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ABSTRACT
Spatial Networks represent the connectivity structure 
between units of space as a weighted graph whose links are 
weighted as to the strength of connections. In case of urban 
spatial networks, the units of space correspond closely to 
streets and in architectural spatial networks the units 
correspond to rooms, convex spaces or star-convex spaces. 
Once represented as a graph, a spatial network can be 
analysed using graph theory and spectral graph theory. We 
present four steps of modelling a spectrum for an urban 
spatial network; present an implementation of a state-of-
the-art spectral graph-drawing algorithm and showcase a 
Spatial Eigenvector Centrality index, which is based on a 
novel definition of spatial networks based on Fuzzy 
Closeness indicators computed using Easiest Path distances.
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1 INTRODUCTION
In the same way Social Networks affect people’s social 
status, actions and choices, Spatial Networks have been 
found to affect people’s spatial actions, such as mobility 
and accessibility. Social Network Analysis, originated in 
the areas of Sociometry and Psychometry, is a relatively 
mature field of study, with seminal publications, which can 
be traced back to 1950’s and 1960’s (e.g. [1], [2]). Graph 
Theory has been applied to study the structure of social 
network, remarkably in absence of concretely manifested 
social networks such as those popular nowadays like 
Facebook or LinkedIn. The field of Spatial Network 
Analysis in comparison is somewhat younger and arguably 
less well-structured, mainly due to the discrepancies of 
three lineages of work in modelling spatial networks, 
namely Geography, Transport Planning, and Spatial 
Analysis. In geographical and transport-related analyses, 
using a Junction-to-Junction graph model is pervasive,
mainly due to the ease of metric distance measurements;

however, in the field of spatial analysis (as in Space Syntax
[3] and similar approaches such as [4], [5] and [6] there is 
another approach to model spatial networks as adjacency 
representations of type Street-to-Street. This latter approach 
is fitter to human perception of space in that it corresponds 
to our intuition: its nodes are meaningful spaces such as 
streets or rooms; and its links can represent the difficulty of 
navigation from one space to another in wayfinding. Once a 
graph is constructed as an abstract representation of the 
spatial connectivity structure, it can be analysed using 
Graph Theory and Spectral Graph Theory. 

Spectral Graph Theory (see e.g. [7]) studies the structural 
properties of graphs and networks (weighted directed 
graphs) by inspecting the eigenvectors and eigenvalues of 
some typical matrices associated with graphs, namely, 
Adjacency Matrix, Laplacian Matrix, Markovian Matrix 
(a.k.a. Transition Probability Matrix or Random Walk 
Matrix). We first show an intuitive application of Spectral 
Graph Theory in drawing large spatial graphs, by 
embedding their nodes in a low-dimensional Euclidean 
Space using eigenvectors of Laplacian and Random Walk 
matrices, implementing and extending the Power Iteration 
Method after [8]. Then, following our interpretation of a 
spatial network as an n-dimensional Hilbert space of 
random vectors where is the number of nodes 
(spaces) in the network; we extend the notion of a Spatial 
Network to a graph that describes how close (similar) are 
the nodes (spaces) to one another.

We process the set of navigable spaces in these steps:

Geographical Modelling

Geometrical Modelling

Topological Modelling

Graphical Modelling

Spectral Modelling

In this paper, we address the last two steps and give brief 
references of our earlier works in the previous steps. Two 
avoid common confusions between graphs and their 
drawings, we refer to graphs as comprised of nodes and 
links; and we reserve the terms vertices and edges for 
referring to topological constructs such as graph drawings. 
In the domain of geometry, we shall speak of points and 
lines analogously. The steps mentioned above transform a 
concrete set of geographical places gradually to a very 
abstract set of eigenvectors and eigenvalues. 
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This abstraction is done by: 1) reducing a real geographical 
place to a set of geometrical shapes (polylines and lines); 2)
representing the topological relations among these shapes 
as in a Topological Skeleton (e.g. Straight Skeleton [9]),
while abstracting topological Incidence Matrices and
extracting Primal (Vertex-to-Vertex) and Dual (Edge-to-
Edge) Adjacency Matrices as Graphs; 4) computing 
distances using graph-theoretical geodesics; and 5) studying
the spectra (i.e. their Eigen pairs) of graph matrices such as 
Laplacian Matrix, and Random Walk Matrices (Transition 
Probability Matrices of Markov Chains) using iterative
methods. Novelties reported in this paper are namely the 
method for extracting the first few important Eigen pairs of 
large graphs matrices, and introduction of a new graph 
matrix called Fuzzy Closeness Matrix.

