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Abstract 

Title: Experimental analysis of the flow around a cylinder with a 
square cross-section 

 

   
Author: E.W.M. Roosenboom, © 2005  
   
Contact: eroosenboom@hotmail.com  

 
The present work investigates the flow around a two-dimensional square section object at 
varying angles of incidence. The experimental approach employs Particle Image Veloci-
metry for the determination of the time-averaged velocity field and the unsteady large scale 
coherent variations (e.g. vortex shedding) as well as turbulent fluctuations. The angle of 
incidence is varied from 0° to 45° covering the entire range of possible wind directions. 
The investigation constitutes a further step within the ongoing research for the assessment 
of the quasi-steady theory for the low-frequency oscillation (galloping) phenomenon of 
bluff bodies. 
 
A specific aspect of the set-up is the use of a transparent hollow model, which allows light 
transmission and minimizes internal total reflection. Above 10° incidence the flow may
reattach on the lower surface and produce a separation bubble. Time-mean averaged veloc-
ity fields reveal that the near-wake length increases monotonically, peaking at 10°. Beyond, 
the distance from the vorticity centres to the nearest corner of the model drops signifi-
cantly, caused by the shift of the separation point location. The vortex shedding is influ-
enced hereby to a large extent. The flow organisation is further analysed with Proper Or-
thogonal Decomposition (POD) to investigate the unsteady flow structures associated with 
vortex shedding. The POD modes are used to reconstruct a low-order flow model that 
provides a phase reconstruction of the vortex shedding sequence for all angles of inci-
dence. 
 
In addition to the velocity field characterisation, a method to determine the mean (time-
averaged) lift and drag coefficient of the model from PIV velocity data is proposed. The 
Reynolds-averaged momentum equations are employed to calculate the pressure gradient
field, yielding subsequently the pressure field by means of a two-dimensional integration 
technique. The estimated pressure field is introduced in an integral momentum balance, 
which is solved on a contour around the model. The method has been successfully applied
to the experimental data of the flow around a square cylinder. The force data show satis-
factory agreement with reference data published in literature.  
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 Chapter
 

1
  Introduction 

 

Aerodynamic research related to aeronautical applications generally involves the 
flow around streamlined bodies. There are however interesting phenomena that 
occur in the presence of non-streamlined bodies. These so-called bluff bodies ex-
ist almost anywhere because a body in general is not streamlined. Among many 
examples are buildings, bridges, bridge piers, chimneys, antennae, and islands. As 
a consequence, bluff body flow is also extensively studied in hydrodynamics and 
civil engineering. When these bluff bodies are introduced in a flow field, the flow 
forms a separated region. This separated flow will usually be unsteady and will 
create vortices and introduce fluctuating forces. In figure 1-1 an example of such 
vortices is clearly visible in the atmosphere behind Guadalupe Island (located 
about 200 km outside of the Mexican west coast). 
 

Figure 1-1: Atmospheric vortices 
in the wake of Gua-
dalupe Island [Cour-
tesy of NASA, MISR 
Team] 

 
The fluctuating nature of this kind of flow is responsible for vibrations of struc-
tures. A distinction can be made in two types of vibration, Vortex induced vibra-
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tion (VIV) and Flow induced vibration (FIV). In the vortex induced vibration vor-
tices are shed at (or close to) the natural frequency of the structure causing the 
structure to respond [Williamson et al, 2004]. The flow-induced vibration is char-
acterized by a low frequency oscillation, much lower than the vortex shedding 
frequency [Robertson et al, 2003]. Unsteady aerodynamic forces can lead to en-
ergy extraction from the flow. The extracted energy will amplify initial small dis-
placements and/or rotations of the body when there is a negative aerodynamic 
damping. Regarding the flow around bluff bodies the typical type of flow-induced 
vibration is commonly referred to as galloping, it is similar to flutter in an aero-
elastic analysis. 
 
Galloping is a low frequency high amplitude vibration. This type of vibration can 
clearly be seen on a windy winter day when ice accretion on a power cable makes 
it aerodynamically unstable and thus susceptible to galloping. Because of the high 
amplitude motion, galloping can cause great damage to bridge decks or power ca-
bles. Ultimately such an oscillation can lead to the failure of a structure. One fa-
mous example is the failure of the “Tacoma Narrows Bridge” (figure 1-2), also 
known as ‘Galloping Gertie’, in Washington State in the US on November 7, 
1940. 
 

 
Figure 1-2: Tacoma Narrows Bridge failure due to galloping 
 
Some measures can be taken to suppress or reduce the susceptibility of a structure 
to galloping. Bridge decks can for example be designed more aerodynamically, 
such that the wind has less influence on the structure. The introduction of taper in 
tall buildings disturbs the two-dimensionality of the flow and will reduce gallop-
ing. In the case of power cables special connectors can be used to suppress the ef-
fect of galloping. While contra measures are used widely, the theoretical back-
ground of these flows remains under investigation. The oscillations of the gallop-
ing of a structure can be estimated with a quasi-steady theory. This theory is 
widely used in galloping related cases, but experiments show deviations from this 
theory. 
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The essential assumption of the quasi-steady theory is that the results of experi-
ments (or numerical predictions) on a static model at certain flow conditions may 
be used in the prediction of the dynamical oscillations of the same structure at the 
same flow conditions. This assumption is, however, at least questionable. In order 
to verify this assumption on which the quasi-steady theory is built an ongoing re-
search is conducted at the Aerodynamics Department of the Faculty of Aerospace 
Engineering at the Delft University of Technology. Previous investigations on os-
cillating rectangular models are reported by Van Oudheusden in 1993, 1995 and 
2000.  
 
To enable an investigation of the quasi-steady assumption a database of static re-
sults has to be created. This database of results can then be used for a comparison 
with future experiments on an oscillating model. Van Hinsberg (2004) conducted 
Particle Image Velocimetry (PIV) experiments on a square prism at static condi-
tions. Additionally a Proper Orthogonal Decomposition (POD) was used to create 
a low-order model of this type of flow, allowing a phase-resolved reconstruction 
of the vortex shedding. In the present work this investigation is continued and ex-
panded. The flow around a square prism, a cylinder with a square cross-section, 
will be measured with PIV. Earlier studies confirmed that the flow was very de-
pendent on the angle of incidence and only mildly on the Reynolds number (Luo 
et al., 2005). Therefore in the present study the Reynolds number will be kept 
constant at about 2·104, based on a free stream velocity of 10 m/s and a model di-
ameter of 30 mm. To study the effect of the angle of incidence, the model will be 
placed at various angles of incidence ranging from 0° to 45°. Between 0° and 15° 
the model will be measured every 2.5°; between 15° and 45° the model will be 
measured every 5°. The POD analysis will be applied to create low-order models 
of the investigated flows. Specific problems of the flow around a square prism can 
be contributed to the resulting aerodynamic force on this model. It was investi-
gated how to obtain force data from the velocity field data acquired with PIV, us-
ing the control-volume approach. A two-dimensional integration of the Reynolds-
averaged pressure gradient will be used to provide for the pressure in the integral 
momentum force equation, other terms being determined (indirectly) from the PIV 
results. This allows a calculation of the lift and drag coefficients at the measured 
angles of incidence. 
 
The report is organized as follows. Chapter 2 introduces some specific aspects of 
bluff body flow. This type of flow is introduced with the flow around a circular 
cylinder. This is then extended to the flow around rectangular cylinders and in 
particular around a square cylinder. Some attention is given to the galloping the-
ory. The experimental set-up is explained in chapter 3. The experiments are per-
formed with Particle Image Velocimetry (PIV), a small introduction on the basic 
principle of this technique is provided. The initial set-up, as well as the further de-
velopment, of the experiments is presented in detail. The results of the experi-
ments are shown in chapter 4. First, a selection of statistical averaged results is 
presented. Secondly, the unsteady flow characteristics are determined by means of 
a Proper Orthogonal Decomposition (POD). Also, a low order representation of 
the flow can be made based on this POD analysis. In chapter 5 a method to derive 
the lift and drag coefficients from PIV data is given. Finally, the conclusions of 
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the experiments and the analysis are summarized in chapter 6. Also, some rec-
ommendations for improvement and further research are given. 
 
The appendices deal with an in-depth explanation and/or a documentation of spe-
cific topics. A derivation of the classical galloping criteria is provided in Appen-
dix A. Appendix B explains the optical properties of the two models used in the 
experiments. A full derivation of the expression for the Reynolds averaged pres-
sure gradient and two integration methods to obtain the pressure field are pre-
sented in Appendix C. All the statistical and unsteady results are presented in Ap-
pendix D. 
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 Chapter
 

2
  Aspects of Bluff Body Flow 

 

This chapter will deal with several aspects of general bluff body flow. The flow to 
be studied in the experiments is the flow around a square cylinder. This flow 
shares a great similarity with the flow around a circular cylinder. Since the flow 
around a circular cylinder is well documented some attention is given to this con-
figuration first, before summarizing previous experiments and Computational 
Fluid Dynamics (CFD) results, which explain in more detail the flow around a 
square cylinder. This chapter concludes with an overview of the quasi-steady gal-
loping theory and the identification of points that need investigation. 

2.1 The flow around a circular cylinder 

In any flow there are two basic sources for aerodynamic drag on an object: skin 
friction drag and pressure drag. Skin friction drag contributes most to the drag for 
a streamlined body. In a bluff body flow the dominating contribution is due to 
pressure forces because of large separation areas. When classifying bluff bodies a 
distinction can be made into bodies with sharp edges (squares, rectangles, etc.) 
and bodies with rounded edges (circular, elliptical, etc.). 
 
The main difference between the two types of bodies is the location of the separa-
tion point. For bodies with sharp edges the separation point will stay in the same 
position, while for bodies with rounded edges the separation point will move al-
ternately over the surface of the object. Both type of flows have a similar devel-
opment of flow structures in the separated flow region. The flow around a circular 
cylinder for various Reynolds numbers is depicted in figure 2-1. Figure 2-1a 
shows a very viscous flow, so-called Stokes flow, where the Reynolds number is 
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typical below 4. Two stable vortices appear in the separated region for Reynolds 
numbers between 4 and 40, figure 2-1b. 
 
 

 
Figure 2-1: Various types of flow over a circular cylinder [Anderson, 1991] 
 
 
When the Reynolds number is further increased the flow becomes unstable and 
vortices are being shed alternately from the cylinder, figure 2-1c. Such a vortex 
pattern is called a Karman vortex street. The vortex shedding frequency can be 
characterized with a dimensionless number, the Strouhal number, S (or St): 
 

 fDS
V

=  (2.1) 

 
where f the vortex shedding frequency, D a particular dimension of the body and 
V the velocity of the flow field. 
 
For Reynolds numbers between 200 and 105 the Karman vortex street turns into a 
turbulent wake, see figure 2-1d. In the range of Reynolds numbers between 105 
and 3·106, figure 2-1e, the flow separates on the forward surface but a transition to 
turbulent flow takes place and the flow is able to reattach at the backward surface. 
This particular effect causes a smaller wake and hence reduces the pressure drag 
on the cylinder. 
 
The transition from laminar to turbulent flow depends on the Reynolds number as 
was pointed out in figure 2-1. These transitions can occur in different regions of 
the flow, see figure 2-2. For figure 2-2a-d the flow becomes gradually more turbu-
lent as the Reynolds number is increased. The different types of transitions are: 
 

a) Transition in the wake, 

b) Laminar separated transition in the free shear layers, 

c) Transition in the boundary layers, transition moves towards stagnation 

point, 

d) All regions turbulent. 
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BL = boundary 
layer,  
L = laminar,  
T = turbulent,  
Tr = transition, 
S = separation 

Figure 2-2: Transitions in disturbed regions [Zdravkovich, 1997] 
 

2.1.1 Governing parameter: Reynolds number 

The Reynolds number, Re, can be regarded as the ratio of inertia forces to viscous 
forces. It is defined as: 
 

 Vl VlRe ρ
µ ν

= =  (2.2) 

 
where ρ the density of the medium, V the velocity of the flow field, l a reference 
length of the body (for example the width), µ the viscosity and ν the kinematic 
viscosity. 
 
The Reynolds number is the governing parameter for disturbance free flow around 
cylinders. Additional influencing parameters (which can become a governing pa-
rameter under certain conditions) are:  
 

- Free stream turbulence  
- Transverse or stream wise oscillations of the body 
- Surface roughness 
- Wall blockage and wall proximity 
- End effects 
- Aspect ratio and free end of the cylinder 

2.1.2 Transition phases and eddies 

During the experiments the Reynolds number will be around 20·103. Therefore the 
most important transition is the transition in the shear layers. This transition con-
tains three phases: 
 
1) Development of transition waves,  350-400 < Re < 1·103-2·103  
2) Formation of (alternating) transition eddies,  1·103-2·103 < Re < 2·104-4·104  
3) Burst to turbulence,  2·104-4·104 < Re < 1·105-2·105 
 
The formation of alternating transition eddies is a high-speed mode of eddy shed-
ding and is characterized by two stages: formation and shedding. The formation of 
eddies occurs when the free shear layers behind the cylinder roll up at a fixed lo-
cation. The fully-grown eddies start an eddy street due to alternating shedding.  
 
This high speed eddy shedding depends on 4 parameters: 
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1. Distance between free shear layers  
2. Strength of fully grown eddy 
3. Thickness of shear layers 
4. Entrainment into near wake. 

 
 

 
Figure 2-3: Compilation of St versus Re [Zdravkovich, 1997] 
 
 
The distance between the free shear layers, or the width of the near-wake, is 
slightly smaller during the phase of the formation of eddies. The length of the 
eddy formation region is the longest here and the variation of the Strouhal number 
(figure 2-3) is related to the variation of the near-wake width. Vorticity generation 
and dissipation affect the strength of a fully-grown eddy. Both are similar in this 
region and the strength is thus constant. As the thickness of the free shear layers 
increases the shedding frequency is expected to decrease. The entrainment of the 
adjacent free stream into the wake affects the formation and shedding of eddies. 
At the end of the formation region, where the free stream crosses the wake axis, a 
large periodic entrainment can be seen (figure 2-4). 
 
 

 
Figure 2-4: a) Velocity field, b) Streamlines at X/D = 8 and Re = 16·103 

[Zdravkovich, 1997] 
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2.1.3 Entrainment streamlines 

The point where two entrainment streamlines meet is a confluence point, each 
eddy has one confluence point. See for example the confluence point S in figure 
2-5. Despite the fact that the Reynolds number is large (14·104) similar eddies are 
present in figure 2-4 for Re = 16·103. Both figures have a frame of reference, 
which moves with the position of the eddy centres. When the frame of reference is 
fixed to the cylinder no eddies or entrainment can be detected. In figure 2-5 en-
trainment streams are present as E1 to E4 in an averaged velocity field at the mid-
point of the shedding cycle. The free shear layers are represented by the dotted 
lines.  
 

 
Figure 2-5: Instantaneous velocity field at Re = 14·104, S-

confluence point, E1, E2, E3, E4 - entrainment layers 
[Zdravkovich, 1997] 

 
 
Samples of the velocity field at four stages of the first half of the shedding cycle 
are given in figure 2-6. Figure 2-6a shows an elongated eddy being split by the 
upper entrainment stream. The upper entrainment stream displaces and elongates 
the split eddies until a confluence point is formed at the bottom side of the near-
wake, figure 2-6b. The split eddy is shed when it is fully engulfed by the upper 
entrainment stream, e.g. it is carried downstream by the flow. The width of the en-
trainment stream increases on the growing eddy (bottom of near-wake) and de-
creases on the opposite side (top), see figure 2-6c and d. When the half cycle is 
completed, the process of eddy shedding is repeated in a same manner with eddies 
being shed due to the bottom entrainment stream. These two related and opposite 
entrainment streams show an out of phase variation, which is responsible for the 
fluctuating lift force on the cylinder.  
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Figure 2-6: Four sequences of eddy shedding, a) -0.12, b) 0.00, c) 0.12, 

d) 0.25 of one shedding cycle at Re = 14·104 [Zdravkovich, 
1997] 

 
A conventional way to interpret eddy shedding in the near-wake is to regard the 
flow as ‘open’ when viewed from upstream and as ‘closed’ when viewed from 
downstream. Both interpretations are given in figure 2-7. Notice that the conflu-
ence regions correspond to the cut-off of the free shear layer, the part regarded as 
‘closed’. 
 

 
Figure 2-7: Comparison of Zdravkovich’s sketches and Drescher’s visualiza-

tion [Zdravkovich, 1997] 
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2.2 Flow around rectangular cylinders 

The discussion of flows around cylinders can now be extended to the class of rec-
tangular cross-sections. The flow around a rectangular cylinder has a large simi-
larity with the flow around a circular cylinder, but some notable differences are 
apparent, such as the effect of the afterbody and the angle of incidence. 

2.2.1 Topology of rectangular cylinder flow 

The aerodynamic characteristics of rectangular cylinders strongly depend on the 
absence, or presence, of reattachment of the shear layer in relation to the length to 
height ratio, /b h a of the cross-section. A distinction into three categories can be 
made: 
 

1) Separated, /b h  < 2.8 
2) Intermittently reattached, 2.8 < /b h  < 6.0 
3) Fully reattached, /b h  > 6.0 

 
From figure 2-8 it can be noted that the Strouhal number (St) will decrease with 
an increasing length to height ratio. Figure 2-9 shows numerically determined vor-
ticity contours of various types of cross-sections [Shimida et al., 2002]. Figure 
2-9a-e shows the separated cross-sections in which a periodic and apparent vortex 
shedding is observed. Also observed is that the generation of vortices takes place 
at large distances from the cylinder for /b h  up to 2. For / 2b h =  the vortex gen-
eration is the weakest of all cross-sections. Between / 2b h =  and 2.8 two fre-
quency modes appear, which are determined from the Fourier spectrum of the 
fluctuating lift. This bimodal vortex shedding is accompanied by an occasional re-
attachment of the separated shear layer on the rear surface. 
 

 
Figure 2-8: Variation of Strouhal number [Shimida et al., 2002] 

                                                 
a  Note that some of the figures use the equivalent notation /B H , or /b d , or /B D . 
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Figure 2-9: Instantaneous vorticity contours around rectangular cross-sections 

[Shimida et al., 2002] 
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2.2.2 Influence of angle of incidence 

A second distinction, the first being the alternating separation point, between the 
flow around a circular cylinder and a rectangular cylinder is the influence of the 
angle of incidence, α. Clearly a circular cylinder is line symmetric for every line 
passing through its origin and thus the flow around it will also be symmetrical, 
and similar at every angle of incidence. In contrast the flow around a rectangular 
cylinder at an angle of incidence is obviously not identical for all angles of inci-
dence. See for example figure 2-10 where a sketch of the flow around a rectangu-
lar cylinder is given. From this sketch it can be noted that for some angles of inci-
dence reattachment can occur. 
 

 
Figure 2-10: Assumed flow pattern around a 

rectangular prism [Matsumoto 
et al., 1998] 

 
Luo et al. [1994] conducted an experimental investigation to identify the effects of 
after body shape and the angle of incidence on the flow past several prismatic 
bodies. The tested prismatic bodies are a square cylinder, 2 trapezium cylinders 
and a triangular cylinder. Based on their definition of positive directions (figure 
2-11), which are commonly defined in the opposite sense, the results for the lift 
coefficient and the drag coefficient are plotted in figure 2-12. The angle of inci-
dence at which reattachment occurs happens to be the same angle at which the lift 
coefficient is at its maximum (its minimum negative value in standard notation) 
for every tested cross-section. At this position the drag coefficient is also at its 
minimum [Chen et al., 1999]. When the cylinder is at positive angle of incidence 
(here: downwards) the flow will separate from both corners. The shear layer from 
the corner closest to the free stream flow will be also closest to the cylinder. This 
will result in a high suction on this side of the model and a higher pressure on the 
other side. The shear layer separating from the other corner will be further from 
the cylinder, resulting in a higher pressure. This will lead to a positive lift coeffi-
cient (note again that the angle of incidence is defined positive for a rotation 
counter clockwise). 
 
