
Development of a
Software Architecture
for a Reconfigurable
Aircraft Design System
Lukas Müller

Development of a
Software Architecture for
a Reconfigurable Aircraft

Design System
Thesis report

by

Lukas Müller
in partial fulfillment of the requirements

for the degree of Master of Science

in Aerospace Engineering

at the Delft University of Technology,

to be defended publicly on 24th November 2023 at 14:00.

Thesis committee:
Chair: Dr. ir. M.F.M. Hoogreef
Supervisor: Dr. ir. G. la Rocca
External examiner: Dr. ir. M.M. van Paassen

This report is based on the TU Delft report template and was created with the LATEX
typesetting system. For this report the AIAA reference style was adopted. The cover

picture shows an Airbus A320neo and consists only of ASCII characters.
An electronic version of this report is available at https://repository.tudelft.nl/.

https://repository.tudelft.nl/

Preface

I am pleased to present this Master’s thesis report on aircraft design systems. Positioned
at the intersection of aerospace engineering and software engineering, these systems have
captivated my interest since the beginning of this thesis project. This report aims to provide
both interesting and practical insights for individuals working with or being curious about
the intricacies of these systems. My hope is that the information presented here contributes
to the ongoing improvement of aircraft design systems, making them even more effective
tools for exploring innovative aircraft concepts and technologies that hold the potential to
shape the future of aviation.

I want to express my sincere gratitude to Reno Elmendorp, Gianfranco la Rocca, and
Maurice Hoogreef, for their enduring support, constructive feedback, and the critical dis-
cussions that have significantly influenced the development of this thesis. I also extend my
deepest thanks to my entire family for their steadfast support and their continuous encour-
agement. A special acknowledgment is reserved for my brother Elias, whose invaluable
support was particularly crucial during the most demanding phase of this project. Lastly,
I extend my thanks to everyone who contributed to this endeavor – whether through re-
viewing drafts, providing feedback, or cheering me up – your collective support has been
truly appreciated.

Lukas Müller
Delft, November 2023

iii

Summary

Aircraft design systems are frequently used to synthesize aircraft designs. However, it is
inherently difficult to reconfigure these software systems to facilitate a broader range of
design studies (e.g. optimization or sensitivity studies) and to address follow-up questions
about the synthesized aircraft designs. This report presents an investigation into the
feasibility of developing a reconfigurable aircraft design system.

Firstly, the issues preventing current aircraft design systems from being used in a reconfig-
urable way are identified. These issues are closely tied to the intricate and tightly integrated
nature of the source code that underpins these systems. This is unsurprising, given that
these systems have typically been devised by experts in aircraft design (with varying exper-
tise in software design) who are primarily interested in solving concrete design problems
rather than creating sophisticated source code. In particular, the extensive design logic,
characterized by high cyclomatic complexity, combined with cluttered and ambiguous de-
sign data structures, makes it challenging to comprehend and adapt the functioning of
these systems.

An iterative development methodology is employed to come up with a software architec-
ture aimed at mitigating the identified issues. A number of distinct architectural elements
are devised that leverage a centralized semantic data management approach and a stan-
dardized interface for the formulation of modular analysis & sizing methods. Furthermore,
a prototype aircraft design system that serves as a reference implementation for this ar-
chitecture is developed. The prototype incorporates a graph database, a self-explanatory
ontology (defining the semantics of the data stored in the database), and several abstract
base classes for encapsulating the computation logic contained within typical analysis
& sizing methods used during aircraft design studies. Concrete instances of these base
classes are supposed to interact with the database through a well-defined endpoint inter-
face, which includes extensive logging capabilities.

The prototype aircraft design system exhibits promising characteristics: The semantic data
management approach facilitates the creation of a genuinely unambiguous and flexible data
model. Simultaneously, it helps uncover inconsistencies and limitations in the employed
analysis & sizing methods. Treating analysis & sizing methods as modular and nested
instances of standardized classes appears to be the key to achieving reconfigurability. In
addition to the unit-testability of these classes, the self-visualization features incorporated
within can significantly enhance the comprehensibility and transparency of the analysis &
sizing methods.

The architecture development, repository configuration, ontology formulation, and inter-
face generation took a significant amount of time. Furthermore, some critical challenges
surfaced, necessitating further investigation. Specifically, some of the employed analysis
& sizing methods feature limitations and implicit assumptions that are required for a syn-
thesis system but may need to be revised before being used in a reconfigurable design
system based on the proposed architecture. In the end, there was insufficient time left for
implementing a comprehensive set of analysis & sizing methods essential for materializing
a thorough aircraft design loop. Therefore, achieving a fully functional aircraft design
system prototype proved unattainable. Consequently, it was not possible to demonstrate
that adopting the proposed architecture yields an aircraft design system that can be used
in a reconfigurable way, despite indications that this could very well be the case.

v

vi

This thesis distinguishes itself by examining aircraft design systems beyond the scope
of solving a specific aircraft design problem. It systematically addresses source code
issues prevalent in current aircraft design systems and introduces a software architecture
designed to rectify these issues. Although time constraints prevented conclusive validation
of the proposed architecture, the proposed architectural elements maintain their relevance.
These elements can not only be applied during the development of future aircraft design
systems but can also be used selectively to enhance current aircraft design systems.

Contents

Preface iii
Summary v

List of Abbreviations ix
List of Symbols xiii

1 Introduction 1

2 Methodology 7
2.1 Iterative software development . 7
2.2 Utilization of existent software and established theories 8
2.3 Selection of analysis & sizing methods . 9
2.4 Reconfigurability requirements . 10

3 Issues present in existing ADSs 13
3.1 Concealed and convoluted source code . 15
3.2 Ambiguous and cluttered data structures . 16
3.3 Extensive and integrated source code . 17
3.4 Complex source code . 18
3.5 Excessive coupling within source code . 19

4 A software architecture to address the issues present in existing ADSs 21
4.1 Centralized data store and self-contained analysis & sizing methods 21
4.2 Semantic data management . 23
4.3 Standardized and modular analysis & sizing method interface 27
4.4 Automated logging and diagramming capabilities 32

5 Implications of adopting the proposed software architecture 37
5.1 Relevance of semantic data management . 37
5.2 Benefits and drawbacks of highly modular procedures 39
5.3 Consequences of dynamic procedure behavior 40
5.4 Impact of assumptions ingrained within analysis & sizing methods 42

6 Verification & Validation 45
6.1 Automated tests & quality checks . 45
6.2 Comparison of the ReInitiator with other ADSs and related MDAO systems 46

7 Conclusion 49
7.1 Review . 49
7.2 Recommendations . 50
7.3 Closing . 51

Bibliography 53

vii

viii Contents

A Background on ADSs 63
A.1 Overview . 63
A.2 Comparison . 65
A.3 Trends . 69

B Background on the Initiator 71
B.1 Development . 71
B.2 Objectives . 72
B.3 Implementation . 75
B.4 Use cases . 76

C Implementation of the ReInitiator 79
C.1 Ontology . 80
C.2 Graph package . 83
C.3 Procedures package . 88
C.4 Scripts . 95

List of Abbreviations

ADS Aircraft Design System
AE Aerospace Engineering
AEDsysDP Aircraft Engine Design System Analysis Software
AGILE Aircraft 3rd Generation MDO for Innovative coLlaboration of heteroge-

neous teams of Experts
AI Artificial Intelligence
AIAA American Institute of Aeronautics and Astronautics
API Application Programming Interface
APU Auxiliary Power Unit
ASCII American Standard Code for Information Interchange
AVL Athena Vortex Lattice

BLISS Bi-Level Integrated System Synthesis
BPR Bypass Ratio

CAD Computer-Aided Design
CD Continuous Deployment
CFD Computational Fluid Dynamics
CI Continuous Integration
CO Collaborative Optimization
CommonKADS Common Knowledge Acquisition and Documentation Structuring
CPACS Common Parametric Aircraft Configuration Schema
CS Certification Specifications
CSV Comma-Separated Values

DATCOM Data Compendium
DBMS Database Management System
DCTerms DCMI Metadata Terms
DEE Design and Engineering Engine
DEM Delivery Empty Mass
DOC Direct Operating Cost
DOE Design of Experiments
DSM Design Structure Matrix

EASA European Union Aviation Safety Agency

FAA Federal Aviation Administration
FAR Federal Aviation Regulations
FL Fidelity Level
FPP Flight Performance and Propulsion

GS Gauss–Seidel
GUI Graphical User Interface

HTML HyperText Markup Language

ix

x List of Abbreviations

IDF Individual-Disciplinary Feasible
IGES Initial Graphics Exchange Specification
InFoRMA Integration, Formalization and Recommendation of MDO Architectures
IRI Internationalized Resource Identifier

JSON JavaScript Object Notation

KADMOS Knowledge- and graph-based Agile Design for Multidisciplinary Opti-
mization Systems

KBE Knowledge-Based Engineering
KNOMAD Knowledge Nurture for Optimal Multidisciplinary Analysis and Design
KOMPRESSA Knowledge-Oriented Methodology for the Planning and Rapid Engi-

neering of Small-Scale Applications
KPI Key Performance Indicator

MDAO Multi-Disciplinary Analysis and Optimization
MDF Multi-Disciplinary Feasible
MFZM Maximum Zero-Fuel Mass
MMG Multi-Model Generator
MOKA Methodology and software tools Oriented to Knowledge-Based Engi-

neering Applications
MTOM Maximum Take-Off Mass
MTOW Maximum Take-Off Weight

OEM Original Equipment Manufacturer
OEW Operating Empty Weight
OOP Object-Oriented Programming
OOPS! OntOlogy Pitfall Scanner!
ORM Object–Relational Mapping
OWL Web Ontology Language

PANTHER Propulsion Airframe iNTegration for Hybrid Electric Research
PIDO Process Integration and Design Optimization
PLM Product Lifecycle Management

RDF Resource Description Framework
RDFS RDF Schema

SAND Simultaneous ANalysis ad Design
SE Software Engineering
SHACL Shapes Constraint Language
SMART Specific, Measurable, Achievable, Relevant, Time-Bound
SPARQL SPARQL Protocol and RDF Query Language
SQL Structured Query Language
STEP Standard for The Exchange of Product model data

TLAR Top-Level Aircraft Requirement
TRL Technology Readiness Level
TTL Terse RDF Triple Language
TUD Delft University of Technology

UML Unified Modelling Language

List of Abbreviations xi

URI Uniform Resource Identifier

VLM Vortex Lattice Method

XDSM Extended Design Structure Matrix
XLSX Excel Office Open XML Spreadsheet Extensions
XML Extensible Markup Language
XSD XML Schema Definition

List of Symbols

Λ Sweep deg
𝜃 Relative atmospheric temperature -
𝑎sl Speed of sound at sea-level m/s
𝑏 Wing span m
𝑐 Chord length m
𝑐𝑟 Root chord length m
𝐶𝑇 Thrust-specific fuel consumption kg/s/N
𝑐𝑡 Tip chord length m
𝑔 Gravitational acceleration m/s2

𝐻 Lower calorific value J/kg
ℎ 𝑓 Mean fuselage height m
𝑙𝑐 Cabin length m
𝑀 Mach number -
𝑚APU APU mass kg
𝑚𝑎𝑠𝑔 Airframe structure group mass kg
𝑚𝑒𝑞𝑔 Equipment group mass kg
𝑚𝑒 Dry engine mass kg
𝑚 𝑓 Fuselage mass kg
𝑚ℎ𝑡 Horizontal tail mass kg
𝑚𝑙 𝑔 Landing gear mass kg
𝑚𝑛𝑔 Nacelle group mass kg
𝑚𝑜𝑖𝑔 Operational items group mass kg
𝑚𝑝𝑔 Propulsion group mass kg
𝑚𝑠𝑐𝑔 Surface control group mass kg
𝑚𝑣𝑡 Vertical tail mass kg
𝑚𝑤 Wing mass kg
𝑛crew Number of crew -
𝑛pax Number of passengers -
𝑛𝑙𝑖𝑚 Limit load factor -
𝑛𝑢𝑙𝑡 Ultimate load factor -
𝑅 Range km
𝑆 Gross wing area m2

𝑇 Thrust N
𝑡 Thickness m
𝑉DD Drag divergence speed m/s
𝑣𝑐 Cabin volume m3

𝑤 𝑓 Mean fuselage width m

xiii

1
Introduction

Aircraft design has come a long way since the Wright brothers developed their powered
Flyer in 1903. The early design efforts were characterized by trial and error, subsequent
ones by theory development, and later ones by methodological advancements. The more
recent design processes are shaped by information technology.

Comprehensive software systems have been developed to generate and analyze aircraft
designs both rapidly and consistently. These systems are used in the early design phases
and contain design knowledge from multiple engineering disciplines. They are employed
both in industrial and in academic settings. Anemaat refers to them as “Airplane Design
Systems” [1] and Torenbeek calls them “Automated Design Synthesis Systems” [2]. In this
report, they are termed Aircraft Design Systems or simply ADSs. Since the 1980s, more
than 35 ADSs have been devised. Non-exhaustive overviews can be found in references [1]
to [3] and in appendix A.

The ADS which has been developed at the section of Flight Performance and Propulsion
(FPP) at the faculty of Aerospace Engineering (AE) of the Delft University of Technology
(TUD) is called the Aircraft Design Initiator or simply (and more frequently) the Initiator
[4]. This ADS has been especially valuable for synthesizing and assessing innovative
aircraft configurations (incl. blended-wing-body aircraft [5] and box-wing aircraft [6]) as
well as novel aircraft technologies (incl. distributed propulsion concepts [7] and kerosene
alternatives [8]). The results of studies carried out with Initiator have been documented in
over 40 journal articles, conference proceedings, and theses. An overview of the Initiator
and these studies is provided in appendix B.

The Initiator is normally used to generate an aircraft design (i.e. the aircraft geometry and
several aircraft key performance parameters (KPIs)) based on a fixed set of aircraft require-
ments (i.e. the aircraft configuration and additional top-level aircraft requirements). At
the core of the Initiator there are a number of analysis & sizing modules. They are exe-
cuted iteratively until one aircraft parameter (i.e. the maximum take-off weight (MTOW))
is converged sufficiently. This process is termed aircraft synthesis and is illustrated in
figure 1.1.

However, the Initiator is rarely used to perform other aircraft design studies. For example,
it is difficult to use the Initiator to:

• Perform studies where a number of design variables are automatically varied in
order to find an optimized aircraft design (e.g. an aircraft design with minimal fuel
consumption)

• Come up with an aircraft design that is based on a different set of aircraft requirements
than the standard ones (e.g. where a current/existing engine is to be used instead of
a novel/virtual engine)

1

2 Chapter 1. Introduction

Synthesis

Synthesis

Aircraft Requirements

Aircraft Requirements

Aircraft DesignSynthesis

number of passengers

cruise speed

aspect ratio

range

cruise altitude

engine type

configuration

airfoils regulations

Aircraft Design

take-off mass empty mass

wing spanfuselage length

cruise drag coefficient

... ...fuel mass

payload-range efficiency

Empirical OEM

Estimation

Class 1 Weight

Estimation
...

 or and

Determination

Geometry

Estimation

Class 2 Weight

Estimation

Aerodynamic

Analysis
...

Engine

Analysis

no

yes

MTOM

conv.?

Sizing

Modules

Analysis

Modules

no

MTOM

conv.? yes

Aircraft Requirements

Aircraft Design

Figure 1.1: The Initiator synthesis process at different abstraction levels

3

• Establish a higher-fidelity synthesis process where modified or additional analysis
& sizing modules are employed (e.g. a wing sizing method that is based on a load
distribution instead of a total force)

• Determine the importance of aircraft parameters (e.g. by checking how sensitive the
empty mass is to changes in certain requirements)

These examples are illustrated schematically in figure 1.2. It is essential to emphasize that
conducting these studies constitutes a fundamental step in a comprehensive aircraft design
project. They serve the purpose of answering typical follow-up questions (e.g. “what if”
and “why is that” questions) that emerge once an initial aircraft design has been generated
using a system like the Initiator. It is somewhat surprising that executing these studies is
inherently difficult, even though the design knowledge needed to address characteristic
follow-up questions is principally available within the Initiator. It appears that the design
knowledge is not readily available in a practical or accessible form.

The reason for this appears to be related to the software architecture of the Initiator: The
source code of the Initiator is not only extensive but also complex and integrated. It consists
of more than 500 000 lines of code that have been written by more than 25 experts in aircraft
design (with varying expertise in software design). A number of issues, which are detailed
later in this report, make it difficult to comprehend and to modify the Initiator’s source code.
Please note that the Initiator is not the only ADS with problematic source code. Instead,
it appears that problematic source code is a fundamental issue of ADSs in general: Smith
points out that ADSs are often based on “unstructured, monolithic, poorly commented
code” [9]. Smith adds that engineers and researchers are primarily interested in solving a
concrete design problem and do not have enough time for making their tools and methods
easily accessible to others [9]. Kroo notes that “the complexity of such codes [...] often rises
to the point that no one person knows what the program is doing; bugs go unnoticed for
years and the results [...] become incredible” [10].

In fact, current ADS were not developed to be reconfigurable. Within the scope of this
report the word reconfigureable describes the possibility to repeatedly and reversibly
configure1 a design system in different ways to address a wide range of design prob-
lems. A reconfigurable ADS cannot only be configured to generate aircraft designs, but
can also be reconfigured to answer characteristic follow-up questions on the generated
aircraft designs. In a reconfigurable ADS this can be achieved without (irreversibly)
changing existing source code but by (conditionally) utilizing and extending existing
source code.

Hence, current ADSs cannot be considered to be reconfigurable. This is problematic be-
cause it means that current ADSs cannot be used to investigate follow-up design problems
(e.g. as shown in figure 1.2) that always emerge after the solution to an initial design
problem has been obtained (especially when performing research or when investigating
unconventional designs). Thus, in order to deal with these follow-up design problems, new
ADSs must either be developed from scratch or assembled by hacking together compo-
nents from various existing ADSs. These are time-consuming, repetitive, and error-prone
undertakings. Additionally, the design knowledge already contained in the current ADSs
might not be transferred to the new ADSs in its entirety and therefore might get lost over
time.

1The word configure stems from the Latin words “con” which can be translated as “with, together,
thoroughly” and “figurare” which can be translated as “to shape, form, make a likeness of” (see
https://www.merriam-webster.com/dictionary/configure). Hence, the word configure means “to ar-
range something in a particular way, to make software work in the way that the user prefers” (see also
https://www.oxfordlearnersdictionaries.com/definition/english/configure).

https://www.merriam-webster.com/dictionary/configure
https://www.oxfordlearnersdictionaries.com/definition/english/configure

4 Chapter 1. Introduction

Aircraft Requirements Initial Aircraft Design
Initiator

configured for

Synthesis

Initiator
reconfigured for

higher-fidelity
Synthesis

Updated Aircraft Design

Initiator
reconfigured for

Design Space
Exploration

Important Aircraft Design
Parameters/Sensitivities

Initiator
reconfigured for

(constrained)
Optimization

Optimized Aircraft Design

Initiator
reconfigured for

(unconstrained)
Optimization

Optimized Aircraft Design

Initiator
reconfigured for

different
Synthesis

New Aircraft Design

Additional Aircraft
Requirements

Modified Aircraft
Requirements

1st reconfiguration

2nd reconfiguration

3rd reconfiguration

4th reconfiguration

5th reconfiguration

initial configuration

Figure 1.2: Desirable reconfigurations of the Initiator synthesis process

5

ADSs are not the only type of design systems for which reconfiguration capabilities would
be desirable. Van Gent even states “the need for continuous reconfiguration lies at the
core of any design practice” [11]. He recently introduced a methodology to lower the
(re)configuration hurdles encountered in collaborative multi-disciplinary analysis and op-
timization (MDAO) projects by dividing the system design process into distinct stages (as
shown in figure 1.3) and thereby separating concerns. His approach is based on:

• Utilizing a central data schema (describing the design data)

• Defining a repository of tools (which are all linked to the data schema)

• Employing a graph-based software system (termed KADMOS) to enable the for-
mulation of MDAO systems (which are based on the tool repository and generated
according to the problem to be solved)

• Executing these MDAO systems in (specialized) process integration and design opti-
mization (PIDO) tools

Figure 1.3: MDAO system design process proposed by Van Gent et al. [12]

Van Gent and others further realized that ADSs are akin to MDAO systems. Therefore, it
should be possible to apply the methodology outlined above to make ADSs more reconfig-
urable. Van Gent and Bruggeman demonstrated the feasibility of this idea by investigating
several different design problems (incl. design space explorations and optimizations) using
a reconfigurable MDAO system based on a tool repository consisting of wrappers around
a subset of the analysis & sizing modules of the Initiator [11, 13]. Their findings show that
the analysis & sizing modules of the Initiator can be valuable for addressing a wide range
of design problems once they are decoupled from each other and available as standalone
tools. However, the reconfigurable MDAO system developed by Van Gent and Bruggeman
also had some drawbacks: Most importantly, the MDAO system was unable to perform
synthesis (i.e. coming up with an aircraft design based on a set of aircraft requirements)
anymore. Instead, it required a (fully parameterized, but not fully converged) aircraft
design as starting point. Furthermore, the wrappers around the analysis & sizing modules
were rather inflexible (e.g. the MDAO system could only deal with turbo-fan aircraft but not
with turbo-prop aircraft) and not entirely accurate (e.g. they sometimes demanded inputs
that were not relevant for the calculations performed by the analysis & sizing modules).
Moreover, the wrapped analysis & sizing modules were still based on highly complex and
integrated source code. Thus, changes to the analysis & sizing modules itself still remained
intricate (e.g. replacing an entire aircraft geometry estimation method with another one
was easily possible, but replacing the wing geometry estimation method contained within
the aircraft geometry estimation method was hardly possible). Finally, assembling and
executing the MDAO system was far from computationally efficient.

6 Chapter 1. Introduction

The author of this report is convinced that current ADSs need to be fundamentally re-
structured before they can be considered reconfigurable ADSs. The MDAO system design
process proposed by Van Gent (see figure 1.3) seems to be a suitable starting point for this
restructuring effort.

The objective of the research project described by this report is to explore the feasibility
of developing a reconfigurable aircraft design system by investigating the issues that
prevent current aircraft design systems from being reconfigurable and by proposing,
implementing and testing a software architecture that addresses these issues. In order
to meet the objective some gaps in the existing body of knowledge need to be filled. To
that end, the following three research questions have been established:

1. What are the main issues that prevent current aircraft design systems from being
reconfigurable?

2. What high-level software structure and low-level software artifacts are suited to
address these issues?

3. What are the implications of making a novel aircraft design system adhere to such a
software architecture?

2
Methodology

The research questions have been addressed by the analysis of existing ADSs, followed by
the development and evaluation of a novel ADS. This approach is motivated and detailed
below.

2.1 Iterative software development
The flowchart presented in figure 2.1 provides an overview of the pursued methodology.
The flowchart illustrates the iterative nature of the development cycle which comprises issue
identification, requirement derivation, prototype development, and prototype evaluation.
The development cycle concludes either when a functional and reconfigurable prototype
has been obtained (see section 2.4) or when a time limit has been exceeded (i.e. when the
time planned for the research project has been exceeded).

Figure 2.1: Graphical representation of the pursued methodology

7

8 Chapter 2. Methodology

Figure 2.1 might suggest that several discrete prototypes have been developed. In real-
ity, a single prototype has been developed which underwent continuous modifications
throughout multiple iterations of the development cycle. Some concepts persisted, while
less promising ideas were used only during a single iteration. Current ADSs served as a
baseline for the prototype development. The initial prototype was based on state-of-the-art
MDAO techniques and closely resembled the demonstrator that has been developed previ-
ously by Van Gent and Bruggeman [11, 13]. The subsequent prototypes primarily revolved
around the way the design data was structured or the way the analysis & sizing methods
were defined.

Python was chosen as primary programming language. The main reasons for this choice
were that Python is a general-purpose language, that it comes with a simple syntax (almost
like pseudo-code), that it is frequently used in academic environments, and that it offers a
large number of standard libraries. Python also facilitates the integration of tools written
in other programming languages through wrappers. In fact, the prototype incorporated
tools written in Matlab, Fortran, and C++. Furthermore, the principles of test-driven
development were followed, which means that tests were created before functionality.
The benefits of test-driven development are explained in chapter 6. Moreover, the object-
oriented development paradigm was employed to conveniently separate concerns and to
enable the final prototype to be used as both a project and a package/library (in other
projects). It is worth noting that the software architecture elements proposed at a later
point in this report do not necessarily have to be implemented in Python but principally
could be implemented in other programming languages as well.

2.2 Utilization of existent software and established theo-
ries

The objective of the research project described in this document is the development of a
reconfigurable ADS. However, it was deemed impractical to develop such an ADS from
scratch. Therefore, the source code of existing ADSs was used as starting point for the
development of the reconfigurable ADS. Since the prototype that has been developed
during the research project is primarily based on the Initiator1 (version 2.10), it is referred
to as the ReInitiator in the following. Furthermore, several other aircraft design tools,
including SUAVE2 (version 2.5), VAMPzero3 (version 0.8) and the DAS4 (unversioned),
served as sources of inspiration and design knowledge.

The direct utilization of source code from existing ADSs was not feasible (as explained
in chapter 5). Furthermore, the source code of these ADSs was not sufficiently self-
explanatory to be used as single source of knowledge. Consequently, the source code
was checked with and compared against analysis & sizing methods outlined in litera-
ture. Specifically, analysis & sizing methods described by Torenbeek [2, 14], Raymer [15],
Obert[16], Scholz5, and ESDU6 were taken into consideration. On occasion, the subopti-
mal quality and comprehensibility of the source code from existing ADSs necessitated the
development of new code from the ground up, based on the analysis & sizing methods
documented in literature.

1https://gitlab.tudelft.nl/initiator/AircraftDesignInitiator
2https://github.com/suavecode/SUAVE
3https://github.com/DLR-boeh-da/VAMPzero
4https://svn.lr.tudelft.nl/git/DAS.git
5http://lecturenotes.aircraftdesign.org
6https://www.esdu.com/

https://gitlab.tudelft.nl/initiator/AircraftDesignInitiator
https://github.com/suavecode/SUAVE
https://github.com/DLR-boeh-da/VAMPzero
https://svn.lr.tudelft.nl/git/DAS.git
http://lecturenotes.aircraftdesign.org
https://www.esdu.com/

2.3. Selection of analysis & sizing methods 9

2.3 Selection of analysis & sizing methods

Current ADSs, and in particular the Initiator, contain a substantial amount of design
knowledge distributed across hundreds of files and thousands of lines of source code.
Thus, it was necessary to impose limitations on the amount of design knowledge utilized
during the development of the ReInitiator. Therefore, six distinct analysis & sizing methods
were selected. These analysis & sizing methods were chosen because they represent a
typical aircraft synthesis loop and because they cover crucial aerodynamic, weight, and
performance aspects. They were also chosen because they feature realistic interdisciplinary
coupling. They are derived from the modules that make up the innermost convergence
loop of the Initiator.

The design knowledge contained in the selected analysis & sizing methods can be summa-
rized as follows:

• Seeder:
Performs preliminary calculations to obtain initial values for some aircraft parameters
such as the operating empty mass, zero-lift drag coefficient and maximum lift coef-
ficient. Isolates relations for obtaining default values that were previously scattered
across the Initiator.

• 𝑇
𝑊 or 𝑊

𝑃 and 𝑊
𝑆 determination:

Evaluates a number of standard performance requirements (e.g. take-off field length
requirement, landing distance requirement, stall requirements, cruise requirements,
etc.) and selects a design point (in terms of wing-loading and either thrust-loading
or power-loading) satisfying these requirements. This approach is often referred to
as “matching plot technique” [17].

• Geometry estimation:
Estimates the overall aircraft geometry by sizing (and positioning) the wing, the
fuselage, the empennage, and the engines (based on the wing-loading, thrust-
loading/power-loading and other aircraft requirements). Includes a wrapper around
the FuselageConfigurator module of the Initiator.

• Aerodynamic analysis:
Estimates the aerodynamic performance of the aircraft (in terms of lift coefficient,
drag coefficient, etc.) by performing a vortex-lattice analysis using the AVL7 tool
alongside the utilization of semi-empirical drag estimation techniques.

• Weight estimation:
Performs a class II weight estimation and thus draws up a detailed mass breakdown
for the aircraft based on relations from Torenbeek [2, 14]. In contrast to the Initia-
tor, which uses an enhanced Torenbeek method to handle unconventional aircraft
configurations, the actual equations as provided in literature are utilized.

• Mission analysis:
Calculates the fuel fractions and the take-off mass for every specified mission, then
derives parameters describing the harmonic mission, and finally determines the
maximum take-off mass, the maximum landing mass, and the maximum zero-fuel
mass (using relations from Torenbeek [2], Raymer [15] and ESDU6). In the Initiator
this method is usually referred to as the class I weight estimation.

7https://web.mit.edu/drela/Public/web/avl

https://web.mit.edu/drela/Public/web/avl

10 Chapter 2. Methodology

2.4 Reconfigurability requirements
As illustrated in figure 2.1, the development cycle can conclude once a functional and
reconfigurable prototype has been acquired. This requires an evaluation of the function-
ality and reconfigurability of the prototype, for which three key requirements have been
established:

1. The ReInitiator must possess the ability to automatically synthesize

a) passenger aircraft that are comparable to existing aircraft complying to FAR part
25/EASA CS-25 standards,

b) requiring as input only a minimal yet extensible set of requirements,

c) using multi-disciplinary analysis & sizing methods,

d) while supporting different aircraft configurations (e.g. tube-and-wing, blended-
wing-body, or box-wing configurations),

e) and different propulsion technologies (e.g. turbo-prop or turbo-fan engines).