2 GEOGRAPHICAL MODELLING
Official geographical models of transportation networks are 
usually made by authorities every few years. There are also 
crowd-sourced models such as OpenStreetMap, sometimes 
with a more detailed coverage. The key point is that a 
transportation network model corresponds to a mode of 
transportation. This sounds rather obvious but in case of 
street networks, we should note that there are paths that are 
navigable for pedestrians, which are not necessarily mapped 
on official street network maps. Missing a few important 
links can create big disconnected components in the 
resultant graph. Therefore, it is essential to capture all 
layers of maps relevant to a mode of transportation. Here 
we focus on walking and suggest that all relevant layers 
from OSM be merged together to ensure capturing the 
whole set of navigable spaces for pedestrians.

3 GEOMETRICAL MODELLING
To ensure a complete capture of the structure of the 
navigable space, we suggest that road surfaces be modelled, 
merged, and overlaid; and then the topological skeleton of 
the road surfaces be extracted. A systematic process as such 
is introduced in [10].

Figure 1. Topological Skeleton of a road surface map [10].

Similar information is typically available on OSM as 
polylines describing road segments, steps, bridges, and 
alike. However, such data models often require tedious 
steps of filtering to ensure a high quality topological model.

4 TOPOLOGICAL MODELLING
Once we have a set of reasonably clean set of geometric 
lines describing a topological skeleton of a set of roads 

(navigable surfaces) using an error tolerance we can find 
out how the lines are (nearly) incident to one another. To 
capture these relations, we first model a set of topological 
vertex points at the intersection of the lines; these points 
might be geometrically many, but once seen as vertices they 
should form a set, i.e. they should be distinct as to the error 
tolerance mentioned before. This is to say the vertices 
should be the topological representatives of their 
neighborhoods. Then a set of topological edges can be 
constructed to represent how the lines in the map are 
incident to the mentioned vertices (again using the 
topological definition of a neighborhood). This is to say we 
construct a topological graph data structure. G( , ):  & (1)

Connectivity information of this graph can be captured in 
Incidence Matrices, whose rows correspond to vertex 
indices, and whose columns correspond to edge indices. We 
denote this matrix as and its transposed version as ,
i.e. = .= , | |×| | = 1  ~0 (2)

= , | |×| | = 1  ~0 (3)

5 GRAPHICAL MODELLING
Following [4], we form two types of graphs from the 
topological incidence matrices and represent them by their 
Adjacency Matrices. We can think of two type of adjacency 
matrices now, Vertex-to-Vertex and Edge-to-Edge, which 
we denote respectively as and .= , | |×| | = 1,   & ~( ),  = (4)

= , | |×| | = 1,   & ~( ),  = (5)

It can be shown that: =   (6)=   (7)

In the above equations Deg(v) denotes the number of 
vertices intermediately (through a single intermediary edge) 
adjacent to a vertex v and Deg(e) denotes the number of 
edges intermediately (through a single intermediary vertex) 
adjacent to an edge e. We denote A as the adjacency 
matrix corresponding to the primal graph (N, L) and A
as the adjacency matrix corresponding to the dual 
graph (N, L); in addition, we consider diagonal matrices D and D , whose diagonal entries are respectively equal to 
degrees of vertices and edges in G.= + | =      (8)= + | =      (9)
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It is of course quite straightforward to obtain A and A
from A and A computationally. So far, we showed that 
based on the same topological model two graphical models 
could be constructed. We choose our dual graph A as the 
basis for representation of the spatial network for walking 
(and cycling). However, this graph is yet not a network (i.e. 
it only captures topological information) because it is not 
weighted yet. If we assign costs/impedances to each link in 
this graph, then we can find optimal paths in this graph. It is 
interesting to note that this graph, as long as not weighted is 
undirected; however once weighted as to the ease of 
walking (or cycling) from one street space to another, it can 
become undirected, i.e. having an asymmetric adjacency 
matrix. 