Increasing the angle of incidence will ensure that the shear layer from the corner 
closest to the free stream moves closer to the cylinder. At a certain angle of inci-
dence this shear layer will reattach on the cylinder, the lift coefficient is at its 
maximum at this position. Also a separation bubble is formed on this side of the 
model. When the angle of incidence is increased even further this separation bub-
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ble will decrease in size. Simultaneously the pressure difference will decrease, and 
consequently the lift coefficient will decrease (increase in common notation). The 
influence of the angle of incidence and the occurrence of reattachment is thus 
similar to a change in the shape of the after body. So reattachment of the shear 
layer on the cylinder can occur at a certain angle of incidence and/or for a certain 
length to height ratio (see figure 2-9). 
 

 

 

  

 

 

Figure 2-11: Dimensions of cross-
sections and directions 
of positive quantities 
[Luo et al., 1994] - 
Note: Common posi-
tive directions are de-
fined opposite of these 
definitions 

 Figure 2-12: a) CL versus α, b) CD 
versus α [Luo et al., 
1994] 

 

2.2.3 Bluff bodies subjected to galloping 

The specific nature of bluff body flow is responsible for vibration of the structure. 
A distinction can be made in two types of vibration: 
 

1. Vortex induced vibration (VIV), 
2. Flow-induced vibration (FIV) 

 
In the vortex induced vibration (VIV) vortices are shed at (or close to) the natural 
frequency of the structure causing the structure to respond [Williamson et al., 
2004]. The flow-induced vibration (FIV) is characterized by a low frequency os-
cillation, much lower than the vortex shedding frequency [Robertson et al., 2003]. 
In the current research flow induced vibrations are of interest. Regarding the flow 
around bluff bodies the typical type of flow-induced vibration is commonly re-
ferred to as galloping, it is similar to flutter in an aero-elastic analysis.  
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Galloping is a low frequency high amplitude vibration, hence the name as it is 
similar to the motion of a galloping horse. This type of vibration can clearly be 
seen on a windy winter day when ice accretion on a power cable acts like a bluff 
body and thus becomes susceptible to galloping. Because of the high amplitude 
motion, galloping can also cause great damage to bridge decks or power cables. 

2.2.4 Aerodynamic properties of rectangular cross-sections 

A summary of properties for cross-sections with different length to height ratios, 
/b h , is given below [Parkinson, 1963]: 

 
0.375 / 0.683b h≤ ≤  
o No galloping from rest 
o Vortex excited oscillation possible 
o Strouhal number, wake width and drag coefficient nearly constant 

 
0.75 / 1.50b h≤ ≤  

o Galloping from rest 
o Decreasing stationary amplitude at give wind speed for increasing /b h  
o Behaviour like a square 
o Strouhal number, wake width and drag coefficient decrease continuously 

 
1.725 / 3.00 4.00b h≤ ≤ ∼  

o Galloping from rest 
o Decreasing stationary amplitude at give wind speed for increasing /b h  
o Somewhere between 3.00 and 4.00 galloping from rest impossible (gallop-

ing from initial finite amplitude) 
o Strouhal number, wake width and drag coefficient decrease continuously 

 
/ 4.00b h ≥  
o No galloping 
o When galloping stops, sudden increase in Strouhal number then for in-

creasing /b h slow decrease, wake width and drag reach constant value for 
increasing /b h . 

2.3 Description of classical (vertical) galloping  

In order to predict galloping and its related properties, the commonly used theory 
is the quasi-steady theory [Blevins, 1990]. The two basic assumptions in the 
quasi-steady theory are that the dynamic effect of the oscillating motion can be 
approximated as if it was rectilinear and that there is an aerodynamic equivalent 
steady situation for each phase in the unsteady motion. The first implication of 
these assumptions is that any inertial or history effect is neglected and that only 
time-mean forces act on the structure, due to large separation between oscillation 
and vortex shedding frequencies. The second implication is that measurements on 
a static structure will be equivalent with an oscillating structure in a corresponding 
position. 
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Two forms of galloping exist, translational and rotational galloping. Translational 
galloping is a pure 1-DOF vibration, dominated by damping effects. The model-
ling of rotational galloping poses the additional aspect that both stiffness and 
damping effects are present [Van Oudheusden, 2000]. For translational galloping 
first order stiffness effects are absent and the modelling is simplified. The gallop-
ing curves (i.e. steady amplitudes as a function of wind speed) of translational and 
rotational galloping differ from each other in that for rotational galloping the 
limit-cycle amplitude tends to a constant value, whereas for translational galloping 
a linear asymptote is reached.  
 
To provide insight in the dynamics behind galloping and its aerodynamic model-
ling, the stability criterion for a stable oscillation can be derived for the transla-
tional galloping case of 1-DOF damped mass-spring system. The followed deriva-
tion is similar to the derivation from Blevins [1990]. The expression for the verti-
cal displacement can be used to address the stability of the damped mass-spring 
system. The displacement of the vibration is stable when (the exponential term in 
the solution, see equation (A.16) in Appendix A) the amplitude of the equation of 
motion decreases with time. This requires that the net damping should be larger 
than zero, or in terms of the vertical force component, yC : 
 

 0 0

0

4 ( )yC m stable
U Dα

ω ζ
α ρ= ∞

∂
<

∂
 (2.3) 

 
where α the angle of incidence, m the mass of the model, 0ω  the natural frequency 
of the system, 0ζ  the structural damping of the system, ρ  density of medium, 
U∞  the free-stream velocity and D the side length of the model. 
 
All terms on the right hand side of this strict inequality are positive and can be re-
garded as the structural damping component. It states that for a stable vibration 
the aerodynamic damping should be smaller than the structural component. The 
inequality is inversely dependent on the free stream velocity. For small velocities, 
the structural component is relatively large and galloping cannot occur, however 
when the velocity is increased, the ratio of the structural and aerodynamic compo-
nent becomes smaller and galloping may occur.  
 
The inequality for stable vibration can also be expressed in terms of the lift and 
drag coefficient and neglecting the structural component. Den Hartog first derived 
this inequality in the 1950’s: 
 

 
0

0 ( )L
D
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αα =

∂
+ >

∂
 (2.4) 

 
An important feature related to galloping is that when the stability criterion is not 
fulfilled negative aerodynamic damping can occur, e.g. the net damping will be 
smaller than zero. From the above expression, it can be seen that, since CD is al-
ways positive, a necessary requirement for galloping is the occurrence of a nega-
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tive lift slope, 0Lc α∂ ∂ < . This illustrates why galloping cannot occur on stream-
lined bodies with attached flow (wings for example), but only when flow separa-
tion occurs. 

2.4 Research questions 

Sustained oscillations (limit cycle solutions) are obtained where the negative 
aerodynamic damping just compensates the structural damping. Experimental ro-
tational galloping curves for a rectangular cross-section show a large deviation 
from the quasi-steady theory [Van Oudheusden, 2000]. At different damping set-
tings of an oscillator experiments tend to be over predicted for high damping set-
tings. The experimental results are even more over estimated at low reduced wind 
speeds. For a square cross-section, on the other hand, the normalized aerodynamic 
amplitude curves were found to fall indeed onto a single curve, as predicted by the 
galloping theory [Van Oudheusden, 1995]. The observed discrepancies between 
experimental and theoretical galloping curves indicate a possible invalidity of the 
quasi-steady theory under certain conditions. It is one of the major motivations for 
the present quantitative visualisation study. 
 
In order to investigate the above mentioned differentiations ongoing research is 
conducted at the Aerodynamics department of the faculty of Aerospace Engineer-
ing of the Delft University of Technology. The ultimate goal of the investigations 
is an explanation of the noted differences. For this it is necessary to assess the va-
lidity of the quasi-steady galloping theory. In the quasi-steady theory, it is as-
sumed that the object is in a ‘steady’ position and that this position may be used to 
predict the galloping. It comes down to comparing an object at a steady position 
with one at a moving position, which resembles the galloping motion. The current 
research project will focus primarily on the establishment of an extensive database 
of steady measurements to which future measurements on a moving object can be 
compared. 
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 Chapter
 

3
  Experimental Arrangement 

 

In the present study, the flow around the square cylinder is visualized with Parti-
cle Image Velocimetry (PIV). With this nonintrusive technique, instantaneous ve-
locity vectors are obtained after post-processing of the acquired particle images. 
The experimental tests are performed in the W-tunnel, a low-speed open wind 
tunnel, of the Aerodynamics Department of Delft University of Technology. The 
basic experimental set-up is described in detail. This set-up is modified between 
measurement campaigns for different analysis purposes and practical reasons. The 
acquired results were also validated with a separate routine in order to minimize 
outliers. 

3.1 Principles of Particle Image Velocimetry (PIV) 

In contrast to many other experimental methods Particle Image Velocimetry (PIV) 
is a nonintrusive technique. There are no external objects, needed for measure-
ment, inserted into the flow, leaving an undisturbed flow. PIV enables an indirect 
flow field velocity measurement. The general principal can be explained with the 
aid of figure 3-1. There are micrometric tracer particles introduced into the flow, 
subsequently illuminated within a light sheet at a given pulse time separation, t’- t. 
At each of these illumination pulses the light scattered by the particles is recorded 
by a digital imaging system. After spatial cross-correlation of the acquired images, 
the local displacement of the particles is known. The velocity is then evaluated by 
dividing the displacement with the known time separation. In the following para-
graphs the general method of PIV for two-dimensional flows will be explained in 
more detail. Most of the information is extracted from Raffel et al. [1998]. 
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Figure 3-1: Experimental arrangement for particle image velocimetry in a 

wind tunnel [Raffel et al., 1998] 

3.1.1 Seeding and illumination 

PIV is a nonintrusive method; nevertheless, generally small particles (seeding) 
have to be added to visualize the flow. These particles must (be able to) follow the 
flow medium, therefore large and heavy particles cannot be used. The difference 
in density between the seeding material and the medium sets another constraint on 
the size of the particles. To account for this difference the particles should have a 
small diameter. These constraints are clearly visible in an estimate for the velocity 
lag, sU , of a particle in a continuously accelerating fluid: 
 

 2
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s pU d a
ρ ρ

µ
−

=  (3.1) 

 
where dp the particle diameter, ρp the particle density, µ the dynamic viscosity of 
the fluid and a  the acceleration. 
 
Equation (3.1) for the velocity lag is based on Stokes drag law and valid for 
spherical particles in an accelerating flow at a very low Reynolds number. At dif-
ferent flow conditions the equation can still be used to indicate the tendency for 
velocity lag of the flow. The velocity lag should be minimized for a particle to be 
able to follow the flow. Ideally, the particle density should equal the flow medium 
density. Otherwise, the particle diameter can be minimized. 
 
However, this diameter cannot be too small because of light scattering properties. 
Light is not blocked by small particles, but according to Mie’s scattering theory, 
spread in all directions (see figure 3-2). Small particles tend to scatter less and by 
using larger particles the scattered light intensity is increased. 
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Figure 3-2: Light scattering by 1 µm oil 
particle in air [Raffel et al., 
1998] 

 
So a balance has to be found for the size of the particles. The seeding material 
should be distributed evenly in the flow, and for open wind tunnels should be non-
toxic. Appropriate seeding materials for gas flows are liquid based particles. The 
liquid will evaporate before entering the test section, leaving the tracer particles 
submerged into the flow. 
 
In order to capture the seeding particles onto a recording device, they need to be 
illuminated by a high power energy source. Also the resulting light should be 
monochromatic and free of chromatic aberrations. Lasers possess these capabili-
ties and are thus the most commonly used sources of light in PIV experiments. 
Laser light can easily be transformed, through a specific lens arrangement, into a 
thin light sheet. Several types of lasers are available but the most widely used 
solid-state lasers are Nd:YAG lasers. Nd:YAG stands for Neodym-Yttrium-
Aluminum-Garnet. In this particular material neodym ions, Nd3+, are incorporated 
in YAG crystals. The emission of light occurs after excitation of the material. The 
material is brought into a different energy level by transferring energy, generally 
by electromagnetic radiation. When the excited material drops back to its original 
energy state, stimulated emission of photons, e.g. light, results. 

3.1.2 Particle image recording 

The particle images are recorded onto the pixels of a camera. There are two dis-
tinct methods for recording PIV images: 
 

Single Frame/Double-exposure records two exposures into one single image. 
 
Double Frame/Single-exposure records one exposure into two images. 

 
The former method introduces a directional ambiguity since it is not possible to 
distinguish which frame was recorded first. It is thus not possible, without any 
modifications, to track the direction of motion of the particles. This method was 
historically the first method that was used. In the last method the temporal order 
of the images is known, and thus also the direction of the particles. Two other ad-
vantages of the double frame/single-exposure recordings are: 
 

- more flexibility in the pulse separation time range, 
- higher signal-to-noise ratios in the correlation plane. 

 
The optical properties of seeding particles that are to be recorded should be opti-
mised with respect to their size in the image plane, e.g. the CCD (Charge-Coupled 
Device) sensors of a CCD camera. A CCD sensor is an electric sensor that con-
verts light into an electric charge. One CCD sensor is equivalent to one pixel. The 
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intensity of the illuminated particles is read out from these sensors as a two di-
mensional array of grey intensity levels, the resulting images of the particles. One 
of the issues here is that light from a small particle is not imaged as a bright spot 
on the CCD. The particle is imaged on the CCD by using a lens, the objective in a 
camera, with a (to be) chosen aperture. The imaged is slightly blurred on the 
CCD. This effect is caused by diffraction of light when it passes a circular aper-
ture. It is called Fraunhofer diffraction. The size of the diffraction limited mini-
mum image diameter, ddiff, can be calculated with: 
 
 ( )#2.44 1diffd f M λ= +  (3.2) 
 
where #f  the f-number, i.e. the ratio of the focal length of the camera and its aper-
ture, M the magnification factor, i.e. the ratio of the image size and the object size, 
and λ  the wavelength of the light. The particle image diameter, dτ , can be esti-
mated with: 
 

 ( )2 2
p diffd Md dτ = +  (3.3) 

 
where dp is the (physical) particle diameter. 
 
Equation (3.3) holds when lens aberrations can be neglected and the diffracted 
pattern can be described with a so-called Airy pattern. Note also that the first term 
under the square root can usually be neglected because the particle diameter is 
generally small, e.g. smaller than 50 µm. 
 
There are two main reasons for optimising the particle image diameter. The first is 
that theoretically the error in velocity measurements is at its minimum for a parti-
cle image diameter of slightly more than 2 pixels. Secondly, the displacements of 
small particles can be biased towards integral values. This effect is called ‘peak-
locking’. It arises from the fact that when a particle is imaged fully within a pixel, 
the position of the maximum intensity cannot be determined adequately. ‘Peak-
locking’ should always be avoided. 
 
Another important imaging parameter that is affected by the lens aperture is the 
depth of field, δZ. This focal depth gives a measure for the focus of an image. Out-
side this focal depth images are blurred and it is to be ensured that the laser sheet 
is focused within this depth of field. The formula for δZ is given by: 
 

 ( )
# 2

1
2Z diff

M
f d

M
δ

+
=  (3.4) 

3.1.3 Image processing 

So far it has been simply stated that the acquired images are to be post-processed 
to obtain the particle displacement, and the particle velocity accordingly. Several 
techniques are available to analyse images. The current experiments are analysed 
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with WIDIM, Window Deformation Iterative Multigrid [Scarano et al., 1999], a 
post-processing tool developed in MATLAB. This tool is developed by Scarano 
and is continuously improved. This paragraph will give specific details on this 
tool. A contribution was made to this software package by introducing a graphical 
user interface (GUI). This GUI enables an easy way to create the necessary input-
files for the WIDIM software package [Roosenboom, 2005]. 
 
The standard procedure to obtain the particle displacement by cross-correlation of 
two images is visualized in figure 3-3. Two sub regions of two images of one ex-
posure are compared to produce a correlation peak, the single bright spot on the 
right in figure 3-3. The particles in the top-image move from their respective posi-
tions to those of the lower image. The single bright spot indicates that the particles 
move slightly to the bottom-right. After some inspection (e.g. identifying similar 
particles) of the images on the left this can be seen by the eye. The cross-
correlation can be written in a discrete mathematical sense as follows: 
 

 ( ) ( ) ( )', , ,
w h

i w j h
S x y I i j I x i y j

=− =−
= + +∑ ∑  (3.5) 

 
where a small region [-w,w]x[-h,h] of grey intensity values in I is linear shifted 
around, in i and j direction, in a larger region with grey intensities in I’ to obtain a 
correlation peak S at the point (x,y). 
 
 

Figure 3-3: Two single exposure input subregions
and the corresponding output cross-
correlation plane. The location of the
single bright correlation peak from the
origin is the average displacement
across the subregion. [Wernet, 1999] 

 
 
Another consideration in PIV with respect to cross-correlation is that it is neces-
sary to distinguish the cross-correlation peak from any measurement noise. Figure 
3-4 shows a correlation peak RD and the summation of the convolution of intensi-
ties, RC, and fluctuating noise, RF. To identify RD as the correlation peak it should 
be larger than RC + RF. The signal-to-noise is thus defined as the ratio of RD and 
RC + RF. The signal-to-noise ratio should already be considered in the set-up of the 
experiment. The signal-to-noise ratio should always be maximized, to reduce any 
measurement errors. To optimise the signal-to-noise one should look at a live pre-
view of the cross-correlation of the flow so that any change of variables can be 
seen immediately. Key factors that need to be adjusted are the intensity of the la-
ser, e.g. power, the laser sheet thickness, the overlap between the two lasers sheets 
and the time separation between laser pulses. 
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Figure 3-4: Composition of peaks 
in the cross-correlation 
function [Raffel et al., 
1998] 

 
The distances, x∆ , in the sub regions for which the correlation function S(x,y) 
produces the highest results are the particle displacements. The velocity field, V , 
can then be determined according to: 
 

 xV
t

∆
=
∆

 (3.6) 

 
where ∆t the pulse separation time. 
 
It can be remarked that dividing an image into equal sub regions (as is done in a 
standard approach in figure 3-3) has some disadvantages. Some of the particles 
present in the first region will move out of sight in the second image. This is 
called in-plane loss-of-pairs. Loss-of-pairs can also be due to out-of-plane motion 
because of three dimensionality of the flow or misalignment of the set-up. The 
negative effect of in-plane loss-of-pairs is minimized in the WIDIM software 
package by using a window offset to compute two interrogation windows. Figure 
3-5 shows the principle of a window offset. The displacement δ is used to estimate 
the position of the grey rectangle. This can be improved by also taking into ac-
count the local displacement gradient, represented in figure 3-6. 
 

 

Figure 3-5: Principle of the window 
displacement [Scarano et 
al., 1999] 

 Figure 3-6:  Schematic illustration of the 
image transformation due to in-
plane motion. Particles follow 
the mean displacement d (trans-
lation) and the local displace-
ment gradient [Scarano, 2002] 

 
The window offset is not a priori known. Therefore an iterative method is em-
ployed where at every iteration step the sub regions are made smaller. The dis-
placements found in these regions are then used as a predictor for the next itera-
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tion step. A graphical interpretation is given in figure 3-7. When a final window 
size is reached, any next iteration is used to refine the computed data. WIDIM is 
therefore an iterative multigrid method that employs a window deformation. The 
iterative procedure of WIDIM enables also the possibility to validate the com-
puted data at the end of every iteration, in contrast to non-iterative methods. It has 
the advantage that propagation of errors is reduced. 
 