2. The ReInitiator should support adding, removing, replacing, and reordering both

a) entire analysis & sizing methods (e.g. a geometry estimation or an aerodynamic
analysis)

b) as well as individual elements of such analysis & sizing methods (e.g. a wing
sizing method which typically is part of a geometry estimation).

3. The ReInitiator must enable conducting

a) design space exploration studies,

b) local sensitivity studies and

c) optimization studies

for passenger aircraft as described in the first requirement.<

The first requirement ensures that the ReInitiator encompasses a feature set similar to that
of the Initiator, enabling it to synthesize realistic passenger aircraft. It also mandates the
ability of the ReInitiator to handle not only a fixed set of requirements but also a flexible set
of requirements. For instance, users may or may not choose to impose bounds on design
parameters such as maximum take-off weight, wingspan, or fuselage length.

The second requirement is about confirming the ReInitiator’s reconfiguration capabilities
with regards to the analysis & sizing methods it contains. This involves potential changes
such as substituting Torenbeek’s [2, 14] weight estimation method with Raymer’s [15]. This
also involves selectively updating individual elements of these analysis & sizing methods,
for instance, replacing a low-fidelity Torenbeek wing weight equation [14] with a higher-
fidelity tool such as EMWET [18]. Alternatively, this involves omitting individual elements
of these analysis & sizing methods, for example not estimating the wings size and weight
at all, and instead utilizing an existing wing design with known dimensions and a known
weight.

The third requirement facilitates the versatility of the ReInitiator, allowing it to be used
for addressing a wide range of aircraft design problems. For example, one might wish
to reconfigure the ReInitiator for a sensitivity study, in order to find out which design
parameters influence the fuel consumption the most. Subsequently, one might want to

2.4. Reconfigurability requirements 11

further adapt the ReInitiator for an optimization study, in which key design parameters are
automatically varied, to identify an aircraft design with minimal fuel consumption.

3
Issues present in existing ADSs

Current ADSs are frequently used for generating aircraft designs, but rarely employed
for investigating these aircraft designs in more detail. This is due to a number of issues
which make it difficult to understand and to adapt the functioning of the ADSs. The most
important of these issues are described and exemplified in the following subsections. It
is worth mentioning that these issues are not necessarily a threat to the validity of prior
research that has been conducted with current ADSs. To be explicit, the provided examples
are not intended to cast aspersions on the valuable research that has been carried out with
these ADSs.

The issues are explained using examples from the Initiator. Nonetheless, the issues are not
unique to the Initiator. The issues could very well be explained using similar examples from
other ADSs (particularly from ADSs that were developed in academic settings). However,
for the sake of presenting the issues in a concrete and coherent way, all examples are taken
exclusively from the Initiator.

Figure 3.1: Evolution of the Initiator source code between the years 2014 and 2022

As indicated in the introduction of this report, the issues are linked to the source code
of the ADSs. Figure 3.1 illustrates the evolution of the source code of the Initiator. The
Initiator repository contained around 150 000 lines of code in the year 2014. The version of
the Initiator repository referred to in this report contains more than 500 000 lines of code.
However, the repository growth was not already well-controlled, and hence the quality

13

14 Chapter 3. Issues present in existing ADSs

of the source code decreased over time. Notably, there are guidelines1 that explain how
the Initiator modules should be structured. Yet, these guidelines are hardly followed and
thus the Initiator modules are structured in incoherent ways. The issues described in the
following subsections are those that are currently present in the Initiator. Not all of these
issues have been present since the inception of the Initiator. Instead, some of them have
evolved gradually, sometimes as a result of unintentional misuse of the ADS.

Please note that the Initiator source code is written in the Matlab programming language
and many structural elements inherit from the Matlab handle (super) class. The analysis
& sizing modules of the Initiator (previously illustrated in figure 1.1) are implemented as
subclasses of the Module class. Instantiated (singleton) Module objects are invoked trough
the (singleton) Controller object. This Controller object also contains design data and
keeps track of the results computed by the Module objects. This structure is schematically
depicted in figure 3.2.

Figure 3.2: Initiator UML diagram [11]

1In the form of a wiki, see http://fppwiki.lr.tudelft.nl/index.php/Synthesis/Initiator.

http://fppwiki.lr.tudelft.nl/index.php/Synthesis/Initiator

3.1. Concealed and convoluted source code 15

3.1 Concealed and convoluted source code

Aircraft Requirements

Aircraft Design

Initiator

Sizing

Modules

Analysis

Modules

no

MTOM

conv.?

yes

???

Figure 3.3: Illustration of the
concealed and convoluted na-
ture of an ADS as a whole (with
intentionally reduced legibility)

Frequently, ADSs are seen and treated as black-boxes, with
users expecting them to generate specific outputs based on
provided inputs in a fully automated fashion. However,
regarding ADSs as black-boxes is problematic due to the
lack of emphasis on the underlying source code and the lack
of incentives for writing and maintaining clear source code.
Thus, the source code becomes increasingly convoluted and
obscure over time, as exemplified below.

Firstly, the overall design process may not be clearly defined.
For example, the Initiator contains the Controller object,
which, despite its name, does not control the design process
but rather handles coordination tasks. The design process
is not prescribed centrally in the Controller class (in a
single class) but defined decentrally in the Module classes
(in hundreds of classes) and determined dynamically (only)
while the system is executed (cf. figure 3.2). Modules may
request the execution of other modules on demand. Hence,
diagrams visualizing the design process (such as the one in
figure 1.1) cannot be obtained before running the ADS (by
inspecting the source code) but only after executing it (by
tracing the design process and observing which modules
are executed). Adjustments of the design process cannot be
made in straightforward ways (as every analysis & sizing
module can potentially influence and reroute the design
process).

Secondly, the user may not have full visibility into the overall data flow. Specifically,
the input and output parameters of the ADS may not have been explicitly specified. For
instance, the Initiator is typically invoked by providing a file containing requirements
and initial values. Unnecessary parameters in the file are accepted but ignored. Missing
parameters are often assigned default values (logic similar to that in listing 3.1 can be found
throughout the source code). Additionally, the ADS may silently overwrite parameters.
Hence, without delving into the source code, it is challenging to discern which parameters
are genuinely required for the design process and which ones are optional/unnecessary.
Similarly, it is difficult to ensure that parameters are not unintentionally modified. Finally,
without canvassing the source code, it is demanding to differentiate whether an output is
a merely defaulted or a specifically calculated parameter.

When using an ADSs for design of experiment or for optimization studies, it is crucial to
have a clear understanding of and control over the data flow (e.g. it should be possible to
prevent the ADS from overwriting fixed values). Furthermore, analysis & sizing methods
modules are likely to be revised and rearranged before they can be utilized for optimization
purposes (e.g. to ensure that coupling parameters are sufficiently converged). However,
the concealed and intricate nature of the source code may discourage users from attempting
these reconfigurations. It is worth noting that the issues discussed in subsequent sections
can compound to the opacity and complexity of the source code.

Listing 3.1: Example code for determining a default value
if mach_drag_divergence is None:

mach_drag_divergence = mach_cruise + 0.015

16 Chapter 3. Issues present in existing ADSs

3.2 Ambiguous and cluttered data structures

Class 1 Weight

Estimation

settings
results

requirements
aircraft

requirements

configuration

constants

Class 2 Weight

Estimation

parts
alpha beta1

beta2

Figure 3.4: Illustration of the ambiguous data struc-
tures that are defined in multiple places

ADSs are often created by combining
existing analysis & sizing tools. Hence,
it is not surprising that the data struc-
tures found in ADSs often mirror those
present in existing analysis & sizing
tools. Consequently, there usually ex-
ists a tight implicit coupling between
the data structures found in ADSs and
the employed analysis & sizing tools.
Moreover, the data structures found
in ADSs are neither homogeneous nor
necessarily contiguous.

Specifically, the data structures within
an ADS may exhibit fragmentation and
disorder. Often, data is contained in
objects such as arrays and hashes, which exhibit varying degrees of pre-established struc-
ture. Sometimes, data is stored in files, which may adhere to formats of varying read-
ability. Incidentally, data is available in databases, which may not adhere to pre-defined
schemas.

Design parameters are not always named verbosely either. While the meaning of a design
parameter named beta may be evident when looking at an individual analysis & sizing
module, it can become ambiguous when considering multiple analysis & sizing modules.
The term beta may be used to denote different parameters within an ADS, such as the
Prandtl-Glauert factor and the sideslip angle.

Similarly, for the initial developer setting up an ADSs it may be obvious that the design
parameter cruise_speed refers to the true airspeed (and e.g. not to the equivalent air-
speed) and is always specified in meters per second (and e.g. not in miles per hour).
However, such details are hardly documented, and thus the next developer may interpret
the cruise_speed differently. In the absence of adequate documentation, it becomes nec-
essary to derive the meaning of design parameters by guessing or by inspecting the context
in which the design parameters are used, which can easily lead to inconsistencies.

Since the data structures of current ADSs may have been defined in an ad-hoc manner, de-
sign parameters can be hard to locate. In case of the Initiator all data is principally available
to all modules through the Controller object. Still, even similar design parameters are
defined in different places, such as the settings, the results, or the aircraft attribute
(cf. figure 3.2). Furthermore, design parameters are occasionally specified multiple times
in a redundant fashion. Additionally, some design parameters are always specified, even
when they are not relevant to the investigated aircraft design.

When adding a new analysis & sizing module to an ADS, it is imperative to consider the
design data already available within the system. Failure to do so may prevent the seamless
integration of the new module into the ADS. When replacing one analysis & sizing module
with another, it is crucial to ensure the compatibility of the design data generated by both
methods. The cluttered and ambiguous data structures of current ADS, as described above,
prevent that such reconfigurations can be done quickly (without wasting time) and safely
(without introducing inconsistencies).

3.3. Extensive and integrated source code 17

3.3 Extensive and integrated source code

Class 1 Weight
Estimation

- Zero Lift Drag Estimation

- Mission Analysis
- Atmosphere Calculations
- Airspeed Calculation

- Energy Height Calculation
- Lost Range Calculation

- Fuel Fraction Estimation
- Take-Off Mass Calculation
- ...

Figure 3.5: Illustration of the
long chains of contiguous code
used for defining modules

During the creation of analysis & sizing modules for ADSs,
developers commonly face challenges related to missing in-
put parameter values. Nevertheless, it is often feasible to
establish default parameter values or estimate them using
empirical relations. Hence, code fragments similar to the
one presented in listing 3.1 are frequently integrated into
the analysis & sizing modules of current ADSs. While this
might seem beneficial initially, the excessive proliferation of
such code fragments can ultimately result in bloated anal-
ysis & sizing modules that perform functions beyond their
designated scope.

For instance, the weight estimation module of the Initiator,
aside from estimating maximum take-off weight, also cal-
culates zero-lift drag, performs a mission analysis, conducts
atmospheric calculations, etc. (as illustrated in figure 3.5).
Additionally, analysis & sizing modules might be overloaded
with supplementary tasks, including dependency resolu-
tion, unit conversion, and plotting tasks. Frequently, these
supplementary tasks are neither clearly delineated from the
core tasks nor uniformly defined. In case of the Initiator,
an analysis & sizing module is executed by invoking its run
method (see figure 3.2). It is not uncommon that the run method comprises (en bloc) a few
hundred lines of source code. Hence, it is demanding to understand the purpose and the
operating principles of analysis & sizing modules, which is an essential prerequisite for
making reconfigurations.

Noteworthy reconfigurations involve the reuse, deactivation or substitution of distinct
functionalities of individual analysis & sizing modules. For example, an attempt to enhance
a geometry estimation module might entail replacing a low-fidelity wing sizing process
(based on empirical relations) with a higher-fidelity one (based on aerodynamic loads).
However, such reconfigurations are challenging due to extensive and tightly integrated
nature of the source code used to define analysis & sizing modules.

Furthermore, it is not feasible to independently reuse distinct functionalities of analysis &
sizing modules. The modules can only be used as a whole or not at all. This does not only
limit reconfiguration options but also limits the extent to which modules can be unit-tested
(cf. figure 3.6). Moreover, the inability to conveniently reuse distinct functionalities of
modules necessitates code duplication when similar tasks need to be executed in multiple
modules or in disparate sections of a single module. This is problematic as subsequent
updates to the initial code may not be propagated to the duplicated code (or vice versa).
Furthermore, modules with overlapping functionalities can be difficult to converge.

...

Geometry Estimation:

wing geom = f (...)

fuselage geom = f (wing geom, ...)

wing geom,

fuselage geom

(a)

...

Wing SizingProcess wing geom

(b)

wing geom, ...

Fuselage Sizing Process fuselage geom

(c)

Figure 3.6: Example integrated sizing module (a) and alternative modular sizing modules (b/c)

18 Chapter 3. Issues present in existing ADSs

3.4 Complex source code

Class 2 Weight
Estimation

if ... then:
if ... then:

...

else:
...

if ...:
for ... in ...:

...

else:
....

??? ???

Figure 3.7: Illustration of abundant condi-
tionals and loops used to define modules

When a new ADS is created, it usually can
only handle a limited range of aircraft designs
(e.g. conventional turbo-fan and turbo-prop
aircraft). Over time, the ADS is expanded,
and may be able to handle a broader range
of aircraft designs (e.g. blended-wing-body
or box-wing aircraft). Additionally, the anal-
ysis and sizing modules used within the ADS
are often refined, in order to accurately capture
subtle differences between aircraft designs.
These expansions and refinements are typically
achieved by incorporating nested if-else state-
ments and nested loops into the source code, as
exemplified by the pseudo-code in listings 3.2
to 3.4. While the lines of code increase almost
linearly (cf. figure 3.1), the cyclomatic com-
plexity2 of the code grows exponentially.

Nowadays the modules of the Initiator can handle a multitude of diverse aircraft types and
configurations. However, the cyclomatic complexity of the module’s run method is often
close to the number 50. As a result, some modules are so cluttered that they even contain
illogical and unreachable source code.

It is troublesome to understand how a module works, which inputs are required, and
which outputs are generated. The complexity of the source code becomes especially prob-
lematic when attempting to reconfigure an ADS for optimization purposes. Moreover,
the complexity makes it difficult to obtain a good (i.e. continuous and differentiable) nu-
merical representation of a module which is considered essential for solving optimization
problems, especially those problems with a large number of variables [20].

Listing 3.2: Initial state
if engine == "TurboFan":

func_a()
elif engine == "TurboProp":

func_b()

Listing 3.3: Intermediate state
if engine == "TurboFan":

if configuration == "Conventional":
func_a()

elif configuration == "BWB":
func_c()

elif configuration = "BoxWing":
func_d()

elif engine == "TurboProp":
func_b()

Listing 3.4: Current state
if engine== "TurboFan":

if configuration == "Conventional":
if engine_loc == "Wing":

func_a()
elif engine_loc == "Fuselage":

func_e()
elif:

func_f()
elif configuration == "BWB":

func_c()
elif configuration == "BoxWing":

func_d()
elif engine == "TurboProp":

if engine_loc == "Wing":
func_b()

elif engine == "Hybrid":
func_h()

2The cyclomatic complexity is a quantitative measure representing the number of paths through a code
[19]. It is generally recommended to keep the cyclomatic complexity of a method below the number 11.
When the cyclomatic complexity of a code is high it is often considered untestable.

3.5. Excessive coupling within source code 19

3.5 Excessive coupling within source code

Geometry

Estimation

 or and

Determination

Class 1 Weight

Estimation

Empirical

Database

Class 2 Weight

Estimation

Aerodynamic

Analysis
Engine

Analysis

Figure 3.8: Illustration of interde-
pendencies between modules

A key aspect of aircraft design involves the intricate
network of dependencies among various aircraft sub-
systems. A design change in one subsystem is likely
to trigger design changes in other seemingly unrelated
subsystems. Thus, it is essential to also model these
dependencies in an ADS.

The straightforward approach requires hardwiring
these dependencies directly into the source code. This
is exemplified by the pseudo-code in listing 3.5, which
shows that running the geometry estimation function
invokes both a weight estimation function and a wing-
thrust-loading function. This approach to handling
dependencies is quick and easy to implement, which is
why it can be found in various ADSs.

However, this approach carries the risk of inadvertently
introducing recursive loops, which can render an ADS
inoperable. To mitigate this risk, ADSs often implement some form of dependency manage-
ment logic. For instance, the Initiator employs XML files to define dependencies between
modules (as illustrated in listing 3.6) and utilizes the Controller object to manage the de-
pendencies. Yet, dependency resolution processes are generally intricate. People working
on ADSs, especially when facing time constraints, occasionally still revert to hardcoding
dependencies, thereby bypassing the dependency resolution process. As a result, current
ADSs typically utilize more than one approach to couple analysis & sizing modules to each
other.

In either case, direct dependencies between analysis & sizing modules can be problematic
when attempting to reconfigure an aircraft design system. For example, replacing one
module with another (e.g. substituting a VLM-based aerodynamic analysis module with
a CFD-based alternative) demands the replacement of all references to the initial module.
Alternatively, compatibility between inputs and outputs of the initial and the replacement
module must be ensured. Furthermore, altering the execution order of modules or pre-
venting the execution of specific modules (e.g. not estimating the wing geometry and
weight, but instead utilizing an existing wing geometry with known weight) is a daunting
task. Finally, it is important to note that direct dependencies between analysis & sizing
modules may not always accurately represent the physical dependencies between different
aircraft subsystems.

Listing 3.5: Example of hardcoded design logic containing dependencies between analysis & sizing
functions
def geometry_estimation():

results_a = class_one_weight_estimation()
results_b = wing_thrust_loading()
surface = results_b.take_off_weight / results_a.wing_loading
thrust = results_b.take_off_weight * results_b.thust_over_weight
...

Listing 3.6: Example of dependencies between analysis & sizing modules specified in XML format
<module>

<name>GeometryEstimation</name>
<dependency>Class1WeightEstimation</dependency>
<dependency>WingThrustLoading</dependency>

</module>

4
A software architecture to address the

issues present in existing ADSs

The issues described in the previous section are all related to the highly integrated and
highly complex software architecture of current ADSs. This implies that a less integrated
and less complex software architecture is required for future ADSs. Several architectural
elements for future ADSs that specifically address the previously described issues of current
ADSs are presented in the following sections. The ReInitiator serves as a prototype for the
implementation of these elements. This prototype is elaborated upon in appendix C.

4.1 Centralized data store and self-contained analysis & siz-
ing methods

An ADS typically contains two primary components: design data and analysis & sizing
methods. As pointed out before, in current ADSs, these two elements are intricately inter-
connected, creating a complex framework that can be difficult to understand and reconfig-
ure. To disentangle these elements, several architectural measures are proposed.

First, it is logical to separate design data from analysis & sizing methods. This separation
can be achieved by establishing a centralized data store. In current ADSs, data is often
distributed across various locations, sometimes combined with analysis & sizing methods
or placed in dedicated data containers (see figure 4.1a). In a reconfigurable ADS, data
should be accessible to all analysis & sizing methods from a central storage location (which
acts as a single source of truth, see figure 4.1b).

Seeder

 or and

Determination

Geometry Estimation

Aerodynamic

Analysis

Weight Estimation

Mission Analysis

results

aircraft

requirements

configuration

parts

requirements

settings

constants

alpha beta1

beta2

(a) Scattered

Seeder

 or and

Determination

Geometry Estimation

Aerodynamic

Analysis

Weight Estimation

Mission Analysisresults

aircraft

requirements

configuration

parts

requirements

settings

constants

alpha

beta2

(b) Centralized

Figure 4.1: Distribution of design data

21

22 Chapter 4. A software architecture to address the issues present in existing ADSs

Second, the direct and often hard-coded interconnections between analysis & sizing meth-
ods need to be addressed. It is suggested that analysis & sizing methods should commu-
nicate exclusively through the central data store. This would involve replacing the direct
links between analysis & sizing methods in current ADSs (see figure 4.2a) with indirect
data connections via the central data store (see figure 4.2b). While this approach requires
adding more data to the central data store, it results in self-contained analysis & sizing
methods that no longer rely on direct connections to other analysis & sizing methods but
instead depend solely on the presence of data within the central data store.

Seeder

Thrust-Loading/
Power-Loading
Determination

Geometry Estimation

Aerodynamic
Analysis

Weight Estimation

Mission Analysis

(a) Direct

Seeder

 or and

Determination

Geometry Estimation

Aerodynamic

Analysis

Weight Estimation

Mission Analysis

masses

reference

dimensions

drag

coefficients

(b) Indirect

Figure 4.2: Connections between analysis & sizing methods

To improve data organization, it is recommended to use a structured database as the
central data store. During the development of the ReInitiator, different database types were
considered, including hierarchical file-based databases (XML, JSON), relational databases
(SQLite), and graph databases (RDF). Ultimately, graph databases were chosen as the most
suitable option because the design data relevant to aircraft design is often not hierarchical1
and not homogeneous2 but still strongly interlinked.

Finally, the implementation of standardized database endpoints is proposed. These end-
points are positioned between the database and the analysis & sizing methods (see fig-
ure 4.3). Their primary purpose is to provide a comprehensible and uniform interface
for accessing the database. They are instances of a class (as illustrated in figure 4.4) and
designed for temporary use. The endpoints fulfill their primary purpose by exposing a
limited set of methods for query generation and dispatch, facilitating data retrieval from
and writing to the database. In addition, they can seamlessly handle routine tasks, such
as unit conversions (e.g. from meters to feet) and the automatic addition of metadata (e.g.
specifying the analysis & sizing method responsible for a database entry, along with the
modification timestamp). Moreover, endpoints can log which data is retrieved from or
written to the database, an aspect that is further elaborated upon in section 4.4.

By incorporating these elements into a novel ADS, such as the ReInitiator, one can already
achieve a software architecture that effectively separates different design concerns.

1An aircraft may fly at different cruise altitudes during different missions. Enforcing hierarchies, such as
aircraft → mission → altitude or mission → aircraft → altitude, appears to be awkward and arbitrary.

2Aircraft design data cannot always be described in terms of a numerical value and an associated unit.
Sometimes strings, arrays, matrices, etc. constitute more appropriate representations of aircraft design data.

4.2. Semantic data management 23

Seeder

 or and

Determination

Geometry Estimation

Aerodynamic

Analysis

Weight Estimation

Mission Analysis

:aircraft

:masses

:requirements :constants

Endpoint

Figure 4.3: Centralized graph database with endpoints and self-contained analysis & sizing meth-
ods

Figure 4.4: Class diagram illustrating the endpoint concept which provides a simple and uniform
interface to the database

4.2 Semantic data management
While the proposed architectural elements discussed above address data clutter within
contemporary ADSs, they do not address the issue of data ambiguity within these systems.
In light of this, it is recommended to incorporate some architectural elements from the
Resource Description Framework (RDF) when developing a reconfigurable ADS.

:wing1:aircraft1
init:hasSubsystem

objectsubject
predicate

Figure 4.5: Visualization of an RDF triple as a directed arc diagram

In the RDF a graph database is often referred to as a “triple store”. Triples are subject-
predicate-object constructs (see figure 4.5) that can be used to express statements about

24 Chapter 4. A software architecture to address the issues present in existing ADSs

resources and their relationships with each other. The concept of triples is simple as well
as powerful, and offers versatile means of representing various entities, including aircraft
and aircraft subsystems (see figure 4.6).

:wing1:aircraft1
init:hasSubsystem init:hasAttribute

:span1

:engine_port :engine_starboard

init:hasSubsystem init:hasSubsystem

Figure 4.6: Directed arc diagram representing an example data graph

Triples can also be used to describe the meaning of data. The segment of the overall graph
that defines concepts, relationships, and constraints is termed an ontology. Essentially, an
ontology is a formal representation of knowledge that provides a standardized vocabulary
for describing data. The adoption of an ontology enhances data comprehensibility and fos-
ters interoperability across different systems by capturing the semantics of the data.

While numerous ontologies have been defined in the past, particularly in the medical field,
there yet is no well-established ontology dedicated to aircraft design (except for an ele-
mentary prototype, cf. [21]). Although developing such an ontology for an ADS entails
substantial effort, it can yield substantial benefits by enabling precise data interpretation.
Best practices dictate the utilization of metadata such as alternative names, LATEX expres-
sions, and links (such as references to other ontologies or images) when constructing an
ontology.

Figure 4.7 presents a part of an example data graph alongside an example ontology graph.
The data graph is highly dynamic, taking on a different shape for each aircraft design gener-
ated with the ADS and evolving as the design process advances. Conversely, the ontology
graph remains relatively static, expanding only when additional features or functionalities
are integrated into the ADS. Both graphs can be contained within a single RDF database,
forming an RDF dataset, which in turn is accessible through an endpoint, as depicted in
figure 4.8.

The advantages of employing semantic web technologies such as the RDF have been ex-
tensively discussed in literature (cf. [22]). The example RDF dataset shown in figure 4.7
provides a few clues why these technologies are particularly useful for performing air-
craft design studies: Firstly, data can be conveniently classified, here based on the system
(“init:System”) and attribute (“init:Attribute”) base classes. Secondly, it is possible to build
comprehensive system hierarchies (here both “:engine_port” and “:engine_starboard” are
subsystems of “:wing1” which in turn is a subsystem of “:aircraft1”). Thirdly, attributes that
are shared between/equal for different systems, here the thrust-specific fuel consumption
(“:tsfc1”), do not have to be defined multiple times for each system. Finally, metadata like
comments (“rdfs:comment”) and timestamps (“init:wasUpdatedAt”) can be incorporated
as needed.

There are additional semantic web technologies that can be utilized to enhance the precision
and clarity of an ADS: For instance, figure 4.8 also shows a validation graph containing
rules formulated in accordance with the Shapes Constraint Language (SHACL), which can
be used to validate the structure and content of the data graph. Furthermore, the Web
Ontology Language (intentionally abbreviated OWL and not WOL) can be employed for

4.2. Semantic data management 25

rdfs:subClassOf

rdfs:subClassOf

Legend

identified nodeliteral
part of the

ontology graph
part of the
data graph

rdfs:subClassOf

owl:ObjectProperty owl:DatatypeProperty owl:AnnotationPropertyrdf:Property

rdf:type

:wing1:aircraft1
init:hasSubsystem init:hasAttribute

:span1
init:hasValue

34.1

init:hasUnits

m

init:wasUpdatedAt

2023-03-13 12:45

wing:Span

rdf:type

wing:MainWing

rdf:type

:engine_port :engine_starboard

init:hasSubsystem init:hasSubsystem

:tsfc1

init:hasAttribute init:hasAttribute

wing:Wing

rdfs:subClassOf

init:Attribute

rdfs:subClassOf

init:latex
b

http://www.wikidata.org
/entity/Q245097

rdfs:seeAlso

distance from
the tip of [...]

rdfs:comment

init:System

rdfs:subClassOf

airc:TurboFanAircraftairc:PassengerAircraft

airc:Aircraft

rdf:type rdf:type

rdfs:subClassOfrdfs:subClassOf

rdfs:subClassOf

owl:Thing
rdfs:subClassOf rdfs:subClassOf

engi:ThrustSpecificFuelConsumption

rdf:type

:cruise1

misc:FlightPhase

rdf:type

init:hasAttribute

fuel consumption
during cruise

rdfs:comment

Figure 4.7: Directed arc diagram representing an example RDF dataset and the relationship between
an ontology graph and a data graph

26 Chapter 4. A software architecture to address the issues present in existing ADSs

contains

RDF Store

A graph database for storing and querying RDF data.

Ontology Graph

A representation of the
conceptual framework defining
the structure and semantics of

a domain.

Default (Data) Graph

A representation of the
specific data instances and

their interconnections,
adhering to an ontology.

is part of

SHACL Graph

A representation of the
constraints and rules used to
validate the structure and
contents of a data graph.

exposes

RDF Dataset

A collection of RDF graphs.

Endpoint

An interface that allows controlled
access to a dataset offering user-

friendly querying, storing, and logging
functionalities.

Endpoint Endpoint Endpoint

Figure 4.8: Visualization of various elements related to the RDF that prove to be useful for the
development of a reconfigurable ADS

the definition of the ontology. The OWL provides formal semantics for the creation of
comprehensive ontologies. Some dialects of the OWL even allow for automatic reasoning3

to deduce additional facts about the graph (though these automatic reasoning capabilities
are not a necessity for reconfigurable ADSs). Finally, the endpoints depicted in figures 4.3
and 4.8 extensively leverage the SPARQL Protocol and RDF Query Language (SPARQL) for
accessing the RDF dataset. The adoption of these elements and standards ensures unified
knowledge representation, fostering data consistency and enhancing the efficiency and
accuracy of the ADS.

3Automatic reasoning, also referred to as inferencing, is a promising concept. For instance, one can use
the OWL to specify that an aircraft equipped with only turbo-fan engines, but without any other engines, is
to be considered a turbo-fan aircraft. Subsequently, a reasoning engine such as HermiT [23] or Pellet [24] can
be used for the automatic classification of aircraft in a dataset (or for the automatic detection of aircraft that
have been inconsistently defined in a dataset). However, it is important to note that automatic reasoning is
computationally expensive, and formulating valid axioms is not a trivial task. Therefore, automatic reasoning
was only used experimentally during this research phase. An ADS does not necessarily require automatic
reasoning since the knowledge that could be automatically inferred can also be manually specified.

4.3. Standardized and modular analysis & sizing method interface 27

4.3 Standardized and modular analysis & sizing method
interface

The architectural elements introduced in the previous section focused on the design data.
However, the analysis & sizing methods are at least as important as the design data.
Section 3.3 has shown that the extensive and integrated nature of the source code used to
define analysis & sizing methods of current ADSs is problematic. To address this issue,
the concept of procedures is introduced in the following.