We hereby give a very short overview of our methods on 
how we attribute costs to the links of the abovementioned 
graph. We consider that an optimal path for walking or 
cycling should minimize the cost of traversal from one node 
to another, i.e. from one space to an adjacent space. This 
cost might be physical, e.g. as to the slope of the route or 
cognitive, e.g. as to the difficulty of navigating towards the 
next node. Inspired by [11], [12], [13]and [14]; we have 
made a dual graph representation that finds the Easiest 
Paths for walking or cycling [15]. These paths are as short, 
flat, and straightforward as possible. These paths are found 
by searching the network space whose links are inversely 
biased by attributing costs of traversal in terms of minutes 
of travel time. We show an exemplary graph as such on a
hypothetical space network shown in Figure 2. Spaces are
represented as lines (at right), modelled as a dual graph and 
then weighed asymmetrically by impedances of going from 
each street to another considering elevation angle (the slope 
lowering walking speed), azimuth angle (the steering angle 
complicating navigation) and the path lengths from/to the 
black dots as midpoints of the spatial nodes. The matrix 
plot in black and white shows the adjacency matrix that is 
symmetric, suggesting the underlying graph is undirected. 
However, once the impedances are assigned, the network 
graph model becomes directed; because its adjacency 
matrix is asymmetric, i.e. it is a directed [dual] graph 
models. 

Figure 2. a hypothetical street space network, impedances of the 
links are asymmetric due to the differences between downhill and 

uphill traversals. 

In order to model the cognitive difficulty of navigation
we formulate cognitive impedance as a function of the 

azimuth angle between to streets that ranges between a 
maximum confusion time and 0. = ( ),  ( ) > 20  | ( ) = 2 (10)

The total impedance of traversing a link , is then 
formulated as below:

, = ( , ) + ( , ),  ( , ) + ( , ),   (11)

Figure 3. a) A Shortest Path without considering the terrain and 
difficulty of navigation on an example network from "Tarlabasi", 
Istanbul, data set provided by Ahu Sokmenoglu; b) Easiest Path 
geodesic found considering the terrain and tau=0 for angular 
confusion (thereby no cognitive impedance; c) Easiest Path geodesic 
computed not considering the terrain and tau=15 seconds; d) Easiest 
Path geodesic computed considering the terrain and tau=15 seconds.
The parameter (tau), introduced in equation (10) determines the 
maximum time wasted for making a navigation choice at a junction.

Walking time and cycling time when traversing i street to j street are denoted as ( , )and ( , )respectively. It is 
notable that these values are parametric and can be adjusted 
to represent motor assisted bikes. The easiest path is then 
the path that minimizes the following sum over all 
possible paths. 

( , ) ( , )( , ) , = {( , )|( , ) } (12)

5.1 Revisiting Network Distance
Any notion of distance is based on a corresponding 
geodesic or optimal path of some minimum cost or 
distance; this is because otherwise the notion of distance 
will be subject to different interpretations. While many 
studies take it for granted that shortest path is the basis of 
network distance, we argue that network distance should be 
defined for each mode of transportation; hence, we redefine 
network distances for pedestrians or cyclists as travel times 
experienced through Easiest Paths.
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5.2 Geodesic Centrality Models
Using the Easiest Path (EP) algorithm, we can compute* a
class of ‘directed geodesic centrality’ indices, namely 
(generalized) Betweenness Centrality [16] and Closeness 
centrality [2]. We call them geodesic centrality measures 
because they are directly computed using geodesic paths or 
geodesic distances. We compute EP Betweenness as an 
indicator of how many times a certain street space happens 
to be part of a geodesic (Easiest Path), provided that the 
destination of the path is not further than a threshold radius 
of search (inspired by Local Integration Centrality of Space 
Syntax). EP Closeness Centrality is then computed as the 
following: for each node we compute the average distances 
of all nodes reachable within a search radius and then 
Fuzzify (as in Fuzzy Logics [17]) that distance to assign a 
closeness index.

Figure 4. Easiest Paths Betweenness Centrality, = , Directed 
Graph, Search Radius is 10 Minutes Walking

Figure 5. Easiest Paths Closeness Centrality, = , Directed 
Graph, Search Radius is 5 Minutes Walking, revealing a polycentric 
structure in the neighbourhood

6 SPECTRAL MODELLING AND SIMULATION
Spectral analyses begin with inspecting a few eigenvectors 
of a graph matrix. One of the most intuitive evidences of 
the usefulness of spectral methods in studying networks is 
its application in drawing the undirected graph associated 
with the network. The point is that although eigenvectors 
seems to be very abstract, they turn out to be capable of 
reconstructing a concrete topological embedding that is 
often a ‘good’ graph drawing. Other applications of spectral 
methods can be found in forming a measure of centrality 
called Eigenvector Centrality that also has an intuitive 
interpretation in spite of its sophisticated name. Eigenvector 
Centrality (based on [1], [18], and [19]) assumes that the 
centrality of a node is determined by the centrality of the 
nodes that are immediately linked to it. A variant of this 
centrality index is used in the Google PageRank algorithm 
for ranking webpages as to their importance [20]. We 
hereby show the application of dominant eigenvectors of 
some matrices associated with graphs in spatial analysis. In 
doing so, we focus on some subtleties and issues in using 
eigenvectors in analysing (potentially large) spatial 
networks. To have a smooth transition to the topic we begin 
by the intuitive topic of Spectral Graph Drawing. 

