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a b s t r a c t

Hydrogen generation and related energy applications heavily rely on the hydrogen evolution reaction
(HER), which faces challenges of slow kinetics and high overpotential. Efficient electrocatalysts, particu-
larly single-atom catalysts (SACs) on two-dimensional (2D) materials, are essential. This study presents a
few-shot machine learning (ML) assisted high-throughput screening of 2D septuple-atomic-layer
Ga2CoS4�x supported SACs to predict HER catalytic activity. Initially, density functional theory (DFT)
calculations showed that 2D Ga2CoS4 is inactive for HER. However, defective Ga2CoS4�x (x = 0–0.25)
monolayers exhibit excellent HER activity due to surface sulfur vacancies (SVs), with predicted
overpotentials (0–60 mV) comparable to or lower than commercial Pt/C, which typically exhibits an
overpotential of around 50 mV in the acidic electrolyte, when the concentration of surface SV is lower
than 8.3%. SVs generate spin-polarized states near the Fermi level, making them effective HER sites.
We demonstrate ML-accelerated HER overpotential predictions for all transition metal SACs on 2D
Ga2CoS4�x. Using DFT data from 18 SACs, an ML model with high prediction accuracy and reduced
computation time was developed. An intrinsic descriptor linking SAC atomic properties to HER
overpotential was identified. This study thus provides a framework for screening SACs on 2D materials,
enhancing catalyst design.
� 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published
by Elsevier B.V. and Science Press. This is an open access article under the CC BY license (http://creative-

commons.org/licenses/by/4.0/).
1. Introduction

Significant attention is being directed toward designing energy
storage and conversion systems that are both cost-effective and
eco-friendly, with high efficiency [1,2]. This interest stems from
the potential of water electrolyzers and metal-air batteries to facil-
itate the clean and sustainable use of molecular hydrogen (H2). The
operation of these systems depends on the oxygen evolution reac-
tion (OER) and the hydrogen evolution reaction (HER), which are
two key half-reactions [3–5]. The HER holds particular significance
within these electrochemical systems, and conventional electro-
catalysts like platinum and noble metal oxides have been widely
utilized in this regard [6–8]. However, the applicability of these
precious metal group elements is hindered by their high cost and
limited availability, making it necessary to explore alternative cat-
alysts [9–11]. Extensive research is currently being carried out to
develop more cost-effective catalysts, which involves the develop-
ment of non-metal catalysts and alloys made from economically
viable elements. Moreover, ongoing studies focus on decreasing
the size of precious metal components to increase the active
sites within the catalyst, thereby improving catalyst efficiency
[12–14]. The main objective of these ongoing studies is to create
efficient and affordable catalysts for the HER that can overcome
the limitations associated with traditional precious metal-based
catalysts. By achieving this, the practical implementation of hydro-
gen production technologies can be achieved, thereby advancing
clean and sustainable energy solutions. These innovations will be
pivotal in facilitating the broad adoption of H2 as a clean energy
source, ultimately contributing to the realization of a sustainable
and environmentally friendly future.

Two-dimensional (2D) materials have garnered significant
interest recently due to their exceptional properties, including a
large surface area and unique electronic structures. This class of
materials includes various compounds such as 2D transition-
metal dichalcogenides [15,16], MXenes [17–20], metal-organic
frameworks (MOFs) [21–23], carbon-based nanomaterials, and
others [24–27]. Despite extensive research into known 2D materi-
als, their performance in the HER is still not comparable to that of
the noble metal Pt. Thus, it is imperative to find new 2D catalysts
that can match or exceed the HER activity of Pt, particularly for the
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sustainable production of hydrogen through water electrolysis.
Commercial Pt/C, one of the most frequently used Pt-based HER
catalysts, exhibits an overpotential of approximately 50 mV in
acidic electrolytes, but its overpotential is significantly higher in
alkaline electrolytes, highlighting the inherent limitations of Pt in
such environments [7,28–30]. Recently, a novel category of 2D
materials, denoted as MA2Z4, was computationally designed and
experimentally synthesized on Cu, Mo, and W bilayer surfaces
[31–35]. Within this framework, M, A, and Z represent specific
elements, namely Si/Ga, metal (Mo/W/Co), and N/S, respectively.
Ga2CoS4 with the monolayer structure, consisting of seven atomic
layers arranged as S-Ga-S-Co-S-Ga-S, exhibits remarkable mechan-
ical properties and stability under ambient conditions [36]. How-
ever, despite these notable characteristics, the catalytic
properties of this newly discovered 2D material remain largely
unexplored.