 

Figure 3-7: Application of an interrogation result 
(solid line arrows) to build a finer predic-
tor (dotted line arrows) [Scarano et al., 
1999] 

3.2 Experimental set-up 

In the following sections a description of the experimental apparatus used in the 
present study is given. It gives a quantification of the aspects mentioned in the 
previous sections. 

3.2.1 Wind tunnel and models 

The experiments are performed in the open wind tunnel, W-tunnel, of the Aero-
dynamics Department of the Faculty of Aerospace Engineering of Delft Univer-
sity of Technology. The wind tunnel exit has an area of 0.4 x 0.4 m2. A Perspex 
box with a cross-sectional area of 0.4 x 0.4 m2 and a length of 0.4 m is installed at 
the exit to reduce the boundary effects of this exit. This Perspex box also allows 
optical access and an easy way to place calibration sheets. The maximum velocity 
that can be achieved with this wind tunnel is approximately 38 m/s (or 138 km/h). 
The wind tunnel has a low (~0.1%) turbulence intensity.  
 
There are two models used in the experiments. Both models are cylinders with a 
square cross-section with a side length of 30 mm and a span of 345 mm. Taking 
into account the size of the model, the size of the wind tunnel section and the an-
gles of incidence studied, it follows that the maximum blockage ratio during the 
experiments is about 10.6% at an angle of incidence of 45°. Note however that the 
effective blockage ratio is larger due to a displacement of the streamlines at the 
upper and lower surface of the model. The first model is the original model as 
used in previous visualisation PIV experiments [Van Hinsberg, 2004]. It is fully 
constructed of solid Perspex. However, this model produces relatively large 
shadow regions when crossed by the laser light sheet due to internal refraction and 
reflection effects (see Appendix B and Van Hinsberg [2004]). Since further ex-
periments would involve static measurements where modest mechanical stiffness 
and strength of the model was required, it was decided to use a model with re-
duced shadow regions, a square cylinder with a hollow optical accessible area. In 
the following the differences between the two models will be explained. A de-
tailed description of the optical properties of the two models is given in Appendix 
B. 



 Experimental Arrangement 
 

 

26

 
Figure 3-8: Wind tunnel and PIV set-up; inset shows a close-up of the 

full Perspex model and end-plates 
 
The full cylinder is made of solid Perspex and has a square cross-sectional area of 
30 x 30 mm2 and a length of 345 mm. An overview of the wind tunnel and the full 
Perspex cylinder is given in figure 3-8. This model is attached to endplates and an 
oscillator frame originally developed for dynamic galloping investigations (as de-
scribed in Van Oudheusden [1995] and [2000]). The endplates are connected to 
this oscillator frame through a hinge, which allows rotation of the model. In order 
to change the angle of incidence of the cylinder the model needs to be rotated 
about the hinge axis. This has the disadvantage that the model will move out of 
the field of view of the camera. Therefore, one must reposition the camera and/or 
move (!) the total oscillator frame. Thereafter calibration images have to be made 
and it has to be insured that the laser sheet is still aligned properly. 
 

 
Figure 3-9: Cross sectional view of hollow glass model (all distances in mm) 
 



Experimental set-up 

 

27

 
Figure 3-10: Hollow cylinder with endplates attached to wind tunnel; inset 

shows a close-up of the hollow cylinder 
 
The hollow cylinder is constructed from two hard plastic parts with a constant 
square cross-section area of 30 x 30 mm2 and a length of 165 mm (see figure 3-9). 
The two separate parts are connected by 4 thin glass plates, leaving an optical ac-
cessible (hollow) gap of 15 mm width in spanwise direction. The total length of 
the cylinder is (again) 345 mm. At the position where the glass is connected to the 
hard plastic parts the cross-sectional area of these parts is slightly reduced to pro-
vide a smooth surface. This construction greatly reduces the unwanted shadow 
stripe effects in comparison to the full Perspex model (see Appendix B). The hol-
low cylinder is connected to the endplates with adjustable screws. These endplates 
are not attached to the oscillating system but directly to wind tunnel by two metal 
parts. The oscillating system is not used because at this point in the measurement 
campaign it was determined that only static measurements would be carried out. 
 
The direct connection to the endplates has also the advantage that the angle of in-
cidence of the model can be changed by simply rotating the model, while keeping 
it in the field of view of the camera. There is no need to adjust the position of the 
camera and the experiments are not interrupted for movement of the oscillating 
system. The wind tunnel, metal sheets, the endplates and the hollow cylinder are 
shown in figure 3-10. The inset shows a close-up of the model with the hard plas-
tic parts and the thin pieces of glass. 

3.2.2 Flow seeding, illumination and imaging 

The flow is seeded with a water based fog liquid, resulting in 1 µm oil particles af-
ter injection by a SAFEX™ Twin-fog “Double Power” fog-generator. The seed-
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ing material is non-toxic and will remain in the wind tunnel hall for about 45 min-
utes. The flow (and seeding) is illuminated with a Spectra Physics™ Quanta-Ray 
PIV-400 double-cavity pulsed Nd:YAG laser. The wavelength of this laser is 532 
nm (e.g. green light). The laser delivers an energy output of 400 mJ per pulse for a 
duration of 6 ns. Two types of cameras are used to record snapshots of the flow. 
These are a DANTEC™ HiSense PIV/PLIF CCD camera and a PCO™ SensiCam 
QE CCD camera, both equipped with a Nikon 60-mm focal length objective. 
Some of their properties are given in table 3-1. 
 

Table 3-1: Properties of available CCD cameras  
   
 Dantec PCO 
   
Resolution (W x H, pixel) 1280 x 1024 1376 x 1040 
Storage (bit) 12 12 
Pixel size (µm2) 6.7 x 6.7 6.45 x 6.45 
Used in case A; B A; C 

 

3.2.3 Field of view configurations  

This paragraph shows the evolution of the measurement configurations. In total 
three different measurement campaigns were performed. The first experiments fo-
cused on the wake behaviour of the flow, and two cameras were used simultane-
ously to obtain an increased (elongated) field of view. In the second measure-
ments the focus was shifted to the reattachment of the vortices on the model and 
the model was viewed in close-up. In these two measurement series the angle of 
incidence was varied between 0° and 15°, at a step of 5°. In the final series of ex-
periments a finer interval was chosen for varying the angle of incidence from 0° 
and 45°. These experiments were also performed in a batch-like situation and a 
vast amount of data was acquired. Some specific numbers and settings about the 
experiments are summarized in table 3-2. Table 3-3 shows theoretical calculated 
variables that can be derived from the settings in table 3-2 and the equations in 
paragraph 3.1. All experiments were performed at a free stream velocity of 10 m/s 
and consequently at a Reynolds number of 2·104 based on the model side length. 
Since earlier studies concluded that the flow was very dependent on the angle of 
incidence and only mildly on the Reynolds number (Van Hinsberg [2004], Luo et 
al. [2005]), only the angle of incidence is used in this parametric study. 
 
In addition the maximum particle displacement, s, [in pixel] is determined to give 
a measure of the dynamic range: 
 

 1

c

s V t
S

= ⋅ ⋅∆  (3.7) 

 
where V the velocity in m/s, Sc the scale factor (m/pixel) and ∆t (s) the pulse time 
separation. 
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Table 3-2: Settings during experiments 
    
 Large view Zoomed view Multiple angles 
    
Case A B C 
Type of model Full Perspex Full Perspex Hollow 
Number of camerasa 2 1 1 
Magnification factor (-) 0.065 0.111 0.062 
Scale factor (mm/pixel) 0.107 0.061 0.104 
Focal number (-) 5.6 / 8b 11 11 
Laser sheet thickness (mm) ~1 ~1 ~1 
Total field of view (W x H)c 9 x 3 2.5 x 2 4.6 x 3.5 
Reynolds number (-) 2·104 2·104 2·104 
Pulse separation (µs) 50 [20, 30] [30, 50] 
Frame rate (Hz) 3.3 3.3 3.3 
Number of datasets per angle 1000 220 1000 
Measured angles of incidence (°) [0; 5; 10; 15] [0; 5; 10; 15] [0; 2.5; … ; 15; 

20; 25; … ; 45]
 

a All measurements are two dimensional (2C) 
b Different numbers due to difference in camera settings; Dantec camera has lowest value 
c Normalized with model diameter, D = 30 mm 
 

Table 3-3: Estimated imaging properties during measurements 
    
 Large view Zoomed view Multiple angles 
    
Particle image diameter (pixel) 1.20 / 1.72a 2.37 2.35 
Minimum depth of field (mm) 20 31 90 
Maximum pulse separation (µs) 50 30 50 
Max. particle displacement (pixel) 5 5 5 
 

a Different numbers due to difference in focal number; Dantec camera has lowest value 
 

 

 
Figure 3-11: Mirror from laser arm with 

damaged coating 
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Not only was the evolution of the experiments influenced by the different goals of 
the experiments. The first experiments were greatly compromised by damaged 
mirrors in the laser arm. The second measurements were influenced hereby to less 
extent because the mirrors were cleaned and some mirrors were replaced. Before 
the third measurement series the laser arm was completely removed. A picture of 
one of the damaged mirrors can be seen in figure 3-11. The damage of the mirror 
is clearly visible. A schematic drawing of the Dantec laser arm is given in figure 
3-12. This laser arm is (or was) used to provide a flexible way of introducing the 
light sheet into the flow. However, when the laser is (slightly) misaligned it will 
impinge on the circular rod of the laser arm. Since the laser has a high power the 
coating on the inside of the rod will, most likely, be damaged and tiny bits of dust 
will precipitate on the mirrors. The laser light will then burn these bits of dust into 
the mirrors. Also, after many operational hours seeding particles may protrude 
into the arm and be burned into the mirrors as well. It will speak for itself that the 
damaged mirrors reduce the quality of the acquired data. 
 

 
Figure 3-12: Sketch of the flexible Dantec 

laser arm [Dantec, 2000] 
 
Samples of images acquired during the different measurement campaigns are 
shown in figure 3-13. From top to bottom images from the first, second and third 
campaigns are shown. The model is at an angle of incidence of 0° in the images 
on the left and at 15° in the images on the right. The most striking difference be-
tween the images is the level and quality of seeding. The final images show a uni-
form, and therefore optimal, distribution of seeding particles. It has been pointed 
out that in the first experimental campaign the mirrors inside the laser arm and la-
ser head were damaged, resulting in poor illumination. The better illumination is 
also due to the increased focal number. Figure 3-13a and b were recorded with a 
focal number of 5.6, in the other images the focal number is 11. It was also found 
out during the third measurement campaign that the particles were more evenly 
distributed when the seeding generator was placed just outside the contraction 
room of the wind tunnel. 
 
The fact that in figure 3-13 the (dark and light) stripes do not seem to emanate 
from the corners, is due to the perspective view. The view of the camera is par-
tially blocked by the out of plane part of the model that is not in the plane of fo-
cus. This region is limited to the front and bottom side of the model and approxi-
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mately 20% of the model side length. The crescent moon shaped white stripes in 
the top images are reflections of the end plate edges, which were in the field of 
view during these experiments. 
 
 

 

   
 

   
 

Figure 3-13: Shadow stripes emanating from model, the model is at an angle of 
incidence of 0° in the pictures on the left and at 15° in the pictures 
on the right, the flow is from left to right, arrows indicate the illu-
mination direction; a)-d) full Perspex cylinder; e) and f) hollow cyl-
inder 

a) b)

c) d)

e) f)
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Large view for wake analysis, case A 
This experimental campaign uses two cam-
eras to get a large field of view. The cam-
eras are placed side by side to obtain a pro-
longed view of the wake. In these experi-
ments the full Perspex model was used. The 
laser sheet was placed at a slight angle with 
respect to the flow direction. The laser sheet 
was aligned such that it crossed the middle 
of the model. A sketch of the set-up is given 
in figure 3-14. After the experiments it was 
found that the mirrors were damaged. The 
seeding was of low quality during the ex-
periments and the focal number was set too 
low. All of this resulted in a low quality of 

the acquired data (low signal-to-noise ratio). It was even necessary to use a single 
pass during the cross-correlation. 
 
Zoomed view for reattachment determination, case B 
The second experimental campaign was used to acquire details of the reattach-
ment of the flow on the model. Therefore one camera was used and it was placed 
closer to the laser sheet, with re-
spect to the previous experiments. 
Also, to reduce the perspective er-
ror, the laser sheet was aligned 
more towards the side of the 
model. It was placed at about 80 
mm of the side closest to the cam-
era. It was assumed that at this po-
sition the two dimensionality of 
the flow was still valid. A sche-
matic view of the set-up can be 
seen in figure 3-15. The mirrors 
and the laser head were cleaned 
before the measurements. This slightly improved the quality of the acquired data. 
The greatest improvement with respect to the previous experiments was the level 
of seeding. Also, setting the focal number of the camera to a higher number im-
proved the situation. 
 
High quality data at a wide range of angles, case C 
The third and final experiments were used to obtain data for multiple angles. The 
measured angles were in the range between 0° and 45°. Between 0° and 15° at 
every 2.5° was measured; between 15° and 45° the interval was increased to 5°. 
The major modification with respect to the previous experiments was the change 
of the model. The hollow cylinder has a better light transmittance, as mentioned in 
Appendix B. Since the angle of incidence can now be modified by turning the 
model, it was fairly easy to prepare the wind tunnel set-up for the next set of an-

Figure 3-14: Sketch of experimental set-up 
with two camera’s next to each 
other, case A 

Figure 3-15: Sketch of experimental set-
up for zoomed view, case B 
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gles. The resulting dataset size was enlarged from 200 image pairs per angle to 
1000 image pairs per angle. As a second improvement the flexible laser guide arm 
was also completely removed 
and replaced with a custom made 
optical system to create a laser 
sheet out of cylindrical and 
spherical lenses and an angle-
reflecting element (prism). A 
sketch of the set-up is presented 
in figure 3-16. The better per-
formance of the model and the 
improvement of the laser sheet 
quality also meant that the focal 
number could be increased. The 
resulting datasets are therefore of a good quality and should be able to serve as an 
extensive database for following measurement campaigns. 

3.3 Data post-processing 

This paragraph describes the settings and equations used to obtain the instantane-
ous and time-averaged cross-correlation results. Also, a validation procedure is 
mentioned to minimize artefacts in the results. 

3.3.1 Data analysis 

The image pairs from the experiments are analysed with different settings, to im-
prove the individual quality of the cross-correlation. These settings are summa-
rised in table 3-4. It can immediately be noted that the settings for Case A yield 
coarse results. The results from Case B and C are defined on much finer grid. For 
illuminating reasons, mentioned in earlier in this chapter, the results from Case C 
are assumed to be the most accurate. The spatial resolution is estimated to be 
twice the grid spacing. 
 

Table 3-4: Spatial properties of cross-correlation analysis 
    
 Case A Case B Case C 
    
Window size (pixel x pixel) 80 x 80 20 x 20 31 x 31 
Overlap factor (%) 50 75 75 
Number of datasets used 1000 220 1000 
Grid spacing (pixel) 40 5 8 
Grid spacing (mm) 4.3 0.3 0.84 
Grid spacing (D) 0.14 0.01 0.03 
Spatial resolution (mm) 8.6 0.6 1.7 
Spatial resolution (D) 0.3 0.02 0.055 

 
Despite the fact that the vortex shedding mechanism is predominantly a periodic 
phenomenon, interesting results can be derived from the time-mean flow. The sta-

Figure 3-16: Sketch of experimental set-up 
with hollow cylinder, case C 
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tistical properties of the velocity field are derived after data processing of the im-
ages. To reduce propagation of errors due to outliers the statistical properties are 
based on an iterative averaging procedure until convergence has been reached.  
 
The following statistical properties are derived for an dataset of N images. The 
mean velocity in x- and y-direction, respectively u and v : 
 

 1 1,

N N

i i
i i

u v
u v

N N
= == =
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 (3.8) 

 
Instead of plotting both the u and v  velocity distributions, the magnitude of the 
velocity can be determined with: 
 
 2 2| |V u v= +  (3.9) 
 
The mean velocity fluctuations urms and vrms: 
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And the Reynolds stress term ' 'u v : 
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The normalized turbulence intensity, TI, is defined as: 
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U∞

+
=  (3.12) 

 
The vorticity, ξ , of a two-dimensional velocity vector field can determined by: 
 

 v u
x y

ξ ∂ ∂
= −
∂ ∂

 (3.13) 

 
In the presented data all velocities have been scaled with the free stream velocity, 
U∞ , and dimensions with the cylinder side length, D, unless stated otherwise. 
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3.3.2 Data validation 

After the filtering during the statistical analysis, there were still outliers present in 
the instantaneous and averaged velocity fields. These outliers compromised the 
computed pressure gradient and consequently the pressure field calculation (Chap-
ter 5). The propagation of errors was too large. Instead of reanalysing the instan-
taneous data, a post-processing validation procedure was chosen. All the instanta-
neous data sets are read into memory and a histogram of the velocity distribution 
was created. Vectors in the instantaneous velocity field that were distinctively in 
the borders of the histogram are replaced by an average of surrounding vectors. 
The resulting instantaneous vector fields are then again time-averaged (with the 
original statistical averaging procedure). A similar procedure has currently been 
implemented in the post-processing software package AR-WIDIM 9.1.  
 
A comparison of two statistical velocity fields is shown in figure 3-17. The red 
vectors are the original velocity vectors, the green vectors the new validated vec-
tors. The original validation was not able to fully determine outliers in the corners 
of the dataset and near the position of the model. The new validation is better in 
these regions. It has to be noted, however, that the new validation still has small 
problems in replacing the vectors in the corners of the dataset. The results pre-
sented for the third measurement campaign (Case C) are based on the new valida-
tion of the datasets, as these were used extensively during the post analysis. 
 

 
Figure 3-17: Comparison of two time-averaged velocity vec-

tor field plots before (red) and after (green) vali-
dation 

 
A further check on the consistency of the velocity data is provided by investigat-
ing the divergence of the flow field. The divergence of a velocity field can be cal-
culated with [Anderson, 1990]: 



 Experimental Arrangement 
 

 

36

 

 u v wV
x y z

∂ ∂ ∂
∇ ⋅ = + +

∂ ∂ ∂
 (3.14) 

 
For an incompressible flow, equation (3.14) should equal zero. The divergence is 
also a measure for the two-dimensionality of the flow, since in a two-dimensional 
flow no z-component of the velocity can be present. Figure 3-18 shows the diver-
gence of a velocity field at an angle of incidence of 5°. The divergence of the ve-
locity is approximately zero for most of the flow field. In three areas, the diver-
gence deviates from zero. In the upper left corner the previously stated problem of 
bad vector replacement is clearly visible. The second area shows a contribution 
within the area influenced by the perspective view, introducing unreliable areas 
within the flow field. A third contribution can be found above the upper-right cor-
ner of the model and is due to shadow stripes emanating from this corner. There-
fore, although the effect of the shadow stripes is greatly reduced by using the hol-
low cylinder model, still some influence is notable.  
 

 
Figure 3-18: Divergence of velocity field at α = 5° 
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 Chapter
 

4
  Flow Description 

 

The results of the experimental visualization are presented in two sections. The 
first approach is a statistical description of the flow. Mean flow properties and 
turbulence are obtained from the experimental PIV data sets for each angle of in-
cidence. The second approach is that of a phase-averaged reconstruction of the pe-
riodic flow component. For this the PIV results are first analysed with the Proper 
Orthogonal Decomposition (POD). This method returns the mean flow and the 
fluctuating part for every single flow configuration. The fluctuating part can be re-
lated to a specific phase angle of vortex shedding using a low-order flow represen-
tation.  

