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Abstract. Proper orthogonal decomposition (POD) is a powerful technique for model
reduction of linear and non-linear systems. It is based on a Galerkin type discretization
with basis elements created from the system itself. In this work POD is used to derive
low-order models for a so-called lambda-omega (λ-ω) system that is a universal model to
investigate two-species reaction-diffusion problems. In the case of fast reaction kinetics
and small diffusion, these systems evolve to turbulent behavior. The performance of the
POD model reduction is studied in dependence on the parameters of the λ-ω system.
With increasing turbulence more POD modes are needed to capture the dynamics of the
full system in a satisfactory way.

1 INTRODUCTION

Reaction diffusion systems describe processes that can be often found in nature. In
particular, lambda-omega (λ-ω) systems can be used to study two species reaction diffu-
sion systems. They are used as a ’universal model’ to study chemical reaction processes
[19], to describe the dynamics of biological systems [24], to investigate the mechanism of
pattern formation [7], and to analyze the occurence of turbulent behavior [23]. In [8] a
technical application based on pattern forming systems is considered. Optimal control
problems for the λ-ω system are considered in [5, 6].

The amount of computing time and space needed for the solution of such a dynami-
cal system can be very large. Due to the importance of possible applications related to
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λ-ω systems we apply a model reduction technique to derive a low-dimensional approx-
imation. Here we utilize proper orthogonal decomposition (POD) that is a method to
derive reduced-order models for systems of differential equations. It is based on project-
ing the system onto subspaces consisting of basis elements that contain characteristics of
the expected solution. This is in contrast to, e.g., finite element techniques, where the
elements of the subspaces are uncorrelated to the physical properties of the system that
they approximate. Dependent on the parameters of the λ-ω system it shows different
turbulent behavior. With increasing turbulence more POD modes are needed to capture
the dynamics of the full system.

Let us finally briefly comment on further literature containing applications of POD.
It is successfully used in different fields including signal analysis and pattern recognition
(see, e.g., [10]), fluid dynamics and coherent structures (see, e.g., [12, 28]) and more
recently in control theory (see, e.g., [2, 4, 18, 22]) and inverse problems [3]. Surprisingly
good approximation properties are reported for POD based schemes in several articles,
see [9, 30], for example. The relationship between POD and balancing is considered
in [21, 26, 31]. Error analysis for nonlinear dynamical systems in finite dimensions are
carried out in [13, 25]. In [16, 17] error estimates for POD Galerkin approximations
are derived for non-linear parabolic differential equations. These results are extended
to linear-quadratic optimal control problems in [11]. In [14] error estimates for POD
Galerkin schemes for linear and certain semi-linear elliptic, parameter dependent systems
are proved. Parameter estimation problems for coefficients in elliptic partial differential
equations are solved numerically by POD approximations in [15].

The article is organized in the following manner: In Section 2 we introduce the λ-
ω system and review some of its properties. The POD method and the reduced-order
modeling is desribed in Section 3. Section 4 is devoted to present some numerical exper-
iments including a predictor-corrector method, where we compute the POD solution by
splitting the POD modes in lower and higher modes as usual done in non-linear Galerkin
projections. In the last section we draw some conclusions.

2 LAMBDA-OMEGA SYSTEMS

Let Ω = (0, 1) × (0, 1) be the spatial domain with Lipschitz-boundary Γ = ∂Ω. By
n ∈ R2 we denote the outward normal vector on Γ. For T > 0 we set Q = (0, T )×Ω and
Σ = (0, T ) × Ω. For given diffusion parameter σ > 0 the functions u, v : Q→ R solve

(

ut(t,x)
vt(t,x)

)

=

(

λ(s) −ω(s)
ω(s) λ(s)

) (

u(t,x)
v(t,x)

)

+

(

σ∆u(t,x)
σ∆v(t,x)

)

for all (t,x) ∈ Q, (1a)

where s = u(t,x)2 + v(t,x)2 holds and x = (x, y). We supply (1a) with homogeneous
Dirichlet boundary conditions

u(t, s) = v(t, s) = 0 for all (t, s) ∈ Σ (1b)
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or homogeneous Neumann boundary conditions

σ
∂u

∂n
(t, s) = σ

∂v

∂n
(t, s) = 0 for all (t, s) ∈ Σ (1c)

and with the initial conditions

u(0,x) = u◦(x) for all x ∈ Ω and v(0,x) = v◦(x) for all x ∈ Ω. (1d)

In (1d) the functions u◦, v◦ : Ω → R are given. The initial-boundary value problem (1) is
called λ-ω system.

To model chemical turbulence the choice

λ(s) = 1 − s and ω(s) = −βs with β > 0 (2)

is proposed in [20, 24, 27]. Existence of a unique solution pair (u, v) to (1) together with
(2) is proved in [5] by using the Leray-Schauder fixed point theorem and the Gronwall
lemma.