In the first place, a procedure serves as an object for both encapsulating and explaining
the computation logic contained within analysis & sizing methods. A procedure shall
not be considered a plain function with a simple docstring. Instead, a procedure shall

Figure 4.9: Class diagram illustrating the proposed procedure concept, showing the abstract base
class (in particular its callable nature and descriptive features) alongside a concrete example class

28 Chapter 4. A software architecture to address the issues present in existing ADSs

be considered an enhanced function that comes with structured metadata and with self-
documentation and self-visualization capabilities. Procedures can be defined as classes
and typically only a single instance of a procedure class needs to be created (although it
sometimes makes sense to create multiple instance of a procedure class, e.g. in case that the
procedure is to be modified at runtime). These aspects are illustrated in figure 4.9.

Furthermore, a procedure shall be considered a callable object. This implies that once an
instance of a procedure class has been created, it behaves like a function4. However, it does
not act like a function with predefined inputs and outputs. Instead, it behaves like a function
that takes an endpoint as its sole input argument and then interacts with the database (i.e.
read from/write to the database) while executing the computation logic. These aspects
are also illustrated in figure 4.9. Additionally, the code examples in appendix C.3 serve to
clarify how procedures are intended to be created and used.

To manage the extent and complexity of analysis & sizing methods, it is proposed to estab-
lish a number of abstract procedure classes. These abstract classes, detailed in figure 4.10
and exemplified in figure 4.11 , provide an interface for organizing analysis & sizing meth-
ods in a hierarchical manner. The key idea is that only at the micro-level there are procedure
that function as black-box components (referred to as “SimpleProcedures”). In contrast, at
the macro-level, there are procedures that act as transparent components and that allow for
introspection (the so-called “ComplexProcedures”). This facilitates the creation of nested
procedures with arbitrary depth, thereby offering flexibility and scalability in structuring
analysis & sizing methods5.

Typically, at the top level of an ADS, optimization, DOE, or convergence procedures are em-
ployed. Mid-levels predominantly consist of sequential and conditional procedures, while
the lowest level encompasses simple procedures. The lower-level procedures can be fre-
quently reused (within other procedures), while higher-level procedures are less reusable
and require modification to suit the specific design study or problem at hand.

Once the analysis & sizing methods have been decomposed into standardized procedures
that come with methods to automate introspection, they can be effectively visualized using
straightforward activity diagrams, as shown in figure 4.12. These visual representations
highlight the advantages of modular procedures with high granularity, which make the
design process transparent and eliminate the black-box nature of current ADSs. While
this approach leads to a large number of distinct procedures, it is possible to maintain a
low cyclomatic complexity within the individual procedures. By distributing the inherent
complexity of analysis & sizing methods across multiple procedure levels, the design pro-
cess becomes more manageable. Finally, procedures can be restructured and recombined
like LEGO bricks, thereby allowing for design process reconfigurations.

4The concept of callable objects is a widely utilized feature in many programming languages, offering
flexibility in code organization and execution. It enables instances of classes to be used with function call
syntax, such as creating an object with some_object = SomeClass() and subsequently invoking it as result
= some_object(arguments). In Python, this functionality requires the definition of the __call__ (dunder)
method. In C++, this concept is commonly referred to as “functors” and requires the definition of the
operator method.

5The readers of this report who are familiar with XML schemas may recognize that “SimpleProcedures”
and “ComplexProcedures” bear a resemblance to “simpleTypes” and “complexTypes”, which are base XSD
types frequently employed when defining XML schemas.

4.3. Standardized and modular analysis & sizing method interface 29

Figure 4.10: Class diagram illustrating the proposed procedure concept, depicting a hierarchy of
classes that are relevant for defining typical analysis & sizing methods in a granular manner

30 Chapter 4. A software architecture to address the issues present in existing ADSs

Figure 4.11: Class diagram illustrating the proposed procedure concept, providing details about
essential attributes and methods along with further example classes

4.3. Standardized and modular analysis & sizing method interface 31

(a)

(b)

Figure 4.12: Example procedures represented as activity diagrams

32 Chapter 4. A software architecture to address the issues present in existing ADSs

(c)

Figure 4.12: Example procedures represented as activity diagrams

4.4 Automated logging and diagramming capabilities
The majority of the issues outlined in chapter 3 have been addressed by the architectural
elements proposed above. Nevertheless, the visualization of data flow within the ADS still
remains an outstanding challenge. Addressing this issue is crucial, because at their core
ADSs transform a set of input data into another set of output data. When the data flow
is not readily traceable, it becomes exceedingly complex to reconfigure the system with
confidence, mainly because it becomes unclear whether all the interdisciplinary couplings
have been accurately taken into account.

Note that the flowcharts depicted in figure 4.12 have been automatically generated from
the source code defining the corresponding procedure classes. The automatic flowchart
generation is a core feature of the proposed ADS that allows one to always obtain up-
to-date representations of the used procedures. However, these flowcharts do not show
the inputs and outputs of the specified procedures. A representation akin to an 𝑁2 chart
appears to be necessary to address this limitation.

Initially, efforts were made to specify the inputs and outputs of a procedure separately
from the source code that defines the calculation/mapping logic of the procedure. This
approach, however, proved overly idealistic. Retrieving the correct inputs is a non-trivial
task, necessitating sophisticated logic, especially when dealing with typical synthesis meth-
ods. For instance, Torenbeek’s weight estimation method stipulates the use of different
equations (with different inputs) to calculate the tail weight of an aircraft depending on
whether the design dive speed of the aircraft is below or above a certain threshold (see
figure 4.13). The tail weight estimation can be modelled as a “ConditionalProcedure”
containing two different “SimpleProcedures”. In this case, the inputs and outputs of the
“SimpleProcedures” can be specified explicitly. However, this is not possible for the “Con-
ditionalProcedure”. All attempts to establish a declarative input-output specification for
procedures other than “SimpleProcedures” thus were futile6. An important observation
thus is that the data flow in ADSs always depends on the available data. This is further
elaborated on in section 5.3.

6Even for “SimpleProcedures” it is not always possible to specify all inputs in a declarative manner. This
is because at a certain point it becomes unreasonable to decompose a “SimpleProcedures” into “Complex-
Procedures”.

4.4. Automated logging and diagramming capabilities 33

VD, ?

Horizontal Tail Mass Estimation mtail

(a) General

VD, nult,Stail

Horizontal Tail Mass Estimation mtail

(b) 𝑽𝑫 <= 250 kts EAS

VD,Stail, Λtail, ...

Horizontal Tail Mass Estimation mtail

(c) 𝑽𝑫 > 250 kts EAS

Figure 4.13: Example of a procedure (a) that can only be described by a dynamic set of inputs, while
the underlying subprocedures (b, c) can be represented in terms of a static set of inputs

Notwithstanding, the data flow issue can be addressed by employing the database end-
point, as introduced previously in section 4.1, to trace the inputs and outputs as the aircraft
design process advances. This can be achieved by logging which nodes in the database are
retrieved or updated when the endpoint is utilized. This technique is further detailed in
figure 4.14. While this approach does not allow a pre-execution determination of inputs
and outputs, it permits real-time determination during system execution. Then, 𝑁2 charts,
akin to the one in figure 4.15, can be readily (and automatically) generated.

Figure 4.14: Class diagram of the endpoint concept highlighting its logging capabilities

Please observe that the activity diagrams in figure 4.12, the 𝑁2 chart in figure 4.15, and
the implementation diagram in figure 4.16 provide different views on the same procedure,
each emphasizing distinct aspects of the procedure. The latter diagram serves as a custom
visualization designed to offer a quick overview of the procedure while closely resembling
the actual structure of the procedure instance7. It is important to mention that these visu-
alizations have all been automatically generated. This automatic visualization generation
is considered a key element of a reconfigurable ADS because it allows one to gain a lu-
cid understanding of the system’s functionality. It also reveals the available options for
reconfiguring the ADS.

7Representing the nested procedure structure within a standard UML (object or structure) diagram is
unfeasible, primarily because UML does not provide the means to effectively depict ordered dictionaries,
which are a core element of “ComplexProcedures”.

34
C

hapter4.
A

softw
are

architecture
to

addressthe
issuespresentin

existing
A

D
Ss

S (3x), t, HasFinMountedStabilizer
MTOM, nlimit, HasLiftDumperControls

VDD, hf , HasVariableIncidence
Λ (3x), x (2x), g

ControlType, BPR, MZFM
c (2x), A, WingPosition
wf , HasSlatControl, T

b

me
npax, FuelTankCapacity, R
ncrewflightdeck , ncrewcabin , nlav

lc , npax, MZFM
MTOM, ControlRedundancy, R

vc , ControlType

mf , mng , mlg (2x)
mw , mvt , nult

mht , mscg

structure_group
AirframeStructureGroupMassEstimation

masg

propulsion_group
PropulsionGroupMassEstimation

mpg

operational_items_group
OperationalItemsGroupMassEstimation

moig moig

delivery_empty_mass
DeliveryEmptyMassCalculation

DEM

mAPUdry , mAPUinstalled

equipment_group
EquipmentGroupMassEstimation

meqg

OEM
operating_empty_mass

OperatingEmptyMassCalculation

Figure 4.15: Example 𝑁2 chart that has been automatically generated from a procedure execution log8,9

9Note that “2x”, “3x”, etc. signifies that there are multiple variables with the same name or symbol. For example, “𝑆 (3x)” represents the surface areas of the wing, the
horizontal tail, and the vertical tail, respectively.

9The 𝑁2 chart shows that the OEM needs to be converged. However, the 𝑁2 chart does not include any convergence mechanism. This is because the convergence
mechanism was not defined to be a part of the weight estimation procedure. Instead, it is usually defined to be a part of higher-level procedures (e.g. the synthesis
procedure visualized in figure 5.4).

4.4.
A

utom
ated

logging
and

diagram
m

ing
capabilities

35

Legend

 TorenbeekClass2WeightEstimation

Step

1 structure_group

2 propulsion_group

3 operational_items_group

4 delivery_empty_mass

5 equipment_group

6 operating_empty_mass

 AirframeStructureGroupMassEstimation

Step Foreach

1 load_factor

2 wing_group

3 horizontal_tail

4 vertical_tail

5 fuselage_group

6 landing_gear_group LandingGear

7 surface_control_group

8 nacelle_group

9 summation

 PropulsionGroupMassEstimation

 OperationalItemsGroupMassEstimation

 DeliveryEmptyMassCalculation

 EquipmentGroupMassEstimation

 OperatingEmptyMassCalculation

 UltimateLoadFactor

 WingMassEstimation

 HorizontalTailMassEstimation

 VerticalTailMassEstimation

 FuselageMassEstimation

 LandingGearMassEstimation

 SurfaceControlGroupMassEstimation

 NacelleGroupMassEstimation

Step

A turbo_jet

B turbo_prop

 AirframeStructureGroupMassSummation

 NacelleGroupMassEstimationForTurboJets

 NacelleGroupMassEstimationForTurboProps

 SimpleProcedure

 SequentialProcedure

 ConditionalProcedure

always employs

might employ
(this depends on a

condition)

Figure 4.16: Example implementation diagram that has been automatically generated from a procedure instance

5
Implications of adopting the proposed

software architecture

When developing an innovative ADS based on the proposed software architecture, notable
observations can be made. First of all, the emerging ADS demonstrates distinct advantages
in terms of transparency, accuracy, and modularity when compared to existing ADSs.
Nevertheless, its implementation proves to be substantially more tedious than that of
current ADSs. Furthermore, unforeseen obstacles arise, hindering both the completion
and reconfiguration of the novel ADS. This chapter explains some of these observations in
detail.

5.1 Relevance of semantic data management
The semantic data management techniques proposed in the previous chapter do not only
facilitate but also necessitate precise definitions, particularly of the attributes required
for/calculated by the various procedures. Formulating precise definitions is not a trivial
task. For instance, the chord length is commonly defined as the “length of an imaginary
straight line joining the leading and trailing edges of an airfoil” (adapted from https:
//www.wikidata.org/wiki/Q1384332, see figure 5.1a). Yet, the chord length can also be
defined as the “projected length of an imaginary straight line joining [...]” (see figure 5.1b).
When there is a significant amount of twist/washout, for example at the tip of a wing, the
two definitions represent significantly different lengths (see figure 5.1c). The adoption of
an ontology akin to the one outlined in section 4.2 (and described in detail in appendix C.1)
facilitates the formulation of unambiguous attribute definitions. Textual definitions can
be enriched by referencing related attributes (e.g by specifying superclass and subclass
relationships) and external sources (e.g. by linking to an encyclopedia or an image) in
order to precisely convey the meaning of attributes.

crz

x

(a)

ct1

cr

x

y

(b)

cr

ct1

ct2ct1 < ct2

ε

z

x

(c)

Figure 5.1: Different options for defining the “chord length” attribute

The importance of establishing not just a shared language but also common semantics
becomes apparent once an ontology has been defined. It is at this point that inconsistencies

37

https://www.wikidata.org/wiki/Q1384332
https://www.wikidata.org/wiki/Q1384332

38 Chapter 5. Implications of adopting the proposed software architecture

between procedures can surface. For example, a value corresponding to the first definition
of the chord length might be required as input for an aerodynamic analysis. The second
definition might be used to describe the value of an output of a geometry estimation.
Previously, without an ontology, the same attribute might have been easily but mistakenly
employed both as an output of the geometric estimation and as input for the aerodynamic
analysis. Now, with an ontology, inconsistencies between the employed procedures may
become evident. Note that it is challenging to estimate the impact of these inconsistencies
in a reliable way. The difference between the two chord length definitions might be
negligible for conventional aircraft configurations, where wing twist angles are usually
small. The difference might not be negligible for unconventional aircraft configurations,
where wing twist angles can be conceivably larger. Therefore, attempts were made to
mitigate these inconsistencies by integrating additional calculation/conversion logic into
procedures while developing the ReInitiator. In some cases, additional convergence cycles
were required to resolve these inconsistencies.

The utilization of semantic data management techniques also offers a distinct advantage
by facilitating the creation of genuinely flexible data models. This can be achieved by
connecting nodes within the data graph. However, this does not require changing the
ontology graph. This stands in stark contrast to the data management techniques employed
in current ADSs, which typically rely on rigid and restricted data schemas, that do require
adjustments to accommodate data model flexibility. For instance, the data model of the
Initiator allows for specifying a single span per wing. The span is an attribute of a wing,
and there can only be one span attribute for every wing. In contrast, the data model of the
ReInitiator allows for specifying different spans per wing, thereby enabling one to model
aircraft with variable spans (e.g. 777X-like aircraft, see figure 5.2a) or aircraft subjected to
different loading conditions (see figure 5.2b). An example illustrating which nodes need
to be connected to enable this kind of flexibility is shown in figure 5.2c. The semantic data
management techniques applied in the ReInitiator facilitate the creation of both simple and
detailed data models using one and the same ontology. Additionally, by applying these
techniques, one can avoid the creation of data models featuring arbitrary hierarchies which
often become intricate and unwieldy to modify over time.

(a) Folding wingtips1 (b) Different loading conditions [25]

Figure 5.2: Different ways to interpret the “span” attribute

As the data model evolves to offer increased flexibility, there arises a necessity to make
procedures more universally applicable. Otherwise, one quickly reaches a point where
procedures cannot handle the data models anymore. For instance, a procedure initially
designed to handle a single attribute describing wing span must be adjusted to accom-
modate scenarios where multiple attributes of the wing span might be supplied (e.g. by
specifying which specific span attribute is required, or by averaging the different span
attributes). During the development of the ReInitiator, it was observed that these kind of

1https://commons.wikimedia.org/wiki/File:777X_Roll-Out_FoldingWingtip.jpg

https://commons.wikimedia.org/wiki/File:777X_Roll-Out_FoldingWingtip.jpg

5.2. Benefits and drawbacks of highly modular procedures 39

:wing1

:span1
init:hasValue

33.2

init:hasAttribute

init:hasValue
34.1

:zero_g :one_g

init:hasAttribute

init:LoadCase

init:Span rdf:type

rdf:type

init:MainWing
rdf:type

init:hasValue
30.2

wing:Fold

:folded_up

init:hasAttribute

rdf:type

:span3 :span2

init:hasAttribute

rdf:type

(c) Example RDF dataset corresponding to the loading condition sketch

Figure 5.2: Different ways to interpret the “span” attribute

enhancements were frequently necessary to prevent procedures from raising exceptions
once the possibility for a little more flexible data models was taken into account. Hence,
additional conditionals (to address edge-cases represented by flexible data models) and
loops (to handle scenarios where calculations need to be executed multiple times for at-
tributes present multiple times in the data model) were integrated into the procedures of
the ReInitiator. While these enhancements rendered the source code of the procedures
more extensive and complex, it also rendered the procedures more universally applica-
ble. It appears that the limitations intrinsic to the data model of current ADSs have, in
a certain sense, been an advantage that allowed developers to formulate concise analysis
& sizing methods. With the transition to more flexible data models, the formulation of
appropriate analysis & sizing methods has become considerably more sophisticated and
time-consuming.

5.2 Benefits and drawbacks of highly modular procedures
Utilizing modular procedures within an ADS, such as the ReInitiator, offers several ad-
vantages: Firstly, it provides users with the ability to gain both comprehensive as well
as detailed insights into the design process. This is made possible by the transparent
procedure nesting capabilities and by the automatic diagramming features of the ReIni-
tiator. Secondly, it empowers developers to define unit tests for the rigorous validation of
small-scale and independent (sub)procedures. This approach has revealed several bugs
in existing source code, and, in one instance, an error within the underlying literature
(see section 6.1). Thirdly, it enables users to reconfigure the ReInitiator in a LEGO-like
manner, by systematically assembling (sub)procedures to tailor the ADS to specific re-
quirements.

However, when attempting to build the ReInitiator using code from existing ADSs such
as the Initiator, unexpected complications materialize. A complication similar to those
discussed in the previous section occurs when modularizing procedures: It can be ob-
served that splitting up a single procedures into two (sub)procedures typically requires
that multiple additional attributes need to be defined within the ontology to ensure ad-
equate coupling between the (sub)procedures. This means that as procedures become
more granular, the ontology becomes more detailed and specific. It is essential to note
that this trend is not linear (see figure 5.3, splitting up an extensive procedure requires the
introduction of more coupling attributes than splitting up an already concise procedure).

40 Chapter 5. Implications of adopting the proposed software architecture

This is problematic for a number of reasons: Firstly, the ontology becomes volatile and
challenging to manage due to the abundance of highly specialized attributes used solely
for interconnecting two (sub)procedures. Secondly, the apparent modularity of procedures
becomes questionable, as these highly specialized attributes, exclusively used for intercon-
necting (sub)procedures, foster implicit interdependence. Predicting the future use of these
attributes within other procedures is elusive. Thirdly, querying and writing data from a
central database imposes computational overhead, especially when handling non-numeric
data (e.g. step files, large binary data) that necessitate serialization. Furthermore, the use
of a central database prevents the concurrent execution of procedures.

modularity of
analysis & sizing

methods

complexity of

design data

Figure 5.3: Assumed relation between modularity of pro-
cedures and complexity of the design data

Note that directly reusing analysis & sizing methods from existing ADSs is impractical. In-
stead, extensive redevelopment of procedures is required to establish modular procedures.
Furthermore, during the development of the ReInitiator it became evident that overem-
phasizing accuracy and precision aspects of an ADS can delay or even hinder the study of
aircraft designs by diverting focus towards minute details rather than the overall design. In
light of this, identifying the right level of modularity remains a significant challenge. Dur-
ing the development of the ReInitiator an extremely fine-grained level of modularity was
targeted for two primary reasons: Firstly, to enable desirable reconfigurations (as outlined
in chapter 2), which often involve minor adjustments that need to be made deep inside
the individual procedures encapsulating analysis & sizing methods. Secondly, to prevent
code duplication across different procedures, thereby ensuring coherence, and averting
common issues (as explained in chapter 3). As explained in the first paragraph of this sec-
tion, the highly modular structure of the procedures implemented in the ReInitiator leads
to remarkable transparency, accuracy, and reconfigurability. However, this highly modular
structure comes at the expense of (unintentionally) increased complexity of the ontology.
It thus remains an important recommendation to find the optimal balance between the
modularity of procedures and the complexity of the ontology.

5.3 Consequences of dynamic procedure behavior
The procedures of the ReInitiator cannot be described by a static set of inputs and outputs.
Instead, the inputs and outputs of the procedures are determined dynamically, based on the
available design data. This dynamic procedure behavior is a key feature of the ReInitiator.
At the same time this behavior is a drawback, as it makes the initial configuration and
the subsequent reconfigurations of the ReInitiator more challenging than it would be if the
procedures would exhibit a static behavior.

The dynamic procedure behavior is indispensable for an ADS, especially when the ADS

5.3. Consequences of dynamic procedure behavior 41

is employed for synthesis studies. This distinctive behavior enables the ADS to handle
several aspects:

• Continuously evolving design data: At the start of the design process, there is hardly
any data. As the design process advances, more and more data is generated. Occa-
sionally, data might also be invalidated or deleted.

• Multiple fidelity levels: This involves seamlessly incorporating results from high-
fidelity methods into lower-fidelity methods. This capability is pivotal for refining
and optimizing the design iteratively.

• Various different technologies: For example, the system accommodates a range of
aircraft configurations (tube-and-wing, blended-wing-body, box-wing, ...). Addition-
ally, it can handle various propulsion technologies (turbo-fan, turbo-prop, electric,
...).

Figure 5.4: A typical de-
sign/synthesis process

Figure 5.4 illustrates the synthesis process employed within the
ReInitiator. Table 5.1 shows the evolution of the database and
the procedures throughout this synthesis process. As the syn-
thesis process advanced, the database is populated with design
data. Similarly, the feedback/feedforward connections between
the procedures vary as the design process advances. This is be-
cause different (sub)procedures become relevant based on the
design data present in the database which might have been gen-
erated by preceding procedures.

It is important to realize that 𝑁2 charts are only representative for
a single iteration of a synthesis process. In subsequent iterations,
the procedures within the 𝑁2 charts typically feature different
input/output/coupling variables. Moreover, 𝑁2 charts do only
show what attributes from the database are needed to execute a
synthesis process. However, the structure of the database plays
an equally important role to determine how a synthesis process
is to be executed. Hence, while 𝑁2 charts are valuable tools for
reviewing a synthesis process, their utility for structuring a syn-
thesis process is limited (and the same holds for charts derived
from 𝑁2 charts, such as XDSM charts). Therefore, activity dia-

Table 5.1: Illustrations of design data and analysis & sizing methods during subsequent iterations
of a typical design/synthesis process

iteration 1 2 ... n

design data ...

analysis &
sizing
methods

T
W or W

P and W
S

Determination
...

Geometry

Estimation
... ...

Aerodynamic

Analysis
... ...

Weight

Estimation
...

Mission

Analysis

T
W or W

P and W
S

Determination
... ...

Geometry

Estimation
... ...

...
Aerodynamic

Analysis
...

Weight

Estimation
...

...
Mission

Analysis

...

T
W or W

P and W
S

Determination
...

Geometry

Estimation
... ...

...
Aerodynamic

Analysis
... ...

Weight

Estimation
...

...
Mission

Analysis

42 Chapter 5. Implications of adopting the proposed software architecture

grams (as the one shown in figure 5.4) and implementation diagrams (as the one shown in
figure 4.16) are intended to structure the design process of the ReInitiator. 𝑁2 charts can be
used to review the design process after it has been executed with the ReInitiator. It shall be
noted that there have been numerous attempts to integrate logic into 𝑁2 charts in the past
(see [26, 27] for an overview of such possibilities to extend 𝑁2 charts). However, it shall
also to be noted that such 𝑁2 charts containing logic can no longer offer a straightforward
overview of the actual data flow within a synthesis process.

The ReInitiator allows its users to define dynamic procedures. It also allows its users to
perform reconfigurations by restructuring these procedures. While doing so the users
need to pay close attention that no procedure along the way requires an input for which
a value has not yet been calculated. However, anticipating the inputs required to execute
a procedure/the outputs generated by a procedure is challenging. The ability of the
ReInitiator to create 𝑁2 charts eases such reconfigurations. Workflow management tools
like KADMOS [11] and InFoRMA [22] could further ease such reconfigurations but are
currently unsuitable for assisting users in these scenarios because they depend on analysis
& sizing methods with fixed inputs and outputs. Nevertheless, using these tools would
be helpful to prevent one from making seemingly straightforward reconfigurations which
can render the ReInitiator inoperable: For example, it might not be possible to execute the
system anymore (when some procedures lack elementary inputs). Alternatively, the system
may fail to converge (when there is excessive coupling between the procedures).

It has also been attempted to modify procedures with the aim of achieving static inputs and
outputs. However, these attempts were mostly unsuccessful due to inherent interdepen-
dencies within procedures. For example, the geometry estimation contains two different
relations for calculating the so-called “tail arm”. One of these relations is an estimation that
only needs to be executed during the first iterations when the geometry of the tail is not
known yet. The other relation is a more accurate estimation but it can only be utilized once
the geometry of the tail is known. It has been attempted to exclude the first relation from
the geometry estimation procedure and instead include it in a separate procedure that is
only executed once at the beginning of the design process (outside the main convergence
loop). However, this turned out to be infeasible because the first relation itself had de-
pendencies on other design parameters calculated earlier within the geometry estimation.
This example shows that the order in which the procedures are normally executed is not
random, but it is the result of careful considerations and experiential insights. Hence, there
is a lot of implicit knowledge embedded in the order in which procedures are normally
executed. When using the ReInitiator in a reconfigurable way, e.g. by unduly rearranging
procedures, one may inadvertently lose this implicit but invaluable knowledge.

5.4 Impact of assumptions ingrained within analysis & siz-
ing methods

When attempting to reconfigure the ReInitiator, it further becomes apparent that certain
assumptions ingrained within the analysis & sizing methods can lead to critical problems.
This is because these assumptions may cease to be valid once the ReInitiator is used in
a reconfigurable way. In particular, this applies when using the ReInitiator to perform
design space exploration or optimization studies (instead of synthesis studies). When the
assumptions conflict with explicit constraints imposed by the respective studies, this can
lead to convergence issues or unexpected (and possibly invalid) outcomes. Three examples
of assumptions that are frequently encountered in the utilized analysis & sizing methods
are discussed below.

5.4. Impact of assumptions ingrained within analysis & sizing methods 43

Some of the utilized analysis & sizing methods incorporate sub-level optimizations. For
example, the 𝑊

𝑆 and 𝑇
𝑊 determination procedure selects a design point from the matching

plot which maximizes the take-off wing loading (but does not necessarily minimize take-off
thrust-to-weight ratio), as illustrated in figure 5.5. Here, the assumption is that users of the
ADS invariably wants to maximize the take-off wing loading. The feasible design space is
much larger and may conflict with the high-level optimization objectives pursued by the
users.

Figure 5.5: Matching plot showing selected requirements, the feasible
design space constrained by these requirements, and the selected
design point

Similarly, the fuselage sizing procedure always attempts to generate a fuselage with mini-
mal length (or surface area). In this case, the assumption is that users of the ADS invariably
seek to minimize the fuselage length (or surface area). However, this assumption likely lim-
its the design space and may conflict with the high-level optimization objectives pursued
by the users. This is illustrated in figure 5.6.

Many of the utilized analysis & sizing methods are based on reversed requirements. For
example, in the detailed wing sizing procedure, instead of verifying if the spar can support a
specific load, the spar is designed precisely to withstand the given load. While the obtained
spar dimensions are rather lower limits, they are treated as definite values. In this case,
the assumption is that the spar should never have larger dimensions than necessary to
withstand the given load. Similarly to the examples above, this assumption also limits the
design space significantly.

The assumptions exemplified represent fundamental characteristics of synthesis meth-
ods. Their presence in synthesis methods is crucial. Their absence would result in an
overwhelming degree of design freedom, rendering synthesis unfeasible. At the same
time, these assumptions prevent realistic design space exploration and optimization stud-
ies.

Please note that these assumptions have come to light primarily due to the remarkable
transparency of the ReInitiator. On the contrary, conventional ADSs tend to obscure these
assumptions. In theory, the high degree of modularity within the ReInitiator opens up the
possibility of modifying the assumptions ingrained within the analysis & sizing methods.
In practice, this would necessitate numerous intricate adjustments and result in entirely
different analysis & sizing methods.

44 Chapter 5. Implications of adopting the proposed software architecture

...
Optimizer

max Rharm(...)
... ...

MDA

Converger
...

... ... Wing Sizing,

...

Fuselage Configurator

...
Optimizer

min lf(...)
... ...

MDA

Converger
...

w∗
f , h

∗
f ,

l∗f lf, ...
Objective &

Constraints

...

... Mission Analysis,

R∗
harm Rharm, ...

Objective &

Constraints

Figure 5.6: XDSM of a multi-level optimization with (potentially) conflicting objectives

Initially, it was envisioned that the modularity of the ReInitiator would allow for simply
removing all procedures that perform sizing tasks from the system, so that only the pro-
cedures that perform analysis tasks remain within the system. However, this turned out
to be infeasible because even after modularizing analysis & sizing methods by developing
procedures it was not always possible to clearly determine if a procedure is of analysis or
rather of sizing type. Furthermore, it turned out to be infeasible since it was not always
possible to determine the requirements that lead to the sizing tasks (which would need to
be implemented as constraints in optimization studies).

6
Verification & Validation

In the following section, the effectiveness of the proposed software architecture is evaluated
by describing the software tests and quality checks carried out on the ReInitiator (i.e. the
prototype implementation of the software architecture). Additionally, the most important
characteristics of the ReInitiator are compared with those of other ADSs and related MDAO
systems.

The ReInitiator cannot be considered a fully functional ADS. Establishing the overall ar-
chitecture, setting up the repository, formulating a self-explanatory ontology, constructing
the endpoint interface, and developing the self-documenting base procedures classes de-
manded a significant amount of time. Hence, there was only insufficient time left for
implementing a comprehensive set of procedure classes essential for materializing a thor-
ough aircraft design synthesis loop. Furthermore, it became evident that the existing
analysis & sizing methods, on which the ReInitiator is based, come with inconsistencies
and limitations, as detailed in the previous chapter. Deliberately incorporating these incon-
sistencies and limitations into the ReInitiator was deemed inappropriate, since their impact
on the overall design process could not be reliably estimated. As a consequence of the time
constraints imposed on this research project, achieving a fully operational ADS proved
unattainable. Consequently, it was not possible to demonstrate this ADS can be used in a
reconfigurable way, despite indications that this could very well be the case.

6.1 Automated tests & quality checks
In the realm of software development, assuring the correct functioning of the software is
of utmost importance. As briefly mentioned in section 2.1, the principles of test-driven
development have been adhered to during the development of the ReInitiator. The key idea
is to create tests in parallel with the code and to execute them frequently. Three categories
of fully automated tests have been employed during the ReInitiator’s development: unit
tests, code quality checks, and integration tests.

Unit tests, that is tests of small-scale units of code, played a pivotal role. Over 100 of these
unit tests have been set up to verify that the analysis & sizing methods work correctly
and deterministicly (i.e. that they always produce the same output for the same input).
This level of testing was made possible by the modular structure of the procedures. An
example unit test is delineated in appendix C.4. Unit testing proved exceptionally effective
in the identification of bugs, including unit conversion errors and inadvertent omissions in
equations. Remarkably, unit testing even revealed a minor discrepancy in the underlying
literature/a standard aircraft design textbook1.

1Equation 3.11 from [2] that can be used to calculate the overall engine efficiency of a turbo-fan engine
should not read 𝜂0 =

𝑎sl
𝐻/𝑔

𝑀
√
𝜃

𝐶𝑇
but 𝜂0 =

𝑎sl
𝐻

𝑀
√
𝜃

𝐶𝑇
(note the superfluous gravitational acceleration factor in the

45

46 Chapter 6. Verification & Validation

Furthermore, code quality checks were carried out through pre-commit hooks, automating
various checks prior to committing code to the code repository. This encompassed a code
formatting tool2 ensuring uniform coding style by automatically reformatting the code
according to certain standards. Among others, a linting tool3 was employed, checking that
there is no “dead” code and that there are no unnecessary, duplicated, or overly complex
code artifacts. Finally, an ontology analysis tool4 was used, examining the ontology,
detecting potential problems and identifying inconsistent classes. Although commonly
adopted in professional software projects, these tools remain underutilized in research
projects, despite their potential to enhance code quality and comprehension. This becomes
especially relevant when multiple people and/or people without experience in software
design collaborate on the same source code. As explained in chapter 3, although there are
guidelines that indicate how code should be structured, they are often not adhered to. The
use of automated quality checks can help to enforce such guidelines.

Last but not least, integration tests were devised to confirm compliance with the require-
ments specified in section 2.4. These tests were intended to validate that the entire ReIni-
tiator is indeed reconfigurable. Regrettably, due to the aforementioned time constraints,
it was not possible to demonstrate this on system level, by, for example, executing a syn-
thesis or optimization study. Nevertheless, successful integration tests were conducted at
subsystem level. It could be shown that it is possible to seamlessly substitute a procedure
with another one by modifying the steps attribute of complex procedure objects (see ap-
pendix C.4 for implementation details). In principle, such modifications can be performed
even at runtime. Furthermore, it was shown that it is a straightforward task to remove
entire procedures and specify design parameters, which would normally have been com-
puted by said procedures, manually in the database. In fact, this was done frequently
while setting up unit tests (see also appendix C.4 for an example).

6.2 Comparison of the ReInitiator with other ADSs and
related MDAO systems

In the following, a brief comparison of the ReInitiator with other ADSs is presented. The
objective of this section is to underscore the commonalities and distinctions between the
ReInitiator and other ADSs, shedding light on emerging trends aimed at improving ADSs
in general.

An emerging trend in ADSs and MDAO systems involves establishing a central data base
with a corresponding data schema that is independent of the used analysis & sizing
methods. For instance, the developers of SUAVE refer to this concept as “attribute-method
orthogonality” [28]. Furthermore, it is one of the main motives that led to the creation of
CPACS [29] and KADMOS [12]. The ReInitiator builds upon this trend but adopts a more
extensive approach, employing an ontology (that comes with well-defined semantics)
instead of traditional XML or database schemas (that might not adequately capture the
nuanced meanings of design data and that often lack the flexibility to represent complex
relationships present within design data). The shift from ad-hoc data structures, through
static schemas, to expressive ontologies appears promising and has the potential to reduce
data interpretation inconsistencies between analysis & sizing methods and entire systems
(without the need for additional interpretation layers as proposed in [30] to address the

first equation). The first (incorrect) equation has been used several times in an existing ADS. Interestingly,
the error did not significantly affect the overall design process and hence remained undetected.

2https://github.com/psf/black
3https://github.com/PyCQA/flake8
4https://gitlab.com/lukasmu/ontocop

https://github.com/psf/black
https://github.com/PyCQA/flake8
https://gitlab.com/lukasmu/ontocop

6.2. Comparison of the ReInitiator with other ADSs and related MDAO systems 47

deficiencies of schemas). Utilizing ontologies also facilitates the construction of flexible
and multi-fidelity data models (as explained earlier in section 5.1).

During the development of the software architecture for the ReInitiator two alternative
approaches for managing design data were considered: One involved the utilization of the
well-known CPACS schema (e.g. as done in MDAO systems [29, 31, 32]), while the other
one involved the development of an object-oriented data model (e.g. similar to the models
employed in SUAVE [28] or ADEBO [3]). The first approach was swiftly discarded since
CPACS turned out to be too inflexible5, unpractical6, and ambiguous7 to be used in the early
design phases which were targeted by this research project. Furthermore, handling XML
files based on a schema like CPACS has proven to be inefficient in the past [13]. The second
approach was investigated in more detail. In particular, setting up an object-oriented
data model based on class hierarchies that is linked to a relational database by means of
standard object-relational mapping techniques was investigated. However, this approach
also turned out to be too inflexible, as these techniques were predominantly tailored to more
heterogeneous and more structured data sources (e.g. corporate databases). Moreover,
it was challenging to adequately represent the multitude of interconnections between
attributes and systems (as illustrated previously in figure 5.2). Eventually this approach
evolved into a kind of entity-attribute-value data structure, which was already similar to
the adopted graph database, but much more cumbersome to work with.

A distinctive facet of the ReInitiator is its innovative approach to analysis & sizing method
definition. In contrast to prevailing ADSs that predominantly treat analysis & sizing
methods as integrated, black-box tools with extensive functional breadth, the ReInitiator
treats them as transparent, modular, and nested procedures. This approach enhances
user understanding and potential customization of analysis & sizing methods, thereby
fostering trust and confidence in the ADS. Furthermore, it enables the integration of new
(sub)methods into existing (super)methods. The development of procedures for the ReIni-
tiator demands a comprehensive understanding of analysis & sizing methods, requiring a
substantial upfront time investment. In situations where time constraints prevail, engineers
or researchers focusing on specific aircraft concepts may find it more practical to employ
wrappers around existing tools. By employing such wrappers it is possible to quickly craft
proof-of-concept research projects. For this reason wrappers are frequently used in current
ADSs (see e.g. [3, 29, 31]). However, such wrappers hinder in-depth reconfigurations and
impede proper unit testing. Hence, for long-term research projects, an approach akin to
the one implemented in the ReInitiator, featuring self-documentation and self-visualization
capabilities, likely constitutes a more sustainable choice. Such an approach facilitates in-
trospection and reconfigurations, allowing for greater longevity in the context of evolving
research requirements.

Existing ADSs typically rely on a coordinating object to manage the orchestration of analysis
& sizing methods and facilitate data exchange among them. The “Controller” object of the
Initiator (shown in figure 3.2) is a prime example of such an object. Similarly, in ADEBO
there is an “Artificial Engineer” [3] and in MICADO there is a “Study Manager” [34].
In contrast, the ReInitiator operates differently, with the procedures themselves serving
as coordinating entities. This approach facilitates a flexible configuration of the design
system, manifesting a “system-of-systems” approach at method level. Furthermore, the
central database ensures that methods can autonomously access the required data. The
endpoint fulfils a crucial role by logging which data is retrieved and/or updated. A

5CPACS is specifically designed to excel at a particular level of fidelity [33].
6CPACS is intentionally designed not to support the storage of certain parameters relevant for conceptual

aircraft design, such as wing span, to mitigate the risk of data inconsistencies [33].
7CPACS can easily be interpreted in inconsistent ways, as pointed out in [30].

48 Chapter 6. Verification & Validation

comprehensive overview of the data flow can only be obtained post-execution of analysis
& sizing methods, as elaborated upon in section 5.3. It should be noted that the data
flow, once available, can be supplied to a workflow management tool like KADMOS [12].
During this research project, an attempt was made to check if reordering procedures using
an automatically determined function order based on different algorithms provided by
KADMOS could lead to faster convergence and, hence, a more efficient design process.
Whether or not this is the case could not be conclusively determined yet.

The concept of representing analysis & sizing methods as workflows is not entirely new and
shares similarities with constructs like “Jobs” in ADEBO [3] and “Workflows” in RCE [35].
However, this representation does not align well with classical MDAO studies, where ad-
vanced optimizing algorithms often rely on fixed input-output relationships, differentiable
representations of analysis & sizing methods, and predetermined initial values. Classical
MDAO studies primarily use strictly mathematical relationships, whereas synthesis studies
(although they can be considered specific subset of MDAO studies) require more logical
relationships. It becomes evident that analysis & sizing methods used for different types
of studies are not necessarily compatible and should be distinguished.

7
Conclusion

Current ADSs are frequently used to perform synthesis studies. However, it is inherently
difficult to reconfigure these systems. As a result, current ADSs are rarely used to inves-
tigate the synthesized aircraft in greater detail or to perform a broader range of aircraft
design studies.

To address this problem, a research project has been initiated. The objective of this research
project was to explore the feasibility of developing a software architecture that would
facilitate the reconfiguration of ADSs. The findings of this research project have been
documented in the report at hand.

7.1 Review
First, the main issues that prevent current ADSs from being used in a reconfigurable manner
were identified. Afterwards, an iterative development methodology was employed to come
up with a software architecture aimed at addressing these issues. Simultaneously, the
ReInitiator, a reference implementation of the proposed software architecture, was created.
An overview linking the identified issues to the corresponding architectural elements is
presented in table 7.1.

Table 7.1: Mapping between the proposed architectural elements for a reconfigurable ADS and the
corresponding issues of current ADSs

architectural element addressed issues
Centralized data store and self-contained
analysis & sizing methods

Ambiguous and cluttered data structures
Excessive coupling within source code

Semantic data management Ambiguous and cluttered data structures
Concealed and convoluted source code

Standardized and modular analysis &
sizing method interface

Complex source code
Extensive and integrated source code

Automated logging and diagramming
capabilities

Concealed and convoluted source code
Extensive and integrated source code

The creation of the ReInitiator required significantly more time than initially estimated. Ulti-
mately, time constraints prevented that the ReInitiator could be utilized to demonstrate that
adopting the proposed software architecture leads to a reconfigurable ADS. Nevertheless,
the creation of the ReInitiator yielded valuable insights that are relevant for the enhance-
ment of current ADSs and the development of future ADSs. Core observations, which
stand as a significant outcome of this research project, are listed in the following.

49

50 Chapter 7. Conclusion

• By applying semantic design data management techniques, such as making use of
a standard graph database and establishing a formal ontology, it becomes possible
to construct genuinely unambiguous and flexible data models. The adoption of
semantic design data management techniques mandates accuracy and precision.
When applied diligently, these techniques may (automatically) reveal inconsistencies
and limitations in the employed analysis & sizing methods (and thus may induce a
need for further examination and potential improvement of the employed analysis &
sizing methods).

• Formulating analysis & sizing methods in a modular way using standardized proce-
dure classes appears to be the key to achieving reconfigurability. Self-visualization
features incorporated into these classes can significantly enhance the comprehension
of analysis & sizing methods. Furthermore, the modular nature of the procedure
classes facilitates the creation of unit tests, thereby fostering trust and confidence
into the analysis & sizing methods. Most importantly, instances of these classes can
be treated like LEGO bricks, which empowers users to configure and reconfigure a
design system as desired.

• The instances of procedure classes exhibit a dynamic behavior (i.e. they cannot
be described by a static set of inputs and outputs). This behavior is essential for
synthesis-oriented ADSs, but appears to be inadequate for optimization-oriented
ADSs. Although activity and implementation diagrams outlining the general func-
tioning of procedure instances can be obtained pre-execution, 𝑁2 charts that accu-
rately represent the data flow within an ADS can only be obtained post-execution.
This complicates reconfiguration efforts but appears to be unavoidable when analysis
& sizing methods designed for synthesis are employed.

• The transparency and modularity of the ReInitiator revealed that many of the em-
ployed analysis & sizing methods are not merely based on inverted requirements
but directly target implicitly specified optima. While this was already anticipated
when starting the development of the ReInitiator, the extent of these optimality as-
sumptions and their concealment deep inside the analysis & sizing methods was
surprising. These optimality assumptions may no longer hold when using the ADS
in a reconfigurable manner. However, it became evident that these assumptions
cannot be removed from the analysis & sizing methods without rendering the initial
objective of the ADS (i.e. performing synthesis) infeasible. This significantly restricts
the extent to which the analysis & sizing methods can be reused in a reconfigurable
ADS and necessitates further investigation.

7.2 Recommendations
During the development of the ReInitiator some interesting ideas emerged that could not
be investigated due to time constraints. Specifically, it remains a recommendation to:

• Examine if workflow management tools like KADMOS or InFoRMA can be adapted
to accommodate complex procedures that are not accompanied by precisely prede-
termined inputs and outputs. It might be possible to rely on other indicators than
inputs and outputs for estimating the coupling between complex procedures. If this
is the case, then these workflow management tools could be valuable for reconfigur-
ing ADSs. In this respect, it might also be beneficial to define principal inputs and
outputs when creating complex procedures. This approach could pave the way for
applying demand-driven or dependency-resolution strategies to automatically de-
termine the procedure execution order (instead of relying on a predefined procedure

7.3. Closing 51

execution order that might not be an optimal one).

• Investigate which level of modularity would be most desirable for procedures. It
has been demonstrated that more modular procedures require more complex on-
tologies. Creating procedures with an extremely fine-grained level of modularity
while developing the ReInitiator demanded a significant amount of time, while the
advantages of this level of modularity remain ambiguous. Furthermore, it would be
interesting to assess whether exposing procedures with different levels of modularity
to an optimizer has an impact on the optimization runtime and/or outcomes.

• Continue the development of the ontology created during this research project and
investigate its applicability to other research projects within the field of aircraft de-
sign. This ontology offers the potential for precise and unambiguous communication
of aircraft design data and could be a replacement for CPACS as it allows for a more
consistent interpretation of aircraft design data. Additionally, the ontology could be
used to compile a reference database containing aircraft design data for verifying and
validating various ADSs.

• Investigate the establishment of a well-documented library of aircraft design equa-
tions, methods, and tools that are not yet integrated into complex ADSs. This ap-
proach would empower users to create custom ADSs, enabling a more in-depth
understanding of the underlying assumptions and the selection of appropriate func-
tions and relations for the specific design problem at hand. An example of such a
custom ADS could be a synthesis system (e.g. containing additional procedures that
specify synthesis-specific logic), while another one could be an optimization system
(e.g. containing additional procedures that specify constraint calculations).

7.3 Closing
This thesis project revolved around ADSs. However, it deviated from the typical projects
dealing with the development of new analysis or sizing functionalities for such systems.
Instead, the project focused on the overall structure and functioning of these systems.
This project has also been an exercise in reflecting on current ADSs. Investigating the
challenges stemming from their source code and proposing software architecture elements
to address these challenges formed a core part of this project. Subsequently, the ReInitiator
was developed as a prototype implementation of the proposed architecture.

Regrettably, due to time constraints, validation of whether the ReInitiator constitutes a
reconfigurable aircraft design system could not be completed. Nevertheless, it could be
shown that adopting the proposed architectural elements, tabulated above, enhance com-
prehensibility and credibility of the ADS and can even lead to the detection of inconsisten-
cies and limitations in the utilized analysis & sizing methods. Furthermore, it is possible to
selectively employ the proposed architectural elements to incrementally enhance existing
ADSs. Hence, it can be concluded that this thesis project yielded insights that are not
only relevant for the development of future ADSs but also for the enhancement of current
ADSs.

Bibliography

[1] Anemaat, W. A. J., “Conceptual Airplane Design Systems,” Encyclopedia of Aerospace
Engineering, Wiley, Hoboken, New Jersey, 2010. URL https://doi.org/10.1002/
9780470686652.eae394.

[2] Torenbeek, E., Advanced aircraft design: conceptual design, analysis, and optimization
of subsonic civil airplanes, Wiley, Chichester, United Kingdom, 2013. URL https:
//onlinelibrary.wiley.com/doi/book/10.1002/9781118568101.

[3] Herbst, S., “Development of an Aircraft Design Environment Using an Object-
Oriented Data Model in MATLAB,” Ph.D. thesis, TU München, München, Germany,
2018. URL http://mediatum.ub.tum.de/doc/1431402/1431402.pdf.

[4] Elmendorp, R., Vos, R., and La Rocca, G., “A conceptual design and analysis method
for conventional and unconventional airplanes,” Proceedings of the 29th Congress
of the International Council of the Aeronautical Sciences, ICAS, St. Petersburg, Rus-
sia, 2014. URL http://resolver.tudelft.nl/uuid:1dc55ce5-18c3-4986-b668-
f70d9b24aac0.

[5] Brown, M., and Vos, R., “Conceptual Design and Evaluation of Blended-Wing Body
Aircraft,” Proceedings of the AIAA Aerospace Sciences Meeting, AIAA, Kissimmee,
Florida, 2018. URL https://doi.org/10.2514/6.2018-0522.

[6] Zohlandt, C. N., “Conceptual Design of High Subsonic Prandtl Planes,” Master’s
thesis, TU Delft, Delft, The Netherlands, 2016. URL http://resolver.tudelft.nl/
uuid%3Ae1f01743-e2eb-4d8b-8b2c-131f50f41a2c.

[7] Hoogreef, M., Vos, R., de Vries, R., and Veldhuis, L. L., “Conceptual Assessment
of Hybrid Electric Aircraft with Distributed Propulsion and Boosted Turbofans,”
Proceedings of the AIAA Scitech 2019 Forum, AIAA, San Diego, California, 2019. URL
https://doi.org/10.2514/6.2019-1807.

[8] Vos, R., Wortmann, A., and Elmendorp, R., “The optimal cruise altitude of LNG-
fuelled turbofan aircraft,” Journal of Aerospace Operations, Vol. 4, No. 4, 2017, pp.
207–222. URL https://doi.org/10.3233/AOP-160063.

[9] Smith, H., Sziroczák, D., Abbe, G., and Okonkwo, P., “The GENUS aircraft conceptual
design environment,” Proceedings of the Institution of Mechanical Engineers, Part G:
Journal of Aerospace Engineering, Vol. 233, No. 8, 2019, pp. 2932–2947. URL https:
//doi.org/10.1177/0954410018788922.

[10] Kroo, I., “A quasi-procedural, knowledge-based system for aircraft design,” Proceed-
ings of the Aircraft Design, Systems and Operations Conference, AIAA, Atlanta, Georgia,
1988. URL https://doi.org/10.2514/6.1988-4428.

[11] van Gent, I., “Agile MDAO Systems: A Graph-based Methodology to Enhance Col-
laborative Multidisciplinary Design,” Ph.D. thesis, TU Delft, Delft, The Nether-
lands, 2019. URL http://resolver.tudelft.nl/uuid%3Ac42b30ba-2ba7-4fff-
bf1c-f81f85e890af.

[12] van Gent, I., and La Rocca, G., “Formulation and integration of MDAO systems for
collaborative design: A graph-based methodological approach,” Aerospace Science

53

https://doi.org/10.1002/9780470686652.eae394
https://doi.org/10.1002/9780470686652.eae394
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118568101
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118568101
http://mediatum.ub.tum.de/doc/1431402/1431402.pdf
http://resolver.tudelft.nl/uuid:1dc55ce5-18c3-4986-b668-f70d9b24aac0
http://resolver.tudelft.nl/uuid:1dc55ce5-18c3-4986-b668-f70d9b24aac0
https://doi.org/10.2514/6.2018-0522
http://resolver.tudelft.nl/uuid%3Ae1f01743-e2eb-4d8b-8b2c-131f50f41a2c
http://resolver.tudelft.nl/uuid%3Ae1f01743-e2eb-4d8b-8b2c-131f50f41a2c
https://doi.org/10.2514/6.2019-1807
https://doi.org/10.3233/AOP-160063
https://doi.org/10.1177/0954410018788922
https://doi.org/10.1177/0954410018788922
https://doi.org/10.2514/6.1988-4428
http://resolver.tudelft.nl/uuid%3Ac42b30ba-2ba7-4fff-bf1c-f81f85e890af
http://resolver.tudelft.nl/uuid%3Ac42b30ba-2ba7-4fff-bf1c-f81f85e890af

54 Bibliography

and Technology, Vol. 90, 2019, pp. 410–433. URL https://doi.org/10.1016/j.ast.
2019.04.039.

[13] Bruggeman, A.-L., “Automated Execution Process Formulation using Sequencing
and Decomposition Algorithms for Collaborative MDAO,” Master’s thesis, TU
Delft, Delft, The Netherlands, 2019. URL http://resolver.tudelft.nl/uuid%
3A7d402ca8-2f9e-41e4-abaa-ff0e600fbc14.

[14] Torenbeek, E., Synthesis of subsonic airplane design: an introduction to the preliminary de-
sign of subsonic general aviation and transport aircraft, with emphasis on layout, aerodynamic
design, propulsion and performance., Kluwer, Dordrecht, The Netherlands, 1982. URL
http://resolver.tudelft.nl/uuid:229f2817-9be9-49b6-959a-d653b5bac054.

[15] Raymer, D. P., Aircraft Design: a conceptual approach, 2nd ed., AIAA, Washington, Dis-
trict of Columbia, 1992. URL https://arc.aiaa.org/doi/book/10.2514/4.104909.

[16] Obert, E., Slingerland, R., Leusink, D. J. W., van den Berg, T., Koning, J. H., and van
Tooren, M. J. L., Aerodynamic design of transport aircraft, IOS Press, Amsterdam, The
Netherlands, 2009. URL https://doi.org/10.3233/978-1-58603-970-7-i.

[17] Glizde, N., “Wing and Engine Sizing by Using the Matching Plot Technique,” Trans-
port and Aerospace Engineering, Vol. 5, 2017, pp. 48–59. URL https://doi.org/10.
1515/tae-2017-0018.

[18] Elham, A., La Rocca, G., and van Tooren, M. J. L., “Development and implementation
of an advanced, design-sensitive method for wing weight estimation,” Aerospace
Science and Technology, Vol. 29, No. 1, 2013, pp. 100–113. URL https://doi.org/10.
1016/j.ast.2013.01.012.

[19] McCabe, T., “A Complexity Measure,” IEEE Transactions on Software Engineering, Vol.
SE-2, No. 4, 1976, pp. 308–320. URL https://doi.org/10.1109/TSE.1976.233837.

[20] Gray, J. S., Hwang, J. T., Martins, J. R. R. A., Moore, K. T., and Naylor, B. A., “Open-
MDAO: an open-source framework for multidisciplinary design, analysis, and op-
timization,” Structural and Multidisciplinary Optimization, Vol. 59, No. 4, 2019, pp.
1075–1104. URL https://doi.org/10.1007/s00158-019-02211-z.

[21] Ast, M., Glas, M., and Roehm, T., “Creating an Ontology for Aircraft De-
sign,” DLRK 2013, DGLR, Stuttgart, Germany, 2013. URL https://www.dglr.de/
publikationen/2014/301356.pdf.

[22] Hoogreef, M. F. M., “Advise, Formalize and Integrate MDO Architectures: A
Methodology and Implementation,” Ph.D. thesis, TU Delft, Delft, The Nether-
lands, 2017. URL https://doi.org/10.4233/uuid:cc2af611-6d78-4439-9b10-
7e62ae579029.

[23] Glimm, B., Horrocks, I., Motik, B., Stoilos, G., and Wang, Z., “HermiT: An OWL 2
Reasoner,” Journal of Automated Reasoning, Vol. 53, No. 3, 2014, pp. 245–269. URL
https://doi.org/10.1007/s10817-014-9305-1.

[24] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y., “Pellet: A practical
OWL-DL reasoner,” Journal of Web Semantics, Vol. 5, No. 2, 2007, pp. 51–53. URL
https://doi.org/10.1016/j.websem.2007.03.004.

[25] Hermanutz, A., and Hornung, M., “Influence on the Flutter Behavior of Pre-Stressed
Wing Structures Under Aerodynamic Loading,” Proceedings of the International Forum
on Aeroelasticity and Structural Dynamics, AIAA, Savannah, Georgia, 2019. URLhttps:
//mediatum.ub.tum.de/1507249.

https://doi.org/10.1016/j.ast.2019.04.039
https://doi.org/10.1016/j.ast.2019.04.039
http://resolver.tudelft.nl/uuid%3A7d402ca8-2f9e-41e4-abaa-ff0e600fbc14
http://resolver.tudelft.nl/uuid%3A7d402ca8-2f9e-41e4-abaa-ff0e600fbc14
http://resolver.tudelft.nl/uuid:229f2817-9be9-49b6-959a-d653b5bac054
https://arc.aiaa.org/doi/book/10.2514/4.104909
https://doi.org/10.3233/978-1-58603-970-7-i
https://doi.org/10.1515/tae-2017-0018
https://doi.org/10.1515/tae-2017-0018
https://doi.org/10.1016/j.ast.2013.01.012
https://doi.org/10.1016/j.ast.2013.01.012
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1007/s00158-019-02211-z
https://www.dglr.de/publikationen/2014/301356.pdf
https://www.dglr.de/publikationen/2014/301356.pdf
https://doi.org/10.4233/uuid:cc2af611-6d78-4439-9b10-7e62ae579029
https://doi.org/10.4233/uuid:cc2af611-6d78-4439-9b10-7e62ae579029
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1016/j.websem.2007.03.004
https://mediatum.ub.tum.de/1507249
https://mediatum.ub.tum.de/1507249

Bibliography 55

[26] Browning, T. R., “The many views of a process: Toward a process architecture
framework for product development processes,” Systems Engineering, Vol. 12, No. 1,
2009, pp. 69–90. URL https://doi.org/10.1002/sys.20109.

[27] Browning, T. R., “Design Structure Matrix Extensions and Innovations: A Survey and
New Opportunities,” IEEE Transactions on Engineering Management, Vol. 63, No. 1,
2016, pp. 27–52. URL https://doi.org/10.1109/TEM.2015.2491283.

[28] Lukaczyk, T. W., Wendorff, A. D., Colonno, M., Economon, T. D., Alonso, J. J.,
Orra, T. H., and Ilario, C., “SUAVE: An Open-Source Environment for Multi-Fidelity
Conceptual Vehicle Design,” Proceedings of the 16th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, AIAA, Dallas, Texas, 2015. URL https://doi.
org/10.2514/6.2015-3087.

[29] Böhnke, D., Rizzi, A., Zhang, M., and Nagel, B., “Towards a Collaborative and
Integrated Set of Open Tools for Aircraft Design,” Proceedings of the AIAA Aerospace
Sciences Meeting, AIAA, Grapevine, Texas, 2013. URL https://doi.org/10.2514/
6.2013-222.

[30] Jepsen, J., Ciampa, P. D., and Nagel, B., “Avoiding Inconsistencies between Data Mod-
els in Collaborative Aircraft Design Processes,” DLRK 2016, DGLR, Braunschweig,
Germany, 2016. URL https://elib.dlr.de/111232/1/Jepsen_DLRK_2016.pdf.

[31] Moerland, E., Langen, T., Nagel, B., Spangenberg, H., Schumann, H., and Zamov,
P., “Application of a Distributed MDAO Framework to the Design of a Short- to
Medium-Range Aircraft,” DLRK 2012, DGLR, Berlin, Germany, 2012. URL https:
//elib.dlr.de/79623/1/281412.pdf.

[32] Pfeiffer, T., Moerland, E., Böhnke, D., Nagel, B., and Gollnick, V., “Aircraft con-
figuration analysis using a low-fidelity, physics based aerospace framework un-
der uncertainty considerations,” Proceedings of the 29th Congress of the International
Council of the Aeronautical Sciences, ICAS, St. Petersburg, Russia, 2014. URL https:
//www.icas.org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0750_paper.pdf.

[33] Gent, I. v., Aigner, B., Beĳer, B., and Rocca, G. L., “A Critical Look at Design Automa-
tion Solutions for Collaborative MDO in the AGILE Paradigm,” Proceedings of the
Multidisciplinary Analysis and Optimization Conference, AIAA, Atlanta, Georgia, 2018.
URL https://doi.org/10.2514/6.2018-3251.