To mitigate the previously mentioned limitations, we present
an innovative approach that merges density functional theory
(DFT) calculations with machine learning (ML) to speed up the
rational design of SACs on a 2D Ga2CoS4�x substrate for HER. Ini-
tially, we examined the structural stability and electronic proper-
ties of a 2D Ga2CoS4 monolayer in the presence and absence of
sulfur vacancies. Subsequently, we calculated the decomposition
energies for 18 prominent transition metals, covering the 3d group
(Co, Cr, Cu, Fe, Mn, Ni, Ti, and V), 4d group (Ag, Mo, Pd, and Ru), and
5d group (Au, Ir, Pt, Re, Ta, and W), specifically looking at the
energy required to dissociate a single atom from a metal nanopar-
ticle. Subsequently, DFT calculations were conducted to assess the
HER catalytic efficacy of SACs composed of these 18 metal atoms
embedded on the 2D Ga2CoS4�x (x = 0–0.25) surface. The resulting
data from these calculations formed the basis for training and test-
ing an ML algorithm aimed at predicting the HER catalytic perfor-
mance of SACs made from the examined transition metals. An
intrinsic descriptor was developed to assess the catalytic efficiency
of SACs on the 2D Ga2CoS4�x substrate for HER. The integration of
ML into this process significantly reduces computational demands,
allowing for more rapid and precise predictions of catalytic perfor-
mance compared to traditional DFT methods. This advanced
methodology not only enhances mechanistic understanding but
also provides quantitative recommendations for the selection of
appropriate transition metals and the optimization of experimen-
tal conditions to develop SACs with desired electrocatalytic proper-
ties. This strategy, known for its cost-efficiency and high predictive
accuracy, can be used in other domains of energy materials design.
2. Computational details

2.1. DFT calculations

The electronic and catalytic properties were analyzed using
first-principles calculations, employing the plane-wave basis set
and the projector augmented wave (PAW) method within the
DFT framework [37]. The exchange-correlation effects were treated
using the generalized gradient approximation (GGA) with the
Perdew-Burke-Ernzerhof (PBE) functional, as implemented in the
vienna Ab initio simulation package (VASP) [38]. Charge transfer
was analyzed using the Bader method [39]. The strong on-site Cou-
lomb interaction of localized d-electrons in transition metals (TMs)
was addressed using the Hubbard model, commonly referred to as
the PBE+U method [40]. The U values for the d-orbital of Co-atom
were assigned as 3.30 eV, while for other TMs, the values were
adopted from those reported in the literature [41–43]. A plane-
wave energy cutoff of 520 eV was set, ensuring that the total
energy was minimized until variations were less than 10�5 eV
between iterations, and forces were converged to within
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10�2 eV/Å. For k-point sampling, a 15 � 15 � 1 C-centered grid
was applied. Gaussian smearing with a width of 0.20 eV was used
for the density of states calculations. To evaluate thermodynamic
stability, we analyzed phonon dispersion and vibrational proper-
ties using a 6 � 6 � 1 supercell within the density functional per-
turbation theory framework in conjunction with Phonopy [44–46].
Additionally, we conducted Ab-initio molecular dynamics (AIMD)
simulations within a canonical ensemble (NVT, where the number
of particles, volume, and temperature is conserved), employing a
time step of 2 fs throughout 10 ps at a temperature of 300 K
[47,48].
2.2. Few-shot learning algorithm

A machine learning technique is implemented to establish a
regression correlation between structural and electronic parame-
ters with the overpotential for hydrogen adsorption, leveraging a
dataset from DFT computations. The machine-learning model is
constructed to forecast the HER catalytic performance of SACs on
2D Ga2CoS4�x substrate. The model architecture features two main
components: an embedding module for data integration and a con-
volutional neural network (CNN) for predicting the overpotential
gHER. The CNN includes an input layer for query-support data,
seven hidden layers (five convolutional and two fully connected
layers), and an output layer for gHER prediction. The activation
function for each hidden layer is the rectified linear unit (ReLU),
defined as f(x) = max(0, x), where x is the output of the hidden
layer. The dataset is partitioned into training and testing subsets,
with the support set chosen based on extreme data values. Each
training iteration involves concatenating each query data point
(1 � 5) with the entire support set to generate a new input tensor
(4 � 5). The model is trained using the mean square error (MSE)
loss function to minimize prediction errors.
3. Results and discussion