6.1 Spectral Graph Drawing
A graph is an abstract construct that captures the relations 
between a set of elements (nodes) as in their pair-wise 
relations. We usually have a tangible idea of a graph, as a 
spatial network because of the history of graph theory that 
was remarkably started by Leonhard Euler in studying a 
spatial network (the famous 7 bridges of Konigsberg, the 
current city of Kaliningrad). However, note that this form 
of a spatial network representation is only one way to 
capture connectivity of spaces, which is in our terminology 
a Junction-to-Junction adjacency representation. The point 
is that a graph per se needs not to have a geometric or 
topological representation to exist. Once abstracted, it will 
be simply a matrix of adjacencies without any direct 
reference to geometric space. If we later decide to draw a 
graph, we can do it in a number of different ways, such as 
assigning a set of geometric points to the set of nodes and 
drawing geometric lines so as to represent links between the 
nodes. This will always be by definition an arbitrary choice, 
for a single graph can have infinitely many correct 
drawings as such. This way of representing a graph is called 
topological embedding. In the context of graph drawing one 
usually speaks of goodness of a drawing in terms of such 
things as good distinction between vertices (representing 
nodes), i.e. to avoid crossings between edges (representing 
links). While there are many methods for making ‘good’ 
graph drawings, there is one method that is scientifically 
very interesting as it has a unique topological solution using 
only a matrix associated with the graph. Historically, the 
first matrix used for this purpose was the Laplacian Matrix = [21], in which is a diagonal matrix whose 
diagonal entries equal node degrees (row sums of the 
adjacency matrix in case of undirected graphs). 
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The idea is to use ‘the first few eigenvectors’ of the 
Laplacian Matrix to place some vertices for embedding the 
graph in a low-dimensional Euclidean space, usually 2D or 
3D. The first subtle issue to be noted is that this notion of 
first few eigenvectors might be confusing in the sense that it 
depends on how one defines the sorting of eigenvalues. 
Some textbooks use a convention of sorting the eigenvalues 
in an ascending order and some others in a descending 
order. The important issue is that intuitively, the 
eigenvectors associated with the largest eigenvalues are 
most explanatory for the variances between nodes in a 
graph; this is based on a view of a graph as a construct that 
captures similarity between nodes [8]. In that sense, some 
works also use the first few eigenvectors of the Adjacency 
Matrix for Spectral Embedding, specifically those 
associated with the largest eigenvalues. Note that using the 
first eigenvectors associated with the smallest eigenvalues 
of the Laplacian corresponds to the minimizers of the 
potential energy stored in imaginary springs representing 
the edges of the embedding. The following is not a proof, 
but a mathematical explanation of how the eigenvectors of 
the Laplacian matrix can be used to obtain a good drawing.  

Figure 6. spectral drawing of a graph representing spatial 
connectivity of a hypothetical configuration of rooms (left), using 
Laplacian Matrix (middle) and using the Lazy Random Walk Matrix 
(right)

We know that the potential energy stored in a spring is 
proportionate to its squared length. Assuming a position 
vector ( ) for the node of a graph (i.e. a vertex in 

), while is typically 2 or 3, then we are interested in 
minimizing the sum of squared spring lengths:

( , ) ( ( ) ( ))( , )  (13)

Which can be shown to be the same as the ‘quadratic form’ 
associated with the Laplacian Matrix L, meaning: = ( ( ) ( ))( , )  (14)

This minimization problem has a degenerate trivial solution 
of = , which is not interesting at all. To avoid this, we 
can impose a constraint, which keeps the variance of the 
vertices equal to a constant. The variance of the vertices, 
assuming the average vertex to be centered at = can be 
written as below:

= ( ( ))  (15)

These two equations together mean that we can minimize 
the following:

 (16)

This quotient is widely known as the Rayleigh Quotient,
whose minimizers are indeed eigenvectors associated with 
its minimum values that are the lowest eigenvalue†, while 
of course eigenvectors are linearly independent, i.e. , = 0: , [1, ],:= { ( )| 0} =  (17)