Remark 1 Note that (1a) together with (2) can be written as

zt(t,x) = z(t,x) −
(

1 + ıβ
)

|z(t,x)|2z(t,x) + σ∆z(t,x) for all (t,x) ∈ Q, (3)

where z = u + ıv : Ω → C with the imaginary unit ı =
√
−1 holds. Equation (3) is a

special form of the complex Ginzburg-Landau model [29], which has been used widely
in physics as a generic amplitude equation near the onset of instabilities that lead to
turbulent/chaotic behavior in fluid dynamics.

The solution pair (u, v) to (1) has the form of spiral waves that persist indefinitely. In
Figure 1 snaphots of the λ-ω system are plotted for the solution u at the time t = 100 for
homogeneous Dirichlet boundary conditions and in Figure 2 for homogeneous Neumann
boundary conditions. The corresponding plots for the solution v are similar to Figure 1
respectively Figure 2. If the parameter β in (2) increases, the spiral waves are not stable
anymore and tubulent behavior can be observed.

The goal of our work is to solve (1) by a reduced-order approach utilizing POD. This
approach is described in the next section.

3 POD REDUCED-ORDER MODELING

In this section we describe the POD approximation of the λ-ω system. By (u, v) we
denote the unique solution pair to (1). We introduce the equidistant time grid {tj}nj=1 by

∆t =
T

n− 1
and tj = (j − 1)∆t for j = 1, . . . , n. (4)
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u for β=1 and t=100 u for β=2 and t=100 u for β=3 and t=100

Figure 1: Solution u of the λ-ω system at the time t = 100 for homogeneous Dirichlet boundary conditions
for β ∈ {1, 2, 3} in (2) and for initial conditions u◦(x, y) = (y − 1/2), v◦(x, y) = (x − 1/2)/2.

u for β=1 and t=100 u for β=2 and t=100 u for β=3 and t=100

Figure 2: Solution u of the λ-ω system at the time t = 100 for homogeneous Neumann boundary conditions
and for β ∈ {1, 2, 3} in (2) and for initial conditions u◦(x, y) = (y − 1/2), v◦(x, y) = (x − 1/2)/2.

To simplify the presentation we choose an equidistant mesh in (4). Of course, the approach
is analogous for non-equidistant time grids; see, e.g., [17]. Let ū, v̄ : Q → R be given
offsets. Further, {(uj, vj)}nj=1 denotes the solution pairs to (1) evaluated at the time grid
{tj}nj=1, i.e.,

uj(x) = u(tj,x), vj(x) = v(tj ,x) for j = 1, . . . , n and x ∈ Ω.

Remark 2 Common choices for the offsets — in particular in the context of turbulent
flows [12] — are mean values, e.g., (ū, v̄) = (umean, vmean), where

umean =
1

n

n
∑

j=1

uj and vmean =
1

n

n
∑

j=1

vj .

Since the spatial functions uj and vj satisfy either homogeneous Dirichlet or homoge-
neous Neumann boundary conditions, their mean values possesses the same boundary
conditions.
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Next we take the snapshots

ûj = uj − ū and v̂j = vj − v̄ for j = 1, . . . , n.

Introducing the L2 inner product

〈ϕ, ψ〉 =

∫

Ω

ϕψ dx (5)

and the associated induced norm ‖ϕ‖ =
√

〈ϕ, ϕ〉 we determine a POD basis of rank
ℓ ∈ {1, . . . , n} for the function u by solving the constrained minimization problem

min
ψ1,...,ψℓ

n
∑

j=1

αj

∥

∥

∥
ûj −

ℓ
∑

i=1

〈ûj, ψi〉ψi
∥

∥

∥

2

s.t. 〈ψi, ψj〉 = δij , 1 ≤ i, j ≤ ℓ, (Pℓ
u)

where the αj’s are chosen as the trapezoidal weights α1 = αn = ∆t/2 and αj = ∆t for
2 ≤ j ≤ n− 1. In (Pℓ

u) we denote by δij the Kronecker symbol with δij = 1 for i = j and
δij = 0 otherwise.

Remark 3 Instead of (5) one can also utilize the H1 inner product

〈ϕ, ψ〉H1 =

∫

Ω

ϕψ + ∇ϕ · ∇ψ dx

with its associated induced norm ‖ · ‖H1 ; see [14, 16, 17].