3.1. Structure, stability, and HER catalytic activity of 2D Ga2CoS4�x

The three-dimensional (3D) bulk Ga2CoS4 material exhibits a
standard layered configuration where van-der-Waals (vdW) forces
connect the individual layers. Fig. 1(a) illustrates the optimal struc-
ture of 3D Ga2CoS4, with the computed lattice constants being
a = b = 3.67 Å and c = 12.26 Å. These parameters align with previous
findings [36] (a = b = 3.65 Å and c = 12.06 Å), thereby validating the
theoretical calculations conducted in this study. The initial struc-
ture of the 2D single-layer Ga2CoS4 was derived from a recently
developed 2D materials database [49]. Upon local and global opti-
mization, the optimized lattice parameters for the 2D Ga2CoS4
monolayer were determined to be a = b = 3.66 Å, as shown in
Fig. 1(b). The similarity in lattice constants between 2D and 3D
Ga2CoS4 suggests weak layer interactions, facilitating easy exfoli-
ation of the 2D single layer, much like the 2D graphene nanosheet.
Fig. 1(b) depicts a top and side view of a 2D Ga2CoS4 monolayer,
which forms a sandwich-like arrangement where a CoS2 mono-
layer is enclosed by two GaS monolayers. Each sulfur atom on
the outer surface is bonded to three gallium atoms, whereas the
sulfur atoms in the inner layer are bonded to three cobalt atoms
and one gallium atom. Another crucial characteristic is the electro-
static potential, shown in the right panel of Fig. 1(b), which is flat in
the vacuum region and symmetrical around the cobalt layer.

The electronic properties of the 2D Ga2CoS4 monolayer were
calculated and are shown in Fig. 1(c). The material exhibits a
metallic nature, with states near the fermi-level primarily arising
from the 3d-orbital of cobalt and 3p-orbital of sulfur, and to a lesser
extent from the 3d-orbital of gallium. According to the projected



Fig. 1. Detailed analysis of the structure and electronic properties of 3D bulk and 2D monolayer Ga2CoS4. (a) The optimized crystal structure of 3D bulk Ga2CoS4. (b) Top and
side views of the exfoliated 2D Ga2CoS4 monolayer along with its potential average. (c) Spin-polarized band structure and projected density of states for the 2D monolayer
Ga2CoS4. (d) Computed localized charge density profile along the z-direction. (e) Computed charge density of the 2D Ga2CoS4 monolayer at the Fermi level, measured to be
approximately 12.7 Å above the surface plane, with values ranging from 3.6 � 10�4 to 7.6 � 10�4 electrons Å�3. The highest values of the Fermi level are located at the atomic
sites. The STM image displays the charge density at the Fermi level.
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density of states (DOS) for Ga2CoS4, along with Co and S1 atoms
(where S1 is bonded to both Co and Ga, and S2 is bonded only to
Ga), and when compared with the projected band structure and
DOS through PBE+U method, it is found that the two bands cross-
ing the Fermi level are mainly derived from the spin-up electrons
of Co and S1 atoms (Fig. S1). This metallic characteristic makes
2D Ga2CoS4 monolayer suitable as a vector for energy-related
devices. Fig. 1(d) illustrates the computed localized charge density
of Ga2CoS4, where negatively charged S-atoms are encircled by
positively charged Ga- and Co-atoms, indicating charge transfer
from Ga- and Co-atoms to S-atoms. The Bader charge analysis
depicts that each S-atom gains about 2.17e and 1.24e from the
adjacent Ga- and Co-atom in 2D Ga2CoS4, respectively. Addition-
ally, the scanning tunneling microscopy (STM) image shown in
Fig. 1(e) was generated using first-principles methods to assist
experimental research. This STM image clearly shows the atomic
structure, with S-atoms appearing brighter than Ga- and
Co-atoms. To assess the thermal and dynamic stability of the 2D
Ga2CoS4 monolayer, phonon dispersion calculation and AIMD
simulation were conducted at 300 K for 10 ps, as depicted in
Fig. S2(a and b). The finding indicates that the phonon shows
positive frequencies, and the structure remains intact after the
simulation, confirming the high stability of the 2D Ga2CoS4 mono-
layer. Furthermore, the combination of stable phonon modes,
robust structural integrity under thermal conditions, and the favor-
able atomic arrangement suggests that the synthesis of this mono-
layer could be achievable using contemporary techniques such as
chemical vapor deposition (CVD) or molecular beam epitaxy
(MBE). Notably, these methods have been successfully employed
in the synthesis of other 2D materials within the same family, such
as the layered MoSi2N4, as reported by Hong et al. [50]. The use of
Ga, Co, and S as constituent elements, which are commonly uti-
lized in the thin-film fabrication, further supports the feasibility
of experimentally realizing the 2D Ga2CoS4 monolayer.