= { | ( ) = } =  (18)

6.2 Finding the Dominant Eigenvectors
The Laplacian matrix is related with the negated Adjacency 
Matrix, so its eigenvectors are reversely ordered; this is 
why in Spectral Graph Drawing, some scholars use the top 
eigenvectors of the adjacency matrix, although not with 
very nice results [8]. What is interesting about top 
eigenvectors (i.e. those associated with the largest 
eigenvalues) is that they can be found quickly for large 
graphs using iterative methods such as Power Iteration 
Algorithm. This is the same algorithm used for finding the 
eigenvector representing Google PageRank. Note that the 
alternative to iterative methods is finding the Eigenvalue 
Decomposition (EVD) that is a prohibitively complex 
computational process for large matrices. While the 
solution to finding the top one eigenvector is widely known 
and applied, as in finding Google Page Rank, for finding 
the first few dominant eigenvectors there is no direct hint to 
a straightforward intuitive method in the literature. We here 
give a simple algorithm extracted and generalized from [8]
for this purpose:

Inputs: Marix[ × ] M, int k, int MaxIter//for Hermitian Matrices 
Outputs:Vector[] EVecs, double[]EVals //arrays of results 
vector[n][k] =new vector[n][k];//EVecs 
double[k] lambda=new double[k];//Evals 
for (int i = 0;i < k;i++){ 

double CoDir=0; int counter=0;  
vector =Vector.Random(n); .Normalize(2);//p-norm 
do{ 
o [ ] = ;  
o for (int j = 0;j <i;j++) { [ ] = [ ] [ ], [ ][ ], [ ] [ ];//orthogonalise 

u[i].Normalize(2); 
o } 
o =  [ ]; .Normalize(2); 
o CoDir = , [ ] ; counter+=1; 
}while((CoDir<1 )  (counter<MaxIter)) [ ] = ; 
} 

for (int i = 0;i < k;i++){ lambda[i]= [ ], [ ] ;}  
EVecs= ; EVals=lambda; 

Algorithm 1. Find k Top Eigenvectors via Power Iteration after [8]
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Using the first ‘top degree-eigenvectors’ (generalized by 
Yehuda Koren [8]) of the matrix = ( + ), a.k.a.
the Lazy Random Walk Matrix we can obtain a Spectral 
Drawing, which is more interesting than the one done by 
Laplacian for it is more intuitive and scalable because it 
uses top eigenvectors and so those eigenvectors can be 
computed by a generalized power iteration method. 

Figure 7. Left: 3D Spectral Graph Drawing of the example spatial 
network using the eigenvectors of the Laplacian Matrix; Right: 3D 
Spectral Graph Drawing of the example spatial network using the 
eigenvectors of the Lazy Random Walk Matrix, after Kroen [8]

The reason this algorithm converges can be understood by 
thinking of a random vector as being defined in terms of a 
linear combination of eigenvectors. This can be done 
because eigenvectors are mutually perpendicular to one 
another and thus for an ‘orthogonal basis’. That is:= + + + (19)

If we multiply both sides by a matrix , we get:= + + + (20)

By virtue of the fact that vectors v are eigenvectors with 
corresponding eigenvalues as we can replace all Av  terms by v terms:= + + + (21)

Therefore:= + + + (22)

Therefore:= + + + (23)

This means by multiplying a random vector many times by 
the matrix in question, the product gradually converges to 
(is determined by) the direction of the dominant 
eigenvector; because other terms are attenuated by their 
lesser eigenvalues. 

6.3 Fuzzy Closeness and Closeness Graph
We hereby explain the basis of our Fuzzy approach to 
forming such a Closeness Matrix. We define closeness as a 
Fuzzy linguistic variable that can be interpreted in view of a 
factor saying what is absolutely far for the perceiver of 
closeness. If one is not willing to walk more than 5 minutes, 
then every destination below 5-minute walk will be 

somehow close to them but destinations farther than a 5 
minutes’ walk will be absolutely far. Representing the truth 
level in the statement referring to closeness of a destination,
we can formulate it as value between 0 and 1. In Crisp 
Logic, statements are either true (1) or false (0), but in 
Fuzzy Logics [17], we speak of the whole range [0,1] as for 
correctness of statements. We define Fuzzy Closeness as 
follows, where represents temporal (travel-time) distance; 

represents an adjustment coefficient; and denotes the 
temporal How-Far threshold:( ) = 11 + ( ) (24)

We intend to obtain a sigmoid function to show the concept 
of closeness as it is perceived for a person. 