[34] Risse, K., Anton, E., Lammering, T., Franz, K., and Hoernschemeyer, R., “An Inte-
grated Environment for Preliminary Aircraft Design and Optimization,” Proceedings
of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materi-
als Conference, AIAA, Honolulu, Hawaii, 2012. URL https://doi.org/10.2514/6.
2012-1675.

[35] Boden, B., Flink, J., Först, N., Mischke, R., Schaffert, K., Weinert, A., Wohlan, A.,
and Schreiber, A., “RCE: An Integration Environment for Engineering and Science,”
SoftwareX, Vol. 15, 2021. URL https://doi.org/10.1016/j.softx.2021.100759.

[36] Ziemer, S., Glas, M., and Stenz, G., “A Conceptual Design Tool for Multi-Disciplinary
Aircraft Design,” 2011 Aerospace Conference, IEEE, Big Sky, Montana, 2011. URL
https://doi.org/10.1109/AERO.2011.5747531.

[37] Danis, R. A., Green, M. W., Freeman, J. L., and Hall, D. W., “Examining the Conceptual
Design Process for Future Hybrid-Electric Rotorcraft,” Contractor Report NASA/CR-
2018-219897, NASA Ames Research Center, Moffett Field, California, 2018. URL
https://ntrs.nasa.gov/citations/20180003214.

https://doi.org/10.1002/sys.20109
https://doi.org/10.1109/TEM.2015.2491283
https://doi.org/10.2514/6.2015-3087
https://doi.org/10.2514/6.2015-3087
https://doi.org/10.2514/6.2013-222
https://doi.org/10.2514/6.2013-222
https://elib.dlr.de/111232/1/Jepsen_DLRK_2016.pdf
https://elib.dlr.de/79623/1/281412.pdf
https://elib.dlr.de/79623/1/281412.pdf
https://www.icas.org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0750_paper.pdf
https://www.icas.org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0750_paper.pdf
https://doi.org/10.2514/6.2018-3251
https://doi.org/10.2514/6.2012-1675
https://doi.org/10.2514/6.2012-1675
https://doi.org/10.1016/j.softx.2021.100759
https://doi.org/10.1109/AERO.2011.5747531
https://ntrs.nasa.gov/citations/20180003214

56 Bibliography

[38] Mattingly, J. D., Heiser, W. H., and Pratt, D. T., Aircraft Engine Design, Vol. 2, AIAA,
Reston, Virginia, 2002. URL https://arc.aiaa.org/doi/book/10.2514/4.861444.

[39] Lefebvre, T., Schmollgruber, P., Blondeau, C., and Carrier, G., “Aircraft Concep-
tual Design In A Multi-Level, Multi-Fidelity, Multi-Disciplinary Optimization Pro-
cess,” Proceedings of the 28th International Congress of the Aeronautical Sciences, ICAS,
Brisbane, Australia, 2012. URL http://www.icas.org/ICAS_ARCHIVE/ICAS2012/
PAPERS/042.PDF.

[40] Raymer, D., “A computer-aided aircraft Configuration Development System,” Pro-
ceedings of the AIAA Aerospace Sciences Meeting, AIAA, New Orleans, Louisiana, 1979.
URL https://doi.org/10.2514/6.1979-64.

[41] Sliwa, S. M. A., “OPDOT: A computer program for the optimum preliminary de-
sign of a transport airplane,” Technical Memorandum NASA/TM-81857, NASA
Langley Research Center, Hampton. Virginia, 1980. URL https://ntrs.nasa.gov/
citations/19830002844.

[42] Bil, C., “ADAS - A design system for aircraft configuration development,” Proceedings
of the Aircraft Design and Operations Meeting, AIAA, Seattle, Washington, 1989. URL
https://doi.org/10.2514/6.1989-2131.

[43] McCullers, L. A., “Aircraft configuration optimization including optimized flight
profiles,” Recent Experiences in Multidisciplinary Analysis and Optimization, Part 1,
NASA Langley Research Center, Hampton, Virginia, 1984. URL https://ntrs.
nasa.gov/citations/19870002310.

[44] Li, Y., “A Parametric Approach to Preliminary Design for Aircraft and Spacecraft
Configuration,” Proceedings of the 18th Congress of the International Council of the Aero-
nautical Sciences, ICAS, Beĳing, China, 1992. URL https://www.icas.org/ICAS_
ARCHIVE/ICAS1992/ICAS-92-7.2.1.pdf.

[45] Jayaram, S. M., “ACSYNT - A standards-based system for parametric, computer aided
conceptual design of aircraft,” Proceedings of the Aerospace Design Conference, AIAA,
Irvine, California, 1992. URL https://ntrs.nasa.gov/citations/19920050721.

[46] Raymer, D., “RDS - A PC-based aircraft design, sizing, and performance system,”
Proceedings of the Guidance, Navigation and Control Conference, AIAA, Hilton Head
Island, South Carolina, 1992. URL https://doi.org/10.2514/6.1992-4226.

[47] Rentema, D. W. E., “AIDA: Artificial Intelligence supported conceptual Design
of Aircraft,” Ph.D. thesis, TU Delft, Delft, The Netherlands, 2004. URL http:
//resolver.tudelft.nl/uuid%3Aef473d71-e384-4f2f-b9c2-881eb2fb9918.

[48] Salavin, L., “Structure and function of the aircraft design program PrADO,” Tech.
rep., Hamburg University of Applied Science, Hamburg, Germany, 2008. URLhttps:
//www.fzt.haw-hamburg.de/pers/Scholz/arbeiten/TextSalavin.pdf.

[49] Zhang, M., Rizzi, A. W., Nicolosi, F., and De Marco, A., “Collaborative Aircraft
Design Methodology using ADAS Linked to CEASIOM,” Proceedings of the 32nd
AIAA Applied Aerodynamics Conference, AIAA, Atlanta, Georgia, 2014. URL https:
//doi.org/10.2514/6.2014-2012.

[50] Morino, L., Bernardini, G., and Mastroddi, F., “Multi-Disciplinary Optimization for
the Conceptual Design of Innovative Aircraft Configurations,” Computer Modeling in
Engineering & Sciences, Vol. 13, No. 1, 2006, pp. 1–18. URL https://doi.org/10.
3970/cmes.2006.013.001.

https://arc.aiaa.org/doi/book/10.2514/4.861444
http://www.icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/042.PDF
http://www.icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/042.PDF
https://doi.org/10.2514/6.1979-64
https://ntrs.nasa.gov/citations/19830002844
https://ntrs.nasa.gov/citations/19830002844
https://doi.org/10.2514/6.1989-2131
https://ntrs.nasa.gov/citations/19870002310
https://ntrs.nasa.gov/citations/19870002310
https://www.icas.org/ICAS_ARCHIVE/ICAS1992/ICAS-92-7.2.1.pdf
https://www.icas.org/ICAS_ARCHIVE/ICAS1992/ICAS-92-7.2.1.pdf
https://ntrs.nasa.gov/citations/19920050721
https://doi.org/10.2514/6.1992-4226
http://resolver.tudelft.nl/uuid%3Aef473d71-e384-4f2f-b9c2-881eb2fb9918
http://resolver.tudelft.nl/uuid%3Aef473d71-e384-4f2f-b9c2-881eb2fb9918
https://www.fzt.haw-hamburg.de/pers/Scholz/arbeiten/TextSalavin.pdf
https://www.fzt.haw-hamburg.de/pers/Scholz/arbeiten/TextSalavin.pdf
https://doi.org/10.2514/6.2014-2012
https://doi.org/10.2514/6.2014-2012
https://doi.org/10.3970/cmes.2006.013.001
https://doi.org/10.3970/cmes.2006.013.001

Bibliography 57

[51] Kirby, D. M. R., and Mavris, D. D. N., “The Environmental Design Space,” Proceedings
of the 26th Congress of International Council of the Aeronautical Sciences, ICAS, Anchor-
age, Alaska, 2008. URL https://www.icas.org/ICAS_ARCHIVE/ICAS2008/PAPERS/
586.PDF.

[52] Liu, H., Wu, Z., Wang, G.-l., and Wang, X.-l., “Implementation of a Sketch Based
Approach to Conceptual Aircraft Design Synthesis and Modeling,” Chinese Journal
of Aeronautics, Vol. 17, No. 4, 2004, pp. 207–214. URL https://doi.org/10.1016/
S1000-9361(11)60238-0.

[53] Cassidy, P., Gatzke, T., and Vaporean, C., “Integrating Synthesis and Simulation for
Conceptual Design,” Proceedings of the AIAA Aerospace Sciences Meeting, AIAA, Reno,
Nevada, 2008. URL https://doi.org/10.2514/6.2008-1443.

[54] Afsar, R., and Salam, A., “CEASIOM: An Open Source Multi Module Conceptual
Aircraft Design Tool,” International Journal of Engineering Research, Vol. 2, No. 7,
2013. URL https://www.ijert.org/ceasiom-an-open-source-multi-module-
conceptual-aircraft-design-tool.

[55] Feng, H., Luo, M., Liu, H., and Wu, Z., “A Knowledge-based and Extensible Aircraft
Conceptual Design Environment,” Chinese Journal of Aeronautics, Vol. 24, No. 6, 2011,
pp. 709–719. URL https://doi.org/10.1016/S1000-9361(11)60083-6.

[56] Seeckt, K., and Scholz, D., “Application of the Aircraft Preliminary Sizing Tool PreSTo
to kerosene and liquid hydrogen fueled regional freighter aircraft,” DLRK 2010,
DGLR, Hamburg, Germany, 2010. URL https://www.fzt.haw-hamburg.de/pers/
Scholz/PreSTo/PreSTo_PUB_DLRK_10-08-31.pdf.

[57] Greitzer, E. M., Bonnefoy, P. A., Hall, D. K., Hansman, R. J., Hileman, J. I., Liebeck,
R. H., Lovegren, J., Mody, P., Pertuze, J. A., Sato, S., Spakovszky, Z. S., Tan, C. S.,
Hollman, J. S., Duda, J. E., Fitzgerald, N., Houghton, J., Kerrebrock, J. L., Ki-
wada, G. F., Kordonowy, D., Parrish, J. C., Tylko, J., and Wen, E. A., “N+3 Aircraft
Concept Designs and Trade Studies, Final Report,” Contractor Report NASA/CR-
2010-216794/VOL2, NASA Glenn Research Center, Cleveland, Ohio, 2010. URL
https://ntrs.nasa.gov/citations/20100042398.

[58] Böhnke, D., Nagel, B., and Gollnick, V., “An approach to multi-fidelity in conceptual
aircraft design in distributed design environments,” 2011 Aerospace Conference, IEEE,
Big Sky, Montana, 2011. URL https://doi.org/10.1109/AERO.2011.5747542.

[59] Elmendorp, R. J. M., “Synthesis of Novel Aircraft Concepts for Future Air Travel,”
Master’s thesis, TU Delft, Delft, The Netherlands, 2014. URL http://resolver.
tudelft.nl/uuid%3A1e1941d0-2171-4bc4-95b8-7e01b9c8425d.

[60] Marco, A. D., Nicolosi, F., Vecchia, P., and Cusati, V., “A Java Toolchain of Programs
for Aircraft Design,” Proceedings of the 6th CEAS Air and Space Conference, CEAS,
Bucharest, Romania, 2017. URL https://core.ac.uk/download/pdf/148706906.
pdf.

[61] Welstead, J. R., Caldwell, D., Condotta, R., and Monroe, N., “An Overview of the
Layered and Extensible Aircraft Performance System (LEAPS) Development,” Pro-
ceedings of the AIAA Aerospace Sciences Meeting, AIAA, Kissimmee, Florida, 2018. URL
https://doi.org/10.2514/6.2018-1754.

[62] Munjulury, R. C., Staack, I., Berry, P., and Krus, P., “A knowledge-based integrated
aircraft conceptual design framework,” CEAS Aeronautical Journal, Vol. 7, No. 1, 2016,
pp. 95–105. URL https://doi.org/10.1007/s13272-015-0174-z.

https://www.icas.org/ICAS_ARCHIVE/ICAS2008/PAPERS/586.PDF
https://www.icas.org/ICAS_ARCHIVE/ICAS2008/PAPERS/586.PDF
https://doi.org/10.1016/S1000-9361(11)60238-0
https://doi.org/10.1016/S1000-9361(11)60238-0
https://doi.org/10.2514/6.2008-1443
https://www.ijert.org/ceasiom-an-open-source-multi-module-conceptual-aircraft-design-tool
https://www.ijert.org/ceasiom-an-open-source-multi-module-conceptual-aircraft-design-tool
https://doi.org/10.1016/S1000-9361(11)60083-6
https://www.fzt.haw-hamburg.de/pers/Scholz/PreSTo/PreSTo_PUB_DLRK_10-08-31.pdf
https://www.fzt.haw-hamburg.de/pers/Scholz/PreSTo/PreSTo_PUB_DLRK_10-08-31.pdf
https://ntrs.nasa.gov/citations/20100042398
https://doi.org/10.1109/AERO.2011.5747542
http://resolver.tudelft.nl/uuid%3A1e1941d0-2171-4bc4-95b8-7e01b9c8425d
http://resolver.tudelft.nl/uuid%3A1e1941d0-2171-4bc4-95b8-7e01b9c8425d
https://core.ac.uk/download/pdf/148706906.pdf
https://core.ac.uk/download/pdf/148706906.pdf
https://doi.org/10.2514/6.2018-1754
https://doi.org/10.1007/s13272-015-0174-z

58 Bibliography

[63] Kirschen, P. G., York, M. A., Ozturk, B., and Hoburg, W. W., “Application of Signomial
Programming to Aircraft Design,” Journal of Aircraft, Vol. 55, No. 3, 2018, pp. 965–987.
URL https://doi.org/10.2514/1.C034378.

[64] Vegh, J. M., Botero, E., Clarke, M., Smart, J., and Alonso, J., “Current Capabilities
and Challenges of NDARC and SUAVE for eVTOL Aircraft Design and Analysis,”
AIAA Propulsion and Energy 2019 Forum, AIAA, Indianapolis, Indiana, 2019. URL
https://doi.org/10.2514/6.2019-4505.

[65] Schouten, T., Hoogreef, M., and Vos, R., “Effect of Propeller Installation on Perfor-
mance Indicators of Regional Turboprop Aircraft,” Proceedings of the AIAA Scitech 2019
Forum, AIAA, San Diego, California, 2019. URLhttps://doi.org/10.2514/6.2019-
1306.

[66] Wells, D. P., Horvath, B. L., and McCullers, L. A., “The Flight Op-
timization System Weights Estimation Method,” Technical Memorandum
NASA/TM–2017–219627/VOL1, NASA Langley Research Center, Hampton, Vir-
ginia, 2017. URL https://ntrs.nasa.gov/citations/20170005851.

[67] Raymer, D. P., “RDSwin: Seamlessly-Integrated Aircraft Conceptual Design for Stu-
dents & Professionals,” Proceedings of the AIAA Aerospace Sciences Meeting, AIAA, San
Diego, California, 2016. URL https://doi.org/10.2514/6.2016-1277.

[68] Moran, P. J., “Developing An Open Source Option for NASA Software,” Technical
Report NAS-03-009, NASA Ames Research Center, Moffett Field, California, 2003.
URL https://ntrs.nasa.gov/citations/20030054432.

[69] La Rocca, G., “Knowledge based engineering techniques to support aircraft design
and optimization,” Ph.D. thesis, TU Delft, Delft, The Netherlands, 2011. URL http:
//resolver.tudelft.nl/uuid:45ed17b3-4743-4adc-bd65-65dd203e4a09.

[70] Drela, M., “Development of the D8 Transport Configuration,” Proceedings of the 29th
AIAA Applied Aerodynamics Conference, AIAA, Honolulu, Hawaii, 2011. URL https:
//doi.org/10.2514/6.2011-3970.

[71] Choi, S., Alonso, J. J., and Kroo, I. M., “Two-Level Multifidelity Design Optimization
Studies for Supersonic Jets,” Journal of Aircraft, Vol. 46, No. 3, 2009, pp. 776–790. URL
https://doi.org/10.2514/1.34362.

[72] Decyk, V. K., Norton, C. D., and Gardner, H. J., “Why Fortran?” Computing in Science
& Engineering, Vol. 9, No. 4, 2007, pp. 68–71. URL https://doi.org/10.1109/MCSE.
2007.89.

[73] Cai, X., Langtangen, H. P., and Moe, H., “On the Performance of the Python Program-
ming Language for Serial and Parallel Scientific Computations,” Scientific Program-
ming, Vol. 13, No. 1, 2005, pp. 31–56. URL https://doi.org/10.1155/2005/619804.

[74] La Rocca, G., Langen, T. H. M., and Brouwers, Y. H. A., “The design and engineering
engine. Towards a modular system for collaborative aircraft design,” Proceedings of
the 28th International Congress of the Aeronautical Sciences, ICAS, Brisbane, Australia,
2012. URL https://www.icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/603.PDF.

[75] van Tooren, M., Nawĳn, M., Berends, J., and Schut, J., “Aircraft Design Support
using Knowledge Engineering and Optimisation Techniques,” Proceedings of the 46th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,
AIAA, Austin, Texas, 2005. URL https://doi.org/10.2514/6.2005-2205.

https://doi.org/10.2514/1.C034378
https://doi.org/10.2514/6.2019-4505
https://doi.org/10.2514/6.2019-1306
https://doi.org/10.2514/6.2019-1306
https://ntrs.nasa.gov/citations/20170005851
https://doi.org/10.2514/6.2016-1277
https://ntrs.nasa.gov/citations/20030054432
http://resolver.tudelft.nl/uuid:45ed17b3-4743-4adc-bd65-65dd203e4a09
http://resolver.tudelft.nl/uuid:45ed17b3-4743-4adc-bd65-65dd203e4a09
https://doi.org/10.2514/6.2011-3970
https://doi.org/10.2514/6.2011-3970
https://doi.org/10.2514/1.34362
https://doi.org/10.1109/MCSE.2007.89
https://doi.org/10.1109/MCSE.2007.89
https://doi.org/10.1155/2005/619804
https://www.icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/603.PDF
https://doi.org/10.2514/6.2005-2205

Bibliography 59

[76] Schut, E. J., and van Tooren, M. J. L., “Design "Feasilization" Using Knowledge-Based
Engineering and Optimization Techniques,” Journal of Aircraft, Vol. 44, No. 6, 2007,
pp. 1776–1786. URL https://doi.org/10.2514/1.24688.

[77] Schut, E. J., “Conceptual Design Automation: Abstraction complexity reduction
by feasilisation and knowledge engineering,” Ph.D. thesis, TU Delft, Delft, The
Netherlands, 2010. URL http://resolver.tudelft.nl/uuid%3A94fd1664-9fdc-
4868-b2c6-d977c0fbc2e2.

[78] Zĳp, S. O. L., “Development of a Life Cycle Cost Model for Conventional and
Unconventional Aircraft,” Master’s thesis, TU Delft, Delft, The Netherlands,
2014. URL http://resolver.tudelft.nl/uuid%3Ade09f6fc-3bc0-4aa8-8d33-
dbe3a89ef4b3.

[79] Hettema, A. P., “Vertical Tail Design: Development of a rapid aerodynamic analysis
method,” Master’s thesis, TU Delft, Delft, The Netherlands, 2015. URL http://
resolver.tudelft.nl/uuid%3A011a25b6-5b0b-40a3-873c-ab0026e9a45b.

[80] Mutluay, T., “The Development of an Inertia Estimation Method to Support Han-
dling Quality Assessment,” Master’s thesis, TU Delft, Delft, The Netherlands,
2015. URL http://resolver.tudelft.nl/uuid%3A10ee1352-2f45-46b5-babc-
6ea7d3579995.

[81] Van den Dungen, N. H. M., “Synthesis of an Aircraft Featuring a Ducted-Fan Propul-
sive Empennage,” Master’s thesis, TU Delft, Delft, The Netherlands, 2017. URL http:
//resolver.tudelft.nl/uuid%3A82986b0c-2b29-462f-8c6f-746236259ea3.

[82] Mulder, H. A., “Modular Initiator Modelling of Engines,” Master’s thesis, TU Delft,
Delft, The Netherlands, 2018. URL http://resolver.tudelft.nl/uuid:a1129eb8-
87bb-47b1-9df0-9704ef5f5284.

[83] La Rocca, G., and Li, M., “Conceptual design of a passenger aircraft for aerial re-
fueling operations,” Proceedings of the 29th Congress of the International Council of the
Aeronautical Sciences, St. Petersburg, Russia, 2014. URL https://www.icas.org/
ICAS_ARCHIVE/ICAS2014/data/papers/2014_0425_paper.pdf.

[84] De Smedt, S. D., “Knowledge-Based Engineering Approach to the Finite Element
Analysis of Fuselage Structures,” Master’s thesis, TU Delft, Delft, The Nether-
lands, 2014. URL http://resolver.tudelft.nl/uuid%3A1e0cf654-70db-43bd-
aad0-13cb2aa901da.

[85] Van Haver, S., and Vos, R., “A Practical Method for Uncertainty Analysis in the
Aircraft Conceptual Design Phase,” Proceedings of the AIAA Aerospace Sciences Meeting,
AIAA, Kissimmee, Florida, 2015. URL https://doi.org/10.2514/6.2015-1680.

[86] Sol, M. B., “Conceptual Design of Swept Wing Root Aerofoils,” Master’s thesis,
TU Delft, Delft, The Netherlands, 2015. URL http://resolver.tudelft.nl/uuid:
5bf482f6-5910-4346-abd5-785748980bc9.

[87] Ramakers, M. a. Y., “Accelerating aircraft design using automated process gener-
ation: An experimental architecture for aircraft design software,” Master’s thesis,
TU Delft, Delft, The Netherlands, 2015. URL http://resolver.tudelft.nl/uuid%
3A1cdca7a1-a440-4dce-9fce-859fd9701839.

[88] Van Keymeulen, Q. P. D., “Design of a modular fuselage for commercial aircraft: To
cope with seasonal variation in passenger demand,” Master’s thesis, TU Delft, Delft,
The Netherlands, 2015. URL http://resolver.tudelft.nl/uuid%3A3f319e5c-
437f-4b17-88fc-bdf8bc21e838.

https://doi.org/10.2514/1.24688
http://resolver.tudelft.nl/uuid%3A94fd1664-9fdc-4868-b2c6-d977c0fbc2e2
http://resolver.tudelft.nl/uuid%3A94fd1664-9fdc-4868-b2c6-d977c0fbc2e2
http://resolver.tudelft.nl/uuid%3Ade09f6fc-3bc0-4aa8-8d33-dbe3a89ef4b3
http://resolver.tudelft.nl/uuid%3Ade09f6fc-3bc0-4aa8-8d33-dbe3a89ef4b3
http://resolver.tudelft.nl/uuid%3A011a25b6-5b0b-40a3-873c-ab0026e9a45b
http://resolver.tudelft.nl/uuid%3A011a25b6-5b0b-40a3-873c-ab0026e9a45b
http://resolver.tudelft.nl/uuid%3A10ee1352-2f45-46b5-babc-6ea7d3579995
http://resolver.tudelft.nl/uuid%3A10ee1352-2f45-46b5-babc-6ea7d3579995
http://resolver.tudelft.nl/uuid%3A82986b0c-2b29-462f-8c6f-746236259ea3
http://resolver.tudelft.nl/uuid%3A82986b0c-2b29-462f-8c6f-746236259ea3
http://resolver.tudelft.nl/uuid:a1129eb8-87bb-47b1-9df0-9704ef5f5284
http://resolver.tudelft.nl/uuid:a1129eb8-87bb-47b1-9df0-9704ef5f5284
https://www.icas.org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0425_paper.pdf
https://www.icas.org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0425_paper.pdf
http://resolver.tudelft.nl/uuid%3A1e0cf654-70db-43bd-aad0-13cb2aa901da
http://resolver.tudelft.nl/uuid%3A1e0cf654-70db-43bd-aad0-13cb2aa901da
https://doi.org/10.2514/6.2015-1680
http://resolver.tudelft.nl/uuid:5bf482f6-5910-4346-abd5-785748980bc9
http://resolver.tudelft.nl/uuid:5bf482f6-5910-4346-abd5-785748980bc9
http://resolver.tudelft.nl/uuid%3A1cdca7a1-a440-4dce-9fce-859fd9701839
http://resolver.tudelft.nl/uuid%3A1cdca7a1-a440-4dce-9fce-859fd9701839
http://resolver.tudelft.nl/uuid%3A3f319e5c-437f-4b17-88fc-bdf8bc21e838
http://resolver.tudelft.nl/uuid%3A3f319e5c-437f-4b17-88fc-bdf8bc21e838

60 Bibliography

[89] Vargas Jimenez, J. A., “Development of a Wave Drag Prediction Tool for the
Conceptual Design Phase,” Master’s thesis, TU Delft, Delft, The Netherlands,
2015. URL http://resolver.tudelft.nl/uuid%3Afadcbb6a-67f8-419b-9e4f-
a546866c738a.

[90] Higgs, T. a. C., “Investigation into the effects of advanced technologies on over-
all aircraft performance in a collaborative design environment,” Master’s thesis,
TU Delft, Delft, The Netherlands, 2015. URL http://resolver.tudelft.nl/uuid%
3A155a86db-60c3-45ac-99fd-0f6e9cf7d65f.

[91] De Smedt, S., and Vos, R., “Knowledge-Based Engineering Approach to the Finite El-
ement Analysis of the Oval Fuselage Concept,” 53rd AIAA Aerospace Sciences Meeting,
AIAA, Kissimmee, Florida, 2015. URL https://doi.org/10.2514/6.2015-1899.

[92] Jansen, Q. J. M., “Relaxed Static Stability Performance Assessment on Conventional
and Unconventional Aircraft Configurations,” Master’s thesis, TU Delft, Delft, The
Netherlands, 2015. URL http://resolver.tudelft.nl/uuid%3Ad0450f45-f383-
411e-b455-1eda6ace08e8.

[93] Jansen, Q., and Vos, R., “Assessing the Effect of Decreased Longitudinal Stability on
Aircraft Size and Performance,” Proceedings of the AIAA Aerospace Sciences Meeting,
AIAA, San Diego, California, 2016. URL https://doi.org/10.2514/6.2016-1281.

[94] Boersma, J. Y., “Business Jet Design Using Laminar Flow,” Master’s thesis, TU Delft,
Delft, The Netherlands, 2016. URL http://resolver.tudelft.nl/uuid:4d1818ec-
5842-47b0-b144-173aa77a3803.

[95] Bertels, F. G. A., Dĳk, R. v., Elmendorp, R., and Vos, R., “Impact of pulsed jet actuators
on aircraft mass and fuel consumption,” CEAS Aeronautical Journal, Vol. 7, No. 4, 2016,
pp. 535–549. URL https://doi.org/10.1007/s13272-016-0201-8.

[96] Decloedt, D., “Investigation into the effect of relaxed static stability on a busi-
ness jet’s preliminary design,” Master’s thesis, TU Delft, Delft, The Netherlands,
2016. URL http://resolver.tudelft.nl/uuid%3A1e3a106b-236d-4e9c-8153-
dc707a0fdc59.

[97] Brown, M. T. H., “Conceptual Design of Blended Wing Body Airliners,” Master’s
thesis, TU Delft, Delft, The Netherlands, 2017. URL http://resolver.tudelft.nl/
uuid:6f66cd83-673c-4a20-ae5f-c3ea1b7ce3c3.

[98] Li, M., “Conceptual Design Study for In-flight Refueling of Passenger Aircraft,” Ph.D.
thesis, TU Delft, Delft, The Netherlands, 2017. URL http://resolver.tudelft.nl/
uuid%3A5657a63d-1549-4080-8805-a122679cb707.

[99] Jansen, R. A. J., “Conceptual Design Study of a Hydrogen Powered Ultra Large
Cargo Aircraft,” Master’s thesis, TU Delft, Delft, The Netherlands, 2017. URL http:
//resolver.tudelft.nl/uuid:e38233ed-91a3-46cc-8376-37fa7c2d8d21.

[100] Cosenza, D., and Vos, R., “Handling Qualities Optimization in Aircraft Concep-
tual Design,” Proceedings of the 17th AIAA Aviation Technology, Integration, and Oper-
ations Conference, AIAA, Denver, Colorado, 2017. URL https://doi.org/10.2514/
6.2017-3763.

[101] Bouquet, T., and Vos, R., “Modeling the Propeller Slipstream Effect on Lift and Pitch-
ing Moment,” Proceedings of the AIAA Aerospace Sciences Meeting, AIAA, Grapevine,
Texas, 2017. URL https://doi.org/10.2514/6.2017-0236.

http://resolver.tudelft.nl/uuid%3Afadcbb6a-67f8-419b-9e4f-a546866c738a
http://resolver.tudelft.nl/uuid%3Afadcbb6a-67f8-419b-9e4f-a546866c738a
http://resolver.tudelft.nl/uuid%3A155a86db-60c3-45ac-99fd-0f6e9cf7d65f
http://resolver.tudelft.nl/uuid%3A155a86db-60c3-45ac-99fd-0f6e9cf7d65f
https://doi.org/10.2514/6.2015-1899
http://resolver.tudelft.nl/uuid%3Ad0450f45-f383-411e-b455-1eda6ace08e8
http://resolver.tudelft.nl/uuid%3Ad0450f45-f383-411e-b455-1eda6ace08e8
https://doi.org/10.2514/6.2016-1281
http://resolver.tudelft.nl/uuid:4d1818ec-5842-47b0-b144-173aa77a3803
http://resolver.tudelft.nl/uuid:4d1818ec-5842-47b0-b144-173aa77a3803
https://doi.org/10.1007/s13272-016-0201-8
http://resolver.tudelft.nl/uuid%3A1e3a106b-236d-4e9c-8153-dc707a0fdc59
http://resolver.tudelft.nl/uuid%3A1e3a106b-236d-4e9c-8153-dc707a0fdc59
http://resolver.tudelft.nl/uuid:6f66cd83-673c-4a20-ae5f-c3ea1b7ce3c3
http://resolver.tudelft.nl/uuid:6f66cd83-673c-4a20-ae5f-c3ea1b7ce3c3
http://resolver.tudelft.nl/uuid%3A5657a63d-1549-4080-8805-a122679cb707
http://resolver.tudelft.nl/uuid%3A5657a63d-1549-4080-8805-a122679cb707
http://resolver.tudelft.nl/uuid:e38233ed-91a3-46cc-8376-37fa7c2d8d21
http://resolver.tudelft.nl/uuid:e38233ed-91a3-46cc-8376-37fa7c2d8d21
https://doi.org/10.2514/6.2017-3763
https://doi.org/10.2514/6.2017-3763
https://doi.org/10.2514/6.2017-0236

Bibliography 61

[102] Rousseau, R. N. J., “Semi-Analytical Closed-Wing Weight Estimation during Con-
ceptual Design,” Master’s thesis, TU Delft, Delft, The Netherlands, 2017. URL
http://resolver.tudelft.nl/uuid:948ab573-cea8-43a7-af94-40a38994016b.