4.1 Statistical flow characterisation 

In this section, a selection of results will be presented to support the discussion of 
the most essential flow features and trends observed. The complete set of results 
of the statistical analysis is collected in Appendix D. The first experimental cam-
paign was compromised by the low quality of the acquired data. During the sec-
ond experimental campaign only 220 images were acquired. The final experimen-
tal campaign had the best quality of acquired data. The number of images per 
dataset acquired was 1000 and 13 different angles of incidence were measured. 
Unless stated otherwise, the results displayed here are taken from the final set of 
experiments, case C. 

4.1.1 Flow topology 

Typical time-averaged flow fields are plotted in figure 4-1a-d for angles of inci-
dence of 0°, 10°, 12.5° and 30°, respectively. The regions affected due to the per-
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spective view are not masked but are indicated by black lines enclosing the model. 
In these areas the streamlines on the lower side seem not affected by this region. 
The streamlines on the upper side (and the front side for 12.5°), however, are not 
well captured. For example in figure 4-1a a bubble appears to ‘float’ over the sur-
face and in all images the streamlines seem to go through the model. 
 

 

 

Figure 4-1: Topological overview of time-averaged flow types: a) α = 0°, b) α = 10°, c) 
α = 12.5°, d) α = 30°; P1 and P2 stagnation points, P3 near-wake reattach-
ment point, S1 and S2 separation points, F1 to F4 focal points, R1 reattach-
ment point 

 
In figure 4-1 several topological points can be identified. Two points of stagnated 
flow, P1 on the windward side, P2 on the leeward side are present in all plots. 
Point P3 identifies the position where the two separated bubbles on the back of the 
model meet, the near-wake length. The flow separates from the two separation 
points S1 and S2. For angles of incidence between 0° and 12.5° these points are the 
upper-left and lower-left corner points of the model. At 12.5 ° the flow just reat-
taches on the lower surface, indicate by R1. In this particular case the flow sepa-
rates immediately from this point. When the separated flow from the lower-left 
corner of the model reattaches on the lower surface a closed separation bubble is 
created. For increasing angles of incidence this bubble is shortened, as can be 
noted for 30° in figure 4-1d. The flow separates then from the lower-right corner 
of the model. 

a) b)

c) d)
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In the symmetrical case for 0° four regions with recirculation can be identified. 
Two recirculation regions are present on the upper and lower side of the model, 
with focal points F1 and F2, respectively and two regions at the back of the model 
forming the near-wake, with focal points F3 and F4. For increasing angles of inci-
dence the two upper regions, F1 and F3, are joined together. At angles of incidence 
larger then 12.5° region F2 forms the separation bubble. The only notable effect of 
region F4, behind the lower right corner of the model, is a deformation in shape, in 
close relation with the orientation of the model. The region F4 becomes stretched 
for increasing angles of incidence. The end of the regions F3 and F4 is defined as 
the near-wake length and indicated by the point P3. 
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Figure 4-2: Velocity magnitudes; a) α = 0°, b) α = 10°, c) α = 30°, d) α = 45° 

4.1.2 Flow regimes 

Three different flow regimes can be identified in the flow around a square cylin-
der, as shown in figure 4-1. The first regime is characterized by separated flow 
from the windward corners, the second regime by a separation bubble on the full 
lower side and the third regime by separation from lower-right corner and a reat-
tachment bubble on the lower windward side. Two other aspects can be used to 
indicate these flow regimes. In figure 4-2 plots of the velocity magnitude and in 
figure 4-3 the turbulence intensities are presented for angles of incidence of 0°, 
10°, 30° and 45°.  

b)a) 

c) d)
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The following aspects are present in the near-wake of the model. The magnitude 
of the velocity shows that low velocities are present in the near-wake for the sym-
metrical case of 0°. At increasing angles of incidence this region moves to the 
border of the near-wake and is limited to three distinguishable spots. The part in 
between these spots increases in size and in value with increasing angles of inci-
dence.  
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Figure 4-3: Normalized turbulence intensities; a) α = 0°, b) α = 10°, c) α = 30°, d) 
α = 45° 

 
The turbulence intensity has a clearly identifiable region of the highest value for 
an angle of incidence of 0°. The turbulence intensities are not plotted on the same 
scale to distinguish these regions even more. It can also be remarked that the prob-
lem of the new validation is most notable in the upper left corner of the turbulence 
intensity plot at 10°, in figure 4-3b. A high value can be found in these areas, 
caused by the incorrect velocity vectors. After 0° the region with the highest value 
becomes slightly blurred and is finally split into two different regions, at 45°. This 
is most likely caused by the reduction of the vertical velocity fluctuation, 'v , at 
higher angles of incidence. The plots of the turbulence intensity show the added 
effect of the u and v fluctuations. As can be seen in figure 4-4 (and Appendix D), 
the u fluctuations have a maximum at off x-axis locations, while for the v fluctua-
tions this is at the axis. It can also be noted that the turbulence intensities at lower 
angles of incidence are similar to the v fluctuations and at higher angles of inci-

b)a) 

c) d)
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dence more similar to the u fluctuations. Apparently, at small angles of incidence 
the v effects dominate and for larger angles the u effects. The horizontal position 
of the highest value of the turbulence intensity stays for all cases around X/D = 2. 
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Figure 4-4: Horizontal, u’, and vertical, v’, velocity fluctuations for α = 0°, a) 
and b), and α = 30°, c) and d), respectively 

4.1.3 Near-wake length 

The position that defines the end of the near-wake, the points P3 in the experi-
ments, are presented in table 4-1. The value is the segment between the origin of 
the model and the (dimensionless) x-coordinate of the point P3, X3/D. These 
points are also visualised in figure 4-5. Also, previous experiments of Van Hins-
berg [2004] are added for comparison. For Case B at 10° it was not possible to de-
termine the exact position of the near-wake length because it was outside the field 
of view. This length is however slightly larger than 1.87. Case C and Van Hins-
berg are close together. For an angle of incidence of 5° the datasets only match for 
Case B and Van Hinsberg. Two trend lines can be drawn through the data points. 
Trend line 1, the full line, connects the dataset of Case C where the near-wake 
length at 5° is replaced with the near-wake length of Case B. The trend line shows 
a local maximum at 10°. 
 

a) b)

c) d)
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Table 4-1: Values of dimensionless near-wake length, X3/D 
              
Angle of in-
cidence (°) 0 2.5 5 7.5 10 12.5 15 20 25 30 35 40 45 
              
Case A 1.06  1.09  1.85  1.80       
Case B 1.11  1.41  >1.87  1.83       
Case C 1.10 1.24 1.23 1.81 2.18 1.81 2.02 2.22 2.38 2.52 2.59 2.61 2.60

 
 
 

 
Figure 4-5: Near-wake length as function of angle of incidence 

 
 

4.1.4 Velocity fluctuations 

The maximum values of the mean horizontal and vertical velocity fluctuations u' 
and v' are visualized in figure 4-6 and figure 4-7, respectively. There is some dif-
ference between the results of Case B and C. The experiments from Case C are 
however considered more reliable. The maximum values of u’ typically ranges be-
tween 45% and 65% of the free stream velocity, U∞ , while for v’ this is between 
75% and 95%. In both graphs, it is clear that with increasing angles of incidence 
the maximum values decrease and almost become constant, ~53% for the u fluc-
tuations and ~75% for the v fluctuations. This may be caused by a weaker strength 
of the vortex shedding at high angles of incidence. 



Statistical flow characterisation 

 

43

 
Figure 4-6: Maximum values of horizontal velocity fluctuations 
 

 
Figure 4-7: Maximum values of vertical velocity fluctuations 
 

4.1.5 Vorticity 

Regions of vorticity are present in the (time-averaged) bluff body flow around a 
square cylinder. A coloured contour plot, figure 4-8a, reveals that the minimum 
vorticity occurs on the upper side and the maximum value on the lower side. A 
contour plot with only contour lines (figure 4-8b) allows determining the positions 
of these minima and maxima. The positions of the upper and the lower vortices 
are plotted in figure 4-9. 
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Figure 4-8: a) Contour plot of vorticity, b) location of vorticity centres 
 

 
Figure 4-9: Location of vorticity centres with respect to model 
 
The initial and final position of the model is also added to figure 4-9 to see the lo-
cation of the vorticity maximum with respect to the model. The vorticity location 
of the flow separating from the upper left corner is always positioned slightly to 
the upper right of this corner. However, on the bottom side the position of the vor-
ticity maximum is not locked at a certain point. A clear difference is notable when 
the angle of incidence changes from 10° to 12.5°. This change is related to the oc-
currence of shear layer reattachment. This is even more prominent when the spe-
cific locations of the maximum vorticity are related to the angles of incidence. 
Such representation is given in figure 4-10; the inset graph shows the distance 
from the position of the maximum vorticity to the nearest corner of the model. For 
angles of incidence between 0° and 10° this position is somewhere halfway below 
the lower side, and thus located to the right of the lower-left corner. At these an-
gles the distance is largest. At 12.5° and 15° the location of the vorticity shifts to a 

b)a) 
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position below the lower-right corner, a clear identification that reattachment has 
occurred. The distance drops significantly. After 15° the distance remains nearly 
constant and the position of the maximum vorticity is slightly to the right of the 
lower-right corner.  
 

 
Figure 4-10: Specification of the location of vorticity centres at lower side of the model; 

inset shows the distance from these centres to the nearest corner of the 
model 

4.2 Unsteady flow characteristics 

So far, only the time-averaged results are discussed. These time-averaged results 
are based on instantaneous PIV measurements. The instantaneous results however 
do not show the same trend as the time-averaged results. The results of four in-
stantaneous results at an angle of incidence of 0° are shown in figure 4-11. The 
four depicted results are randomly chosen from the available data. The four results 
differ from each other, and when the vector plots are compared to the time-
averaged results of figure 4-2a none of them matches the time-averaged flow. Of 
course, the difference of the results is due to vortex shedding. Any of the PIV 
measurements will represent one particular instant of the phase of the vortex 
shedding. The time-averaged results represent then, when a large number (more 
than 200) of datasets is used, the mean flow and only incidentally will an instan-
taneous vector result be the same as the mean flow.  
 
Because of the nature of vortex shedding it is interesting to have the information 
of the flow evolution in time. The current image acquisition rate of 3.3 Hz does 
not allow obtaining time-resolved results. The Strouhal number in the range of 
Reynolds numbers between 104 and 2·104 is reported to be (approximately) 0.13 
[Okajima, 1982]. Under the current experimental conditions the vortex shedding 
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frequency, using equation (2.1), is about 43 Hz. To fully resolve this type of flow 
in time a system that can measure in the order of kHz would be required. Cur-
rently such systems exist. Cameras based on CMOS (Complimentary Metal Oxide 
Semiconductor) technology and high-speed lasers (Dioded pumped Nd:YAG) are 
required. Time-resolved systems are available from, among many, Dantec Dy-
namics, TSI or New Wave Research. Nevertheless, such a system is not available 
at the Aerodynamics Department. An alternative method to obtain phase-resolved 
information from randomly acquired PIV data sets is provided by the Proper Or-
thogonal Decomposition (POD) as it was applied to bluff body flow by Van Hins-
berg [2004]. 
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Figure 4-11: Four instantaneous PIV results at α = 0° 

4.2.1 Brief introduction to Proper Orthogonal Decomposition (POD) 

The vortex shedding process is a regular large-scale process. An instantaneous 
flow property can be decomposed into a quasi-periodic component with small-
scale turbulences according to Reynolds et al. [1970]: 
 
 ( ) ( ) ( ) ( ) ( )( ) ( )' '', , , ,u x t U x u x t U x u x t u x tϕ= + = + +  (4.1) 
 
where the instantaneous velocity u is decomposed into a mean velocity U and a 
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fluctuating component 'u , which can be further decomposed into a (quasi-) peri-
odic u�  and small-scale turbulences ''u . The periodic component is characterised 
by a phase angle φ. 
 
The coherent part of the velocity is given by the mean and periodic components, 
e.g. ( ) ( )( ),U x u x tϕ+

G G� . The vortex formation and shedding process can be de-
scribed with the coherent velocity. The coherent part of the flow can be obtained 
by phase averaging of the instantaneous velocity fields. The fluctuating part of a 
velocity field can be represented as a summation of normalized base functions, nφ

G
 

multiplied with mode coefficients, an; the principle of the Proper Orthogonal De-
composition: 
 

 ( )( ) ( ) ( )
1

,
N

n n
n

u x t a t xϕ φ
=

=∑
GG G�  (4.2) 

 
where N the number of instantaneous velocity fields. 
 
The coherent fluctuating velocity, equation (4.2), is split into a temporal part, the 
mode coefficients, and a spatial part, the normalized base functions. The normal-
ized base functions are spatially orthogonal and the mode coefficients are uncorre-
lated in time: 
 

 
1, ,

,
0,0,

i j i j ii j a a i j
i ji j

φ φ λ⋅ = = = =

= ≠= ≠

G G
 (4.3) 

 
where …  denotes spatial integration and …  denotes temporal averaging. 
 
The normalized base functions are the POD eigenmodes and can be found with 
the two-point correlation matrix ( ) ( ), ,ij i jC u x t u x t= ⋅

G G� �  from: 
 
 n n nφ λ φ=

G G
C  (4.4) 

 
The total fluctuating energy is defined as the summation of all eigenvalues. As a 
consequence the contribution of a single eigenvalue to the total fluctuating energy 
reveals the dominant eigenmodes. The mode coefficients for a single instantane-
ous velocity field can be found from projecting the flow field onto the POD 
modes. A low-order reconstruction of the flow can be realized by representing the 
flow by only a few modes, for example only the first two modes in the case of 
convective dominated processes. 

4.2.2 Properties of velocity modes 

A summary of the symmetrical properties of the first 6 velocity modes is pre-
sented in table 4-2. The plots of the modes can be found in Appendix D. Only the 
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two symmetrical cases of 0° and 45° will show pure (anti-)symmetrical modes. At 
other angles of incidence, the symmetry is an indication how the modes are pre-
sent in the flow, an anti-symmetrical mode has both positive and negative veloci-
ties whereas a symmetrical mode only has positive or negative velocities. The 
modes of the horizontal velocity (U) and the vertical velocity (V) appear in pairs 
as mentioned in Deane et al. [1991] and Noack et al. [2003]. Such is the case in 
the present POD analysis. The first two horizontal modes (U1 and U2) are always 
anti-symmetrical; the first two vertical velocity modes (V1 and V2) are always 
symmetrical. For some modes, it is not possible to determine their symmetrical 
property, probably due to a reduced correlation. 
 

Table 4-2: Symmetry properties of first 6 velocity modes 
             

Angle of inci-
dence [°] U1 U2 U3 U4 U5 U6 V1 V2 V3 V4 V5 V6 

             
0 A A S S S A S S A A A S 

2.5 A A S (S) S A S S A A (A) S 
5 A A S (S) (S) (A) S S A A S S 

7.5 A A S (S) (A) A S S A A S S 
10 A A (S) S A S S S A A S A 

12.5 A A S (S) (A) (A) S S A A S A 
15 A A S (S) A S S S A A S A 
20 A A (S) S A S S S A A S (A) 
25 A A (S) S A S S S A A S A 
30 A A (S) S A S S S A A S A 
35 A A (S) S A S S S A A S A 
40 A A (S) S A S S S A A S A 
45 A A (S) S A S S S A A S A 

A:  Anti-symmetric 
S:   Symmetric 
(…): Unreliable 

 

4.2.3 Eigenvalue spectra 

The normalized eigenvalue spectrum for all angles of incidence of Case C is pre-
sented in figure 4-12 displaying how the fluctuation energy is distributed over the 
POD modes. Vortex shedding is a periodic phenomena as can be seen by the large 
values of the first two normalized eigenvalues with respect to higher order modes. 
The higher order modes are similar in their contribution; it is difficult in a POD 
analysis to distinguish specific modes. This explains why in table 4-2 the third and 
fourth horizontal unreliable velocity modes (U) sometimes are interchanged.    
The cumulative contribution of the (normalized) eigenvalues is plotted in figure 
4-13 (note the logarithmic scale of the x-axis). The first six modes represent be-
tween 64% and 79% energy of the flow. Figure 4-14 shows the required number 
of eigenvalues to capture 80% and 90 % energy of the flow. This number in-
creases at higher angles of incidence. Typically, 10-20 modes are required to cap-
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ture 80% of the energy of the flow. Approximately 4 times more modes are 
needed to capture 90% of the flow instead of 80%. 
 
The first two normalized eigenvalues capture the most prominent convective fea-
tures of the periodic vortex shedding. Their values are not equal as can be seen in 
figure 4-15 and table 4-3. An interesting feature that can be observed is the sig-
nificant change in the difference between the first two modes takes place between 
an angle of incidence of 10˚ and 15˚, whereas the difference for other angles of 
incidence gradually increases (indicated by the second order trend line). This dif-
ference is an indication that the nature of the periodicity of the vortex shedding is 
altered at angles of incidence between 10˚ and 15˚. The summation of the first two 
(normalized) eigenvalues is a measure for the energy in the periodic vortex shed-
ding. Typically, between 52% and 72% of the energy is captured with these first 
two eigenvalues. In figure 4-15, it can be seen that this value gradually decreases, 
possibly an indication of reduced periodicity in the flow at higher angles of inci-
dence. 
 
 

 
Figure 4-12: Eigenvalues spectrum 
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Table 4-3: Properties of first two normalized eigenvalues 
     

Angle of  
incidence (°) 

1
1

N

i
i

λ λ
=
∑  2

1

N

i
i

λ λ
=
∑  ( )1 2

1

N

i
i

λ λ λ
=

− ∑  ( )1 2
1

N

i
i

λ λ λ
=

+ ∑  

     
0 0.3778 0.2947 0.0830 0.6725 

2.5 0.3964 0.2808 0.1156 0.6772 
5 0.4072 0.3094 0.0979 0.7166 

7.5 0.4081 0.2776 0.1305 0.6857 
10 0.4040 0.2307 0.1734 0.6347 

12.5 0.3816 0.2815 0.1001 0.6632 
15 0.3400 0.2803 0.0597 0.6204 
20 0.3379 0.2126 0.1252 0.5505 
25 0.3566 0.2356 0.1210 0.5923 
30 0.3459 0.2219 0.1240 0.5678 
35 0.3353 0.2157 0.1196 0.5510 
40 0.3272 0.1962 0.1310 0.5234 
45 0.3414 0.2254 0.1159 0.5668 

 

 
Figure 4-13: Relative contribution of number of eigenmodes to energy 
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Figure 4-14: Number of eigenvalues needed for 80% and 

90% contribution to energy 
 
 

 
Figure 4-15: Properties of first two normalized eigenmodes 
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4.2.4 Low-order flow reconstruction using limited number of POD modes 

The phase portraits of the first six normalized eigenvalues for an angle of inci-
dence of 0˚ are presented in figure 4-16. The phase portraits of the first two ei-
genmodes of all angles of incidence are available in Appendix D. The phase por-
traits represent the correlation between two modes. Since the first two modes rep-
resent the periodic part of the flow, the correlation should ideally fall on a circle. 
For an angle of incidence of 0˚, this is indeed true, apart from some scatter in the 
correlation. However, from the phase portraits in Appendix D it can be noted that 
the correlation is lost after an angle of incidence of about 12.5˚. Figure 4-17 
shows the mean velocities based on the POD analysis. The first two modes are 
presented in figure 4-18. The fluctuating velocities are calculated according to 
equation (4.5) and are given in figure 4-19. 
 

( ) ( ) ( ) ( ) ( )
2 26 6 6

2 2 2

1 1 1

'rms i i i i i i
i i i

u a t a tφ φ λφ
= = =

   = = = =   
   
∑ ∑ ∑u x x x  (4.5) 

4.2.5 Phase-resolved reconstruction 

The dominant properties of the first two eigenmodes and the relative low contri-
bution of the higher order values suggest that the coherent, phase-resolved com-
ponent of the flow can be approximated with a low-order flow model. The low-
order model contains only the mean and the first two modes: 
 
 ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2, 2 sin 2 cosLOMu x U x x xϕ λ ϕ φ λ ϕ φ= + ⋅ + ⋅  (4.6) 
 
The low-order flow model from equation (4.6) excludes higher order harmonics of 
the coherent flow and the random turbulent motion. This exclusion is justified by 
the loss of correlation of the higher order harmonics (see figure 4-16). 
 
Based on the correlation coefficients and the velocity modes the phase recon-
structed flow for an angle of incidence at 0° is shown in figure 4-20. The other 
phase reconstructed snap shots are presented in Appendix D. The snapshots are 
phase-ordered from top to bottom. 
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Figure 4-16: Phase portraits for α = 0° 
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Figure 4-17: Mean velocities, left: u velocity, right: v velocity 
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Figure 4-18: Coherent velocities, modes 1 and 2, left: u velocity, right: v velocity 
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Figure 4-19: Fluctuating (random) velocities, left: u velocity, right: v velocity 
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Figure 4-20: Snap shots of phase reconstructed flow at α  = 0° 
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 Chapter
 

5
  Force Determination from 

Velocity Data 

This chapter describes the approach to calculate the pressure fields as well as the 
lift and drag coefficient of the square cylinder at various angles of incidence from 
velocity data provided by the PIV experiments. The forces can be determined 
from the flow field around a body using a control-volume approach [Anderson, 
1991]. This requires both the momentum flux and the pressure. The pressure can-
not be measured directly by PIV, but with certain hypotheses can be computed us-
ing the momentum equation. In the present study with rotational flow regions evi-
dently the Bernoulli equation cannot be used to approximate the pressure from the 
local value of the velocity. Therefore, a more complete approach is necessary, 
which also takes into account the viscous effects. The present chapter discusses 
several methods for the determination of the pressure field from local velocity 
data. Advantages and drawbacks are shown by means of comparison. 

5.1 Force determination with integral momentum equation 

The instantaneous value of the integral force, ( )F t , experienced by an object in-
serted in a flow on a fixed control volume S with an outer contour s and assuming 
incompressible flow field is related to the flow properties as (Anderson [1991] 
and Unal [1997]): 
 

 ( ) ( )
S s s s

VF t dS V n Vds pnds nds
t

ρ ρ τ∂
= − − ⋅ − +

∂∫∫∫ ∫∫ ∫∫ ∫∫  (5.1) 

 
where n  is the unit normal vector on the contour. The flow properties are the den-
sity, ρ, the velocity vector, V , the pressure p and the viscous stress tensor, τ . The 
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effect of the viscous stress tensor can in general be neglected if the control volume 
is sufficiently far from the body. 
 
For a steady two-dimensional flow, using ( )TF D L=  with in x-direction the 

(steady) drag D and in y-direction the (steady) lift L,  ( )TV u v= and the outward 

unit normal vector defined as ( )Tnds dy dx= − , the force equation can be explic-
itly written as: 
 

 
2

2
D u dy uvdx pdy
L pdxuvdy v dx

ρ  −   = +     −−    ∫ ∫  (5.2) 

 
For an unsteady flow fluctuating terms can be introduced into equation (5.2) by 
means of Reynolds averaging with which the mean forces acting on the model for 
an unsteady flow are obtained as: 
 

 
( ) ( )
( ) ( )

2 '2 ' '

' ' 2 '2

u u dy u v u v dxD pdy
pdxL u v u v dy v v dx

ρ
 + − +    = +      −   + − + 
 
∫ ∫  (5.3) 

 
The sign convention of the forces, angle of incidence, the free stream velocity and 
the coordinate system is given in figure 5-1.  
 

 
Figure 5-1: Coordinate system and direction 

of positive quantities  
 
It can be noted from the mean force equation, equation (5.3), that in order to 
evaluate this expression the mean pressure, p , is needed. The pressure field is not 
available with PIV experiments. It is also impossible to obtain the pressure field 
by applying the Bernoulli equation, since the flow under consideration has large 
regions of separated flow. However, the Navier-Stokes equation provides an equa-
tion for the pressure gradient. In principle, this pressure gradient can be integrated 
to provide the missing pressure field in the integral force equation. Before discuss-
ing an implementation of an integration method, several other methods are de-
scribed to calculate the pressure field as can be found in literature. 

5.2 Methods to determine the pressure field 

Several methods are available for obtaining the force on a wind tunnel model. A 
broad division can be made into direct, indirect and advanced techniques. The di-
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rect techniques are classical methods such as the force balance and pressure rakes. 
Indirect methods are based on solving the Navier-Stokes equations. Advanced 
techniques are a specific interpretation of existing techniques. A general descrip-
tion of a number of these techniques is given below. More methods are described 
in Norberg [2003], which also includes methods to estimate the fluctuating lift.  

5.2.1 Direct methods 

The direct methods provide an easy way of measuring the force on the wind tun-
nel model. Such methods are: 
 

• Force balance: the model is directly connected to a force balance. This im-
mediately returns the total force, which can be decomposed into lift and drag. 
Of course, there is no need to evaluate the pressure field using this method. 

 

• Static pressure taps: holes in the surface of the model with static pressure 
tubes connected. The normal force is obtained by a spatial integration of the 
pressure on the surface.  

 

• Pressure probes: also known as a pressure rake. A mechanism with multiple 
static and total pressure holes is traversed through the wake to obtain the total 
pressure losses in the wake. These pressure losses are related with the drag 
term due to viscosity. The spatial resolution is relatively coarse. 

 
A major drawback of these methods is that any information of the structure of the 
wake is either not available (Force balance and Static pressure taps) or not fully 
resolved (Pressure probes, returns only mean values). These methods are also to 
some extent intrusive, as the model has to be properly attached to the force bal-
ance, or pressure probes have to be inserted in the wake quite close to the model. 
Moreover, the accuracy of the pressure measurement method decreases dramati-
cally at low values of the dynamic pressure. Another drawback is that in order to 
be able to measure the forces or pressures additional instrumentation has to be in-
stalled.  

5.2.2 Indirect methods 

The current experimental investigation focuses on a detailed analysis of the flow 
around a bluff body. Force data alone is therefore insufficient. The current ex-
perimental analysis is conducted with PIV to obtain instantaneous velocity data. 
This enables a detailed description of the investigated flow. Using integral mo-
mentum relations it is, in essence, possible to acquire the (mean) force data on the 
model with PIV data. These integral relations, however, require the knowledge of 
the pressure field. This is complicated by the fact that the Bernoulli equation is not 
valid in a bluff body flow (e.g. it can not be used in the wake of the bluff body due 
to separation). Several methods have been employed by different researchers to 
obtain the pressure information. 
 
The indirect methods can be classified into three groups based on the pressure 
field calculation: 
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1) Full: The pressure field is calculated throughout the computational do-
main. The force is evaluated using momentum integral equations,  

2) Partial: Similar to the full pressure calculation but the pressure values are 
calculated only on the contour of the control volume, 

3) Circumvention: The pressure field calculation is totally omitted by rewrit-
ing the Navier-Stokes equations such that the pressure is eliminated. 
The resulting force equations are in terms of velocity and vorticity. 

 
Full Pressure Calculation 
The method that is utilized in this report is based on a two dimensional integration 
of the pressure gradient field starting from a region where the static pressure is 
known (e.g. free stream). The pressure gradient field can be derived from the x- 
and y-momentum equations in an incompressible flow. The momentum equations 
are rewritten for the pressure gradient in x- and y-direction. The momentum equa-
tions are still valid in rotational flow. The momentum equations in non-
conservative form for a two-dimensional flow are given in equation (5.4) [White, 
1991]: 
 

 

2 2

2 2

2 2

2 2

1

1

u u u p u uu v
t x y x x y

v v v p v vu v
t x y y x y

ν
ρ

ν
ρ

 ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + ∂ ∂ ∂ ∂ ∂ ∂ 

 (5.4) 

 
These equations can be rewritten with the pressure gradients on the left hand side. 
By applying the Reynolds averaging technique and some algebraic manipulation 
the following set of equations is derived (the full derivation can be found in 
Appendix C): 
 

 

'2 ' ' 2 2

2 2

'2 ' ' 2 2

2 2

Euler Fluctuation Viscous

p u u u u v u uu v
x x y x y x y

p v v v u v v vu v
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 (5.5) 

 
All the terms on the right hand side can be obtained by a PIV measurement with 
density, ρ, and viscosity, ν, taken as constants. On the right hand side of equation 
(5.5) three distinctive contributions can be identified. These are the Euler terms, 
the fluctuating terms and the viscous terms. After integration of the pressure gra-
dient, the pressure can be inserted into the integral momentum equation to obtain 
the mean force acting on the model. The integration procedure and the force 
evaluation are explained in detail in the subsequent paragraphs. The remainder of 
this paragraph is devoted to alternative methods. 
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Another method available to calculate the full pressure field is based on solving a 
Pressure Poisson Equation (PPE). The PPE is obtained by applying the divergence 
operator on the incompressible Navier-Stokes equations (see Appendix C for a 
derivation). The function in Cartesian coordinates reads [Gurka et al., 1999]:  
 

( ) ( ) ( )
22 2 2 2

2 '2 ' ' '2
2 22 2u u v vP u u v v

x y x y x x y y
ρ
      ∂ ∂ ∂ ∂ ∂ ∂ ∂  ∇ = − + + + + +       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂         

 (5.6) 

 
All terms in the PPE equation are available from, or can be derived from, PIV ex-
periments. The PPE equation needs a boundary condition in order to obtain a solu-
tion. In general, the pressure gradient can be provided as a boundary condition.  
 

 ( ) 2Vp V V V
t

ρ ρ µ∂
∇ = − + − ⋅∇ + ∇

∂
 (5.7) 

 
Gurka et al. [1999] applied this method to the impinging flow on a flat plate and 
to a jet flow, both external flows without any interior object. Yoshioka et al. 
[1999] used this method to the turbulent separated flow over the backward-facing 
step. They assume an unrealistic zero pressure on the entire boundary and this 
needs to be further investigated. Fujisawa et al. [2005] solved the PPE equation 
for a circular cylinder with appropriate boundary conditions at a Reynolds number 
of 2000. Their results are close agreement with literature. Hosokawa et al. [2003] 
utilized this method for the evaluation of the pressure field of laminar flow around 
bubbles and single particles. The PPE in their case was not solved directly, but 
with a numerical solution algorithm (SOLA). This approach does not require ex-
plicit boundary conditions, but needs initial conditions as the method is based on a 
Newton-iteration method. At each iteration velocities are estimated from previous 
calculations. 
 
The method of the PPE can prove itself viable but it needs to be validated for sev-
eral other cases. It is not difficult to write a Poisson solver based on a successive-
over-relaxation (SOR) for the numerical integration. However, the current investi-
gated flow possesses a severe constraint on this method. Namely, the current ex-
periments have an object inserted into the flow and special care has to be taken to 
implement the boundary conditions on this geometry. For the current experiments 
it is possible to prescribe a Dirichlet boundary condition on the left side of the 
domain (e.g. the pressure obtained according to the Bernoulli relation), a non-
restrictive condition. The boundary condition on the object itself should be mod-
elled with Neumann boundary conditions (e.g. the pressure gradient) along the 
circumference of the model. The boundary of a model is in general not aligned on 
grid points. A simple interpolation of the boundary conditions is not possible 
(when using Neumann boundary conditions) and one has to resolve to a more 
complex notation of tensor analysis to correctly implement these conditions [Van 
Kan et al., 1993]. Such an approach is not adopted in this investigation, but may 
be of interest when a suitable Poisson solver is used. 
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Partial Pressure Calculation 
The method of partial calculation of a pressure field is employed by Unal et al., 
[1997]. The force is calculated using the integral momentum equation. The pres-
sure terms are obtained by a numerical integration of the x- and y-momentum 
equations for the pressure gradient along the x and y surfaces of the contour. Their 
application shows a similar trend of the evolution of the lift-coefficient in time as 
transducer measurements. Deviations are related to low temporal and spatial reso-
lution.  
 
Circumvented Pressure Calculation 
The integral momentum equations can be rewritten to circumvent the need for the 
explicit calculation of the pressure. Noca et al. [1999] derive closed-form equa-
tions for the evaluation of time-dependent forces on a body in an incompressible, 
viscous, rotational flow. The equations are rewritten such that only velocity and 
its gradients are needed for the calculation of the force. These data are readily 
available with PIV experiments. They derive three equations, which are: an “im-
pulse equation”, a “momentum equation” and a “flux equation”. The first two 
equations require an evaluation of surface integrals over the boundary layer region 
next to the body, in a two-dimensional flow. In most experiments, this region can-
not be fully resolved.  
 
This restrictive condition is removed in the “flux equation”, where only line inte-
grals (in a two dimensional flow) are to be evaluated under the limiting condition 
that the flow field is divergence free, 0u∇⋅ = . In its time-dependent from this 
equation evaluates development of the force in time with data on an arbitrary con-
tour (surrounding the body). The “impulse equation” and the “momentum equa-
tion” differ only by a vector relation. In all of the above formulations, the only 
measured quantity is the velocity; the vorticity is calculated from this velocity 
data. If the flow near the model yields spurious data (for example due to perspec-
tive errors in PIV experiments) the “flux equation” would give the most accurate 
result. The methods are applicable to flows, which are either highly resolved, or 
well accentuated (with large force coefficients). Tan et al. [2005] used the “flux 
equation” of Noca et al. [1999] to estimate the force on a circular cylinder using 
potential flow velocity data. They recognize the statement of Noca et al. [1999] 
that a contour should be chosen such that it is relatively close to the body. All the 
force formulations depend explicitly on a position vector, which may lead to er-
rors for larger domains, or flows with low force coefficients. 

5.2.3 Advanced methods 

Two advanced techniques are available for obtaining the force information on a 
model. The first method involves the Direct Measurement of Vorticity (DMV). 
The second is based on the measurement of an acceleration field with PIV. 
 
Direct Measurement of Vorticity (DMV) 
Ruan et al. [2001] developed a method to measure the vorticity field directly in-
stead of approximating it. The DMV method determines the vorticity from a cor-
relation of the average angular displacement of rotation between two matched pat-
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terns. This method is insensitive to velocity uncertainty as opposed to conven-
tional vorticity methods. Only the particle image noise contributes to the meas-
urement uncertainty. The DMV method neglects the deformation of image pat-
terns and is therefore not suitable for high shear flows. An important feature of the 
DMV method is that correlated grey intensity levels are mapped from a Cartesian 
coordinate system to polar coordinate system.  
 
They did not intend to use it for estimating the force on a model. This method can 
be used however in conjunction with the force relations from Noca et al. [1999] 
(see previous paragraph) to calculate the vorticity field with a lower uncertainty 
and thus a more reliable force prediction. Images would be analysed parallel with 
PIV and DMV to provide the velocity and vorticity fields. To provide for data 
around the model a three or four camera set-up could be employed. Two cameras 
are set-up for stereoscopic PIV that would capture the global flow field around the 
model. The third camera would be set-up such that the optical axis aligns with the 
centreline of the model to reduce perspective errors. To really minimize the effect 
actually a two-camera set-up to zoom in on the model is needed. The stereoscopic 
is used so that the cameras are not in each other’s field of view. This third camera 
would focus primarily on the flow close to model and provide a necessary high 
resolution in this region (e.g. similar to the convention in CFD methods to de-
crease the cell size in the neighbourhood of a boundary). The resulting velocity 
and vorticity fields could then be inserted into the relations from Noca et al. 
[1999]. 
 
Planar accelerometry 
Jakobsen et al. [1997] used a four CCD camera set-up to measure the acceleration 
in addition to the velocity; in principle a two-camera set-up would suffice. The 
measurement of the acceleration is necessary when   The images from first two 
and the last two cameras were correlated to produce two velocity fields by con-
ventional PIV analysis. These two velocity fields are then used to estimate the ac-
celeration term based on an Eulerian approach. Using such a method leaves a 
first-order linear differential equation for the pressure. This method seems to be 
applicable to a wide range of flows. 

5.3 Two dimensional pressure gradient integration 

Two methods have been considered to integrate the pressure gradient field, the 
Conjugate Gradient Method and the Downstream Integration. 

5.3.1 Conjugate Gradient Method 

The Conjugate Gradient Method employed is the same as described in Elsinga 
[2003]. The application of the Reynolds averaged Navier-Stokes equations re-
quires a second step to be performed to obtain the pressure field. This step en-
compasses the integration of the gradient field. The pressure field and the pressure 
gradient field are related as: 
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S

p p dS= ∇∫  (5.8) 

 
The pressure gradient field can be spatially integrated solving the system of equa-
tions: 
 
 ij i iD p g=  (5.9) 
 
where D a sparse matrix (2N x N) with a second order accurate central differenc-
ing scheme, p a vector (N) containing the pressure values at each point and g a 
vector (2N) containing the pressure gradient values at every point in x- and y-
direction. The system of equations, equation (5.9), is over specified and is solved 
in the least square sense using the Conjugate Gradient Method. The method used 
here is a (slight) modification of the method documented in Elsinga [2003]. 
 
The Conjugate Gradient Method is an iterative method at which at every iteration 
the following is derived: 
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The Conjugate Gradient Method is initialised with an uniform pressure field, 

k
p , 

and 
k

r  and 
k

q  are defined as 
0 0 T

r q D g= = . First the step length, kβ , in the 
search direction is calculated. The pressure is then updated in the direction of the 
vector q. The next step is to calculate the new residual for the updated pressure. 
The new residual is the old residual (e.g. the difference between the left- and right 

hand side of equation (5.9)) times the differential scheme matrix 
T

D . There is no 
error level defined for the residual since the Conjugate Gradient Method is bound 
to converge for finite dimensional problems. The final two steps consist of calcu-
lating a new coefficient, kα , that is then used to determine the new search direc-
tion of the next iteration. Before the next iteration all the k+1 components are set 
to k. The boundary condition to initialise this procedure is the pressure, as deter-
mined by the Bernoulli pressure relation, in a single point on the left vertical side 
of the computational domain. 
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5.3.2 Downstream integration 

The downstream integration approach is a modified version of the method docu-
mented in Baur et al. [1999]. The current method uses a Dirichlet condition on the 
inlet and the resulting pressure field is then reconstructed by a two-dimensional 
integration. The integration proceeds line by line in downstream direction. The in-
tegration process is an averaging over neighbouring points. For each line, there 
are two sweeps, from top to bottom and vice versa. The resulting pressure field is 
the average of the results of the two sweeps.  
 

  
a) Upper boundary calcu-

lation upward sweep 
 b) Upper boundary calcula-

tion downward sweep 
   

  
c) Interior calculation up-

ward sweep 
 d) Interior calculation down-

ward sweep 
   

  
e) Lower boundary calcu-

lation upward sweep 
 f) Lower boundary calcula-

tion downward sweep 
   
 ● Calculated grid point 
 ○ Undetermined grid point 

Figure 5-2: Pressure calculation at grid point (i,j) with up-
ward and downward sweep 

 
The method is visualized with integration directions in figure 5-2, which also il-
lustrates how the integration on line i is determined, with pressures known from 
line i-1. The arrows indicate which grid points are used for the pressure determi-
nation at the point (i, j). The pressure from the previous calculated grid point, at 
the grid point (i, j-1) for the upward sweep or the grid point (i, j+1) for the down-
ward sweep, is used as well as the results from the previous (downward or up-
ward) sweep. At the lower boundary at the upward sweep and the upper boundary 
at the downward sweep only the results from the previous sweep are used. The 
pressure is then calculated according to: 
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 p pp dx dy
x y

 ∂ ∂
= + ∂ ∂ ∫  (5.10) 

 
This can be written in a discrete form for an interior grid point: 
 

 ( ) 1 2 3 4,
4

p p p pp i j + + +
=  (5.11) 

 
where the pressure p1 to p4 are evaluated by a second order Taylor series (using a 
trapezoid rule of integration): 
 

( ) ( ) ( )( ) ( ) ( )( )( )1 1
1 2 21, 1 1, 1 , 1, 1 ,p p p p
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or, 
 

( ) ( ) ( ) ( )4
1, 1 , 1 , ,
2

p pp p i j i j i j dy downwards
y y

 ∂ ∂
= + + + + − ∂ ∂ 

 (5.16) 

 
The number in the denominator in equation (5.11) equals the total number of 
points contributing to the pressure at the grid point (i, j). The pressure is thus an 
average of the neighbouring points to minimize any propagation of errors. At the 
upward sweep the denominator is 2 at the lower boundary and 3 at the upper 
boundary, and vice versa at the downward sweep. The denominator value is also 
dependent on the mask. A mask is created to take only into account the grid points 
that are outside the model. If during an upward and/or downward sweep no 
neighbouring points contribute to the pressure, the value of the pressure is not cal-
culated and not used for any next calculation of the pressure. 

5.3.3 Verification of integration methods 

The two methods for the direct two-dimensional integration have been tested on 
an analytical function of two variables x and y reading as: 
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Figure 5-3: Analytical test function, a) Mesh plot, b) Contour plot 
 
The integration of the gradient of this test function will be evaluated with the Con-
jugate Gradient Method and the downstream integration technique. The gradient 
field of the test function z, equation (5.17), will be calculated with the MATLAB 
function GRADIENT. The two methods will be compared in how they reproduce 
this test function. The test function z is visualized in a three dimensional sense in 
figure 5-3a and its accompanying contour plot in figure 5-3b. The function z will 
be defined on a grid with x-values ranging from -10 to +10 and y-values ranging 
from -8 to +8, with an equidistant stepsize of 0.1, leading to 201 by 161 grid 
points. 
 

 

Figure 5-4: a) Contour plot of result of CGM method, b) Error 
 
The results of the Conjugate Gradient Method applied on this test function are 
presented in figure 5-4a. The difference of the exact solution and the Conjugate 
Gradient Method is shown in figure 5-4b. It is clear that this method returns large 
differences in the solution, in order of 30% of the reference value. It seems that an 
approximated linear part of the solution is lost, the reason for this is not clear. Al-
though one may conclude from this result that the Conjugate Gradient Method 
seems unsuitable for this kind of integration, it has to be mentioned that the Con-
jugate Gradient Method shows satisfying results for the symmetrical potential 
flow around a circular cylinder (see Appendix C). 
 

a) b)

a) b)
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Figure 5-5: a) Contour plot of result of downstream integration, b) Error 
 
The result obtained with the downstream integration method is given in figure 
5-5a. The difference of the exact test function and the result of the downstream in-
tegration is given in figure 5-5b. It can immediately be concluded that this method 
approximates this test function with a small difference located at the regions of the 
largest gradients. The error is of the order 10-3 at the position where there is a 
large change in the gradient. Since the function is solved for discrete points, this 
error is ascribed to an insufficient spatial resolution for grid points in the 
neighbourhood of large gradients. 

5.4 Critical parameters 

When applying the procedure to the flow around a model, the numerical integra-
tion procedure is sensitive to a number of geometrical influences. One issue of the 
current method is that the solution is greatly affected by the size of the mask that 
covers the model and the adjoining region of unreliable velocity measurement. 
Another issue is that an increase of grid points will lead to a better converged so-
lution, similar to (conventional) CFD methods. 

5.4.1 Data mask 

Already in the image processing procedure, a mask was included at the position of 
the model. In addition, a small area around the model was added to compensate 
for the lack of optical access due to perspective view. Consequently, within this 
mask there is no velocity data available. The first assumption during the down-
stream integration was to use the same mask. However, it turned out that there 
was a significant propagation of errors in the region just outside the mask. Also, 
due to flow separation there is a large difference in pressure gradients at the front 
corners of the model. These areas contribute the most to the error. 
 
The propagation of errors can be minimized by introducing a mask distinctively 
larger than the model. Although this prohibits the pressure to be computed close 
to the body, it provides more reliable pressure data for the contour integration that 
yields the integral forces. A calculation of the potential flow around a circular cyl-

a) b)
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inder illustrates this effect. The large mask consists of 32 x 31 grid points and has 
a size of 1.6 x 1.6 D, where D is the diameter of the cylinder (set equal to 1). The 
small mask is equal to the cylinder, filling a circle of 19 x 19 grid points. Both 
masks are centred on the cylinder centre. 
 
 

a)  Exact pressure 

 

 
b)  Pressure determined with large mask 

   

 
c)  Pressure determined with small mask 

Figure 5-6: Comparison of pressure calculations 
 
 
Figure 5-6 shows the results for the potential flow with zero circulation where the 
approximated pressures with a large mask in figure 5-6b and a small mask in 
figure 5-6c are compared to the exact pressure, figure 5-6a. The difference of the 
calculated pressure values with the exact pressure are given in figure 5-7a and b 
for the large mask and the small mask, respectively. Figure C-4 (in Appendix C) 
shows the same effect for a potential flow calculation with circulation. At first 
glance (figure 5-6c), the results of the pressure calculation with the use of the 
small mask seem reasonable. However, close to model (figure 5-8) there is large 
difference between the calculated pressure and the exact pressure. The reason for 
this is most likely caused by the reliability of the pressure gradient. It might not be 
well estimated in the neighbourhood of a boundary. This difference is then propa-
gated throughout the rest on the computational domain. When compared with the 
large mask, the differences are remarkably lower for the large mask.  
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a) Large mask 

 

b) Small mask  

Figure 5-7: Errors of pressure calculations, downstream integration 
 

a) Exact pressure 

 

b) Calculated with small mask 
   

 
c) Error 

Figure 5-8: Close-up of region around model using a small mask for potential 
flow with no circulation 

5.4.2 Spatial resolution 

One way to show the convergence of the method is to increase the number of grid 
points. For experiments this can be only be done by increasing the spatial resolu-
tion of the set-up but for the simulation this can varied by hand. The grid size en-
countered during the experiments is 126 x 168 pixel2. To establish the effect on 
the solution the drag and lift coefficient are calculated for the potential flow 
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around a circular cylinder. In anticipation of the force calculation in the next para-
graph, it can also be verified whether the force integral momentum is correctly 
implemented. The drag coefficient for this type of flow is zero (D’Alembert’s 
paradox). The lift coefficient is zero for potential flow without circulation and for 
potential flow with circulation equals [Anderson, 1991]: 
 

 lc
RV∞

Γ
=  (5.18) 

 
where Γ the circulation and R the radius of the cylinder. 
 
The values of the drag and lift coefficient are calculated for the potential flow 
around a circular cylinder with a radius of 0.5, a free stream velocity of 1 and cir-
culation values of 0 and 5. So the drag and lift coefficient should all be 0, except 
for the case with circulation where the lift coefficient should equal 10. The drag 
and lift coefficient are calculated on the following grid sizes, 61 x 101 (Coarse 
grid) and 151 x 251 (Fine grid). The results of the calculation are given in table 
5-1. 
 

Table 5-1: Drag and lift coefficients calculated for potential flow around 
a circular cylinder with and without circulation 

     
 cd cl cd cl 

     
 Circulation 0 5 
 Coarse grid 2.90·10-3 -1.37·10-4 2.10·10-3 10.0821 
 Fine grid 6.30·10-4 -2.26·10-7 4.32·10-4 10.0307 
 Exact 0 0 0 10 

 
It appears that the theoretical values are well approximated. The small deviations 
are related to the calculation on discrete grid points and numerical integration er-
rors. The values of the drag and lift coefficient are well approximated. An in-
creased grid size (fine grid) shows a reduction of almost one order of magnitude 
in the error for the drag coefficient. An increased grid size shows also an im-
provement of the lift coefficient estimation. The error of the lift coefficient for the 
case with circulation is of the order 10-2. The error is larger than the case without 
circulation. 

5.5 Implementation of force calculation method 

A schematic view of the integration area is presented in figure 5-9. The method is 
applied to validated data from which the upper eight pixel rows (the white area in 
the top of this figure) were eliminated. It turned out that in this region velocity 
outliers caused a large deviation in the computed pressure field. The contour line 
(solid black line) of the integration area is chosen 5 pixels within the outer left 
boundary of the image. This way border effects from the PIV experiments are 
minimized in the contour integral evaluation. The boundary condition for the 
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pressure is prescribed at the outer boundary of the image. The (size of the) mask is 
kept constant (at approximately 2 x 2 D) and always enclosing the model. The 
mask is illustrated by the white area surrounding the model in figure 5-9. The 
points 1, 2, 3 and 4 indicate the corners of the contour. The drag and lift coef-
ficient are obtained by making the drag and lift dimensionless with 21

2 U Dρ ∞ , 
where D is the length of one side of the square prism (U∞ is 10 m/s, D is 30 mm). 
 

Figure 5-9: Schematic view of model 
(dark grey), perspective 
area (light grey), masked 
area (white area surround-
ing model), the skipped 
part (upper white area), 
the integration contour 
(black line) and the grid 
points (light grey mesh) 

 
Two examples of the calculated pressure gradient are provided in figure 5-10 and 
figure 5-11 for the model at zero angle of incidence. Additionally, the contribu-
tions of the Euler, fluctuating and viscous terms are given as well (note the magni-
fied scale for the viscous term), with the different terms as identified by equation 
(5.5). The first figure is based on the current dataset. It is based on the statistical 
procedure with which all present datasets were post-processed. The latter is based 
on an improved statistical procedure (which only recently has been added to the 
post-processing software WIDIM) with slightly coarser settings: a window size of 
31 by 31 pixels and 50% overlap and only 500 (half of the dataset) image pairs are 
analysed.  
 
The Euler terms take into account the front stagnation and the side acceleration of 
the flow. In the wake region the Euler terms show little contribution and in the 
shear layers account for pressure recovery of the flow. The fluctuating terms 
dominate the pressure gradient within the wake. A minimum in pressure is clearly 
visible at approximately / 1.2X D = . The pressure recovery by the Euler terms is 
counteracted in the shear layers by these fluctuating terms. As may be expected, 
the viscous terms do not add much to the pressure gradient and only show a small 
contribution in the shear layer. Due to the shadow stripe, the pressure gradient is 
slightly asymmetric. The results of the improved analysis are more symmetric, 
figure 5-11. The Euler terms of the pressure gradient are greatly affected by the 
shadow stripe emanating from the upper right corner of the model (figure 5-10). 
These terms are based on the velocity and the velocity gradient so the effect is 
dominating there. To a lesser extent is the effect visible in the contribution of the 
fluctuating terms. 
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Figure 5-10: Contribution of terms to the pressure gradient 

using current statistical validation 
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Figure 5-11: Contribution of terms to the pressure gradient 

using an improved statistical validation 
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Figure 5-12: Pressure coefficient, cp, at α = 0° 
 
Figure 5-12 presents the pressure coefficient distribution, cp, for zero angle of in-
cidence obtained with the 2D integration method. Due to the use of the mask, it is 
not possible to resolve the pressure coefficient in the region just around the model. 
The stagnated region therefore cannot be clearly determined. The minimum pres-
sure behind the model is captured. Plots of the pressure coefficient for angles of 
incidence can be found in Appendix D. 
 
In order to verify the assumptions of the pressure evaluation along the contour 
several methods are provided in figure 5-13. The following procedures are com-
pared (the equations can be found in Appendix C): 
 
� Bernoulli 
� ‘unsteady’ Bernoulli 
� 1D pressure integration (contour) 
� 2D pressure integration (field) 

 
All pressure calculations show good agreement outside the wake (front side  and 
parts of the top side and bottom). The pressure field obtained by the Bernoulli and 
‘unsteady’ Bernoulli equation show that these equations are not valid in the wake 
region, as may be expected. The ‘unsteady’ Bernoulli equation differs from the 
regular Bernoulli equation in such that the fluctuating velocity terms are added. 
This equation is therefore able to better predict the pressure near the shear layers, 
but this equation also deviates within the wake region. The integration of the pres-
sure gradient along the contour was also calculated with a 1D integration. Since 
this integration can only be performed in one direction the end value of the inte-
gration is not the same as the start value. This corrected for by applying a linear 
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correction to the integrated pressure values. Even then, the 1D integration deviates 
from the 2D integration. The 2D integration is less sensitive as the 1D integration 
to outliers, since the pressure values are averaged over the neighbouring values. 
Therefore, the 2D integration seems the most reliable to predict the pressure field 
for the flow under consideration. Three regions with peaks appear along the con-
tour. A small region of outliers causes the slight disturbance at the beginning of 
the integration contour. The two peaks on the topside of the model are due to the 
emanating shadow stripes. The pressure calculations of the all methods do not de-
viate behind these peaks. 
 

 
Figure 5-13: Comparison of several pressure computations along contour 

5.6 Discussion of results 

The method of the integral momentum force calculation is finally used to deter-
mine the drag and lift coefficient on the model. The obtained values of the drag 
and lift coefficient are presented in table 5-2. The calculated drag coefficient is 
shown in figure 5-14 compared to data from other researchers. The general trend 
of these results is recovered with the current method. However, the drag coeffi-
cient by the current method, red line/red dots, is overestimated in comparison with 
other results. An explanation for this deviation is the high blockage ratio during 
the experiments. The blocked area by the model is around 10%. The effective 
blockage ratio is even larger due to the displacement of the boundary layer. This 
would mean that the velocity over the model is more than 10% higher. Since an 
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aerodynamic force is scaled with the velocity squared, the drag would be esti-
mated 21% higher. Cooper [1998] states that a continuing search for good wind 
tunnel corrections for bluff body experiments is still needed. Another deviation is 
the estimate for the occurrence of the minimum drag coefficient. All data suggest 
a minimum value of CD between an angle of incidence of 12° and 13°, whereas 
the present method predicts a minimum value at angle of incidence of 10°.  
 
The calculated lift coefficient is given in figure 5-15 together with results from 
other researchers. The lift coefficient, red line/red dots, shows a good agreement 
with other results. Similar to other data the minimum lift coefficient is predicted 
to occur an angle of incidence of 10°. The gradient of the lift coefficient is how-
ever not well estimated. Another issue is the deviation at zero angle of incidence 
where a non-zero (positive) value is calculated. 
 
 

Table 5-2: Drag and lift coefficients (minimum val-
ues in boldface) 

   
Angle of  
incidence (°) Drag coefficient Lift coefficient 

   
0  2.1773 0.1344  

2.5  2.0076 -0.4749  
5  2.0899 -0.4825  

7.5  2.0173 -0.6789  
10  1.8705 -0.4274  

12.5  1.9064 -0.8256  
15  1.9807 -0.6948  
20  2.1293 -0.3729  
25  2.4273 -0.1188  
30  2.4824 0.0446  
35  2.5892 -0.0705  
40  2.7978 -0.0148  
45  2.9237 0.1060  
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Figure 5-14: Drag coefficient, CD, versus angle of incidence, α 
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Figure 5-15: Lift coefficient, CL, versus angle of incidence, α 
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 Chapter
 

6
  Conclusions and 

Recommendations 

The main conclusions in the current investigation of the flow around a square cyl-
inder are summarized in this chapter. Also, some aspects for future research on 
galloping and force determination are presented. 

6.1 Conclusions 

The flow around a bluff body exhibits large regions of separation. The separated 
flow can lead to vibrations of the bluff body, which can ultimately lead to the fail-
ure of the structure. Vibrations at frequencies lower than the natural frequency of 
the structure are referred to as galloping. Galloping is characterized by a large 
amplitude low frequency vibration. These vibrations can be described by a two-
dimensional quasi-steady theory, in terms of negative aerodynamic damping. 
Typical properties of square prismatic cylinders are the occurrence of a negative 
lift coefficient, possible reattachment of the flow when the cylinder is placed at 
angles of incidence and a minimum lift and drag coefficient at an angle of inci-
dence of approximately 12.5°.  
 
An extensive database of steady measurements has been created as a first step in 
the verification of the quasi-steady assumptions. Three experimental campaigns 
were conducted on the flow around a square cylinder at different angles of inci-
dence. All experiments were performed with Particle Image Velocimetry as a di-
agnostic technique. As a consequence an experimental model should provide opti-
cal access for laser light. Two different models were employed, a full Perspex 
model and a hollow model. Dark shadow regions were present in the instantane-
ous images of the flow when using the Perspex model, caused by the optical prop-
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erties and the dimensions of the Perspex. A second model was created where the 
optical accessible area was constructed from thin Perspex parts, leaving the inter-
nal volume hollow. The shadow regions were reduced to small shadow lines. 
Consequently, the post-processing of the images provided better results. 
 
The three experimental campaigns that were conducted, with a focus on: 
 

Case A: the wake, field of view (FOV): 9 x 3 D,  
Case B: a close-up of model, FOV: 2.5 x 2 D, 
Case C: near-wake, FOV: 4.5 x 3.5 D.  

 
All experiments were performed in the low speed open wind tunnel, W-tunnel, of 
the Aerodynamics Department of the Faculty of Aerospace Engineering of Delft 
University of Technology. The first two campaigns were performed with the full 
Perspex model, the last experiment with the hollow model. Both models had a 
side length of 30 mm. All measurements were performed at a Reynolds number of 
2·104. Only four angles of incidence (0°, 5°, 10° and 15°) were investigated during 
the first two experiments. The database of angles of incidence was constructed 
during the final experiments (case C) where angles of incidence between 0° and 
45° were measured. Between 0° and 15° every 2.5° was measured and between 
15° and 45° every 5° was measured, resulting in 13 different angles of incidence. 
During Case C a total of 1000 snapshots was taken, for each configuration. 
 
Several measures were taken to improve the quality of acquired data during the 
research period. The damaged mirrors in the laser head were replaced and cleaned 
(Case A and B) and finally the laser transmitting system was totally removed 
(Case C) and replaced with a custom made optical system to create a laser light 
sheet out of cylindrical and spherical lenses and angle reflecting element. The im-
provement was also partially due to an increase of the focal length of the camera 
and an optimisation of seeding level by placing the seeding generator outside of 
the contraction room of the wind tunnel. However, due to perspective view it is 
not possible to fully resolve the flow in a region 20% of the model length in front 
and below the model.  
 
The acquired images are post-processed with the PIV software-package WIDIM. 
A user-interface has been provided to ease the creation of the necessary input-files 
(added as an annex to this report). After processing of the data, the resulting in-
stantaneous velocity fields were statistical averaged by new method that exploited 
the properties of the histogram of instantaneous velocity distributions. With this 
method most of the previously undetected spurious vectors could be identified and 
replaced. 
 
The different flow regimes that represent the flow around a square cylinder are 
clearly identified. In the symmetrical case at 0° flow separates from the windward 
corners and recirculation zones are formed. At increasing angles of incidence the 
flow can reattach on the lower side of the model. At 12.5° a separation bubble has 
been formed on the full length of bottom side of the model. The separation bubble 
captures the recirculation zone at the lower side of the model. The two upper re-



Conclusions 

 

81

circulation zones are joined together. At angles of incidence larger than 12.5° the 
flow separates from the lower-right corner and the upper (left) corner. The separa-
tion bubble on the lower side is shortened. The lower recirculation zone at the 
back of the model is slightly increased in horizontal direction.  
 
The near-wake, defined by the length of two recirculation zones at the leeward 
side of the model, increases with increasing angles of incidence and shows a local 
peak at 10°. Within the near-wake the magnitude of the velocity has a region with 
a maximum value. At increasing angles of incidence, this region increases and 
also the maximum value increases. A region of almost zero magnitude is present 
in the near-wake for 0°. This part is limited to spots to the border of the near-wake 
for increasing angles. These spots are reduced for increasing angles. The turbu-
lence intensity remains fixed to a position of about 2. A single maximum is pre-
sent at 0°. The turbulence intensity decreases for high angles of incidence. At 45° 
the single spot is split in two separate blobs. 
 
The Proper Orthogonal Decomposition (POD) was applied to the datasets of Case 
C. This method returns the coherent velocity of the vortex shedding mechanism. 
This method orders eigenvalues according to their energy contribution. The con-
vective features of the vortex shedding are captured with the first two eigenmodes. 
In particular, these two eigenmodes represent between 52 and 72% of the energy 
of the flow. When the eigenmodes of the horizontal velocity obtained by this 
method show are symmetric, the vertical eigenmodes are anti-symmetric and vice 
versa. The energy summation of the first two eigenmodes decreases at higher an-
gles of incidence. In addition, the correlation of the phase portrait of the first two 
eigenmodes is reduced at higher angles of incidence. It might be an indication of a 
reduced periodicity of the flow. Using the mean velocity and the first two eigen-
modes the flow, a low-order flow model can be constructed. This low-order flow 
model is phase-resolved and identifies the vortex shedding pattern at each angle of 
incidence. 
 
The lift and drag coefficients are determined by an integral momentum approach. 
The pressure in this equation is provided by two-dimensional integration of the 
mean pressure gradient obtained from the Reynolds-averaged horizontal and ver-
tical momentum equations. All parts in the equations are readily available with 
PIV experiments. The integration is initialized with a Bernoulli pressure on the 
inlet (Dirichlet conditions). The pressure at unevaluated grid-points is calculated 
by a Taylor series from already evaluated grid-points. The average pressure gradi-
ent of two neighboring grid-points is used to as the integration step. The pressure 
at a grid-point is determined by an average of all the contributions from the Taylor 
series. 
 
In order to reduce errors in the pressure gradient integration, data masking has 
been applied. The area of data masking has to be distinctively larger than the 
model. Large pressure gradients near the corners of a model are most likely to 
contribute to the error and propagate into the flow field. Another way to reduce er-
rors is to increase the grid size. 
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The procedure for the pressure integration and force determination from PIV data 
has been tested on an analytical test function and the potential flow around a cir-
cular cylinder. Subsequently these methods were applied to the experimental PIV 
data of the bluff body flow around a square cylinder. In all test cases shows the 
method a good agreement with the exact solution (analytical function and poten-
tial flow) or data from other researchers (bluff body flow). The trend of the drag 
coefficient, as predicted by others, is captured. However, it is overestimated and 
probably due to a high blockage ratio during the experiments (~10%). Both the 
trend and values of the lift coefficient predicted with the current method are in 
good agreement with other data. However, a positive value of the lift coefficient is 
predicted at zero degree of incidence whereas literature data suggest a zero value. 
The maximum of the lift coefficient is estimated at 10°. 

6.2 Recommendations 

• The experiments were primarily set-up to serve as a database to which future 
experiments could be compared. In order to fully validate the assumptions of 
the quasi-steady galloping theory, the flow around an oscillating cylinder 
should still be investigated. 

 
• The current experimental set-up had a fairly high (>10%) blockage ratio of 

the model in the wind tunnel. The blockage ratio may cause the overestima-
tion of the mean drag. To assess this statement the measurements, or a selec-
tion of angles of incidence, should be repeated in set-up with a lower block-
age ratio, e.g. a smaller model or a larger wind tunnel. 

 
• The hollow model used during the final experiments, Case C, might not be 

suitable for oscillating measurements. The connection of the thin Perspex 
plate is not torsionally stiff. It was possible during the current static experi-
ments to fix both endplates at their respective positions and enforce the tor-
sional stiffness by tightening screws. If both endplates are oscillating it has to 
be ensured that the two endplates cannot move with respect to each other. 

 
• The integration method used in the estimation of the drag and lift coefficient 

was validated for two analytical cases, a test function and the potential flow 
around a circular cylinder. It was then successfully applied to the PIV meas-
urements to obtain the mean lift and drag on the square cylinder model. To 
obtain the extent to which the current method is useful a comparison with 
several other methods should be made. The current method could for example 
be used for well-known benchmark results, such as the flow around a back-
ward facing step or the flow around a NACA airfoil. These cases are studied 
widely and experimental and numerical data are readily available. Methods 
based on PIV data, that need comparison are the current method, the momen-
tum relation from Noca et al. [1997] and the pressure Poisson equation 
method by Gurka et al. [1999]. In case of the flow around an airfoil, the 
methods could also be validated against conventional methods, such as the 
force balance or pressure rake. Note however that the measured lift with PIV 
data returns the sectional lift and a method such as the force balance the total 
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lift. A relation between the sectional and total lift is not known for the flow 
around a bluff body [Norberg, 2003]. 

 
• The integration with the Conjugated Gradient Method proved to give incor-

rect results when applied to current pressure gradient data. This method, how-
ever, has yielded good results in other papers. The implementation of the 
boundary condition and the numerical differential scheme may cause the de-
viation of the current application. A specific reason was not found. It may be 
worthwhile to investigate this behaviour for the Conjugate Gradient Method. 

 
• In the present work only the mean lift and drag is determined. But the nature 

of vortex shedding, e.g. the alternating vortices, will also lead to an impor-
tance of fluctuating forces and pressures [Norberg, 2003]. For this the flow 
acceleration must be known, which cannot be obtained with the present ex-
perimental set-up and PIV equipment. A possible extension of the current 
method to unsteady flows could be achieved by using the low-order phase re-
solved flow. This low-order flow model is quasi-time resolved and might be 
used to provide an estimate for the acceleration term in the unsteady flow 
equations. 

 
• Because of the nature of vortex shedding it is interesting to also have infor-

mation of the flow evolution in time. The current image acquisition rate of 3.3 
Hz does not allow obtaining time-resolved results, since under the current ex-
perimental conditions the vortex shedding frequency is about 43 Hz. To fully 
resolve this type of flow in time a system that can measure in the order of kHz 
would be required. Such systems would consist of cameras based on CMOS 
(Complimentary Metal Oxide Semiconductor) technology and high-speed la-
sers (Diode pumped Nd:YAG).  
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 Derivation of classical (vertical) galloping 
criteria 

A.1 Equation of motion for 1-DOF model .......................................................90 
A.2 Linearised simplifications..........................................................................91 
A.3 Galloping criteria .......................................................................................92 
 
 
In order to predict galloping and its related properties, the commonly used theory 
is the quasi-steady theory. The two basic assumptions in the quasi-steady theory 
are that the dynamic effect of the oscillating motion can be approximated as if it 
was rectilinear and that there is an aerodynamic equivalent steady situation for 
each phase in the unsteady motion. The first assumption implies that any inertial 
or history effect is neglected and that only time-mean forces act on the structure, 
due to large separation between oscillation and vortex shedding frequencies. The 
second assumption implies that measurements on a static structure will be equiva-
lent with an oscillating structure in a corresponding position. 
 
Two forms of galloping exist, translational and rotational galloping. Translational 
galloping is a pure 1-DOF vibration, dominated by damping effects. The model-
ling of rotational galloping poses the additional aspect that both stiffness and 
damping effects are present. For translational galloping first order stiffness effects 
are absent and the modelling is simplified. The galloping curves (i.e. steady am-
plitudes as a function of wind speed) of translational and rotational galloping dif-
fer from each other in that for rotational galloping the limit-cycle amplitude tends 
to a constant value, whereas for translational galloping a linear asymptote is 
reached.  
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A.1 Equation of motion for 1-DOF model 

To provide insight in the dynamics behind galloping and its aerodynamic proper-
ties the stability criterion for a stable oscillation will be considered only for the 
translational galloping case. One degree of freedom galloping of a cylinder with a 
square cross-section can be described with a damped mass-spring system as pre-
sented in figure A-1. The cylinder has a side length D and a mass m. The con-
nected spring has a stiffness k and the damper a damping c. The definition of posi-
tive directions and the relation between velocities is depicted in the inset of this 
figure. Note that the plunge direction is defined positive downwards, as is com-
mon practice in flutter analysis. The following derivation is similar to the deriva-
tion from Blevins (1990).  
 

 
Figure A-1: One-degree of freedom damped mass-spring system to describe 

plunge galloping, inset shows positive directions and velocity rela-
tions 

 
The equation of motion of this one degree of freedom system is given by: 
 
 ymy cy ky F+ + =  (A.1) 
 
Using conventional notation the damping can be written as 0 02c mζ ω= , the stiff-
ness as 2

0k mω= , where 0ζ  is the structural damping of the system and 0ω  the 
natural frequency of the system, and the force in (downward) y-direction as 

21
2y yF U DCρ ∞= , where ρ is the density and yC  the vertical force coefficient. 
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From figure A-1 a relation can be derived for the vertical force: 
 
 ( )21

2cos siny L D yF F F U DCα α ρ ∞= − − =  (A.2) 
 
where the lift force FL and drag force FD are defined as: 
 

 
21

2
21

2

L rel L

D rel D

F U Dc

F U Dc

ρ

ρ

=

=
 (A.3) 

 
Using Pythagoras to constitute a relation for the relative velocity gives: 
 
 2 2 2

relU y U∞= +  (A.4) 
 
The angle of incidence can be formulated as: 
 

 arctan y
U

α
∞

 =  
 

 (A.5) 

 
Upon substitution of equation (A.3) and (A.4) into equation (A.2) the following 
formula for the vertical force component is obtained: 
 

 ( )
2

2 cos sinrel
y L D

UC c c
U

α α
∞

= − +  (A.6) 

A.2 Linearised simplifications  

For small angles of incidence of incidence and neglecting any high powers of α, 
the formula for the angle of incidence can be simplified to: 
 

 y
U

α
∞

≈  (A.7) 

 
This relation can be substituted into the relation for the relative velocity: 
 
 2 2 21relU U y U α∞ ∞= + ≈ +  (A.8) 
 
Expanding the obtained relation in a power series yields (again neglecting high 
order powers of α): 
 
 relU U∞≈  (A.9) 
 
The relation of the relative velocity can be used to simplify the vertical force 
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component, and also making use of cos 1α ≈  and sinα α≈ : 
 
 ( )y L DC c c α≈ − +  (A.10) 
 
Note that at α = 0, ( )

00y LC c
α=

= − . 
 
The derivative of the vertical force component with respect to α is also useful: 
 

 ( )y L
D

C c c for small α
α α

∂ ∂ = − + 
∂ ∂ 

 (A.11) 

 
A power series of the vertical force component can be derived as: 
 

 ( )
0

0

y
y y

C
C C

α
α

α α
α=

=

∂
≈ +

∂
 (A.12) 

 
Substituting the previously defined relations into the power series representation 
yields: 
 

 0 0
0 0

y L
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 (A.13) 

A.3 Galloping criteria 

All these definitions can be substituted into the equation of motion, equation 
(A.1). The equation of motion is then a linearised equation that describes the sta-
bility of the system to small perturbations from an initial position: 
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The terms between brackets can be interpreted as the net damping, Tζ , of the 
plunge motion: 
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This net damping is the sum of the structural and aerodynamic damping. 
 
The solution of the simplified equation of motion, equation (A.14), is given by:  
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where Ay is an integration constant, t the time and φ  the phase angle. 
 
The expression for the vertical displacement, equation (A.14), can be used to ad-
dress the stability of the damped mass-spring system in figure A-1. The displace-
ment of the vibration is stable when the exponential term in equation (A.14) de-
creases with time. This implies that the net damping should be larger than 0, 

0Tζ > , or in terms of the vertical force component: 
 

 0 0

0

4 ( )yC m stable
U Dα

ω ζ
α ρ= ∞

∂
<

∂
 (A.17) 

 
All terms on the right hand side of this strict inequality are positive and can be re-
garded as the structural damping component. It states that for a stable vibration 
the aerodynamic damping should be smaller than the structural component. The 
inequality is inversely dependent on the free stream velocity. For small velocities, 
the structural component is relatively large and galloping cannot occur, however 
when the velocity is increased, the ratio of the structural and aerodynamic compo-
nent becomes smaller and galloping may occur.  
 
The inequality for stable vibration can also be expressed in terms of the lift and 
drag coefficient, using equation (A.11) and neglecting the structural component. 
Den Hartog first derived this inequality in the 1950’s. 
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 (A.18) 

 
An important feature related to galloping is that when the stability criterion is not 
fulfilled negative aerodynamic damping can occur, e.g. the net damping will be 
smaller than zero, 0Tζ < . From the above expression, it can be seen that, since 
CD is always positive, a necessary requirement for galloping is the occurrence of a 
negative lift slope, 0Lc α∂ ∂ < . This illustrates why galloping cannot occur on 
streamlined bodies with attached flow (wings for example), but only when flow 
separation occurs. 
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B
 Optical properties of the Full Perspex and the 

hollow cylinder 

B.1 Full Perspex cylinder .................................................................................95 
B.2 Hollow cylinder .........................................................................................96 
B.3 Comparison of both models.......................................................................98 
 
 
Two types of models were utilized during the experiments. The first is a full Per-
spex model, the second a hollow model. The advantage of the second model is 
that shadow regions are reduced when the model is illuminated with a laser sheet. 
The next sections will explain this effect.  

B.1 Full Perspex cylinder 

Figure B-1 shows a sketch of the full Perspex cylinder, the original model used in 
the galloping experiments, illuminated with a straight bundle of light. The light 
enters the topside of the model at a light incidence angle of 15°. The light inci-
dence angle, θ, is defined as the angle between the normal of a surface and the 
light rays. Consequently, the light hits the left side of the model at an angle of 75°. 
In the following it will be assumed that dispersion is negligible and that it there-
fore may be assumed that the refractive index, n, of Perspex is equal to 1.5. This 
assumption is only made to simplify the qualitative view of the light passing 
through the model. Indeed, at the wavelength of the laser light, 532 nm, (green 
light) the refractive index of Perspex is slightly more then the literature value of 
1.5 at standard conditions (white light with a wave length of 538 nm and a tem-
perature of 25 °C). 
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There are two shades of grey to indicate 
the behaviour of the light travelling 
through this model. The lightest shade is 
used to indicate reflected light; the dark-
est shade represents a shadow region. 
The middle shade of grey represents the 
full Perspex cylinder. Three typical fea-
tures can be identified when light passes 
the model.  
 
The first feature is light hitting the left 
side of the model. As mentioned, the 
light hits this surface at an angle of 75°. 
Since the light travels from a low-
density area (air, nair = 1.0) to a high-
density area (Perspex) light is not only 
refracted but also reflected. The reflected 

light leaves the left side at the same angle as it hit the surface. The refracted light 
travels inside the model with a different angle. The refraction angle can be calcu-
lated with Snell’s law: 
 
 1 1 2 2sin sinn nθ θ=  (B.19) 
 
where n the refractive index of the particular material, θ the light incidence angle 
and indices refer to the regions in front and behind the contact surface. It follows 
that the refracted angle for light travelling through the left side of the model is 
40.1°. This light will impinge on the bottom surface of the full Perspex cylinder at 
an angle of (90° - 40.1° =) 49.9°. It will not pass through this surface because this 
angle is higher than the critical angle. The light will be totally internal reflected.  
 
The second feature is identified as light passing through the upper surface and the 
bottom surface. These light rays are subjected to Snell’s refraction law and it can 
be calculated that the angle of these light rays inside the model is equal to 9.9°. 
The shaded region in the lower left corner can now be explained. Light will pass 
unaltered just left from the lower left corner of the model. Light impinging on the 
left side of the model is reflected and light impinging on the upper surface is re-
fracted. This leaves an area in the lower left corner where no light passes. This 
area will result in a dark stripe in the acquired images. 
 
The third feature is identified as light that passes through the upper surface and af-
ter refraction impinges on the right side of the model. These light rays impinge at 
an angle higher than the critical angle and, thus, will be internally reflected. This 
will result in a light stripe from the right side of the model and in a shaded area. 

B.2 Hollow cylinder 

A model with thin surfaces can greatly reduce the influence of shadow stripes 

 
Figure B-1: Sketch of light passing through 

full Perspex cylinder 
 

Model 

Reflected 
light 

Shadow 
stripes 

Laser light rays
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emanating from the full Perspex cylinder. However, the light passing through 
such a hollow model is of a generally more complex nature as can be seen in fig-
ure B-2. To account for the more complex nature this figure is organized differ-
ently. On the left, one can see how the light would pass through the hollow cylin-
der. The middle shade of grey represents the hollow cylinder, light grey represents 
reflected light and the three dark grey areas at the bottom the (reduced) shadow 
stripes. Again light will have a light incidence angle of 15°, with respect to the 
upper surface.  
 
The sketch on the left is composed out of the seven numbered possibilities on the 
right in figure B-2. The first three possibilities show how light will refract and re-
flect when it hits the left surface (with an angle of 75°). Light will reflect from the 
full left surface. Light refracted above the lower left corner of the model will pass 
(refracted) through the bottom surface. The part of light that is refracted in the 
lower left corner will be reflecting of the bottom surface. The third and fourth 
possibility show how light is internally reflected inside the vertical surfaces. A 
small part of light will travel in the same direction as the original illumination 
source. The other part of light will travel in a mirrored direction. Light that enters 
the upper surface of the model and, after refraction, just passes through the bottom 
surface is shown as the sixth possibility. The remaining part of light that travels 
through the upper surface and after refraction hits the right surface of the model is 
partially reflected and refracted. All these possibilities together identify the light 
travelling through the hollow cylinder as shown in the left part of figure B-2. 
 

 
Figure B-2: Sketch of light passing through hollow cylinder 

1. 2.

3. 4.

5. 6.

7.

Reflected 
light 
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B.3 Comparison of both models 

To show this effect of the reduced shadow stripes of the hollow model directly, 
the two models were both placed in the same flow. A cropped snapshot is given 
figure B-3a. An inverted image is displayed in figure A-3b. The hollow cylinder 
(in the lower left corner of the images) is clamped between the endplates; the full 
Perspex model was positioned by hand. As can be seen, the seeding was of low 
quality. This was due to the fact that a manual seeding apparatus was used. Both 
pictures were enhanced by manipulating with several options to improve the qual-
ity of the images. Since the two models are in a comparable situation, the signifi-
cance of the shadow stripes can be seen. However, due to the poor quality of the 
images this distinction is not so obvious to see. 
 
In these pictures the illumination comes from the bottom left corner and the flow 
is from right to the left. Distinct black stripes emanate from the hollow cylinder, 
white stripes in the right image. In the area between these stripes the seeding has 
the same level as just outside the stripes. Correlation is therefore possible in this 
area without any complication. From the corners of the full Perspex model (in the 
upper right corner of the images) grey shadow regions emanate. The seeding is 
not as visible as with the hollow model. The reason that this area is not fully dark 
is because background light entered the test section. The background light was 
minimized during the measurements. Because the seeding is not clearly visible in 
the shadow area of the full Perspex model it is difficult to obtain a reasonable cor-
relation during the post-processing. It can be concluded that the hollow cylinder 
gives better optical properties that do not compromise the cross-correlation. 
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Figure B-3:  Direct comparison of full Perspex and hollow cylinder; a) en-
hanced snapshot image, b) enhanced inverted snapshot image 

 

a) 

b) 
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C
 Validation of pressure calculation 

C.1 Derivation of pressure (gradient) equations.............................................101 
C.1.1 Pressure gradient field from Reynolds averaged Navier-Stokes-

equations ......................................................................................102 
C.1.2 Pressure gradient field determined with Bernoulli equation........105 
C.1.3 Pressure field with unsteady Bernoulli equation..........................105 
C.1.4 Pressure Poisson Equation (PPE).................................................106 

C.2 Methods applied to the non-lifting potential flow around a circular 
cylinder ....................................................................................................107 
C.2.1 Pressure gradient field obtained with Reynolds averaged 

Navier-Stokes equations ..............................................................108 
C.2.2 Pressure gradient field obtained with Bernoulli equation............109 

C.3 Comparison of pressure fields .................................................................109 
 
In this appendix the derivation of the pressure gradient field will be given. The 
pressure gradient field is derived from the 2D Navier-Stokes equations. In order to 
be able to validate this derivation the pressure gradient based on the (non-lifting) 
potential flow around a circular cylinder is given. Starting with the full pressure 
field of this potential flow the pressure gradient field can be determined from the 
Bernoulli equation. The pressure gradient field is then integrated with the Conju-
gated Gradient Method to yield the pressure field. Finally, the integration is com-
pared with the original pressure field as obtained with the Bernoulli equation. 

C.1 Derivation of pressure (gradient) equations 

The method used to determine the pressure gradient field from the PIV measure-
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ments is a Reynolds averaging of the Navier-Stoke equations. In order to validate 
this method the pressure gradient field is also derived from the Bernoulli equation, 
which is essentially a simplification of the Navier-Stokes equation. 

C.1.1 Pressure gradient field from Reynolds averaged Navier-Stokes-
equations  

The derivation will start with the 2D Navier-Stokes equations, the x- and y-
momentum equations; see equation (C.1). These equations can be found in almost 
any textbook on aerodynamics, see for example White [1991]. 
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The spatial derivatives on the left hand side of equation (C.1) can be rewritten in 
conservative form: 
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To see that this is correct expand the terms on the right hand side of equation 
(C.2) and note that the parts between brackets in equation (C.3) are equal to the 
continuity equation: 
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Equation (C.1) then turns into: 
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The variables u, v and p are assumed to be build from a mean value, ( )... , and a 

fluctuating part, ( )'... , the so-called Reynolds notation (see Reynolds [1972]): 
 

 

'

'

'

u u u

v v v

p p p

 = +
 = +
 = +

 (C.5) 

 
The following properties of the Reynolds notation can be used: f g f g+ = + , 

f f=  and ' 0f = . The previous properties imply the following statement: 
' 'f f f f f+ = + = . 

 
Equation (C.4) can now be averaged: 
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First the notation of equation (C.5) is inserted in equation (C.6) and one can then 
apply the Reynolds properties to equation (C.7): 
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The temporal derivatives of u and v vanish completely, because the first statement 
in equation (C.8) implies that the mean value does not vary in time and the second 
statement follows from the Reynolds properties: 
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The expanded quadratic terms can be written as: 
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The cross product of the u and v velocity can be turned into the following equation 
(note the appearance of the Reynolds stress term ' 'u v ): 
 

 ( )( )' ' ' ' ' '
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An interesting fact of equation (C.9) and (C.10) is that the end result is the sum-
mation of the product of mean terms and fluctuating terms (e.g. products of mean 
and fluctuating terms are left out). 
 
The Reynolds properties applied to the right hand side of equation (C.7) lead to a 
cancellation of the fluctuating terms. 
 
Using the above observations equation (C.7) can be written as: 
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Expanding all of the terms on the left hand side of equation (C.11) leads to: 
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In equation (C.12) 0u v
x y
∂ ∂

+ =
∂ ∂

 can be regarded as an averaged continuity equa-

tion. This assumption is correct when the velocity field is on average 2D. 
 
Substituting equation (C.12) into equation (C.11) and bringing the pressure gradi-
ent in x- and y-direction to the left hand side finally leads to the following equa-
tions: 
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and, 
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Equation (C.13) and equation (C.14) represent the averaged pressure gradient in 
respectively the x- and y-direction. 
 
All the terms on the right hand side of equation (C.13) and equation (C.14) are di-
rectly available, or can be derived, from PIV measurements. The averaged pres-
sure gradient field allows for a reconstruction of the pressure field around any ob-
ject submerged in a flow because the functions for the pressure gradient field are 
directly derived from the Navier-Stokes equations. Therefore, the derived func-
tions for the pressure gradient field are also valid in an irrotational flow. 

C.1.2 Pressure gradient field determined with Bernoulli equation 

The pressure field of an inviscid, incompressible and irrotational flow can directly 
be obtained from the Bernoulli equation: 
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The pressure gradient field is obtained by differentiating equation (C.15) with re-
spect to x and y: 
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 (C.17) 

C.1.3 Pressure field with unsteady Bernoulli equation 

The Navier-Stokes equation with constant ρ and µ, and neglecting gravitational 
body forces is:  
 

 ( ) 2V V V p V
t

ρ ρ µ∂
+ ⋅∇ = −∇ + ∇

∂
 (C.18) 

 
Two vector identities can be used to rewrite the Navier-Stokes: 
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 ( ) ( ) 2V V V∇× ∇× = ∇ ∇⋅ −∇  (C.19) 
 
and 
 
 ( ) ( ) ( )21

2V V V V V⋅∇ = ∇ − × ∇×  (C.20) 
 
Firstly, the two vector identities can be simplified by assuming an incompressible 
flow, 0V∇⋅ = , and by introducing the vorticity vector, Vξ = ∇× , yielding: 
 
 2V ξ∇ = ∇×  (C.21) 
 
and 
 
 ( ) ( )21

2V V V V ξ⋅∇ = ∇ − ×  (C.22) 
 
These simplifications substituted into the Navier-Stokes equation leads to the fol-
lowing: 
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To illuminate the contribution of the shear layers equation (C.23) can be Rey-
nolds-averaged. To show the extent of the shear-layer contribution also zero vor-
ticity is assumed. Equation (C.23) is then only valid outside the wake region. This 
will lead to the following relation for the pressure: 
 
 ( )2 2 2 2 21 1
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C.1.4 Pressure Poisson Equation (PPE) 

Starting from the Navier-Stokes equation, equation (C.18), yet another pressure 
equation can be obtained by taking its divergence: 
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This equation can be simplified by remarking that: 
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and 
 
 ( ) ( )2 2 0V Vµ µ∇⋅ ∇ = ∇ ∇⋅ =  (C.27) 
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Using these simplifications the Pressure Poisson Equation is obtained: 
 
 ( )( )2 p V Vρ∇ = −∇⋅ ⋅∇  (C.28) 
 
Or Cartesian coordinates: 
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After Reynolds-averaging the following equation is obtained: 
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Equation (C.30) can be solved by a Poisson solver. However, this second order 
equation needs a boundary condition. The boundary condition can be provided by 
the pressure gradient form the Navier-Stokes equation: 
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C.2 Methods applied to the non-lifting potential flow around a circu-
lar cylinder 

The non-lifting potential flow around a circular cylinder can be considered as the 
summation of a uniform flow and a doublet (Anderson, 1991). The corresponding 
stream function is (usually) expressed in polar coordinates: 
 

 
2

2sin 1 RU r
r

ψ θ∞

 
= − 

 
 (C.32) 

 
The stream function can also be expressed in Cartesian coordinates: 
 

 
2

2 21 RU y
x y

ψ ∞

 
= − + 

 (C.33) 

 
The velocities u and v in respectively x- and y-direction for the circular potential 
flow are derived as follows: 
 

 
( )

( )

2 2 2

22 2
1

R y x
u U

y x y

ψ
∞

 −∂  = = +
 ∂ + 

 (C.34) 
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( )

2

22 2
2 R xyv U

x x y

ψ
∞

∂
= − = −

∂ +
 (C.35) 

 
The derivatives of the u and v velocities in x- and y-direction can also be found: 
 

 
( )
( )

2 2
2

32 2

3
2

x yu U R x
x x y

∞

−∂
=

∂ +
 (C.36) 

 

 
( )
( )

2 2
2

32 2

3
2

x yu U R y
y x y

∞

−∂
=

∂ +
 (C.37) 

 

 
( )
( )

2 2
2

32 2

3
2

x yv uU R y
x yx y

∞

−∂ ∂
= =

∂ ∂+
 (C.38) 

 

 
( )
( )

2 2
2

32 2

3
2

x yv uU R y
y xx y

∞

−∂ ∂
= − = −

∂ ∂+
 (C.39) 

C.2.1 Pressure gradient field obtained with Reynolds averaged Navier-
Stokes equations 

When any fluctuations and second order effects are neglected in the non-lifting 
potential flow around a circular cylinder then equation (C.13) and equation (C.14) 
simplify to: 
 

 p u uu v
x x y

ρ ρ∂ ∂ ∂
= − −

∂ ∂ ∂
 (C.40) 

 

 p v vu v
y x y

ρ ρ∂ ∂ ∂
= − −

∂ ∂ ∂
 (C.41) 

 
If one evaluates these equations with (the appropriate derivatives of) equation 
(C.34) and equation (C.35) (with respect to x and y), the pressure gradient in x- 
and y-direction can be found as: 
 

 
( )

2 2 2
2 2

32 2

32p y x RU R x
x x y

ρ ∞
∂ − +

=
∂ +

 (C.42) 

 

 
( )
2 2 2

2 2
32 2

32p y x RU R y
y x y

ρ ∞
∂ − +

=
∂ +

 (C.43) 
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C.2.2 Pressure gradient field obtained with Bernoulli equation 

Equation (C.15) fully written out returns: 
 

 
( )

( )

2 2 2
2 21

2 22 2

2R y x
p p U R

x y
ρ∞ ∞

+ −
= −

+
 (C.44) 

 
By differentiating equation (C.44) to respectively x and y, one obtains the pres-
sure gradient in x- and y-direction as: 
 

 
( )

2 2 2
2 2

32 2

32p y x RU R x
x x y

ρ ∞
∂ − +

=
∂ +

 (C.45) 

 

 
( )
2 2 2

2 2
32 2

32p y x RU R y
y x y

ρ ∞
∂ − +

=
∂ +

 (C.46) 

 
First note the interesting fact that equation (C.42) is similar to equation (C.45) and 
that equation (C.43) is similar to (C.46). This could be expected because the as-
sumptions in deriving equation (C.42) and equation (C.43) are the same as in the 
derivation of the Bernoulli equation. Also note that one could first differentiate 
equation (C.34) and equation (C.35) to x and y and then enter the results in equa-
tion (C.16) and equation (C.17) to obtain the same results. 

C.3 Comparison of pressure fields 

The pressure gradient field for the first method, ‘Pressure gradient field obtained 
with Reynolds averaged Navier-Stokes equations’, is calculated with equation 
(C.13) and equation (C.14). The gradient is determined with the MATLAB-
function GRADIENT and the fluctuating terms (denoted by primes) and the viscous 
part (between curly brackets) are both neglected in the present pressure field de-
termination. The pressure gradient fields for the second method, ‘Pressure gradi-
ent field obtained with Bernoulli equation’ are calculated with equation (C.16) 
and equation (C.17). All the pressure gradient fields are integrated with the Con-
jugated Gradient Method. The boundary condition used is an uniform pressure 
field and equal to zero. The resulting pressure fields are thus in fact the dynamic 
pressure fields. The results of the integration are presented in figure B-2. As can 
be seen in this figure gives the method ‘Pressure gradients from Reynolds aver-
aged Navier-Stokes-equations’ satisfactory results for the application of the 
method to the circular potential flow. 
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Figure C-1: Comparison of integrated pressure fields with Conju-

gate Gradient Method 
 

 
Figure C-2: Comparison of integrated pressure fields with different velocity 

gradient calculations 
 



Comparison of pressure fields 

  

111

 
Figure C-3: Integrated pressure with 2D integration (small mask) 
 

 

 

 

 

 

 

 

 

 

 

Figure C-4: Potential flow pressure calcula-
tion with circulation 10; a) cal-
culated with large mask (LM), b) 
difference LM with exact pres-
sure, c) relative error of LM, d) 
calculated with small mask 
(SM), e) difference SM with ex-
act pressure, f) relative error of 
SM, g) exact pressure 

 

a) b)

c) d)

g) 

e) f)
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All the results of the three experimental campaigns are presented in this appendix. 
The first paragraph lists the statistical averaged results, the second paragraph im-
ages and snapshots of the Proper Orthogonal Decomposition analysis. The third 
paragraph contains the pressure coefficients determined with the 2D integration 
method. The statistical results are all made dimensionless with the free stream ve-
locity, U∞ , of 10 m/s. For the first campaign, case A, the plotted statistical results 
are contour plots of the U velocity, the vorticity ξ, the velocity fluctuations u’, in 
x-direction, the velocity fluctuations v’, in y-direction, the Reynolds stress term, 
u’v’ and the turbulence intensity. For case B and C the magnitude of the velocity 
is plotted instead of the U-velocity. The statistical results for each angle of inci-
dence are plotted on separate pages. 
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D.1 Statistical results 

D.1.1 Case A 

Angle of incidence: 0° 
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Angle of incidence: 5° 
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Angle of incidence: 10° 
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Angle of incidence: 15° 
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D.1.2 Case B 

Angle of incidence: 0° 
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Angle of incidence: 5° 
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Angle of incidence: 10° 
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Angle of incidence: 15° 
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D.1.3 Case C 
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Angle of incidence: 2.5° 
   

-1 0 1 2
X/D

-1

0

1

Y
/D

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40
|V|/U∞  

-1 0 1 2
X/D

-1

0

1

Y
/D

-12.00 -9.00 -6.00 -3.00 0.00 3.00 6.00 9.00 12.00
ξD/U∞

   

-1 0 1 2
X/D

-1

0

1

Y
/D

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
〈u'2〉1/2/U∞  

-1 0 1 2
X/D

-1

0

1
Y
/D

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
〈v'2〉1/2/U∞

   

-1 0 1 2
X/D

-1

0

1

Y
/D

-0.22 -0.18 -0.14 -0.10 -0.06 -0.02 0.02 0.06 0.10 0.14 0.18 0.22
〈u'v'〉/U∞

2  

-1 0 1 2
X/D

-1

0

1

Y
/D

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10
T.I.

 



Compilation of Results 
 

 

124

Angle of incidence: 5° 
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Angle of incidence: 7.5° 
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Angle of incidence: 10° 
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Angle of incidence: 12.5° 
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Angle of incidence: 15° 
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Angle of incidence: 20° 
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Angle of incidence: 25° 
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Angle of incidence: 30° 
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Angle of incidence: 35° 
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Angle of incidence: 40° 
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Angle of incidence: 45° 
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D.2 Unsteady flow analysis (Case C only) 

D.2.1 Proper Orthogonal (POD) Modes 

Angle of incidence: 0°  
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Angle of incidence: 2.5°  
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Angle of incidence: 5°  
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Angle of incidence: 7.5°  
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Angle of incidence: 10°  
u1 v1 

-1 0 1 2
X/D

-1

0

1

Y
/D

 
-1 0 1 2

X/D

-1

0

1

Y
/D

 
u2 v2 

-1 0 1 2
X/D

-1

0

1

Y
/D

 
-1 0 1 2

X/D

-1

0

1

Y
/D

 
u3 v3 

-1 0 1 2
X/D

-1

0

1

Y
/D

 
-1 0 1 2

X/D

-1

0

1

Y
/D

 
 



Compilation of Results 
 

 

144

u4 v4 

-1 0 1 2
X/D

-1

0

1

Y
/D

 
-1 0 1 2

X/D

-1

0

1

Y
/D

 
u5 v5 

-1 0 1 2
X/D

-1

0

1

Y
/D

 
-1 0 1 2

X/D

-1

0

1
Y

/D

 
u6 v6 

-1 0 1 2
X/D

-1

0

1

Y
/D

 
-1 0 1 2

X/D

-1

0

1

Y
/D

 
 



Unsteady flow analysis (Case C only) 

  

145

Angle of incidence: 12.5°  
u1 v1 

-1 0 1 2 3
X/D

-1

0

1

Y
/D

 
-1 0 1 2 3

X/D

-1

0

1

Y
/D

 
u2 v2 

-1 0 1 2 3
X/D

-1

0

1

Y
/D

 
-1 0 1 2 3

X/D

-1

0

1

Y
/D

 
u3 v3 

-1 0 1 2 3
X/D

-1

0

1

Y
/D

 
-1 0 1 2 3

X/D

-1

0

1

Y
/D

 
 



Compilation of Results 
 

 

146

u4 v4 

-1 0 1 2 3
X/D

-1

0

1

Y
/D

 
-1 0 1 2 3

X/D

-1

0

1

Y
/D

 
u5 v5 

-1 0 1 2 3
X/D

-1

0

1

Y
/D

 
-1 0 1 2 3

X/D

-1

0

1
Y

/D

 
u6 v6 

-1 0 1 2 3
X/D

-1

0

1

Y
/D

 
-1 0 1 2 3

X/D

-1

0

1

Y
/D

 
 
 



Unsteady flow analysis (Case C only) 

  

147

Angle of incidence: 15°  
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Angle of incidence: 20°  
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Angle of incidence: 25°  
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Angle of incidence: 30°  
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Angle of incidence: 35°  
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Angle of incidence: 40°  
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Angle of incidence: 45°  
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D.2.2 Fluctuating velocities reconstructed from first 6 POD modes 

Angle of incidence: 0°, urms vrms 
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Angle of incidence: 10°, urms vrms 
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Angle of incidence: 25°, urms vrms 
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Angle of incidence: 45°, urms vrms 
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D.2.3 Phase portraits of first two normalized eigenvalues 

Angle of incidence: 0° Angle of incidence: 2.5° 
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Angle of incidence: 15° Angle of incidence: 20° 

  
  
Angle of incidence: 25° Angle of incidence: 30° 

  
Angle of incidence: 35° Angle of incidence: 40° 
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Angle of incidence: 45°  
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D.2.4 Snapshots of low-order phase reconstructed flow 

Angle of incidence: 0°, φ = 0° φ = 180° 
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Angle of incidence: 2.5°, φ = 0° φ = 180° 
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Angle of incidence: 5°, φ = 0° φ = 180° 
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Angle of incidence: 7.5°, φ = 0° φ = 180° 
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Angle of incidence: 10°, φ = 0° φ = 180° 
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Angle of incidence: 12.5°, φ = 0° φ = 180° 
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Angle of incidence: 15°, φ = 0° φ = 180° 
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Angle of incidence: 20°, φ = 0° φ = 180° 
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Angle of incidence: 25°, φ = 0° φ = 180° 
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Angle of incidence: 30°, φ = 0° φ = 180° 
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Angle of incidence: 35°, φ = 0° φ = 180° 
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Angle of incidence: 40°, φ = 0° φ = 180° 
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Angle of incidence: 45°, φ = 0° φ = 180° 
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D.3  Pressure coefficients (Case C only) 

Angle of incidence: 0° Angle of incidence: 2.5° 
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Angle of incidence: 15° Angle of incidence: 20° 
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Angle of incidence: 45°  
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