Figure 8. Fuzzy Closeness as a function of temporal distance

To ensure that the Fuzzy Closeness ( ) will have a value 
smaller than at the threshold distance we can set to 
the following: 2 (1 1) (25)

It is then straightforward to translate each temporal distance 
value in a distance matrix (whose entries are Easiest Path 
distances) to a Fuzzy Closeness value and form a Closeness 
Matrix. This matrix will be the representative of a graph 
that can be seen as a literal translation of the famous 
expression, a.k.a. the First Law of Geography, by Waldo 
Tobler: “Everything is related to everything else, but near 
things are more related than distant things” [22].

6.4 Spatial Eigenvector Centrality
On our undirected adjacency matrix, we can find 
eigenvector centrality rankings. Eigenvector centrality is a 
natural generalization of the intuitive notion of degree 
centrality, which is usually the first thing that comes to 
mind when speaking of centrality. If we say a more 
important node (say a person in a social network or a street 
space) is the one with more links (a person with many 
connections or a street where many other streets meet) then 
we are speaking of degree centrality. However, if we 
differentiate between connections (neighbours), we can 
redefine the centrality (importance [18], status [1], or 
accessibility [19]) relative to the centrality of the 
neighbours themselves in a recursive manner. This is of 
course an intuitive notion like “people are known by their 
friends” or “an important person is a person who is 
connected to important people”. Formally:
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( ) ( ) (26)

( ) = ( ) = , ( ) (27)

is a vector holding eigenvector centrality values, we can 
rewrite the same equation in matrix form:=  (28)

This would be more interesting if we reformulate as below 
: = (29)

This centrality can be computed in two different ways on a 
spatial network:

Firstly, by literally using the adjacency matrix of 
the network; and

Secondly, by computing it on a ‘Fuzzy Closeness’
Matrix

We propose the second approach viewing a graph as a 
construct that captures similarity (proximity in the tempo-
spatial sense) between nodes. 

Figure 9. Eigenvector Centrality of the adjacency matrix

Figure 10. Eigenvector Centrality index of the Closeness matrix,
when distances above “10 minutes cycling” are considered ‘far’

We can clearly see that the fuzzy closeness graph is more 
useful when using spectral methods. Now we show that 
each farness threshold can generate a different eigenvector 
centrality as such. 

Figure 11. . Eigenvector Centrality index of the Closeness matrix,
when distances above “15 minutes cycling” are considered ‘far’

Figure 12. Eigenvector Centrality index of the Closeness matrix,
when distances above “25 minutes cycling” are considered ‘far’

7 CONCLUSION
In this paper we introduced a number of novel models, 
methods and algorithms for Spectral Modelling in Spatial 
Network Analysis. We have generalized the concept of 
spatial network from the ‘topological connectivity’ (in 
Adjacency matrices) to the ‘perceived closeness’ (in Fuzzy 
Closeness matrices). This new definition of the Spatial 
Network comes closer to a Social Network, where places 
are all related to one another but near places are more 
related. Our fuzzy closeness approach, the Easiest Path 
algorithm, and its underlying graph representation are novel 
constructs that make spatial analysis more intuitive, 
understandable, and more easily interpretable; and at the 
same time connect it to the field of spectral graph theory.
The main advantage of spectral analysis in modelling and 
simulation of large datasets is the fact that it reduces the 
dimensionality of the data to a few important factors and 
directions, using which we can transform our n-dimensional 
dataset to a low-dimensional Euclidean space, within which 
similarities based on distance would be representatives of 
similarities in the original space. The success of spectral 
graph drawing in producing ‘nice’ drawings using only 
abstract topological information is remarkable and 
illuminative. Similarly, the fact that we are able to re-
construct closeness-like distributions using eigenvectors on 
our generalized fuzzy graph definition proves a point about 
relevance of spectral methods in Spatial Network Analysis. 
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8 IMPLEMENTATION
The methods reported in this paper are all implemented in 
the new version of a freeware toolkit for Urban 
Configuration Analysis by the first authors. The toolkit will 
be available for download here. We have used MathNet
library for Linear Algebraic data structures and algorithms. 
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* This is a newer version of our previous work [15], in which we have considered underlying graphs as directed graphs and 
obtained different results. 
† Since we are dealing with undirected graphs in Spectral Drawing, these eigenvalues correspond to symmetric (Hermitian, 
Self-Adjoint) matrices and are therefore real-valued. 