[103] Voskuĳl, M., van Bogaert, J., and Rao, A. G., “Analysis and design of hybrid electric
regional turboprop aircraft,” CEAS Aeronautical Journal, Vol. 9, No. 1, 2018, pp. 15–25.
URL https://doi.org/10.1007/s13272-017-0272-1.

[104] Schouten, T., “Assessment of Conceptual High-Capacity Regional Turbopropeller
Aircraft,” Master’s thesis, TU Delft, Delft, The Netherlands, 2018. URL http://
resolver.tudelft.nl/uuid%3A236ad212-eb0b-443d-a40d-602ec6fe64f9.

[105] Vos, R., and Hoogreef, M. F. M., “System-level assessment of tail-mounted propellers
for regional aircraft,” Proceedings of the 31st Congress of the International Council of the
Aeronautical Sciences, ICAS, Belo Horizonte, Brazil, 2018. URL http://resolver.
tudelft.nl/uuid:a1674c88-2df1-4365-8c3a-efde47de7f8c.

[106] Mancini, A., “The Effect of Maneuver Load Alleviation Strategies on Aircraft
Performance Indicators,” Master’s thesis, TU Delft, Delft, The Netherlands,
2018. URL http://resolver.tudelft.nl/uuid%3A4ae25b51-34aa-4028-b3d5-
98839c3599be.

[107] Peerlings, B., “Holistically improving screening decisions under uncertainty in air-
craft conceptual design and technology assessment: Insights on bottom-up uncer-
tainty quantification and propagation and integrated socio-technical group deci-
sion making,” Master’s thesis, TU Delft, Delft, The Netherlands, 2019. URL http:
//resolver.tudelft.nl/uuid%3Ad14b5f60-7000-439b-8785-62e513902bf8.

[108] van Oene, N., “Landing Gear Design Integration for the TU Delft Initiator,” Master’s
thesis, TU Delft, Delft, The Netherlands, 2019. URL http://resolver.tudelft.nl/
uuid%3Ae08c31c2-1371-465d-a5bc-666433945249.

[109] Mancini, A., and Vos, R., “The Effect of Maneuver Load Alleviation Strategies on
Aircraft Performance Indicators,” AIAA Aviation 2019 Forum, AIAA, Dallas, Texas,
2019. URL https://doi.org/10.2514/6.2019-3272.

[110] Ciampa, P. D., and Nagel, B., “Preliminary Design for Flexible Aircraft in a Col-
laborative Environment,” Proceedings of the 4th CEAS Air & Space Conference, CEAS,
Linkoping, Sweden, 2013. URL https://elib.dlr.de/95187/.

[111] Brandt, S. A., Post, M., Hall, D. W., Gilliam, F., Jung, T., and Yechout, T. R., “The
Value of Semi-Empirical Analysis Models in Aircraft Design,” Proceedings of the 16th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA, Dallas,
Texas, 2015. URL https://doi.org/10.2514/6.2015-2486.

[112] Gu, X., Ciampa, P. D., and Nagel, B., “An automated CFD analysis workflow in overall
aircraft design applications,” CEAS Aeronautical Journal, Vol. 9, No. 1, 2018, pp. 3–13.
URL https://doi.org/10.1007/s13272-017-0264-1.

[113] Ciampa, P. D., Zill, T., and Nagel, B., “A Hierarchical Aeroelastic Engine for the
Preliminary Design and Optimization of the Flexible Aircraft,” Proceedings 54th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confer-
ence, AIAA, Boston, Massachusetts, 2013. URL https://doi.org/10.2514/6.2013-
1820.

http://resolver.tudelft.nl/uuid:948ab573-cea8-43a7-af94-40a38994016b
https://doi.org/10.1007/s13272-017-0272-1
http://resolver.tudelft.nl/uuid%3A236ad212-eb0b-443d-a40d-602ec6fe64f9
http://resolver.tudelft.nl/uuid%3A236ad212-eb0b-443d-a40d-602ec6fe64f9
http://resolver.tudelft.nl/uuid:a1674c88-2df1-4365-8c3a-efde47de7f8c
http://resolver.tudelft.nl/uuid:a1674c88-2df1-4365-8c3a-efde47de7f8c
http://resolver.tudelft.nl/uuid%3A4ae25b51-34aa-4028-b3d5-98839c3599be
http://resolver.tudelft.nl/uuid%3A4ae25b51-34aa-4028-b3d5-98839c3599be
http://resolver.tudelft.nl/uuid%3Ad14b5f60-7000-439b-8785-62e513902bf8
http://resolver.tudelft.nl/uuid%3Ad14b5f60-7000-439b-8785-62e513902bf8
http://resolver.tudelft.nl/uuid%3Ae08c31c2-1371-465d-a5bc-666433945249
http://resolver.tudelft.nl/uuid%3Ae08c31c2-1371-465d-a5bc-666433945249
https://doi.org/10.2514/6.2019-3272
https://elib.dlr.de/95187/
https://doi.org/10.2514/6.2015-2486
https://doi.org/10.1007/s13272-017-0264-1
https://doi.org/10.2514/6.2013-1820
https://doi.org/10.2514/6.2013-1820

A
Background on ADSs

A multitude of ADSs have been developed since the 1980s at public research institutes, uni-
versities, and private companies. Some of the ADSs are already considered as legacy while
others are recognized as state-of-the-art. This appendix serves inventorial and inspirational
purposes.

A.1 Overview

More than 35 ADSs have been discovered during this research project. Some of them (e.g.
Piano and ADP) are well known, while others (e.g. ADAS (D) and ACODE) are barely
recognized in literature [9]. In figure A.1 all discovered ADSs and their initiation years1

are shown. Since all ADSs are rather similar, individual descriptions are spared out in
this report. The interested reader is referred to [1, 3, 9] for particular descriptions of the
ADSs.

It should be noted that figure A.1 is not exhaustive because some ADSs are not available to
the public domain and descriptions of those systems can hardly be found in literature. More
specifically, the author of this report is aware of commercially used systems from aircraft
original equipment manufacturers that do not appear in literature at all. Additionally, there
are ADSs that are solely developed and used by individuals and thus are not featured in
literature either.

The discovered ADSs are all tools that are used specifically for conceptual and preliminary
aircraft design. They are sometimes used within more general frameworks such as RCE
[35] or CDT [36]. They are all truly multidisciplinary as well. Related systems that are
centered around single disciplines (e.g. Propulsion Airframe iNTegration for Hybrid Electric
Research (PANTHER) [37] and Aircraft Engine Design System Analysis Software (AEDsysDP)
[38]) are purposely disregarded here.

The different ADSs have similar working principles: They are all based on some sort
of analysis & sizing methods that are wrapped into an (mostly iterative) process flow
(sometimes in the form of an optimization loop). For some ADSs the process flow diagrams
presented in the accompanying literature are remarkably similar to the one of the Initiator
presented in figure B.5 (e.g. see [3] or [39]).

1The initiation year of an ADS is defined as the year when its development commenced. If the initiation
year is not provided in literature, the year of the first publication mentioning the ADS is used instead.

63

64
A

ppendix
A

.
Background

on
A

D
Ss

1979

CDS [40]

1980

OPDOT [41]

1983

ADAS (D) [42]

1984

FLOPS [43]

1987
ACDS [44],

ACSYNT [45]

1988

PASS [10]

1990
Piano [9], AAA

[1]

1992

RDS [46]

1994
AIDA [47],
PraDO [48]

2005
ADAS (N) [49],

MAGIC [50]

2004
EDS [51],

SEACD [52]

2008

ACS [53]

2006

CEASIOM [54]

2010
KEACDE [55],
PreSTo [56],

TASOPT [57]

2009
ADS [1],
PDQ [1],
APD [1]

2012
ACODE [39],
MICADO [34]

2011

VAMPzero [58]

2014
ADEBO [3],
Initiator [59],

JPAD [60]

2016
LEAPS [61]

2015
CADLab [62],
SUAVE [28]

2017

SPaircraft [63]

2018

GENUS [9]

Figure A.1: ADSs initiation timeline

A.2. Comparison 65

A.2 Comparison

Six substantial aspects of the ADSs are analyzed in the following. Some aspects are treated
more elaborately than others, while this does not necessarily mean that these aspects are
more important. An overview is presented in table A.1. The aim of this section is to
highlight the differences between the various ADSs.

A.2.1 Initiation & lifespan
From figure A.1 it can be seen that development of ADSs started in the 1970s. Especially
in the 1980s the development of many ADSs was initiated, but in the 1990s the number of
new developments stagnated a little. Since 2004 a new ADS is emerging almost every year.
This clearly shows that there is indeed a lot of interest in such systems.

Some ADSs (e.g. the Initiator and SUAVE) are continuously used in research projects and
frequently mentioned in literature (see e.g. [64, 65]). However, most ADSs are only cited
infrequently and can therefore be assumed to be deprecated by now (e.g. CDS, ACSYNT,
AIDA, MAGIC). Some more recent ADSs are designated as successors of older ones (e.g.
ACS is the successor of ACSYNT, and LEAPS is intended to become the successor of FLOPS
[61]).

It can only be speculated on the reasons behind the fact that some ADSs are deprecated
earlier than others. It appears that strong ownership helps keeping an ADS at life (e.g.
one of the first ADSs, FLOPS, received an updated weight documentation in 2017 which
indicated that this tool is still being used and valued [66]). Also having a dedicated lead
developer helps keeping an ADS up to date (e.g. one ADS that exists since almost 30 years,
RDS, is still receiving regular updates and is running on modern operating systems [67]).
Nonetheless, it seems that all systems have a limited lifespan and new tools are emerging
with the advent of programming languages and frameworks [1].

A.2.2 Ownership
Slightly more than fifty percent of the analyzed ADSs originate from an academic environ-
ment (i.e. universities). The other half originates from either institutional or commercial
entities (i.e. institutes or companies respectively). As outlined above, it is expected that
there are more ADSs in institutional and commercial use that are not known to the public.
However, the relatively large amount of discovered ADSs is surprising under the assump-
tion that the amount of people dealing with conceptual and early preliminary aircraft
design is rather limited [61].

Interestingly, only about one sixth of the systems is open source2. This unfortunately
hinders collaboration and prevents stimulation of innovation [61, 68]. Sometimes systems
are described as open source in the accompanying literature, while the source is not
publicly available (e.g. ADEBO [3]). Others are not labeled as open source, whereas the
source code is publicly available (e.g. the entire code for OPDOT is listed in the appendix
of the accompanying report [41]). As one might expect, the majority of open source ADSs
originates from academic environments (4 from academic entities, 2 from institutional
entities, 1 from a commercial entity).

2Here open source implies that the code of an ADS was publicly available at the time of writing this
report.

66
A

ppendix
A

.
Background

on
A

D
Ss

Table A.1: Overview of ADSs

Acronym Name Design phase Configurations Open-
source

Programming
language

Type Owner Initiated Reference

CDS Configuration Development System conceptual transport aircraft, fighters no Fortran commercial Rockwell International, Los Angeles 1979 [40]
OPDOT Optimum Preliminary Design of a Transport Airplane preliminary transport aircraft yes n/a institutional NASA, Hampton 1980 [41]
ADAS (Delft) Aircraft Design and Analysis System conceptual transport aircraft no Fortran academic TU Delft, Delft 1983 [42]
FLOPS Flight Optimization System conceptual transport aircraft, fighter aircraft, general

aviation aircraft, and HWB aircraft
no Fortran institutional NASA, Hampton 1984 [43]

ACDS Aircraft and spacecraft Configuration Design System preliminary transport aircraft, spacecraft no n/a academic Northwestern Polytechnical University,
Xi’an

1987 [44]

ACSYNT AirCraftSYNThesis conceptual transport aircraft no Fortran and
PHIGS and C

institutional ACSYNT Institute, Blacksburg 1987 [45]

PASS Program for Aircraft Synthesis Studies conceptual,
early
preliminary

transport aircraft no Fortran academic Stanford University, Stanford 1988 [10]

AAA Advanced Aircraft Analysis conceptual transport aircraft, unconventional
configurations, including VTOL

no n/a commercial DARcorporation, Lawrence 1990 [1]

Piano Project Interactive Analysis and Optimisation conceptual,
preliminary

transport aircraft no Lisp commercial Lissys, Woodhouse Eaves 1990 [9]

RDS Raymer’s Design System conceptual transport aircraft no n/a commercial Conceptual Research Corporation, Playa
del Rey

1992 [46]

AIDA Artificial Intelligence supported conceptual Design of
Aircraft

conceptual transport aircraft no C and C# and
others

academic TU Delft, Delft 1994 [47]

PraDO Preliminary aircraft Design and Optimization preliminary transport aircraft no Fortran and Java academic TU Brunswick, Brunswick 1994 [48]
EDS Environmental Design Space conceptual transport aircraft, future conventional

aircraft configurations
no n/a institutional FAA, Washington 2004 [51]

SEACD Synthetic Environment for Aircraft Conceptual Design conceptual transport aircraft no n/a academic Beĳing University of Aeronautics and
Astronautics, Beĳing

2004 [52]

ADAS (Neaples) Aircraft Design and Analysis Software conceptual,
preliminary

transport aircraft, light aircraft no Visual Basic academic University of Naples Federico II, Naples 2005 [49]

MAGIC Multidisciplinary Aircraft desiGn of Innovative
Configurations

conceptual innovative aircraft configurations no n/a academic Roma Tre University, Rome 2005 [50]

CEASIOM Computerized Environment for Aircraft Synthesis and
Integrated Optimization Methods

conceptual,
preliminary

general aviation aircraft, transport
aircraft

yes Matlab or Python commercial CFS Engineering, Lausanne 2006 [54]

ACS AirCraft Synthesis conceptual,
preliminary

transport aircraft, fighter, unmanned
aircraft

no n/a commercial AVID, Yorktown 2008 [53]

ADS Aircraft Design Software conceptual aircraft, commuter category aircraft no n/a commercial Optimal Aircraft Design, Namur 2009 [1]
AirplanePDQ AirplanePDQ conceptual light-sport aircraft, ultralight aircraft,

experimental aircraft, general aviation
aircraft

no n/a commercial DaVinci Technologies, Aubum 2009 [1]

APD Aircraft Preliminary Design conceptual,
preliminary

transport aircraft no n/a commercial Pacelab, Berlin 2009 [1]

KEACDE Knowledge-based and Extensible Aircraft Conceptual
Design Environment

conceptual transport aircraft no n/a academic Beihang University, Beĳing 2010 [55]

PreSTo Aircraft Preliminary Sizing Tool preliminary transport aircraft yes n/a academic HAW, Hamburg 2010 [56]
TASOPT Transport Aircraft System OPTimization transport aircraft yes Fortran academic Massachusetts Institute of Technology,

Cambridge
2010 [57]

VAMPzero VAMPzero conceptual transport aircraft yes Python institutional DLR, Hamburg 2011 [58]
ACODE Airliner COnceptual DEsign conceptual transport aircraft no n/a institutional Onera, Toulouse 2012 [39]
MICADO Multidisciplinary Integrated Conceptual Aircraft

Design and Optimization
conceptual transport aircraft no C++ academic RWTH Aachen University, Aachen 2012 [34]

ADEBO Aircraft Design Box conceptual,
early
preliminary

fixed-wing aircraft no Matlab academic TU Munich, Munich 2014 [3]

Initiator Initiator conceptual,
early
preliminary

transport aircaft, business jets, novel
configuartions (boxwing, bwb)

no Matlab academic TU Delft, Delft 2014 [59]

JPAD Java toolchain of Programs for Aircraft Design preliminary transport aircraft partly Java academic University of Naples Federico II, Naples 2014 [60]
CADLab Conceptual Aircraft Design Laboratory conceptual,

preliminary
transport aircraft, fighters, very-light jets no n/a academic Linköping University, Linköping 2015 [62]

SUAVE Stanford University Aerospace Vehicle Environment conceptual transport aircraft, unconventional
configs, UAVs, eVTOLs, esp. non-TAW
configurations

yes Python academic Stanford University, Stanford 2015 [28]

LEAPS Layered and Extensible Aircraft Performance System conceptual advanced aircraft concepts no Python institutional NASA, Hampton 2016 [61]
GENUS GENUS Aircraft Conceptual Design environment conceptual various, potentially radically different

aircraft configuration
no Java academic Cranfield University, Cranfield 2018 [9]

SPaircraft Signomial Programming Aircraft conceptual transport aircraft yes Python academic Massachusetts Institute of Technology,
Cambridge

2017 [63]

A.2. Comparison 67

A.2.3 Objectives
Primarily, ADSs have been developed to automate (and consequently accelerate) sophisti-
cated aircraft design methods [3]. For example MICADO is meant “for automated aircraft
design [...] with a minimum of user input, i.e. a set of top-level requirements and specifi-
cations” [34] and GENUS is intended “to enable the conceptual level design of various [...]
aircraft configurations” [9]. But ADSs also have many secondary objectives of which the
most distinguished ones are analyzed in the following.

The automation of aircraft design methods naturally frees the user of manual tasks [40].
Thus, the user can perform more creative and innovative tasks which play an important
role in the early design phases [69]. Alternatively, the user can perform tasks that were
traditionally neglected during the conceptual and preliminary design phases such as the
assessment of ecological and economic impacts [34, 51].

All ADSs can principally be used in optimization workflows, but the newer ones (e.g.
TASOPT and SUAVE) are geared to support optimization processes out of the box [70].
In particular, the more recent ADSs (e.g. MICADO) allow to optimize a design towards a
freely selectable design parameter or a freely selectable combination of design parameter
[34] (hence not only towards a previously selected design parameter such as the minimum
mass or fuel). Some ADSs can therefore be utilized to perform optimization studies of
entire aircraft or of individual aircraft parts rapidly and affordably [40, 70].

Sometimes an ADS also serves as a geometry generator or a geometry database (especially
in the case of ACSYNT and CADLab). This allows visualizing aircraft concepts easily. More
importantly, this allows introducing higher fidelity and physics-based tools in the early
design phases because these tools often require geometry data as input [40, 45].

Additionally, existing ADSs can be used to access the capability of computer tools in
the conceptual and preliminary design phases [42]. Some ADSs have been specifically
developed for this purpose (e.g. ADAS (D) and EDS).

In conclusion, ADS have different objectives and therefore can be used to solve problems
of different types. Not all ADSs are equally suited for achieving a particular objective.
Therefore, the developers of any ADS need to take into account that there is often more
than one objective even though additional objectives might not be specified in the first
place.

A.2.4 Design phases
The investigated ADSs are described as conceptual, early preliminary, or preliminary
design tools in the accompanying literature. Logically, the conceptual design takes place
before the preliminary design. However, this can lead to confusion since the terms are used
interchangeably in the accompanying literature. For example, OPDOT is described as a
tool for preliminary design, while its outputs are less detailed than those of RDS, which is
described as a tool for conceptual design [41, 46].

One shall also note that it is common practice that the conceptual design of a subsystem
(e.g. an aileron) may happen during the detailed design of a system (e.g. an aircraft).
The adoption of ADSs accelerates the individual design phases and one tends to include
more details earlier on in the design process [69]. This eventually will render the previous
classifications of design phases insignificant.

In one design study (on a supersonic jet which was conducted using PASS) it was proposed
to merge the early design phases and to consider different Fidelity Levels (FLs) instead [71].
Indeed, FLs or Technology Readiness Levels (TRLs) might be future classification means

68 Appendix A. Background on ADSs

that have the potential to replace the current unclear definition of design phases. However,
yet no universally accepted definition has emerged.

A.2.5 Programming languages
A variety of programming languages are utilized within the different ADSs as can be seen
from table A.1. In fact, the languages also provide an indication of the comprehensiveness
of the ADSs, which is further explained in the following.

It comes as no surprise that the first ADSs (e.g. CDS, FLOPS, PASS) were almost exclu-
sively written in Fortran, which was one of the most popular high-level languages for
scientific computing back in the times [72]. The main advantages of Fortran are its high
computational performance and its straightforward syntax for representing and solving
mathematical (systems of) equations. These advantages were especially valuable when
computational resources were scarce and when mostly simple aircraft configurations were
investigated.

Nowadays, both the models and modules used in ADSs tend to be more sophisticated.
Therefore, higher-level languages such as Java, Matlab and Python are used more fre-
quently (e.g. in SUAVE, ADEBO, GENUS). The main advantages of those languages
are high programming productivity and extensive object-oriented programming features.
Their performance deficiencies (when compared to the classical compiled languages such
as Fortran and C) do not weigh too much anymore [73].

For about one-third of the investigated ADSs the language is not available. In this case
the ADS is only available as precompiled executables (e.g. in case of AAA, RDS, ADS)
and/or no accompanying literature specifying a distinct programming language has been
published (e.g. in case of MAGIC, ACDS, ADP). Oftentimes, these ADSs offer a graphical
user interface and are (thus) rather limited in scope (since modifications of the modules
employed in the ADSs is not envisaged).

Sometimes the authors of an ADS explain their choice for the selected programming lan-
guage in accompanying literature. For example, the decision to use Python was driven by
its “combination of object-oriented programming, duck typing, concise language, portabil-
ity in open source, and community standard as glueware” for SUAVE [28]. The decision for
utilizing Matlab was made based on its status as “state-of the art in engineering” and the
“multiple communication interfaces to other frameworks” that are offered by this language
[3]. The GENUS architecture relies on the “object-orientation and the use of inheritance
and polymorphism” of Java [9].

A.2.6 Programming paradigms
A variety of programming paradigms are utilized within the different ADSs. These patterns
always influence the functioning of an ADS. Some relevant programming paradigms are
analyzed in the following.

All ADSs rely on disciplines which typically are of sizing type (e.g. engine sizing, wing
sizing, fuselage sizing) or analysis type (e.g. mission analysis, aerodynamic analysis,
stability analysis, performance analysis). The number of disciplines within an ADS differs
substantially, as some ADSs have less than ten generic disciplines (e.g. in JPAP, SEACD,
ACODE, VAMPzero), while others have more detailed disciplines (e.g. in SUAVE, AAA).
Occasionally, there are disciplines of different fidelity levels (e.g. in ADAS (D)) which are
sometimes split in class I and II disciplines as presented in classical design textbooks (e.g.
in AAA) [1].

A.3. Trends 69

The ADSs handle design data in different ways. The first systems (e.g. OPDOT) only stored
data in standard data structures behind plain variables. Later (e.g. in AAA, ADAS (D)) data
was stored in dedicated databases. Now, data is often stored in files, most frequently in
the XML format (e.g. in JDAP, VAMPzero, MICADO, CAESIOM, JPAD), and in objects (e.g.
in SEACD, SUAVE, ADEBO). It was recently realized that handling data is a bottleneck
for performance [11]. Data is frequently organized hierarchically in a tree structure (see
[29, 54] for illustrations) although a tree structure is not always unambiguous.

The disciplines and the design data are always interlinked. Abstractly, this has been
described as attribute-method orthogonality [28] or as component-discipline relationship
[29]. Effectively, the disciplines amend the design data in an iterative process. One ADS (i.e.
AIDA) makes use of artificial intelligence [47] during this process. While most ADSs aim
for optimality, in case of non-conventional configurations feasibility is oftentimes critical
[9].

ADSs offer different user interfaces. For example in literature on ADSs it is stated that
programming interfaces accommodate flexibility (see e.g. [9]) whereas graphical interfaces
accommodate usability (see e.g. [60]). Some ADSs have a GUI (e.g. RDS, CAESIOM,
ACSYNT), some are accessed via simple command line prompts (e.g. CDS, OPDOT), but
most are initialized from a programming environment (e.g. MICADO, SUAVE). This is not
surprising as ADSs are systems that are made by/for expert users and thus they are not
supposed to be used by laymen without any programming experience.

Last but not least, it can be observed that most ADSs follow a seemingly object-oriented
paradigm. However, only a few modern ones (e.g. VAMPzero, SUAVE, MICADO) respect
object-oriented principles such as inheritance and encapsulation. The earlier ones follow a
rather procedural paradigm although they contain objects and methods.

A.3 Trends
The first ADSs were conceived in the 1970s. Since then these systems improved gradually
but substantially. Some notable trends can be observed when investigating the develop-
ment of ADSs over time. The objective of this section is to distill these trends. But this
section is not just a chronological listing of aspects from the previous two sections. It rather
is an evolutionary illustration of conceptual and preliminary aircraft design methods.

One main tendency is that the objectives of ADSs previously have been confined but
now are more comprehensive. The early ADSs have been mainly developed “for the
initial configuration development of aircraft concepts” [40] and for “aircraft configuration
optimization [...] for use in conceptual design of new aircraft and in the assessment of
the impact of advanced technology” [43]. But newer ADSs can additionally be used for
“parameter variations and optimizations with individually selected free variables and
objectives” [34] or for “parametric interactive design” [62] and sometimes are “capable of
estimating source noise, exhaust emissions, and performance for potential future aircraft
designs under different technological, operational, policy, and market scenarios” [51].
Thus, ADSs appear to serve an increasing number of purposes nowadays (see section
A.2.3).

It can also be observed that the fidelity level of ADSs is increasing continuously. Further-
more, ADSs with support for multiple fidelity levels are emerging recently. In particular, it
has been shown how to “close a multi-fidelity design loop” [58] and how to incorporate “the
right level of fidelity at the right time” [28]. This generally yields more trustworthy designs
and prevents misjudgments in the early design phases. Therefore, less redesign efforts are
required in subsequent design phases and eventually the overall aircraft development risk

70 Appendix A. Background on ADSs

is cut down [2, 74]. However, the fidelity level increase of ADSs also contributes to the
confusion that is caused by the inconsistent use of the terms conceptual and preliminary
when referring to the early design phases (see section A.2.4).

Another trend (closely related to the previous one) is that the disciplines of ADSs are
becoming less based on statistics and instead increasingly based on physics. One of the
investigated ADSs has main disciplines (i.e. structures, aerodynamics and aeroelasticity)
that are “all first-principles based” [50]. This trend is substantiated because historical
correlations, expert opinions, and statistical models are mostly unreliable for assessing
innovative aircraft designs as they are all biased towards existing aircraft designs [9, 51, 61].
Somewhat contrary to this trend, ADSs themselves are nowadays used to generate empirical
relations and charts (e.g. showing how varying one aircraft design parameters influences
other aircraft design parameters).

There is also a tendency that ADSs are increasingly supporting unconventional aircraft
configurations. While the early ADSs were mainly used to synthesize and analyze one
distinct aircraft configuration, the newer ones are often used to compare several advanced
configurations (e.g. hybrid electric aircraft, non-tube-and-wing aircraft, vertical take-off
and landing aircraft). It shall be noted that such a comparison can be precarious though
when different (i.e. non-generic and non-physics-based) methods are used to evaluate
different configurations [9]. Notwithstanding, a strong demand for such comparisons
exists, since the aircraft requirements become increasingly stringent or too stringent for
conventional aircraft configurations [61].

The last tendency to be discussed is that ADSs are presently written in higher-level pro-
gramming languages with richer feature sets. This allows for more flexible program
structures but can lead to more complicated program code [61] as well. For example one
ADS uses “an object-oriented architecture that enables arbitrary aircraft and propulsion
system topologies” [28] and another ADSs has a repository that is “capable of containing
all kinds of standalone software providing an accessible application interface” [3] Whereas
disciplines were previously loosely integrated in procedural code, they are now clearly
divided in more object-oriented code. Whereas the disciplines were previously simpler,
they are now more abstract and they are accompanied by more code overhead (see sections
A.2.5 and A.2.6).

In summary, five major trends have been identified by analyzing the development of ADSs
over time. This analysis also illustrates the status quo of the conceptual and preliminary
aircraft design methods, but it does not predict the future of these methods.

B
Background on the Initiator

The Initiator is an ADS which was developed and is used at the section of Flight Performance
and Propulsion (FPP) at the faculty of Aerospace Engineering (AE) of the Delft University
of Technology (TUD). It has been successfully used in various studies to investigate a wide
range of problems related to the conceptual and early preliminary design of passenger
transport aircraft. This appendix provides background information on the Initiator.

B.1 Development
The development of the Initiator commenced roughly 16 years ago. The development
phases are illustrated in figure B.1 and are also described in a few words in this section.
This shall demonstrate that the development of an ADS is less straightforward than one
might imagine.

2002
development start of

the DEE

2007
introduction of the

Initiator components

2011
introduction of the

Initiator module

2014

creation of the Initiator

extensions for the
Initiator

2019
novel methodologies for the

Initiator

Figure B.1: Initiator development phases

Since 2002 the so-called Design and Engineering Engine (DEE) has been actively developed
at the TUD [69]. The DEE was originally “defined as an advanced design environment,
where the design process of complex products can be supported and accelerated through
the automation of non-creative and repetitive design activities” [75].

In 2007 the so-called Initiator components were first introduced “for providing feasible
starting parameter values for the instantiation of the (parametric) product model” within
the DEE [76, 77]. The Initiator components were merely intended to provide reasonable
estimates of aircraft design parameters satisfying a set of aircraft requirements that could
subsequently be used in a multidisciplinary optimization or in an advanced analysis.

In 2011 the so-called Initiator module was introduced as a coupled “collection of sizing
tools” [69]. Thus, the Initiator module had to consider interaction effects between the
different Initiator components. This eventually made sure that the aircraft design parameter
estimates were not only reasonable but also coherent.

71

72 Appendix B. Background on the Initiator

The Initiator as we know it today was finally created in 2014 as “a tool designed to synthesize
a preliminary aircraft design from a set of top-level requirements” [4]. The system was
primarily developed to compare different conventional as well as unconventional aircraft
configurations. However, it also was a proper implementation of the Initiator module as
defined previously.

Since 2014 the Initiator was regularly updated and extended. In the following some exam-
ples are listed:

• a cost estimation method was added in 2014 [78],
• a rapid vertical tail sizing method was added in 2015 [79],
• an inertia estimation method was added in 2015 [80],
• a ducted-fan propulsive empennage sizing method was added in 2017, [81],
• a modular engine design method was added in 2018 [82],
• and a distributed propulsion design method was added in 2019 [7].

More updates and extensions of the Initiator are listed in table B.1.

In 2019 an attempt was made to restructure the Initiator by reimplementing it using a novel
graph-based methodology [11, 13]. The result was a more structured and agile MDAO
system with improved modularity. But not all parts of the Initiator were considered during
the restructuring and the computational efficiency of the novel implementation was far
from optimal.

The development phases of the Initiator can be summarized by drawing an analogy to a
generic aircraft design process. First, the design problem is broken down and reduced
in size (the Initiator components). Then one realizes that too much simplification is not
suitable for solving the aircraft design problem at hand and certain interaction effects need
to be considered (the Initiator module). Afterwards, the design problem is worked out
in detail (the Initiator) and the level of complexity increases (updates and extensions for
the Initiator). Finally, the design problem is updated which oftentimes requires a new
methodical approach (novel methodologies for the Initiator).

B.2 Objectives
As pointed out earlier, the Initiator is an ADS for the conceptual and early preliminary de-
sign phases. This definition is rather ambiguous and therefore a more elaborate description
of the scope of the Initiator is presented in this section.

The most important feature of the Initiator probably is its ability to synthesize an aircraft in
an almost fully automated manner [11, 59]. The synthesis process often takes only a few
minutes on a modern personal computer. Therefore, the Initiator can be used to compare
many different aircraft configurations rapidly. This has been demonstrated repeatedly (see
appendix B.4) and sometimes has been illustrated nicely (see figures B.2 to B.4). In light of
this, the Initiator can also be described as an aircraft configuration generator.

Another important feature of the Initiator is its ability to handle conventional (tube-and-
wing) as well as unconventional (canard, three-surface, box-wing, blended-wing-body)
aircraft configurations [4, 110]. This distinguishes the Initiator from most of the alternative
ADSs (see appendix A) which are mainly geared towards conventional aircraft configura-
tions.

It should also be noted that Initiator studies are dealing almost exclusively with civil
passenger transport aircraft. There are almost no Initiator studies dealing with other
aircraft categories (e.g. general aviation aircraft, fighter aircraft, vertical-take-off-and-
landing aircraft, cargo aircraft, supersonic aircraft). Principally, the Initiator can deal

B.2. Objectives 73

Table B.1: Publications resulting from studies with the Initiator

Type Publication
year

Title Reference

master thesis 2014 Synthesis of Novel Aircraft Concepts for Future Air Travel [59]
conference paper 2014 A conceptual design and analysis method for conventional and

unconventional airplanes
[4]

journal article 2014 Conceptual design of a passenger aircraft for aerial refueling
operations

[83]

master thesis 2014 Development of a Life Cycle Cost Model for Conventional and
Unconventional Aircraft

[78]

master thesis 2014 Knowledge-Based Engineering Approach to the Finite Element
Analysis of Fuselage Structures

[84]

conference paper 2015 A Practical Method for Uncertainty Analysis in the Aircraft
Conceptual Design Phase

[85]

master thesis 2015 Conceptual Design of Swept Wing Root Aerofoils [86]
master thesis 2015 Accelerating aircraft design using automated process generation:

An experimental architecture for aircraft design software
[87]

master thesis 2015 Design of a modular fuselage for commercial aircraft: To cope with
seasonal variation in passenger demand

[88]

master thesis 2015 Development of a Wave Drag Prediction Tool for the Conceptual
Design Phase

[89]

master thesis 2015 Investigation into the effects of advanced technologies on overall
aircraft performance in a collaborative design environment

[90]

conference paper 2015 Knowledge-Based Engineering Approach to the Finite Element
Analysis of the Oval Fuselage Concept

[91]

master thesis 2015 Relaxed Static Stability Performance Assessment on Conventional
and Unconventional Aircraft Configurations

[92]

master thesis 2015 The Development of an Inertia Estimation Method to Support
Handling Quality Assessment

[80]

master thesis 2015 Vertical Tail Design: Development of a rapid aerodynamic analysis
method

[79]

conference paper 2016 Assessing the Effect of Decreased Longitudinal Stability on
Aircraft Size and Performance

[93]

master thesis 2016 Business Jet Design Using Laminar Flow [94]
master thesis 2016 Conceptual Design of High Subsonic Prandtl Planes [6]
journal article 2016 Impact of pulsed jet actuators on aircraft mass and fuel

consumption
[95]

master thesis 2016 Investigation into the effect of relaxed static stability on a business
jet’s preliminary design

[96]

master thesis 2017 Conceptual Design of Blended Wing Body Airliners [97]
doctoral thesisa 2017 Conceptual Design Study for In-flight Refueling of Passenger

Aircraft
[98]

master thesisa 2017 Conceptual Design Study of a Hydrogen Powered Ultra Large
Cargo Aircraft

[99]

conference paper 2017 Handling Qualities Optimization in Aircraft Conceptual Design [100]
conference paper 2017 Modeling the Propeller Slipstream Effect on Lift and Pitching

Moment
[101]

master thesis 2017 Semi-Analytical Closed-Wing Weight Estimation during
Conceptual Design

[102]

master thesis 2017 Synthesis of an Aircraft Featuring a Ducted-Fan Propulsive
Empennage

[81]

journal article 2017 The optimal cruise altitude of LNG-fuelled turbofan aircraft [8]
journal article 2018 Analysis and design of hybrid electric regional turboprop aircraft [103]
master thesis 2018 Assessment of Conceptual High-Capacity Regional Turbopropeller

Aircraft
[104]

conference paper 2018 Conceptual Design and Evaluation of Blended-Wing Body Aircraft [5]
master thesis 2018 Modular Initiator Modeling of Engines [82]
conference paper 2018 System-level assessment of tail-mounted propellers for regional

aircraft
[105]

master thesis 2018 The Effect of Maneuver Load Alleviation Strategies on Aircraft
Performance Indicators

[106]

conference paper 2019 Conceptual Assessment of Hybrid Electric Aircraft with
Distributed Propulsion and Boosted Turbofans

[7]

conference paper 2019 Effect of Propeller Installation on Performance Indicators of
Regional Turboprop Aircraft

[65]

master thesis 2019 Holistically improving screening decisions under uncertainty in
aircraft conceptual design and technology assessment: Insights on
bottom-up uncertainty quantification and propagation and
integrated socio-technical group decision making

[107]

master thesis 2019 Landing Gear Design Integration for the TU Delft Initiator [108]
conference paper 2019 The Effect of Maneuver Load Alleviation Strategies on Aircraft

Performance Indicators
[109]

doctoral thesis 2019 Agile MDAO Systems: A Graph-based Methodology to Enhance
Collaborative Multidisciplinary Design

[11]

master thesis 2019 Automated Execution Process Formulation using Sequencing and
Decomposition Algorithms for Collaborative MDAO

[13]

a In this publication the use of the Initiator is initially considered but eventually discarded.

74 Appendix B. Background on the Initiator

Figure B.2: Example illustration of selected aircraft concepts generated with the Initiator [4]

Figure B.3: Example illustration of selected hybrid electric aircraft concepts generated with the
Initiator [7]

Figure B.4: Example illustration of selected tube-and-wing and blended-wing-body aircraft con-
cepts generated with the Initiator [5]

B.3. Implementation 75

with other aircraft categories too, although this often requires extensive adjustments. For
example, the Initiator has been used twice to synthesize business jets in the past [94, 96].
But sometimes it is considered more efficient to develop a completely new ADS for other
aircraft categories instead of reusing existing systems [98, 99].

From a high-level perspective the Initiator inputs are aircraft requirements (e.g. number
of passengers, cruise speed, runway length), an aircraft configuration (e.g. tube-and-
wing, box-wing, blended-wing-body) and several empirical databases (e.g. of airfoil or
engine properties). The Initiator outputs are aircraft design parameters such as the aircraft
geometry (e.g. span, length, height) and its key performance indicators (e.g. weights,
operating costs, emissions) [4]. Therefore, the Initiator also allows investigation of the
interaction effects caused by small and large changes to the aircraft requirements [7].

The modules used within the Initiator are either physics-based or empirical. Both types
of modules have their own advantages and disadvantages during the early design phases
(see [111–113]). Physics-based modules are generally more accurate than empirical ones
while at the same time being more expensive – both with regard to implementation efforts
and computational resources. On the other hand, empirical modules are inexpensive but
they are also unsuitable for unconventional or novel designs – because empirical data is
simply not available for those. Thus, the modules used within the Initiator can and need to
be aligned with the problem at hand continuously [4].

The aircraft designs obtained with the Initiator can be compared with existing aircraft
having similar design requirements (but generally different/unknown objectives). The
difference in MTOW is typically between 1-10% which is considered meticulous for an
ADS [4, 5, 95, 103, 105]. The accuracy of other aircraft design parameters is within a
similar order of magnitude (e.g. the span usually is more accurate while the sweep
is often overestimated and less accurate). Since the MTOW is (in one way or another)
influenced by almost all other aircraft design parameters, it is commonly considered a
good indication for the overall accuracy when validating the Initiator [4]. Although the
aircraft design parameters from the Initiator are considered accurate, it is not advised to
state definitive numbers when jointly evaluating different aircraft configurations. Instead,
relative numbers are commonly used for this purpose [107].

Generally speaking, the Initiator is considered a part of the DEE. An interesting aspect
is that the Initiator is sometimes also described as a DEE on its own [69, 76]. Thus, one
can put forward the hypothesis that the Initiator and the DEE can principally be used
interchangeably. This implies that an Initiator with more sophisticated modules can theo-
retically replace the DEE. Alternatively, a DEE with simplified modules can theoretically
replace the Initiator. Demonstrating this conjecture is out of scope for now.

Certainly, the Initiator is not an all-in-one solution suitable for every aircraft design purpose.
It is a powerful tool for aircraft design synthesis that supports its users in translating aircraft
requirements to aircraft design parameters. It can also be used to find interaction effects
that are hidden or too complex to understand at first sight. However, it is still up to the
users to consciously select and balance appropriate aircraft requirements.

B.3 Implementation
In the previous section, the Initiator was explained in rather general terms. In this section,
a more technical description is given.

The most common process flow diagram of the Initiator implementation is depicted in
figure B.5. Since the Initiator is frequently updated the process flow is adjusted incidentally

76 Appendix B. Background on the Initiator

as well (see e.g. [4, 7, 74, 104]). In the given diagram the inputs and outputs are visualized
by rounded boxes. The modules are characterized by square boxes instead. There are both
sizing and pure analysis modules. The modules have different fidelity levels as can be
deduced directly from the naming of the three weight estimation modules.

Figure B.5: Initiator process flow diagram [4]

Figure B.5 shows that the Initiator modules are wrapped into several nested convergence
cycles. Indeed, the synthesis process of the Initiator can be described as a convergence or
feasilization process [7, 105]. The Initiator updates the aircraft design parameters in an
iterative manner until a predefined subset of those parameters (usually only the MTOW as
indicated in the figure above) converge below a certain threshold while still satisfying all
aircraft requirements [7, 105].

Although the Initiator is written in Matlab some of its modules make use of executables
(e.g. XFOIL, AVL, DATCOM) that were developed in different programming languages.
This is unproblematic as long as the executables are treated as black-boxes. The Initiator
modules themselves are often treated as black-boxes as well.

B.4 Use cases

A multitude of problems related to aircraft design have been investigated with the Initiator.
The results were documented in journal articles, conference proceedings, and (master/-
doctoral) theses. This section presents a selection of the problems studied with the Initiator
(in chronological order). The intention is to convey a better impression of the problem
types that can be solved with the Initiator. When provided in literature, specific Initiator
implementation details are also presented here.

For this study a survey was conducted which revealed around 40 of the above-mentioned
documents were published between 2014 and 2019. A little more than half of them are
theses while the other half are academic papers, which sometimes originate from the
former. For an overview, the interested reader is referred to table B.1.

B.4. Use cases 77

B.4.1 Impact of pulsed jet actuators on aircraft mass and fuel consump-
tion (2016)

In 2016 the impact of active flow control on aircraft mass and fuel consumption was studied
[95]. In fact, a system was conceived where the pulsed jet actuators were integrated into
the flaps of an aircraft.

It was shown that the installation of pulsed jet actuators can lead to a decrease in OEW
and MTOW when the actuators are capable of increasing the maximum lift coefficient
by a certain amount. The weight decrease is mainly due to a smaller wing. It was
also demonstrated that the observed overall weight decrease does not necessarily lead to a
reduced fuel consumption because powering the actuators also requires some energy.

For this study three different aircraft were synthesized with the Initiator: one conventional
aircraft and two modified aircraft with slightly different pulsed jet actuator systems. There
was a distinct difference between the conventional and modified aircraft from which the
conclusions presented above could be derived. There were only insignificant differences
between the aircraft with slightly different pulsed jet actuator systems though. This was
attributed to the relatively crude convergence criteria used within the Initiator (i.e. 1 % for
the MTOW and 0.2% for mission range).

For this study the Initiator was only slightly modified: two additional design modules were
integrated into the existing weight estimation modules. The additional modules could
model the pulsed jet actuator system and their effects on aircraft design parameters. Some
of the code in the additional modules was relatively inefficient (e.g. an exhaustive search)
but it was still considered appropriate (i.e. the analysis ran approximately three days on a
personal computer in total). It was also recommended to include additional cost modules
to account for the increased complexity when adding an active flow control system.

B.4.2 Conceptual design and evaluation of blended-wing-body aircraft
(2017/ 2018)

In 2017 the modelling and analysis capabilities of the Initiator for blended-wing-body
aircraft were significantly improved within the scope of a master thesis [97]. A follow-up
conference paper about the comparison between conventional and blended-wing-body
aircraft was published by the same author in 2018 [5].

The objective was to allow a more trustworthy comparison of conventional aircraft and
blended-wing-body aircraft based on the same aircraft requirements and fidelity levels. It
was shown that the blended-wing-body aircraft generally feature favorable characteristics
such as lower weights (e.g. MTOW), higher aerodynamic efficiencies (e.g. lift over drag
values) and thus also lower fuel consumption (e.g. fuel burn per passenger kilometer)
when compared to their conventional counterparts.

For this study, three different aircraft classes were synthesized with the Initiator both as
conventional and blended-wing-body aircraft: a 150-passenger, a 250-passenger, and a
400-passenger aircraft. It was observed that the above-mentioned favorable characteristics
become more distinct with increasing aircraft size. It was noted though that the quantitative
results obtained were more of a qualitative or provisional nature. This was attributed to
simplifications in the analysis modules which then lead to obvious misestimates (e.g. of
the drag).

For this study the Initiator was heavily modified: a novel parametrization for modelling
blended-wing-bodies was introduced and the existing modules were adjusted accordingly.

78 Appendix B. Background on the Initiator

This enhanced the Initiator’s robustness and broadened the geometric design space. How-
ever, the overall design space for blended-wing-aircraft now appeared smaller than the one
for conventional aircraft. Eventually, it was recommended to include even more details
and setscrews in the novel parametrization.

B.4.3 Conceptual assessment of hybrid electric aircraft with distributed
propulsion and boosted turbofans (2019)

In 2019 different innovative aircraft concepts with hybrid electric propulsion systems were
investigated with the Initiator [7]. The synergistic effects of adopting such novel propulsive
technologies emerged clearly from this investigation.

It was demonstrated that especially the distributed propulsion systems influence the design
points (e.g. in wing and power loading diagrams) significantly. This led to excessive weight
increases (w.r.t. both MTOW and OEW) that would annihilate nearly all other benefits
these systems offer. However, nondistributed systems with boosted propulsion systems
appeared to be promising (w.r.t. both weights and energy consumption).

For this study four different aircraft were synthesized with the Initiator: an aircraft of
conventional type (as reference), an aircraft with boosted turbofan engines, an aircraft
with a distributed leading-edge propulsion system and an aircraft with an over-the-wing
distributed propulsion system and with a propulsive empennage. The obtained aircraft
design parameters differed distinctively.

For this study the Initiator was significantly modified: additional modules (e.g. for power
train modelling and analysis) were added, existing modules were modified (e.g. the
constraint analysis, the mission analysis) and the process flow was adapted accordingly.
This way, the interaction effects between the propulsive system and the overall aerodynamic
performance could be captured successfully as well. Nevertheless, it was also emphasized
that the Initiator would still benefit from more detailed (but at that point not available)
models of the propulsive systems.

C
Implementation of the ReInitiator

The ReInitiator has been developed as a reference implementation of the software architec-
ture proposed in chapter 4. This appendix sheds light on some implementation aspects.
Figure C.1 offers an overview of the repository structure of the ReInitiator, showing the
most significant files and directories. The purpose of this appendix is to explain the design
decisions that have shaped this repository structure. Moreover, this appendix aims to
clarify how the proposed software architecture elements can be implemented.

ReInitiator

.gitlab-ci.yml

A file defining (testing)

jobs that are automatically

executed when commits

are pushed to Gitlab

.pre-commit-
config.yml

A file declaring which code
linters and formatters are
executed before new
commits are created

Pipfile/Pipfile.lock

A configuration file used

to manage Python

dependencies and specify

project details

binaries
A directory with binary files required

as dependencies

data
A directory containing various

reference data to be used for

verification purposes

docs
A directory with files required to

build the HTML documentation

reinitiator.ttl

The file defining the

ReInitiator ontology

reinitiator-shapes.ttl

The file defining SHACL

shapes corrsponding to the

ReInitiator ontology

procedures
The package defining the

abstract and concrete

procedure classes

graph
The package providing an

interface to RDF databases

Procedure

ComplexProcedure

SimpleProcedure

geometry_relations
A package defining

procedures encapsulating

geometric relations

aerodynamic_analysis
A package defining

aerodynamic analysis tools

...

GeometryEstimation

Endpoint

Dataset

Context

namespace
The package with static

classes corresponding to the

namespaces in the ontology

INIT

AIRC

...

generate.py

A script to generate the

namespace classes from

the ontology

document_
ontology.py

A script to automatically

generate a HTML file

documenting the ontology

Legend

package module class file directory

examples
A directory containing example

scripts for performing design

studies with the ReInitiator

tests
A directory containing unit and

integration tests

Figure C.1: Overview showcasing important files, directories, packages, modules and classes
contained in the ReInitiator repository

79

80 Appendix C. Implementation of the ReInitiator

C.1 Ontology
One key element of the proposed software architecture is the use of an ontology. The
ReInitiator ontology is based on well-known and openly available schemas/vocabularies,
including RDF, RDFS, OWL, DCTerms, and others. A selection of important high-level
entities of the ontology are shown in figure C.2.

Legend

init:Attributeinit:System owl:Thing
rdfs:subClassOf rdfs:subClassOf

owl:ObjectProperty

init:hasAttribute

owl:AsymmetricPropertyowl:IrreflexiveProperty

init:isConnectedTo

rdfs:subPropertyOfowl:inverseOf

rdf:type

owl:SymmetricProperty

rdf:type

owl:TransitiveProperty

rdf:type

init:hasUnits

init:hasValue

init:wasUpdatedAt

owl:DatatypeProperty

owl:FunctionalProperty

xsd:dateTime

rdfs:range

rdfs:Literal

rdfs:range

rdfs:range

rdfs:domain

rdf:value

rdfs:seeAlso

The timestamp at
which the attribute
was last updated

rdfs:c
omment

rdfs:domain

rdfs:range
rdfs:domain

rdfs:range

rdf:type

rdfs:subClassOf

rdf:type

init:hasSubsysteminit:isSubsystemOf init:hasDirectSubsystem

rdf:Property
rdfs:subClassOf

wing:Span

wing:MainWing

rdfs:subClassOf

airc:TrueAirspeed

airc:Speed

rdfs:subClassOf

rdfs:subClassOf

...

rdfs:subClassOf

wing:Wing...

identified nodeliteral

part of the ReInitiator
ontology

part of other
ontologies/vocabularies

rdfs:subClassOfrdf:Property

rdf:type

Figure C.2: Selection of important high-level entities of the ReInitiator ontology

Please note that the ReInitiator ontology encompasses approximately 350 nodes and 1100
edges. Sketches such as the ones in figure 4.7 and figure C.2 only show a small subset of
these nodes and edges. The true number of elements and actual size of the ontology is
more accurately represented by figure C.3. In this figure, two distinct clusters of nodes are
visible, which are the system and attribute classes, respectively.

The meticulously defined system and attribute classes constitute the core entities of the
ReInitiator ontology. Each of these classes is defined with at least a description and/or a
link to a corresponding entry in the Wikidata1 knowledge base, as illustrated in figure C.4a.
Furthermore, these classes are organized hierarchically, as exemplified in figure C.4b. It is
important to note that the concept of a class in the context of RDF differs from that in OOP.
An RDF class defines a set of resources with shared characteristics, while an OOP class
defines a blueprint for creating objects with specific attributes and behaviors in software
development. RDF classes represent sets of data, while OOP classes encapsulate sets of
objects. Therefore, it is not surprising to encounter classes repeatedly in the hierarchy.

1https://www.wikidata.org
2http://vowl.visualdataweb.org/webvowl.html

https://www.wikidata.org
http://vowl.visualdataweb.org/webvowl.html

C.1. Ontology 81

Figure C.3: WebVOWL2 visualization of the ReInitiator ontology

(a) Example of the definition of an attribute (b) Extract of the class hierarchy

Figure C.4: Screenshot from Protégé3 showing distinct aspects of the ReInitiator ontology

82 Appendix C. Implementation of the ReInitiator

In order to avoid that the ReInitiator ontology becomes too confusing and too cumber-
some to work with (given the numerous classes it defines), a number of namespaces
(with corresponding prefixes) have been established. For instance, core init:System
and init:Attribute classes along with core properties (e.g. init:hasSubsystem and
init:hasAttribute) have been defined in the main namespace http://lr.tudelft.nl/
reinitiator# with prefix init. More specific classes have been defined in subordi-
nate namespaces. For example, the wing:Wing and wing:Span classes have been de-
fined in the namespace http://lr.tudelft.nl/reinitiator/wings# with prefix wing,
while the engi:Fan and engi:DryEngineMass classes have been defined in the namespace
http://lr.tudelft.nl/reinitiator/engines# with prefix engi.

It is important to note that the different systems and attributes have been intentionally
modeled as classes inheriting from owl:Thing (cf. listing C.1). An alternative (and maybe
more conventional) approach would have been to make the different systems inherit from
owl:Thing, while the different attributes are treated as instances of owl:ObjectProperty
(cf. listing C.2). However, the adopted approach offers practical benefits: Firstly, it
makes it possible to define attributes even without specifying a system (e.g. one can
define axioms such as attribute2 rdf:type misc:AirportCategory and attribute2
rdf:type "ClassIV"). Secondly, it ensures that the type of an attribute is always defined
together with its value, units, etc. (e.g. one and the same attribute cannot accidentally
be referred to with multiple unrelated properties such as airc:hasTrueAirspeed and
airc:hasAirportCategory). Thirdly, it simplifies querying, particularly when property
path constructs are involved in the queries.

Listing C.1: Adopted approach for modelling systems and attributes in an ontology
init:System rdfs:subClassOf owl:Thing
init:Attribute rdfs:subClassOf owl:Thing
init:hasAttribute rdf:type owl:ObjectProperty

airc:Aircraft rdfs:subClassOf init:System
airc:TrueAirspeed rdfs:subClassOf init:Attribute

attribute1 rdf:type airc:TrueAirspeed
attribute1 hasValue "850"
attribute1 hasUnits "km/h"

aircraft1 rdf:type airc:Aircraft
aircraft1 init:hasAttribute attribute1

Listing C.2: Alternative approach for modelling systems and attributes in an ontology
init:System rdfs:subClassOf owl:Thing
init:Attribute rdfs:subClassOf owl:Thing
init:hasAttribute rdf:type owl:ObjectProperty

airc:Aircraft rdfs:subClassOf init:System
airc:hasTrueAirspeed rdfs:subPropertyOf init:hasAttribute

attribute1 rdf:type airc:Attribute
attribute1 hasValue "850"
attribute1 hasUnits "km/h"

aircraft1 rdf:type airc:Aircraft
aircraft1 airc:hasTrueAirspeed attribute1

The Protégé3 tool was used for the creation of the ontology due to its user-friendly GUI.
Figure C.5 shows a screenshot from Protégé, providing some statistics about the ReInitiator
ontology. It was decided to store the ontology in the TTL format because this format
provides a human-readable and compact representation of RDF data. Unlike more verbose
formats such as XML or JSON, the use of TTL eases the creation and maintenance of an

3https://protege.stanford.edu/

http://lr.tudelft.nl/reinitiator#
http://lr.tudelft.nl/reinitiator#
http://lr.tudelft.nl/reinitiator/wings#
http://lr.tudelft.nl/reinitiator/engines#
https://protege.stanford.edu/

C.2. Graph package 83

Figure C.5: Metadata of the ReInitiator ontology as displayed in Protégé3

ontology, even in the absence of a tool like Protégé (easy conversion between formats is still
possible). An example of an attribute definition in the TTL syntax is given in listing C.3 (note
that this figure corresponds to the attribute definition shown in figure C.4). Additionally,
the quality of the ontology and potential pitfalls were assessed using the OOPS!4 tool.

Listing C.3: Example definition of an attribute contained in the ReInitiator ontology in TTL syntax
http://lr.tudelft.nl/reinitiator/aircraft#DeliveryEmptyMass
airc:DeliveryEmptyMass rdf:type owl:Class ;

rdfs:subClassOf airc:AircraftAttribute ,
misc:Mass ;

dcterms:alternative "DryEmptyMass" ;
rdfs:comment "Equal to the manufacturer 's empty mass plus the mass of

standard (removable) items." ,
"The mass of the aircraft as produced and delivered by the

manufacturer." ;
init:latex "\\text{DEM}" ;
init:units "kg"^^ogip:ogip .

In parallel to creating the ReInitiator ontology, corresponding SHACL shapes have been
defined in a dedicated file. These shapes impose constraints on RDF data with the in-
tention of enhancing consistency. For example, they can be used to specify that nodes
of the class init:System can be linked to nodes of the class init:Attribute via the
init:hasAttribute object property but not via the init:hasSubsystem object property.
Similarly, they can be used to dictate that a node of the class misc:Efficiency can only be
assigned literals between 0 and 1 via the init:hasValue data property.

C.2 Graph package
In order to work with RDF data and in order to make use of the ReInitiator ontology, the
graph package was developed. This package is structured around three main classes: the
dataset class, the endpoint class, and the context class. These classes are visualized in
figure C.6 and explained in the following. Note that the graph package is based on the
RDFlib5 package, a well-established library serving as the de facto standard for RDF data
manipulation with Python. In the course of developing the ReInitiator, some contributions

4https://oops.linkeddata.es/
5https://github.com/RDFLib/rdflib

https://oops.linkeddata.es/
https://github.com/RDFLib/rdflib

84 Appendix C. Implementation of the ReInitiator

were made to enhance the RDFlib package as well6,7.

Figure C.6: Class diagram illustrating core classes of the graph package

The dataset class of the graph package extends the dataset class of the RDFlib package
by providing four default (named) graphs, as illustrated in figure C.6. Upon instantiation
of the dataset class, two of these graphs, namely the ontology and shapes graph, are
pre-populated. The data graph is to be initially populated by the user of the ReInitiator,

6https://github.com/RDFLib/rdflib/pull/2504
7https://github.com/RDFLib/rdflib/pull/2520

https://github.com/RDFLib/rdflib/pull/2504
https://github.com/RDFLib/rdflib/pull/2520

C.2. Graph package 85

while the inferences graph is automatically populated after running a reasoning engine.
Additionally, the dataset class provides utility methods for populating the data graph
with initial data, for validating the data graph, and for automatic inferencing of design
knowledge.

A dataset instance needs to be backed by a store instance, which provides an interface to an
actual graph database implementation. The RDFlib package provides various stores out of
the box. For the ReInitiator two different stores were considered: the non-persistent default
in-memory store and a modern file-based store leveraging Oxigraph8 database written in the
highly efficient Rust programming language. Initially, the default in-memory store seemed
to be a lot less performant than the modern file-based store. After memoizing/caching the
process of SPARQL query preparation/interpretation, the in-memory store appeared to
be more performant than the file-based store. Both stores proved to be suitable and were
employed interchangeably during the development of the ReInitiator.