Furthermore, to explore the HER activity on the pristine and
defective 2D Ga2CoS4�x monolayer, a 3 � 3 supercell of pristine
Ga2CoS4 monolayer is initially constructed and three distinct
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adsorption sites are examined for H-atom adsorption, namely on
a Ga-atom (TGa), on an S-atom (TS), and in the center of the Ga-S
hexagonal ring (H). Full optimization revealed that the S atom site
was the most energetically favorable for hydrogen adsorption,
forming an S–H bond with a length of 1.052 Å. The free energy
variation (DG⁄H) was computed to be about 2.45/2.55/2.71 eV for
TS/TGa/H, respectively, indicating thermodynamically unfavorable
H-adsorption on the pristine 2D Ga2CoS4 monolayer and thereby
suggesting that the pristine 2D Ga2CoS4 is highly inert to
H-adsorption and is not a viable catalyst of HER. Subsequently,
we examined the catalytic activity for hydrogen adsorption on
the 2D Ga2CoS4 monolayers with surface sulfur vacancies (SV).
Different defective configurations were generated by removing a
S-atom from the surface of various supercells: 2 � 2, 2 � 3,
3 � 3, 3 � 4, 4 � 4, and 5 � 5. These configurations resulted in
SV concentrations of 12.5%, 8.3%, 5.6%, 4.2%, 3.1%, and 2.0%, respec-
tively (Fig. S3). For illustration, we focus on the relaxed structure of
the 3 � 3 supercell of 2D Ga2CoS4 supercell with one surface SV, as
shown in Fig. 2(a), since other SV concentrations yield similar
structures. Fig. 2(a) demonstrates that removing a surface S-atom
prompts the three adjacent Ga-atoms to move slightly toward
the SV center. In the 2D materials family, the occurrence of surface
atom vacancies is almost inevitable. This occurs mainly because
the structural disorder caused by defects increases entropy, which
generally correlates with a reduction in the thermodynamic stabil-
ity of the material. Nonetheless, some defects might be thermody-
namically advantageous under certain conditions [51–53]. We
have also assessed the challenge of introducing sulfur vacancy by
calculating formation energy as detailed in the Supporting Infor-
mation (SI, Appendix S1). As summarized in Table 1, the formation
energies calculated for S-rich conditions range from 6.090 to
6.343 eV with increased CSV. This increase is anticipated because
materials with more vacancies tend to have higher energy levels,
which are associated with reduced thermodynamic stability. Con-
versely, under S-poor conditions, the values shift from �2.405
to �1.802 eV, indicating a strong potential for introducing surface
SVs in such an environment.



Fig. 2. (a) A top and side view of hydrogen atom adsorbed on the 3 � 3 supercell of defective 2D Ga2CoS4 substrate with a single sulfur vacancy. (b) Free energy diagram for
the HER on 2D Ga2CoS4�x substrate at various CSV. (c) HER activity volcano plot for 2D Ga2CoS4�x compared to other 2D materials previously reported [54–60], including
platinum as a benchmark [7]. (d) Correlation between the Ga-3p band center (eGa-3p) and the Gibbs free energy change (DGH

⁄ ) for hydrogen adsorption on 2D Ga2CoS4�x

substrate with varying CSV.

Table 1
Comparative data of adsorption energies (DEH

⁄ ), the DZPE�TDS, Gibbs free energies
(DGH

⁄ ) for H-adsorption on 2D Ga2CoS4�x substrate with various sulfur vacancy
ratio (CSV), and formation energies (Eform) of the corresponding defective systems.
DEC=DZPE�TDS indicates the correction energy term.

Supercell CSV (%) Eform (eV) DEH
⁄ (eV) DEC (eV) DGH

⁄ (eV)

2 � 2 12.5 6.343 0.461 0.23 0.691
2 � 3 8.3 6.299 0.265 0.24 0.505
3 � 3 5.6 6.172 �0.096 0.24 0.144
3 � 4 4.2 6.152 �0.218 0.24 0.022
4 � 4 3.1 6.129 �0.302 0.24 �0.062
5 � 5 2.0 6.090 �0.343 0.24 �0.103
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As previously mentioned, 2D Ga2CoS4 demonstrates very high
HER activity based on the calculations of the Gibbs free energy as
detailed in Appendix S2 in SI, with a DGH

⁄ value of 2.45 eV. Our
detailed investigation into the catalytic properties of 2D Ga2CoS4�x

with varying concentrations of surface SVs shows a significant
enhancement in HER activity, with DGH

⁄ values ranging
from �0.103 to 0.691 eV as summarised in Table 1 (Fig. 2a and
Fig. S4). Notably, for CSV below 5.6%, the DGH

⁄ values are compara-
ble to or even lower than that of widely used Pt-catalyst, suggest-
ing near thermoneutral hydrogen adsorption (Fig. 2b). This implies
that 2D Ga2CoS4�x with a low sulfur vacancy ratio can potentially
outperform commercial Pt-based catalysts in HER activity. The
optimal HER activity is observed at a CSV of approximately 4.2%,
where the overpotential is predicted to be around 0.022 eV, sug-
gesting that by precisely controlling the surface sulfur vacancy
ratio, 2D Ga2CoS4�x can be tuned to act as an efficient catalyst for
hydrogen production. Furthermore, a volcano-curve assessment
outlined in the SI (Appendix S3) and depicted in Fig. 2(c) indicates
that 2D Ga2CoS4�x with CSV of 4.2% and 3.1% demonstrates
significantly higher HER activity compared to other 2D materials
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and Pt-based catalysts. The underlying mechanisms behind the
enhanced HER activity are attributed to the introduction of spin-
polarized defect states near the Fermi level, which enhances
hydrogen adsorption (Fig. S5). Additionally, our analysis based on
the p/d-band center theory (Appendixes S4 and S8 in SI) reveals
a direct correlation between the SV concentration-dependent
HER activity and the energy shift of eGa-3p values as illustrated in
Fig. 2(d). These findings underscore the potential of 2D Ga2CoS4�-
x as an effective HER catalyst.
3.2. HER catalytic activity of transition metal atoms

In the next step, we employed a defective 2D Ga2CoS4�x surface
to anchor 18 single TM atoms from the 3d, 4d, and 5d groups, cre-
ating a series of SACs labeled as TM@Ga2CoS4�x. The top and side
views of fully optimized structures are illustrated in Fig. 3(a) and
Figs. S6–S8, which were used to evaluate their long-term catalytic
stability. Stability during reactions is a key factor for the durability
of TM@Ga2CoS4�x catalysts, necessitating a strong binding of single
metal atoms to the 2D Ga2CoS4�x surface to avoid aggregation. The
binding energies (Eb) were calculated as detailed in the SI (Appen-
dix S5). A negative Eb value is generally considered favorable as it
indicates the formation of stable single-atom sites and prevents
metal atom aggregation, as noted in previous studies. Table S1
shows that all the TM@Ga2CoS4�x systems investigated exhibited
negative Eb values, indicating that the TM atoms are stably
anchored to the 2D Ga2CoS4�x substrate. Furthermore, the differ-
ence between the binding energy and the cohesive energy (Ec) of
TM atoms was computed to assess the metal-support interaction
in TM@Ga2CoS4�x. Our results, presented in Fig. 3(b), demonstrate
that for most TM@Ga2CoS4�x candidates, the DEb values were
negative, indicating a propensity for spontaneous dispersion rather



Fig. 3. (a) Top/side views of the 2D Fe@ Ga2CoS4�x substrate. (b) Computed adsorption energy change and the cohesive energies of TM atoms for TM@ Ga2CoS4�x substrates.
(c) Minimum energy pathway illustrating the detachment process of a single TM atom from a host nanoparticle to binding on 2D Ga2CoS4�x substrate. (d) Activation energy
and the corresponding temperature requirements for the detachment of a single TM-atom from the host nanoparticle, as predicted by transition state theory. The inset
displays the fully relaxed pathway for the decomposition of a Fe-atom from a Fe-nanoparticle.

N. Khossossi and P. Dey Journal of Energy Chemistry 100 (2025) 665–673
than clustering on the surface. However, for Au, Ir, and Ni, as
shown in Fig. 3(b) and Table S1, the DEb values were slightly pos-
itive, suggesting a potential for clustering on the 2D Ga2CoS4�x sur-
face, since agglomeration is more likely whenDEb > 0. Additionally,
TM@Ga2CoS4�x stability in an electrochemical environment was
assessed using the dissolution potential (Udiss), as detailed in
Appendix S5 and Table S1. A positive Udiss against the standard
hydrogen electrode indicates stability against TM-atom dissolu-
tion. Only three candidates show a negative value and may be
unstable. Most TM@GaCo2S4�x systems show effective anchoring
by the 2D Ga2CoS4�x substrate. Favorable Eb and Udiss values sug-
gest that 2D Ga2CoS4�x can prevent TM atom clustering or dissolu-
tion, offering a promising substrate for active sites.

Additionally, the specific electronic properties of TM atoms
interacting with the substrate are critical in maintaining their dis-
persion and avoiding clustering on the substrate. In this context,
Bader charges analysis and electronic DOS serve as effective meth-
ods for quantitatively assessing charge redistribution and Coulomb
interactions. Charge transfer values from the TM atom to the 2D
Ga2CoS4�x substrate, as shown in Table S1, range from 0.44e to
1.55e. This leads to all the metal atoms acquiring a positive charge.
This indicates a significant electrostatic interaction between the 2D
Ga2CoS4�x substrate and the TM atoms. Figs. S9–S11 illustrate that
as the occupation of TM-d orbitals increases, there is a correspond-
ing increase in charge transfer from left to right across each group,
consistent with the electronegativity trends of the TMs (Table S1).
For instance, Ta-atom shows the highest charge transfer of 1.55e
with an electronegativity of 1.51, whereas Au-atom has a charge
transfer of 0.44e with an electronegativity of 2.54. Positively
charged TM atoms play a pivotal role in enhancing hydrogen
adsorption, thus benefiting the catalytic process. Additionally,
TM@Ga2CoS4�x exhibits excellent electrical conductivity due to
the partially filled TM-d orbital states, which facilitates charge
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transfer during the HER. This property, demonstrated in
Figs. S9–S11, is essential for improving HER performance and
lowering the overpotential.