Analogously, a POD basis of rank ℓ ∈ {1, . . . , n} for the function v solves

min
φ1,...,φℓ

n
∑

j=1

αj

∥

∥

∥
v̂j −

ℓ
∑

i=1

〈v̂j, φi〉φi
∥

∥

∥

2

s.t. 〈φi, φj〉 = δij , 1 ≤ i, j ≤ ℓ. (Pℓ
v)

The solutions to (Pℓ
u) and (Pℓ

v) are given by the solution to the symmetric eigenvalue
problems [12, 30]

Ruψi = λiψi and Rvφi = µiφi for i = 1, . . . , ℓ, (6)

respectively, where

Ruψ =
n

∑

j=1

αj 〈ûj, ψ〉 ûj, λ1 ≥ λ2 ≥ . . . ≥ λℓ > 0,

Rvφ =

n
∑

j=1

αj 〈v̂j , φ〉 v̂j, µ1 ≥ µ2 ≥ . . . ≥ µℓ > 0.
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Remark 4 (Methods of snapshot [28]) Let us supply Rn with the weighted inner
product

〈ϕ, χ〉
Rn =

n
∑

i=1

αiϕ
iχi for ϕ = (ϕ1, . . . , ϕn)T , χ = (χ1, . . . , χn)T ∈ R

n.

We define the symmetric non-negative matrix Ku ∈ Rn×n with the elements 〈ûi, ûj〉,
1 ≤ i, j ≤ n, and consider the eigenvalue problem

Kuϕi = λiϕi, 1 ≤ i ≤ ℓ and 〈ϕi, ϕj〉Rn = δij , 1 ≤ i, j ≤ ℓ. (7)

Often the matrix Ku is called a correlation matrix for the snapshots ensemble {ûj}nj=1.
From singular value decomposition it follows that Ku has the same eigenvalues {λi}di=1 as
the operator Ru. Furthermore, the POD basis functions are given by the formula

ψi =
1√
λi

n
∑

j=1

αj(ϕi)
jûj for i = 1, . . . , ℓ,

where (ϕi)
j denotes the jth-component of the eigenvector ϕi ∈ Rn. This approach is called

methods of snapshots. Analogously, the POD basis {φi}ℓi=1 can be computed by defining
the symmetric non-negative matrix Kv ∈ R

n×n with the elements 〈v̂i, v̂j〉, 1 ≤ i, j ≤ n,
solving the eigenvalue problem

Kvχi = µiχi, 1 ≤ i ≤ ℓ, and 〈χi, χj〉Rn = δij , 1 ≤ i, j ≤ ℓ, (8)

and setting

φi =
1√
µi

n
∑

j=1

αj(χi)
j v̂j for i = 1, . . . , ℓ.

Note that (7) and (8) are eigenvalue problems in Rn, whereas (6) are eigenvalue problems
in L2(Ω) that have to be discretized for numerical realization. In particular, for two- or
three-dimensional domains Ω it turns out that the POD basis should be computed by
solving (7) instead the discretized version of (6). In our numerical test examples (see
Section 4) we compute the POD basis by utilizing the methods of snapshots.

Remark 5 Note that (Pℓ
u) can be interpreted as the trapezoidal approximation of

min
ψ1,...,ψℓ

∫ T

0

∥

∥

∥
(u(t, ·) − ū) −

ℓ
∑

i=1

〈u(t, ·) − ū, ψi〉ψi
∥

∥

∥

2

dt s.t. 〈ψi, ψj〉 = δij , 1 ≤ i, j ≤ ℓ.

This relationship is used in [17] to study asymptotic convergence properties of the eigen-
functions {ψi}ℓi=1 and the corresponding eigenvalues {λi}ℓi=1 as the mesh size ∆t tends to
zero or, equivalently, n tends to ∞.
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When the POD bases {ψi}ℓi=1 and {φi}ℓi=1 have been computed, we make the ansatz

uℓ(t,x) = ū(x) +

ℓ
∑

j=1

ujℓ(t)ψj(x) and vℓ(t,x) = v̄(x) +

ℓ
∑

j=1

vjℓ (t)φj(x) (9)

for the POD Galerkin approximations of u and v, respectively. Recall that uj and vj
satisfy homogeneous Dirichlet or Neumann boundary conditions on Γ. Due to Remark 2
both POD approximations uℓ and vℓ satisfy homogeneous boundary condition on Γ for
the choices (ū, v̄) = (umean, vmean) and (ū, v̄) = (0, 0). In this case (1b) or (1c) hold for the
POD approximations uℓ and vℓ so that the boundary conditions for uℓ and vℓ are satisfied.

Inserting (9) into (1a) we find

ℓ
∑

j=1

u̇jℓ(t)ψj = λ(sℓ)ū− ω(sℓ)v̄ + σ∆ū+

ℓ
∑

j=1

ujℓ(t)σ∆ψj

+λ(sℓ)

ℓ
∑

j=1

ujℓ(t)ψj − ω(sℓ)

ℓ
∑

j=1

vjℓ(t)φj ,

(10)

ℓ
∑

j=1

v̇jℓ(t)φj = ω(sℓ)ū+ λ(sℓ)v̄ + σ∆v̄ +

ℓ
∑

j=1

vjