of Quad in practice by profiling several real
applications. For each case study, we highlighted some major observations followed by
detailed comments. Furthermore, based on the extracted profiling information, we in-
troduced a ranking strategy which can provide a preliminary estimation of the criticality
of the functions regarding their memory access intensity.



Chapter  DYNAMIC PROFILING FRAMEWORK

Note.
e content of this chapter is partly based on the following articles:

S. Arash Ostadzadeh, Roel Meeuws, Carlo Galuzzi, and Koen Bertels, QUAD - A Mem-
ory Access Pattern Analyser, Proceedings of the International Symposium on Applied
Reconfigurable Computing (ARC’), Bangkok, ailand, March , pp. -.

S. Arash Ostadzadeh, Marco Corina, Carlo Galuzzi, and Koen Bertels, Runtime Extrac-
tion of Memory Access Information from the Application Source Code, Pro-
ceedings of the International Conference on High Performance Computing & Simulation
(HPCS’), Istanbul, Turkey, July , pp. -.

Koen Bertels, S. Arash Ostadzadeh, and Roel Meeuws, Advanced Profiling of Appli-
cations for Heterogeneous Multi-Core Platforms, Proceedings of the International
Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA’), Las Ve-
gas, USA, July , pp. -.



CHAPTER4
Temporal Memory Bandwidth

Analysis

“… even good programmers and language designers tended to do terrible exten-
sions when they were in the heat of programming, because design is something
that is best done slowly and carefully.” †

— Alan Curtis Kay

A thorough behavioral analysis of memory accesses in an application is not feasible in the
absence of timing information. ough not built in the originalQuad-core tool, relative tim-
ing data — which indicates the progress of the application execution — is extracted during
memory access instrumentation. is is of critical importance, particularly in scheduling
and mapping tasks onto heterogeneous systems. In addition to be of assistance in detect-
ing memory bandwidth problems, the extracted timing information is utilized as well to
identify different phases in the application.

t
emporal analysis of tasks is a crucial aspect in application development
and/or its mapping onto heterogeneous multicore systems. Basically, this
kind of analysis is required to extract necessary information about the life
cycles and the time spans of functions that are invoked during a typical

execution of an application. When mapping an application onto a heterogeneous sys-
tem, the most critical phase is task partitioning, which can seriously affect the efficiency
of the mapped application. Based on previously defined characteristics and properties,
tasks can be executed in soware mode (e.g., on a GPP) or in hardware mode (e.g., on
an FPGA). Additionally, there are tasks that can be implemented either in soware
or in hardware, depending on the availability of adequate hardware resources. ese
decisions are an essential part of task scheduling and mapping in the application de-
velopment process. Almost in all computing systems, including those incorporating

† A Conversation with Alan Kay, ACM eue, Vol. , No. , Dec./Jan. -.



http://queue.acm.org/detail.cfm?id=1039523

Chapter  TEMPORAL MEMORY BANDWIDTH ANALYSIS

heterogeneous PEs, task scheduling is of vital importance and is a well-studied topic
[, , , , ]. In the case of reconfigurable systems, some advanced features, such
as dynamic partial reconfiguration, further raise the complexity of the task schedul-
ing problem. Task scheduling and subsequently placing designated tasks on the hardware
are inseparable parts of porting applications into heterogeneous systems utilizing reconfig-
urable hardware. Efficient handling of this process is largely dependent on the availability
of appropriate temporal information about the application tasks [, , ].

Additionally, over the past few years, the complexity of applications has considerably
increased, most notably with regard to the interactions among different functions. is
is partly because of the well-structured and modular application development process,
which encourages the practice of soware reuse []. As revealed in practice, in het-
erogeneous reconfigurable systems, developers implement more functionality in so-
ware than in hardware due to its flexibility and shorter time-to-market, among others
[, , ]. is, in turn, brings about the necessity of a proper analysis of tasks’ inter-
actions with a particular focus on timing aspect. It is necessary to examine the behavior
of tasks individually as well as in mutual communication with others. Consequent-
ly, dedicated profiling tools targeting heterogeneous reconfigurable systems require to
have an appropriate estimation of the timing measures for the called functions in an
application.

To address this issue, a proper temporal analysis of tasks’ execution is inevitable.
It is important to note that due to the nature of the analysis performed in our profiling
framework, we care about the relative¹ timing of functions compared to each other, not the
absolute timing. e absolute time obviously varies, depending on the hardware character-
istics of the target architecture and other influential factors. In our profiling framework,
the Quad main tool, Quad-core, lacks any temporal analysis of the instrumented code.
is feature is intentionally excluded from the main module due to the imposition of extra
overhead in the case of tracing memory accesses comprising temporal data. Nevertheless,
because of the criticality of this requirement, a separate module, called tQuad, is de-
veloped to provide detailed relative timing information for each function called during
the execution of an application. As an immediate result, tQuad enables Quad to deliver
temporal memory bandwidth usage information for individual functions.

Memory bandwidth information is gathered by comprehensive analysis of all mem-
ory accesses in the presence of timing estimations. e extracted information is subse-
quently processed to identify virtual phases² in the life span of the application. In this
chapter, together with an elaborate description of tQuad, we examine, in detail, a real
application from the multimedia domain to substantiate the potential of tQuad. Addi-
tionally, the virtual phases of the application are detected as a side outcome.

e remainder of this chapter is organized as follows. In Section ., we briefly dis-
cuss the extraction of temporal data from applications. en, in Section ., we present
an overview of practical approaches used to extract timing information in profiling tools.
Implementation details of tQuad are discussed in Section .. In Section ., a real ap-
plication is examined in detail to demonstrate the potential and applicability of the tQ

¹ Relative time is an approximation of the absolute time, whichmaintains the ordering of the events. However,
relative time measurement cannot be accounted for, by itself, as an accurate assessment of the wall-clock time.
² Virtual phases can correspond to actual phases defined in the application, however, with no knowledge of
the implemented algorithms at hand, it would not be always feasible to make matches with real phases.



BACKGROUND Section .

uad extension in the Q² profiling framework. Finally, Section . concludes the chapter.

. Background

e two primary approaches for behavioral application analysis, i.e. static and dynamic,
can be used for timing analysis. Static analysis has to estimate the timing progress in
a system without executing any application. As a result, some kind of a model of the
system or implementation artifact is required that is correlated directly with the tim-
ing behavior. Additionally, static analysis of an application source code can explore
dimensions of timing behavior that are hard to investigate through manipulation of the
application input data. Static analysis tools typically construct program execution mod-
els, potentially through reverse engineering. ese models can then be analyzed to derive
and ensure a particular behavioral characteristic [].

Conventionally, model checking techniques are used to check exhaustively all fea-
sible paths of execution and interleavings between different entities if relevant. is
avoids leaving any behavior unchecked, and thus, ensures correctness properties [].
Nevertheless, model checking is computationally very expensive in practice, hence, lim-
ited in its applicability. is can be partly due to the enormous number of possible
interleavings a large system may exhibit. Other static analysis techniques, such as au-
tomated checking of design intent [] and program analysis driven theorem proving
[], have been also utilized to ensure behavioral correctness. e common character-
istic among all these techniques is the trade off between analytical thoroughness and
computational cost. Static analysis techniques typically prove to be successful in mod-
eling relative timing and temporal ordering of events. However, they are incapable of
accurately modeling the wall-clock time; hence, they are not used for measuring the
absolute time.

Dynamic analysis is the only practical approach to behavioral analysis that can incor-
porate aspects of the absolute time. Dynamic profilers inspect the behavior of a system
at runtime, thus they are able to measure various aspects of the system that are exactly
representative of the real scenarios. In the case of absolute timing aspect, the exactness of
measurements may be diminished due to some influential factors, such as sample-based
timing measurement or slowed down execution due to extra overhead. Additionally,
by using a system that has somehow different architectural or platform-related proper-
ties, the accuracy of absolute timing measurements is compromised as well. Dynamic
approaches are also implemented in active or passive modes. Active profiling requires
that the application under inspection explicitly generate information about its execu-
tion, such as compiler-based probe insertion, where the application makes callbacks to
the trace collection engine to record temporal data. Conversely, passive approaches rely
on the inspection of control flow and execution state through an external entity, such as
a probe or modified runtime environment. e advantage of passive profiling is that it
typically does not require any modification of the examined application; however, it is
hard to implement and requires specialized tracing facility.

In a nutshell, dynamic profilers can collect precise and fine-grained behavioral da-
ta from a running application, which can also be coupled with post-processing to help
summarize and reason about observed results. e collected data is thus accurate and



Chapter  TEMPORAL MEMORY BANDWIDTH ANALYSIS

representative of real execution as long as some critical factor, such as the overhead of
the measurement, has not unduly influenced the results. Moreover, these profilers can
only provide behavioral data for application paths that are actually taken during execu-
tion. Hence, successfully applying dynamic profiling tools usually depends on analyzing
multiple runs of the application to test all relevant paths. Full coverage can be achieved
through careful selection of representative input data or through artificial input gener-
ators. Because of this limitation, dynamic profiling is more useful for behavior analysis
in those circumstances where samples of behavior are sufficient, such as determining
the approximate life span or ordering of functions in an application. It is not well-suited
to ensure correct behavior in a critical system where, for example, real-time deadlines
shall be met. Both static and dynamic analysis have their own advantages and disadvan-
tages. Advanced behavioral analysis solutions may require to combine both approaches
to provide a comprehensive picture of the application behavior [].

. Temporal Data Extraction

Determining the execution time of functions in an application is very common in general
profilers targeting various platforms. is is partly because knowing the execution time
of an application is of fundamental importance for the acceptability of many systems,
especially for systems delivering real-time services. e correct behavior of a real-time
system depends both on the result of the computation and on the time at which the result
is produced []. While for static profilers, this only means obtaining an upper bound
on the execution time in a specified hardware model, dynamic profilers take into con-
sideration a specific hardware and derive the execution time from the recorded results
[].

Hard real-time systems require a deterministic timing behavior of the application
to guarantee the termination of tasks execution. is is guaranteed by estimating the
Worst Case Execution Time (WCET) of the application, classified as a static method.
WCET is defined as the longest execution time that will ever be observed when an ap-
plication runs on a specific hardware, for all the possible input data []. Commercial
and research prototype tools for WCET estimation are available, such as aiT [], Bound-
T [], Chronos [], Heptane [], SWEET [], and Symta/P []. Each of these tools
apply common phases for the WCET calculation. Usually WCET tools work on binary
executables, as binaries contain all the information needed for the analysis. In the first
phase, the binary is decoded for the construction of the CFG. e graph is used to per-
form a control-flow analysis by determining the possible application paths. Additionally,
infeasible paths are excluded and loop bounds are determined. Most tools automatically
identify an upper bound on the number of loop iterations. However, it may be the case
that a tool fails at retrieving these bounds. In such a case, the user has to input loop
bounds via a manual annotation method, either in a separate text file or embedded in the
source code, which is then recompiled into a new executable. e second phase is usu-
ally called Value Analysis or Processor-Behavior Analysis. is phase needs a simplified
model of a microarchitecture, which gathers information on caches, memory, pipelines,
branch prediction schemes, and other hardware components, to produce timings for the
application paths. e model can be "built-in" inside the tool or, in case of a new target



TEMPORAL DATA EXTRACTION Section .

processor, it can be constructed and fed to the tool by the user. Subsequently, by us-
ing the information acquired during the first two phases, the final bound calculation is
performed. is produces WCET estimations in terms of cycles which could be then, if
supported by the tool, converted to seconds.

e fact that WCET estimation needs a model of the target microarchitecture, even
though simplified, can be quite cumbersome, as most vendors do not disclose enough
information on their microarchitectures. Hence, the outcomes of tools must be validated
by real measurements before considering the calculated WCET reliable. Additionally,
the complexity of hardware is very high and, in most cases, it is difficult to extract an
accuratemodel. Estimating aWCET on state-of-the-art hardwarewith simplifiedmodels
may result in an unreliable estimation. erefore, a measurement-based analysis beside
a static analysis is a common practice when estimatingWCET. As a maer of fact, when
the real execution time of a certain application on a particular hardware is desired and
not necessarily an upper bound on execution time, the user performs a measurement-
based analysis of the system. To cope with this necessity, hybrid approaches combining
measurement and static analysis are developed, such as RapiTime [].

Static WCET analysis can deliver an over-pessimistic or inaccurate timing estima-
tion. is drawback, in addition to the hardware complexity, causes static techniques
to be inefficient when applied to heterogeneous reconfigurable systems. In these sys-
tems, task scheduling and mapping algorithms must strive to make the reconfigurable
hardware area usage as efficient as possible. e algorithms usually work in an itera-
tive manner to prune a huge design space, and eventually find an optimal solution for
application mapping. e rather slow timing estimation inherent in static approaches
reinforces the need for dynamic analysis techniques which aim at providing precise in-
formation on temporal aspects in an acceptable time. is is very critical for developers
to effectively port their applications to the target platform. It even gains more relevance
considering the fact that absolute individual task execution time is mostly not needed
for early design space exploration. However, relative timing among different tasks is of
critical importance.

Conventionally, general profilers provide estimations of the execution time of func-
tions in an application. ese estimates are valid for the platform on which the ap-
plication runs and cannot be considered accurate when targeting a different platform.
Profilers like gprof [] are regarded as dynamic analysis tools. gprof performs the
analysis based on source code instrumentation. e problem with gprof is that the de-
rived runtime figures are based on a sampling process. As a result, besides being subject
to statistical inaccuracy, if a particular function runs for only a small amount of time, it
is very probable that the function be actually overlooked in action. Only if the total run-
ning time of an application is large enough, a small value shows that the function’s con-
tribution to the whole execution time of the application is insignificant. Otherwise, no
valuable information can be derived from gprof measures at all. Additionally, it should
be noted that gprof does not distinguish among computation time and memory access
time. Deciding to map a task onto reconfigurable hardware, merely based on the total
execution time, may result in an inefficient usage of the hardware resources. is elim-
inates the advantages of a hardware implementation because the CPU-time expensive
tasks may be in reality bounded by their memory access behavior.

Some dynamic analysis tools integrate hardware event monitoring facilities such as



Chapter  TEMPORAL MEMORY BANDWIDTH ANALYSIS

counters. Examples are the Intel VTune [] and the AMD CodeAnalyst []. Both
tools provide the user with a suite for application performance analysis which includes,
among others, a time-based analyser that helps locating the application hotspots and
bolenecks as candidates for optimization. VTune profiles everything that is executed
on the CPU, including information about the OS, third party libraries and drivers. It
also locates memory hotspots and relates them to the code hotspots. e source code
is not required to use VTune, however, for accuracy, debugging information are neces-
sary, even though they are not always required. Compiling the application by including
debugging information allows the displaying of the source code with its execution time
against each line of the code. e VTune time-based sampling approach gathers infor-
mation on the percentage of time by interrupting the application’s execution at regular
time intervals ( ms by default) and recording instruction pointer addresses. e most
frequently executed portions of code are reported in terms of clock ticks. In addition to
reporting hotspots, VTune produces a detailed analysis at architectural level by specify-
ing how the application behaves in memory and by identifying problems such as cache
misses. Similar to VTune, CodeAnalyst suite performs system-wide profiling and sup-
ports the analysis of both user applications and kernel-mode soware. It also collects
instruction pointer addresses at predefined time intervals (the finest time resolution is
.ms) and it reports bolenecks, execution penalties, and optimization opportunities.
Furthermore, CodeAnalyst makes it possible to identify what causes certain bolenecks
on the architecture level. For a given application, it reports the number of CPU cycles
needed by a code region, the Instructions Per Cycle (IPC) and its inverse Cycles Per In-
struction (CPI) and statistics on data accesses. Both these tools are, however, hardware
dependent.

In tQuad, we utilize dynamic binary instrumentation to record plain relative timing
data. e raw data is subsequently processed by several tools to reason about the timing
information required in support of decisions in application mapping. In our profiling
framework, temporal data extraction is based on relative timings, mainly because of the
following issues:

• Absolute time extraction can only be verified by running the application on the tar-
get architecture, the Molen reconfigurable machine in our case (see Section ..).
However, the Pin [] DBI framework is not available for this architecture. Run-
ning the application on any other platform provides absolute time measurements,
which lack accuracy for the Molen architecture.

• e extracted profiling information is mainly used in early design stage for porting
the application into a heterogeneous reconfigurable platform. e absolute tim-
ing measurements do not have an influential role in the decision making process
and/or high-level optimizations, which may be derived by the profiling informa-
tion.

. tQuad Implementation

tQuad uses the PinDBI framework to extract the required runtime information from the
application. Figure . provides an overview of the components in the tQuad implemen-



TQUAD IMPLEMENTATION Section .

Instrumentation
Registration

Application
Start

IsMemRef

IsRet

Read Increment

UpdateCurrentFunctionName

Update Internal
Call Graph

Ins Counter Increment

Time Slice Ckeck

Write Increment

Update Flat
Profile

✓

✓

Figure .: An overview of the tQuad implementation.

tation. e three modules comprising tQuad are the main module, the instrumentation
module, and the analysis module. Preprocessing includes initializations and registra-
tion of instrumentation routines. For each instruction executed in the application, the
instruction counter is incremented. Time slice checking is also performed aer each
instruction to dump the extracted information at predefined time intervals. For each in-
struction referencing memory addresses, the designated analysis functions are invoked
to collect the timing and bandwidth usage data. Furthermore, the instruction which sig-
nals the return from a function is monitored to ensure the consistency of the internal call
stack. e analysis module contains the routines to process the extracted data during
the runtime in order to create the output profiling results.

e interfaces to most runtime binary instrumentation systems are API calls that
allow users to hook in their instrumentation routines. Listing . shows the pseudocode
of the main tQuad interface in C++ style. At the beginning, there are several initializa-
tions for memory bandwidth usage data list, internal call stack and a mutual kernel-to-
bandwidth data map list. PIN_InitSymbols() must be called to access functions by name.
Aer initializing the Pin runtime system, the command line arguments of tQuad are
parsed to set primary parameters for the profiling process. ree options are supported,
namely, the inclusion/exclusion of the local stack area memory accesses, the time slice
interval seing, and the exclusion of memory bandwidth usage data caused by OS and
library routine calls. When mapping a kernel on a reconfigurable device, there may be
the possibility to allocate the corresponding local buffer on the hardware as well, pro-
vided that enough space is available for the size of needed memory block. In this case,
all the local memory accesses should be distinguished from external memory accesses.
In tQuad, we provide the option to estimate the usage of the memory access bandwidth
including or excluding the local stack area. Time slice interval is a key parameter that ad-
justs the detailing degree of the extracted memory access bandwidth information. Using
large time slices, some information is lost and a coarser view of the memory bandwidth
usage of functions is obtained. Library and operating system routines are usually of no
interest to the user, thus, tQuad has the option to exclude them from the analysis.

In Pin, the API call to INS_AddInstrumentationFunction() allows a user to instrument



Chapter  TEMPORAL MEMORY BANDWIDTH ANALYSIS

 //Data Structures
 class CallStack; // ADT for internal call stack
 class MBWUDataList { // Memory Bandwidth Usage Data List
 list<MACC*> mbwulst;
 // MBWUDataList members
 ...
 } MBW;
 class K2BW; // ADT for kernel to MBW Usage Data mapping


 //Global Variables
 string mainImg; // The main image name
 ofstream fprofile; // Temporary flat profile for snapshots data
 UINT64 TSInterval; // The time slice interval
 BOOL Uncommon_Functions_Filter=TRUE;
 BOOL No_Stack_Flag = FALSE;
 UINT64 CurrentInstructions=0; // Current number of executed instructions
 UINT64 SliceNumber=1; // Current time slice number
 CallStack CS;
 K2BW Kernels2MBWListMap;


 // Command line Options
 KNOB<UINT64> KnobSlice(KNOB_MODE_WRITEONCE, ”pintool”,”slice”,”500000”,”Specify time

slice interval in terms of the number of instructions”);
 KNOB<BOOL> KnobIgnoreUncommonFNames(KNOB_MODE_WRITEONCE, ”pintool”,”

filter_uncommon_functions”,”1”,”Filter out uncommon function names”);
 KNOB<BOOL> KnobIgnoreStackAccess(KNOB_MODE_WRITEONCE, ”pintool”,”ignore_stack_access

”,”0”,”Ignore memory accesses within application’s stack area”);


 int main(int argc, char *argv[])
 {
 MBW.Init();// Memory bandwidth usage data list initialization
 CS.Init(); // Internal call stack initilization
 Kernels2MBWListMap.Init(); // Kernels <--> MBWU Map
 GetMainImg(); // Parse commandline for primary image name


 PIN_InitSymbols();
 if(PIN_Init(argc,argv)) return Usage();
 CkeckTS(TSInterval=KnobSlice.Value());
 Uncommon_Functions_Filter=KnobIgnoreUncommonFNames.Value();
 No_Stack_Flag=KnobIgnoreStackAccess.Value();


 RTN_AddInstrumentFunction(UpdateCallStack,0);
 INS_AddInstrumentFunction(Instruction,0);
 PIN_AddFiniFunction(Fini,0);
 PIN_StartProgram(); // Never returns
 return 0;
 }

Listing .: tQuad main interface.



CASE STUDY: WAVE FIELD SYNTHESIS Section .

programs based on a single instruction, while the RTN_AddInstrumentFunction() pro-
vides instrumentation capability at routine granularity. We use these two API routines
to set up calls to the instrumentation routines Instruction() andUpdateCallStack(), respec-
tively. Listing . shows the body of the Instruction() instrumentation routine. e In-
struction() instrumentation routine sets up the call to the analysis routine IncreaseRead()
every time an instruction that references memory read is executed. A similar process is
followed in the case of memory write reference. Instruction() also monitors instructions
for the return from a function to maintain the integrity of the internal call stack. When
Pin starts the execution of an application, the JIT compiler calls Instruction() to insert
new instructions into the code cache. If the instruction references memory or signals
the return from a function, tQuad inserts a call to the corresponding analysis routine
before the instruction, passing the required arguments which are the IP, the number of
bytes read orwrien, and a flag showingwhether or not the instruction is a prefetch. e
corresponding analysis routines return immediately upon detection of a prefetch state
for an instruction. INS_InsertPredicatedCall() injects the analysis routine and ensures
that the analysis routine is invoked only if the instruction is predicated true. When local
stack area memory accesses have to be excluded, the Stack Pointer (REG_STACK_PTR) is
also passed as an extra argument to the analysis routine for subsequent processing. Fur-
thermore, Instruction() is responsible to initiate the time simulation and memory access
bandwidth monitoring for taking snapshots at predefined time intervals.

e source code of the UpdateCallStack() instrumentation routine is presented in
Listing .. e UpdateCallStack() instrumentation routine sets up the call to the analy-
sis routine EnterFC() every time a function is called during program execution. is is
necessary to update the internal call stack. Since tQuad ignores the functions which
are not in the main image file of the application, flag is used as a signal to indicate the
location of the most recently invoked function. e name of the function, as reported
by Pin, is also passed to EnterFC() for the sake of updating internal call stack.

. Case Study: Wave Field Synthesis

tQuad was tested on several real applications, specifically for phase detection based on
memory bandwidth usage information. Each application requires customized explana-
tion of results to further verify the usability and accuracy of tQuad results. In the rest of
this chapter, we present a detailed analysis of the hArtes wfs application (see Section .).
e main goal is to have a thorough understanding of the application behavior regard-
ing the memory access bandwidth usage of the kernels. e extracted information can
be further used for critical decisions, such as hardware/soware partitioning, mapping,
and scheduling. e information can also be useful to spot bolenecks related to the
memory usage of the application. Additionally, it can assist application developers to
revise the source code in order to gain performance increase on a particular platform.

In this case study, we specifically aim to achieve the following goals:

• the extraction of information about the intensity of the memory bandwidth usage
for each kernel during its execution. is information is critical in finding the
potential memory access related bolenecks when the application is executed on



Chapter  TEMPORAL MEMORY BANDWIDTH ANALYSIS

 void Instruction(INS ins, void *v)
 {
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)IncTotalInstCount, IARG_END);


 if (INS_IsRet(ins)) // returning from routines is monitored
 INS_InsertPredicatedCall(ins, IPOINT_BEFORE, (AFUNPTR)Return, IARG_INST_PTR,

IARG_END);


 if (!No_Stack_Flag) // stack accesses is ok
 {
 if (INS_IsMemoryRead(ins) || INS_IsStackRead(ins))
 INS_InsertPredicatedCall(ins, IPOINT_BEFORE, (AFUNPTR)IncreaseRead,

IARG_MEMORYREAD_SIZE, IARG_UINT32, INS_IsPrefetch(ins), IARG_END);
 if (INS_HasMemoryRead2(ins))
 INS_InsertPredicatedCall(ins, IPOINT_BEFORE, (AFUNPTR)IncreaseRead,

IARG_MEMORYREAD_SIZE, IARG_UINT32, INS_IsPrefetch(ins), IARG_END);
 if (INS_IsMemoryWrite(ins) || INS_IsStackWrite(ins))
 INS_InsertPredicatedCall(ins, IPOINT_BEFORE, (AFUNPTR)IncreaseWrite,

IARG_MEMORYWRITE_SIZE, IARG_UINT32, INS_IsPrefetch(ins), IARG_END);
 } // end of Stack is ok!


 else // ignore stack accesses
 {
 if (INS_IsMemoryRead(ins))
 INS_InsertPredicatedCall(ins, IPOINT_BEFORE, (AFUNPTR)IncreaseReadSP,

IARG_REG_VALUE, REG_STACK_PTR, IARG_MEMORYREAD_EA,
IARG_MEMORYREAD_SIZE, IARG_UINT32, INS_IsPrefetch(ins), IARG_END);



 if (INS_HasMemoryRead2(ins))
 INS_InsertPredicatedCall(ins, IPOINT_BEFORE, (AFUNPTR)IncreaseReadSP,

IARG_REG_VALUE, REG_STACK_PTR, IARG_MEMORYREAD2_EA,
IARG_MEMORYREAD_SIZE, IARG_UINT32, INS_IsPrefetch(ins), IARG_END);



 if (INS_IsMemoryWrite(ins))
 INS_InsertPredicatedCall(ins, IPOINT_BEFORE, (AFUNPTR)IncreaseWriteSP,

IARG_REG_VALUE, REG_STACK_PTR, IARG_MEMORYWRITE_EA,
IARG_MEMORYWRITE_SIZE, IARG_UINT32, INS_IsPrefetch(ins), IARG_END);

 } // end of ignore stack accesses


 // due time to take a snapshot?
 INS_InsertCall(ins,IPOINT_BEFORE,(AFUNPTR)Slice_checkpoint,IARG_END);
 }

Listing .: tQuad instruction instrumentation.



CASE STUDY: WAVE FIELD SYNTHESIS Section .

 void UpdateCallStack(RTN rtn,void *v)
 {
 bool flag;
 char *rNtemp;
 string rName;
 flag=(!((IMG_Name(SEC_Img(RTN_Sec(rtn))).find(mainImg)) == string::npos));
 rName=RTN_Name(rtn);
 rNtemp=new char[strlen(rName.c_str())+1];
 strcpy(rNtemp,rName.c_str());
 RTN_Open(rtn);


 // Insert a call at the entry point of a routine to update Call Stack
 RTN_InsertCall(rtn, IPOINT_BEFORE, (AFUNPTR)EnterFC, IARG_PTR, rNtemp, IARG_BOOL

, flag, IARG_END);
 RTN_Close(rtn);
 }

Listing .: tQuad routine instrumentation.

a particular heterogeneous reconfigurable architecture;

• the detection of the relative timing and activity span (starting and ending points
of execution) for each kernel in the application. e extracted information is sub-
sequently used for task scheduling and mapping [];

• the identification of the main phases in the application, based on the activity spans
of the kernels. e kernels that are active at the same time interval are possibly
relevant (communicating data). is information can be later utilized in task clus-
tering to help in efficiently partitioning the application.

In order to achieve these goals, several experiments were carried out. First, we used
gprof , as a general available profiler, to quickly identify the top contributing kernels
in the application as well as the call graph of the application. en, Quad-core is used
to get an overview of the amount of data communication between the kernels in the
application. Based on the extracted data, a discussion on the potential memory access
problems is subsequently presented. We also profiled the Quad-instrumented version
of the hArtes wfs application to clarify the effect of data communications in the over-
all contribution of each kernel in the application. Finally, tQuad is used in a series of
experiments to extract the timing information for each kernel and to identify the main
phases in the application.

.. Experimental Setup

All experiments were executed on an Intel -bit Core  ad CPU Q @ .GHz
with a main memory of GB, running Linux kernel v..-...el. e hArtes wfs
source code was compiled with gcc v... To use gprof , the application was compiled
and linked with the -pg profiling option enabled along with the -g option for the de-
bugging information to be available. e -bit version of tQuad was used with the
command line options to include/exclude stack area memory access and to adjust the
time slice interval, ranging from 5000 to 108 instructions per time slice. e hArtes wfs



Chapter  TEMPORAL MEMORY BANDWIDTH ANALYSIS

runs in off-line mode. is means that the input audio source is read from files instead
of audio devices. In all experiments, we used one primary wavefront source and thirty
two secondary audio sources (speakers).

Instrumentation-based tools can considerably slow down the execution of an appli-
cation. Since memory read and write instructions are executed frequently in multimedia
applications, the overhead of intercepting and checking these instructions is very high.
tQuad instruments every load, store, call and return instruction, which results in a slow-
down of the execution of the hArtes wfs application, ranging from .× to .× com-
pared to the native execution. e amount of introduced overhead is strongly dependent
on the time slice and the option to include/exclude stack area accesses. Despite such sig-
nificant slowdown, the execution time is comparable with the expected slowdown [],
hence, it is acceptable for a realistic working set data.

.. Kernels Overview

e hArtes wfs application consists of  functions. We used gprof to identify the top
computation-intensive kernels for further inspection. As stated before, the runtime fig-
ures provided by gprof are based on sampling. Hence, they are subject to statistical
inaccuracy, particularly if a function runs only for a small amount of time. In our ex-
periment, the sampling period is one hundredth of a second, which is a fair indication
of the accuracy of a function figure regarding its total execution time. Since the total
runtime of application is rather large, a small runtime value for a function indicates that
the function uses an insignificant fraction of the whole execution time. We executed
the hArtes wfs application fiy times to gain more accuracy. e results are summarized
and presented in Table ..

It was determined that wav_store and fftd are the top two kernels. ese kernels
together account for approximately sixty percent of the whole execution time of the ap-
plication. Inspectingwav_store reveals that the function saves the output audio signals
from buffers allocated inmemory to an output file in the .wav format. fftd implements a
fast algorithm to compute the one-dimensional Discrete Fourier Transform (DFT) using
the in-place (no additional memory allocation) buerfly Danielson-Lanczos method.

.. antification of Data Communication

Table . provides an overview of the amount of data communication between kernels
in the form of producer/consumer bindings. e results take into consideration the in-
clusion and the exclusion of the stack area memory accesses. By comparing the data
extracted from the individual cases, a lot of information can be derived. From Table .,
it can be seen that in most cases the ratio between the amount of data produced/con-
sumed for the stack inclusion to exclusion is limited. However, it is not the case with
zeroCplxVec and zeroRealVec as the ratios are greater than  and , respective-
ly. is means that the mentioned kernels are nearly reading all the time from the local
memory. In other words, they can be excellent candidates for hardware mapping provid-
ed that the corresponding input buffer is also placed on the chip. However, their intense
communication with the memory for writing data into the output buffers should not



CASE STUDY: WAVE FIELD SYNTHESIS Section .

Table .: gprof flat profile for the hArtes wfs application.

kernel %time self calls self total
seconds ms/call ms/call

wav_store . .  . .
d . .  . .
DelayLine_processChunk . .  . .
bitrev . .  . .
zeroRealVec . .  . .
AudioIo_setFrames . .  . .
perm . .  . .
cadd . .  . .
cmult . .  . .
Filter_process . .  . .
wav_load . .  . .
Filter_process_pre_ . .  . .
zeroCplxVec . .  . .
rc . .  . .
cr . .  . .
AudioIo_getFrames . .  . .
ffw . .  . .
vsmultd . .  . .
calculateGainPQ . .  . .
PrimarySource_deriveTP . .  . .
ldint . .  . .

% time is the percentage of the total execution time of the program used by the func-
tion; self seconds is the number of seconds accounted for by the function alone; calls
is the number of times a function is invoked; self ms/call is the average number of
milliseconds spent in the function per call; total ms/call is the average number of
milliseconds spent in the function and its descendants per call.

be ignored. e output buffers should also be instantly accessible to fully exploit the
performance gain.

Approximately half of the giga bytes read by wav_store originates from the stack
memory. is indicates that a substantial portion of the data has been produced inside
the function for internal processing. However, the size of the used memory in almost
the same (around  MB) for both cases, including or excluding stack accesses. is
means that a small area is locally allocated inside the function for temporary storage. e
need to fetch data out of sixty five millions distinct locations intowav_store can pose a
serious boleneck. By examining the QDU graph of the hArtes wfs, which is produced
by Quad-core, other useful information can be derived. For example, it turns out that
nearly all the data produced by wav_store are used internally and the kernel discloses
very limited amount of data for the other kernels. is remark can also be verified by the
small number of UnMAs used as output buffers compared to the huge amount of data
produced (hundreds of addresses per GBs). e fftd case is somehow different as the
ratio of stack inclusion to exclusion is approximately ten. is indicates that most of the
computations are performed inside the kernel. It is also worth noting that, the size of
the locally allocated memory used for temporary results is rather nominal due to the fact
that the UnMAs reported in the two cases remain identical. e immediate outcome of
this observation is thatfftd is a beer candidate thanwav_store for hardwaremapping
onto a reconfigurable device. is is particularly true if there is an intention to map the
corresponding local buffers as well.



Chapter  TEMPORAL MEMORY BANDWIDTH ANALYSIS

Table
.:

Sum
m
ary

ofthe
data

produced/consum
ed

by
the

kernels
in

the
hA

rtes
w
fs
application.

Stack
area

accesses
excluded

Stack
area

accesses
included

kernel
IN

IN
U
nM

A
O
U
T

O
U
T
U
nM

A
IN

IN
U
nM

A
O
U
T

O
U
T
U
nM

A
A
udioIo_getFram

es












A
udioIo_setFram

es












D
elayLine_processC

hunk












Filter_process













Filter_process_pre_












Prim

arySource_deriveT
P













bitrev












cr













cadd












calculateG

ainPQ












cm

ult













d













ff
w













ldint












perm













rc












vsm

ultd












w
av_load













w
av_store













zeroC
plxV

ec












zeroR

ealV
ec













IN
represents

the
totalnum

ber
of

bytes
read

by
the

function;IN
U
nM

A
indicates

the
totalnum

ber
of

unique
m
em

ory
addresses

used
in

reading;O
U
T

represents
the

total
num

ber
of

bytes
read

by
any

function
in

the
application

from
m
em

ory
locations

that
the

specified
function

has
previously

w
ri

en
to;O

U
T
U
nM

A
indicates

the
totalnum

ber
ofunique

m
em

ory
addresses

used
in

w
riting.



CASE STUDY: WAVE FIELD SYNTHESIS Section .

Table .: gprof flat profile for Quad-instrumented version of the hArtes wfs application.

kernel % time self seconds rank trend
wav_store . .  ↔
d . .  ↔
DelayLine_processChunk . .  ↓
bitrev . .  �
zeroRealVec . .  ↓
AudioIo_setFrames . .  �
perm . .  ↔
cadd . .  ↓
cmult . .  ↑
Filter_process . .  ↔
% time is the percentage of the total execution time of the program used
by the function; self seconds is the number of seconds accounted for by
the function alone; rank is the position of the function among all the
kernels; trend shows the intensity to increase or decrease the function’s
contribution compared to the initial flat profile.

As a general remark from Table ., although all the kernels are intensely commu-
nicating with memory, which is common for A/V processing applications, the size of
the memory addresses used for data transfer is limited (MB-GB of data vs. KBs
of UnMAs). However, a thorough analysis of the data in Table . discloses a critical
potential boleneck arising from the memory access paern of AudioIo_getFrames
and AudioIo_setFrames. In these kernels, the data transfer is carried out via sepa-
rate memory addresses. is is the reason why the number of bytes and UnMAs are
almost identical in the corresponding columns. e case is quite critical for the data
wrien into the memory addresses in AudioIo_setFrames (more than  MB of data
are saved in distinct memory addresses). is behavior, undoubtedly, will surpass any
performance gain that can be achieved by running the kernel in hardware, e.g., on an
FPGA. As a maer of fact, AudioIo_setFrames is responsible for copying interleaved
audio signal parts into relevant audio frames in the memory. is is the reason why it
is saving data in completely separate locations. e detailed information in the QDU
graph can even allow us to trace back the source of the data which is originating from
DelayLine_processChunk. Later, AudioIo_setFrames passes the data to wav_store
to be processed. By examining Table ., we can see that AudioIo_setFrames is only
contributing to four percent of the whole execution time. Nevertheless, with the huge
impact of the memory communication problem, it seems underestimated. Unfortunate-
ly, general profilers, such as gprof , are not able to provide an accurate estimation of the
memory access overhead impact on the overall kernel performance when a program is
profiled. In fact, the timing information estimated by gprof can not precisely describe the
behavior of an application in practice, particularly when there is an extreme interaction
with the memory systemwhose response time is influenced by some critical parameters.

QUAD-instrumented profiling data. We also profiled the QUAD-instrumented ver-
sion of the hArtes wfs to have a genuine overview of the application’s behavior. Certain-
ly, this version tends to reveal the data communication overhead introduced by accessing
individual memory addresses. Furthermore, it stresses costly global memory accesses in



Chapter  TEMPORAL MEMORY BANDWIDTH ANALYSIS

contrast to the less expensive local memory references during the execution of the pro-
gram. Table . summarizes the results for the previously identified top ten kernels. e
considerable increase in the timing contribution of each kernel is accounted to the over-
head introduced by the instrumentation and analysis routines. Meanwhile, the ranking
of kernels in this version is somehow more representative of a real execution, particu-
larly on systems that have a very expensive access cost for external memory compared
to on-chip local buffers. e reason is that the instrumentation routine simply discards
the local stack area accesses and only upon detection of a non-local memory access, an
analysis routine is called to handle a tracing process.

It is worth noting that, due to the long execution time of the instrumented program (a
couple of hours) the statistics extracted from the flat profile show a high level of accura-
cy. Only very slight deviations can be detected in different runs. As expected, there is a
substantial increase in the contribution of AudioIo_setFrames from  to  percent. By
profiling the QUAD-instrumented version of the program, we can distinguish between
local and global memory accesses. We can also take into account the size of the memory
blocks used in the data transfers. For instance, bitrev and DelayLine_processChunk
have more or less the same ratio of including to excluding stack area accesses. bitrev
shows a severe drop on the execution time contribution (from . to . percent). How-
ever, this is not the case with DelayLine_processChunk. is observation is justified
by looking at the reported UnMA usage for the two kernels in Table .. bitrev only
uses around one tenth of a KB as buffer, whereas DelayLine_processChunk accesses
about  KB of memory locations.

e kernels in the hArtes wfs show a huge diversity in the number of times they
are called, ranging from one to millions of calls. e huge number of calls does not
necessarily mean that the corresponding kernel has a large contribution to the total
execution time. Instead, the frequently-invoked kernels have oen quite a simple body.
Anyhow, the case of the top kernel in hArtes wfs is quite interesting: wav_store is called
only once and it has the contribution of about one third for the whole execution time. It
clearly indicates that the kernel must be active in a large time span during the execution
of the application.

.. Temporal Information Extraction

We utilized tQuad to have a clear view of the running times of the kernels in the pro-
gram. e extracted information is depicted in the form of running time graphs in Fig-
ure .. e x-axis is the execution time. Each unit represents the time slice which is set
to 108 instructions span. e y-axis represents the intensity of the memory accesses for
each kernel at a specified time slice. e graphs for different kernels are shown along
the z-axis. is makes it easy to compare the memory access behaviors of the kernels
in each time slice. As expected, wav_store is called approximately in the middle of the
execution time. It is silent in the first half and it is the only kernel active in the second
half.

Figure . also shows the memory bandwidth usage of the top ten kernels in the
hArtes wfs related to the memory read accesses including the stack area. Memory write
accesses have almost similar figures but the intensity of the data transfers is less by at
least a factor of two in most kernels. e time slice interval is set to 108, i.e. a snap-



CASE STUDY: WAVE FIELD SYNTHESIS Section .

0
10

20
30

40
50

60
70

0

2

4

6

8

10

12

14

16

18

x 107

Time Slice

B
yt

e
Filter_process
cmult
cadd
perm
AudioIo_setFrames
zeroRealVec
bitrev
DelayLine_processChunk
fft1d
wav_store

Figure .: Memory bandwidth usage of the kernels in the hArtes wfs, considering only the read
accesses including the stack area.

shot of the memory bandwidth usage is recorded every hundred millions instructions.
In total,  time slices are counted representing the execution of more than six billion
instructions for the completion of the program. Seing the time slice interval to a large
number causes the loss of detailed information. is is evident in the density of the pro-
duced graphs. Small time slice intervals are preferable for more accurate estimations.
Figure . depicts the relevant graphs for the last ten kernels. Here, the time slice inter-
val is set to 25×106, which provides a more detailed view of the running times of the
kernels. e second half of the total  time slices is cut off, as no kernel butwav_store
is active during this period. e graphs depict the memory bandwidth usage of the ker-
nels regarding the memory write accesses excluding the stack area. e memory access
paerns of all kernels are strictly regular in hArtes wfs. is is common in nearly all the
applications from multimedia domain as the processing algorithms are well-formulated
to work on predefined data blocks.