Further investigation was conducted into the fundamental
mechanisms governing the dispersion of TMs on a 2D Ga2CoS4�x

surface. As illustrated in Fig. 3(c), the energy barrier of the system
was examined corresponding to the scenario when a single TM
detaches from a TM nanoparticle and subsequently attaches to
an SV site on a 2D Ga2CoS4�x surface. As the detachment process
initiates, the energy steadily rises until reaching a peak upon full
detachment of the TM. This peak value signifies the decomposition
energy barrier that must be surpassed for the TM to detach from
the nanoparticle. A lower decomposition energy barrier indicates
an easier detachment of the single TM atom from the metal
nanoparticle. For practical applications, we estimated the requisite
temperature and the activation energy, depicted in Fig. 3(d), for a
single TM atom to leave the host nanoparticle using the transition
state theory formalism outlined in the SI (Appendix S6). The anal-
ysis reveals that the required temperature for seven chosen single
TM atoms to detach from the nanoparticle ranges between 730 and
1850 K. However, for Co, the required temperature exceeds 1900 K,
rendering it impractical to synthesize Co single TM atoms on a sub-
strate without deteriorating it.

We then evaluated the catalytic activities for the HER of eigh-
teen transition metals adsorbed on the 2D Ga2CoS4�x substrate.
The HER mechanism is typically represented by a three-state
model [61]: (I) the initial state (H+ + e�), (II) the intermediate state
(H*), and (III) the final state (H2). This model involves two main
stages: (1) hydrogen adsorption (H+/e� + * ? H*) and (2) hydrogen
release (H+/e� + H* ? H2 + *). For each TM@Ga2CoS4�x system, we
placed a hydrogen atom atop each TM atom and performed full
optimizations to calculate the Gibbs free energy change for hydro-
gen adsorption (DGH

⁄ ). The results are shown in Fig. 4(a and b) and
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summarized in Table S2. The primary indicator of catalytic HER
activity is DGH

⁄ . Optimal HER activity corresponds to |DGH
⁄ | values

that are close to zero, as values that are too high or too low are less
favorable for HER. Ideally, DGH

⁄ should be near zero, meaning that
the Gibbs free energy of H-adsorption should approximate that
of the product or reactant. The optimal catalytic activity is typically
achieved if DGH

⁄ is in the range between �0.2 and 0.2 eV or less
than �0.09 eV (Pt). In Fig. 4(b), the calculated DGH

⁄ values for the
optimal TM@Ga2CoS4�x systems are shown, identifying six systems
(with TM=Au, Pt, Ag, Cu, Pd, and Ni) that have moderate H binding
strengths and overpotentials (gHER) close to that of Pt (111) with an
overpotential of 0.09 V [61]. To provide a comprehensive compar-
ison, we evaluated the HER catalytic performance of Ag@Ga2CoS4
and Pt@Ga2CoS4 under conditions where no surface sulfur vacan-
cies were present. Pt and Ag were adsorbed onto a pristine
3 � 3 � 1 supercell of Ga2CoS4, as shown in Fig. S12. Our findings
indicateDGH

⁄ of approximately 0.38 eV for Ag@Ga2CoS4 and 0.24 eV
for Pt@Ga2CoS4, which are higher than those for systems with sur-
face defects (Fig. S12). The d-band center theory, as elaborated in
Appendix S4, suggests that the HER activity of TMs is associated
with the position of their d-band centers. We computed the
d-band center (ed) for each TM atom, illustrated in Fig. 4(c), and
established a correlation with the HER activities of TMs@Ga2CoS4�x.
As shown in Fig. 4(d), there is a clear linear relationship between
ed and gHER for TMs@Ga2CoS4�x. Specifically, as the d-band center
becomes more negative, the overpotential gHER decreases,
indicating an enhancement in HER activity. This trend suggests
that the d-band center position is also a critical factor in determin-
ing the catalytic efficiency of TMs for the HER.

3.3. Few-shot ML for HER catalytic activity prediction

Finally, we have introduced a ML algorithm aimed at predicting
the HER catalytic activity to address the difficulties of efficiently
evaluating the HER catalytic properties of various SACs. The
Fig. 4. (a, b) The computed Gibbs free energy change for hydrogen adsorption DGH
⁄ on 2D

center positions of TM-atoms on a 2D Ga2CoS4�x substrate. (d) The linear regression bet
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proposed workflow, depicted in Fig. 5, integrates DFT calculations
with ML methodologies. This integration allows us to uncover
descriptors and rules with high predictive power for the develop-
ment of new catalytic materials. Importantly, the ML protocol does
not require detailed knowledge of specific reaction steps; instead,
it relies on general data about the transition metals. This feature
makes it particularly useful for exploring new catalyst systems
with unestablished reaction mechanisms, facilitating the data-
driven identification of key features that provide rapid insights into
potential mechanisms. The primary focus of this study is the HER
overpotential. The workflow is structured into three different
steps, where we build upon these steps by employing a state-of-
the-art few-shot learning approach, which has been proven to be
highly effective in domains with limited data availability.
Few-shot learning is especially valuable in catalysis, where data
acquisition can be both costly and time-consuming. Notably,
few-shot learning models have been successfully applied in other
fields, such as drug discovery, to predict compound activities with
high precision despite limited experimental data [50,62,63].
Inspired by these applications, we have tailored our few-shot
learning model to the specific challenges of catalytic research,
particularly in predicting the HER catalytic activity of SACs on a
Ga2CoS4�x substrate.

Our few-shot learning model is designed to address the inher-
ent complexities associated with SAC systems, such as surface
reconstruction, leaching, and defects. By integrating this approach
with a novel intrinsic descriptor that links SAC atomic properties to
HER overpotential, we have significantly enhanced the ability of
the model to predict HER overpotential with high accuracy. The
model architecture, which combines a feature extraction module
with a fully connected neural network (FCNN), is optimized for
both prediction accuracy and computational efficiency (Appendix
S9). This ensures that our model can effectively process and ana-
lyze complex datasets, leading to more reliable predictions. Addi-
tionally, the incorporation of DFT-derived features into our
TMs@Ga2CoS4�x substrate and the optimal TM@Ga2CoS4�x catalysts. (c) The d-band
ween the d-band center position and the HER overpotential gHER.



Fig. 5. The comprehensive workflow illustrating the integration of TMs@Ga2CoS4�x selection, DFT calculations, performance correlation, and the precise prediction of
catalytic properties through DFT and machine learning techniques. This approach leverages high-throughput computational methods to identify key descriptors and rules,
enhancing the predictive accuracy for developing new and promising HER catalysts.
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model enhances its robustness by capturing the subtle nuances of
catalytic activity. The workflow is structured into three different
steps, as follows.

� Data compilation: In the first stage, we collect HER overpotential
gHER data from DFT calculations for a group of eighteen TMs on a
2D Ga2CoS4�x substrate. This data will serve as the foundation
for our ML model. To thoroughly capture the electronic proper-
ties affecting electron transfer and reaction energy during HER,
we identify five essential parameters associated with the TMs.
These parameters include atomic characteristics (metal atomic
radius rM and d-electron count hd), periodic classification (group
number g), and reactivity indicators (electronegativity EM and
the first ionization energy Ei). The input data (xi = [rM, hd, g,
EM, Ei]) are combined with the target data (gHER) for the eigh-
teen TMs, forming a comprehensive dataset for the ML model
training.

� Machine learning-based training and testing: In this stage, we
construct a multi-layered ML model to derive features from
input data at various abstraction levels. The previously gathered
dataset is randomly split into two groups: a testing subset con-
taining two input-target pairs for Pd and Pt, and a training sub-
set consisting of the remaining sixteen TMs. To address the
limited data, we employ a few-shot learning technique, which
is suitable for scenarios with sparse data [63–66]. For the case
of a single transition metal atom supported on a 2D Ga2CoS4�x

substrate, each with distinct coordination environments, few-
shot learning is used to capture the geometric spatial relation-
ships between the transition metal atom and Ga atoms. The
atomic parameters identified earlier serve as node features,
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with connections formed based on bonding states. This topolog-
ical information is fed into the ML model, which consists of five
convolutional layers and two fully connected layers. The convo-
lutional layers extract multi-level features that describe the
interactions between the transition metal atom and the Ga
atoms. The final outputs of the convolutional layer are then pro-
cessed by the fully connected layers to predict the overpotential
of transition metal atom through regression.

� Using PyTorch [67], the ML model was developed and trained
with two separate data subsets. The Adam optimizer [68] was
employed during training, maintaining a fixed learning rate of
0.001 across 125 epochs. The mean squared error served as
the loss function, and the model performance was measured
using relative deviation. After 60 training iterations, the model
with the lowest relative deviation on the testing subset was
selected as the optimal one. This training and evaluation pro-
cesses were specifically targeted at assessing the HER catalytic
activity of single transition metal atoms on the 2D Ga2CoS4�x

substrate. The predictions of HER activity by the optimal ML
model showed a maximum deviation of 7.63% compared to
those obtained via DFT calculations.

� Model prediction: In the final stage, we leverage the most effec-
tive ML models derived in the preceding stage to forecast the
HER catalytic activity, particularly the gHER of transition metal
SACs on the 2D Ga2CoS4�x substrate with the single transition
metal atoms being the remaining eleven transition metal spe-
cies. The comprehensive dataset encompassing input parame-
ters for all the transition metal species is meticulously
documented in Table S3. To accelerate the process of finding
the best catalyst candidates, we define a novel intrinsic catalytic
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HER-activity descriptor. This enables the establishment of a
‘‘volcano-curve” relationship between gHER and the descriptor
[69], shown in Fig. 6(a).

Based on the Pearson correlation coefficient (PCC) of different
features (as delineated in Fig. 6b) and the reaction energy in HER,
we discern five parameters, where Ei, g, hd, and EM exhibit positive
correlations with the HER catalytic activity, while rM demonstrates
an inverse relationship. Consequently, we derive an initial expres-
sion for the intrinsic catalytic activity descriptor (u) as hd � g � Ei �
(EM / rM). Considering the crucial role of metal binding on the 2D
Ga2CoS4�x substrate, we integrate the electronegativity (Ej) and
atomic radius (rj) of the 2D Ga2CoS4�x substrate into the u, culmi-
nating in the expression.
u ¼ hd � g � Ei � EM=rM þ Ej=rj
� � ð1Þ
Fig. 6(a) illustrates the ‘‘volcano-curve” relationship, depicting the
dependency of gHER on the intrinsic descriptor u for SACs composed
of various transition metals on the 2D Ga2CoS4�x substrate, based
on both DFT calculations and ML predictions. Our result indicates
that Pt, Ag, and Cu occupy the peak of the volcano, representing
the optimal HER catalytic activity. This highlights that Pt and Ag,
among non-radioactive transition metals, exhibit superior HER cat-
alytic activity on a Ga2CoS4�x substrate. The volcano relationship
between gHER and u in Fig. 6(a) is crucial for identifying SACs with
favorable HER catalytic properties. Additionally, the volcano rela-
tionship calculated from the logarithm of exchange current density
log(i0) versus DGH

⁄ for various catalysts further reflects the HER
activities of these SACs. The volcano diagram in Fig. 6(c) serves as
a straightforward method to visualize, compare, and enhance the
activity, thereby aiding in the design of different metal catalysts.
Fig. 6. (a) Catalytic activities for the HER as a function of the intrinsic descriptor u for TM
Ga2CoS4�x substrate. (c) Exchange current density for hydrogen adsorption on SACs o
predicting HER catalytic activity of TMs@Ga2CoS4�x systems using DFT compared to ML
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The ML model notably enhances the speed and precision in
identifying volcano-curve relationships by efficiently predicting
HER activity, as shown in Fig. 6(d). To evaluate computational effi-
ciency, we compared the central processing unit hours (CPU-h)
necessary for DFT calculations and ML predictions of HER activity.
Utilizing the VASP package on a 128-core supercomputer, DFT cal-
culations require approximately 20.0 CPU-h per DGH

⁄ and gHER

value, which amounts to 1000 CPU-h on a single-core CPU. In com-
parison, ML predictions, including model training, testing, and pre-
diction, are accomplished in less than 1 min on a single-core CPU.
This demonstrates that ML predictions for the catalytic activity of
SACs on 2D Ga2CoS4�x substrate are vastly more time efficient
but as accurate as the DFT calculations. Consequently, the signifi-
cant reduction in computational cost achieved through the ML-
driven discovery process effectively mitigates the limitations of
DFT calculations in identifying high-performance SACs on 2D Ga2-
CoS4�x substrate. Our work demonstrates an ML-accelerated
approach for the prediction of the overpotential of HER and shows
the HER overpotential of SACs on the 2D septuple-atomic-layer
Ga2CoS4�x. However, the influence of the substrate on the HER
activity needs to be further investigated.
4. Conclusions

In conclusion, we have demonstrated a rational design method-
ology for 2D septuple-atomic-layer Ga2CoS4�x supported SACs that
show enhanced catalytic activity for the HER, using a combination
of DFT and ML techniques. Our research highlights that the incor-
poration of transition metal nanoparticles into a stable SAC config-
uration on a 2D Ga2CoS4�x substrate is controlled by the energy
barrier of single metal atom detachment from the nanoparticle.
An intrinsic descriptor has been identified, showing a strong
s on a 2D Ga2CoS4�x substrate. (b) PCC for the five atomic properties of SACs on a 2D
n a 2D Ga2CoS4�x substrate. (d) Comparison of computational costs involved in
techniques. cm�2.
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correlation with the HER catalytic activity of SACs on 2D Ga2CoS4�x

substrate, following a volcano-curve plot relationship, which
enables the efficient selection of optimal SACs. The ML model, fea-
turing a few-shot learning algorithm, significantly reduces the
computational time required to determine the HER catalytic activ-
ity of SACs on 2D Ga2CoS4�x substrate. This ML-accelerated,
simulation-based design approach holds significant promise for
expediting the discovery of effective SACs for a wide range of cat-
alytic applications.
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