Another key element of the proposed software architecture is the endpoint class, which
offers a standardized interface for accessing the dataset and additional logging features.
For this, the endpoint class provides various methods, as illustrated in figures 4.4 and 4.14,
each of which accepts a number of search and filter parameters as input arguments. Subse-
quently, these parameters are translated into a SPARQL query, which is then automatically
prepared/interpreted9, and executed on the dataset. The translation logic is exemplified
in table C.1. Please note that the translation logic is non-trivial and extensively leverages
property path constructs to obviate the necessity for inferred knowledge about transitive
relationships between nodes. Finally, the methods check if the data returned by the dataset
is as expected (and otherwise raise an exception). The get and set methods also automat-
ically update the input and output attributes, respectively, when being called. Note that
the input and output attributes (i.e. the attributes used for logging purposes) are semi-
private attributes. They can be read globally but modified only from within the endpoint
class10. In the future the endpoints might potentially be extended to incorporate access
control mechanisms that can be used to, for example, prevent that some parts of the data
graph can only be modified by any other than a pre-determined procedure. Such a mech-
anism could be useful to avoid unintended behaviors resulting from multiple procedures
concurrently updating a single design parameter.

Another noteworthy class contained in the graph package is the context class. As its name
indicates, the purpose of this class is to provide context to SPARQL queries. This class can
be used to limit which parts of a dataset can be accessed through an endpoint. A context
can be applied at multiple levels: either directly when calling the endpoint methods, or
indirectly when creating an endpoint, or even when defining procedures. The context is
intended to always be propagated down to the query level. The functioning of the context
is best illustrated by an example: When the context init:MainWing is required, this means
that the targeted attribute/system must either be an attribute/system contained in a system
of class init:MainWing or, alternatively, it must be an attribute/system not contained in
any system of the class init:Wing (which is the base system class of init:MainWing). The
latter condition becomes imperative to prevent undue query restrictions when a context
is specified during endpoint creation or procedure definition. For instance, a scenario
may arise where the context init:MainWing is applied to a generic procedure designed
for calculating wing weight. This procedure might very well require an attribute that
is defined for the aircraft system (but not the wing system) as input. Without the latter

8https://github.com/oxigraph/oxrdflib
9This process should be memoized/cached as explained above.

10While in Python one cannot define truly private attributes, the use of the property decorator facilitates
the emulation of semi-private attributes.

https://github.com/oxigraph/oxrdflib

86
A

ppendix
C

.
Im

plem
entation

ofthe
ReInitiator

Table C.1: Examples of the translation of search and filter parameters into SPARQL queries

arguments query

type = ’fuse:Fuselage’
types_transitive = True

SELECT DISTINCT ?system
WHERE
{
?system rdf:type/rdfs:subClassOf* fuse:Fuselage.

}

type = ’misc:Length’
types_transitive = True
system = ’fuse:Fuselage’

SELECT DISTINCT ?attribute
WHERE
{
?attribute rdf:type/rdfs:subClassOf* misc:Length.
fuse:Fuselage ^rdfs:subClassOf*/^rdf:type?/init:hasAttribute ?attribute.

}

type = ’wing:OswaldEfficiency’
types_transitive = False
context = {’wing:MainWing’}

SELECT DISTINCT ?attribute
WHERE
{
?attribute rdf:type wing:OswaldEfficiency.
FILTER (
EXISTS { wing:MainWing ^rdfs:subClassOf*/^rdf:type?/(init:hasSubsystem|init:hasDirectSubsystem)*/init:hasAttribute ?attribute. } ||
NOT EXISTS { wing:Wing ^rdfs:subClassOf*/^rdf:type?/(init:hasSubsystem|init:hasDirectSubsystem)*/init:hasAttribute ?attribute. }

).
}

type = ’engi:OverallEfficiency’
types_transitive = False
context = {’misc:HarmonicMission’,
’misc:Cruise’}

SELECT DISTINCT ?attribute
WHERE
{
?attribute rdf:type engi:OverallEfficiency.
FILTER (
EXISTS { misc:HarmonicMission ^rdfs:subClassOf*/^rdf:type?/(init:hasSubsystem|init:hasDirectSubsystem)*/init:hasAttribute ?attribute. } ||
NOT EXISTS { misc:Mission ^rdfs:subClassOf*/^rdf:type?/(init:hasSubsystem|init:hasDirectSubsystem)*/init:hasAttribute ?attribute. }

).
FILTER (
EXISTS { misc:Cruise ^rdfs:subClassOf*/^rdf:type?/(init:hasSubsystem|init:hasDirectSubsystem)*/init:hasAttribute ?attribute. } ||
NOT EXISTS { misc:FlightPhase ^rdfs:subClassOf*/^rdf:type?/(init:hasSubsystem|init:hasDirectSubsystem)*/init:hasAttribute ?attribute. }

).
}

C.2. Graph package 87

condition, it would not be possible to query such an attribute anymore.

The graph package further encompasses utility functions. For example, it offers robust
serializing and parsing features, which allow for not only storing numerical values and
strings but also complex objects in the graph database. This becomes particularly relevant
when working with highly modularized procedures, where there is often a need to pass
around matrices, dictionaries, etc. To achieve this, a method has been devised that first
leverages the dill package11,12 to convert arbitrary object structures into a byte stream and
then encodes this byte stream into Base64 format, which can be stored seamlessly as literal
in a graph database (and which can be retrieved, decoded and parsed as needed).

Lastly, the namespace package shall be mentioned. Though the namespace package is
not included in the graph package, it is very much related to it. The namespace package
comprises multiple files with static classes that can be automatically generated from the
ReInitiator ontology (see figure C.7). The classes correspond to the various namespaces
defined in the ReInitiator ontology (as previously explained in appendix C.1) and among
others contain all attribute and system classes defined in the ReInitiator ontology as class
attributes. This makes it possible to refer to these attributes and systems from the source
code without relying on plain strings. Instead, one can refer to the class attributes, which
allows for auto-completion, type-checking, etc. After modifications to the ReInitiator on-
tology, a straightforward script execution suffices for regenerating the files containing the
namespace classes (see also appendix C.4).

Figure C.7: Class diagram illustrating a selection of classes from the namespace package

11https://github.com/uqfoundation/dill
12The dill package is a drop-in replacement for the well-known pickle module but can handle a larger range

of object types.

https://github.com/uqfoundation/dill

88 Appendix C. Implementation of the ReInitiator

C.3 Procedures package
Another core element of the ReInitiator is the procedures package. This package encom-
passes abstract procedure base classes, along with concrete procedure classes. The follow-
ing section provides a more detailed explanation of the classes contained in the procedures
package and the overall package structure.

The procedure base class is shown in figure 4.9. It is an abstract class, which means that
it cannot be instantiated. Instead, it specifies various abstract attributes/methods. These
abstract attributes/methods must be defined in subclasses that inherit from the base class.
Only when a subclass defines all abstract attributes/methods can it be considered a concrete
class, and only then can it be instantiated. The main abstract method of the procedure
base class is the compute method, which is supposed to contain the actual calculation
logic of a procedure. However, the procedure base class delineates additional abstract
attributes/methods that must be defined in subclasses, for example for self-documentation
and self-visualization purposes, as illustrated in figure C.8.

Figure C.8: Class diagram showcasing procedure classes with a specific emphasis on the strategic
utilization of abstract attributes and methods

The procedures that exclusively specify calculation logic and do not invoke other proce-

C.3. Procedures package 89

dures are classified as simple procedures. Listing C.4 provides an example class definition
of such a procedure. The listing illustrates that the procedure defines a few attributes with
metadata. Additionally, the procedure implements the compute method, which accepts an
endpoint as input argument and uses the methods provided by this endpoint to retrieve
data from and to write data to a dataset. It is important to emphasize that the compute
method normally does not directly return any values.

Listing C.4: Example class definition of a simple procedure (cf. figure 4.9)
from math import cos
from astropy import units

from reinitiator.graph import Endpoint
from reinitiator.namespace import AIRC, MISC, WING
from reinitiator.procedures import ProcedureException , SimpleProcedure

class WingMassEstimation(SimpleProcedure):

description = "Estimate␣the␣main␣wing␣mass␣for␣transport␣category␣aircraft␣based␣on␣an␣
empirical␣relation."

source = "Torenbeek ,␣E.:␣Synthesis␣of␣Subsonic␣Airplane␣Design,␣1982,␣Section␣8.4.1b"
assumptions = {

"Assumed␣civil␣airplane␣with␣aluminium␣alloy␣cantilever␣wings"
}

def compute(self, endpoint: Endpoint):
Check basic assumption
if endpoint.get(AIRC.MaximumTakeOffMass , units=units.kg) < 5670:

raise ProcedureException
Get empirical factors & physical parameters
k_w = 6.67e-3
b_ref = 1.905
b = endpoint.get(WING.Span, system=WING.MainWing, units=units.m)
Lambda = endpoint.get(WING.HalfChordSweep , system=WING.MainWing , units=units.rad)
b_s = b / cos(Lambda)
...
Calculate base mass
base_mass = (

k_w * b_s**0.75 * (1 + math.sqrt(b_ref / b_s)) * n_ult**0.55 *
((b_s / t_r) / (m_g / S)) ** 0.3 * m_g

)
Determing correction factors
multiplier = 1.0
if endpoint.all(WING.Spoiler, system=WING.MainWing):

multiplier += 0.02
...
Calculate and set final mass
mass = base_mass * multiplier
endpoint.set(MISC.Mass, system=WING.MainWing, value=mass, units=units.kg)

The procedures that consist of and invoke other subordinate procedures are classified as
complex procedures. Multiple types of complex procedures have been established, as
illustrated in figures 4.10 and 4.11, each employing a distinct and pre-defined compute
method. The subordinate procedures contained in a complex procedure are stored in an
ordered dictionary13 which can be modified even during runtime. Listing C.5 presents an
example of how to define a complex procedure. Please note that a number of attributes with
metadata are specified (as with simple procedures). Furthermore, a method14 specifying
the default steps is provided. However, the logic for calling these steps (sequentially in
this particular case) does not need to be defined in the exemplified procedure class, as it
has already been defined in a superclass.

13The OrderedDict type from the Python standard library has been utilized. It is similar to the dict type
but comes with additional methods for rearranging dictionary entries. Since Python version 3.7, the default
dict type also incorporates ordered entries (ordered by insertion order) but lacks methods for rearranging
dictionary entries.

14The default steps cannot be specified directly in an attribute; they need to be defined within a method.
This is necessary to accommodate for referencing/copying peculiarities within Python.

90 Appendix C. Implementation of the ReInitiator

Listing C.5: Example class definition of a complex procedure (cf. figure 4.11)
from reinitiator.namespace import GEAR
from reinitiator.procedures import SequentialProcedure
from reinitiator.procedures.weight_estimation.torenbeek import WingMassEstimation , ...

class AirframeStructureGroupMassEstimation(SequentialProcedure):

description = "Estimate␣the␣mass␣of␣the␣airframe␣structure␣group."
source = "Torenbeek ,␣E.:␣Synthesis␣of␣Subsonic␣Airplane␣Design,␣1982,␣Section␣8.4.1"

def default_steps(self):
return {

"wing_group": Step(WingMassEstimation.default()),
"horizontal_tail": Step(HorizontalTailMassEstimation.default()),
"vertical_tail": Step(VerticalTailMassEstimation.default()),
"fuselage_group": Step(FuselageMassEstimation.default()),
"landing_gear_group": Step(

LandingGearMassEstimation.default(),
foreach=GEAR.LandingGear

),
"surface_control_group": Step(SurfaceControlGroupMassEstimation.default()),
"nacelle_group": Step(NacelleGroupMassEstimation.default()),
"summation": Step(AirframeStructureGroupMassSummation.default()),

}

As already elucidated in section 4.3, procedures are callable objects and can be used akin
to standard functions, as illustrated in listing C.6. The dunder method used to make the
procedure callable (i.e. the __call__ method) serves as a wrapper around the compute
method. Furthermore, it performs some supplementary tasks, such as measuring execution
time and returning a log containing aggregated execution details.

Listing C.6: Example code snippet illustrating how a procedure can be instantiated and invoked
from reinitiator.procedures.weight_estimation.torenbeek import WingMassEstimation
...
procedure = WingMassEstimation()
log = procedure(endpoint)
...

The procedure package is organized hierarchically. At top level, it predominantly contains
abstract procedure classes, described above. At subordinate levels, it mainly encompasses
concrete classes, as illustrated in figure C.9. The subordinate levels are divided by discipline
(e.g. aerodynamics, weights, performance) but not by function (e.g. sizing, analysis)
because one procedure typically performs multiple functions concurrently. A procedure
implementation chart is shown in figure C.10. In contrast to the procedure implementation
chart shown earlier in figure 4.16, this chart demonstrates that the same procedure can
be used several times within different contexts. A related activity diagram is shown in
figure C.11 to further clarify this idea. Moreover, the procedure package incorporates
additional abstract procedures at subordinate levels to facilitate reusability. For instance,
the conditional procedures LiftOverDragEstimation and LostRangeEstimationdepicted
in figure C.10 both inherit from the abstract TurboJetOrTurboProp class that defines the
selection logic applicable to all its subclasses, as visualized in figure C.12.

C.3. Procedures package 91

TorenbeekClass2WeightEstimation

reinitiator.procedures

torenbeekweight_estimation

raymer general_dynamics

AirframeStructureGroupMassEstimation

NacelleGroupMassEstimation

...

aerodynamic_analysis athena_vortex_latice

AVLAnalysis

AVLGeometryGenerator

AVLRunner

AVLPostProcessing

...

drag_estimationgeometry_relations

fuselage wing airfoils
Geometry
Estimation

mission_analysis

masses

performance

plotting

MissionAnalysis

MissionAnalysisHarmonicMission

MissionAnalysisUserDefinedMission

Procedure

ComplexProcedure

SimpleProcedure

...

Step

Legend

package module class

Figure C.9: Partial view of the internal structure of the procedures package

92
A

ppendix
C

.
Im

plem
entation

ofthe
ReInitiator

Legend

 MissionAnalysis

Step Foreach

1 lift_over_drag

2 analysis_user_defined_missions StandardMission

3 analysis_harmonic_mission

4 mass_maximum_take_off

5 mass_maximum_landing

6 mass_maximum_zero_fuel

 LiftOverDragEstimation

Step

A turbo_jet

B turbo_prop

 MissionAnalysisUserDefinedMission

Step

1 performance

2 masses

 MissionAnalysisHarmonicMission

Step Context Conditional

1 mach ✓

2 altitude ✓

3 performance HarmonicMission

4 masses

5 range HarmonicMission

 MTOMCalculation

 MaximumLandingMassEstimation

Step

A simplified

B advanced

 MaximumZeroFuelMassCalculation

 JetLiftOverDragEstimation

 PropLiftOverDragEstimation

 MissionPerformanceAnalysis

Step Context Foreach

1 atmosphere_take_off TakeOff

2 atmosphere_cruise Cruise

3 airspeed Cruise

4 energy_height_take_off TakeOff

5 energy_height_cruise Cruise

6 lost_range

7 engine_efficiency Cruise Engine

8 range_parameter

 MissionFuelFractionAndMassCalculation

Step

1 fuel_fraction_mission

2 fuel_fraction_reserve

3 fuel_fraction_total

4 mass_zero_fuel

5 mass_take_off

6 mass_ramp

7 mass_fuel_mission_reserve

8 mass_fuel

9 mass_landing

 ICAOCalculations

 TrueAirspeedCalculation

 EnergyHeightCalculation

 LostRangeEstimation

Step

A turbo_jet

B turbo_prop

 OverallEngineEfficiencyEstimation

Step

A turbo_jet

B turbo_prop

 RangeParameterCruiseCalculation

 TurboJetLostRangeEstimation

 TurboPropLostRangeEstimation

 OverallTurboJetEngineEfficiencyEstimation

 OverallTurboPropEngineEfficiencyEstimation

 MissionFuelFractionEstimation

 ReserveFuelFractionEstimation

 TotalFuelFractionCalculation

 ZeroFuelMassCalculation

 TakeOffMassBasedOnTotalFuelFractionCalculation

 RampMassEstimation

 FuelMassesCalculation

 TotalFuelMassCalculation

 LandingMassCalculation

 HarmonicMissionMachNumberDetermination

 HarmonicMissionAltitudeDetermination

 HarmonicMissionMassDetermination

 MissionFuelFractionAndRangeCalculation

Step

1 mass_zero_fuel

2 fuel_fraction_total

3 mass_fuel_mission

4 mass_fuel

5 range

 TotalFuelFractionBasedOnTakeOffMassCalculation

 FuelMassMissionCalculation

 MissionRangeEstimation

 MaximumLandingMassEstimationSimplified

 MaximumLandingMassEstimationAdvanced

 SimpleProcedure

 SequentialProcedure

 ConditionalProcedure

always employs

might employ
(this depends on a

condition)

Figure C.10: Example implementation diagram that has been automatically generated from a procedure instance illustrating the reuse of simple procedures
(in different contexts)

C.3. Procedures package 93

Figure C.11: Example activity diagram representing one of the sequential procedures contained in
figure C.10

94
A

ppendix
C

.
Im

plem
entation

ofthe
ReInitiator

Figure C.12: Example inheritance diagram for conditional procedures contained in figures 4.16 and C.10

C.4. Scripts 95

C.4 Scripts
Scripting played a crucial role in the development of the ReInitiator. The core idea behind
scripting revolves around automating routine tasks through the use of simple scripts.
This not only frees users from time-consuming manual work, but, more importantly, also
ensures reproducibility and consistency. The following section provides examples of how
scripting can be used during the development of an ADS such as the ReInitiator.

The most important scripts are most likely contained in the examples directory of the ReIni-
tiator repository (cf. figure C.1). This directory contains several scripts that demonstrate
how the ReInitiator can be utilized for conducting aircraft design studies. The scripts in
this directory typically feature a similar structure: Firstly, a new dataset is created and
populated with initial data such as aircraft requirements or an initial aircraft topology.
Additionally, an endpoint is established. This is followed by the instantiation and subse-
quent execution of one or more procedures. Afterwards, aircraft KPIs and other aircraft
design parameters can be retrieved from the database. Moreover, it is also possible to
run supplementary procedures, for instance procedures that generate plots of the aircraft
geometry. All these steps can be included in a single and straightforward script, as the one
shown in listing C.7.

Listing C.7: Example script demonstrating how the ReInitiator can be used for aircraft design
synthesis purposes
from astropy import units

from reinitiator.graph import Dataset, Endpoint
from reinitiator.procedures.utilities import Synthesis
from reinitiator.procedures.geometry_relations import AircraftGeometryPlotter

Create a new dataset and populate it with initial data
dataset = Dataset()
dataset.load('example-tube-and-wing-configuration.xml')
dataset.load('example-requirements.xml')

Create a new endpoint
endpoint = Endpoint(dataset)

Initialize and execute the synthesis procedure (might take a few minutes)
synthesis = Synthesis()
synthesis(endpoint)

Retrieve aircraft design parameters
mtom = endpoint.get(type='airc:MaximumTakeOffMass', units=units.t)
fm = endpoint.get(type='airc:FuelMass', context={'misc:HarmonicMission'}, units=units.t)
print(f"MTOM:␣{mtom}␣t")
print(f"Fuel␣mass␣(harmonic␣mission):␣{fm}␣t")

Initialize and execute a procedure for plotting the aircraft geometry
plotter = AircraftGeometryPlotter()
plotter(endpoint)

It is also possible to reconfigure the ReInitiator by means of scripting. This is exemplified
in listings C.8 and C.9. The first example shows how the aircraft design process can be
enhanced by substituting two procedures with higher-fidelity alternatives. Here one key
advantage of representing the steps of a complex procedure as an ordered dictionary, rather
than an ordered list, becomes apparent; namely the ease of referencing and replacing
individual steps15. The second example shows how the aircraft design process can be
reconfigured to prevent all engine sizing and weight estimation activities, and to make
use of a known engine with fixed geometry and performance characteristics instead. The

15Note that the __getitem__ and __settitem__ dunder methods have been defined for the complex
procedure class so that complex procedure objects can be treated like a dictionary object. Calling these
methods essentially modifies the steps attribute of a complex procedure object.

96 Appendix C. Implementation of the ReInitiator

second example also shows how activity diagrams can be generated prior to execution,
and how 𝑁2 charts can be generated post execution.

Listing C.8: Example script demonstrating how the ReInitiator can be used to enhance a synthesis
process by substituting procedures
from reinitiator.graph import Dataset, Endpoint
from reinitiator.procedures.utilities import Synthesis
from reinitiator.procedures.weight_estimation.others import EMWET
from reinitiator.procedures.aerodynamic_analysis.tornado import TornadoAnalysis

Create a new dataset and populate it with initial data
dataset = Dataset()
dataset.load('example-tube-and-wing-configuration.xml')
dataset.load('example-requirements.xml')

Create a new endpoint
endpoint = Endpoint(dataset)

Initialize , modify and again execute the synthesis procedure
synthesis = Synthesis()
synthesis['aerodynamic_analysis]␣=␣TornadoAnalysis()
synthesis['weight_estimation]['structure_group']['wing_group]␣=␣EMWET()
synthesis(endpoint)

Listing C.9: Example script demonstrating how the ReInitiator can be used to enhance a synthesis
process by removing procedures and adding additional aircraft design data
from reinitiator.graph import Dataset, Endpoint
from reinitiator.procedures.utilities import Synthesis
from reinitiator.procedures.geometry_relations import AircraftGeometryPlotter

Create a new dataset and populate it with initial data
dataset = Dataset()
dataset.load('example-tube-and-wing-configuration.xml')
dataset.load('example-requirements.xml')
dataset.load('example-engine-data.xml')

Create a new endpoint
endpoint = Endpoint(dataset)

Initialize and modify the synthesis procedure
synthesis = Synthesis()
del synthesis['geometry_estimation']['engine_sizing']
del synthesis['weight_estimation']['propulsion_group']

Plot several activity diagrams
synthesis.activity_diagram()
synthesis['geometry_estimation'].activity_diagram()
synthesis['weight_estimation'].activity_diagram()

Execute the synthesis procedure
log = synthesis(endpoint)

Plot the N2 charts corresponding to the first and
last iteration of the synthesis procedure respectively
log[0].n2()
log[-1].n2()

Similar to scripting entire design workflows, it is also possible to script unit and integra-
tion tests, in order to verify that the individual elements of design workflows behave as
expected. An example unit test is shown in listing C.10. Note the similarity to the previous
listings: Firstly, initial data is generated. Then, a procedure is initialized and executed.
Subsequently, calculated data is retrieved and validated. Both unit and integration tests
can be formulated as functions, and over 100 of these functions have been developed for
the ReInitiator so far. Next to design workflows, tests for core functionalities, such as
generating SPARQL queries and modifying the dataset, have been set up. The pytest16

16https://pytest.org

https://pytest.org

C.4. Scripts 97

framework has been leveraged since it simplifies and standardizes test creation, organiza-
tion, and execution. The framework’s concise syntax and rich features, such as fixtures17,
enhance test readability and maintainability, while providing test coverage reports18. Fur-
thermore, it shall be noted that the ReInitiator repository is hosted on a Gitlab server. A
so-called pipeline19 has been configured to automatically execute all tests as soon as new
commits are pushed to the Gitlab server. The pipeline itself is scripted and defined in the
.gitlab-ci.yml file (cf. figure C.1).

Listing C.10: Example unit test formulated for the ReInitiator as used within the pytest framework
import pytest

from initiator.workflows.weight_estimation.torenbeek import VerticalTailMassEstimation
from initiator.graph import Endpoint
from initiator.namespace import AIRC, MISC, WING

def test_vertical_tail_mass_estimation(endpoint: Endpoint):
endpoint.add(WING.VerticalTail)
endpoint[WING.GrossArea] = 21.5 * units.m**2
endpoint[WING.HalfChordSweep] = 34 * units.deg
endpoint[AIRC.DesignDiveSpeed] = 381 * units.imperial.kt
endpoint[WING.HasFinMountedStabilizer] = False
procedure = VerticalTailMassEstimation()
procedure(endpoint)
mass = endpoint.get(MISC.Mass, system=WING.VerticalTail , units=units.kg)
assert mass == pytest.approx(467.05)

Moreover, supplementary scripts are employed to ensure that the ReInitiator repository
stays clean and consistent. These scripts are defined in the .pre-commit-config.yaml file
and are automatically executed whenever new code is committed to the repository (as
already elaborated upon in section 6.1). It is noteworthy that, unlike tests, these scripts
only take fractions of a second to run and thus can be executed frequently without im-
peding development activities. Nonetheless, these scripts are also included in the Gitlab
pipeline.

Last but not least, the creation of accessible documentation files can be scripted as well.
However, due to time constraints, this has only been explored experimentally during the
development of ReInitiator until now. Firstly, a script has been set up that utilizes the
pyLODE20 tool to document the ontology through an HTML page, which might be more
accessible than the TTL file. Secondly, a script based on the Sphinx21 framework has been
employed to automatically generate multiple HTML pages documenting distinct facets
of the source code. Additionally, activity diagrams like the ones shown in figures 4.12
and C.11 can be automatically included within these HTML pages.

17A fixture is a reusable component, allowing the execution of common code before and/or after test
functions. The endpoint passed as argument to the unit test in listing C.10 serves as an example of such a
fixture. This fixture prevents that a dataset and endpoint have to be manually instantiated within every test
function.

18A test coverage report reveals the extent to which a software’s source code has been tested by evaluating
the portions of code that are executed when test functions run.

19Within Gitlab a pipeline is an automated CI/CD system that allows for the configuration, execution,
and monitoring of a series of jobs. Other code hosting platforms may use different names for their CI/CD
systems. For example, within Github the term actions is used instead of pipelines.

20https://github.com/RDFLib/pyLODE
21https://www.sphinx-doc.org/

https://github.com/RDFLib/pyLODE
https://www.sphinx-doc.org/

	Coverpage
	Preface
	Summary
	Contents
	List of Abbreviations
	List of Symbols
	Introduction
	Aircraft design
	Aircraft design systems
	Initiator overview
	Initiator purpose
	Initiator limitations/desirable reconfigurations
	Initiator code
	Definition of reconfigurability
	Relevance of reconfigurability
	Previous research: Broader view on reconfigurability
	Gap in previous research: Using Initiator modules in a reconfigurable way
	Research outline
	Research objective & questions

	Methodology
	Iterative software development
	Iterative development cycle
	Continuous prototype modifications
	Coding tactics

	Utilization of existent software and established theories
	Starting from existing code
	Checking/Extending the existing code using textbook methods

	Selection of analysis & sizing methods
	Reconfigurability requirements
	The ReInitiator must possess the ability to automatically synthesize realistic passenger aircraft
	The ReInitiator should support support adding, removing, replacing, and reordering analysis & sizing methods
	The ReInitiator must enable conducting design space exploration studies, sensitivity studies and optimization studies

	Issues present in existing ADSs
	Concealed and convoluted source code
	Ambiguous and cluttered data structures
	Extensive and integrated source code
	Complex source code
	Excessive coupling within source code

	A software architecture to address the issues present in existing ADSs
	Centralized data store and self-contained analysis & sizing methods
	Semantic data management
	Standardized and modular analysis & sizing method interface
	Automated logging and diagramming capabilities

	Implications of adopting the proposed software architecture
	Relevance of semantic data management
	Precise definitions
	Inconsistency detection
	Flexible data models
	Universal procedures

	Benefits and drawbacks of highly modular procedures
	Benefits: Understandable, verifiable, and reconfigurable procedures
	Drawback: Bloated ontology
	Opportunity: Optimal granularity level

	Consequences of dynamic procedure behavior
	Impact of assumptions ingrained within analysis & sizing methods
	Integrated assumptions hamper design space exploration and optimization studies
	Suboptimizations: Example 1
	Suboptimizationss: Example 2
	Reversed requirements/Treating inequality constraints as equality constraints
	Assumptions are required for synthesis but not for design space exploration/optimization
	Assumptions were discovered because of proposed software architecture

	Verification & Validation
	Automated tests & quality checks
	Unit tests
	Code quality checks
	Integration tests

	Comparison of the ReInitiator with other ADSs and related MDAO systems
	Central data models
	Alternative data models
	Analysis & sizing methods as modular & nested objects
	Absence of a distinct coordination object
	Analysis & sizing methods as workflows

	Conclusion
	Review
	Recommendations
	Closing

	Bibliography
	Background on ADSs
	Overview
	Comparison
	Initiation & lifespan
	Ownership
	Objectives
	Design phases
	Programming languages
	Programming paradigms

	Trends

	Background on the Initiator
	Development
	Objectives
	Implementation
	Use cases
	Impact of PJAs on aircraft mass and fuel consumption (2016)
	Conceptual design and evaluation of BWB aircraft (2017/2018)
	Conceptual assessment of hybrid electric aircraft with distributed propulsion and boosted turbofans (2019)

	Implementation of the ReInitiator
	Ontology
	Characteristics
	Structure
	Namespaces
	Modelling systems and attribute
	Protégé and OOPS!
	Corresponding SHACL shapes

	Graph package
	Dataset
	Store
	Endpoint
	Context
	Utilities
	Namespaces

	Procedures package
	Procedure class
	SimpleProcedure class
	ComplexProcedure class
	Instantiating and invoking procedure objects
	Package organization

	Scripts
	Design process
	Design process reconfigurations
	Tests
	Pre-Commit Hooks
	Documentation