.. Phase Detection

tQuad recognized five different phases in the whole execution span of the hArtes wfs via
thorough examination of different graphs. Several experiments were carried out to ex-
tract the required measurements for each phase. A summary of the results is presented



Chapter  TEMPORAL MEMORY BANDWIDTH ANALYSIS

0
20

40
60

80
100

120
140

0

1

2

3

4

5

6

7

8

9

x 104

Time Slice

B
yt

e

ldint
PrimarySource_deriveTP
calculateGainPQ
vsmult2d
ffw
AudioIo_getFrames
c2r
r2c
zeroCplxVec
Filter_process_pre_

Figure .: Memory bandwidth usage of kernels in hArteswfs, considering only thewrite accesses
excluding the stack area.

in Table .. is depicts a clear image of the related active kernels in each phase in-
cluding their self contributions and memory access paerns during the execution time
of the program. e phases identified are mainly based on the role of the active kernels
in that particular time span. Nevertheless, some kernels, such as bitrev, are utilized in
a more general way, which causes the phases to overlap if we only consider the activity
time span of the kernels. We set the time slice interval to 5000 in order to have accurate
estimations of the memory bandwidth usage. However, the data presented in Table .
are still prone to slight statistical inaccuracy. Nevertheless, this inaccuracy should, in no
sense, distort the overall behaviors of the kernels. 1270684 time slices were measured
in total.

e phase span column in Table . indicates the earliest starting point and the latest
ending point in which a kernel in the phase is communicating with the memory. It
should be noted that, we only consider the kernels previously selected and not all the
functions in the hArtes wfs. Moreover, there are cases in which kernels are activated
in a short period of time outside the identified span. We merely ignore these cases
with respect to the overall memory access paern of the kernels in a phase. As an
example, rc gets active in the 145ᵗʰ time slice for a very short time and then becomes
silent until the 14663ᵗʰ time slice. Furthermore, the phase span does not necessarily
mean that all the kernels within that phase are active through the whole time slices.



CASE STUDY: WAVE FIELD SYNTHESIS Section .

Ta
bl

e
.
:

Id
en
ti
fie

d
ph

as
es

in
th
e
ex
ec
ut
io
n
pa
th

of
th
e
hA

rt
es

w
fs
ap
pl
ic
at
io
n.

av
er
ag

e
m
em

or
y
ba

nd
w
id
th

us
ag

e
m
ax

im
um

m
em

or
y

ph
as
e

%
ph

as
e

ac
ti
vi
ty

re
ad

ac
ce
ss

w
ri
te

ac
ce
ss

ba
nd

w
id
th

us
ag

e
(R

+W
)

ag
gr
eg

at
e

ph
as
e

sp
an

sp
an

ke
rn

el
sp

an
st
ac
k
in
cl
.s
ta
ck

ex
cl
.s
ta
ck

in
cl
.s
ta
ck

ex
cl
.

st
ac
k
in
cl
.

st
ac
k
ex

cl
.

M
BW

in
it
ia
liz

at
io
n


-


.



ff
w


.



.



.



.



.



.




.



ld
in
t


.



.



.



.



.



.



w
av

e
lo
ad


-




.



w
av

_l
oa

d




.



.



.



.



.



.



.



w
av

e
pr

op
ag

at
io
n


-






.



vs

m
ul
t
d




.



.



.



.



.



.



.



ca

lc
ul
at
eG

ai
nP

Q



.



.



.



.



.



<

.



Pr
im

ar
yS

ou
rc
e_

de
ri
ve

T
P




.



.



.



.



.



.




W
FS

m
ai
n

pr
oc

es
si
ng




-






.





d





.



.



.



.



.



<

.




<
.



D
el
ay

Li
ne

_p
ro

ce
ss
C
hu

nk




.



.



.



.



<
.



.



bi
tr
ev





.



.



.



.



<
.



.



ze

ro
R
ea

lV
ec





.



.



.



.



<

.



<

.



A
ud

io
Io
_s

et
Fr
am

es




.




.




.




.



<

.



<

.



pe

rm




.



.



.



.



<

.



<

.



ca

dd




.



.



.



.



.




.



cm

ul
t





.



.



.



.



.



.



Fi
lt
er
_p

ro
ce

ss





.



.



.



.



<
.



.



Fi
lt
er
_p

ro
ce

ss
_p

re
_




.



.



.



.



<

.



<

.



ze

ro
C
pl
xV

ec



.



.



.



.



.



<

.



r
c




.



.



.



.



<

.



<

.



c

r



.



.



.



.



.



.



A
ud

io
Io
_g

et
Fr
am

es



.



.



.



.



.



.



w
av

e
sa
ve





-








.



w
av

_s
to
re





.



.



.



.



.



.



.




ph
as
e
sp
an

in
di
ca

te
s
th
e
st
ar
ti
ng

an
d
en

di
ng

ti
m
e
sl
ic
es

fo
r
th
e
ph

as
e;
%
ph

as
e
sp
an

is
th
e
pe

rc
en

ta
ge

of
th
e
ph

as
e
ti
m
e
in
te
rv

al
to

th
e
pr

og
ra
m

w
ho

le
ex

ec
ut
io
n
ti
m
e
sp

an
;a

ct
iv
it
y

sp
an

re
pr

es
en

ts
th
e
nu

m
be

r
of

ti
m
e
sl
ic
es

in
w
hi
ch

th
e
ke

rn
el

is
ac

ti
ve

(a
cc
es
se
s
m
em

or
y)
;m

em
or
y
ba

nd
w
id
th

us
ag

e
is

m
ea

su
re
d
in

by
te
s
pe

r
in
st
ru

ct
io
n;

ag
gr
eg
at
eM

BW
re
pr

es
en

ts
th
e
su

m
m
at
io
n
of

al
lk

er
ne

ls
’m

ax
im

um
m
em

or
y
ba

nd
w
id
th

us
ag

e
in

th
e
ph

as
e
in
cl
ud

in
g
th
e
st
ac

k
ar
ea

ac
ce

ss
es
.



Chapter  TEMPORAL MEMORY BANDWIDTH ANALYSIS

ey can be quite active, such as fftd or less active, such as AudioIo_getFrames. is
behavior has nothing to dowith the intensity of thememory communications of a kernel.
As an example, perm is moderately active in the fourth phase. However, the memory
communication is not intense at all. On the other hand, AudioIo_setFrames is only
active in rather small time intervals but acts truly intensive in memory referencing. tQ
uad is capable of providing the detailed information about the exact time intervals in
which a kernel is communicating with the memory. It also analyzes the data to identify
the boundaries of potential phases.

e averagememory bandwidth usage is calculated over several passes with different
time slices. e data are normalized as number of bytes-per-instruction. In this way, it is
possible to have a general estimation of the kernel’s architecture-independent intensity.
If a more specific unit of measurement is needed, additional parameters for the target
architecture should be provided for tQuad, such as the number of PE cycles required to
execute each instruction. It is also possible to derive different measurement units, such
as bytes-per-cycle or bytes-per-second. e maximum memory bandwidth usage repre-
sents the maximum bytes-per-instruction measured in the peak of the communication
with memory counting both read and write accesses. For some of the kernels in Ta-
ble ., the upper bounds are specified. is is due to the fact that slight inconsistencies
in the measurements of the overall time slices were detected in the experiments.

e initialization phase runs only for a very short time interval, whichmakes it rather
uninfluential in the overall analysis. e second phase contains only one kernel which
is active throughout the whole time span. e kernels appearing in the third phase are
related to the implementation of a Multiple-Input and Multiple-Output (MIMO) delay
line and wave propagation computations for an array of speakers. Although the activity
span of the kernels in the this phase cover more than one fih of the whole execution
time, they have a nominal share of the memory bandwidth traffic. e main WFS pro-
cessing is carried out in the fourth phase, during which, fourteen kernels are active.
As expected, this phase has the biggest share of the whole memory bandwidth traffic.
Filter_process_pre_ has almost identical amount of memory bandwidth usage in the
cases of including and excluding the stack area accesses. AudioIo_setFrames and Au-
dioIo_getFrames have similar traits. is also conforms to the information presented in
Table . for the mentioned kernels. As mentioned before, AudioIo_setFrames shows
a completely unique aribute among all the kernels in the hArtes wfs application. e
intensity of the maximum memory bandwidth usage for this particular kernel reaches
over  bytes per instruction, while for all the others, it is at most  bytes per instruction.
Some kernels, such as DelayLine_processChunk, show a severe drop in the memory
bandwidth usage by a factor of  when excluding stack area accesses. In the cases of
zeroRealVec and zeroCplxVec, the factor is more than . Further investigation of
the information in the flat profile (not presented here) also reveals that, by excluding
the stack area accesses, the activity spans of these kernels are reduced by a factor of 
and , respectively. It is observed that wav_store is the only kernel in the last phase.
Despite being active for more than half of the whole execution time span, it cannot be
exclusively as influential as the main WFS processing phase.

e information about the phases in an application and the active kernels in each
phase along with the extracted quantitative memory access data provide valuable clues
for partitioning an application with respect to certain criteria. We investigate applica-



SUMMARY Section .

tion partitioning in detail in Chapter . Although not all the information extracted by
the Quad toolset is inclusively used in the partitioning process, we formulate a gener-
al application partitioning problem and discuss the procedure to carry out partitioning
based on some memory access profiling data. More precisely, relevant kernels are clus-
tered together in a sense that the intra-cluster communication is maximized, whereas
the inter-cluster communication is minimized.

. Summary

In this chapter, we presented tQuad, an extension for theQuad dynamic profiling toolset,
that provides relative timing information for the individual functions in an application.
It equips Quad to deliver temporal memory bandwidth information, which was lacking
initially in the Quad-core tool. Memory bandwidth information is gathered by detailed
analysis of all memory accesses in the presence of the timing data. In addition to iden-
tifying the ordering of function calls and their rather accurate execution durations, the
extracted information is subsequently utilized to discover the virtual phases inherent in
an application. To substantiate the correctness and potential of the developed extension,
a real audio processing application, namely the hArtes wfs, was examined in detail.

Note.
e content of this chapter is based on the following article:

S. Arash Ostadzadeh, Marco Corina, Carlo Galuzzi, and Koen Bertels, tQuad - Memory
Bandwidth Usage Analysis, Proceedings of the th International Conference on Parallel
Processing (ICPP’), San Diego, USA, September , pp. -.





CHAPTER5
Task Clustering: A Greedy

Approach

“… tractability reaches far beyond the racetrack where computing competes
for speed. It literally forces us to think differently. e agent of change is the
ubiquitous Algorithm. Let’s look over the horizon where its disruptive force
beckons, shall we?” †

— Bernard Chazelle

e problem of partitioning an application is discussed in this chapter. e goal is to divide
the functions (tasks) in an application into a predefined number of disjoint sets such that
some objectives are satisfied. Besides the formulation of the general application partitioning
problem, a heuristic approach is proposed as a solution to the problem, which focuses on the
minimization of inter-cluster and the maximization of the intra-cluster¹ data communica-
tion as the primary objective. e QDU graph, provided by the Quad-core tool, is utilized
as the input data model to drive the partitioning. Experimental results are presented for a
real application as well as for synthetic data in comparison with the optimal solution.

a
pplication partitioning² is a broad term referring to spliing an applica-
tion into (smaller) parts which then run on different PEs, while preserving
the semantics of the original application []. ese PEs can be integrat-
ed into a single chip or be distributed among different processors, which

are not necessarily in close proximity. e purpose of the partitioning can vary from
speeding up the execution of the application to allowing beer power management, to
offering predictable and reliable behaviour, to ensuring the security of the application.
Furthermore, the partitioning process itself is performed based on various criteria. It can
be inclined more towards balanced workloads or based on the functionalities of different

† The Algorithm: Idiom of Modern Science, Sept., .
¹ Cluster, in this context, refers to a set of tasks that are grouped together.
² It is also referred to as code partitioning or source code partitioning in literature.



http://www.cs.princeton.edu/~chazelle/pubs/algorithm.html

Chapter  TASK CLUSTERING: A GREEDY APPROACH

tasks constituting the application algorithm. Irrespective of its purpose and methodolo-
gy, there should always be some mechanisms to ensure that partitioning is performed in
the right direction and its main goal is fulfilled. As a result, thorough inspection of the
application behavior, and more specifically the interactions among different application
parts, is crucial in any efficient partitioning scheme.

e ability of parallel computing systems to execute more than one task simultane-
ously makes application partitioning a necessity to fully exploit the processing potential
of these systems. Several critical performance factors, such as the degree of parallelism
and the amount of overhead involved in parallel execution of an application, depend
directly on the application partitioning scheme [, , ]. An effective partitioning
scheme must take into account all these factors in order to provide performance im-
provement, which is mostly the primary goal of partitioning regarding parallel applica-
tion execution.

In this chapter, we present a heuristic solution for the general application partition-
ing problem which, in most cases, is considered to be NP-hard, or in specific cases, NP-
complete [, , , ]. us, an exhaustive search is likely to be impractical. Our
proposed heuristic solution is based on the greedy algorithm [], which yields locally
optimal solutions that approximate a global optimality in a reasonable time. The main
difference between our approach and other solutions is the fact that we utilize the
QDU graph, provided by the Quad-core tool, as the input data model to direct the
partitioning. This graph contains the actual data dependencies between the tasks,
which is not available in other approaches. As discussed in detail in Section ..,
the QDU graph proves to be superior to other input data models when the parti-
tioning objective targets the minimization of the data communication between
the different parts of an application.

To describe the partitioning approach in practice, we present a case study of the
Motion Joint Photographic Experts Group (MJPEG) encoding application. Additional-
ly, to substantiate the quality of the solutions obtained from the proposed partitioning
algorithm, we compare the results of synthetic graphs against the optimal solution de-
termined by an exhaustive search. e remainder of this chapter is organized as follows.
In Section ., we give an overview of the general application partitioning. Section .
presents a concise survey of the methods used for application partitioning. Before dis-
cussing our proposed solution, in Section ., we first formulate the application parti-
tioning problem in a very general and flexible manner. In Section ., we propose a task
clustering algorithm for the application partitioning, which is based on the greedy ap-
proach. e algorithm can be easily customized to accommodate different objectives.
Section . presents a thorough complexity analysis of the proposed algorithm. To sub-
stantiate the potential of the proposed task clustering algorithm, a summary of results,
using synthetic graphs, is presented in Section .. Section . presents the case study
of a real application partitioning and eventually, Section . concludes the chapter.

. Application Partitioning

For quite a long time, high performance computing in large-scale systems was centered
around the client/server model and also, to some extend, around parallel/concurrent



APPLICATION PARTITIONING Section .

Application

Input Data

PE0

PE1

PE2

PE0

PE1

PE2

Functional

Decomposition

Domain

Decomposition

Figure .: A schematic diagram of domain vs. functional decomposition. e input data is
the target of partitioning in domain decomposition, while functional decomposition targets the
application itself.

programming paradigms []. However, with today’s advent of heterogenous parallel
systems, where complex applications are executed on different PEs using various re-
sources, distributed execution of an application is more ostensible. At the same time,
creating such distributed applications is not easy indeed. Traditionally, most of the ap-
plications have been developed with the assumption that they would be executed on a
single processor. As a result, in an ideal case, it is desirable to have an intelligent system
that automatically partitions and distributes such applications while respecting critical
seings and metrics of the target platform. Considering a more practical point of view,
application developers need effective tools to help them in this respect, where a fully
automated solution seems to be hard to aain.

One of the primary steps in developing a distributed application is to break the whole
problem into discrete chunks of work that can be distributed among multiple PEs. is
is generally known as partitioning or decomposition. e computational work can be
partitioned among parallel PEs following two basic approaches:

Domain Decomposition - e data associated with a problem is divided into smaller
compounds and, then, each PE actually performs the same task, but on a different
portion of data.

Functional Decomposition - e focus is on the work itself to be performed rather
than on the data. erefore, the problem is decomposed according to the work
that must be done. Each PE is assigned (most probably) a (different) task in order
to perform a portion of the overall work. is approach is called application parti-
tioning because it necessitates the computational work to be partitioned. Figure .
depicts a schematic representation of the two approaches.

Several fundamental issues must be considered for application partitioning. De-
ciding what part of an application constitutes a potential executable unit (task) is not
trivial nor straightforward. Mostly, an optimal solution would be application- and/or
architecture-dependent. Conventionally, the granularity of the application partitioning
is in accordance with the granularity level of parallelism on the target architecture. e
granularity level can range from fine-grained instructions to different iterations of loops,



Chapter  TASK CLUSTERING: A GREEDY APPROACH

to coarse-grained functions. ere is always a trade off between the granularity level of
the partitioning, flexibility, and performance of the application. Fine grained partition-
ing can be in favor of flexibility, however, the performance gain in current heterogeneous
multiprocessors can be negatively influenced by dividing the application into too many
small chunks. Commonly, the overhead associated with the coordination (communica-
tion and synchronization) of too many small partitions surpasses the performance gain
offered by the distributed execution of an application.

In addition to the granularity of the partitioning, it is also very important to decide
on the placement of different tasks on available PEs. ere are several critical factors
that can severely affect task allocation decisions, some of which can only be dealt with at
runtime and/or by having some dynamic information about the application’s behavior a
priori. Most of the existing partitioning mechanisms are restricted in the sense that they
statically decide on the allocation of tasks, with no (or very limited) dynamic information
available beforehand. esemechanisms aremostly dependent on user interactions than
extracted information from the application itself.

Generally, an application partitioning scheme is characterized based on the following
factors:

Static vs. Dynamic Allocation - Static application partitioning refers to the separa-
tion of application workload at design time. Client/Server applications are typical
examples of this class of partitioning scheme. Static partitioning leads to inflex-
ibility that refrains from task migration to where they could have been executed
most efficiently. On the other hand, in dynamic application partitioning, the
workload of the PEs may vary during the execution of the application. In such
scheme, based on some predefined criteria, tasks may be offloaded to other (more
suitable) PEs at runtime. Consequently, dynamic partitioning becomes more chal-
lenging compared to static partitioning. Similarly, it cannot benefit from a beer
programming language support like static partitioning [].

Since this factor is concerned with the allocation of tasks to PEs (mapping), it is
sometimes referred to as Offline (static) or Online (dynamic) task partitioning or
task mapping in literature []. Offline task mapping can be specified in the form
of a configuration file or as annotations within the source code of the application.
Online task mapping is postponed until the execution time; mapping decisions are
normally made by some kind of runtime scheduler or by the operating system.

Explicit vs. Implicit Implementation - Application partitioning can be implement-
ed utilizing different mechanisms which, in turn, exhibit different levels of ab-
straction. On one hand, in an explicit mechanism, partitioning is expressed
within the programming language itself. It prohibits the provision of a full ab-
straction level, since the programmer is somehow aware of the complexities of
the coordination between different PEs. Explicit mechanisms can partially achieve
transparency by using traditional object-oriented programming techniques, such
as inheritance and the separation of interface and implementation. When applied
consequently, this means that task distribution is invisible to the application pro-
grammer, although behind the scenes, it may be expressed using the same lan-
guage. Moreover, explicit mechanisms can allow varying degrees of task distri-
bution transparency, depending on how the abstraction is actually realized. On



APPLICATION PARTITIONING Section .

the other hand, instead of utilizing the programming language for partitioning, it
can be handled implicitly by the execution environment. Consequently, implicit
mechanisms have the advantage that they achieve complete transparency from
the programmer’s point of view. e problem, however, is the lack of efficiency
because the abstraction is made below the programming language. To some ex-
tent, utilizing higher degrees of automatic optimizations may compensate for this
inefficiency [].

Coarse vs. Fine Granularity - e granularity level of a partitioning algorithm is an
important factor that substantially affects the performance of the partitioning al-
gorithm itself as well as the application for which the partitioning is performed.
Conventionally, the granularity level is decided by the estimated size of each po-
tential task that is to be mapped on the PEs of a target system. In general, tasks
which consist of loops, blocks or whole functions of code are assumed to be coarse-
grained. A coarser granularity can be advantageous with respect to reduced par-
titioning effort and lower communication overhead during the execution of the
application. e partitioning algorithm is characterized as operating on fine gran-
ularity when the tasks comprising the partitions of the application consist of sev-
eral instructions (or even individual instructions) of source code. Fine granularity
results in a huge solution space, which makes the partitioning difficult and, most-
ly, inefficient. An increase in the size of the solution search space increases the
execution time of the partitioning algorithm as well as the number of design choic-
es.

When an application is implemented using an object-oriented approach rather
than a procedural one, partitioning based on class or object granularity is com-
mon. Based on the assumption that all the objects instantiated from the same
class exhibit similar behavior and should be mapped on the same PE, partitioning
is performed on an individual class or on a group of closely interacting classes.
On the other hand, partitioning based on objects comes from the fact that objects
from the same class may exhibit different behaviors when interacting with differ-
ent objects. Moreover, assigning all objects of a class to a PEs can be restricting.
It should be noted that only in object-based partitioning, the source code is not
actually divided, instead, the aim is on the distribution of objects across different
PEs.

Source Code vs. Runtime Analysis - Partitioning ismainly performed based on some
behavioral analysis of an application. As an example, a dependency relationship
analysis can direct the identification of closely interacting components and, as a
result, they can be grouped together and placed in the same part. e analysis
can be carried out at the application source code level, which is conventionally
very fast; it can be performed on some kind of intermediate representation of the
source code, such as Sun Microsystem’s Java bytecode; it can even be performed
on the binary code of the application, although it is not common. Alternatively,
runtime analysis can be used to study the application behavior, including subse-
quent profile data processing.

Conventionally, if application analysis is performed without actually executing
the application, it is called SCA, in contrast to the DCA, where it is dependent



Chapter  TASK CLUSTERING: A GREEDY APPROACH

allocation
StaticDynamic

Implementation
Explicit

Implicit

granularity
Fine

Coarse
analysisSource

Runtime

Figure .: Different application partitioning factors. Application partitioning is commonly clas-
sified by the method utilized for the partitioning. Furthermore, partitioning methods are dis-
tinguished by different factors which characterize the partitioning from various aspects. ese
aspects include: the allocation of parts, the implementation of the partitioning, the granularity
level of the partitioning, and the analysis of the application to partition.

on the application execution on a real or virtual processor. For DCA to be effec-
tive, the target application must be executed with sufficient and representative
input data sets to disclose a true and thorough behavior of the application. As a
result, it is difficult to practically guarantee the comprehensiveness and exactness
of the application’s behavior. It should be noted that SCA formally refers to the
analysis performed by (semi)automated tools, as opposed to human analysis of
code, which is conventionally addressed with the terms: program understanding,
program comprehension or code review.

Figure . summaries the important factors which somehow categorize the parti-
tioning mechanisms. Apart from the four factors discussed here, the principal parame-
ter, which is widely used to classify application partitioning, is the utilized partitioning
method. Different partitioning methods and their implications are investigated in detail
in the following section.

. Partitioning Methods

Programming multiprocessors has always been a very difficult and complicated prob-
lem. High-level programming abstractions for these systems are almost non-existent,
leaving the programmers with the tedious burden of explicitly programming them us-
ing platform-dependent, low-level abstractions. Nonetheless, this process is error-prone
and forces the programmer to deal with many details outside of the application domain.
More precisely, the programmer has to deal with all parallel processing tasks required
to program a multiprocessor system. ese tasks include explicit partitioning of the
program into parallel tasks, scheduling these tasks on the PEs, synchronization, explicit
distribution of data among the PEs, and proper handling of data transfers [].

Much effort is being done to automate the parallel processing tasks mentioned above
by the compiler. us, the user would be relieved of explicitly handling the architectur-
al details of the system. Code partitioning and scheduling are assumed to be two main
phases of a compiler for parallel architectures [, ]. However, general code par-



PARTITIONING METHODS Section .

titioning has failed to aract researchers in comparison with the scheduling problem
[, , , ].

e application to be partitioned is generally given in the form of a task-/data-flow
graph or a set of directed/undirected cyclic/acyclic graphs, which represent some kind of
dependencies/relations between the tasks/data in the application. In a graph G = (N ,E),
the set N of nodes represents the computational tasks (at fine or coarse level of granu-
larity) and the set E of arcs represents the data and/or control dependencies between the
nodes. Different cost parameters can be associated with each node i , such as execution
time for HW and/or SW implementations, area required for hardware implementation,
etc. Parameters associated with each arc (i , j) may include the amount of data trans-
ferred from node i to node j , the communication time calculated for node i and j , when
mapped into the same/different PE(s), etc. Design constraints may also be defined, such
as latency, the capacity of the hardware resources, etc. e partitioning problem is to
find a mapping (assignment) of nodes to PEs based on one or more objective functions,
subject to the defined constraints. In case the partitioning involves scheduling as well,
the starting time of each node should also be determined.

Ordinarily, the target architecture or execution environment must be determined.
In some approaches, the partitioning problem is solved independently from the target
architecture by estimating the costs. If the target architecture is specified, appropriate
estimates for design parameters can be determined in advance. At a high level, regard-
less of specific details, the code partitioning problem falls into two classes. In one class,
partitioning is addressed for a specific application, which is assumed to be more effi-
cient (manual or semi-automatic partitioning). In the other class, a general solution
(automatic partitioning) is sought. e laer is proven to be hard to aain or the so-
lution is far too simple and, hence, inefficient [, , , , ]. Some early works
addressing the code partitioning problem for multiprocessor systems can be found in
[–, , –].

Apart from the general application partitioning, a specific class of this problem,
called harware/soware (HW/SW) partitioning (see Section .), has gained exten-
sive aention recently. HW/SW partitioning is basically a bipartitioning problem, which
divides the application into two disjoint HW and SW parts. e requirements of today’s
computing systems necessitate the realization of both hardware and soware compo-
nents. In this context, hardware means application-specific hardware units, i.e. hard-
ware designed and implemented specifically for a given system, whereas sowaremeans
a program running on a general-purpose hardware unit, such as a microprocessor. Tra-
ditionally, HW/SW partitioning was performed manually. However, as the systems to
design have become more and more complex, this method has become infeasible, and
many research efforts have been undertaken to automate partitioning as much as possi-
ble. Most presented methods are heuristic, but there also exists non-heuristic³ algorithms
[].

e majority of the previously proposed partitioning algorithms is heuristic. is is
due to the fact that partitioning is a hard problem and, hence, exact algorithms tend to
be quite slow for moderate to large problem sizes. More specifically, as mentioned be-
fore, most formulations of the partitioning problem are NP-hard [, , , ], and the

³ Non-heuristic methods are also known as exact, deterministic or optimal in literature.



Chapter  TASK CLUSTERING: A GREEDY APPROACH

exact algorithms for them have exponential runtimes. Heuristic methods are generally
classified as hardware-oriented or soware-oriented. In a hardware-oriented approach,
a complete hardware solution is initially realized and, subsequently, parts of the appli-
cation are iteratively moved to the soware as long as the performance constraints are
still met [, ]. e soware-oriented approach starts with a soware implementa-
tion, moving pieces to hardware for performance improvement until the time constraint
is satisfied [, , ]. In many research works, general-purpose heuristic meth-
ods are applied to solve the partitioning problem. In particular, Genetic Algorithm (GA)
has been extensively used [, , , , , , ], as well as Simulated Anneal-
ing (SA) [, , , , , ]. Other, less popular heuristic algorithms in this group
are tabu search [, , ], greedy algorithm [, ], and Particle Swarm Optimiza-
tion (PSO) []. In a comparative study [], tabu search is reported to outperform GA
and SA. Some researchers used custom heuristics. is includes the Global Criticali-
ty/Local Phase (GCLP) algorithm [, ], expert systems [, ], as well as other
heuristics [, , ]. ere are also some well-established classes of heuristic methods
that are usually applied to partitioning problems. Hierarchical Clustering is one such
class [, , , , , , ]. e other class of partitioning-related heuristic
method is known as Kernighan-Lin (KL) []. e method has been subsequently im-
proved in [, , , , ]⁴. [] presents a comprehensive comparison between
their proposed expert system and three other techniques, namely hierarchical cluster-
ing, SA, and KL heuristic. It has been concluded that the expert system achieves the best
partitioning results, both qualitatively and quantitatively.

Although heuristic partitioning methods are typically very fast and produce near-
optimal or even optimal results for small problem sizes, their effectiveness (in terms of
the quality of the found solution) degrades drastically as the size of the problem increases
[]. is is because, to quickly find a solution, these heuristic methods evaluate only a
small fraction of the whole search space. As the size of the problem increases, the search
space grows exponentially⁵, which means that the ratio of evaluated points of the search
space must decrease rapidly, leading to worse results. Moreover, if the to-be-partitioned
application is large in scope and tight system constraints (performance, cost, etc.) must
be met (which is usually the case), then chances are high that a heuristic partitioner will
find no valid solution. What is even worse, the designer will not know if this is due to the
weak performance of the partitioning algorithm or because there is no valid partition at
all. is shows that in practice, it makes sense to go for an optimal solution whenever
possible [].

e above issues can be addressed by using exact partitioning methods. ese meth-
ods include Branch and Bound (BB) [, , ], Dynamic Programming [, ], and
Integer Linear Programming (ILP) [, , ]. Due to large runtimes, exact methods
are usually used either for small problem sizes [, , ], or combined with heuris-
tic methods, which can sacrifice their optimality [, ]. is also makes it difficult
to verify their scalability for larger problem sizes. Appropriate scalability up to several
hundreds components is also reported in exact methods []. Arató et al. [] inves-
tigate the algorithmic aspect of the partitioning problem and evaluates the capability

⁴ e Kernighan-Lin partitioning heuristic, also known as min-cut or group migration, has been successfully
applied in circuit partitioning for a long time, and it is somehow adopted as a standard in this respect. e
extended version of the algorithm proposed in [] is known as Kernighan-Lin/Fiduccia-Matheyes (KLFM).
⁵ ere are 2n different ways to partition n components.



PROBLEM FORMULATION Section .

of deterministic partitioning for obtaining high quality solutions with less search time.
ey claim the superiority of the algorithmic approach compared to heuristic methods,
such as KL and GA. In a following study, Tahaee et al. [] pursues the theoretical
approach to further elaborate the algorithmic properties of the partitioning problem.
e authors propose a method with polynomial complexity to find the global optimum
of an NP-hard model partitioning problem for % of occurrences under some practi-
cal conditions. e problem modeling and categorization correspond to those used in
[, , ]. For a more detailed survey of primary HW/SW partitioning methods refer
to [, , ].

Additionally, the proposed methods vary significantly regarding the granularity of
partitioning. ere are works on fine granularity, where graph nodes represent single
instructions or short sequences of instructions [, , ], as well as basic blocks
[, , ]. Coarse granularity, where nodes represent functions, is also studied
[, , , ]. In addition, there are studies with flexible granularity, where nodes can
represent any of the above [, , ]. Concerning the scope of partitioning, further
distinction can be made. In particular, many studies consider scheduling as part of parti-
tioning [, , , , , ], whereas others do not [, , , , , ]. Some
even include the problem of assigning communication events to links between hardware
and/or soware units [, ]. In some studies, the target architecture is assumed to
consist of just a SW and a HW PE [, , , , , , , , , , , , ],
while on the contrary, some do not impose such restriction [, , ].

Table . presents a summary of several partitioning methods, which have been pro-
posed so far. As discussed earlier, the majority of research work is based on heuristic
methods. In addition, the simple case of application partitioning, which assumes only a
SW PE and a HW PE as the target architecture, is mostly investigated. Considering the
data communication analysis amongmultiple PEs makes the general application
partitioning even more intractable. As a results, mainly the approaches which
address general partitioning are either restricted to theoretical formulation of the
problem or do not consider such communication in a practical environment.

In the following sections, we present a formulation of the general application par-
titioning problem and, subsequently, describe a practical heuristic method to solve it
using the QDU graph introduced in Chapter .

. Problem Formulation

As stated in Section ., we use the (directed weighted) QDU graph as the input for appli-
cation partitioning. In its most general form, the graph partitioning problem deals with
the division of a graph’s vertices into a predefined number of subsets in such a way that:
) the number of vertices per subset is equal, and ) the number of edges straddling the
subsets is minimized. Graph partitioning has important applications in different fields
of Computer Science, including image processing, solving linear systems, VLSI circuit
layout, and distributing workloads for parallel computation []. Graph partitioning is
known to be NP-hard [], hence, all known optimization algorithms utilizing graph
partitions merely return approximations to the optimal solution for large problem sizes.
In spite of this theoretical limitation, numerous algorithms for graph partitioning have



Chapter  TASK CLUSTERING: A GREEDY APPROACH

Table .: An overview of various application partitioning approaches previously appeared in
literature.

Ref. Method Grain Input Target Lang. Spec. Sch.

Ex
ac

tM
et
ho

ds

[35] BB ins. data lists ASIP (PEAS-I) C X
[169] MILP n.s. TDFG multiprocessor n.s. X
[104, 156] dynamic programming bb data lists S SW + M HW C/C++ n.s.
[180] algebraic partitioning op. n/a S SW + S HW occam X
[52] BB task task graph S SW + S HW C, synthetic X
[138] ILP, BB, GA, min-cut, hierarchical clustering task communication graph S SW + S HW C, synthetic ×
[153, 154] MILP, custom heuristic, GA func. internal syntax graph multiprocessor C, DFL, VHDL X
[225] dynamic programming, tabu search n/a task graph S SW + S HW synthetic ×
[11] min-cut, custom heuristic flex.ʰ communication graph S SW + S HW n/a ×

H
eu

ri
st
ic

M
et
ho

ds

[91, 113, 135] greedy algorithm, dynamic programming bb CDFG S SW + S HW C, VHDL X
[201, 209] KL, greedy algorithm, SA, hierarchical clustering process SLIF access graph S SW + S HW VHDL, SpechCharts n.s.
[176–179] custom heuristic task IF1 (DFG) multiprocessor SISAL X
[107, 108] GCLP task CDFG S SW + M HW C, Silage/VHDL X
[129, 131] expert system vs. SA, hierarchical clustering, KL task EFG S SW + M HW HLL (n.s.) X
[51] greedy algorithm task HCDFG multiprocessor n.s. X
[34] PSO vs. ILP, GA, ACO task task graph S SW + S HW n.s. ×
[12] GA, ILP flex. task graph S SW + S HW n.s. ×
[93] custom heuristic, KL ins. DFG S SW + S HW hardwareC X
[132] SA, KL flex. exec. flow graph S SW + M HW HLL (n.s.) X
[65] GA flex. task graph multiprocessor synthetic X
[219] GA vs. tabu search vs. SA task task graph S SW + S HW synthetic X
[187] runtime profiling loop n/a S SW + S HW n/a (binary code) X
[105] greedy algorithm, custom heuristic flex. communication graph S SW + S HW n/a ×
[27] SA vs. KLFM task call graph S SW + S HW synthetic ×
[195] GA task task graph S SW + S HW synthetic ×
[73, 74] SA, tabu search process process graph S SW + S HW VHDL ×
[202] hierarchical clustering dyn.ⁱ call graph multiprocessor VHDL n.s.
[206, 207] hierarchical clustering func. SLIF access graph multiprocessor VHDL n.s.
[3] SA bb behavior desc. (SSA) S SW + CCUs Verilog HDL X
[208] meta-algorithm (BCS), SA flex. n.s. S SW + S HW VHDL ×
[143] GA flex. task graph S SW + S HW synthetic X
[76] SA bb ESG S SW + S HW C X
[170] GA dyn. HTG S SW + S HW n.s. n.s.
[130] hierarchical clustering flex. EFG S SW + M HW n.s. X
[185] GA task task graph S SW + S HW C, VHDL X
[28, 231] hierarchical clustering, min k-way cut ins. Unity HDL, occam S SW + M HW C, Unity, occam X
[1] hierarchical clustering task araction graph dist. het. RTʲ n.s. X
is esis greedy algorithm, hierarchical clustering task QDU graph multiprocessor n/a (binary code) ×

 e data model used to input information for the partitioning algorithm.
 Programming language specification utilized as input and/or output for the partitioner.
 Indicates whether or not the scheduling problem is also investigated along with partitioning.
 A general system with multiple PEs, no restrictions.
 bb refers to basic block, for which the granularity is not well-defined. It is also referred to as basic scheduling block in some
references.
 A system consisting of either S (single) or M (Multiple) soware/hardware processors.
 Operations, the finest granularity level.
ʰ Flexible means the method is general enough to be applied with different granularity levels.
ⁱ e granularity for the partitioning is dynamically determined by the algorithm.
ʲ Distributed heterogeneous real-time systems

been developed during the past three decades that can generate high-quality partitions
in very lile time. [] presents an overview of different graph partitioning algorithms,
focusing on workload distribution in parallel systems. Since the QDU graph is weighted
and the extracted data communication information is supposed to drive the partitioning
process, the general graph partitioning scheme seems to be inadequate for this purpose.
Other variants, namely weighted graph partitioning and δ-partitioning, are more perti-
nent as they can be customized based on weighting values.

Weighted graph partitioning allows weights to be associated with both the vertices
and the edges of an input graph. A good partition is determined by the rough equality
of the total weight of vertices in each subset and the minimization of the total weight of
cut-edges. In the context of task graphs, node weights can be used to encode different
computational costs (execution times) of tasks. Similarly, edge weights can signify the
volume of data communication required between two tasks. In δ-partitioning, imbal-



PROBLEM FORMULATION Section .

ance in subset weights is somewhat tolerated in the hope of significantly reducing the
number of cut-edges. In this partitioning, a fixed tolerance value δ is supplied as input,
in contrast to skewed partitioning, where user supplied weights are associated with each
subset to specify a desired imbalance in the partition. ese generalizations add more
flexibility for the characteristics of a heterogeneous system to have some bearing on the
partitioning. For example, if a machine’s inter-processor communication overhead is
sufficiently high, it might be worthwhile to tolerate some degree of load imbalance in
order to drastically reduce the communication volume. is tradeoff can be described
using δ-partitioning. As another example, in a heterogeneous system, the relative com-
putational performance of PEs can be described by specifying appropriate target weights
in skewed partitioning. It goes without saying that the closer one gets to modeling the
behavior of actual machines, the more complicated it becomes. Further generalizations
of the graph partitioning problem can also be assumed, e.g., minimizing the number of
PEs with which each PE communicates, or modeling non-uniform communication costs
that occur in clusters of multiprocessors [].

e model that is defined and used in this work is a further extension of the ap-
plication partitioning with the focus on the minimization of data communication and
task merging. More specific models, such as δ-partitioning or the usual HW/SW parti-
tioning discussed in Section . and Section ., can be derived from our general model.
e model proposed here only deals with application partitioning. It does not include
task scheduling/mapping, data distribution or other tasks, which are common for ap-
plication development in heterogeneous environments. We assume that decoupling the
specific tasks of the system design allows the development of more effective solutions.
Certainly, this decoupling necessitates some simplifications in the problem formulation
and may result in precision loss. By utilizing the profiling information extracted by Q²,
the partitioning algorithm has more or less accurate estimations of several cost metrics.
However, missing data, such as architectural properties of the communication system,
can affect the quality of the output results. Conversely, simplification drastically reduces
the complexity of the partitioning problem, and thus, a broader part of the search space
can be examined. In this way, even beer results may be achieved than by considering
all the modeling details and aspects of a design, but scanning only a small part of the
huge search space.

In our model, the target application is described as an annotated QDU graph, whose
nodes represent the functions (tasks) of the application to be mapped onto PEs. e
edges represent quantitative information of the actual data communications (transfers)
between the functions. We have to stress that in the QDU graph, edges do not convey the
usual meaning as depicted in common task or communication graphs seen in previous
work [, , ]. Furthermore, the acyclicity restriction and even the graph being
directed are relaxed in our model⁶. ese, in turn, contribute to the advantages of our
model, because it is more representative of the real world scenarios.

Each node is assigned a cost vector called execution cost that represents the cost val-
ues of executing a certain task on each of the available PEs. e cost is assumed to be
distinctive for different PEs in the support of heterogeneity of the target architecture.
However, for the sake of simplicity, one may decide that only one or several value(s)

⁶ ough the original QDU graph is directed, this is not a requirement in our partitioning model and will be
clarified later in the text.



Chapter  TASK CLUSTERING: A GREEDY APPROACH

suffice for each node. No explicit restriction is imposed on the semantics of this cost. It
may represent any cost metric, such as the usual execution time or the percentage of the
execution contribution, the size of the utilized hardware resources in the case of hard-
ware PEs, or power consumption. It is also possible to have a combination of several
metrics. However, it should be clear for the designer how various metrics should be in-
tegrated to determine the value asserting the execution cost of each task. Additionally,
the designer has to know how the cost of a part should be calculated with regard to the
total nodes in that part. In the most simple way, a linear summation of the values com-
bined with weight factors would do fine. While these assumptions are restrictive, they
generally pose no critical problem that substantially degrade the results. Most important
cost metrics fall within the simple summation strategy. For example, power consump-
tion is usually assumed to be additive. e same holds, to some extent, for the hardware
area resource usage and the execution time. Although the QDU graph is based on the
coarse function granularity, this is not a restriction within our partitioning model. Finer
grained levels, such as basic blocks, can also be used as long as the input graph is adapted
accordingly.

e edges in the QDU graph represent the actual data flow between functions, and
hence, are directed. However, this is not a requirement, since graph edges are utilized
with a different role in our partitioning model. In case a pair of communicating func-
tions are mapped to distinctive PEs, their data communication incurs a communication
penalty, the value of which is determined, for each edge, as a communication cost. De-
pending on the nature of each PE and architectural properties (communication means,
memory hierarchies, etc.), the communication cost can be different in different contexts
(heterogeneous PEs). In the general case, a vector of communication costs (or relevant
parameters, based on which the actual cost is computed) is maintained for each edge.
For homogeneous architectures, this can be reduced to just one value. e communica-
tion cost is conventionally assumed to be independent of the communication direction.
Otherwise, one can decide to use the directed QDU graph to compensate for different
communication costs based on the data flow direction. Primarily, the communication
cost depends on the volume of the data transferred between the two functions, which is
available in the QDU graph. For simplicity, if data communication stays internal within
a PE, the communication cost is neglected. is is due to the fact that, on most archi-
tectures, inter-context communication is orders of magnitude more costly compared to
intra-context one.

Similar to the execution cost mentioned above, no explicit restriction is imposed on
the semantics of the communication cost. e value of this cost can be determined based
on any parameter according to the architectural properties and design objectives. Fur-
thermore, the summation strategy to estimate the total communication cost of a part
shall remain applicable. e edges that cross the boundary of a part are called cut-edges,
and these are the ones which contribute to the communication cost of a PE. On the oth-
er hand, the edges which remain internal inside a part, i.e. the edges which represent
the data communication among the functions mapped into a single PE, represent the
coupling degree inside a cluster. ough not used for the estimation of the communica-
tion costs inside clusters, our model still considers it as the main critical factor to hint
at merging functions in one cluster. In this respect, our partitioning model extends the
prior definitions by introducing the concept of merging tightly coupled functions, which



PROBLEM FORMULATION Section .

are mapped onto a PE. A realization of this practice is investigated in details in Chap-
ter . Converting the directed QDU graph into an undirected one is easily accomplished
by replacing each mutual (a pair of inward/outward) edges between two nodes by a sin-
gle edge, whose value equals the sum of the connecting edges. Note that the QDU graph
may also contain self-loops, which, at this time, have no role in our partitioning model.
ese self-loops are simply ignored in the analysis.

We formalize the k-way weighted graph partitioning as follows. An undirected
weighted graph G = (V ,E) is given as input, where the vertex set V = {v1, v2, · · · , vn} rep-
resents the set of n functions in an application, and the edge set E = {ei j = (vi , v j) : 1 ≤
i , j ≤ n; i ̸= j } denotes the actual data communication between pairs of cooperating func-
tions. For each node vi , a set of Execution Costs EC (vi), or simply ECi = {ec1

i ,ec2
i , · · · ,eck

i },
EC : V 7→ (R≥0,R≥0, · · · ,R≥0), is defined, which specifies the execution cost of node vi

when mapped to either of the k available parts⁷. e value of the actual execution cost
is determined by picking up one of the k available values in ECi , based on the selected
part.

e Communication Cost (CC) for each edge ei j is defined as the set of non-negative
valuesCC (ei j), or simplyCCi j = {cc1

i j ,cc2
i j , · · · ,ccm

i j }, CC : E 7→ (R≥0,R≥0, · · · ,R≥0), when
vi and v j aremapped into distinct clusters. e value of the actual communication cost is
determined by picking up one of the m = 1

2 k(k−1) available values in CCi j , based on the
selected clusters into which vi and v j fall. e value of m corresponds to all the differ-
ent possible ways that an edge can connect two clusters from a set of k clusters. In case
the graph is directed⁸, the total number of values in CCi j would be doubled (m = k2−k)
and the actual communication cost is determined based on the source and destination
clusters of the edge. Similarly, the Coupling Degree (CD) for each edge ei j is defined as
the set of non-negative values C D(ei j), or simply C Di j = {cd 1

i j ,cd 2
i j , · · · ,cd k

i j },C D : E 7→
(R≥0,R≥0, · · · ,R≥0), when vi and v j are mapped into the same cluster. e value of the
actual coupling degree is determined by picking up one of the k available values inC Di j ,
based on the selected cluster to which vi and v j belong. In case the graph is directed
and there exists a pair of inward/outward edges between vi and v j , we simply assume
that the coupling degree value is the aggregation of the two values of the edges.

P is defined to be a k-way partition of an application if it is a partition of V : P =
{C1,C2, · · · ,Ck }, where Ci ̸= ;;

∪
P = V ; Ci ∩C j = ;; 1 ≤ i , j ≤ k; i ̸= j . Note that

the clusters cannot be empty. e set of edges within cluster Ci is defined as ECi =
{(vx , vy) : vx , vy ∈ Ci ;1 ≤ x, y ≤ n;1 ≤ i ≤ k}. e set of cut-edges CU TP ⊂ E , with re-
spect to partition P , is defined as:

CU TP = E \
∪

ECi , 1 ≤ i ≤ k

= {(vi , v j) : vi ∈Cx , v j ∈Cy ;1 ≤ i , j ≤ n;1 ≤ x, y ≤ k; x ̸= y},

and the execution cost of each cluster Ci is defined as:

ECCi =
∑

v j ∈Ci

ec j , 1 ≤ i ≤ k;1 ≤ j ≤ n.

⁷ Each part represents a subset of V that includes the set of functions to be mapped onto one PE. When there
is no confusion, we use the terms "cluster" and "part" interchangeably in the text.
⁸ As an example, when different communication channels for sending and receiving data exist.



Chapter  TASK CLUSTERING: A GREEDY APPROACH

For each cluster Ci , 1 ≤ i ≤ k , we define the Balancing Penalty (BP) to be the distance
between ECCi (the execution cost of cluster Ci) and the average execution cost of the
clusters in P , as follows:

BPCi =

∣∣∣∣∣∣∣∣∣
k∑

j=1
ECC j

k
−ECCi

∣∣∣∣∣∣∣∣∣ , 1 ≤ i ≤ k,

and the balancing penalty of partition P is simply calculated as BPp =
k∑

i=1
BPCi . Simi-

larly, the coupling degree of cluster Ci is defined as:

C DCi =
∑

(vx ,vy)∈ECi
cdx y , 1 ≤ x, y ≤ n ; 1 ≤ i ≤ k ,

and the coupling degree of partition P is defined as the following:

C Dp =
k∑

i=1
C DCi =

∑
(vx ,vy)∈E\CU TP

cdx y , 1 ≤ x, y ≤ n .

e communication cost of partition P is defined as:

CCp =∑
(vx ,vy)∈CU TP

ccx y , 1 ≤ x, y ≤ n .

us, in our model, an application partition is primarily characterized by three met-
rics: ) the balancing penalty, ) the communication cost, and ) the coupling degree.
ese metrics are defined in an abstract way in order to be general enough for various
model customizations. Furthermore, they can be inherently conflicting. As an example,
decreasing the data communication between PEs, may contribute towards unbalanced
workloads and vice versa. Based on the combination of these metrics, there are sev-
eral ways to formulate a well-defined optimization or decision problem. Furthermore,
different constraints on these metrics and possibly other parameters, such as resource
utilization, can be formulated in the problem definition. In this work, we only formulate
the most straightforward, yet comprehensive, partitioning problem as follows.

Problem AP⁹. Given an application and its undirected weighted QDU graph G as an
input, along with the cost functions BP , CC , C D , and the constants α, β, γ ≥ 0, find the
k-way partition P of the application that minimizes TCP =α BP + βCC + γC D−1.

is basic model captures themain important properties of general application partition-
ing in a heterogeneous environment. Its compactness helps designers to understand and
focus on the essence of the partitioning problem. A possible concise interpretation for
AP would be the following. Assume that the communication cost between PEs accounts
for the extra execution delay imposed on the application execution. We would like to
know how to partition the application such that each PE gets an equal share of the total
computational workload, while related (tightly-coupled) functions are mapped onto the
same PE. Mapping related function onto the same PE implies that there would be ample
opportunities for local code optimizations. at is the reason why we are interested in
such a solution to the partitioning problem.

⁹ AP stands for Application Partitioning.



MULTI-OBJECTIVE TASK CLUSTERING Section .

It should be noted that the aim of the partitioning is to minimize the weighted sum
of the cost metrics. ese weights (α, β, and γ) are specified by the designer, and only
define the relative significance of the three metrics. is means that the solution of the
problem AP is dependent on the ratio of the weighting factors, not on their absolute val-
ues. As mentioned previously, many different versions of application partitioning can
be derived from our general model and problem definition. For instance, if the execution
cost of the functions mapped onto a PE captures the amount of required memory, one
may decide to solve the following constrained optimization problem: among all the pos-
sible partitions of an application, find the one that minimizes the communication cost,
while meeting the constraint that the total required memory size for each PE is less than
or equal to a predefined value.

All the previously examined HW/SW partitioning problems can also be modeled
with our definition. As an example, suppose that the number of clusters is two (k = 2),
where the first cluster is labeled Hardware PE, and the second cluster, Soware PE. We
define the execution cost of a function to be an aggregation of two different cost values,
one for soware (ECS) and one for hardware (ECH). e total execution cost is simply
defined by EC = ζ ECS + (1−ζ)ECH . ζ is the parameter, which switches between  and
, depending on the function being mapped onto the hardware or the soware cluster,
respectively. One may assume that hardware cost (ECH) denotes the occupied area on
the chip, and soware cost (ECS) specifies code size. Considering that γ is zero or its
value is very small compared to α and β (thus, it can simply be ignored), we can easily
model the HW/SW partitioning problem defined in [].

. Multi-Objective Task Clustering

In the context of mapping applications onto systems with multiple (heterogeneous) PEs,
one key problem that severely limits the performance gain of the whole system is the
size of distributed tasks. is problem emerges from the fact that, when distributing
tasks, we have to take care of the extra overheads (communication, synchronization,
etc.), regardless of the properties of the underlying architecture. To tackle this problem,
coarse grained partitioning of an application is generally considered to improve the per-
formance of an implementation by decreasing the costs involved, which can also result
in increased parallelism []. Grouping tightly-coupled (related) functions is a natural
step to contribute to the coarseness of the partitioning granularity. Furthermore, aer
grouping, the size of the task graph (problem size) is reduced, and this can be benefi-
cial in subsequent stages, such as DSE for mapping and scheduling, and the synthesis
process in reconfigurable systems.

In this section, we present our task clustering algorithm which groups functions
into clusters based on the dynamic profiling information provided by Quad. It creates a
partition of an application that is assumed to satisfy an objective function defined by the
designer. Task clustering is used as the primary technique to contribute to the coarseness
of the granularity of tasks in our application partitioning solution.

e main motivation for task clustering is to suppress undesirable partitions, which
turn to be inappropriate, unnecessary, and non-optimal in the huge DSE of the appli-
cation mapping onto a heterogeneous multiprocessor environment. e flexible multi-



Chapter  TASK CLUSTERING: A GREEDY APPROACH

objective clustering algorithm presented in this work allows us to examine various crite-
ria in order to come up with near-optimal (or even optimal) solutions suited for different
scenarios. Since system- and architectural-specific details are peeled off from the core of
our partitioning solution, the proposed approach is considered general enough to be ap-
plicable to different heterogeneous multiprocessor systems. Furthermore, the outcome
of our clustering algorithm can provide hints to developers for customized design opti-
mizations and revisions in the application, such as possible coarse grained parallelism
detection.

.. Input Data Model

In our partitioningmodel, data communication information is provided at function level,
which implies coarse granularity, yet delivering sufficient detailed overview of quanti-
tative data dependencies within an application. Since the clustering algorithm generally
aims to form task groups as primary building blocks for application development and
execution in heterogeneous multiprocessor environments, we only need to go through
the analysis at the coarse level. erefore, we do not consider instructions or small basic
blocks within functions as the unit of partitioning. However, in case there is a require-
ment to analyze the application at finer granularity, the proposed model still proves to be
applicable to a great extent. As a quick and simple hack for the basic block or loop level
partitioning, one may opt to extract critical regions in the source code of the applica-
tion to create new (dummy) functions. Subsequently, the extracted profiling information
based on this modified version of the application can be fed as the input to the cluster-
ing algorithm. Tackling the problem at coarse level benefits from the fact that it is more
likely the partitioning algorithm ends up with loosely-coupled parts.

A call graph reveals the relations between the caller and callee functions in an ap-
plication. Various profiling tools, such as GNU gprof [], can report this information
based on source code or runtime analysis. e procedure involves tracking all function
calls and returns. e call graph represents primarily the control dependencies of an ap-
plication, since it shows the execution sequence on a coarse scale. However, regarding
the fact that a caller function typically passes input data to the callee, which, in turn, pro-
duces data as (a) return value(s), indeed initiates the concept of data dependency among
functions. Nevertheless, the data dependency presented by call graph is by no means a
complete representation of the actual data dependency in the application. ough partly
demonstrating the data transfers among functions (with direct calling relationship), it
does not account for indirect data production/consumption. Even worse, it can be mis-
leading, in the sense that there is no actual data dependency between the functions that
have a direct calling relation in the call graph. All partitioning approaches which only
rely on this graph or its variants may suffer from inefficiency if data communication is
the primary concern in the partitioning process¹⁰, which turns out to be mostly the case.

Certainly, what is needed as an input for a clustering algorithm is more than just the
function call relation. Customarily, an annotated call graph not only visualizes these
relations, but also provides other information, such as the number of times a particu-
lar function is called, a function’s self-contribution to the whole execution time, and

¹⁰ As a simple rule of thumb, input data incompleteness causes lack of accuracy, which, in turn, can result in
an inaccurate partitioning solution.



MULTI-OBJECTIVE TASK CLUSTERING Section .

main

F1 F2 F3 F4

F5

F8 F6

F7

F9

main

F1

F2

F3

F4

F5

F6

F7

F8

F9

Figure .: A typical example of the data dependency among functions in an application based
on (a) an annotated call graph (provided by GNU gpro) vs. its corresponding (b) QDU graph. As
seen in the figure, the actual data dependency is not captured accurately in the call graph, e.g., F
and F are indeed communicating data, however, it is not directly identified by the call graph.

a function’s entire contribution as an aggregate of its descendants. e execution time
contribution is used as the main parameter for workload balancing in our proposed clus-
tering algorithm.

Up to the present time, data communication as the input model is either specified
by synthetic graphs or in the form of task graphs. Task graphs integrate the concepts
of control dependency between tasks, i.e. which task has to start aer the execution of
which task(s), with data dependency, i.e. the ordering of execution is imposed by the data
requirement. is is still reliant on direct dependence. Contrary to other approaches,
we use the QDU graph to address this defect. e QDU graph exhaustively identifies all
(direct or indirect) actual data transfers occurring during the execution of the application,
regardless of any restriction which may result from the structure of the application.

Figure . (a) demonstrates a typical example of an annotated call graph. In each
node, the number in parentheses specifies a function’s self-contribution to the whole
execution time. e number appearing on the le is the entire contribution of the node
including all its descendants. On each edge, the aggregate contribution out of that branch
is stated along with the number of times that link is crossed. e number at the boom
of each node represents the total number of times a function is called. Compared with
the actual data dependency extracted by the corresponding QDU graph (as depicted in
Figure . (b)), we clearly spot the differences. A control dependency does not necessarily
imply an actual data dependency (e.g., the case of main and F). Additionally, the call
graph fails to report the data dependency between some functions (e.g., the case of F
and F).

.. Greedy Algorithm

Algorithms for optimization problems typically carry out a sequence of steps, with a
set of choices at each step. For many optimization problems, an exhaustive search to
determine the best choice simply exceeds the needed effort. In these cases, there are



Chapter  TASK CLUSTERING: A GREEDY APPROACH

efficient algorithms which will do just fine in decision-making. A greedy algorithm
obtains an optimal solution to a problem by making a sequence of choices. At each
decision point, the algorithm makes a choice which seems best at that moment. In other
words, it makes a locally optimal choice in the hope that this choice will lead to a globally
optimal solution []. is heuristic strategy does not always yields optimal solutions,
however, sometimes it does. In fact, the greedy strategy is quite powerful andworks well
for a wide range of areas, such as task scheduling and data compression. e proposed
algorithm in this work also utilizes a greedy strategy to create task clusters. In the
following, we briefly describe the general properties of a greedy strategy for problem
solving. Furthermore, we discuss why it can be appropriate to solve the application
partitioning problem defined in Section ..

It is not always easy to prove that a greedy algorithm will produce an optimal solu-
tion. However, the suitability of the greedy strategy for a particular problem is common-
ly related to two properties: the greedy-choice property and the optimal substructure.
We say that a problem lends to the greedy-choice property if we can make a decision that
looks best in the current problem, without considering results from its subproblems. It is
worth to note that a greedy algorithm never reconsiders its choices. is is the main dif-
ference between a greedy algorithm and dynamic programming. In dynamic program-
ming, we make a choice at each step, but the choice usually depends on the solutions
to subproblems. Consequently, we typically solve dynamic programming problems in
a boom-up fashion, progressing from smaller subproblems to larger subproblems. Al-
ternatively, they can be solved top-down using memoization¹¹. Even though the code
works top-down, we still must solve the subproblems before making a choice.

In a greedy algorithm, we make whatever choice seems best at the moment and then
solve the subproblem that remains. e choice made by a greedy algorithm may de-
pend on choices so far, but it cannot depend on any future choices or on the solutions to
subproblems. us, unlike dynamic programming, which solves the subproblems before
making the first choice, a greedy algorithmmakes its first choice before solving any sub-
problems. Nevertheless, beneath every greedy algorithm, there is almost always a more
burdensome dynamic programming solution. A problem exhibits optimal substructure if
an optimal solution to the problem contains, within it, optimal solutions to subproblems.
is property is a key element in assessing the suitability of a greedy algorithm as well
as dynamic programming [].

It is probable for greedy algorithms not to consistently find optimal solutions for
NP-complete problems with different input data. Nevertheless, they are still effective
because of their performance and oen provide good approximations of optimal solu-
tions. Greedy algorithms can suffer from the limitation that they are easily trapped in a
local optimum, thus, fail to find the global optimal solution. ey can make premature
commitments to certain choices, which prevent them from reaching the optimal solution
in the end. As an example, in the proposed clustering algorithm (see Section ..), if
the initial functions in the clusters are not properly selected (let’s assume they are heav-
ily communicating), there will never be a chance for them to be merged in one cluster.
Merging those functions can be part of the optimal solution, however, the algorithm fails
to reach this solution.

¹¹ A technique used primarily for optimization by preventing the function calls to recalculate the results of
previously processed inputs.



MULTI-OBJECTIVE TASK CLUSTERING Section .

One may argue that the flaw mentioned above is not only relevant to the initial
selection of functions, but it can degrade the quality of the solution, as we proceed to
augment the clusters with subsequent decisions. Although this is generally true and it
may happen, we are not expecting it to be dominant at all. e reason simply lies in the
fact that the QDU graph used as the input data model, is very dense. is means all the
functions which are somehow related to each other (regardless of their coupling degrees)
get the chance to be part of the examined candidates for inclusion in the related clusters.
In other words, if a function initially gets no priority to be checked for inclusion in a
particular cluster, it is unlikely that it belongs to that cluster anyway. erefore, it will
be included in another cluster if it is assessed to be the top candidate, or its placement
will be decided upon later. is is partly ensured by even gradual growth of all clusters —
to respect a fair chance of inclusion for all clusters — in our algorithm. e experimental
results presented in Section .. further substantiate this claim. Should other input data
models, such as call graph, be used for clustering, greedy algorithm would be seriously
susceptible to this flaw, thus, producing low quality solutions.

Apart from finding optimal solutions to some problems, greedy algorithms can also
be used as auxiliary selection criteria to prioritize options within other decision-making
algorithms, such as Branch and Bound [, ]. Furthermore, it is usually possible to
make greedy choices more efficiently by performing some kind of preprocessing. For
example, in our clustering algorithm, the candidate functions are sorted based on the
ranks assigned by a predefined function. is helps in the quick selection of substitutes
in the conflict resolution phase of the algorithm. By preprocessing the list of candidates
or even using an appropriate data structure (a priority queue in our case), greedy choices
can be made quickly, thus improving the efficiency of the algorithm. It should be noted
that in our algorithm, the list of options (function candidates) for each iteration of the
main loop of the algorithm is updated based on recent selections. As a result, there is a
requirement to sort the list repeatedly or maintain the list elements in such a way that
facilitates selecting the top candidate.

.. Application Partitioning Algorithm

As discussed in the problem formulation (Section .), our general partitioning model
focuses on three primary goals, namely workload balancing, maximization of the intra-
cluster communication, and minimization of the inter-cluster communication. ese
goals address the most critical aspects of application development and execution in a
multiprocessor system. Needless to say that the load balancing between clusters can af-
fect the performance of such a system, and the total communication time required by the
tasks is mainly dependent on the amount of inter-cluster data transfers. Additionally,
the flexible clustering algorithm proposed in this work is capable of considering system
and/or architectural constraints as well as user-defined heuristic rules to adjust the par-
titioning outcome based on different preferences and objectives. ese can include, for
example, FPGA hardware area constraints, in reconfigurable systems.

e purpose of the clustering algorithm is to find (strongly) interconnected func-
tions in order to group them together in a cluster. As discussed subsequently, the term
interconnected may refer to more than just functions which extensively exchange data,
though this characteristic is considered to have a critical role in clustering. As the main



Chapter  TASK CLUSTERING: A GREEDY APPROACH

component of the partitioning, the role of the clustering algorithm is crucial in subse-
quent stages of application development. e outcome clusters constitute the building
blocks for mapping/scheduling tasks on the target heterogeneous architecture. More-
over, cluster information can be used as hints to a parallelization unit, where application
revision is done to exploit possible coarse grained parallelism.

Grouping functions into clusters divides the data communication channels¹² in two
classes: Intra-cluster (connecting functions within a cluster), and Inter-cluster (con-
necting functions in different clusters). In order to perform clustering, a well-defined
objective is essential, which directs the formation of clusters. Generally, an objective
falls into one or more of the following categories:

. Balanced clusters - forming clusters that are nearly balanced with respect to
the workload (mostly specified with the total required executing time). Balance
does not necessarily imply equality of the amount of workload. More precisely, it
is beer defined by the uniformity of the required execution time among all the
clusters, particularly in the case of heterogeneous PEs.

. Loosely-coupled clusters - as few inter-cluster data communication channels
as possible contributes to the overall performance and facilitates parallel tasks
execution.

. Tightly-coupled functions within clusters - functions having tight interac-
tions are likely to be related, and hence it is beneficial to be integrated as one
entity. e coupling may be aributed to bidirectional data communication chan-
nels, huge amount of data exchange, the workhorse relation, etc.

. Balanced data communication - the data communication loads for inter-cluster
channels are expected to be nearly balanced. is also implicitly implies unifor-
mity within the number of required channels between clusters and the channel
bandwidth specifications.

. Resource constraints satisfaction - some system and/or architectural constraints
may be specified in the clustering objective, e.g., on-chip memory mapping con-
straints, power consumption constraints, etc.

Apart from the defined objective, heuristic rules may also be used as adjustments in
candidate selection procedure. ese rules may surpass or superimpose the objective
function. Anyhow, they are supposed to improve the quality of the prospective clusters.
In the following, we present some sample heuristic rules.

- If a function only communicates data with another function, it is preferable to put
them inside the same cluster.

- If the examined cluster is relatively small in terms of the overall execution time,
it is desirable to favor the node with the largest execution time in the selection
criterion and vice versa. Definition of a small or a large cluster is totally subjective.

¹² By data communication channel, we mean a virtual path along which data is communicated between two
functions.



MULTI-OBJECTIVE TASK CLUSTERING Section .

Nevertheless, it should be fairly easy to just estimate a contribution percentage
based on the number of clusters. As an example, for  clusters, we expect an
execution time contribution of about % for each cluster. us, a cluster with a
contribution of % is considered too small.

- It is beneficial to limit the number of bidirectional data communication channels
as much as possible. ese channels impose severe restrictions on any possible
subsequent parallelization¹³.

ese heuristic rules are only presented here as examples. ey may be revised or aug-
mented for adaptation to individual system design, architectural or user preferences and
requirements.

Figure . depicts the outline of the proposed task clustering algorithm. According
to our problem formulation described in Section ., clusters cannot be empty. As a
result, we opt to select one function for each cluster to form the initial populations in
clusters. e initial user-defined selection has a substantial impact on the final clusters
and should be done cautiously¹⁴. We adopt the following criteria for the initial selection.
To form clusters around computationally-intensive kernels, first we spot those functions
which pass a minimum contribution threshold. is value is predefined based on the
number of clusters. Just as an example, if we plan to end up with  clusters, a minimum
amount of about % might be appropriate. As a rule of thumb, in each cluster with
approximately % contribution to the total execution time, we probably find a kernel
with a contribution around %. is is quite dependent on the application, and does not
necessarily hold in every situation. e selected boundary value can be increased if too
many kernels are selected or decreased if not sufficient kernels meet the condition. We
also follow another strategy to discard excessive picked out kernels and to ensure not
finally end up with surplus small clusters. In the preprocessing step, pairs of kernels that
are topologically close to each other (at most within a predefined distance in the QDU
graph) are compared and the kernel with the lower contribution is discarded, unless the
kernel has a contribution percentage higher than a threshold value, making it illogical
to discard the kernel. As an example, when we are heading for five clusters, two kernels
with % and % contributions are both assumed to form their own clusters, no maer
how topologically close they are. Following this step, initial clusters are created with
selected kernels as first populations. e clusters gradually grow during subsequent
steps.

In the main body of the algorithm, at each iteration, clusters are augmented with
the best interconnected neighbor nodes. For each cluster, the candidates are evaluated
by a ranking function (R). is function inspects all the candidates for each examined
cluster and assigns a value to each candidate indicating the suitability of that candidate
for merging. It is clear that the selection process is strongly dependent on the definition
of the ranking function, providing high flexibility for the clustering algorithm. In order
to comply with different policies, individual terms and weights in the definition of the
ranking function can be customized. e ranking function should not be confused with
the definition of the total cost function (TCP), as defined in Section .. Although they can
be defined with comparable terms and weights, the laer is related to the cost estimation

¹³ is requires that we retain the direction information in the QDU graph.
¹⁴ is initial selection can be done manually by an expert user or, automatically, based on a defined strategy.



Chapter  TASK CLUSTERING: A GREEDY APPROACH

Initial Selection 1 select the initial kernels

Selection Revision 2 revise the initial kernels if necessary (k kernels are selected out of n
total functions in the input application)

Cluster Creation 3 create the initial clusters V1,V2,..,Vk
Cluster Revision 4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
20
21
22
23
24
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
38
39
40
41
42
43

repeat
{ // phase 1: candidate selection for merging
 for (all unfinished clusters)
 {
 if (no neighbor node left)
 mark current cluster as finished and continue;
 for (all neighbor nodes of current cluster)
 {
 if (candidate node does not satisfy any constraint) continue;
 evaluate with the ranking function;
 }
 if (all candidates failed to pass constraints)
 mark current cluster as finished and continue;
 sort candidates in decreasing order based on ranks;
 mark the candidate with the highest rank for merging;
 }
 // phase 2: conflict resolution
 while (there exists conflict between undecided clusters)
 {
 flag iter_dec=false;
 for (all clusters V1,V2, … ,Vm which marked C as the top candidate)
 // C refers to the node for which maximum value of m is obtained
 {
 if (iter_dec && C has the highest score in the current cluster)
 {
 iter_dec=true;
 mark the current cluster as decided;
 }
 else
 {
 unmark C in the current cluster;
 if (any candidate left) mark the next candidate in list;
 else mark the current cluster as decided and finished;
 }
 }
 }
 // phase 3: merge and update
 while (there exists unmerged marked candidates)
 {
 merge marked candidate with its respective cluster;
 update cluster properties;
 }
} until (all clusters are marked as finished);

Completion 44 resolve the problem of unassigned nodes

Figure .: e outline of the task clustering algorithm. e output of the algorithm is a k-way
partition of the input application.

of a partition. e ranking function is only used to choose the winner candidate which is
indeed expected to contribute to the optimality of the final solution. It should be stressed
that the terms and weighting factors used in the ranking function do not necessarily
have to cover all the cost functions defined for nodes and edges in the input model. In



MULTI-OBJECTIVE TASK CLUSTERING Section .

particular, the user-defined heuristic rules play vital roles in the assignment of ranks to
candidates (an ordering of candidates), yet these rules are not defined in the context of
the cost functions.

As an initial aempt in the proposed clustering algorithm, we define the following
simple ranking function, which considers only two terms in ranking candidates:

R(vi) =σ1Rexe (vi)+σ2Rcou(vi), 1 ≤ i ≤ n, (.)

where R(vi) denotes the final ranking value of the function vi . Rexe (vi) refers to the
execution rank¹⁵ of vi among all the candidates to be merged with the examined clus-
ter. As mentioned before, the final value of the Rexe (vi) is expected to be determined
in accordance with the heuristic rules if relevant. Higher rank implies beer chance
for selection. e coupling rank (Rcou) is calculated based on the data communication
intensity of vi with respect to the functions currently residing in the examined cluster.
Tighter data communication (quantitative value of the total bytes transferred) infers
greater probability for inclusion in the current cluster. σ1 and σ2 are weighing factors
to adjust individual ranking terms in the final multi-objective ranking function. Heading
for a fair share of each metric requires an equal value of weight factors for these two
parameters, e.g., seing both to 0.5.

Should constraints be defined that by definition disqualify candidate(s), they are ap-
plied in the candidate selection prior to the evaluation of the ranking function. Oth-
er (non-disqualifying) heuristic rules can be optionally applied as either pre or post to
the ranking function in order to modify ranks in favor or against certain candidate(s).
Alternatively, these rules can be implemented directly in the definition of the ranking
function. In the following phase, Conflict resolution is addressed for clusters competing
to draw inward an identical candidate. As clusters grow larger, this condition happens
when a particular candidate appears on the top of the lists of two (or possibly more)
clusters. In case of a conflict, we favor the cluster in which the examined candidate has
achieved the highest score. For all the other competing clusters, new substitutes — if
any exists — residing right next to the top candidates are selected. e same process is
repeated until all conflicts¹⁶ are resolved.

When we include a candidate within a cluster, the properties and parameters of the
cluster should be updated accordingly, in order to represent the current status of the
cluster. ese parameters are particularly used in checking the conditions for finalizing
clusters as well as in the ranking function and constraints. For example, if a cluster is
growing bigwith respect to the total execution time contribution, exceeding a predefined
threshold, we opt to mark the cluster as finished to prevent further growth. Generally,
the stopping point, where we decide not to continuewith a particular cluster, is subjective
and should be declared in constraints.

e last stage of the algorithm deals with the nodes which had no chance to end up
inside any cluster, during the execution of the main loop of the algorithm. is rarely
happens provided that we define appropriate and reasonable constraints complying with
the properties of the target system and the application. Nevertheless, we propose two
solutions to handle this situation. In the first, we may opt to put all the remained func-
tions in an extra cluster or more. e same procedure as described in the Cluster Revision

¹⁵ e rank of a function among the ordered list of functions based on the execution time contribution.
¹⁶ New conflicts may appear during substitutions.



Chapter  TASK CLUSTERING: A GREEDY APPROACH

stage of the algorithm can be used for this purpose. Another solution would be to relax
the constraint which prevents the functions to be included in the currently defined num-
ber of clusters. It should also be noted that this is not always feasible. In case there are
uncompromising constraints for clusters, e.g., hardware area restriction, it is not possi-
ble to go for this solution. It should be noted that if isolated functions exist in the QDU
graph, it is very probable¹⁷ that these functions do not end up in any cluster.

e clustering algorithm depicted in Figure . is wrien in a general form and ex-
cludes some implementation details. Furthermore, we have intentionally structured and
formulated the algorithm in such a way to facilitate its parallelization. A parallel version
of the algorithm can be easily derived from the general outline, which can even further
reduce the time (complexity) needed to solve the problem.

. Complexity Analysis

Measuring the time and/or space needed to solve a computational problem requires an
appropriate model. Conventionally, the deterministic Turing machine is adopted as a
standard computational model for this purpose. e time required by a deterministic
Turing machine TM on the input I is denoted with the total number of state transi-
tions¹⁸ the machine makes before it stops. TM is said to operate within time f (n), if
the time required by TM on each input I of length n is at most f (n). In other words,
a problem can be solved in time f (n), if there exists a TM operating in time f (n) that
solves the problem. A similar definition can also be stated for the space requirement of
an algorithm. Although time and space are the most widely-used complexity measure-
ments, any computational resource can be used in this respect. In summary, the theory
of complexity allows the classification of problems based on their difficulty. Further-
more, it enables us to compare different solutions for a given problem. In the following,
we discuss the time and the space complexities of the proposed task clustering algorithm.

.. Time Complexity

Time complexity analysis of algorithms is based on the assumption that performing a
basic operation in computing takes a fixed amount of time. us, the amount of time tak-
en by an algorithm is proportional to the number of basic operations performed by the
algorithm. As a result, time complexity of an algorithm is commonly estimated by count-
ing the number of basic operations performed. Since it is not possible nor necessary to
quantify exactly the wall-clock time needed to run an algorithm, the time complexity of
the algorithm is evaluated as a function of the input size of the problem.

e time complexity of an algorithm may vary based on the different inputs of the
same size, simply because some inputs may be faster to solve compared to others. To
address this issue, three cases for the complexity measurement are common, namely
best-, worst- and average-case complexity. Time complexity in the best and worst cases

¹⁷ It is for sure to happen if no initial kernel is selected which resides among the functions in an isolated cluster.
is is simply because these function get no chance to be examined as potential candidates for other clusters
in our algorithm.
¹⁸ State transitions are also called steps in some literature.



COMPLEXITY ANALYSIS Section .

are computed with the best and worst inputs of a certain problem size. Average-case
time complexity refers to solving the problem on an average. It can only be defined with
respect to a probability distribution over the inputs. For example, if all inputs of the
same size are assumed to be equally probable to appear, the average-case complexity is
defined with respect to the uniform distribution over all inputs of a certain size.

As a standard, the time complexity of an algorithm is expressed using the big O

notation, which suppresses multiplicative constants and lower order terms []. When
expressed this way, the time complexity is said to be described asymptotically, i.e. as the
input size tends to infinity. e worst-case time complexity of an algorithm, T (n), is the
most commonly used measure of the time complexity, which is the maximum amount
of time taken on any input of size n.

In our task clustering algorithm, it is assumed that n functions have to be partitioned
into k clusters. ese parameters (n and k) constitute the sizes of the inputs to the algo-
rithm. Based on the initially selected kernels for each cluster, the number of remaining
functions that go through the Cluster Revision stage is (n−k). e time taken for the Ini-
tial Selection and Selection Revision stages is dependent on the user implementation. We
assume that it is constant and simply ignore it in our time complexity analysis. e time
complexity of the third stage, Cluster Creation, is clearly O (k). To find the time complex-
ity of the main loop in the Cluster Revision stage (repeat/until), we shall determine the
number of times it is iterated. In each iteration of the loop, clusters are expected to take
only one candidate in, unless they cannot grow larger due to defined constraints or no
connectivity with neighbor nodes. In the best case, we can assume that, in each itera-
tion, all the k clusters evenly take one candidate in. Hence, the loop is repeated

⌈
n−k

k

⌉
times. Worst case happens when from the beginning, (k−1) clusters can grow no more,
and only one cluster takes in one element at each time, i.e. O (n −k). Assuming a uni-
form distribution of the probabilities of different inputs between these two extremes, the
average-case complexity can be computed as follows:

T (n) =
n−k

1 + n−k
2 + n−k

3 +·· ·+ n−k
k

k
(.)

= (n −k)
(
1+ 1

2 + 1
3 +·· ·+ 1

k

)
k

(.)

= (n −k)Hk

k
, (.)

where Hk denotes the k-th harmonic number¹⁹. e values of the sequence (Hk − ln(k))
decreases monotonically towards the following limit:

lim
k→∞

(Hk − ln(k)) = γ , (.)

where γ is the Euler-Mascheroni constant (.…) and ln(k) is the natural logarithm
of k²⁰. Hk grows as fast as the natural logarithm of k , i.e. Hk = θ(lnk). e reason is
that Hk can be approximated by the integral

∫ k
1

1
x d x, which is equal to ln(k), as depicted

in Figure .. As a result, the average-case time complexity of the loop can be stated as

¹⁹ e sum of the reciprocals of the first k natural numbers.
²⁰ Logarithm to the base e=., also known as Euler’s number.



Chapter  TASK CLUSTERING: A GREEDY APPROACH

0

1

2

3

4

5

0 10 20 30 40 50

H
k,1

x

Figure .: e generalized harmonic number of order k of  (Hk,1 or simply Hk) with k = ⌊x⌋
(red line) and its asymptotic limit γ+ln(x) (blue line). Adapted from theWikimedia Commons file
"HarmonicNumbers.svg" (hp://commons.wikimedia.org/wiki/File:HarmonicNumbers.svg).

follows:

O

(
(n −k) lnk

k

)
. (.)

In the worst case, the for loop at lines - in Figure . is checked for each of the k
clusters in each iteration of the outer main loop. Its time complexity is thus O (k). e
time needed to check the condition in line  is dependent on the implementation of the
algorithm. However, in the simplest case, the use of an adjacency matrix to represent
the input QDU graph incurs checking at most (n −k) entries in the matrix. is is to
determine the connectivity of each remaining (n − k) nodes to the examined cluster.
With the same reasoning, the for loop at lines - is repeated (n − k) times in the
worst case (where all the remaining nodes, which are not assigned to any cluster, are
directly connected to one of the nodes inside the examined cluster). We assume that the
evaluation with the ranking function, as well as constraint checking, only takes constant
amount of time, i.e. O (1). It is also straightforward to infer that evaluating the condition
in line  takes only constant time, provided that we update a simple status flag while
processing the candidates in the loop at lines -.

Optimal sorting is known to have linearithmic²¹ time complexity. us, sorting the
candidates for each cluster will take O

(
(n −k) log(n −k)

)
steps in the worst case²². e

time complexity inside the for loop at lines - is thus bounded by the fastest growing
term, namely O

(
(n −k) log(n −k)

)
. At first glance, it seems that the sorting in line 

is simply redundant, because when we are evaluating the candidates with the ranking
function (line ), we can tag the top candidate at the same time. In other words, no extra
time is needed for sorting the candidates, or simply we can scan once more the list of
candidates to pick the top one, i.e. linear complexity. While this assumption is true, it is
not applicable in our solution, because the clusters may compete for certain candidates
and this has to be addressed later. e sorting would compensate for the effort that we
have to do in order to find appropriate substitutes. is will be detailed in the following
discussion.

²¹ Portmanteau of linear and logarithmic
²² Any sort algorithm that runs in linearithmic time in the worst case can be used, such as heap sort, merge
sort, smooth sort, etc.



http://commons.wikimedia.org/wiki/File:HarmonicNumbers.svg

COMPLEXITY ANALYSIS Section .

e second phase of Cluster Revision (lines -) deals with the conflicts between
the clusters for the selected candidates. In the worst case, suppose that all the k clusters
have tagged the same candidate for inclusion. Determining the number of conflicting
clusters (m in line ) requires a linear scan of the top candidates in all the k lists. is
denotes the number of times the for loop at lines - is repeated, which is bounded by
k . e statements at lines - only need a constant amount of time to be executed. It
is obvious that during each iteration of the outer while loop at lines -, one conflict
between the clusters is cleared. As result, in the worst case, a maximum number of k
conflicts should be cleared. Note that in each conflict resolution, the number of clusters
that can possibly compete for a candidate is decreased by at least one. us, in the worst
case, the for loop at lines - can be executed with less number of iterations at each
time (k, k −1, k −2, · · · , 2). As a consequence, the time complexity required to resolve
all the conflicts between the clusters is bounded by the following:

O (k + (k −1)+ (k −2)+·· ·+2) =O

(
k(k −1)

2
−1

)
=O

(
k2) . (.)

In the last phase of Cluster Revision, we go through all the unfinished clusters to
include the selected candidates in their respective clusters, which is, in the worst case,
O (k).

e last stage of the algorithm, Completion, is dependent on the defined strategy and
its implementation. In the worst case, there can be (n−k) unassigned nodes le for this
stage. Regardless of the strategy used (a linear scan of the nodes or any other kind of
processing), we assume that the time for this stage is not going to be the dominant term
(or at most as large as the Cluster Revision stage). In conclusion, the worst-case time
complexity of the clustering algorithm is computed as follows.

T (n,k) =O

(
k +

(
n −k

k

)((
k × (n −k)× log(n −k)

)+k2 +k
)+ (n −k)

)
(.)

=O
(
(n −k)2 log(n −k)+k(n −k)

)
. (.)

e value of k is bounded by the value of n, i.e. 1 ≤ k ≤ n. us, we can logically assume
that k is a constant, or in the worst case, to have themaximum value for T (n,k), k should
be n

2 , which results in the following time complexity for the algorithm:

T (n) =O
(
n2 logn

)
. (.)

In Section .., we will prove that the exhaustive search of all the k-way partitions
for a given application with n functions requires superpolynomial (more specifically,
exponential²³) time. is means that in order to find the optimal solution in any case, the
time required to solve the partitioning problem grows exponentially with the increase in
the input size n. As n grows, the time needed to determine the optimal solution with the
exhaustive search soon turns to be huge and the method simply becomes infeasible. It is
not very difficult to see why exponential time algorithms are impractical for moderate to
large input sizes. Assume that a program executes 2n basic operations on a computer that

²³ An algorithm is said to run in exponential time, if T (n) is upper bounded by 2pol y(n), where pol y(n) is
some polynomial in n.



Chapter  TASK CLUSTERING: A GREEDY APPROACH

performs 1012 operations per second. For a moderate input size n, say , the program
would run for about 4×1010 years, which is roughly the age of the universe. Even with
a much faster computer, the program would only be useful for very small instances and
in that sense the intractability of a problem is somewhat independent of technological
progress. To address the intractability of the application partitioning problem, heuristic
methods, such as our proposed solution, which offer polynomial time complexities, are
inevitable.

.. Space Complexity

e space complexity of the clustering algorithm can only be accurately determined
when the implementation details are clear, since it is tightly dependent on the utilized
data structures. e algorithm presented in Figure . does not discuss the implemen-
tation details. Nevertheless, we provide an estimation of its space complexity. To this
purpose, we assume straightforward implementations of the required data structures
without considering any optimization, revision or whatsoever.

For the main input data model, the QDU graph, we use an adjacency matrix to store
the information of the data transfers among the functions. Since we expect the QDU
graph to be dense, the matrix is preferred over a list representation, which is usually
used for sparse graphs. It should be noted that, besides the space tradeoff, the two data
structures also facilitate different operations. Finding all the functions communicating
with a given function in an adjacency list simply requires reading the list. With an adja-
cency matrix, an entire row must be scanned instead, which takes O (n) time. Whether
there is data communication between a pair of given functions can be determined im-
mediately with an adjacency matrix, while, in the case of the adjacency list, it requires
time proportional to the minimum length of the lists of the two functions.

e graph used in the clustering algorithm is undirected and has no self-loops. As
a result, it is possible to cut off the upper or lower triangular elements in the matrix
as well as the elements stored in the main diagonal. is means it is only required to

store
(
n2 −

(
n2

2 − n
2 +n

))
=

(
n(n−1)

2

)
elements. e compensation for this space saving

is nominal, i.e. a simple check on the indices of elements in the matrix to swap them
before lookup, where pertinent. is is done in constant time. Furthermore, for each
function in the application, a set of data values can be maintained, such as the execution
time contribution, the required hardware area on FPGA, etc. e space needed is, thus,
always linear with the number of functions, i.e. O (n).

In order to keep track of the functions in each of the k clusters, a list data structure
can be used. In case a fixed-length array is selected as for the list implementation, the
maximum space for accommodating (1+n − k) elements should be reserved for each
cluster. at would result in a total space complexity of O (k × (n −k +1)). A constant
amount of space is also required to maintain the integrity of each cluster during cluster
revision stage of the algorithm. e extra space accommodates the required housekeep-
ing flags, such as finished and decided, to enable the update process on clusters. Using a
linked structure to implement the lists has the advantage that we do not have to reserve
the maximum possible space for each list. Note that the total number of elements that
can be distributed among all the k clusters, is n. In other words, the space complexity to



SYNTHETIC ANALYSIS Section .

implement the lists would be O
(
k +µ×n

)
. µ denotes a constant factor to compensate

for the implementation of the required links in the data structure.

Implementing the for loop at lines - necessitates that we evaluate and keep a
list of all candidates for each cluster. is is because we need to sort these candidates
later, as stated in line . To accomplish this task, sufficient space should be reserved for
each cluster independently to accommodate the maximal number of candidates, which
is (n −k). As a result, the total space complexity would be O (k × (n −k)).

To efficiently²⁴ find the conflicting top candidate C, for which the maximum number
of clusters are competing, we have to keep a list for each potential top candidate. In order
to instantly access each function as a potential candidate, an array of the length (n −k)
is maintained, which enables us to refer to each function based on its index in the array.
It is worth noting that we do not necessarily have to reserve space for the maximum
number of clusters in each list to be linked to each of (n −k) elements of the array. If
cluster C Lx marks element fy in the array, it has to appear in the list linked to fy , thus,
it will not be linked to another element fz . In other words, the whole space required for
all the formed lists would be linear with k , the number of clusters. Consequently, this
will lead to an extra space requirement of O ((n −k)+k) =O (n).

e space complexity of the task clustering algorithm with the input sizes of n and
k , denoted by S(n,k), is then calculated as follows:

S (n,k) =O

((
n(n −1)

2

)
+ (n)+ (k +n)+ (k × (n −k))+ (n)

)
=O

(
n2 +k (n −k)

)
. (.)

As discussed previously in Section .., the value of k is bounded by the value of n.
Compared to n, we can consider k as a constant, or in the worst case, k is assumed to
be equal to

(n
2

)
. In any case, the upper bound for the space complexity of the algorithm

would be O
(
n2

)
.

. Synthetic Analysis

In order to evaluate the quality of the results found by the proposed heuristic algorithm,
a proper test bench is needed. In our case, it is not relevant to compare the results with
our approaches, because they simply use different input data models. However, the ideal
way would be to compare the solution found by our algorithm against the optimal one
which is determined by an exhaustive search of all possible solutions. is allows us
to precisely assess how close we can get to the optimal solution. Of course, as already
discussed in Section .., exhaustive search would only be feasible for limited problem
sizes. Nevertheless, it is the prefect verification to indicate whether or not the selected
partitioning determined by our heuristic algorithm is near-optimal or even the optimal
one itself.

Before seing up a randomly generated synthetic test bench, it is required to have
a clear insight of all the possibilities to come up with a partitioning. It is also needed
to have an estimation of the problem size that is still tractable based on the problem

²⁴ By efficient, here we mean imposing no extra time penalty than a single scan of all the k clusters.



Chapter  TASK CLUSTERING: A GREEDY APPROACH

formulation. In this section, we first elaborate on a detailed analysis of the application
partitioning problem from a combinatorial mathematics perspective, and then present
the experimental results based on synthetically generated data.

.. Exhaustive Application Partitioning

In a general sense, application partitioning can be considered as a set partitioning prob-
lem, since we aim to form non-empty groups of the entire tasks in an application, such
that a particular task belongs to exactly one group (the groups are pairwise disjoint).
By definition, the number of different partitioning cases corresponds to n-th Bell num-
ber (Bn), where n denotes the number of tasks in a program. Bell numbers satisfy the
recursion Bn+1 =∑n

i=0

(n
i

)
Bi , starting with B0 = B1 = 1.

Due to the fact that the number of groups is pre-decided in our problem, the parti-
tioning cases are reduced. In this respect, the number of different possibilities to create
exactly k clusters out of n tasks, T C n

k complies with the following recurrence formula:

TC n
k = TC n−1

k−1 +k ×TC n−1
k (.)

To justify this recurrence, we assume that the partitioning of n tasks (T1,T2, ...,Tn) into
k clusters can only be achieved in one of these cases:

- Partitioning T1,T2, ...,Tn−1 into (k −1) clusters and puing Tn into the k th cluster.
- Partitioning T1,T2, ...,Tn−1 into k clusters and then adding Tn into one of the existing
clusters, which could be accomplished in k ways.

It is also trivial to observe that TC n
1 = TC n

n = 1. e expansion of Equation (.) results
in explicit values. Suppose we plan to come up with only two clusters (TC n

2):

TC n
2 = TC n−1

1 +2×TC n−1
2 (.)

= 1+2(TC n−2
1 +2×TC n−2

2) (.)

= 1+2+22 +23 ×TC n−3
2 (.)

= 1+2+22 +23 + . . .+2n−3 +2n−2 ×TC 2
2 (.)

= 2n−1 −1

2−1
= 2n−1 −1 (.)

To verify the number of clusters in another way, we can say that there are 2n ordered
pairs of complementary clusters (C L1 and C L2). By discarding the two illegal cases
where C L1 and C L2 are empty and considering only unordered pairs, which sets aside
half of the possibilities, we simply reach the (2n−1−1) partitioning cases. Other identities



SYNTHETIC ANALYSIS Section .

can also be computed with the same spirit:

TC n
2 = 2n−1 −1 =

1
1 (2n−1 −1n−1)

0!
(.)

TC n
3 = 3n−1 −2n +1

2
=

1
1 (3n−1 −2n−1)− 1

2 (3n−1 −1n−1)

1!
(.)

TC n
4 = 4n−1 −3n +3×2n−1 −1

6

=
1
1 (4n−1 −3n−1)− 2

2 (4n−1 −2n−1)+ 1
3 (4n−1 −1n−1)

2!
(.)

TC n
5 = 5n−1 −4n +2×3n −2n+1 +1

24

=
1
1 (5n−1 −4n−1)− 3

2 (5n−1 −3n−1)+ 3
3 (5n−1 −2n−1)− 1

4 (5n−1 −1n−1)

3!
(.)

...

As a result, the following explicit formula for TC n
k is derived:

TC n
k =

k∑
i=1

(−1)k−i i n−1

(i −1)!(k − i)!

= 1

k !

k∑
i=0

(−1)k−i

(
k

i

)
i n . (.)

Equation (.) corresponds to the Stirling number of the second kind, which specifies
the number of ways to partition a set of n elements into k non-empty groups. ere
are various notations for this number. Here, we adopt the following notation used by
Donald Knuth []:{

n

k

}
= 1

k !

k∑
i=0

(−1)k−i

(
k

i

)
i n = 1

k !

k∑
i=0

(−1)i

(
k

i

)
(k − i)n , (.)

where
(k

i

)
denotes the binomial coefficient, which is the number of ways of picking i

unordered outcomes from k possibilities, also known as a combination or combinatorial
number. Figure .(a) depicts all the possible ways to partition a set of five elements into
different number of groups. e Stirling number of the second kind for

{5
3

}
along with

the possibilities is shown in Figure .(b).

e way we partition an application consisting of n functions into k cluster is some-
how different from the standard set partitioning problem. In our solution, we first put
aside k elements (initial members for clusters are selected a priori), i.e. only (n −k) el-
ements are le to be partitioned into k clusters. Using Equation (.), the number of
possible ways to partition the remaining elements would be:{

n −k

k

}
= 1

k !

k∑
i=0

(−1)k−i
(

k

i

)
i n−k . (.)



Chapter  TASK CLUSTERING: A GREEDY APPROACH

(a) All possible partitions for a -element set.

(b) Partitioning a -element set into exactly  groups.

Figure .: An example of partitioning a set of five elements. (a) All the possible ways of par-
titioning the set into one, two, three, four and five groups. With just one way to partition the
set into one or five groups, ten ways for four groups, twenty five ways for three groups, and fif-
teen ways for two groups, there are, in total, fiy two possibilities. (b) All the possible ways of
partitioning the set into exactly three groups, which corresponds to the Stirling number of the sec-
ond kind

{5
3

}
. Adapted from the Wikimedia Commons file "Image:Set_partitions_;_circles.svg"

(hp://commons.wikimedia.org/wiki/File:Set_partitions_;_circles.svg).



http://commons.wikimedia.org/wiki/File:Set_partitions_5;_circles.svg

SYNTHETIC ANALYSIS Section .

e initial k elements can be distributed in k ! different ways in the k clusters. It should
be noted that each cluster only gets one element and the clusters are not considered
identical anymore. e clusters are differentiated based on the function which is initially
put in each cluster. As a result, the total number of possibilities would be:

(k !) ×
{

n −k

k

}
=

k∑
i=0

(−1)k−i
(

k

i

)
i n−k . (.)

As mentioned before in the set partitioning definition, we stress again that the created
groups are non-empty, i.e. the value calculated for

{n
k

}
(Equation (.)) only accounts

for the possibilities when no part is le empty at the end. is is not what we want for
our application partitioning problem, because the clusters are initially filled with one
element, i.e. the final clusters simply cannot be empty at all. As a result the remaining
(n −k) elements should be distributed into clusters accounting for the possibility that
a cluster gets no new element. Considering this fact, we know for sure that we would
have a higher number of possibilities than the one computed with Equation (.). e
exact number of possibilities for our partitioning problem is calculated as follows.

Using Equation (.), the number of possibilities that only one of k clusters gets no
share of partitioning (n −k) elements into them would be calculated as:(

k

1

)
×

{
n −k

k −1

}
× (k −1)! . (.)

is is justified by the fact that the only cluster which gets no new element of the dis-
tributed elements, can be chosen in

(k
1

)= k ways and the (n−k) elements are partitioned
among the remaining (k −1) clusters. Similarly, if exactly two clusters are le aside (get
no share of the distributed elements), the number of possibilities would be calculated as
follows: (

k

2

)
×

{
n −k

k −2

}
× (k −2)! . (.)

Other cases, where some clusters get no new element out of the partitioning, are com-
puted in the same manner. In the last case, only one of the clusters gets all the (n −k)
elements, i.e. (k −1) clusters are completely le aside. is case is stated with the fol-
lowing equation:(

k

k −1

)
×

{
n −k

k − (k −1)

}
× (k − (k −1))! = k ×

{
n −k

1

}
= k ×1 = k . (.)

Hence, the total number of possibilities that are not accounted for in Equation (.), is
computed as follows:

k−1∑
j=1

(
k

j

)
×

{
n −k

k − j

}
× (

k − j
)
! . (.)

Equation (.) specifies the total number of possibilities in which, during the partition-
ing of (n −k) elements into k clusters, at least one of the clusters gets no share of the
distributed elements. Using Equation (.) and Equation (.), the total number of pos-
sibilities to partition an application consisting of n functions into k clusters, A P (n,k),



Chapter  TASK CLUSTERING: A GREEDY APPROACH

is calculated as follows:

A P (n,k) = (k !) ×
{

n −k

k

}
+

k−1∑
j=1

(
k

j

)
×

{
n −k

k − j

}
× (

k − j
)
!

=
(

k

0

)
×

{
n −k

k −0

}
× (k −0)!+

k−1∑
j=1

(
k

j

)
×

{
n −k

k − j

}
× (

k − j
)
!

=
k−1∑
j=0

(
k

j

)
×

{
n −k

k − j

}
× (

k − j
)
!

=
k−1∑
j=0

[
k !

j !
(
k − j

)
!
×

(
1(

k − j
)
!

k− j∑
i=0

(−1)k− j−i

(
k − j

i

)
i n−k

)
× (

k − j
)
!

]

=
k−1∑
j=0

(
k

j

)(
k− j∑
i=0

(−1)k− j−i

(
k − j

i

)
i n−k

)

=
k−1∑
j=0

k !

j !

(
k− j∑
i=0

(−1)k− j−i

i !
(
k − j − i

)
!
i n−k

)
. (.)

Using Equation (.) gives an indication of the time needed to exhaustively search all
the partitions of an application as described in Section ... As an example, if we as-
sume that a conventional computer can examine  million partitions per second, an
exhaustive search for the optimal solution of partitioning an application with  func-
tions over  clusters would take approximately  hours to complete. is time would
be  years when we have  functions instead of .

.. Experimental Results

Weused a synthetic QDU graph generator as a test bench to investigate the quality of the
solutions provided by the proposed clustering algorithm. In order to generate synthetic
graphs and cost values, an efficient random number generator is utilized, which is based
on the Ziggurat Method [] implementing the algorithm presented in [] for gen-
erating Gamma variables. e developed random number tool generates high-quality
random numbers that are able to pass all the commonly-used tests for randomness [].
In the implemented synthetic QDU graph generator, the user has the flexibility to define
the number of nodes, the density²⁵ and the connectivity degree of the graph, and the
range of the cost values for nodes and edges.

In our experiments, we selected two different scenarios for the number of functions,
n = 18 and n = 20. In each scenario, the number of parts (k) is set to , , and . Fur-
thermore, we set the density parameter to %, which means that the total number of
edges in the generated graphs would lie between -% of the total number of possible
edges in its fully-connected counterpart graph. e connectivity of the graph is set to
full, i.e. no isolated node exists in the generated graphs (the graph is connected). e
ranking function for the clustering algorithm is defined in complete accordance with
the cost functions defined in Problem AP (Section .). is means that we consider all

²⁵ As discussed in Section .., the QDU graph is generally very dense.



MJPEG CASE STUDY Section .

Table .: Total number of possible partitions in an exhaustive search of the solution space re-
garding different problem sizes.

k = 4 k = 5 k = 6

n = 18
partitions ,, ,,, ,,,

 % ,, ,, ,,

n = 20
partitions ,,, ,,, ,,,

 % ,, ,,, ,,,

the three metrics exactly as defined in AP to calculate the final ranks of the candidate
functions. No extra heuristic rule is applied to the ranking function. e final rank of a
candidate function f , Rt (f), for each examined cluster, is computed as follows:

Rt (f) = Rexe (f)+Rcou(f)+Rcom(f) , (.)

where Rexe (f) denotes the execution cost rank of function f among all the candidates of
the examined cluster. Similarly, Rcou(f) and Rcom(f) denote, respectively, the coupling
degree rank of function f regarding the functions already in the examined cluster, and
Rcom(f) , the communication cost rank of f with respect to all the other clusters in the
partition. e values of all weight factors (such as σ1 and σ2 stated in Equation (.)) are
considered as , so that there is an equal effect for all the three metrics.

We generate all the possible partitions and compare the optimality of the solution
found by the proposed greedy approach to the optimal solution. In order to be fair in
comparison, the initial functions selected by the clustering algorithm is marked and kept
fixed for the exhaustive search as well. Since it does not make sense to compare the ab-
solute cost value of the optimal partition with the cost of the solution in our algorithm,
we only take the top % of the different partitions from the exhaustive search and find
the standing of our heuristic solution among them. Table . depicts the number of all
partitioning possibilities regarding different combinations for n and k . For each combi-
nation of the n and k , we have conducted  different experiments. e graphs depicted
in Figure . summarizes the results. e optimality values of the found solutions are
normalized within the interval [0..1]. An optimal value of 1.0 denotes that the found
solution is the optimal partition, and 0.0 indicates that the found solution was not at all
in the top % of the possible partitions²⁶. e experimental results look promising, as in
most cases, acceptable near-optimal solutions are found. Even though it is not feasible
to evaluate the optimality of the solutions for large problem sizes, it is still a concrete
proof of the effectiveness of the proposed heuristic algorithm.

. MJPEG Case Study

To evaluate the proposed clustering algorithm in a real application, we used an imple-
mentation of the MJPEG algorithm. e application contains  functions. e Quad
toolset was used to profile the application and to identify the critical kernels. We opted to

²⁶ In this case, the optimality value is simply ignored though it may still be much beer than the worst or the
average partitions.



Chapter  TASK CLUSTERING: A GREEDY APPROACH

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●
●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

my plot

simulation

o
p

tim
a

lit
y

1 25 50 75 100

(a) n = 18, k = 4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

my plot

simulation

o
p

tim
a

lit
y

1 25 50 75 100

(b) n = 20, k = 4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

my plot

simulation

o
p

tim
a

lit
y

1 25 50 75 100

(c) n = 18, k = 5

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

my plot

simulation

o
p

tim
a

lit
y

1 25 50 75 100

(d) n = 20, k = 5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

my plot

simulation

o
p

tim
a

lit
y

1 25 50 75 100

(e) n = 18, k = 6

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

my plot

simulation

o
p

tim
a

lit
y

1 25 50 75 100

() n = 20, k = 6

Figure .: Summary of experimental results for the synthetic data compared with the optimal
partitions in different problem sizes, (a) n=, k=, (b) n=, k=, (c) n=, k= , (d) n=, k=, (e)
n=, k=, () n=, k=.

partition the application into  clusters. Based on this assumption, the top contributing
Discrete Cosine Transform (DCT) kernel (DoubleReferenceDctD), which is responsible
for nearly half of the whole execution time, was selected to form its own cluster. Other
selected kernels were: UseHuffman, ReferenceDct, and antize. In a balanced partition-



SUMMARY Section .

Table .: Clusters in the MJPEG application.

Cluster Main Kernel # Functions Kernel’s contribution Cluster’s contribution

 DoubleReferenceDctD  .% .%
 UseHuffman  .% .%
 antize  .% .%
 ReferenceDct  .% .%

ing, an execution time contribution of about % is expected for each cluster. Hence, we
defined this as the stopping point condition for the cluster growth. With this respect, the
cluster corresponding to the top computationally-intensive kernelDoubleReferenceDctD
was immediately concluded with only one function, while other clusters grew gradually.

At the end of the partitioning, the ReferenceDct cluster stands as the largest cluster
regarding the number of functions, yet its total contribution is not substantially high.
e reason is that it contains all the I/O-related functions in the application with nearly
no extra contribution to the whole execution time of the application. e UseHuffman
cluster includes five functions with the contribution near the expected optimum value.
Only the antize cluster gets notably less than the expected contribution share, main-
ly for two reasons. First, the DoubleReferenceDctD cluster initially got approximately
double of its share, hence, not much le to be equally distributed to the other clusters.
Second, antize is limited in (or has no) data communication with the other clusters.
is also prevented the clustering algorithm to lend more functions to antize, as they
could fit beer in UseHuffman and ReferenceDct.

e partitioning results are summarized in Table .. An outline of the final parti-
tioning of the QDU graph is also depicted in Figure .. In order to make the figure less
dense, we omied some of the nominal functions, mostly performing I/O operations.
As inferred from Figure ., UseHuffman is correctly identified and isolated from the
irrelevant ReferenceDct and DoubleReferenceDctD. However, ReferenceDct, DoubleRefer-
enceDctD, and antize are somehow communicating sizable data. is was inevitable
with respect to the partitioning parameters specified in the initial seings. It is worth
to note that the solution found by the clustering algorithm indeed corresponds to the
optimal solution.

. Summary

In this chapter, we defined and formulated a general application partitioning problem,
which can cover all the prior related partitioning models, including the specific case of
HW/SW partitioning. Furthermore, we proposed a heuristic solution to the problem uti-
lizing a greedy approach. As the primary objective of the partitioning, we considered the
minimization of inter-cluster, the maximization of the intra-cluster, and the uniformity
of the execution time distribution. e QDU graph, provided by the Quad-core tool, is
utilized as the input data model to drive the partitioning. For synthetically generated
graphs, experimental results showed that the heuristic algorithm is able to provide com-
parable solutions with optimal partitions. Additionally, we examined the case of a real
application to further substantiates the efficiency of the proposed algorithm in practice.



Chapter  TASK CLUSTERING: A GREEDY APPROACH

�
�
��
��
�
��
�
��

�
	

�

����

�

	
�
��
�
�
��
��
�
��
�
���

�

�
��
�
	
���

�

�
�
��
��
�
��
�
��

�
	

�
�

�
�
�
�
�
�
���
�
����

	�
�
�

������

�
�
�
�
��
�
�
��
��
�
��
�
���
�

�
�
	�
�
�

������

�
��
��
����
���
�
����

�
	

�

������

!
�
��
"

�
	�
�
�

������

�
�
�
�
��
#
��
�
�$
�
��
�
�
����

�
	
�
�

������

������

!
�
��
�
%
#

�
	�
�
�

������

&
����
'
�
��!
�
�

�
	�
�
�

!
�
��
(
��
�
�
)
�
�

�
	�

�

�

�
$
�
��

�
	�

�

���

&
����
*
�
�

�
	�
�
�

&
����
�
�
�

�
	�
�
�

���

���

��
��(
��
�
�
+�

�
	�
�
�

!
�
��
(
��
�
�
+�

�
	�
�
�

��

����	�

&
����
�
,
�

�
	�
�
�

��

�������

��
��

�
	�
�
�

���	�	�

&
����
*
�
�

�
	�
�
�

���

��

�

������

���

���

���

&
����
-���

�
	�
�
�

���

&
����
.
�
�

�
	�
�
�

���

&
����
*
�
�

�
	�
�
�

��

���

/
�0
1�
0
�
�
����

�
	�
�
�

"
�
�
�
��1�

�
	�
�
�

�������

!
�
��
(
2
.

�
	�
3
�

������

������

4
��
'
�
��!
�
�

�
3
	�
�
�

������

.
�
��
�
�
�
%

�
	�
3
�

��

�������

.
�
��
�
�
'
�
��!
�
�

�
	�
3
�

�	�����

�������

.
�
��
�
�
5
%

�
	�
�
�

������

��

�$
�
�6

�
	

�
�

�������
������

��

������

�	��	��

�������

�

����	�

Figure
.:

A
partitioned

Q
D
U
graph

of
the

M
JPEG

application.


e
application

is
partitioned

into
four

clusters.


e
execution

tim
e
contribution

of
each

function–as
reported

by
M
aip–is

also
stated

inside
the

nodes.
e
originalQ

D
U
graph

is
converted

into
an

undirected
version.Som

e
unim

portantfunctions
as

w
ellas

allself-loops
are

rem
oved

from
the

graph.


e
finalidentified

clusters,D
oubleR

eferenceD
ctD

,U
seH

uff
m
an,R

eferenceD
ct,and


antize,have

totalexecution
tim

e
contributions

of.,.,.,and
.,respectively.



SUMMARY Section .

Note.
e content of this chapter is partly based on the following article:

S. Arash Ostadzadeh, Roel Meeuws, Kamana Sigdel, and Koen Bertels, A Multipurpose
Clustering Algorithm for Task Partitioning in Multicore Reconfigurable Sys-
tems, Proceedings of International Workshop on Multi-Core Computing Systems (MuCo-
CoS’), Fukuoka, Japan, March .





CHAPTER6
Utilizing Q² in HW/SW

Partitioning: Case Studies

“An algorithm must be seen to be believed.” †

— Donald E. Knuth

e Quad profiling information plays an important role in hardware/soware co-design.
To confirm its applicability in real scenarios, a partitioning approach is proposed which
divides an application into hardware and soware parts. Two realistic case studies are
described: a well-known edge detector and a standard voice codec. ese applications are
analyzed using the Q² profiling framework and, subsequently, partitioned for the Molen
heterogeneous reconfigurable platform. Detailed discussions and results are presented.

h
eterogeneous system design can be subject to different types of constraints,
including performance, power consumption, and cost. HardWare/So-
Ware (HW/SW) co-design addresses the development of complex hetero-
geneous systems seeking the best trade offs among different solutions. e

most critical task in this system-level co-design is HW/SW partitioning. e decisions
made during partitioning directly influence the performance of the final implementa-
tion. Broadly speaking, HW/SW partitioning deals with the assignment of parts of a
system description to heterogeneous implementation units: FPGAs or ASICs (hardware),
standard or embedded processors (soware), memories, and so forth [].

Soware implementation is generally used for flexibility and feature-richness, while
hardware implementation is used for performance. e aim of the partitioning is to
find a design implementation that fulfils all the specification requirements (function-
ality, goals, and constraints) at a minimum cost. In traditional design strategies, the
system designer decides which blocks of the system could be implemented in hardware
and which could be realized as soware running on a standard processor, taking into

† The Art of Computer Programming, Vol. I, Fundamental Algorithms, Section ., .



http://www-cs-faculty.stanford.edu/~uno/taocp.html

Chapter  UTILIZING Q² IN HW/SW PARTITIONING

account his/her own knowledge as an expert in the field. To automate such a difficult
task, several algorithms and techniques have been developed in different co-design en-
vironments [, , , , , ]. Most proposed approaches are tailored to work
within their own environments. As a result, there are substantial inconsistencies between
these approaches. Hence, a precise and fair comparison between them is nearly impossible.

In this chapter, we present a heuristic-based approach to address the HW/SW par-
titioning problem for which gaining the optimal solution bears a very high cost [].
Conventionally, performing an exhaustive search of the design space to find the opti-
mal solution is unlikely to be practical even for a moderate problem size. We do not
necessarily aim to provide the (theoretically) optimal solution, but a near-optimal prac-
tical solution in a reasonable amount of time. Our partitioning approach is driven
by the QDU graph which makes it stand out among other heuristic approaches
[, , , , , ] when put into practice. Irrespective of the heuristic rules
utilized, HW/SW partitioning in the absence of the actual data dependencies at
the coarse function-level fails to obtain effective partitions. In real scenarios, the
performance gained by hardware execution can be adversely affected by the cost of
data communication between hardware and soware parts. A function-merging
strategy is proposed that aims to reduce or even eliminate the data communication
betweenhardware and soware parts.Driven by accurate actual data dependencies
between functions, this strategy aims to merge tightly-coupled functions, which
heavily communicate with hardware kernels, in order to internalize the commu-
nication. To demonstrate the applicability of our approach, we utilize the profiling
information extracted by the Q² profiling framework to map real applications onto the
Molen heterogeneous reconfigurable platform. For this purpose, two applications have
been selected, one from the image processing domain and the other from the speech
processing domain.

e remainder of this chapter is organized as follows. Section . establishes the
background for HW/SW partitioning, which is a crucial step in porting sequential appli-
cations into heterogeneous reconfigurable platforms. Our proposed HW/SW partition-
ing methodology is presented in Section .. In Section . and Section ., we present
detailed descriptions and analyses of two applications to demonstrate the potential and
the applicability of the Q² profiling framework in HW/SW partitioning. Finally, Sec-
tion . summarizes this chapter.

. HW/SW Partitioning

HW/SW partitioning is the problem of dividing an application’s computations into a
part that executes as sequential instructions on a (general-purpose) microprocessor (the
"soware") and a part that runs as parallel circuits on some Integrated Circuit (IC) fabric
like an FPGAor anASIC (the "hardware"), so as to achieve design goals like performance,
power, size, and cost []. Commonly, the hardware part of the application is executed
on PEs that act as coprocessors for the microprocessor, as seen in the Molen machine
organization (see Section ..).

As an example, a brute-force DES cracking application [] to analyze the entire
DES -bit keyspace may be partitioned in such a way that the iterative block handling



HW/SW PARTITIONING Section .

operations are executed on a microprocessor, while the actual decrypting of blocks is
offloaded to hardware []. Block decryption is performed to find keys that decrypt
some portions of data into sequences of ASCII numbers. is technique is oen used
for recovering the keys of encrypted files containing known types of data, for example
encrypted documents that include financial or military information.

DES cracking applications running on current-generation CPU cores can process ap-
proximately  million DES key operations per second. A modern Graphical Processing
Unit (GPU) card such as the NVIDIA Tesla® [] can handle more than × that number,
or approximately  million DES operations per second. When using an FPGA cluster¹
based on a single off-the-shelf motherboard, each FPGA is able to perform . billion
DES operations per second. Using the cluster, the highest-known benchmark speed was
achieved for the -bit DES decryption, with the throughput exceeding  billion keys
per second. is means that a key recovery that would take years to perform on a PC,
even with GPU acceleration, could be accomplished in less than three days on an FPGA
cluster [].

e increase in the performance of hardware execution is aributed to the circuits
that execute some computations thousands of times faster than soware sequential in-
structions. is is largely because of the parallel nature of hardware circuits. As an
example, if an instruction contains  multiplications of independent data items, a gen-
eral microprocessor would have to execute them one (or a few) at a time, thus, requiring
hundreds of clock cycles. is is not the case with a dedicated hardware circuit, which
can potentially execute all of them in parallel using  multipliers, requiring only one
or few clock cycles. Moreover, such execution results in energy efficiency.

e existing concept of HW/SW partitioning appeared in the early s, shortly af-
ter the advent of High-Level Synthesis (HLS) in the late s [, , ]. During
the early days of computing, the designers had to manually perform such partitioning.
Despite the fact that the idea has been around for two decades, HW/SW partitioning
that involves some degree of automation, informally called automated HW/SW partition-
ing, has gained popularity in the last decade due to substantial advancements in the
semiconductor technology and the emergence of Programmable Logic Devices (PLDs)
as commodity processors.

While formal compilers convert program source code into sequential machine in-
structions, HLS shall automatically analyzes, architecturally constrains, and schedules
source code to create a register transfer level HDL. It is then synthesized to the gate level
by the use of a logic synthesis tool. With both HLS and compilers, the ultimate goal is
to write a single program (or "executable specification") from which both instructions
and circuits could be automatically generated. However, this is not fully achieved yet.

Today, HW/SW partitioning encompasses not only dividing the computations per se,
but also involves utilizing some well-established concepts, such as application profiling,
developing target architectures with efficient communication, microprocessor and cir-
cuits simulation, system debugging, developing customized tools and languages, and so
on [, ]. Due to the heterogeneity of target architectures, different means of data
communication exist between the microprocessor and coprocessors (FPGA, DSP, etc.).

¹ e FPGA cluster includes an SC containing  Spartan FPGA devices, housed in a single U chassis
drawing under  W.



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

Loosely coupled coprocessors may communicate with the microprocessor via a shared
memory or DMA, while more tightly coupled coprocessors may have more equal ac-
cess to a shared memory and the system bus. In an Application Specific Instruction-set
Processor (ASIP), the coprocessor circuit is integrated directly into a microprocessor’s
datapath, where partitioning occurs during compilation. On the contrary, partitioning
can generate processing circuits that execute as peers to microprocessors rather than
as coprocessors. Different target architectures require tools that partition at different
levels of granularity, including the instruction level (for the ASIP scenario) and the loop
or subroutine level (for coprocessor scenarios).

e advent of FPGAs has made HW/SW partitioning even more relevant and im-
portant in the field of computing []. ere is a resemblance between the way FPGAs
implement circuits and soware. Synthesis tools generate bitstreams, just like compilers
generate binaries, and the bitstream is fed into the FPGA’s program memory, just like a
binary is fed into a microprocessor’s program memory. FPGAs have started to appear
alongside with microprocessors for computing purposes on nearly all types of platforms,
including desktop computers (e.g., Intel’s ickAssist [], and AMD’s Opteron []),
supercomputers (e.g., SGI’s Altix []), and even in mobile and handheld devices [].
As such, HW/SW partitioning is addressed extensively by the reconfigurable computing
community. is includes the development of compilers targeting FPGAs, handling key
obstacles degrading performance, such as the memory boleneck problem, and applying
technological advancements, such as smart buffers that actively fetch and maintain the
data required by coprocessors [].

In fact, in view of FPGAs implementing circuits as soware, the term HW/SW par-
titioning seems to be misleading today []. Instruction/circuit partitioning looks like
more appropriate, with the output of partitioning being the soware intended for mi-
croprocessors and FPGAs. Partitioning may eventually be considered just a step during
compilation, along with existing steps, such as code parsing and code generation. Fur-
thermore, just as instruction soware today is commonly translated JIT by computing
platforms from one instruction set to another (e.g., Java bytecode JIT-compiled to a na-
tive instruction set, or x code JIT-compiled to a VLIW instruction set), it is feasible to
JIT-partition instruction soware to circuit soware, a process known aswarp processing
[, ].

e rest of this section is organized as follows. In Section .. and Section .., we
discuss the main objectives of the integrated HW/SW co-design in the context of recon-
figurable systems, as well as the important challenges which the users of these systems
face to make efficient use of their potential. In Section .., we briefly survey some
relevant HW/SW partitioning approaches that utilize profiling information in order to
drive the partitioning process.

.. HW/SW Co-design: Research Directions and Challenges

HW/SW co-design is a multi-disciplinary research theme. e study of computing sys-
tems’ architectures directs performance and/or energy consumption analysis of CPUs or
multiprocessors; the theory of real-time systems drives the analysis of deadline-driven
applications, while computer-aided design (customized tools) helps in evaluating the
hardware and/or soware cost, as well as, provides methods for DSE. e intrinsic di-



HW/SW PARTITIONING Section .

versity in this research area, in turn, brings about the fundamental problem of HW/SW
partitioning to be driven by various objectives.

Co-synthesis was basically established to target FPGA-based platforms. Neverthe-
less, several critical challenges should be addressed before co-synthesis becomes a com-
monplace approach for FPGA design. In general, the efficient use of an FPGA platform
requires identifying applications that map well onto it. Nowadays, many applications
require distributed computations to deal with fast response rates. As the most important
requirement, the PEs in these systems should be integrated in a way to ensure that they
jointly satisfy the application’s performance requirements.

Conventionally, a HW/SWpartition is determined a priori (and is adhered to asmuch
as possible) because any changes in this partition may necessitate extensive redesign.
Designers oen strive to make everything fit in soware, and off-load only some parts
of the design to hardware to meet performance constraints. is will not always result
in efficient designs. In general, at a high level abstract, major problems with the HW/SW
co-design are:

• Lack of a unified HW-SW representation, which leads to difficulties in verifying
the entire system, and hence to incompatibilities across the HW/SW boundary;

• A priori definition of partitions, which can lead to sub-optimal designs;

• Lack of a well-defined exact design flow, which can make the design process com-
plicated and revisions difficult.

A key problem that remains, as always, is the communication between the GPP and
the coprocessor(s). Several delay sources can annul any performance gain achieved by
accelerating computationally-intensive parts on these coprocessors. ese include com-
munication delay, which is due to architectural limitations, and tasks’ synchronization
delay. An appropriate application for these kind of platforms would usually have intense
computations that can be moved to coprocessor(s) ensuring rather small communication
interactions with the GPP, enabling efficient work overlapping.

Creating suitable interfaces for both the FPGA fabric and GPP sides of the system is
indeed indispensable. On the GPP side, drivers are required to turn soware operations
into instruction sets for the hardware. On the FPGA fabric side, interfaces to manage
the interconnect systems should be built. Until now, no appropriate unified language is
established as a standard to describe HW/SW partitioning specifications. Soware lan-
guages, like C, bias the implementation in favor of soware, while hardware languages,
like Verilog, bias results towards hardware. An alternative might be to describe the sys-
tem in two languages: describe some obvious hardware functions in a HDL and describe
the rest of the functions in a soware language. As a result, when operations are moved
across the partition, only a relatively small part of the total specification is translated.

Currently, system design, soware design, and semiconductor design are converg-
ing in order to address the increasing challenges to create complex ICs and SoCs. is
convergence has brought to the forefront the need for organizations to facilitate the
creation of system-level, semiconductor design, and verification standards. Leading in-
dustry standards associations Accellera and Open SystemC Initiative (OSCI) merged re-
cently in  to form a single organization, called Accellera Systems Initiative [], to



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

address the needs of the system and semiconductor designers. With the recent addition
of Transaction-Level Modeling (TLM) to the IEEE- SystemC Standard, the design
community has expressed interest in exploring technical synergy with the Universal
Verification Methodology (UVM) and other languages, as well as, a more transparent
flow from SystemC to the standard unified Hardware Description and Verification Lan-
guage (HDVL) SystemVerilog []. System-Level Design Languages (SLDLs), such as
SystemC and SpecC [], must consider computational models, system design method-
ologies, simulation, and many other factors to be widely adopted in electronics industry.

Despite considerable effort to model joint hardware and soware systems, the goal
still remains as one of the most difficult challenges. System-level performance analy-
sis is a complex problem that must be studied under a variety of operating conditions
suitable for various application types. Furthermore, researchers have already set off to
investigate more advanced methods, such as heuristics and genetic algorithms, to apply
in the DSE in HW/SW co-design.

On the hardware side, memory systems still continue to be a prominent subject of
research, since their design profoundly influences the performance of the system and
the energy consumption []. Cache models are one aspect of particular importance in
understanding memory systems. e beer the cache model, the easier it is to predict
how changes to hardware or soware influence system performance and power. So-
ware optimizations let designers to implement programs in the best possible way on
the available architectures. With cache synthesis, it becomes possible to choose a cache
configuration for a particular application. Several alternatives to traditional cache mod-
els have appeared in literature, including scratch-pad memory [] and Connected RAM
(CoRAM) []. System-level power management [] is well suited to co-design because
designers can use the characteristics of an application to optimize themanagement strat-
egy and its implementation in hardware and soware. Given the prime importance of
power management in digital systems, more work is expected in this area in the future.

.. HW/SW Co-design Objectives

HW/SW partitioning can be performed in various directions in order to fulfil different
goals. e way the partitioning process is performed can considerably influence the be-
haviour of the whole system. Figure . depicts a schematic overview of major objectives
which can direct the partitioning process. In the following, we describe these objectives:

Performance One of the main goals of partitioning is to improve the performance of
the system in terms of the execution time. In order to achieve this goal, several
parameters have to be taken into account, most importantly, the intra- and inter-
communication costs in the hardware and soware partitions, the internal degree
of parallelism in each partition, as well as the overall parallelism of the synthesized
system. As the primary consideration, designers opt to map critical parts² of the
application to the hardware partition, and execute the rest as soware. By critical,
we mean that the execution latency is high, mostly, but not necessarily, because
of computational intensiveness. In other words, the execution time contribution

² Part refers to process, task, subroutine, loop, basic blocks, and in general, any block(s) of statements.



HW/SW PARTITIONING Section .

Performance

Figure .: HW/SW co-design objectives.

of that part compared to the whole execution time of the application is substan-
tial, hence, an accelerated run of that part tends to be a considerable time saver
for the application execution. Alternatively, minimizing the data communication
between hardware and soware partitions plays an influential role in achieving
overall performance gain. On the other hand, parallel execution can be anoth-
er fundamental concept to boost the performance of the system. In this respect,
parallelism is usually considered at three different levels:

• internal parallelism of each hardware task (during high-level synthesis, op-
erations are scheduled to be executed in parallel by the available CCUs);

• parallelism between hardware tasks;

• parallelism between the CCUs running the hardware tasks and the GPPs
executing the soware tasks.

Resource Utilization Efficiently utilizing the available resources is another key ob-
jective in HW/SW partitioning. is becomes more severe in case of hardware
resources, as they are more limited and costly. Taking into account the limited
hardware area available on FPGAs, designers have to find a trade off between the
performance and hardware cost. is may mean that not all critical tasks can be
placed on the reconfigurable fabric to be accelerated. Hence, by an appropriate
selection, only those tasks which are considered to be more beneficial are mapped
to the hardware and the rest has to be accommodated in the soware part.

Power Consumption Undoubtedly, power consumption has become one of the major
design concerns in today’s systems. A designer must guarantee that his design
does not exceed the power constraints of a target platform. In addition, due to the
proliferation of portable and baery-dependent devices, low-energy consumption



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

has become one of the key features for the success of a design. HW/SW partition-
ing can drastically affect the power and energy consumption in a system. It could
be that a particular partitioning, not necessarily the one that provides the fastest
execution, can save energy while still meeting performance constraints. Regard-
ing energy consumption, an exceptional aention has to be given to the buses
and the memory system. Evaluating the impact of the memory system in the
overall energy consumption is only possible if accurate timing and power models
are available, which is not oen the case. Ideally, the hardware vendors should
provide these models or at least some estimates. Even having accurate models
would not suffice, because data dependencies between the tasks and accesses to
the shared resources should also be accurately analyzedwhich is indeed not trivial.

ermal Management A tight correlation can exist between temperature and appli-
cation behavior. Adapting to each task’s thermal demands can optimize system
performance, while keeping the PEs thermally saturated []. ermal monitor-
ing and response management is a critical part of systems that incorporate mul-
tiple PEs. As a core requirement, the manager senses the impact of temperature
on various components in a multiprocessor environment, and subsequently re-
sponds by configuring the system in such a way that maximum performance is
achieved without exceeding thermal boundaries. When the heat removal ability
is less than the heat dissipation requirement, thermal runaway happens, which in-
troduces vital concerns for the system performance and reliability []. Generally,
in a temperature-aware design, reducing the power consumption, i.e. heat gener-
ation at the source, is the main plan to avoid thermal runaway. To achieve this
goal, the designer must make sure that temperature hotspots are avoided when
the computational load is divided among the PEs.

Reconfiguration Latency Current dynamic reconfigurable systems allow the map-
ping of large tasks that exceed the available area on the hardware. To achieve
this, the reconfigurable device should support partial reconfigurability, so that the
distinct parts of hardware tasks³ are mapped onto the hardware in different time
intervals. Partial reconfiguration allows the continuous running of critical parts
of hardware tasks while a controller loads a partial design into a reconfigurable
module. It is useful for hardware space saving by only storing the partial designs
that change between several designs. In this case, one of the key objectives for
the partitioning is the minimization of reconfiguration latency. For static partial
reconfiguration, the reconfigurable device is not active during the reconfiguration
process. is means while partial reconfiguration data is sent into the FPGA, the
rest of the device is stopped and brought up aer the reconfiguration is completed.
e partial reconfiguration bitstream contains only information about the differ-
ences between the current design structure (that resides in the FPGA) and the new
content of the FPGA. As a result, the partitioning decision has a huge impact on
the overall system performance.

Load Balancing Partitioning an application workload among several PEs can be bi-
ased towards unfairness regarding the amount of work assigned to each PE. e
designer can make sure that PEs which have the same or similar capabilities get

³ ese parts are called configurations in literature.



HW/SW PARTITIONING Section .

more or less comparable workloads. is objective normally lends itself to the
same direction as resource utilization, particularly in the cases where multiple
PEs exist in soware or hardware domains. Load balancing does not always mean
that everyone should get an equal amount of work. Based on the differences in
the processing nature of PEs, ensuring that each PE gets the task for which it is
intended makes a balanced (fair) distribution of workload. Improper application
partitioning can result in resource waste (idle processing capacity and inefficien-
cy) which can severely affect the performance of a system.

e objectives defined for a partitioning problem are oen conflicting. erefore, it is
unlikely that each one by itself solves the problem. For example, an objective function
that minimizes the execution time drives the solution towards feasibility from the view-
point of deadline constraint or performance gain. is solution is likely to be suboptimal
regarding the resource utilization (increased hardware area cost). On the other hand, if
the application is partitioned in such a way that hardware area consumption is min-
imized, the solution is quite unlikely to meet performance constraints. As a result, a
fixed objective function is most probably incapable of solving the partitioning problem.

Application partitioning in general, and HW/SW partitioning in particular, is con-
sidered as a constrained optimization problem [, , ]. Traditional approaches,
such as ILP, or more advanced heuristic and evolutionary techniques can be used to
solve such multi-objective optimization problems. However, there can always be limita-
tions and inadequacies which prevent guaranteeing the optimality of a solution, if any
reached at all.

.. Profile-guided HW/SW Partitioning

e widespread utilization of heterogeneous reconfigurable systems relies on the avail-
ability of appropriate tools to assist developers in mapping existing applications onto
these systems by reducing the time and effort, as well as efficiently exploiting the pro-
vided flexibility. As discussed earlier in Section ., the HW/SW partitioning process can
be carried out based on different levels of granularity, such as, loops or functions. Pro-
filing, the process of monitoring an application to spotlight specific code region(s) that
intensely use(s) up resources, is an essential preliminary step within the design process
for many soware and hardware systems.

HW/SW partitioning has been an active field of research in the last decades. Many
different approaches have been proposed to solve the problem [, , , , ,
]. For a concise survey of related work regarding HW/SW partitioning methods, see
Section .. Because the main focus of the work in this thesis is on profiling, in the
following, we briefly describe several related practical works that consider partitioning
based on profiling data.

In [], a HW/SWpartitioning approach is proposed for dynamically reconfigurable
architectures consisting of a GPP and an FPGA. e main focus of the authors is on the
temporal aspect of an application not on the spatial one. e partitioning is carried out
at a fine-grained level, i.e. at loop and basic block level, with the goal of optimizing
the total application execution time, which includes the soware and hardware execu-
tion times, communication time and datapath reconfiguration time. In the compilation



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

flow, the source code of an application (in C) is preprocessed to extract loops as hard-
ware candidates. Furthermore, multiple optimized versions of the loops are created by
compiler transformations. Each extracted loop candidate is profiled to estimate the to-
tal soware time, execution frequency, memory bandwidth requirement and the trace
behavior. A quick synthesis is also performed to estimate the delay and the area need-
ed for the hardware implementations. e loop entry trace profiling is used to find out
the exact runtime sequence of all hardware candidate loops. e details of the various
profiling processes are not presented. In the end, the extracted information are fed to
the HW/SW partitioner to decide which loops should go to the hardware, and which
versions of the loops should be used.

A HW/SW partitioning and code generation flow for reconfigurable platforms is pre-
sented in []. Given the C code of a target application, the user has to manually identify
and tag computation blocks in the source code to be extracted for implementation on
FPGA. Since in their target architecture, the reconfigurable array is part of the GPP’s
datapath, there is a severe restriction of potential code that can be moved to the hard-
ware. Kernel candidates can only contain small computation blocks with few inputs and
outputs. Aer that, a simulator evaluates the code using the cycle counts specified by
the user for the tagged blocks. A profiler returns the number of cycles used to execute
each line of code. To estimate the cycle count of the FPGA code blocks, the authors
use heuristics to have a quick performance evaluation. As a result, the estimation may
not be accurate enough. e partitioning problem is addressed by exploring different
HW/SW trade offs based on the performance profiles, with the objective of maximizing
the overall performance, while satisfying FPGAmapping size constraints. is objective
is formulated as a boolean programming problem.

Santambrogio et al. [] proposed a methodology based on the Adaptive Program-
ming technique to evaluate and subsequently perform theHW/SWpartitioning for a SoC
that employs dynamically reconfigurable hardware and soware programmable cores.
ey developed quantitative evaluation metrics to determine the reconfigurable system
performance and to represent the performance of soware in a SoC from an application-
specific, input-oriented point of view. A performance model is built with the associated
evaluation metric to identify application specific input behavior of soware modules.
is general performance model is then embedded along with hardware performance
models to yield a flexible mean to evaluate the performance impact of different parti-
tioning and allocation decisions. A profiler enhanced by implementing Adaptive Metrics
is used to reveal the potential in functions for performance improvement as a result of
transformation into an adaptive form.

Apart from the traditional partitioning methods, different heuristic and evolution-
ary methods are also investigated to solve this problem. In [], a heuristic searching
approach is presented based on the Ant Colony Optimization (ACO) algorithm. Both
global and local heuristics are combined in a stochastic decision making process to ef-
fectively explore the search space. As authors state, profiling information can also be
utilized in the decision strategies to assign tasks to different resources. However, no
reported study exists for such a work.

In [], a designmethodology for application partitioning is presented, which targets
a reconfigurable Multi-Processor System on Chip (MPSoC). e methodology supports
the partitioning of an application between several processing elements (SW/SW parti-



THE Q² PARTITIONING METHODOLOGY Section .

tioning) at the function level, as well as, HW/SW partitioning. A combination of a dy-
namic profiler (CodeAnalyst []), and a developed tracing tool, is utilized together with
manual code analysis to analyze the data communication between functions. e para-
meters used for the partitioning decision are extracted from the results obtained in the
code analysis step, such as, the execution contribution of each function, the call graph,
and the communication graph. For the SW/SW partitioning, hierarchical clustering is
utilized, which is based on heuristics and, thus, it is faster than ILP. e partitioning
algorithm can consider some critical issues, such as, workload balancing and minimal
inter-processor communication. A tool is also developed to analyze the output of the
detailed CodeAnalyst profile to automatically calculate the block and loop nesting, the
timing of the loops and functions, the function affiliation of the loops and the calculation
of the threshold, which defines the hotspots in code fragments. is information can be
used for HW/SW partitioning in systems incorporating reconfigurable fabrics.

Although [] is similar to our proposed approach with respect to addressing the
application partitioning on the coarse function level, the way we address the application
partitioning is somehow different. In particular, we utilize the QDU graph, instead of the
commonly used call graph, as the primary reference for the partitioning process. e data
communication between functions in the application is extracted automatically by our
advanced profiling framework. is process is performed manually in other relevant
works. In cases where the application source code is complex, such as the case studies
presented in this chapter, manual processing of data communication is very tedious, or
even impossible to quantify data and make a conclusion.

Furthermore, application partitioning driven by call graph does not necessarily re-
sult in efficient clusters, specially when tight bindings exist between those functions that
do not exhibit direct calling links. is phenomena is investigated in detail in the case
studies. As the size of available area on FPGAs increases, it is no longer a restriction nor
efficient in terms of performance, to map small code segments of an application onto
the hardware. is means that HW/SW partitioning based on finer granularity levels, de-
spite being in the center of aention so far, will not be the focus of research work in future
reconfigurable systems. As a result, mapping a complete function or, in general, a com-
bination of several coupled functions, will not be elusive anymore. In our partitioning
methodology, we initiate the concept of function merging based on accurate profiling infor-
mation. Merging tightly communicating functions as one not only presents a solid view on
a whole task but also allows developers to perform optimizations, particularly for memory
requirements, in a feasible and efficient way.

. e Q² Partitioning Methodology

Traditionally, the primary objective of HW/SW partitioning in heterogeneous reconfig-
urable systems is to improve the execution performance, hence, to gain speedup. In
order to achieve this goal, the program parts with higher execution time contributions⁴
are usually mapped to the hardware, while the parts with lower contributions are exe-

⁴ By program part, we mean, in general, any collection of instructions that forms a computational task. It
can refer to a very small function in an application source code, which, due to numerous calls, contributes
substantially to the whole execution time of the application.



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

cuted on GPPs. Nevertheless, it has turned out that the key hurdle to limit the speedup
is the well-known memory boleneck problem. e problem is even intensified in case
the potential hardware kernel candidates are heavily communicating with the kernels
in the soware part [, ].

To address this critical problem, we utilize the profiling information provided by the
Q² profiling framework to minimize, as much as possible, the data communication be-
tween the hardware and the soware boundary. is is mainly achieved by merging
tightly coupled kernels, respecting the Molen machine restrictions, and kernel spliing,
in case the hardware area limitation prevails. We have applied our partitioning strategy,
in particular, the function-merging approach, on several real applications. At this point
in time, parts of the partitioning analysis are performed manually. Hence, the investi-
gation is not exhaustive and a limited set of merging possibilities is considered based
on the user expertise. It should be noted that the actual application source code modi-
fication to merge functions is essentially a manual process, due to the required human
intelligence in performing a sophisticated merging other than simple inlining.

e existing partitioning approaches that are carried out at the coarse-grained func-
tion level by utilizing profiling data, commonly, take advantage of some kind of CDFGs,
e.g., a call graph, as the primary reference for the partitioning process. e way we in-
vestigate HW/SW partitioning is in some way different from these approaches, mainly
because the detailed profiling data extracted by our profiling framework has not been
considered in existing approaches. To bemore precise, we base our partitioningmethod-
ology on theQDUgraph, which is used as themain reference to reveal the actual coupling
degree between the functions in an application.

Application partitioning based on some kind of conventional CDFGs — which is the
only practiced strategy up to now — will not yield proper and efficient partitions in
case of reconfigurable systems. is is due to the fact that these graphs do not contain
the necessary information to correctly guide the developers in order to identify related
functions. By related functions, we mean functions that have tight data communication
bindings. Normally these functions are separated in the implementation stage of an al-
gorithm to support and maintain the modularity of the application. Nevertheless, this
separation is the main threat to the efficiency of application mapping in heterogeneous
reconfigurable systems. As an example, there might be a very strong relationship be-
tween a pair of functions that do not exhibit any direct calling link, when the call graph
for the corresponding application is examined. It can be quite misleading to identify
related functions, if the application is reasonably large in scope (see Section .. for a
detailed example).

e problem with mapping small functions to the hardware is the marginal poten-
tial for application speedup, which severely limits the efficiency of the partitioning and,
hence, mapping process. As a result, merging the tightly coupled functions to improve
the performance of mapping applications to reconfigurable systems turns out not to be
only an option, but a necessity. Furthermore, with the continuous increase in the size of
available area on FPGAs, mapping larger and larger code segments of an application on-
to the hardware becomes feasible. e obvious implication would be that course-grained
partitioning approaches will gain more popularity in future heterogeneous systems us-
ing different PEs.



THE Q² PARTITIONING METHODOLOGY Section .

H
ardw

are

Code Revision

Merging
Splitting

Optimization

2 1

3

4

5

Area Estimation

Figure .: e Q² partitioning approach. e five steps defined in the Q² HW/SW partitioning
algorithm are specified with bold numbers in the figure.



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

Figure . depicts the major steps taken in our proposed HW/SW partitioning ap-
proach utilizing the extracted information provided by the Q² profiling framework. In
summary, the following partitioning methodology is defined to partition the tasks in an
application:

• Hotspots Identification - e Maip determines the application hotspots. Al-
thoughMaip extracts a rich set of profiling information from an application, which
is partly related to its memory accesses, here, we consider the execution time as
the main parameter to determine hotspots in the application. Nevertheless, using
any other parameter does not interfere with the proposed partitioning methodol-
ogy.

• Hardware Area Estimation - All functions in the application are annotated with
FPGA hardware area estimates, as predicted by the respective ipu models (see
Section ..).

• Initial Partitioning - With the knowledge of the application hotspots and the
respective area predictions, an initial partitioning is determined. In this respect,
as many computationally-intensive kernels as possible are moved to the hardware,
so as to speed up their execution, while satisfying the area constraints.

• Data Communication Analysis - e data communication of the kernels in the
initial partitioning set is then analyzed using Quad. Because the set of functions
that is analyzed has been reduced, Quad can run much faster. Additionally, it
helps the developer to focus on the main data communication bolenecks.

• Final Partitioning - Certain kernels in the initial partitioning can still heavily
communicate with other functions in soware, implying a heavy communication
overhead. erefore, an additional set of kernels may be moved to hardware, if
possible, so as to reduce the amount of data communicated between hardware
and soware. Furthermore, based on the extracted profiling information, source
code revisions and optimizations may also be carried out. ese include depriving
part of a kernel to adhere to restrictions, merging tightly-coupled functions, and
optimizing memory accesses.

Dividing the functions into two parts per se does not guarantee its applicability nor its
effectivity in practice. As discussed earlier, a critical obstacle remains the data com-
munication overhead, which can neutralize or even aggravate the performance resulted
from accelerated hardware execution. What makes our partitioning approach different
from others, is the fact that the partitioning is primarily based on data communication,
i.e. communication-aware partitioning. is means that the focus of our approach is
on tackling the main obstacle which limits the performance of the mapped application.
Contrary to the existing theoretical HW/SW partitioning approaches [, , ], in
this chapter, we examine the proposed HW/SW partitioning methodology in practice to
substantiate its feasibility in a real environment. In the following case studies, we specif-
ically aim to demonstrate the following qualities of the Q² partitioning methodology:

• comprehensive application analysis regarding the extracted profiling information,



CANNY EDGE DETECTION Section .

• performing various memory access related optimizations derived by thorough in-
spection of the profiling information,

• examining the effects of different application modifications regarding possible
performance improvements,

• preparing executable versions of the applications which can run on the Molen
platform with respect to the restrictions described previously.

A fully automated partitioning process is still difficult to grasp and implement. is is
because each application has its own characteristics and complexities, hence, it requires
human intelligence to handle some tasks. is can be time-consuming, particularly the
source code inspection for performing efficient function merging.

. Canny Edge Detection

In this section, we present a real case of an image processing application, Canny Edge
Detection (CED) [], to demonstrate the potentials of the advanced tools developed
in the Q² profiling framework. It serves as the direct approach to validate the useful-
ness, efficiency, and applicability of the profiling tools and the proposed partitioning
methodology. e main objective is to map the application onto the Molen heterogeneous
reconfigurable platform. To accomplish this objective, we shall have a comprehensive un-
derstanding of the application behavior, in particular of its memory access behavior and
requirements. Although the focus of the analysis is on the runtime aributes, we also
examine the application source code to extract some valuable information. e result
of this detailed profiling is primarily utilized to spot bolenecks and deficiencies related
to the application memory usage. Furthermore, it provides hints for code revisions in
order to improve the execution performance. roughout the experimental analysis, we
conduct several phases of source code optimizations as a means of verification of the
extracted profiling information.

In the following, we first describe the CED algorithm in Section ... en, in Sec-
tion .., we present the experimental setup used for the analysis of the application.
e results of the different profiling data analysis are discussed in Section ... By in-
specting the profiling information, some source code optimizations are performed on the
application, and their effects are investigated. Finally, in Section .., we summarize our
observations and results.

.. Edge Detection Overview

Canny [] is a well-known edge detection algorithm, which aims to achieve the follow-
ing three principal goals:

• good detection - the detection of as many of the real edges as possible, while also
not falsely detecting non-existing edges as much as possible.



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

• good localization - the detected edges are as close as possible to the actual edges,
i.e. the distance between the edge pixels as found by the detector and the actual
edge is to be minimal.

• unique detection of edges - real edges should be detected only once. is aspect of
the detection method was added because the previous criteria do not imply that
edges are only identified once.

Based on these criteria, the Canny edge detector first smoothes the image to elimi-
nate any noise. It then finds the image gradient to highlight regions with high spatial
derivatives. e algorithm then tracks along these regions and suppresses any pixel that
is not at the maximum (non-maximal suppression). e gradient array is then further
reduced by hysteresis, which tracks along the remaining pixels that have not been sup-
pressed so far. Hysteresis uses two thresholds to accomplish this task. If the magnitude
is below the first threshold, it is set to zero (made a non-edge). If the magnitude is above
the high threshold, it is made an edge. In case the magnitude is between the two thresh-
olds, then it is set to zero, unless there is a path from this pixel to a pixel with a gradient
above the second threshold.

For our experiments, we have used the implementation provided by the Computer
Vision Laboratory at the University of South Florida []. is CED application has the
following steps:

• Step . Filtering out any noise in the original image. A Gaussian filter is used
exclusively due to its simplicity. Once a suitable mask has been calculated, the
Gaussian smoothing can be performed using standard convolution methods. A
convolution mask is usually much smaller than the actual image. As a result, the
mask is slid over the image, manipulating a square of pixels at a time. e larger
the width of the Gaussian mask, the lower is the detector’s sensitivity to noise.
e localization error in the detected edges also increases slightly as the Gaussian
width is increased. e width of the Gaussian mask used in the implementation is
determined based on the standard deviation of the Gaussian smoothing filter that
should be input by the user.

• Step . Finding the edge strength. is is done by taking the gradient of the im-
age. e Sobel operator performs a D spatial gradient measurement on an image.
en, the approximate absolute gradient magnitude (edge strength) at each point
is found. e Sobel operator uses a pair of × convolution masks, one estimat-
ing the gradient in the x-direction and the other estimating the gradient in the
y-direction.

• Step . Applying non-maximal suppression. Aer finding the edge directions using
the gradient values, non-maximal suppression is used to trace along the edges and
suppress any pixel value that is not considered to be an edge. is will result in a
thin line in the output image.

• Step . Performing hysteresis. Hysteresis is used to eliminate the breaking up of an
edge contour caused by the edge pixels fluctuating above and below a threshold.
resholding with hysteresis requires a low and a high threshold. Making the



CANNY EDGE DETECTION Section .

assumption that important edges should be along continuous curves in the image
allows to follow a faint section of a given line and to discard a few noisy pixels that
do not constitute a line but have produced large gradients. e hysteresis process
begins by applying the high threshold. is marks out the edges that are fairly
guaranteed to be genuine. Starting from these edges, and by using the directional
information derived earlier, all the edges can be traced through the image. While
tracing an edge, the lower threshold is applied, which allows to trace faint sections
of edges as long as a starting point is found. e low and high threshold values
for hysteresis should be specified as input parameters by a user.

Figure . demonstrates the result of applying consecutive phases of the CED algo-
rithm on the standard greyscale Lena photo. e standard deviation of the Gaussian
filter is set to . e low and high thresholding values for hysteresis are set to 0.4 and
0.6, respectively.

.. Experimental Setup

e used CED implementation consists of three source files containing fieen functions
in total. For the experiments, we used a sample Portable GrayMap (PGM) image with
a resolution of × pixels and  bpp. e standard deviation of the Gaussian filter
was set to .. e values of low and high thresholds for hysteresis were both set to ..

e partitioning of the CED application is intended for theMolen Polymorphic Proces-
sor [], which is an implementation of the MAL (see Section ..). e particular
version that we used was implemented on a Xilinx Virtex- FX T FPGA with  MB
Block RAM (BRAM) and  slices. Due to the platform restrictions, at most  KB
of BRAM can be used for each CCU. We used the Quad toolset on an Intel -bit Core
Duo E @. GHz, running Linux kernel v... e GNU profiler, gprof , is also
used on the same machine to get the call graph of the application.

e CED application source code was compiled with gcc v.., using level two (-O)
optimizations and without function inlining. We also utilized gprof on the embedded
PowerPC (PPC)  @ MHz with  MB DRAM, which is integrated in a Xilinx
ML, Virtex FX T with . MB BRAM FPGA board. In order to profile the ap-
plication using the Quad toolset, Pin [] DBI framework is needed which does not
support PPC architecture. As a result, the Quad profiling information on Intel x can
demonstrate some level of inaccuracy for the architecture-specific data when targeting a
different architecture. However, the overall behavior of the application should stay sim-
ilar. e utilized ipu prediction models were generated for the DWARV C-to-VHDL
compiler and the Xilinx ISE . synthesis tools targeting the same Virtex FPGA con-
taining a Molen machine implementation. For other FPGA devices, conversion formulas
should be used based on the authentic published data-sheets. eMolen implementation
requires  slices, leaving  slices available for accelerating application kernels.
All the simulations were performed using Modelsim .f.



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

(a) Lena greyscale image (b) Gaussian smoothing (c) Derivative along the x-axis

(d) Derivative along the y-axis (e) Gradient magnitude () Non-maximal suppression

(g) Hysteresis thresholding (h) Final output image

Figure .: e steps of the CED implementation, (a) original greyscale Lena image, (b) the output
image aer performing Gaussian smoothing (σ = 1), (c) X-derivative of the Gaussian smoothed
image, (d) Y-derivative of the Gaussian smoothed image, (e) gradient magnitude, () the result
image aer applying non-maximal suppression, (g) the application of hysteresis thresholding with
thresholds at low/high levels to get weak/strong edge pixels, (h) the final output image showing
the edges.

.. Experimental Analysis

We follow the steps defined in the Q² partitioning methodology (Section .) to analyze
the CED application. e results of analyses are presented in the following. Based on
the extracted information and detailed analyses, we make some conjectures on revising
the CED source code in several phases to tailor and optimize the code for mapping onto
the Molen platform.



CANNY EDGE DETECTION Section .

Table .: gprof flat profile for the CED application on the Intel x architecture.

Kernel %time Self Calls Self Total
seconds ms/call ms/call

gaussian_smooth . .  . .
non_max_supp . .  . .
magnitude_x_y . .  . .
apply_hysteresis . .  . .
follow_edges . .  . .
derrivative_x_y . .  . .
canny . .  . .
make_gaussian_kernel . .  . .
read_pgm_image . .  . .
write_pgm_image . .  . .

% time is the percentage of the total execution time of the program used by the function;
Self seconds is the number of seconds accounted for by the function alone; Calls is the
number of times a function is invoked; Self ms/call is the average number of millisec-
onds spent in the function per call; Total ms/call is the average number of milliseconds
spent in the function and its descendants per call.

Hotspots Identification. General profilers can provide an overview of an application.
In an initial aempt, we used the conventional GNU profiler, gprof , to further substan-
tiate the added value of its counterpart, Maip, in the Q² profiling framework. Using
gprof , the reported numbers for a typical run of the application demonstrate consider-
able amount of error. is is due to the fact that the application runs for a quite short
time (approximately  milliseconds). Considering the sampling period which is 
milliseconds, functions do not get much chances of being examined by the profiler. As
mentioned previously, this is the main problem with gprof . To alleviate the problem,
we run the application  times and recorded the average values. Table . summarizes
these results. As seen in Table ., all the functions are called once with the excep-
tion of follow_edges, which is a recursive function. e number of times follow_edges is
called depends on the image itself and on the values of input parameters. e primary
share of the total execution time is aributed to gaussian_smooth. It is also interesting
to note that there is no self contribution⁵ for canny, while the total contribution of this
function and its descendants is around  milliseconds, which is equal to the sum of
contributions from gaussian_smooth, non_max_supp, magnitude_x_y, apply_hysteresis,
and derrivative_x_y. It indirectly implies that canny is the main function doing all the
processing by just calling individual functions to carry out different phases in the edge
detection algorithm described before. e time taken for reading the input image file
and writing the output data is negligible.

Table . presents the gprof profiling results on the embedded PPC. As seen in Ta-
ble ., the total execution time of the application is increased by approximately ×
due to the decrease in the processing speed and simulated floating point arithmetic.
Hence, the length of the application execution is large enough to get somehow accurate

⁵ Execution contribution of the function itself, excluding the functions it calls.



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

Table .: gprof flat profile for the CED application on the embedded PPC.

Kernel %time Self Calls Self Total
seconds s/call s/call

gaussian_smooth . .  . .
non_max_supp . .  . .
magnitude_x_y . .  . .
derrivative_x_y . .  . .
apply_hysteresis . .  . .
follow_edges . .  . .
canny . .  . .
make_gaussian_kernel . .  . .
read_pgm_image . .  . .
write_pgm_image . .  . .

% time is the percentage of the total execution time of the program used by the
function; Self seconds is the number of seconds accounted for by the function
alone; Calls is the number of times a function is invoked; Self s/call is the aver-
age number of seconds spent in the function per call; Total s/call is the average
number of seconds spent in the function and its descendants per call.

data with the sampling technique. Some changes are evident in the contribution per-
centages and the ordering of the functions. follow_edges and apply_hysteresis each now
contributes less than  percent of the whole execution time.

A brief inspection of the application reveals the links between the main conceptual
steps described in the CED algorithm and the corresponding functions defined in the
source code. e top kernel, gaussian_smooth, utilizes the Gaussian filter to blur the in-
put image. e filter itself is created in make_gaussian_kernel, which only allocates and
fills a one-dimensional floating array. e size of the array is dependent on the input pa-
rameter sigma (standard deviation of the filter). However, for a predefined sigma value,
there is a possibility of hard-wiring the individual calculated values. It is clear that the
first step of the algorithm is themost time consuming task. e blurring procedure is per-
formed on each pixel in the input image. derrivative_x_y computes the first derivatives
(gradient) of the image along both the x and y directions. Subsequently, magnitude_x_y
calculates the magnitude of the gradient. ese functions together relate to the second
step of the CED algorithm. Step  of the algorithm is implemented by non_max_supp,
which applies non-maximal suppression to the magnitude of the gradient image. Finally,
apply_hysteresis implements the last step in the CED algorithm. Basically, the function
finds edges that are above a high threshold or connected to a high pixel by a path of pix-
els greater than the low threshold. is is done by first initializing the edge map with all
the possible edges that the non-maximal suppression suggested, except for the borders.
en, when a pixel is located above the high threshold, the function calls the recursive
function follow_edges to continue tracking the edge along all paths.

In order to have accurate execution time estimates and also an overview of some
memory access related statistics, we used Maip to profile the application. Table .
presents a summary of the results. e most accurate values for the execution contribu-
tion of each function is calculated with Maip, as it accounts for each single instruction
within a function, contrary to the sampling technique used in gprof . As seen in Ta-



CANNY EDGE DETECTION Section .

Ta
bl

e
.
:

M
ai
p
fla
tp

ro
fil
e
fo
r
th
e
C
ED

ap
pl
ic
at
io
n.

K
er
ne

l
%
ti
m
e

M
A
R

N
LO

C
-M

A
R

M
O
R

N
LO

C
-M

O
R

St
k

Fl
ow

N
LO

C
-F
lo
w

By
te
s/
A
cc
.

R
at
io

R
at
io

R
at
io

ga
us

si
an

_s
m
oo

th


.



.



.


.


.



.


.



.



.



no

n_
m
ax

_s
up

p

.



.



.



.


.



.


.



.



.



m
ag

ni
tu
de

_x
_y

.



.


.



.


.



.


.



.



.



ap

pl
y_

hy
st
er
es
is

.



.



.


.


.



.


.



.



.



de

rr
iv
at
iv
e_

x_
y

.



.



.



.



.



.


.



.



.



fo
llo

w
_e

dg
es

.



.


.



.


.



.


-
.



.



.



re
ad

_p
gm

_i
m
ag

e
.



.



.



.


.



.


.



.



.



w
ri
te
_p

gm
_i
m
ag

e
.



.



.



.



.



.


.



.



.



m
ak

e_
ga

us
si
an

_k
er
ne

l
.



.



.



.


.



.


.



.



.



ca

nn
y

.



.



.



.


.



.


.



.



.




%
ti
m
e
is

pe
rc
en

ta
ge

co
nt
ri
bu

ti
on

of
th
e
ex

ec
ut
io
n
ti
m
e;
M
A
R

is
th
e
pe

rc
en

ta
ge

ra
ti
o
of

th
e
m
em

or
y
ac

ce
ss

op
er
at
io
ns

to
th
e
to
ta
li
ns

tr
uc

ti
on

s
ex

ec
ut
ed

in
th
e
ap

pl
ic
at
io
n;

N
LO

C
-M

A
R

is
th
e
sa
m
e
as

M
A
R

ex
ce

pt
th
at

on
ly

re
fe
re
nc

es
to

th
e
no

n-
lo
ca

l
re
gi
on

ar
e
co

ns
id
er
ed

;
M
O
R

is
th
e
pe

rc
en

ta
ge

ra
ti
o
of

th
e
m
em

or
y
ac

ce
ss

op
er
an

ds
to

th
e
to
ta
l
nu

m
be

r
of

op
er
an

ds
;
N
LO

C
-M

O
R

is
th
e
sa
m
e
as

M
O
R

ex
ce

pt
th
at

on
ly

re
fe
re
nc

es
to

th
e
no

n-
lo
ca

l
re
gi
on

ar
e

co
ns

id
er
ed

;S
tk

R
at
io

is
th
e
pe

rc
en

ta
ge

ra
ti
o
of

th
e
m
em

or
y
ac

ce
ss

in
st
ru

ct
io
ns

w
it
hi
n
th
e
lo
ca

lr
eg

io
n
to

th
e
to
ta
lm

em
or

y
ac

ce
ss

in
st
ru

ct
io
ns

;F
lo
w
R
at
io

is
an

in
di
ca

ti
on

of
a
fu
nc

ti
on

be
in
g
m
or
e
m
em

or
y
re
ad

er
or

w
ri
te
r.

-
m
ea

ns
th
at

th
e
fu
nc

ti
on

on
ly

w
ri
te
s
to

th
e
m
em

or
y
an

d
+

m
ea

ns
th
at

th
e
fu
nc

ti
on

on
ly

re
ad

fr
om

m
em

or
y;

N
LO

C
-F
lo
w
R
at
io

is
th
e
sa
m
e
as

Fl
ow

R
at
io

ex
ce

pt
th
at

on
ly

re
fe
re
nc

es
to

th
e
no

n-
lo
ca

lr
eg

io
n
ar
e
co

ns
id
er
ed

.



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

ble ., the values more or less conform to the numbers that were calculated previous-
ly. gaussian_smooth is not only the top contributor for the CED application, but also it
demonstrates a relatively low percentage of memory access related workload compared
to the computational burden. e NLOC-MAR and Stk ratio columns in Table . can
reveal valuable hints regarding the tendency of the function to go for local or non-local
memory accesses. is is an important aribute if we opt to maintain the dynamical-
ly allocated memory on external sources (off-chip memory) in reconfigurable devices
[]. For example, we would rather map gaussian_smooth or non_max_supp on FPGA
than apply_hysteresis, because a higher portion of memory accesses are intended for ex-
ternal memory regarding the laer function. In the case of the Molen platform, however,
this is not relevant, as Molen does not currently support off-chip memory. As such, all
the memory space required for the execution of the application should be allocated and
managed on-chip. In this respect, a memorymanagement module particularly takes care
of all the dynamic memory allocations in the application.

Hardware Area Estimation. In the continuing work with the CED application, we
want to be able to map different kernels to hardware. An important caveat for mapping
kernels to hardware is that within the DWB, some restrictions apply to the kernels that
will be mapped to hardware. For this reason, we have modified the CED application
where necessary, so that the intensive kernels could be mapped to hardware. ere
were two main issues that were solved:

• Memory allocation
e DWARV compiler currently does not support allocating memory blocks at
runtime from hardware. erefore, all memory allocations were moved from the
kernels into function stubs that allocate the required memory blocks first and then
call the real kernels.

• (Recursive) function calls
Furthermore, at this time function calls are not supported in DWARV. For most
cases, manually inlining the code solved the problem. However, there was one
instance of recursion in the follow_edges function, which inhibited simple inlining
in the apply_hysteresis function. erefore, the recursive function call was moved
to an appropriate function stub.

Of course, these changes required new profiling results. In Table ., the top  kernels
are listed with their associated new time contributions, as reported by Maip.

Evidently, in order to partition the application over hardware and soware compo-
nents, the evaluation of the computational and memory hotspots is not sufficient. As
there is only a limited amount of reconfigurable hardware area available, an investiga-
tion of the size of potential hardware designs is warranted. For this purpose, we used
a ipu prediction model for the Virtex- FX T FPGA. e results of the area pre-
diction of the top five contributing kernels are presented in Table .. e table lists the
actual number of slices, as well as the percentual area with respect to the target FPGA.
e kernels in the table are in order of execution in the CED application. As such, we
can evaluate subsequent merging options by providing cumulative area figures as well.
Note that the hw_apply_hysteresis kernel is exceedingly resource-intensive, consuming



CANNY EDGE DETECTION Section .

Table .: Area predictions and theoretical speedups for the kernels in the CED application.

Kernel Area Exec. Speedup
time

Slices % of area Cum. % of area Single kernel Cum.

hw_gaussian_smooth  .% .% .% .× .×
hw_derrivative_x_y  .% .% .% .× .×
hw_magnitude_x_y  .% .% .% .× .×
non_max_supp  .% .% .% .× .×
hw_apply_hysteresis  .% .% .% .× .×

 Area predicted by a ipu prediction model for the Virtex- FX T.
 eoretical application speedup, assuming  s execution time for each kernel. Single is for the case when each kernel
is accelerated by itself, Cum. is for the case when all kernels in the sequence including the current kernel are accelerated
together.
 Percentage contribution of the execution time as reported by Maip
 Cumulative

% of the target FPGA area. is large area requirement can be traced back to a lo-
cal array of K -bit integers. e used ipu model targets the DWARV C-to-VHDL
compiler, which converts such local arrays to registers, resulting in a large number of
slices⁶. When considering to merge several kernels together, the predictions suggest the
first four kernels will easily fit together on the target FPGA.

Initial Partitioning. In order to find a candidate set of functions to be moved to the
FPGAhardware, we opt to have an idea of the speedup thatmight be achieved. erefore,
in addition to the area predictions, the theoretical application speedups for the kernels
in the application are also reported in Table .. ese speedups are calculated using
Amdahl’s law [] assuming an unlimited speedup for the kernels in question, as follows:

lim
p→∞

p

1− f (p −1)
= 1

f
= 1

1− s
, (.)

where p stands for the speedup factor that is achieved in the accelerated part of the ap-
plication, f stands for the percentual contribution of the remaining sequential part of
the application, and s stands for the percentual execution contribution of the accelerated
part of the application before acceleration. Table . lists both the speedup when one
kernel is accelerated and the cumulative speedup, where each subsequent kernel is ac-
celerated together with the previously accelerated kernels. Observe that as large parts of
the application are accelerated, the contribution of the remaining kernels becomes more
significant. For example, apply_hysteresis has a contribution of .%, but with much of
the application already accelerated, the difference in theoretical speedup is .%.

As we have mentioned before, merging the first four kernels in Table . would yield
a hardware block that would fit in the target FPGA. e maximum speedup of the ap-
plication using that block would be .×. Of course, the efficiency of accelerating this
block will never be %. And the actual speedup will be lower. e designer would have
to decide whether to go for the larger kernel or to instantiate several blocks of smaller

⁶ It translates to M (,,) flip-flops with additional logic and wiring.



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

size in parallel. is last option can especially be interesting when edge detection is
performed on a video stream.

Data Communication Analysis. To have a clear insight into the CED application be-
havior regarding the data communication between different functions, we utilized Quad
to profile the application. eQDU graph of the CED is depicted in Figure .. e graph
makes it possible to visually follow the journey of data objects through the sequences
of function calls. In this way, we can trace what is actually happening to the input im-
age as it moves along different phases of the CED algorithm. e detailed information
presented in the graph also helps to understand what are the memory requirements of
each function to accomplish its task. Furthermore, it plainly identifies the actual data
dependencies between the functions. e critical data path is highlighted in the graph
to distinguish it from all the subordinate data communications between functions.

Quad starts instrumenting the application as soon as the main function gains con-
trol. In other words, the data communication associated with the operating system calls
and libraries are somehow overlooked. Although this normally does not contain much
valuable information about the critical data path of the application, it may cause missing
starting or ending points for communication edges, i.e. the producer or consumer of the
data. Currently, for every byte with an unidentified producer, a manual investigation has
to be conducted to verify the source of data. In the CED application, the main part of the
input image file (× bytes) has been tracked down to be part of the unknown pro-
ducer entity. We revised the graph to replace it with a dummy Image node. A small part
of the input image ( bytes) is recognized to be aributed to read_pgm_image. Since
the file reading process is considered to be I/O, the operating system will take care of it,
and how the process is implemented is completely platform-dependent. Hence, slight
inconsistencies appear in numbers reported by Quad for such cases. Nevertheless, this
is not affecting the overall picture of the data communication in the CED application.

make_gaussian_kernel is responsible for creating the Gaussian filter array. Based on
the standard deviation used in our case study, an array of eleven elements is allocated.
is is verified by the  UnMAs reported on the edge frommake_gaussian_kernel to the
hw_gaussian_smooth. It should be noted that the array of eleven floating point values
is accessed repeatedly throughout the smoothing process. As a result, huge data com-
munication is reported between the two functions (about  MB). hw_gaussian_smooth
produces a temporary image data object filledwith calculated intermediate floating point
values. is is clearly reported by a self edge of ×× bytes UnMAs in the graph.
hw_derrivative_x_y uses the smoothed image data object as an input. e smoothed im-
age used in hw_derrivative_x_y is of the short integer type, which is appearing as a corre-
sponding edge of  UnMAs between the hw_gaussian_smooth and hw_derrivative_
x_y. It can also be derived that the smoothed image data object is accessed four times
in total ( bytes), two times for calculating the derivative in the X direction and
two times for the Y direction.

e calculated derivatives are stored separately in two arrays of the short integer
type. ey serve as inputs to hw_magnitude_x_y, which will compute edge strength
values based on the gradient of the image. e result will be saved in an array called
magnitude. It is also clear from the graph that the input arrays are scanned only once
to compute the magnitudes. e third step of the CED algorithm needs the computed



CANNY EDGE DETECTION Section .

��
�
�

�

�
�

��
�
�

		

�

�
�	

�
�

�

�

��
��

��
��
��

�	

�
��
�

��
��
�
�
�
�
�

��
��

��
��

��
�
�	

�
��
��

��
��

��
�
�
�
�

�
�
�

�

�
�

�
��

�
�

��
��

�	

�
��
��

�
�
�
�

�
�

��
�
��

�
�

�
�
��

��

��
��

��
��
��

�	

�
��
��

��
��
�
�
�
�
�

�
�

�
��

�
�

�

�

�
�

�
��

��
��
�
�	

�
��
��

��
�
�
�
�

��
��
�
�	

�
��
��
�
�
�
�
�

�
�

�

��
��

�	

�
��
��

�
�
�
�

��
�
�

��
�

�
�

�

�
�

�

��
��

�	

�
��
��

�
�
�
�

�
��

��
��

�	

�
��
��

��
�
�
�
�
�

��
��
�
�	

�
��
��
�
�
�
�
�

��
�

��
�
�	

�
��
��

��
�
�
�
�

�
�
�

		

�

�
�	

�
�

�

�

��
��
��

�	

�
�

��
�
�
�
�
�

�
�
�
�
��

�
�

		

�

�
��

�
��

�
�

��
��
�
�	

�
��
��
�
�
�
�
�

�
�
��

�
�

�
�
�
�
��

��
��
�
�	

�
��
��
�
�
�
�
�

�

��
��

�	

�
�

��
�
�
�
�
�

��
��
�
�	

�
��
��
�
�
�
�
�

�

��
�
�	

�
��
��
�
�
�
�
�

��
��
�
�	

�
��
��
�
�
�
�
�

��
��

��
��

��
�
�	

�
��
��
�
�
�
�
�

��
��
�
�	

�
��
��
�
�
�
�
���
��
��

�	

�
��
��
�
�
�
�
�

��
��
�
�	

�
��
��
�
�
�
�
�

��
��
�
�	

�
��
��

�
�
�
�

��
��
�
�	

�
��
��

�
�
�
�

�
��
�
�	

�
��
��
�
�
�
�
�

��
��
�
�	

�
��
��
�
�
�
�
�

��
��
�
�	

�
��
��
�
�
�
�
�

��
��
��

�	

�
��
��
�
�
�
�
�

�
�

��
�
�

�

�
�

�
�
�
��

�
�

�
��

�
�
�	

�
�

�

��

�

��
��
��

�	

�
��

�

��
��
�
�
�
�
�

�
�

��
�

�
��

��
�
	

�
��

	

	

�

��

��
��
�
�	

�
��

�

��
��
�
�
�
�
�

�
�

�
��

�
�

�
	

�
��

	

	

��
��

��
��

�	

�
��
��

��
��

�
�
�
�

��
���

�
�
�
�

�
�
	

��
��

��
��

�	

�
��
��

��
��

�
�
�
�

��
��

�

��
�
�	

�
��
��

��

�
�
�
�
�
�

��
��

��
��
�
�	

�
��
��

��
��
�
�
�
�
�

��
�

��
��
�
�	

�
��
�

��

�
�
�
�
�
�

��
��

�
��
�
�	

�
��

�

��

�
�
�
�
�
�

��
��

��
��
��

�	

�
��
��

��
��

��
�
�
�
�

��
��

��
��
��

�	

�
��
��

��

�

��
�
�
�
�

��
��

��
�
�	

�
��
��

��
�
�
�
�
�

��
��

��
�
�	

�
��
��

��
�
�
�
�
�

��
��

��
�
�	

�
��
��

��
�
�
�
�
�

��
��
�
�	

�
��
��
�
�
�
�
�

��
��

��
��

�	

�
��
�

�

��

�
�
�
�

��

�

��
��

�	

�
��

�

��
��

�
�
�
�

Fi
gu

re
.
:

Q
D
U
gr
ap
h
fo
r
th
e
ha
rd
w
ar
e
ve
rs
io
n
of

th
e
C
ED

ap
pl
ic
at
io
n.



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

magnitude array and also the derivative arrays. is can be verified by the graph edges
connecting hw_derrivative_x_y and hw_magnitude_x_y to the non_max_supp. For each
pixel, the values of neighboring pixels in some directions are also examined. is results
in a large number reported for memory accesses (approximately . MB). e resulting
binary image, also known as thin edges, is output into an array with the same size of the
input image.

Regarding the final step, hw_apply_hysteresis (excluding the last recursive part to
trace along the identified edges) uses the magnitude array and the output array from
non-maximal suppression. As shown in the extracted data, the usage of magnitude is
conditioned to only those pixels which indicate a possible edge. is is dependent on the
input image. In our case, about one sixth of the total pixels are identified as possible edge
pixels. e self edge of  bytes in hw_apply_hysteresis is aributed to the initializa-
tion of the edge map array. e array is subsequently processed in hw_apply_hysteresis
for the computation of the histogram of magnitude values. apply_hysteresis finalizes
the edge map by using the output of hw_apply_hysteresis and the magnitude array. To
accomplish this task, it in turn utilizes follow_edges. All the corresponding data com-
munications to perform the hysteresis process is identified and presented in Figure ..
write_pgm_image is responsible for writing the edge map array to the output file. As
explained before, no major consumer of the array is identified by Quad due to the I/O
process.

Final Partitioning. Modifying the CED application to comply with the hardware map-
ping restrictions, in turn, causes some changes in the data communication paerns of
the application. As an obvious result, new data communication channels are formed
between the introduced function stubs and the corresponding hardware-compliant ker-
nels. However, this characteristic will not reinforce the data communication problem,
as the connections between the stubs and their corresponding kernels are limited to
providing the starting address of allocated memory blocks and some related basic da-
ta elements. ere is only one exception in the case of apply_hysteresis, whose body
can not be moved entirely to hardware, due to the invocation of a recursive function,
follow_edges. erefore, a considerable amount of data transfer is established between
the extracted hw_apply_hysteresis and the corresponding function stub, apply_hysteresis
( kB using k UnMAs). e newly formed communication channel may be consid-
ered as a source of potential memory boleneck and needs proper handling. Primarily,
apply_hysteresis is dependent on the data that is provided by the nms and magnitude ar-
rays. e dataflow originating from magnitude_x_y is now divided into separate flows
for apply_hysteresis and hw_apply_hysteresis. From the total amount of K memo-
ry accesses, approximately % is accounted for hw_apply_hysteresis and the rest for
apply_hysteresis. Nevertheless, both functions strictly access a whole part of the mag-
nitude array. In essence, magnitude should be made available for both functions as a
whole, regardless of the number of accesses carried out on the data residing in the array.

Not every heavy data communication yields a potential memory boleneck. A more
detailed investigation is required to pinpoint problems related to memory accesses. Spe-
cial aention has to be given to the size of the accessed memory blocks, the locality,
the reusability, and, most significantly, to the placement of the data (on-/off-chip data
allocation []) where applicable. For our experiments, there was no off-chip data al-
location due to the Molen restrictions. However, this property must be considered in



CANNY EDGE DETECTION Section .

Table .: Area predictions and theoretical speedups for the merged and optimized versions of
the CED application.

Instance Area Exec. time Speedup


eo

re
ti
ca

l

cumulative  .% .×
merged  .% .×
optimized (block reuse)  .% .×
optimized (loop merge)  .% .×

Instance Area Time (ms) Speedup

R
ea

l

simulation  . .×

 Area predicted by a ipu prediction model for the Virtex- FX T.
 Percentage contribution of execution time as reported by Maip.
 Execution time as calculated by the Modelsim .f simulator.
 Actual area for the optimized version (block reuse) of the merged kernel.

the general case. A review of the critical data path reveals several potential problematic
memory access bolenecks, which limit the performance of the application. Loading the
image from an external source is the first obstacle.

Beginning with hw_derrivative_x_y, there is a series of data communication via dif-
ferent memory blocks, which is responsible for the main performance boleneck of the
application. In each (sub)phase, one or morememory blocks are used as input to produce
an output block. e critical data path goes through hw_magnitude_x_y, non_max_supp,
hw_apply_hysteresis, apply_hysteresis, and follow_edges. Optimizing the CED applica-
tion should be centered around the block processing. is, in a subsequent analysis,
requires thorough examination of the exact life span of each block, the data dependen-
cies between them, and the possible merging/reusing of the relevant data.

Aer a careful analysis of the results, we observed that all hardware-compliant ker-
nels up to hw_apply_hysteresis fit together on the reconfigurable fabric. Furthermore,
together, they would exhibit a significant potential speedup of .×. Finally, the bulk
of the communication occurred in this group of functions. In the following, we contin-
ue our evaluation by merging these kernels, providing additional profiling results, and
implementing certain optimizations that are suggested by the results.

e initial merging process consisted of the concatenation of the subsequent func-
tion calls. In the case of CED, this process is trivial. However, in case the to-be-merged
functions have no direct connections in the call graph, the process may become more
complex. In Table ., we observe that, prior to the merging, the predicted area con-
sumption was  slices with a theoretical speedup of .×. Aer the merging, the
potential speedup remains the same, but the predicted area decreases to  slices. e
reason for this behavior is very likely the increased reuse of calculations and variables.
e used ipu model was generated for the DWARV compiler and Xilinx ISE synthe-
sizer, which use common compiler front-end optimizations and resource sharing, which
can significantly reduce the required area. In particular, the optimizations include the
reduction in the number of required unique variables, which, in turn, results in the re-
duction of the hardware area consumption when the number of registers is lessened.



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

��������������

	
��������
�
��

����������	

�����
����

������������
����
��

�������������	

���
����

�������������	

��������
����

	
�������	���������

�����������	

�������
����

������	���������

����������	

������
����

�����
������

����������	

������
����

Figure .: Partial QDU graph for the hardware version of the CED application aer merging.

Now that we have a merged kernel, the Quad results also change accordingly. In
Figure ., we see that most of the memory locations and accesses are now internal
to the merged hw_gaussian_nms kernel. When we carefully investigate these new re-
sults, we see that the number of UnMAs is roughly  times as large as our input image
(××× byte =  bytes). As subsequent phases of CED use different tempo-
rary data objects, we analyzed how the corresponding memory blocks might be reused.
Figure . depicts the different memory blocks that are allocated over time through the
critical data path of the CED application. Memory size is indicated on the vertical axis
in units of one image block, and the time on the horizontal axis is represented in terms
of phases of the algorithm. By determining the live ranges of different memory blocks
allocated throughout the main phases of the CED implementation, we observed that the
maximum amount of memory needed at the same time is  times the size of one image
block. erefore, we optimized the merged kernel to reuse memory blocks when they
are no longer needed. Table . indicates that this optimization (block reuse) does not
influence the potential speedup, but the required amount of memory is reduced signifi-
cantly. Furthermore, the required area remains effectively the same at  slices.

Apart from required memory size, the number of memory accesses in the merged
kernel is also significant. In order to reduce this amount, we performed loop merging
and introduced temporary variables to reduce redundant memory accesses in subse-
quent iterations, effectively reducing the number of accesses by .% from  to
 accesses. Again the theoretical speedup is not significantly affected, although
the actual speedup of the hardware implementation is expected to improve in case of
using off-chip memory []. e same situation holds for hardware area prediction as
calculated byipu. Due to minor modifications in the source code, we estimate a slight
reduction in the required hardware area for the merged kernel.

.. Observations and Results

In order to evaluate the proposed adjustments, VHDL codewas generated for themerged
hw_gaussian_nms kernel and simulated for the target platform using Modelsim .f. Us-
ing exactly the same kernel input data as the one used on the PPC, the simulation took
 million cycles. e synthesis of the kernel suggested a maximum clock speed of 
MHz. Assuming a conservative  MHz results in an execution time of . ms. On the
PPC, the execution took  ms, accounting for a kernel speedup of .× and an appli-
cation speedup of .×. Because of the merging we performed, the kernel speedup has



MIXED EXCITATION LINEAR PREDICTION Section .

Gaussian smooth derrivative
magnitude

Non maximal
suppressionrows columns X Y

hw_gaussian_nms
Phase →

Memory block ↓

Minimum required
memory blocks 5 6 4 6 7

Size

Time

Figure .: Overview of the memory blocks used throughout the critical data path of the CED
application.

a big impact on the overall application speedup, as the merged kernel represents most
of the computational work.

. Mixed Excitation Linear Prediction

Following the first case study, we present the case of a complex application from the
speech processing domain, namely theMixed Excitation Linear Prediction (MELP) vocoder
[]. As before, we perform some revisions at the source code level based on the extract-
ed profiling information to tailor the application for execution on our target platform.
In this case study, in addition to thorough behavioral analysis of the application, we
particularly address the following issues in our partitioning methodology:

• the concept of nontrivial merging of coupled functions based on detailed data
communication;

• the detailed examination of merging possibilities, whereas the application com-
prises different potential kernel candidates for hardware mapping.

In the following sections, we first introduce theMELP algorithm in Section ... Sub-
sequently, in Section .., we briefly mention the experimental setup in this case study.
Section .. includes detailed results of profiling examinations as well as concise dis-
cussions regarding the extracted data. Kernel merging opportunities along with relevant
source code modifications are also investigated in this section. Finally, in Section ..,
we present the empirical results.

.. MELP Overview

e MELP vocoder [] is a standard low rate speech coder selected by the United
States Department of Defence (USDoD) Digital Voice Processing Consortium (DDVPC)
and used mainly in military/satellite communications, and secure voice/radio devices.
Among several candidates, MELP was selected mainly based on the following features:



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

voice quality, talker distinguishability, intelligibility, and communicability. e selection
criteria also included hardware parameters such as processing power, memory usage and
delay. e initial MELP algorithm was invented by Alan McCree in the mid s at the
Center for Signal and Image Processing at Georgia Institute of Technology in Atlanta.
Later, the MELP vocoder was developed by a team from Texas Instruments Corporate
Research in Dallas and Atlanta Signal Processors.

Traditional pitched-excited Linear Predictive Coding (LPC) vocoders use either a pe-
riodic pulse train or white noise as the excitation for an all-pole synthesis filter. ese
vocoders produce intelligible speech at very low bit rates, but they sometimes sound
mechanical or buzzy, and are prone to annoying thumps and tonal noises. ese prob-
lems arise from the inability of a simple pulse train to reproduce all kinds of voiced
speech. e MELP vocoder uses a mixed-excitation model that can produce more nat-
ural sounding speech due to the representation of a richer ensemble of possible speech
characteristics. MELP is particularly robust in difficult background noise environments
such as those frequently encountered in commercial and military communication sys-
tems. Furthermore, it is very efficient in its computational requirements. As a result, it
has low power consumption, which is a crucial consideration in portable, embedded and
dedicated hardware systems.

e enhanced version of MELP vocoder (MELPe) surpasses that of the old version
in terms of voice quality. MELPe vocoder implementation operates at ,  and
 bps. It also includes compressed bitstream transcoding between the rates, optional
Noise Pre-Processor (NPP), Dual Tone Multi Frequency (DTMF) detection and regen-
eration, tone signal generation and jier-buffering. Moreover, MELPe uses extensive
lookup tables and models of the human voice to extract and regenerate speech and it is
tuned to regenerate the English language.

Algorithm Description. e MELP vocoder is based on the traditional LPC parametric
model, but also includes four extra features, namely mixed-excitation, aperiodic pulses,
pulse dispersion, and adaptive spectral enhancement. ese additional features mainly
improve the excitation structure of LPC along with an accurate simulation of the natural
speech.

e mixed-excitation is implemented using a multi-band mixing model to reduce the
buzz usually associated with LPC vocoders, especially in broadband acoustic noise. is
multi-band mixing model can simulate frequency dependent voicing strength using a
novel adaptive filtering structure based on a fixed filterbank.

When the input speech is voiced, MELP can synthesize speech using either period-
ic or aperiodic pulses. Aperiodic pulses are most oen used during transition regions
between voiced and unvoiced segments of the speech signal. is feature allows the
synthesizer to reproduce erratic gloal pulses without introducing tonal noises.

e pulse dispersion filter, based on a spectrally flaened triangle pulse, is used in
the final stage to spread the excitation energy with a pitch period. is, in turn, reduces
the harsh quality of the synthetic speech.

e adaptive spectral enhancement filter is based on the poles of the LPC vocal tract
filter and is used to enhance the formant structure in the synthetic speech. is filter
improves the match between synthetic and natural bandpass waveforms, and introduces



MIXED EXCITATION LINEAR PREDICTION Section .

a more natural quality to the speech output.

In the MELP algorithm, first, the speech is filtered into five frequency bands, then,
a linear prediction analysis is performed on the input speech using a hamming win-
dow centered on the last sample of the current frame. Aerwards, the LPC residual
signal is calculated by filtering the input speech signal with the prediction filter, whose
coefficients are determined by the linear prediction analysis. At this point, the final
pitch estimate is calculated using the low-pass filtered residual signal. e gain is es-
timated subsequently. e first ten Fourier magnitudes are obtained by picking peaks
in the Fast Fourier Transform (FFT) of the residual signal. e information embodied
in these coefficients improves the accuracy of the speech production model at the per-
ceptually important lower frequencies. is increases the quality of the coded speech,
particularly for males and in the presence of background noise. To put the speech da-
ta (LPC coefficients, pitch, gain, and bandpass voicing) into a smaller representation,
Vector antization (VQ) is used.

e encoded data, which are formed into packets, along with the VQ codebook, con-
stitute the MELP bitstream. Following that, channel coupling is generated. e decod-
ing phase is less complex than the encoding. e packets are decomposed out of the
bitstream and are processed for factors extraction and channel decoupling. Initially, the
speech signal in each frequency band is recovered, and then the output speech signal is
regenerated by applying the voicing filter and adaptive spectral enhancement post filter.

e encoding and decoding phases of the MELP algorithm can be classified into two
stages in each phase. Encoding begins with the Analysis stage, which analyses the
speech data to find the optimal representation, and continues with the Coding stage to
actually encode the speech data into smaller data representation. Decoding, on the other
hand, starts with theDecoding stage to reconstruct the sound signal representation from
the data packets, and subsequently, in the Synthesis stage, the initial speech signal is
regenerated. To elucidate the sequence of different steps in the MELP algorithm, a block
diagram is shown in Figure ..

.. Experimental Setup

For our experiments, we used the Proposed U.S. Federal Standard . kbpsMELP vocoder
implementation (version .) [], which is developed jointly by Texas Instruments
and Atlanta Signal Processors, Inc. e target platform contains an implementation of
the Molen Polymorphic Processor, as described in Section ... Due to the platform-
dependent restriction imposed by the Pin DBI framework, we used the Quad toolset
on an Intel -bit Core Duo E @. GHz, running Linux kernel v... Hence,
the Quad profiling data on Intel x can exhibit some measure of inaccuracy for the
architecture-specific parameters, when targeting a different architecture (For example,
PPC, in our case). However, we assume that the overall behavior of theMELP application
remains sufficiently similar.

e MELP application was also executed on the embedded PPC  @ MHz,
which is integrated in a XilinxML, Virtex- FX Twith . MB BRAM FPGA board.
On this platform, we instrumented the functions, counting the number of cycles for each
function call using the PPC Time Base (TB) register which is incremented each clock



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

pack into bitstream

High pass filter
Pitch search

Bandpass voicing decision
LPC analysis filter

Final pitch
Gain calculation

LSF quantization
VQ encoding

Fourier magnitude
FEC

Channel decoupling
Parameters decoding

unpack from bitstream

Pulse dispersion filter
Gain scale control

LPC synthesis filter
Adaptive spectral filter

Voicing filter
Interpolation

Analysis

Coding

Decoding

Synthesis

Figure .: e MELP vocoder block diagram.

cycle. eMELP application source codewas compiledwith gcc v.., with -O compiler
optimizations on both platforms. e MELP implementation consists of  source files
with, in total,  functions. For the experiments, we encoded a sample voice recording of
male voice fragments in  sample/s raw Pulse-Code Modulation (PCM) format. e
ipu model that we utilize in this case study was generated for a combination of the
DWARVC-to-VHDL compiler and Xilinx Integrated Soware Environment (ISE) . for
the Virtex- FX T FPGA.

.. Experimental Analysis

In the following, we report the results of different analysis steps regarding the MELP
application.

Hotspots Identification. In Table ., we list the top ten kernels according to theMaip
profiling tool. e top kernel vq_ms, the main part of the vector quantization step in
the MELP algorithm, accounts for .% of the total execution time. e subsequent
four kernels in the top five are part of the LPC and together account for .% of the
total execution time. en, there is fft accounting for .% and some remaining smaller
kernels accounting for .%. In the first column, the number of calls to each function is
listed. At the first glance, it can be observed that vq_ms, vq_enc and autocorr are called
exactly the same number of times. It easily strikes the mind with the impression that
they are somehow related. ey are used in the VQ encoding phase.

From the NLOC-MAR column, we can observe that nearly all kernels spend roughly
% to % of their execution times in accessing the non-local memory region (most
probably the heap area). One exception is the lsp_g kernel, which contains one loop



MIXED EXCITATION LINEAR PREDICTION Section .

Ta
bl

e
.
:

M
ai
p
fla
tp

ro
fil
e
fo
r
th
e
M
EL

P
ap
pl
ic
at
io
n.

K
er
ne

l
C
al
ls

%
ti
m
e

M
A
R

N
LO

C
-M

A
R

M
O
R

N
LO

C
-M

O
R

St
k

Fl
ow

N
LO

C
-F
lo
w

By
te
s/
A
cc
.

R
at
io

R
at
io

R
at
io

vq
_m

s





.



.



.



.


.



.


.



.



.



ze

rfl
t






.



.



.



.


.



.


.



.



.



fin

d_
pi
tc
h





.



.



.


.


.


.


.



.



.



po

lfl
t






.



.



.


.


.



.


.



.



.



fr
ac

_p
ch






.



.



.



.


.



.


.



.



.








.



.



.



.


.



.


.



.



.



ls
p_

g





.



.


.


.


.



.


.



.



.



vq

_e
nc




.



.



.


.


.


.


.



.



.



en

ve
lo
pe




.



.



.


.


.


.


.



.



.



au

to
co

rr



.



.



.


.


.


.


.



.



.




C
al
ls

in
di
ca

te
s
th
e
nu

m
be

r
of

ti
m
es

th
e
fu
nc

ti
on

is
ca

lle
d;

%
ti
m
e
is

pe
rc
en

ta
ge

co
nt
ri
bu

ti
on

of
th
e
ex

ec
ut
io
n
ti
m
e;

M
A
R

is
th
e
pe

rc
en

ta
ge

ra
ti
o
of

th
e
m
em

or
y
ac

ce
ss

op
er
at
io
ns

to
th
e
to
ta
li
ns

tr
uc

ti
on

s
ex

ec
ut
ed

in
th
e
ap

pl
ic
at
io
n;

N
LO

C
-M

A
R

is
th
e
sa
m
e
as

M
A
R

ex
ce

pt
th
at

on
ly

re
fe
re
nc

es
to

th
e

no
n-

lo
ca

lr
eg

io
n
ar
e
co

ns
id
er
ed

;M
O
R

is
th
e
pe

rc
en

ta
ge

ra
ti
o
of

th
e
m
em

or
y
ac

ce
ss

op
er
an

ds
to

th
e
to
ta
ln

um
be

r
of

op
er
an

ds
;N

LO
C
-M

O
R

is
th
e
sa
m
e

as
M
O
R

ex
ce

pt
th
at

on
ly

re
fe
re
nc

es
to

th
e
no

n-
lo
ca

lr
eg

io
n
ar
e
co

ns
id
er
ed

;S
tk

R
at
io

is
th
e
pe

rc
en

ta
ge

ra
ti
o
of

th
e
m
em

or
y
ac

ce
ss

in
st
ru

ct
io
ns

w
it
hi
n

th
e
lo
ca

lr
eg

io
n
to

th
e
to
ta
lm

em
or

y
ac

ce
ss

in
st
ru

ct
io
ns

;F
lo
w
R
at
io

is
an

in
di
ca

ti
on

of
a
fu
nc

ti
on

be
in
g
m
or
e
m
em

or
y
re
ad

er
or

w
ri
te
r.

-
m
ea

ns
th
at

th
e
fu
nc

ti
on

on
ly

w
ri
te
s
to

th
e
m
em

or
y
an

d
+

m
ea

ns
th
at

th
e
fu
nc

ti
on

on
ly

re
ad

fr
om

m
em

or
y;

N
LO

C
-F
lo
w
R
at
io

is
th
e
sa
m
e
as

Fl
ow

R
at
io

ex
ce

pt
th
at

on
ly

re
fe
re
nc

es
to

th
e
no

n-
lo
ca

lr
eg

io
n
ar
e
co

ns
id
er
ed

.



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

Table .: Area predictions and theoretical speedups for the kernels in the MELP application.

Kernel Area Exec. Speedup
time

Slices % of area Cum. % of area Single kernel Cum.

vq_ms  .% - .% .× -
zerflt  .% .% .% .× .×
find_pitch  .% .% .% .× .×
polflt  .% .% .% .× .×
frac_pch  .% .% .% .× .×
  .% .% .% .× .×
lsp_g  .% .% .% .× .×
vq_enc  .% .% .% .× .×
envelope  .% .% .% .× .×
autocorr  .% .% .% .× .×

 Number of slices predicted by a ipu model generated for DWARV C-to-VHDL and the Virtex- FX T FPGA.
 eoretical application speedup, assuming  s execution time for each kernel. Single is for the case when each kernel is
accelerated by itself, Cum. is for the case when all kernels in the sequence except the top kernel, vq_ms, which does not fit
on the target FPGA, are accelerated together.
 Percentage contribution of the execution time as reported by Maip
 Cumulative, excluding the top kernel (vq_ms), which does not fit on the target FPGA.

that performs one heap load but executes several other operations per iteration. A high
NLOC-MAR indicates that the increased performance of hardware implementation is
counteracted by latencies in accessing the memory, if we assume that such accesses can
not be further reduced. In the case of these top ten kernels, the NLOC-MAR is low
enough to allow for reasonable speedups.

Hardware Area Estimation. e ipu area estimates for each kernel are listed in
Table .. Given that the Virtex  FPGA on the ML board has  slices available,
notice that all kernels except vq_ms are predicted to fit. e reasonwhy vq_ms exceeds
the size of the FPGA is the corresponding large size of the function itself. It consists of
 lines of code, contains  loops, and has a nesting depth of . Although this function,
in its current form, can not be mapped to hardware, ample room remains for speedup in
the remaining kernels.

Initial Partitioning. In addition to the area predictions, the theoretical application
speedups are also reported in the sixth column. e theoretical speedups are calcu-
lated using Amdahl’s law, assuming unlimited speedups for the examined kernels, as
described in Equation (.). We can see that without merging some kernels together the
maximum possible theoretical speedup would be .×. It should be noted that Amdahl’s
theoretical speedup is an estimation of the maximum achievable speedup for an appli-
cation, when an accelerated kernel takes absolutely no time for execution. Doubtlessly,
this does not happens in reality. It can only serve as an indication of the highest imag-
ined speedup one conceives in case a kernel is accelerated in the most desirable way.
Certainly, the real speedup is bound to be much lower. As such, it is desirable to find
a combination of kernels that has a larger computational contribution and, therefore,
allows for a larger speedup. is is where the idea of merging coupled kernels becomes



MIXED EXCITATION LINEAR PREDICTION Section .

valuable as proposed by the Q² partitioning methodology.

In an initial partitioning, one may decide to have the top kernels, namely, zerflt,
find_pitch, polflt, and frac_pch, in hardware. Of course, this has to adhere to the restric-
tions of the target platform, including the available slices on the board and maximum
number of parallel CCUs that can be instantiated. vq_ms does not fit on our FPGA
board.

Data Communication Analysis. We utilizedQuad to reveal the data communications
between different functions of the MELP application. e resulting QDU graph is huge
and does not fit here. We removed some subordinate functions, which were of lesser
importance, and a partial QDU graph is depicted in Figure .. e percentage of execu-
tion time contributions of the top kernels are also included in the graph to highlight the
application hotspots. Regarding the data communication hotspots, a brief examination
of the source code is required to accurately determine the origins of the heavy communi-
cations. Intense data communication may be originated from repeated memory reads of
the same value(s) from a particular memory address or a limited memory block. ese
intense memory communications may be easily fixed by modifying the source code.
Conventionally, the location of the communicated data for producer/consumer bindings
(mainly, the on-/off-chip data allocation), is the primary cause of memory boleneck.

Final Partitioning. In the top part of Table ., we see an overview of the different can-
didates for merging. e candidates were selected by looking at functions that would
fit on the FPGA and had intense communication. As expected, by inspecting the source
code, we noticed that these functions were almost always called together and in similar
sequences. In the analysis phase, Q² provides the computational intensity, area esti-
mates, and insight to the communication intensity. As the QDU graph suggests, an
obvious merging option would be to combine polflt and zerflt. It should be noted that
examining the call graph for the application displays no calling link between these two
function, although they are tightly coupled. ese two functions together contribute
.% to the computation time. ey are intensively communicating, and aer inspect-
ing the code, they appear to be called in sequence in almost all cases. Row o1 lists the
tentative data for this merging option. Note that the merged kernel has a larger theoret-
ical speedup than the individual kernels.

e QDU graph also reveals that two other functions, from the top , are intensely
communicating with polflt and zerflt, namely find_pitch and frac_pch. Again, Q² helps
us identify these kernels, as the predicted area for each one is relatively small, and the
communication with other functions is quite intense. However, when we investigate the
code, we notice that these four functions are not called in a consistent order throughout
the code. Sometimes only the filters are executed, sometimes find_pitch is also included,
or frac_pch, other times the filters are omied. In total, we identified four scenarios. We
merged the four kernels and added proper if -statements to switch on the correct code
regions. e combined predictions for this second option are listed in row o2.

Aer the identification of themerging candidates utilizing theQ² profiling results, we
merged the kernels and performed a new analysis iteration. e results are presented
in rows m1 and m2 of Table .. As mentioned before, we identified four scenarios



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

���
�
��
�
��

�
�
�	
�

�
�

�
�
�

��������
��	

�
���

�
�
�
�

�
��
�
�
�

�
�
��
�
�

�

�
�
�

�����������
��	

�
������

�
�
�
�

�
�
��
�
�
��

�

�
�
�

�����������
��	

�
����

�
�
�
�

���
�
��
�
�	

����������
��	

�
����

�
�
�
�

	
�
���
�
��
�
�
�
�
��
�

��������
��	

�
��

�
�
�
�

�
�	
�
���
����
��

��������
��	

�
��

�
�
�
�

��
���
��
�
�
���

��������
��	

�
��

�
�
�
�

���
�
�

�

�
�
� �����������

��	
�
���

�
�
�
�

���
��
�
��

�
�

�
�
�

�
�
�
�
�

��������
��	

�
���

�
�
�
�

�
��
�	
�

�������
��	

�
��

�
�
�
�

�
�
��
�
�
�

��������
��	

�
���

�
�
�
�

�
�
�
�
��
�
�

�

!
!
� �����������

��	
�
�����

�
�
�
�

�����������
��	

�
�����

�
�
�
�

��������
��	

�
��

�
�
�
�

���
�

�
"
�

������������
��	

�
�����

�
�
�
�

����������
��	

�
�����

�
�
�
�

�
�
����

�
�

"
�
�

������������
��	

�
�����

�
�
�
�

#�
����

�
�

"
�
�

������������
��	

�
�����

�
�
�
�

��������
��	

�
���

�
�
�
�

���������
��	

�
���

�
�
�
�

�
���
�
��
�
�

��������
��	

�
���

�
�
�
�

	
�
��
��
�
�
�
�
����

�������
��	

�
��

�
�
�
�

��
��
�
�
�
�

�������
��	

�
��

�
�
�
�

����������
��	

�
�����

�
�
�
�

������������
��	

�
�����

�
�
�
�

�����������
��	

�
�����

�
�
�
�

����������
��	

�
����

�
�
�
�

�����������
��	

�
����

�
�
�
�

���
�
��
����

�

�
�
�

������������
��	

�
�����

�
�
�
�

����������
��	

�
����

�
�
�
�

��������
��	

�
��

�
�
�
�

����������
��	

�
�����

�
�
�
�

�
��
�
�
�
�
�
�
�
��

����������
��	

�
����

�
�
�
�

�
�
�
�
��
�
��

����������
��	

�
����

�
�
�
�

�
�
��
��
�
�

���������
��	

�
����

�
�
�
�

����������
��	

�
�����

�
�
�
�

���������
��	

�
���

�
�
�
�

���������
��	

�
��

�
�
�
�

���������
��	

�
���

�
�
�
�

���������
��	

�
���

�
�
�
�

�
��
�
�
���
��

������
��	

�
����

�
�
�
�

�������
��	

�
����

�
�
�
�

��������
��	

�
����

�
�
�
�

�����������
��	

�
������

�
�
�
�

����

��������
��	

�
���

�
�
�
�

��
�
�
��	
�

������
��	

�
���

�
�
�
�

�
�
����

���������
��	

�
���

�
�
�
�

��������
��	

�
���

�
�
�
�

����������
��	

�
�����

�
�
�
�

�����������
��	

�
�����

�
�
�
�

����������
��	

�
�����

�
�
�
�

���������
��	

�
���

�
�
�
�

���������
��	

�
����

�
�
�
�

����������
��	

�
����

�
�
�
�

�����������
��	

�
����

�
�
�
�

�
���
�

��������
��	

�
��

�
�
�
�

��������
��	

�
���

�
�
�
�

�������
��	

�
��

�
�
�
�

����������
��	

�
���

�
�
�
�

���������
��	

�
���

�
�
�
�

������������
��	

�
�����

�
�
�
���
��
��
�
�

��������
��	

�
��

�
�
�
�

��
�
���
���
�
��
�

�������
��	

�
��

�
�
�
�

��
��
���
�
�
��
�

��������
��	

�
���

�
�
�
�

	
�
���
����
�
��
���
�
��

���������
��	

�
���

�
�
�
�

�������
��	

�
��

�
�
�
�

�������
��	

�
��

�
�
�
�

���������
��	

�
���

�
�
�
�

Figure
.:

Partial
Q
D
U

graph
of

the
M
ELP

application
before

m
erging.


e
top

ten
kernels

are
m
arked

in
the

graph
along

w
ith

their
corresponding

execution
tim

e
contributions

as
reported

by
M
aip.



MIXED EXCITATION LINEAR PREDICTION Section .

Ta
bl

e
.
:

R
es
ul
ts
of

th
e
an
al
ys
is
of

th
e
m
er
gi
ng

op
ti
on

s,
fin

al
m
er
ge
d
ke
rn
el
s,
an
d
th
e
ac
tu
al
sy
nt
he
si
s
re
su
lt
s
fo
r
th
e
M
EL

P
ap
pl
ic
at
io
n.

id
K
er
ne

l
A
re
a
(s
lic

es
)

Ex
ec
.t
im

e
t s

w
(µ
s)


t h
w
(µ
s)


Sp
ee
du

p
Pr

ed
ic
te
d

A
ct
ua

l
K
er
ne

l
A
pp

lic
at
io
n


eo

re
ti
ca
l

A
ct
ua

l

k
1

ze
rfl

t







.








.


.


.


k
2

fin
d_

pi
tc
h








.








.


.


.


k
3

po
lfl
t








.








.


.


.


k
4

fr
ac

_p
ch




n.
a.


.


n.
a.

n.
a.

.


n.
a.

n.
a.

o 1
k

1
+

k
3




n.
a.


.








.


.


.


o 2
o 1

+
k

2
+

k
4




n.
a.


.


n.
a.

n.
a.

.


n.
a.

n.
a.

m
1

po
l_
ve

qu
_z

er
flt








.








.


.


.


m
2

fil
te
rs
_p

lu
s_

pi
tc
h








.


n.
a.

n.
a.

.


.


.


m
2a

“
“

“

.








.


.


.


m
2b

“
“

“
.








.


.


.


m
2c

“
“

“


.








.


.


.


m
2d

“
“

“
.








.


.


.



Pe

rc
en

ta
ge

co
nt
ri
bu

ti
on

of
ex

ec
ut
io
n
ti
m
e
re
po

rt
ed

by
M
ai
p.


T
im

e
m
ea

su
re
d
on

PP
C

on
th
e
M
L


.


T
im

e
m
ea

su
re
d
w
it
h
M
od

el
si
m

.
f

si
m
ul
at
or

ta
rg
et
in
g
M
L


V
ir
te
x

FP

G
A
.



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

of ordering the individual kernels merged in m2. For each scenario, we list detailed
information in rows m2a-m2d . Observe that the predicted area consumption has been
reduced. e reason for this is the additional opportunities for the compiler to optimize
the code. We have also included parts of the new QDU graphs representing the first
and second merging options in Figure . and Figure ., respectively. Clearly, the data
communication channels between the corresponding kernels have been internalized by
the merging process.

.. Observations and Results

We synthesized the kernels and merged them in order to validate our predictions and to
determine the kernel and the application speedups. e results are also listed in Table ..
e table includes the execution times in percentage and in µs for the PPC and the FPGA.
e FPGA execution times were determined using the Modelsim . simulator with the
same input as on the PPC. Furthermore, we also include the actual area for each of
the kernels. In case of the frac_pch function, no actual area is reported, as this kernel
contains a function call, which DWARV does not support. Apart from the theoretical
speedup, we also include the kernel speedup and the corresponding application speedup.
It can be seen that the ipu estimates exhibited an error of .% to %. is is an
acceptable error rate for early analysis of hardware resource consumptions. From the
analysis data, it can be observed that the potential for speedup has increased to .×.
e actual speedup achieved by merging the kernel candidates was .×.

. Summary

We have seen in this chapter how the Q² profiling framework can be used in real scenar-
ios of partitioning an application into hardware and soware parts for a heterogeneous
reconfigurable platform. e Canny Edge Detection (CED) and Mixed Excitation Lin-
ear Prediction (MELP) applications were presented. A detailed analysis of these two
applications was presented that resulted in speedups of .× and .×, respectively.
e Quad toolset played an important role in extracting the actual data communication
bindings, guiding kernels merging, investigating the effect of code transformations, and
performing DSE.



SUMMARY Section .

�����������	
��
�
����

������������	
�
�

��������

��������

�����������	
�
�����������

��	
��

������
����	
�
����������

���������

������������	
�
�����������

	������

�
��
�
�����	
�
��
��������

�����������	
�
�����������

�����������	
�
�����������

���������

����������	
�
�����������

������������

����������	
�
�
��������

�����������	
�
����������

���	��

����������	
�
�����������

����������	
�
�����������

�����������	
�
�����������

Figure .: Partial QDU graph of the MELP application aer the first merging step.

������

���	
�����
����	��
������

�������������
	��
���
���

������
������
	�����
���

���������������
	������
���

��
���

����
��
������
	��
���
���

�
���	

����

��������
	�����
���

��
��

�������
	��
���
���

���

���������
	��
���
���

�
����
��

�������������
	�����
���

��	������

�������������
	��
���
���

��������������
	��
���
���

������
���	

�������������
	�����
���

�������
������
	�����
���

Figure .: Partial QDU graph of the MELP application aer the second merging step.



Chapter  UTILIZING Q² IN HW/SW PARTITIONING

Note.
e content of this chapter is partly based on the following articles:

Koen Bertels, S. Arash Ostadzadeh, and Roel Meeuws, Advanced Profiling of Appli-
cations for Heterogeneous Multi-Core Platforms, Proceedings of the International
Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA’), Las Ve-
gas, USA, July , pp. -.

S. Arash Ostadzadeh, Roel Meeuws, Imran Ashraf, Carlo Galuzzi, and Koen Bertels,eQ²
Profiling Framework: Driving Application Mapping for Heterogeneous Recon-
figurable Platforms, Proceedings of the th International Symposium on Applied Recon-
figurable Computing (ARC’), Hong Kong, March , pp. -.

S. ArashOstadzadeh, RoelMeeuws, ImranAshraf, Carlo Galuzzi, andKoen Bertels,Profile-
Guided Application Partitioning for Heterogeneous Reconfigurable Platforms,
Proceedings of the th International Symposium on Computer Architecture and Digital
Systems (CADS’), Shiraz, Iran, May , pp. -.



CHAPTER7
Conclusions

“We can only see a short distance ahead, but we can see plenty there that needs
to be done.” †

— Alan M. Turing

t
his dissertation has presented a dynamic memory access profiling toolset,
called Quad, which provides quantitative profiling information about the
memory accesses in an application. e profiling toolset is able to detect
the actual data dependencies that occur, at runtime, between the functions

in the application. In addition to the detection of data dependencies, accurate quanti-
tative measurements of the transferred bytes and the size of required memory for com-
munication are provided as well. e extracted profiling information can be utilized to
identify critical parts¹ of the application, highlight coarse-grained parallelism opportu-
nities, and direct code optimizations, among others. Although it was developed in the
context of theDelWorkbench—which targets the Molen heterogeneous reconfigurable
platform — our dynamic profiling framework is general and not restricted to any par-
ticular platform, application, or purpose. To substantiate the usefulness of the extracted
profiling information, we have utilized the main output of the toolset, the antitative
Data Usage (QDU) graph, as the input data model for general application partitioning.
e solutions found by the proposed heuristic clustering algorithm looked promising in
comparison to the optimal solutions identified by an exhaustive search. Furthermore,
we have investigated in details the utilization of the extracted memory access profiling
information in practice using two real scenarios. In this chapter, we first summarize the
contents of each chapter in the dissertation in Section .. en, in Section ., we eval-
uate the main contributions of our work and draw conclusions. We close the chapter
with an outlook to the future by identifying open issues and future research directions
in Section ..

† e last sentence of Turing’s pioneering article, Computing Machinery and Intelligence, Mind - A ar-
terly Review of Psychology and Philosophy, Vol. , No.  (Oct., ), pp. -, well-known as the
Turing Test
¹ Criticality with a specific focus on the data communication in the application via the main memory.



http://www.jstor.org/stable/2251299

Chapter  CONCLUSIONS

. Summary

In this dissertation, we have presented a dynamic profiling framework for extracting
quantitative memory access information during the execution of an application. We
employ Dynamic Binary Instrumentation (DBI) to inject the required analysis code into
the application in order to track its runtime behaviour. To this purpose, we utilize an
efficient approach to trace every single access to the main memory.

In Chapter , we introduced the concept of profiling as the most common method
of application analysis. We set out stressing the importance of such analysis in under-
standing the behaviour of applications, which, in turn, is of great value to application
developers and computer architects. Profiling tools are a necessity to evaluate how well
applications perform on different platforms as well as to identify the critical parts which
pose potential bolenecks for the whole system performance. We also explained the
idea of application tracing in contrast to profiling, and how their objectives differ in the
context of application analysis. Furthermore, we elaborated on the different aspects in
which profiling is useful. Subsequently, we listed different types of data structures that
are used in various profiling and tracing techniques. e choice of proper data struc-
tures substantially affects the performance of the profiler in addition to the execution
time of the profiled application itself. We described the two main categories of profiling,
namely the static analysis and the dynamic analysis. From a different perspective, we
subsequently looked at the differences between soware and hardware profiling. In par-
ticular, we further explored instrumentation, which is used in our profiling toolset. e
chapter ended with a brief account of several existing profiling tools used in analysing
applications.

eQuadmemory access profiling toolset was introduced in Chapter . In this chap-
ter, we initially presented the project context of our work, focusing on the Molen Ab-
straction Layer (MAL), the Del Workbench tool platform, and the Q² profiling frame-
work. e chapter continued with a detailed description of the development issues in
the dynamic part of the profiling framework. In particular, we elaborated on the de-
scription of the Pin DBI framework, and the implementation of the Quad-core tool, the
Memory Access Tracing (MAT) module, Memory Access Intensity Profiler (Maip), and
the xQuad tool. Furthermore, using the profiling information extracted by Maip, we set
out to estimate the time spent on memory operations in distinction of the time spent on
computations. Based on this estimation, we proposed a ranking strategy that provides
a preliminary assessment of the criticality of a function regarding its memory access
intensity. In order to demonstrate how the profiling information can be interpreted and
used in different aspects, we presented three case studies with real world applications. In
each case study, we highlighted the major observations followed by detailed comments.

Chapter  presented the tQuad tool that further extends the Quad toolset by en-
abling it to extract relative timing information from the application’s execution. is is
of critical significance, particularly with regard to scheduling and mapping tasks onto
heterogeneous multicore systems. e original Quad-core tool provides no track of any
temporal information, mainly due to instrumentation performance issues. e tQuad
tool collects the relative timing profiles as an indication of the progress of the applica-
tion. We presented a concise overview of how this functionality was implemented in tQ
uad. In the presence of the memory access data, the extracted temporal profiles by tQ



MAIN CONTRIBUTIONS Section .

uad give an account of the memory bandwidth usage of functions in the application over
time. Additionally, we utilized the extracted temporal information to discover the differ-
ent (virtual) phases of the application. e chapter ended with a detailed case study of a
real application to demonstrate the potential and the applicability of tQuad in practice.

e focus of Chapter  was on the problem of the coarse-grained partitioning of an
application in its general sense. We presented a detailed investigation into the factors
that characterize a partitioning scheme and the methods that are utilized to perform
partitioning. In addition to a comprehensive formulation of the general application par-
titioning problem, we proposed a heuristic approach to tackle this intractable problem
with the aim of working out a near-optimal (or optimal) solution in a feasible amount
of time. e proposed approach was based on the well-known greedy algorithm with
the primary objective of minimizing (and maximizing) the inter-cluster (intra-cluster)
data communication, and the uniformity of the workload in different Processing Ele-
ments (PEs). e proposed partitioning algorithm was bound to fail without a proper
input model to fully capture the data transfers in the application. To address this critical
issue, we utilized the QDU graph, provided by the Quad-core tool, to drive the partition-
ing procedure. As customary in Computer Science, we gave an account of the detailed
complexity analysis of the proposed partitioning, both in terms of time and space. More-
over, we presented a thorough analysis of the application partitioning problem from a
combinatorial mathematics perspective. is was required to conduct an exhaustive
search of the solution space in order to have a strictly accurate assessment of how close
we can get to the optimal solution. e chapter was concluded with experimental re-
sults for a real application as well as for synthetic data in comparison with the optimal
solution.

Finally, we demonstrated how the dynamic profiling framework can be applied in
real scenarios by investigating two realistic cases in Chapter . For this purpose, we
proposed the Q² partitioning approach which divides an application into hardware and
soware parts. We evaluated the Canny Edge Detection (CED) application, a well-
known edge detection algorithm, and the Mixed Excitation Linear Prediction (MELP)
application, a high-grade voice coder targeting very low bit rates. Both applications
were mapped onto the Molen heterogeneous platform. To this purpose, an elaborate
analysis of the applications was performed beforehand. During this analysis, memory
access profiling information provided by Quad was utilized for source code modifica-
tions and optimizations. We employed the QDU graph as the main reference to analyse
the data transfers between functions, findmemory bolenecks and deficiencies, and spot
opportunities to merge functions.

. Main Contributions

In this dissertation, we have presented diverse results, ranging from practical usage of
the developed toolset, to theoretical analysis of partitioning, and to simulations. In the
following, we review the main contributions of our work.

• We developed an efficient memory access profiling framework that can be utilized
to extract useful behavioral information from applications. Several profilers were



Chapter  CONCLUSIONS

designed and implemented based on the Pin DBI framework. e QDU graph, as
the primary output of the Quad toolset, is introduced in Chapter . e graph
demonstrates comprehensiveness with respect to the amount of information it
provides to the application developers. e Quad toolset contrasts with similar
data dependency tools in various aspects: ) the scope of the extracted information,
) the accuracy of the profiling data, and ) the flexibility and the potential for
extension. ese properties were validated in different scenarios and experiments
throughout this work.

• In Chapter , we showed how relative timing data can be extracted in addition to
the memory access profiles during the execution of the application. e extracted
temporal information was used to give an overview of the memory bandwidth
requirements of the application during its execution and, subsequently, guide the
identification of different phases in the application.

• In this dissertation, we have utilized the QDU graph for different purposes. In
Chapter , we discussed that the existing application partitioning approaches —
which account for data communication— either use inappropriate input datamod-
els or are restricted to theoretical analysis of the partitioning problem. Instead,
we formulated a general application partitioning problem, which can be used to
model different objectives and, subsequently, proposed a heuristic approach as a
solution.

• In addition to a thorough analysis of the exhaustive search for our partitioning
model, we presented extensive simulation results using synthetically generated
graphs to further substantiate the quality of solutions found by our partitioning
algorithm. As demonstrated in Chapter , for the majority of cases, the solutions
found by our algorithm lie in the top % of the solution space, either as the optimal
or near-optimal solution.

• We have also demonstrated that the extracted profiles can be valuable in scenarios
where legacy applications are mapped onto a heterogeneous platform. In Chap-
ter , two realistic cases were given where the Quad toolset played a crucial role
in directing the application mapping. For this purpose, we proposed a HW/SW
partitioning methodology based on the static and dynamic parts of the profiling
framework. e obtained partitions resulted in a speedup of .× for CED and
.× for MELP, respectively.

. Research Opportunities

We envision different areas where our profiling framework can be used. Furthermore,
the work presented in this dissertation can be improved in many ways. In the following,
we list several research opportunities related to our work and we comment on how these
opportunities may be addressed in the future.

Opportunity  — e adaptation of the Quad dynamic memory access profiling
toolset to analyse parallel applications.



RESEARCH OPPORTUNITIES Section .

e current Quad toolset is only capable to work with sequential applications.
With a large repository of legacy applications, which are developed based on the
Von Neumann model, our profiling framework still proves to be useful for coarse-
grained parallelism identification, code optimizations, and application mapping
onto heterogeneous architectures. Nevertheless, with multicore systems becom-
ing the preferred technology for building powerful computers, it is anticipated
that there will be an increasing availability of parallel applications. In this respect,
soware will be critical to leveraging parallel systems, as the time with hardware
exploitation of parallelism is almost over. It is also clear that the main issue with
parallel programming is data dependency. Multiple tasks work on the same data,
in an unpredictable way, and that is why these data dependencies become difficult
to handle in parallel applications. Instrumenting a parallel application is not fun-
damentally different from instrumenting sequential applications. As an example,
the Pin DBI framework provides the required facilities for this purpose []. ere
are mechanisms to signal that a new thread or process is created. Analysis rou-
tines can be provided with a thread ID, so it is possible to aribute the extracted
data, e.g., a memory access, to the thread that performed the operation. We envi-
sion the possibility of implementing our efficient MATmodule as well as adapting
the proposed QDU graph to accommodate parallel applications. However, instru-
menting a multi-threaded application indeed has its own difficulties and requires
some special care. In particular, the analysis routines can be called by multiple
threads simultaneously, thus one has to make sure that the analysis routines are
thread-safe.

Opportunity  — e extension of the Quad toolset in terms of the extracted
profiling information, the inspection granularity, and the performance
optimizations.
Although we have tried to make Quad perform its tasks as efficient as possible,
there should still be several opportunities to further revise the toolset. Considering
the fact that Quadwas expected to be used as an extremely heavyweight Dynamic
Binary Analysis (DBA) tool — incomparable with other tools utilizing the shad-
ow memory concept due to the huge amount of data and processing involved in
shadowing each address — several features were le out of the initial design. As
an example, Quad is only able to tell the user how much data is communicated
between a pair of functions and what would be the actual size of memory need-
ed for this communication, however, it is not able to reveal anything about the
communicated data values. is can be indeed important when the user needs
to fine-tune an application. An initial aempt to extract some useful information
based on the concept of Unique Data Values (UnDVs) is presented in []. e
extension enables Quad-core to quantify the uniqueness of data values and how
oen they are accessed. Furthermore, the data dependency detection in Quad is
performed at the coarse granularity of function level. If finer granularity, such as
loop or basic block level, is required, Quad cannot be of much use. e investiga-
tion of implementing a flexible granularity level would be an interesting feature
for the toolset. Another hint would be the detection of shared data objects in an
application. Finally, it is worth to mention that some profiling data are extract-
ed in the Quad-core during the instrumentation process which simply are not
post-processed to be considered as deliverable outputs, e.g., the complete range



Chapter  CONCLUSIONS

of memory addresses in data transfers. e runtime overhead of Quad is still a
critical performance issue. As a heavyweight DBA tool — which involves large
amounts of profiling data that is accessed and updated in irregular paerns — the
user experiences slowdowns on the scale of hundreds to thousands of times, de-
pending on the nature of the application. is can be undoubtedly a major point
of research in order to cut off extra overhead and boost the performance of the
toolset.

Opportunity  — e investigation of utilizing other extracted profiling infor-
mation in addition to the QDU graph for application partitioning.
e information extracted by the Quad toolset is not limited to the data that is in-
cluded in the QDU graph. ere exists variousmemory access related data, such as
Interleaving Balance Factor (IBF) and the phase information, which is not directly
used in our application partitioning nor in mapping an application onto a target
heterogeneous platform. e extraction of this diverse profiling information was
made possible because of the powerful tracing mechanism that Quad provides for
analyzing memory accesses. Nevertheless, the effect of this extensive collection
of profiling information has not been investigated in practice, though we foresee
an immense potential to positively affect the partitioning results. Regarding the
proposed Q² partitioning methodology, there is an interest to examine how this
information can help the user find beer merging candidates or carry out function
spliing — which was not yet addressed in our HW/SW partitioning. On a more
general scale, the multi-objective clustering algorithm can benefit from an extend-
ed cost and ranking function definition based on this more detailed information.
It will require a thorough investigation to assess the effect of each modification on
the quality of the found partitions as well as the time needed to reach the solution.
Moreover, this additional information can be used to define heuristic rules which
in turn affect the clustering procedure. As an example, one may opt to prefer clus-
tering two functions which are communicating in a tight interleaved production-
consumption manner above functions where the whole production precedes the
consumption. How this decision affects the performance of the mapped applica-
tion in practice is one aspect that needs further investigation.

Opportunity  — e comparison of various heuristic application partitioning
algorithms in terms of the result quality and the execution time.
As mentioned in Chapter , one major problem regarding different application
partitioning algorithms is the lack of a robust and fair basis of comparison. To
this day, no approach has been proposed in literature that enables the comparison
of the results of different partitioning strategies. is is due to the different input
models, objective functions, assumptions, test cases, and target architectures that
are used in each research work. e diversity of critical factors in these works is
such that one would never be able to prefer one over another. Even worse, there is
no standard metric in order to assess the quality of the results. Apart from limited
works that propose deterministic methods to find the optimal solution², for the
heuristic methods no solid proof is given to validate the quality of solutions. e

² Only feasible when the problem size is small or the problem formulation makes it possible to work out a
polynomial time complexity solution, such as ILP.



RESEARCH OPPORTUNITIES Section .

synthetic test bench that we provided in this work can be used as a starting point
in this respect.





Bibliography

[] Abdelzaher, T. F., and Shin, K. G. Period-based load partitioning and assignment
for large real-time applications. IEEE Transactions on Computers ,  (January
), –.

[] Accellera systems initiative. http://www.accellera.org/.

[] Adams, J. K., and omas, D. E. Multiple-process behavioral synthesis for mixed
hardware-soware systems. In Proceedings of the ʰ international symposium on
System synthesis (New York, NY, USA, ), ISSS ’, ACM, pp. –.

[] Ahmadinia, A., Bobda, C., Koch, D., Majer, M., and Teich, J. Task scheduling for
heterogeneous reconfigurable computers. In Proceedings of the ʰ symposium on
Integrated circuits and system design (New York, NY, USA, ), ACM, pp. –.

[] aiT Worst-Case Execution Time Analyzers. http://www.absint.com/
ait/.

[] Altera corporation. http://www.altera.com/.

[] SGI Builds World’s Largest FPGA Supercomputer. http://www.sgi.
com/company_info/newsroom/press_releases/2007/november/
fpga.html.

[] Amdahl, G. M. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the American Federation of Information
Processing Societies Conf. (New York, NY, USA, ), AFIPS ’ (Spring), ACM,
pp. –.

[] Anderson, D. A Consumer Library Interface to DWARF, rev. ..

[] Anderson, J. M., Berc, L. M., Dean, J., Ghemawat, S., Henzinger, M. R., Leung,
S.-T. A., Sites, R. L., Vandevoorde, M. T., Waldspurger, C. A., and Weihl, W. E.
Continuous profiling: where have all the cycles gone? In Proceedings of the ʰ
ACM symposium on Operating systems principles (New York, NY, USA, ), SOSP
’, ACM, pp. –.

[] Arató, P., Mann, Z. A., and Orbán, A. Algorithmic aspects of hardware/so-
ware partitioning. ACM Transactions on Design Automation of Electronic Systems
(TODAES) ,  (January ), –.



http://www.accellera.org/
http://www.absint.com/ait/
http://www.absint.com/ait/
http://www.altera.com/
http://www.sgi.com/company_info/newsroom/press_releases/2007/november/fpga.html
http://www.sgi.com/company_info/newsroom/press_releases/2007/november/fpga.html
http://www.sgi.com/company_info/newsroom/press_releases/2007/november/fpga.html

BIBLIOGRAPHY

[] Arató, P., Mann, Z. A., Orbán, A., and Papp, D. Hardware-soware partitioning
in embedded system design. In IEEE International Symposium on Intelligent Signal
Processing (September ), pp. –.

[] Ashraf, I., Ostadzadeh, S. A., Meeuws, R., and Bertels, K. Communication-
aware HW/SW co-design for heterogeneous multicore platforms. In Proceedings
of the  Workshop on Dynamic Analysis (New York, NY, USA, ), WODA
, ACM, pp. –.

[] Augonnet, C., ibault, S., Namyst, R., and Wacrenier, P.-A. Starpu: a unified
platform for task scheduling on heterogeneous multicore architectures. Concur-
rency and Computation: Practice and Experience ,  (), –.

[] Ayed, M. Automatic Code Partitioning for Distributed-Memory Multiprocessors
(DMMs). PhD thesis, University of Southern California, Los Angeles, CA, USA,
.

[] Ayed, M., and Gaudiot, J.-L. Analysis of a heuristic for code partitioning. e
Journal of Supercomputing ,  (May ), –.

[] Ayed, M., and Gaudiot, J.-L. An efficient heuristic for code partitioning. Parallel
Computing ,  (),  – .

[] Bach, M. M., Charney, M., Cohn, R., Demikhovsky, E., Devor, T., Hazelwood,
K., Jaleel, A., Luk, C.-K., Lyons, G., Patil, H., and Tal, A. Analyzing Parallel
Programs with Pin. Computer ,  (March ), –.

[] Balarin, F., Lavagno, L., Murthy, P., and Sangiovanni-vincentelli, A. Sched-
uling for embedded real-time systems. IEEE Design and Test of Computers , 
(January ), –.

[] Baleani, M., Gennari, F., Jiang, Y., Patel, Y., Brayton, R. K., and Sangiovanni-
Vincentelli, A. Hw/sw partitioning and code generation of embedded control ap-
plications on a reconfigurable architecture platform. In Proceedings of the tenth in-
ternational symposium on Hardware/soware codesign (New York, NY, USA, ),
CODES ’, ACM, pp. –.

[] Ball, T., and Larus, J. R. Branch prediction for free. ACM SIGPLAN Notices , 
(June ), –.

[] Ball, T., and Larus, J. R. Optimally profiling and tracing programs. ACM Transac-
tions on Programming Languages and Systems (TOPLAS) ,  (July ), –.

[] Ball, T., and Larus, J. R. Efficient path profiling. In Proceedings of the th annual
ACM/IEEE international symposium on Microarchitecture (Washington, DC, USA,
), MICRO , IEEE Computer Society, pp. –.

[] Ball, T., Mataga, P., and Sagiv, M. Edge profiling versus path profiling: the show-
down. In Proceedings of the th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (New York, NY, USA, ), POPL ’, ACM, pp. –.



BIBLIOGRAPHY

[] Balle, S., and Steely, S. Memory access profiling tools for alpha-based architec-
tures. In Applied Parallel Computing Large Scale Scientific and Industrial Problems,
B. Kågström, J. Dongarra, E. Elmroth, and J. Wasniewski, Eds., vol.  of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, , pp. –.

[] Bammi, J. R., Kruijtzer, W., Lavagno, L., Harcourt, E., and Lazarescu, M. T.
Soware performance estimation strategies in a system-level design tool. In Pro-
ceedings of the ʰ international workshop onHardware/soware codesign (NewYork,
NY, USA, ), CODES ’, ACM, pp. –.

[] Banerjee, S., and Du, N. Efficient search space exploration for hw-sw partition-
ing. In Proceedings of the ⁿ IEEE/ACM/IFIP international conference on Hardware/-
soware codesign and system synthesis (New York, NY, USA, ), CODES+ISSS
’, ACM, pp. –.

[] Barros, E., and Sampaio, A. Towards provably correct hardware/soware parti-
tioning using OCCAM. In Proceedings of the ʳ International Workshop on Hard-
ware/Soware Codesign (September ), pp. –.

[] Barua, R., and Kotha, A. Automatic parallelization using binary rewriting, April
. US Patent App. /,.

[] Beck, A. C. S., Rutzig, M. B., Gaydadjiev, G., and Carro, L. Transparent recon-
figurable acceleration for heterogeneous embedded applications. In Proceedings
of the conference on Design, automation and test in Europe (New York, NY, USA,
), DATE ’, ACM, pp. –.

[] Benini, L., Bogliolo, A., and De Micheli, G. A survey of design techniques for
system-level dynamic power management. Very Large Scale Integration (VLSI) Sys-
tems, IEEE Transactions on ,  (june ), –.

[] Berkhout, A. J., de Vries, D., and Vogel, P. Acoustic control by wave field syn-
thesis. e Journal of the Acoustical Society of America ,  (), –.

[] Bertels, K., Sima, V., Meeuws, R., Ostadzadeh, S. A., Galuzzi, C., Nane, R.,
Yankova, Y., Mariani, G., and Kuzmanov, G. Hardware/Soware Co-design for
Polymorphic Processors : e Del Workbench. Tech. rep., Computer Engineer-
ing, Del University of Technology, Del, the Netherlands, January .

[] Bhaacharya, A., Konar, A., Das, S., Grosan, C., and Abraham, A. Hardware
soware partitioning problem in embedded system design using particle swarm
optimization algorithm. In Proceedings of the International Conference on Complex,
Intelligent and Soware Intensive Systems (Washington, DC, USA, ), CISIS ’,
IEEE Computer Society, pp. –.

[] Bình, N. N., Imai, M., Shiomi, A., and Hikichi, N. Ahardware/soware partitioning
algorithm for designing pipelined asips with least gate counts. In Proceedings of
the ʳ annual Design Automation Conference (New York, NY, USA, ), DAC
’, ACM, pp. –.



BIBLIOGRAPHY

[] Blaz̊ewicz, J., Drabowski, M., and Weglarz, J. Scheduling multiprocessor tasks
to minimize schedule length. IEEE Transactions on Computers ,  (May ),
–.

[] Bond, M. D., and McKinley, K. S. Continuous path and edge profiling. In Proceed-
ings of the th annual IEEE/ACM International Symposium on Microarchitecture
(Washington, DC, USA, ), MICRO , IEEE Computer Society, pp. –.

[] Bond, M. D., and McKinley, K. S. Practical path profiling for dynamic optimiz-
ers. In Proceedings of the international symposium on Code generation and opti-
mization (Washington, DC, USA, March ), CGO ’, IEEE Computer Society,
pp. –.

[] Bondhugula, U. Automatic distributed-memory parallelization and code genera-
tion using the polyhedral framework. Tech. Rep. IISc-CSA-TR--, Department
of Computer Science and Automation, Indian Institute of Science, Bangalore, In-
dia, September .

[] Bondhugula, U., Hartono, A., Ramanujam, J., and Sadayappan, P. A practical
automatic polyhedral parallelizer and locality optimizer. ACM SIGPLAN Notices -
PLDI ’ ,  (June ), –.

[] Borkar, S. Y., Dubey, P., Kahn, K. C., Kuck, D. J., Mulder, H., Pawlowski, S. S.,
and Raner, J. R. Platform : Intel processor and platform evolution for the
next decade. Intelligence/SIGART Bulletin ().

[] Bound-T Time and Stack Analyser. http://www.bound-t.com/.

[] Braun, T. D., Siegel, H. J., Beck, N., Bölöni, L. L., Maheswaran, M., Reuther, A. I.,
Robertson, J. P., eys, M. D., Yao, B., Hensgen, D., and Freund, R. F. A com-
parison of eleven static heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems. Journal of Parallel and Distributed
Computing ,  (June ), –.

[] Brewer, O., Dongarra, J., and Sorensen, D. Tools to aid in the analysis of memory
access paerns for fortran programs. Parallel Computing ,  (),  – .

[] Buck, B., and Hollingsworth, J. K. An api for runtime code patching. Interna-
tional Journal of High Performance Computing Applications ,  (November ),
–.

[] Burger, D., and Austin, T. M. e SimpleScalar tool set, version .. ACM
SIGARCH Computer Architecture News ,  (June ), –.

[] Calder, B., Feller, P., and Eustace, A. Value profiling. In Proceedings of the th

annual ACM/IEEE international symposium onMicroarchitecture (Washington, DC,
USA, December ), MICRO , IEEE Computer Society, pp. –.

[] Canny, J. A computational approach to edge detection. IEEE Transactions on
Paern Analysis and Machine Intelligence ,  (November ), –.



http://www.bound-t.com/

BIBLIOGRAPHY

[] Cantrill, B. M., Shapiro, M. W., and Leventhal, A. H. Dynamic instrumentation
of production systems. In Proceedings of the annual conference on USENIX Annual
Technical Conference (Berkeley, CA, USA, ), ATEC ’, USENIX Association,
pp. –.

[] Chamberlain, B. L. Graph partitioning algorithms for distributing workloads of
parallel computations. Tech. Rep. UW-CSE--, University of Washington, .

[] Chatha, K. S., and Vemuri, R. Magellan: multiway hardware-soware partition-
ing and scheduling for latency minimization of hierarchical control-dataflow task
graphs. In Proceedings of the ʰ international symposium on Hardware/soware
codesign (New York, NY, USA, ), CODES ’, ACM, pp. –.

[] Chatha, K. S., and Vemuri, R. Hardware-soware partitioning and pipelined
scheduling of transformative applications. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems ,  (June ), –.

[] Choudhury, A. N. M. I., Poer, K. C., and Parker, S. G. Interactive visualization
for memory reference traces. Computer Graphics Forum ,  (), –.

[] Chung, E. S., Hoe, J. C., and Mai, K. CoRAM: an in-fabric memory architecture
for FPGA-based computing. In Proceedings of the ʰ ACM/SIGDA international
symposium on Field programmable gate arrays (New York, NY, USA, ), FPGA
’, ACM, pp. –.

[] Clarke, E. e birth of model checking. In  Years of Model Checking, O. Grum-
berg and H. Veith, Eds., vol.  of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, , pp. –.

[] AMD CodeAnalyst Performance Analyzer. http://developer.amd.com/
tools/CodeAnalyst/Pages/default.aspx.

[] Cohen, A., Daubechies, I., and Feauveau, J.-C. Biorthogonal bases of compactly
supported wavelets. Communications on Pure and Applied Mathematics ,  (),
–.

[] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to Algo-
rithms, rd ed. e MIT Press, .

[] CoSy Compiler Development System. http://www.ace.nl/compiler/
cosy.html.

[] Curtin, M. Brute Force: Cracking the Data Encryption Standard. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, .

[] Dasdan, A., and Aykanat, C. Two novel multiway circuit partitioning algorithms
using relaxed locking. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems ,  (feb ), –.

[] Davis, R. I., and Burns, A. A survey of hard real-time scheduling for multiproces-
sor systems. ACM Computing Surveys ,  (October ), :–:.



http://developer.amd.com/tools/CodeAnalyst/Pages/default.aspx
http://developer.amd.com/tools/CodeAnalyst/Pages/default.aspx
http://www.ace.nl/compiler/cosy.html
http://www.ace.nl/compiler/cosy.html

BIBLIOGRAPHY

[] Denning, P. J. e working set model for program behavior. Commun. ACM , 
(May ), –.

[] Dias, M. A., Sales, D. O., and Osorio, F. S. A profile-based method for hardware/-
soware co-design applied in evolutionary robotics using reconfigurable comput-
ing. In Proceedings of the  IEEE Electronics, Robotics and Automotive Mechanics
Conference (Washington, DC, USA, ), CERMA ’, IEEE Computer Society,
pp. –.

[] Dick, R., and Jha, N. Mogac: a multiobjective genetic algorithm for hardware-
soware cosynthesis of distributed embedded systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems ,  (October ),
–.

[] Dmitriev, M. Design of jfluid: a profiling technology and tool based on dynamic
bytecode instrumentation. Tech. rep., Mountain View, CA, USA, .

[] e DWARF Debugging Standard. http://dwarfstd.org/.

[] Eager, M. J. Introduction to the DWARF Debugging Format.

[] Edwards, S., Lavagno, L., Lee, E., and Sangiovanni-Vincentelli, A. Design of
embedded systems: formal models, validation, and synthesis. Proceedings of the
IEEE ,  (March ),  –.

[] Edwards, S., Lavagno, L., Lee, E. A., and Sangiovanni-Vincentelli, A. Design
of embedded systems: formal models, validation, and synthesis. In Readings in
hardware/soware co-design, G. De Micheli, R. Ernst, and W. Wolf, Eds. Kluwer
Academic Publishers, Norwell, MA, USA, , pp. –.

[] Eeckhout, L., and Bosschere, K. D. Efficient simulation of trace samples on par-
allel machines. Parallel Computing ,  (), –.

[] Eeckhout, L., de Bosschere, K., and Neefs, H. Performance analysis through
synthetic trace generation. In Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Soware (Washington, DC, USA, ),
ISPASS ’, IEEE Computer Society, pp. –.

[] Eles, P., Kuchcinski, K., Peng, Z., and Doboli, A. Hardware/soware partition-
ing of VHDL system specifications. In Proceedings of the Conference on European
Design Automation (Los Alamitos, CA, USA, ), EURO-DAC ’/EURO-VHDL
’, IEEE Computer Society Press, pp. –.

[] Eles, P., Peng, Z., Kuchcinski, K., and Doboli, A. System level hardware/soware
partitioning based on simulated annealing and tabu search. Design Automation for
Embedded Systems  (), –. ./A:.

[] Emerson, M., Neema, S., and Sztipanovits, J. Handbook of Real-Time and Embed-
ded Systems. CRC Press, . ISBN: .

[] Ernst, R., Henkel, J., and Benner, T. Hardware-soware cosynthesis for micro-
controllers. IEEE Design Test of Computers ,  (October ), –.



http://dwarfstd.org/

BIBLIOGRAPHY

[] Faxén, K.-F., Popov, K., Jansson, S., and Albertsson, L. Embla - Data Depen-
dence Profiling for Parallel Programming. In Proceedings of the International Con-
ference on Complex, Intelligent and Soware Intensive Systems (Washington, DC,
USA, ), CISIS ’, IEEE Computer Society, pp. –.

[] Fiduccia, C. M., and Maheyses, R. M. A linear-time heuristic for improving
network partitions. In Proceedings of the ʰ Design Automation Conference (Pis-
cataway, NJ, USA, ), DAC ’, IEEE Press, pp. –.

[] Frakes, W., and Kang, K. Soware reuse research: status and future. IEEE Trans-
actions on Soware Engineering ,  (July ), –.

[] Fraunhofer Institute for Digital Media Technology. http://www2.idmt.
fraunhofer.de/eng/research_topics/wave_field_synthesis.
htm.

[] Fredkin, E. Trie memory. Communications of the ACM (CACM) ,  (September
), –.

[] Gajski, D. D., Vahid, F., Narayan, S., and Gong, J. Specsyn: an environment sup-
porting the specify-explore-refine paradigm for hardware/soware system design.
In Readings in hardware/soware co-design, G. De Micheli, R. Ernst, and W. Wolf,
Eds. Kluwer Academic Publishers, Norwell, MA, USA, , pp. –.

[] Garey, M., Johnson, D., and Stockmeyer, L. Some simplified np-complete graph
problems. eoretical Computer Science ,  (), –.

[] Gerasoulis, A., and Yang, T. On the granularity and clustering of directed acyclic
task graphs. IEEE Transactions on Parallel and Distributed Systems ,  (June ),
–.

[] Gesellenseer, L., and Glesner, S. Interprocedural speculative optimization
of memory accesses to global variables. In Euro-Par  - Parallel Processing,
E. Luque, T. Margalef, and D. Benítez, Eds., vol.  of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, , pp. –.

[] Giusto, P., Martin, G., and Harcourt, E. Reliable estimation of execution time
of embedded soware. In Proceedings of the conference on Design, automation and
test in Europe (Piscataway, NJ, USA, ), DATE ’, IEEE Press, pp. –.

[] Gohringer, D., Hubner, M., Benz, M., and Becker, J. A design methodology
for application partitioning and architecture development of reconfigurable mul-
tiprocessor systems-on-chip. In Proceedings of the ʰ IEEE Annual Internation-
al Symposium on Field-Programmable Custom Computing Machines (FCCM) (Los
Alamitos, CA, USA, May ), IEEE Computer Society, pp. –.

[] Gonen, R., and Lehmann, D. Optimal solutions for multi-unit combinatorial auc-
tions: branch and bound heuristics. In Proceedings of the nd ACM conference on
Electronic commerce (New York, NY, USA, ), ACM, pp. –.



http://www2.idmt.fraunhofer.de/eng/research_topics/wave_field_synthesis.htm
http://www2.idmt.fraunhofer.de/eng/research_topics/wave_field_synthesis.htm
http://www2.idmt.fraunhofer.de/eng/research_topics/wave_field_synthesis.htm

BIBLIOGRAPHY

[] Graham, S. L., Kessler, P. B., and Mckusick, M. K. Gprof: A call graph execu-
tion profiler. ACM SIGPLAN Notices - Proceedings of the SIGPLAN symposium on
Compiler construction ,  (June ), –.

[] Graphviz - Graph Visualization Soware. http://www.graphviz.org/.

[] Grode, J., Knudsen, P. V., and Madsen, J. Hardware resource allocation for hard-
ware/soware partitioning in the lycos system. In Proceedings of the conference
on Design, automation and test in Europe (Washington, DC, USA, ), DATE ’,
IEEE Computer Society, pp. –.

[] Guo, Z., Buyukkurt, B., and Najjar, W. Input data reuse in compiling window
operations onto reconfigurable hardware. In Proceedings of the  ACM SIG-
PLAN/SIGBED conference on Languages, compilers, and tools for embedded systems
(New York, NY, USA, ), LCTES ’, ACM, pp. –.

[] Gupta, R. K., and De Micheli, G. Hardware-soware cosynthesis for digital sys-
tems. IEEE Design Test of Computers ,  (July ), –.

[] Henkel, J. A low power hardware/soware partitioning approach for core-based
embedded systems. In Proceedings of the ʰ annual ACM/IEEE Design Automation
Conference (New York, NY, USA, ), DAC ’, ACM, pp. –.

[] Henkel, J., and Ernst, R. An approach to automated hardware/soware partition-
ing using a flexible granularity that is driven by high-level estimation techniques.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems ,  (April ),
–.

[] Henzinger, T. A., Jhala, R., Majumdar, R., and Sutre, G. Soware verification
with blast. In Proceedings of the ʰ International Conference on Model Checking
Soware (Berlin, Heidelberg, ), SPIN’, Springer-Verlag, pp. –.

[] HeptaneWCET Analysis Tool. http://www.irisa.fr/alf/index.php?
option=com_content&view=article&id=29&Itemid=&lang=en.

[] Hollingsworth, J. K., Niam, O., Miller, B. P., Xu, Z., Goncalves, M. J. R., and
Zheng, L. Mdl: A language and compiler for dynamic program instrumentation.
In Proceedings of the  International Conference on Parallel Architectures and
Compilation Techniques (Washington, DC, USA, November ), PACT ’, IEEE
Computer Society, pp. –.

[] Huang, X., Yu, H., and Zhang, W. Nems based thermal management for Dmany-
core system. In Proceedings of the IEEE/ACM International Symposium onNanoscale
Architectures (Washington, DC, USA, ), NANOARCH ’, IEEE Computer So-
ciety, pp. –.

[] Hulton, D., and Pellerin, D. Accelerating cryptography with FPGA clus-
ters. online. http://www.mil-embedded.com/articles/id/?4724,
June .

[] Hundt, R. Hp caliper: A framework for performance analysis tools. IEEE Concur-
rency ,  (October ), –.



http://www.graphviz.org/
http://www.irisa.fr/alf/index.php?option=com_content&view=article&id=29&Itemid=&lang=en
http://www.irisa.fr/alf/index.php?option=com_content&view=article&id=29&Itemid=&lang=en
http://www.mil-embedded.com/articles/id/?4724

BIBLIOGRAPHY

[] Hwang, E., Vahid, F., and Hsu, Y.-C. Fsmd functional partitioning for low power.
In Proceedings of the conference on Design, automation and test in Europe (NewYork,
NY, USA, ), DATE ’, ACM.

[] Jackson, D., and Rinard, M. Soware analysis: A roadmap. In Proceedings of the
Conference one Future of Soware Engineering (New York, NY, USA, ), ICSE
’, ACM, pp. –.

[] Jantsch, A., Ellervee, P., Hemani, A., Öberg, J., and Tenhunen, H. Hardware/-
soware partitioning and minimizing memory interface traffic. In Proceedings
of the Conference on European Design Automation (Los Alamitos, CA, USA, ),
EURO-DAC ’, IEEE Computer Society Press, pp. –.

[] Jigang, W., Srikanthan, T., and Chen, G. Algorithmic aspects of hardware/so-
ware partitioning: D search algorithms. IEEE Transactions on Computers , 
(April ), –.

[] Joshi, R., Bond, M. D., and Zilles, C. Targeted path profiling: Lower overhead
path profiling for staged dynamic optimization systems. In Proceedings of the in-
ternational symposium on Code generation and optimization: feedback-directed and
runtime optimization (Washington, DC, USA, March ), CGO ’, IEEE Com-
puter Society, pp. –.

[] Kalavade, A., and Lee, E. A. e extended partitioning problem: Hardware/so-
ware mapping, scheduling, and implementation-bin selection. Design Automation
for Embedded Systems  (), –. ./A:.

[] Kalavade, A., and Subrahmanyam, P. Hardware/soware partitioning for multi-
function systems. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems ,  (September ), –.

[] Kalavade, A. P. System-level codesign of mixed hardware-soware systems. PhD
thesis, University of California, Berkeley, .

[] Karuri, K., Al Faruque, M. A., Kraemer, S., Leupers, R., Ascheid, G., and Meyr,
H. Fine-grained application source code profiling for ASIP design. In Proceedings
of the nd annual Design Automation Conference (New York, NY, USA, ), DAC
’, ACM, pp. –.

[] Kernighan, B. W., and Lin, S. An efficient heuristic procedure for partitioning
graphs. Bell System Technical Journal ,  (), –.

[] Khan, O., and Kundu, S. Hardware/soware co-design architecture for thermal
management of chip multiprocessors. In Proceedings of the Conference on Design,
Automation and Test in Europe ( Leuven, Belgium, Belgium, ), DATE ’,
European Design and Automation Association, pp. –.

[] Knudsen, P. V., and Madsen, J. Pace: A dynamic programming algorithm for
hardware/soware partitioning. In Proceedings of the ʰ International Workshop
on Hardware/Soware Co-Design (Washington, DC, USA, ), CODES ’, IEEE
Computer Society, pp. –.



BIBLIOGRAPHY

[] Knuth, D. E.eArt of Computer Programming, Volume : Fundamental Algorithms
(rd ed.). Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,
.

[] Knuth, D. E. e Art of Computer Programming, Volume : Sorting and Searching
(nd ed.). Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,
.

[] Kooti, H., Bozorgzadeh, E., Liao, S., and Bao, L. Transition-aware real-time task
scheduling for reconfigurable embedded systems. In Design, Automation Test in
Europe Conference (DATE) (march ), pp. –.

[] Kornaros, G. Multi-Core Embedded Systems, ˢᵗ ed. CRC Press, Inc., Boca Raton,
FL, USA, .

[] Kufrin, R. Measuring and improving application performance with perfsuite. Lin-
ux Journal ,  (July ), –.

[] Kuon, I., Tessier, R., and Rose, J. FPGA architecture: Survey and challenges. Foun-
dations and Trends in Electronic Design Automation ,  (February ), –.

[] Kwok, Y.-K., and Ahmad, I. Static scheduling algorithms for allocating directed
task graphs to multiprocessors. ACM Computing Surveys ,  (December ),
–.

[] LaPedus, M. Plds jockey to set new lows in cost, power budgets. on-
line. http://www.eetimes.com/news/semi/showArticle.jhtml?
articleID=208401267, June .

[] Larus, J. Efficient program tracing. Computer ,  (May ), –.

[] Larus, J. Programming clouds. In Compiler Construction, R. Gupta, Ed., vol. 
of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, , pp. –.

[] Larus, J. R. Whole program paths. In Proceedings of the ACM SIGPLAN 
conference on Programming Language Design and Implementation (New York, NY,
USA, ), PLDI ’, ACM, pp. –.

[] Leavens, G., Leino, K., and Müller, P. Specification and verification challenges
for sequential object-oriented programs. Formal Aspects of Computing ,  (),
–.

[] Lee, H. B., and Zorn, B. G. BIT: A Tool for Instrumenting Java Bytecodes. In Pro-
ceedings of the USENIX Symposium on Internet Technologies and Systems (Berkeley,
CA, USA, ), USITS’, USENIX Association, pp. –.

[] Li, X., Liang, Y., Mitra, T., and Roychoudhury, A. Chronos: A timing analyzer
for embedded soware. Science of Computer Programming , - (), –.

[] Li, Y., Callahan, T., Darnell, E., Harr, R., Kurkure, U., and Stockwood, J.
Hardware-soware co-design of embedded reconfigurable architectures. In Pro-
ceedings of the ʰ Annual Design Automation Conference (New York, NY, USA,
), DAC ’, ACM, pp. –.



http://www.eetimes.com/news/semi/showArticle.jhtml?articleID=208401267
http://www.eetimes.com/news/semi/showArticle.jhtml?articleID=208401267

BIBLIOGRAPHY

[] López-Vallejo, M., Iglesias, C. A., and López, J. C. A knowledge-based system
for hardware-soware partitioning. In Proceedings of the conference on Design,
automation and test in Europe (Washington, DC, USA, February ), DATE ’,
IEEE Computer Society, pp. –.

[] López-Vallejo, M., and López, J. C. Multi-way clustering techniques for system
level partitioning. In Proceedings of the ʰ Annual IEEE International ASIC/SOC
Conference (), pp. –.

[] López-Vallejo, M., and López, J. C. On the hardware-soware partitioning prob-
lem: System modeling and partitioning techniques. ACM Transactions on Design
Automation of Electronic Systems (TODAES) ,  (July ), –.

[] López-Vallejo, M. L., Grajal, J., and López, J. C. Constraint-driven system parti-
tioning. In Proceedings of the conference on Design, Automation and Test in Europe
(New York, NY, USA, ), DATE ’, ACM, pp. –.

[] Lu, Y., Marconi, T., Bertels, K., and Gaydadjiev, G. A Communication Aware
Online Task Scheduling Algorithm for FPGA-Based Partially Reconfigurable Sys-
tems. In Processidings of ʰ IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM) (May ), pp. –.

[] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V. J., and Hazelwood, K. Pin: building customized program analysis tools
with dynamic instrumentation. In Proceedings of the ACM SIGPLAN conference on
Programming Language Design and Implementation (New York, NY, USA, ),
PLDI ’, ACM, pp. –.

[] Madsen, J., Grode, J., Knudsen, P., Petersen, M., and Haxthausen, A. Lycos:
the lyngby co-synthesis system. Design Automation for Embedded Systems  (),
–. ./A:.

[] Mann, Z., OrbáN, A., and Farkas, V. Evaluating the kernighan-lin heuristic for
hardware/soware partitioning. International Journal of Applied Mathematics and
Computer Science ,  (June ), –.

[] Mann, Z. A. Partitioning algorithms for hardware/soware co-design. PhD the-
sis, Budapest University of Technology and Economics, Department of Control
Engineering and Information Technology, .

[] Mann, Z. A., Orbán, A., and Arató, P. Finding optimal hardware/soware parti-
tions. Formal Methods in System Design ,  (December ), –.

[] Marsaglia, G., and Tsang, W. e Ziggurat Method for Generating Random Vari-
ables. Journal of Statistical Soware ,  (), –.

[] Marsaglia, G., and Tsang, W. W. A simple method for generating gamma vari-
ables. ACMTransactions onMathematical Soware (TOMS) ,  (September ),
–.



BIBLIOGRAPHY

[] Martonosi, M., Gupta, A., andAnderson, T.MemSpy: analyzingmemory system
bolenecks in programs. In Proceedings of the ACM SIGMETRICS joint international
conference onMeasurement andmodeling of computer systems (New York, NY, USA,
), SIGMETRICS ’/PERFORMANCE ’, ACM, pp. –.

[] Meeuws, R. J. antitative Hardware Prediction Modeling for Hardware/Soware
Co-design. PhD thesis, Del University of Technology, Del, the Netherlands, July
.

[] Mei, B., Schaumont, P., and Vernalde, S. A hardware-soware partitioning and
scheduling algorithm for dynamically reconfigurable embedded systems. In Pro-
ceedings of the AnnualWorkshop on Circuits, Systems and Signal Processing (ProRISC
’) (November ).

[] . kbps MELP Proposed Federal Standard speech coder. http://www.
data-compression.com/melp1.2.tar.gz.

[] Mencer, O., Platzner, M., Morf, M., and Flynn, M. Object-oriented domain spe-
cific compilers for programming FPGAs. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems ,  (February ), –.

[] Merten, M. C., Trick, A. R., George, C. N., Gyllenhaal, J. C., and Hwu, W.-m. W.
A hardware-driven profiling scheme for identifying program hot spots to support
runtime optimization. In Proceedings of the th annual international symposium
on Computer architecture (Washington, DC, USA, ), ISCA ’, IEEE Computer
Society, pp. –.

[] Merten, M. C., Trick, A. R., Nystrom, E. M., Barnes, R. D., and Hmu, W.-m. W. A
hardware mechanism for dynamic extraction and relayout of program hot spots.
In Proceedings of the th annual international symposium on Computer architecture
(New York, NY, USA, ), ISCA ’, ACM, pp. –.

[] Nahapetian, A., Brisk, P., Ghiasi, S., and Sarrafzadeh, M. An approximation
algorithm for scheduling on heterogeneous reconfigurable resources. ACM Trans-
actions on Embedded Computing Systems (TECS) ,  (October ), :–:.

[] Narayanasamy, S., Sherwood, T., Sair, S., Calder, B., and Varghese, G. Catching
accurate profiles in hardware. In Proceedings of the th International Symposium
on High-Performance Computer Architecture (Washington, DC, USA, ), HPCA
’, IEEE Computer Society, pp. –.

[] Nethercote, N., and Seward, J. How to shadow every byte of memory used by
a program. In Proceedings of the rd International Conference on Virtual Execution
Environments (VEE) (June ), pp. –.

[] Nethercote, N., and Seward, J. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In Proceedings of the  ACM SIGPLAN conference on
Programming Language Design and Implementation (New York, NY, USA, ),
PLDI ’, ACM, pp. –.

[] Nielson, F., Nielson, H. R., and Hankin, C. Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, .



http://www.data-compression.com/melp1.2.tar.gz
http://www.data-compression.com/melp1.2.tar.gz

BIBLIOGRAPHY

[] Niemann, R. Hardware/Soware CO-Design for Data Flow Dominated Embedded
Systems. Kluwer Academic Publishers, Norwell, MA, USA, .

[] Niemann, R., and Marwedel, P. An algorithm for hardware/soware partition-
ing using mixed integer linear programming. Design Automation for Embedded
Systems  (), –. ./A:.

[] Noordergraaf, L., and Zak, R. Smp system interconnect instrumentation for
performance analysis. In Proceedings of the  ACM/IEEE conference on Super-
computing (Los Alamitos, CA, USA, ), Supercomputing ’, IEEE Computer
Society Press, pp. –.

[] O’Nils, M., Jantsch, A., Hemani, A., and Tenhunen, H. Interactive hardware-
soware partitioning and memory allocation based on data transfer profiling. In
International Conference on Recent Advances in Mechantronics (ICRAM ’) (August
), pp. –.

[] e OpenCL Specification, version . (revision ), Khronos OpenCL Work-
ing Group. http://www.khronos.org/registry/cl/specs/
opencl-1.2.pdf, November .

[] e OpenMP API specification for parallel programming, version ., OpenMP
Architecture Review Board. http://www.openmp.org/mp-documents/
OpenMP3.1.pdf, July .

[] Celoxica Unveils FPGA Acceleration Solution for AMD Opteron Processor-Based
Systems. http://www.soccentral.com/results.asp?EntryID=
18790.

[] Panait, V.-M., Sasturkar, A., and Wong, W.-F. Static identification of delin-
quent loads. In Proceedings of the international symposium on Code generation and
optimization: feedback-directed and runtime optimization (Washington, DC, USA,
), CGO ’, IEEE Computer Society, pp. –.

[] Panda, P. R., Du, N. D., and Nicolau, A. On-chip vs. off-chip memory: the data
partitioning problem in embedded processor-based systems. ACM Transactions on
Design Automation of Electronic Systems (TODAES) ,  (July ), –.

[] Parameswaran, S., Parkinson, M. F., and Bartle, P. Profiling in the ASP code-
sign environment. Journal of Systems Architecture ,  (),  – .

[] Pardalos, P. M., and Rodgers, G. P. A branch and bound algorithm for the maxi-
mum clique problem. Computers & Operations Research ,  (), –.

[] Paerson, J. R. C. Accurate static branch prediction by value range propagation.
ACM SIGPLAN Notices ,  (June ), –.

[] Perelman, E., Chilimbi, T., and Calder, B. Variational path profiling. In Pro-
ceedings of the th International Conference on Parallel Architectures and Compila-
tion Techniques (Washington, DC, USA, ), PACT ’, IEEE Computer Society,
pp. –.



http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.soccentral.com/results.asp?EntryID=18790
http://www.soccentral.com/results.asp?EntryID=18790

BIBLIOGRAPHY

[] Peri, R., Jinturkar, S., and Fajardo, L. A novel technique for profiling programs
in embedded systems. In ACM Workshop on Feedback-Directed and Dynamic Opti-
mization ().

[] Pham, C., Al-Ars, Z., and Bertels, K. Rule-based data communication optimiza-
tion using quantitative communication profiling. In Proceedings of the International
Conference on Field-Programmable Technology (Seoul, Korea, December ).

[] Popeea, C., Xu, D. N., and Chin, W.-N. A practical and precise inference and
specializer for array bound checks elimination. In Proceedings of the ACMSIGPLAN
symposium on Partial evaluation and semantics-based program manipulation (New
York, NY, USA, ), PEPM ’, ACM, pp. –.

[] Prakash, S., and Parker, A. C. Sos: synthesis of application-specific hetero-
geneous multiprocessor systems. In Readings in hardware/soware co-design,
G. De Micheli, R. Ernst, and W. Wolf, Eds. Kluwer Academic Publishers, Norwell,
MA, USA, , pp. –.

[] an, G., Hu, X., and Greenwood, G. Preference-driven hierarchical hardware/-
soware partitioning. In International Conference on Computer Design (ICCD ’)
(), pp. –.

[] Intel ickAssist Accelerator Technology for Embedded Systems.
http://www.intel.com/p/en_US/embedded/hwsw/technology/
quickassist.

[] RapiTime - Rapita Systems). http://www.rapitasystems.com/
products/RapiTime.

[] Rose, J., El Gamal, A., and Sangiovanni-Vincentelli, A. Architecture of field-
programmable gate arrays. Proceedings of the IEEE ,  (July ), –.

[] Saab, Y. G. A fast and robust network bisection algorithm. IEEE Transactions on
Computers ,  (July ), –.

[] Santambrogio, M. D., Memik, S. O., Rana, V., Acar, U. A., and Sciuto, D. A novel
soc design methodology combining adaptive soware and reconfigurable hard-
ware. In Proceedings of the  IEEE/ACM international conference on Computer-
aided design (Piscataway, NJ, USA, November ), ICCAD ’, IEEE Press,
pp. –.

[] Sarkar, V. Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT
Press, Cambridge, MA, USA, .

[] Sarkar, V. Automatic partitioning of a program dependence graph into parallel
tasks. IBM J. Res. Dev. , - (September ), –.

[] Sarkar, V., and Hennessy, J. Compile-time partitioning and scheduling of parallel
programs. ACM SIGPLAN Notices ,  (July ), –.

[] Sarkar, V., andHennessy, J. Partitioning parallel programs formacro-dataflow. In
Proceedings of the  ACM conference on LISP and functional programming (New
York, NY, USA, ), LFP ’, ACM, pp. –.



http://www.intel.com/p/en_US/embedded/hwsw/technology/quickassist
http://www.intel.com/p/en_US/embedded/hwsw/technology/quickassist
http://www.rapitasystems.com/products/RapiTime
http://www.rapitasystems.com/products/RapiTime

BIBLIOGRAPHY

[] Shengchao, Q., and Jifeng, H. An algebraic approach to hardware/soware par-
titioning. In Proceedings of the ʰ IEEE International Conference on Electronics,
Circuits and Systems (ICECS) (), vol. , pp. –.

[] Sinnen, O. Task Scheduling for Parallel Systems (Wiley Series on Parallel and Dis-
tributed Computing). Wiley-Interscience, .

[] SpecC system. http://www.cecs.uci.edu/~specc/.

[] Spiegel, A. Automatic distribution of object-oriented programs. PhD thesis, Freie
Universität Berlin, Universitätsbibliothek, .

[] Srinivasan, V., Govindarajan, S., and Vemuri, R. Fine-grained and coarse-grained
behavioral partitioning with effective utilization of memory and design space ex-
ploration for multi-FPGA architectures. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems ,  (February ), –.

[] Srinivasan, V., Radhakrishnan, S., and Vemuri, R. Hardware/soware parti-
tioning with integrated hardware design space exploration. In Proceedings of the
conference on Design, automation and test in Europe (Washington, DC, USA, ),
DATE ’, IEEE Computer Society, pp. –.

[] Srivastava, A., and Eustace, A. ATOM: a system for building customized pro-
gram analysis tools. ACM SIGPLAN Notices - Best of PLDI - ,  (April
), –.

[] Sti, G., Lysecky, R., and Vahid, F. Dynamic hardware/soware partitioning: a
first approach. In Proceedings of the ʰ annual Design Automation Conference
(New York, NY, USA, ), DAC ’, ACM, pp. –.

[] Sun, Q., Zhao, J., and Chen, Y. Probabilistic points-to analysis for java. In Pro-
ceedings of the ʰ International Conference on Compiler Construction: part of the
joint European conferences on theory and practice of soware (Berlin, Heidelberg,
), CC’/ETAPS’, Springer-Verlag, pp. –.

[] Supplee, L. M., Cohn, R. P., Collura, J. S., and McCree, A. V. MELP: the new
federal standard at  bps. IEEE International Conference on Acoustics Speech
and Signal Processing (), –.

[] Suresh, D. C., Najjar, W. A., Vahid, F., Villarreal, J. R., and Sti, G. Profiling
tools for hardware/soware partitioning of embedded applications. In Proceedings
of the ACM SIGPLAN conference on Language, Compilers, and Tools for Embedded
Systems (New York, NY, USA, ), LCTES ’, ACM, pp. –.

[] SWEET (SWEdish Execution Time tool). http://www.mrtc.mdh.se/
projects/wcet/sweet.html.

[] SymTA/P Tool). http://www.ida.ing.tu-bs.de/forschung/
projekte/symtap/.

[] Systemverilog. http://www.systemverilog.org/.



http://www.cecs.uci.edu/~specc/
http://www.mrtc.mdh.se/projects/wcet/sweet.html
http://www.mrtc.mdh.se/projects/wcet/sweet.html
http://www.ida.ing.tu-bs.de/forschung/projekte/symtap/
http://www.ida.ing.tu-bs.de/forschung/projekte/symtap/
http://www.systemverilog.org/

BIBLIOGRAPHY

[] Tahaee, S.-A., and Jahangir, A. H. A polynomial algorithm for partitioning prob-
lems. ACM Transactions on Embedded Computing Systems (TECS) ,  (April ),
:–:.

[] Tahaee, S. A., Jahangir, A. H., and Habibi-Masouleh, H. Improving the perfor-
mance of heuristic searches with judicious initial point selection. In Proceedings of
the ʰ IEEE International Symposium on Embedded Computing (Washington, DC,
USA, ), SEC ’, IEEE Computer Society, pp. –.

[] Supercomputing with nvidia tesla gpus. http://www.nvidia.com/
object/tesla_computing_solutions.html.

[] Todman, T., Constantinides, G., Wilton, S., Mencer, O., Luk, W., and Cheung,
P. Reconfigurable computing: architectures and design methods. Computers and
Digital Techniques, IEE Proceedings - ,  (March ), –.

[] Topcuouglu, H., Hariri, S., and Wu, M.-y. Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel
Distrib. Syst. ,  (March ), –.

[] Uh, G.-R., Cohn, R., Yadavalli, B., Peri, R., and Ayyagari, R. Analyzing dynamic
binary instrumentation overhead. In Proceedings of the Workshop on Binary In-
strumentation and Application (WBIA) at International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ) (San
Jose, CA, USA, October ).

[] Canny Edge Detector, Image Analysis Research Lab., USF. http://marathon.
csee.usf.edu/edge/edge_detection.html.

[] Vahid, F. Modifying min-cut for hardware and soware functional partitioning.
In Proceedings of the ʰ International Workshop on Hardware/Soware Co-Design
(Washington, DC, USA, ), CODES ’, IEEE Computer Society, pp. –.

[] Vahid, F. Partitioning sequential programs for cad using a three-step approach.
ACM Transactions on Design Automation of Electronic Systems (TODAES) ,  (July
), –.

[] Vahid, F. It’s time to stop calling circuits "hardware". Computer ,  (sept. ),
–.

[] Vahid, F. What is hardware/soware partitioning? SIGDA Newsl. ,  (June
), –.

[] Vahid, F., and Gajski, D. D. Specification partitioning for system design. In Pro-
ceedings of the ʰ ACM/IEEE Design Automation Conference (Los Alamitos, CA,
USA, ), DAC ’, IEEE Computer Society Press, pp. –.

[] Vahid, F., and Gajski, D. D. Closeness metrics for system-level functional par-
titioning. In Proceedings of the Conference on European Design Automation (Los
Alamitos, CA, USA, ), EURO-DAC ’/EURO-VHDL ’, IEEE Computer So-
ciety Press, pp. –.



http://www.nvidia.com/object/tesla_computing_solutions.html
http://www.nvidia.com/object/tesla_computing_solutions.html
http://marathon.csee.usf.edu/edge/edge_detection.html
http://marathon.csee.usf.edu/edge/edge_detection.html

BIBLIOGRAPHY

[] Vahid, F., and Gajski, D. D. Clustering for improved system-level functional parti-
tioning. In Proceedings of the ʰ international symposium on System synthesis (New
York, NY, USA, ), ISSS ’, ACM, pp. –.

[] Vahid, F., Gajski, D. D., and Gong, J. A binary-constraint search algorithm for
minimizing hardware during hardware/soware partitioning. In Proceedings of the
Conference on European Design Automation (Los Alamitos, CA, USA, ), EURO-
DAC ’, IEEE Computer Society Press, pp. –.

[] Vahid, F., and Le, T. D. Extending the kernighan/lin heuristic for hardware
and soware functional partitioning. Design Automation for Embedded Systems
 (), –. ./A:.

[] Vahid, F., Sti, G., and Lysecky, R. Warp processing: Dynamic translation of
binaries to FPGA circuits. Computer ,  (july ), –.

[] Vassiliadis, S., Gaydadjiev, G., Bertels, K., and Moscu Panainte, E. e Molen
Programming Paradigm. In Computer Systems: Architectures, Modeling, and Simu-
lation, vol.  of Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
, pp. –.

[] Vassiliadis, S., Wong, S., Gaydadjiev, G., Bertels, K., Kuzmanov, G., and
Panainte, E. M. eMolen Polymorphic Processor. IEEE Transactions on Comput-
ers ,  (November ), –.

[] Venkataramani, G., Doudalis, I., Solihin, Y., and Prvulovic, M. Memtracker:
An accelerator for memory debugging and monitoring. ACM Transactions on Ar-
chitecture and Code Optimization (TACO) ,  (July ), :–:.

[] von Praun, C., Bordawekar, R., and Cascaval, C. Modeling optimistic concur-
rency using quantitative dependence analysis. In Proceedings of the th ACM SIG-
PLAN Symposium on Principles and practice of parallel programming (New York,
NY, USA, ), PPoPP ’, ACM, pp. –.

[] Intel VTune Performance Analyzer. http://software.intel.com/
en-us/intel-vtune.

[] Wagner, T. A., Maverick, V., Graham, S. L., and Harrison, M. A. Accurate static
estimators for program optimization. In Proceedings of the ACM SIGPLAN confer-
ence on Programming Language Design and Implementation (New York, NY, USA,
), PLDI ’, ACM, pp. –.

[] Wang, G., Gong, W., and Kastner, R. Application partitioning on programmable
platforms using the ant colony optimization. Journal of Embedded Computing -
Embeded Processors and Systems: Architectural Issues and Solutions for Emerging
Applications ,  (January ), –.

[] Waerson, S., and Debray, S. Goal-directed value profiling. In Compiler Con-
struction, R. Wilhelm, Ed., vol.  of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, , pp. –.



http://software.intel.com/en-us/intel-vtune
http://software.intel.com/en-us/intel-vtune

BIBLIOGRAPHY

[] Wiangtong, T., Cheung, P. Y. K., and Luk, W. Comparing three heuristic search
methods for functional partitioning in hardware-soware codesign. Design Au-
tomation for Embedded Systems  (), –. ./A:.

[] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., esing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., and Stenström, P. e worst-case execution-time
problem—overview of methods and survey of tools. ACM Transactions on Embed-
ded Computing Systems (TECS) ,  (April ), :–:.

[] Williams, J., Massie, C., George, A. D., Richardson, J., Gosrani, K., and Lam,
H. Characterization of fixed and reconfigurable multi-core devices for application
acceleration. ACMTransactions on Reconfigurable Technology and Systems (TRETS)
,  (November ), :–:.

[] Wiseman, Y., Jiang, S., Wiseman, Y., and Jiang, S. Advanced Operating Systems and
Kernel Applications: Techniques and Technologies. Information Science Reference
- Imprint of: IGI Publishing, Hershey, PA, .

[] Wolf, W. A decade of hardware/soware codesign. Computer ,  (April ),
–.

[] Wolf, W. H. An architectural co-synthesis algorithm for distributed, embedded
computing systems. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems ,  (June ), –.

[] Wu, J., Sun, Q., and Srikanthan, T. Algorithmic aspects for multiple-choice hard-
ware/soware partitioning. Computers & Operations Research ,  (December
), –.

[] Wu, J.-G., Srikanthan, T., and Zou, G.-W. New model and algorithm for hard-
ware/soware partitioning. Journal of Computer Science and Technology ,  (July
), –.

[] Wu, Y., and Larus, J. R. Static branch frequency and program profile analysis. In
Proceedings of the th Annual International Symposium on Microarchitecture (New
York, NY, USA, ), MICRO , ACM, pp. –.

[] Wulf, W. A., and McKee, S. A. Hiing the memory wall: implications of the
obvious. SIGARCH Comput. Archit. News ,  (March ), –.

[] x - A freeH./MPEG-AVCvideo codec. http://www.videolan.org/
developers/x264.html.

[] Xilinx, Inc. http://www.xilinx.com/.

[] Xiong, X., Barros, E., and Rosenstiel, W. A method for partitioning unity lan-
guage in hardware and soware. In Proceedings of the Conference on European
Design Automation (Los Alamitos, CA, USA, ), EURO-DAC ’, IEEE Comput-
er Society Press, pp. –.



http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.xilinx.com/

BIBLIOGRAPHY

[] Yang, L., and Guo, M. High-performance computing: paradigm and infrastructure,
vol. . John Wiley & Sons, .

[] Yankova, Y., Kuzmanov, G., Bertels, K., Gaydadjiev, G., Lu, Y., and Vassiliadis,
S. DWARV: DelWorkbench Automated Reconfigurable VHDL Generator. In
Proceedings of the th International Conference on Field Programmable Logic and
Applications (FPL’) (August ), pp. –.

[] Zhao, Q., Bruening, D., and Amarasinghe, S. Umbra: efficient and scalable mem-
ory shadowing. In Proceedings of the th annual IEEE/ACM international symposium
on Code generation and optimization (New York, NY, USA, ), CGO ’, ACM,
pp. –.





List of Publications

Publications related to this thesis

[] Roel Meeuws, S. Arash Ostadzadeh, Carlo Galuzzi, Vlad Mihai Sima, Razvan
Nane, and Koen Bertels. ipu: A Statistical Model for Predicting Hardware
Resources. ACM Transactions on Reconfigurable Technology and Systems (TRETS).
Accepted for publication.

[] Imran Ashraf, S. Arash Ostadzadeh, Roel Meeuws, and Koen Bertels.
Communication-Aware HW/SW Co-design for Heterogeneous Multicore
Platforms. In Proceedings of the ʰ International Workshop on Dynamic Analysis,
WODA’, pages –, Minneapolis, MN, USA, July . ACM. ISBN ---
-. doi:./..

[] S. Arash Ostadzadeh, Roel Meeuws, Imran Ashraf, Carlo Galuzzi, and Koen Ber-
tels. Profile-Guided Application Partitioning for Heterogeneous Recon-
figurable Platforms. In Proceedings of the ʰ CSI International Symposium on
Computer Architecture and Digital Systems, CADS’, pages –, Shiraz, Iran,
May . ISBN ----. doi:./CADS...

[] S. Arash Ostadzadeh, Roel Meeuws, Imran Ashraf, Carlo Galuzzi, and Koen Ber-
tels. e Q² Profiling Framework: Driving Application Mapping for Het-
erogeneous Reconfigurable Platforms. In Reconfigurable Computing: Archi-
tectures, Tools and Applications, volume  of Lecture Notes in Computer Science
(LNCS), pages –. Springer Berlin / Heidelberg, March . ISBN ---
-. doi:./----_.

[] Ferruccio Bearelli, Emanuele Ciavaini, Ariano Laanzi, Giovanni Beltrame,
Fabrizio Ferrandi, Luca Fossati, Christian Pilato, Donatella Sciuto, Roel Meeuws,
S. Arash Ostadzadeh, Zubair Nawaz, Yi Lu, omas Marconi, Mojtaba Sabeghi,
Vlad Mihai Sima, and Kamana Sigdel. Extensions of the hArtes Tool Chain.
In Koen Bertels, editor, Hardware/Soware Co-design for Heterogeneous Multi-core
Platforms: e hArtes Toolchain, chapter , pages –. Springer Verlag, No-
vember . ISBN ----.

[] S. Arash Ostadzadeh, Roel Meeuws, and Koen Bertels. Advanced Profiling in
the Del Workbench: e Q² Framework. In e  Annual ICT.OPEN Con-



http://dx.doi.org/10.1145/2338966.2336806
http://dx.doi.org/10.1109/CADS.2012.6316416
http://dx.doi.org/10.1007/978-3-642-28365-9_7

BIBLIOGRAPHY

ference, Embedded Systems, Poster Session, Veldhoven, e Netherlands, November
.

[] Koen Bertels, S. Arash Ostadzadeh, and Roel Meeuws. Advanced Profiling
of Applications for Heterogeneous Multi-Core Platforms. In Proceedings of
the  International Conference on Engineering of Reconfigurable Systems & Algo-
rithms, ERSA’, pages –, Las Vegas, Nevada, USA, July . CSREA Press.
ISBN ---.

[] S. Arash Ostadzadeh, Marco Corina, Carlo Galuzzi, and Koen Bertels. Runtime
Extraction of Memory Access Information from the Application Source
Code. In Proceedings of the  International Conference on High Performance
Computing and Simulation, HPCS’, pages –, Istanbul, Turkey, July .
ISBN ----. doi:./HPCSim...

[] S. Arash Ostadzadeh and Koen Bertels. Quad: A Sophisticated Memory Ac-
cess Profiling Toolset. In Design Methods and Tools for FPGA-Based Acceleration
of Scientific Computing Workshop, Poster Session at Design, Automation and Test in
Europe (DATE), Grenoble, France, March .

[] S. Arash Ostadzadeh and Koen Bertels. Dynamic Profiling Framework in the
Del Workbench. In e ˢ Annual Workshop on Circuits, Systems and Signal
Processing (ProRISC), Poster Session, Veldhoven, e Netherlands, November .

[] S. Arash Ostadzadeh, Marco Corina, Carlo Galuzzi, and Koen Bertels. tQuad
- Memory Bandwidth Usage Analysis. In Proceedings of the ʰ Internation-
al Conference on Parallel Processing Workshops, ICPPW’, pages –, San
Diego, USA, September . IEEE Computer Society. ISBN ----.
doi:./ICPPW...

[] S. Arash Ostadzadeh, Roel Meeuws, Carlo Galuzzi, and Koen Bertels. Quad -
antitative Usage Analysis of Data. In Designing for Embedded Parallel Com-
puting Platforms: Architectures, Design Tools, and Applications Workshop, Poster
Session: Applications & Architectures at Design, Automation and Test in Europe
(DATE), Dresden, Germany, March .

[] S. Arash Ostadzadeh, Roel Meeuws, Carlo Galuzzi, and Koen Bertels. Quad - A
Memory Access Pattern Analyser. In Reconfigurable Computing: Architectures,
Tools and Applications, volume  of Lecture Notes in Computer Science (LNCS),
pages –. Springer Berlin / Heidelberg, March . ISBN ----.
doi:./----_.

[] S. Arash Ostadzadeh, Roel Meeuws, kamana Sigdel, and Koen Bertels. AMulti-
purpose Clustering Algorithm for Task Partitioning in Multicore Recon-
figurable Systems. In Proceedings of the  International Workshop on Multi-
Core Computing Systems at the International Conference on Complex, Intelligent and
Soware Intensive Systems, CISIS’, pages –, Fukuoka, Japan, March .
doi:./CISIS...



http://dx.doi.org/10.1109/HPCSim.2011.5999888
http://dx.doi.org/10.1109/ICPPW.2010.39
http://dx.doi.org/10.1007/978-3-642-12133-3_25
http://dx.doi.org/10.1109/CISIS.2009.127

BIBLIOGRAPHY

[] S. Arash Ostadzadeh, Roel Meeuws, Kamana Sigdel, and Koen Bertels. A Clus-
tering Framework for Task Partitioning Based on Function-Level Data Us-
age Analysis. In Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Poster Session: Processors & CAD Tools, FPGA’, pages
–, Monterey, California, USA, February . ACM. ISBN ----
. doi:./..

[] S. Arash Ostadzadeh and Koen Bertels. Parallelism Utilization in Embed-
ded Reconfigurable Computing Systems: A Survey of Recent Trends. In
Proceedings of the ʰ Annual Workshop on Circuits, Systems and Signal Processing
(ProRISC), Veldhoven, e Netherlands, November .

Other publications

[] M. Faisal Nadeem, Imran Ashraf, S. Arash Ostadzadeh, StephanWong, and Koen
Bertels. Task Scheduling in Large-scale Distributed Systems Utilizing Par-
tial Reconfigurable Processing Elements. In Proceedings of the ʰ IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops, IPDPSW’,
pages –, Shanghai, China, May . IEEE Computer Society. ISBN --
--. doi:./IPDPSW...

[] M. Faisal Nadeem, S. Arash Ostadzadeh, Muhammad Nadeem, Stephan Wong,
and Koen Bertels. A Simulation Framework for Reconfigurable Processors
in Large-Scale Distributed Systems. In Proceedings of the International Work-
shop on Scheduling and Resource Management for Parallel and Distributed Systems
(SRMPDS) at the ʰ International Conference on Parallel Processing, ICPPW’,
pages –, Taipei City, Taiwan, September . ISBN ----.
doi:./ICPPW...

[] M. Faisal Nadeem, S. Arash Ostadzadeh, StephanWong, and Koen Bertels. Task
Scheduling Strategies for Dynamic Reconfigurable Processors in Distrib-
uted Systems. In Proceedings of the  International Conference on High Perfor-
mance Computing and Simulation, HPCS’, pages –, Istanbul, Turkey, July
. ISBN ----. doi:./HPCSim...

[] M. Faisal Nadeem, S. Arash Ostadzadeh, Mahmood Ahmadi, Muhammad
Nadeem, and Stephan Wong. A Novel Dynamic Task Scheduling Algorithm
for Grid Networks with Reconfigurable Processors. In Proceedings of the ʰ
HiPEAC Workshop on Reconfigurable Computing, WRC’, Heraklion, Greece, Jan-
uary .

[] M. Faisal Nadeem, Fakhar Anjam, S. Arash Ostadzadeh, Mahmood Ahmadi, and
Stephan Wong. Towards the Utilization of Reconfigurable Processors in
Grid Networks. In Proceedings of the ˢ Annual Workshop on Circuits, Systems
and Signal Processing (ProRISC), pages –, Veldhoven, e Netherlands, No-
vember .



http://dx.doi.org/10.1145/1508128.1508183
http://dx.doi.org/10.1109/IPDPSW.2012.6
http://dx.doi.org/10.1109/ICPPW.2011.50
http://dx.doi.org/10.1109/HPCSim.2011.5999811

BIBLIOGRAPHY

[] S. Shervin Ostadzadeh, Jafar Habibi, and S. Arash Ostadzadeh. A Frame-
work for Decision Support Systems Based on Zachman Framework. In Ad-
vanced Techniques in Computing Sciences and Soware Engineering, pages –.
Springer Netherlands, . ISBN ----. doi:./---
-_.

[] Mahmood Ahmadi, S. Arash Ostadzadeh, and Stephan Wong. Rule-set Data-
base Inspection: Towards Data Utilization in Packet Processing. In Proceed-
ings of the International Conference on the Latest Advances in Networks, ICLAN’,
Toulouse, France, December .

[] Behnaz Pourebrahimi, S. Arash Ostadzadeh, and Koen Bertels. Resource Allo-
cation in Market-based Grids Using a History-based Pricing Mechanism.
In Advances in Computer and Information Sciences and Engineering, pages –.
Springer Netherlands, . ISBN ----. doi:./----
_.

[] S. Shervin Ostadzadeh, Fereidoon Shams Aliee, and S. Arash Ostadzadeh. An
MDA-Based Generic Framework to Address Various Aspects of Enterprise
Architecture. In Advances in Computer and Information Sciences and Engi-
neering, pages –. Springer Netherlands, . ISBN ----.
doi:./----_.

[] Mahmood Ahmadi, S. Arash Ostadzadeh, and Stephan Wong. An Analysis of
Rule-set Databases in Packet Classification. In Proceedings of the ʰ Annu-
al Workshop on Circuits, Systems and Signal Processing (ProRISC), Veldhoven, e
Netherlands, November .

[] S. Arash Ostadzadeh, B. Maryam Elahi, Zeinab Zeinalpour Tabrizi, M. Amir
Moulavi, and Koen Bertels. A Two-phase Practical Parallel Algorithm for
Construction of Huffman Codes. In Proceedings of the International Confer-
ence on Parallel and Distributed Processing Techniques and Applications, PDPTA’,
pages –, Las Vegas, USA, June .

[] S. Shervin Ostadzadeh, Fereidoon Shams Aliee, and S. Arash Ostadzadeh. Em-
ploying MDA in Enterprise Architecture. In Proceedings of the ʰ Annual CSI
Computer Conference, CSICC’, pages –, Tehran, Iran, February .

[] S. Shervin Ostadzadeh, Fereidoon Shams Aliee, and S. Arash Ostadzadeh. A
Method forConsistentModeling of ZachmanFrameworkCells. InAdvances
and Innovations in Systems, Computing Sciences and Soware Engineering, pages
–. Springer Netherlands, . ISBN ----. doi:./--
--_.

[] S. Shervin Ostadzadeh, Fereidoon Shams Aliee, and S. Arash Ostadzadeh. Ap-
plying MDA to Zachman Framework for Information Technology Sys-
tems. In Proceedings of the ⁿ Conference of Information and Communication Tech-
nology Management, ICTM’, Tehran, Iran, February .



http://dx.doi.org/10.1007/978-90-481-3660-5_86
http://dx.doi.org/10.1007/978-90-481-3660-5_86
http://dx.doi.org/10.1007/978-1-4020-8741-7_18
http://dx.doi.org/10.1007/978-1-4020-8741-7_18
http://dx.doi.org/10.1007/978-1-4020-8741-7_81
http://dx.doi.org/10.1007/978-1-4020-6264-3_65
http://dx.doi.org/10.1007/978-1-4020-6264-3_65

BIBLIOGRAPHY

[] S. Arash Ostadzadeh, B. Maryam Elahi, M. Amir Moulavi, and Zeinab
Zeinalpour. A Level-based Practical Parallel Algorithm for Huffman En-
coding. In Proceedings of the ʰ Annual CSI Computer Conference, CSICC’,
pages –, Tehran, Iran, January .

[] S. Arash Ostadzadeh, Zeinab Zeinalpour, and M. Amir Moulavi. A Parallel Al-
gorithm for Reconstruction of B-tree Structure aer Substantial Key Re-
movals. In Proceedings of the ʰ Annual CSI Computer Conference, CSICC’,
pages –, Tehran, Iran, January .

[] S.ArashOstadzadeh, M. AmirMoulavi, Zeinab Zeinalpour, and B.MaryamElahi.
Parallel Construction of Huffman Codes. In Advances in Systems, Computing
Sciences and Soware Engineering, pages –. Springer Netherlands, . ISBN
----. doi:./---_.

[] S. Arash Ostadzadeh, M. Amir Moulavi, and Zeinab Zeinalpour. Massive
Concurrent Deletion of Keys in B*-Tree. In Parallel Processing and Ap-
plied Mathematics, volume  of Lecture Notes in Computer Science (LNCS),
pages –. Springer Berlin / Heidelberg, . ISBN ----.
doi:./_.

Publications in Persian

[] S. Arash Ostadzadeh and S. Shervin Ostadzadeh. Parallel IPR Tree: Dictio-
nary Operations in a Shared Memory Parallel System. In Proceedings of the
ʰ Annual CSI Computer Conference, CSICC’, Kish, Iran, March .

[] S. Shervin Ostadzadeh, Fereidoon Shams Aliee, and S. Arash Ostadzadeh. e
Adaption of MDA in Extended Enterprise Architecture Framework. In Pro-
ceedings of the ʰ Annual CSI Computer Conference, CSICC’, Kish, Iran, March
.

[] S. Arash Ostadzadeh and S. Shervin Ostadzadeh. AMulti-stage Offline Hand-
written Signature Verification System for Persian Signature Authentica-
tion. Technical Engineering Journal of IAUM, ():–, September .

[] S. Shervin Ostadzadeh, Fereidoon Shams Aliee, and S. Arash Ostadzadeh. e
Role of the Soware Development Process in Enterprise Architecture. In
Proceedings of the ⁿ Conference of Information and Communication Technology
Management, ICTM’, Tehran, Iran, February .

[] S. Arash Ostadzadeh and S. Shervin Ostadzadeh. An Optimal Parallel Algo-
rithm for Searching Keys in IPR Trees. In Proceedings of the ʰ Annual CSI
Computer Conference, volume  of CSICC’, pages –, Tehran, Iran, January
.



http://dx.doi.org/10.1007/1-4020-5263-4_4
http://dx.doi.org/10.1007/11752578_11

BIBLIOGRAPHY

[] S. Arash Ostadzadeh, S. Shervin Ostadzadeh, and Mohammad Hassan Shenasa.
A Multi-stage Offline Signature Verification System Based on Elastic
Matching With Multi Resolution Segmentation. In Proceedings of the ʰ Na-
tional Conference on Intelligent Systems, CIS’, Tehran, Iran, December .

[] S. Arash Ostadzadeh. eDesign and Implementation of an Offline Hand-
written Signature Verification System Using Local Correspondence. Msc
thesis, Ferdowsi University of Mashhad, Mashhad, Iran, September .

[] S. Arash Ostadzadeh and Hossein Deldari. Offline Tracing and Represen-
tation of Handwritten Signatures. Technical report, Ferdowsi University of
Mashhad, Mashhad, Iran, August .

[] S. Arash Ostadzadeh. Handwritten Signature Verification: A Literature
Survey. Technical report, Ferdowsi University of Mashhad, Mashhad, Iran, April
.



Samenvaing

r
ecente ontwikkelingen tonen een gestadige groei van het gebruik van he-
terogene multicore architecturen om de steeds groeiende vraag naar com-
puterprestaties. Deze ontluikende architecturen stellen specifieke uitda-
gingen ten aanzien van hun programmeerbaarheid. Bovendien vereisen

ze dat applicaties efficiënt worden toegewezen om de prestaties ten volle te benuen en
knelpunten te voorkomen. In dit opzicht is het van cruciaal belang om applicatiegedrag
en, in het bijzonder, de datacommunicatie tussen taken te analyseren.

In deze dissertatie presenteren we een profileringsraamwerk dat ontwikkelaars helpt om
inzicht te verwerven in het gedrag van een applicatie. Het gepresenteerde profilerings-
raamwerk is generiek en niet beperkt tot een bepaald platform, applicatie of doelstelling.
We gebruiken dit raamwerk voornamelijk om applicaties toe te wijzen aan een hetero-
gene multicore architectuur. Het raamwerk bevat een set hulpgereedschappen voor het
profileren van geheugentoegang, Quad genaamd, welke kwantitatieve informatie ver-
scha met betrekking tot de geheugentoegangen binnen een applicatie. Quad gebruikt
Dynamic Binary Instrumentation (DBI) om de werkelijke data dependencies die zich tij-
dens het uitvoeren voordoen tussen taken van een applicatie. Daarenboven verscha
het ook nauwkeurige metingen van de geheugenstoegang, zoals de hoeveelheid aan da-
ta dat tussen taken is uitgewisseld en de geheugengrooe die voor deze communicatie
benodigd was. Dergelijke informatie kan gebruikt worden om kritieke delen van een ap-
plicatie te identificeren, mogelijkheden voor grof-gekorreld parallelisme te markeren en
code-optimalisaties te sturen.

Om de bruikbaarheid van de afgeleide profielinformatie te onderbouwen hebben we,
als proef concept, het voornaamste resultaat van Quad, de antitative Data Usage
(QDU) graaf, aangewend als basis voor een generieke formulering van het applicatie-
partitioneringsprobleem. De formulering van dit onhandelbare probleem is flexibel en
voegt zich makkelijk naar verschillende ontwerpdoelen en -eisen. Voorts stellen we een
heuristieke algoritme voor om partitioneringen van hoge kwaliteit te vinden binnen een
aanvaardbare termijn. Behalve de complexiteitsanalyse van het voorgestelde algoritme
presenterenwe ook een uitvoerige theoretische analyse van het applicatie-partitionering
probleem. Om de kwaliteit van de oplossingen te evalueren ontwikkelden we een test
bench om synthetische QDU grafen te genereren en vergeleken de resultaten met de
optimale resultaten behaald met een uitpuend zoekalgoritme. Deze vergelijking toont
aan dat het voorgestelde algoritme in staat is optimale of bijna-optimale oplossingen te



SAMENVATTING

bepalen.

Om de toepasbaarheid van het profileringsraamwerk verder aan te tonen onderzoeken
we, in detail, hoe het raamwerk in de praktijk werkt door twee realistische applicaties
toe te wijzen op een heterogene herconfigureerbare architectuur. Om dit doel te be-
reiken stellen we een hardware/soware partitioneringsmethodologie voor, die nauw-
gekoppelde taken op basis van datacommunicatieanalyse samenvoegt. Daarenbovenwordt
de profielinformatie gebruikt om de applicaties af te stemmen en hun data flow te opti-
maliseren. De verkregen resultaten tonen een prestatiewinst van % en %.



Stellingen behorende bij het proefschri

antitative Application Data Flow Characterization
for Heterogeneous Multicore Architectures

S. Arash Ostadzadeh

. Als je iedere programmeer probleem aanpakt door hergebruik van legacy code en
klaagt over de prestatie, dan kun je niet echt een programmeur zijn.

. In wetenschappelijk onderzoek is het citeren van een artikel zonder concreet be-
wijs van haar beweringen net als het verwijzen naar "Nautilus" in Jules Verne’s
"Twenty ousand Leagues Under the Sea" als de eerste oceaan onderzeeër!

. Je moet je geen zorgen maken over datgene wat anderen over je zeggen, zolang
het incongruent is waar je geweten je stoort.

. Motivatie staat centraal in creativiteit, productiviteit en geluk. De zoektocht naar
idealisme is de meest noodloige demotivatie.

. Het is onrechtvaardig om te klagen dat geschoolde programmeurs die parallel pro-
grameren zijn schaars, terwijl traditionele concepten bij de ontwikkeling van pro-
gramma’s nog steeds onderwezen worden als fundamenten voor bachelor studen-
ten in de informatica en engineering.

. Het maken van hypothesen op basis van wat anderen alleen hebben beweerd is
absoluut waardeloos.

. De verafgoding van gerenommeerde for-profit bedrijfsleiders alsof zij wetenschap-
pers leidden is symptomatisch voor een ernstig probleem met wat mensen waar-
deren in de wereld.

. De meest logische manier om een einde te maken aan een zinloze onophoudelijke
argument is te verklaren: ik kan het niet bewijzen, maar je kunt het ook niet als
onjuist bewijzen!

. Er is een fundamenteel lijn tussen "novel research" en "research novel"! Alleen
"novel research" moet worden beschouwd als wetenschappelijke waarde, terwijl
"research novelists" in het meest optimistische geval als ambitieuze dromers moe-
ten worden beschouwd.

. Een korte leven met breedte hee de voorkeur boven een smalle met lengte. — Pur
Sina, ook bekend met de Latijnse naam "Avicenna".

. Het programmeren is een kunst, want het past opgebouwde kennis aan de we-
reld toe, want het vergt vaardigheid en vindingrijkheid, en voornamelijk omdat
het objecten van schoonheid produceert. Een programmeur die zichzelf onbewust
beschouwt als een kunstenaar zal genieten van wat hij doet en zal het beter doen.
— Donald E. Knuth.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig goed-
gekeurd door de promotor, prof. dr. K.L.M Bertels.



SAMENVATTING

Propositions accompanying the PhD dissertation

antitative Application Data Flow Characterization
for Heterogeneous Multicore Architectures

S. Arash Ostadzadeh

. If you tackle every programming problem by reusing legacy code and complain
about its performance, then you cannot be much of a programmer.

. In scientific research, citing an article without a concrete evidence of its claim is
like referring to "Nautilus" in Jules Verne’s "Twentyousand Leagues Under the
Sea" as the first ocean-spanning submarine!

. You should not care about what others say about you as long as it is incongruent
with what your conscience indeed bothers you for.

. Motivation is central to creativity, productivity and happiness. e quest for ide-
alism is the most fatal demotivation.

. It is inequitable to complain that skilled parallel programmers are scarce while
traditional concepts in developing programs are still taught as fundamentals to
undergrads in computer science and engineering.

. Making any assumption based upon what others have only claimed is absolutely
worthless.

. e idolization of renowned for-profit company managers as though they were
leading scientists is symptomatic of a severe problem with what people value in
the world.

. e most logical way to put an end to a pointless incessant argument is to declare:
I cannot prove it, but you cannot prove it false either!

. ere is a fundamental line between "novel research" and "research novel"! On-
ly novel research should be considered as having scientific value, while research
novelists, in the most optimistic case, should be considered ambitious dreamers.

. A short life with width is preferable to a narrow one with length. — Pur Sina, also
known with the Latinized name "Avicenna".

. Computer programming is an art, because it applies accumulated knowledge to the
world, because it requires skill and ingenuity, and especially because it produces
objects of beauty. A programmer who subconsciously views himself as an artist
will enjoy what he does and will do it beer. — Donald E. Knuth.

ese propositions are regarded as opposable and defendable, and have been approved
as such by the promoter, prof. dr. K.L.M Bertels.



Curriculum Vitae

S. Arash Ostadzadeh was born in Mashhad, Iran, . He
followed his secondary eduction at the Malek Ashtar high
school in Mashhad, Iran, where he got his diploma in .
He received a Bachelor of Science degree in Computer En-
gineering from Ferdowsi University of Mashhad, Mashhad,
Iran, in . Aerwards, he continued his studies towards
a Master of Science degree in Computer Engineering, ma-
joring Soware Engineering, at the same university. He was
awarded the M.Sc. degree in , as the top postgraduate
in Computer Engineering program. Starting from , for a
continuous eight years, he was lecturing several Computer
Science and Engineering courses for undergraduates in

major universities and higher education institutes in Mashhad, Iran. During -
, he served as a faculty member of the Computer Engineering Department at IAUM.

In , he joined the Computer Engineering Group, Department of Soware and
Computer Technology, Faculty of Electrical Engineering, Mathematics and Computer
Science (EEMCS/EWI), Del University of Technology, the Netherlands, to pursue his
Doctoral Research under the supervision of Prof. dr. Koen Bertels. His research focused
on application profiling and partitioning, utilizing dynamic binary instrumentation,
which resulted in the development of a memory access profiling toolset, called Quad.
At the same time, he developed a simulation framework, named DReAMSim, which was
designed for modeling homogeneous and/or heterogeneous (re)-configurable process-
ing elements in a large-scale distributed environment. His research work was mainly
funded by the European Commission FWP hArtes (holistic Approach to reconfigurable
real-time embedded systems) and the SMECY (Smart Multicore Embedded Systems)
projects. He has also contributed to the EU-ICT FWP REFLECT and the iFEST projects.

His research interests include parallel and distributed computing, heterogeneous mul-
ticore systems, data structures and algorithms, application profiling, program analysis
and performance evaluation, and hardware/soware co-design.



	Abstract
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	List of listings
	List of Acronyms
	Terminology
	Introduction
	Problem Overview
	Research Challenges
	Dissertation Contributions
	Dissertation Organization

	Profiling
	Program Profiling
	Program Tracing
	Profiling Usage
	Profiling Classification
	Static Analysis
	Dynamic Analysis
	Static vs. Dynamic Analysis

	Software Profiling
	Instrumentation Based Profiling
	Sampling Based Profiling
	Simulation Based Profiling
	Instrumentation vs. Sampling Based Profiling

	Hardware Profiling
	Data Structures for Profiling
	Profiling Approaches
	Basic Block Profiling
	Control Flow Profiling
	Value Profiling
	Variational Path Profiling

	Summary

	Dynamic Profiling Framework
	Project Context
	Molen Abstraction Layer
	Delft Workbench

	Q² Profiling Framework
	Quipu Modeling Approach
	Quad Memory Access Profiling Toolset

	Runtime Memory Access Profiling
	Pin Dynamic Binary Instrumentation
	Quad-core Development
	Memory Access Tracing
	Identifying Memory-Intensive Kernels
	Bulk Data Flow Detection

	Maip
	Maip Implementation
	Computation Time vs. Communication Time

	Runtime Extraction of Source-Level Data
	DWARF Debugging Information
	xQuad Implementation

	Kernel Ranking Based on MAI
	Summary

	Temporal Memory Bandwidth Analysis
	Background
	Temporal Data Extraction
	tQuad Implementation
	Case Study: Wave Field Synthesis
	Experimental Setup
	Kernels Overview
	Quantification of Data Communication
	Temporal Information Extraction
	Phase Detection

	Summary

	Task Clustering: A Greedy Approach
	Application Partitioning
	Partitioning Methods
	Problem Formulation
	Multi-Objective Task Clustering
	Input Data Model
	Greedy Algorithm
	Application Partitioning Algorithm

	Complexity Analysis
	Time Complexity
	Space Complexity

	Synthetic Analysis
	Exhaustive Application Partitioning
	Experimental Results

	MJPEG Case Study
	Summary

	Utilizing Q² in HW/SW Partitioning: Case Studies
	HW/SW Partitioning
	HW/SW Co-design: Research Directions and Challenges
	HW/SW Co-design Objectives
	Profile-guided HW/SW Partitioning

	The Q² Partitioning Methodology
	Canny Edge Detection
	Edge Detection Overview
	Experimental Setup
	Experimental Analysis
	Observations and Results

	Mixed Excitation Linear Prediction
	MELP Overview
	Experimental Setup
	Experimental Analysis
	Observations and Results

	Summary

	Conclusions
	Summary
	Main Contributions
	Research Opportunities

	Bibliography
	List of Publications
	Samenvatting
	Curriculum Vitae

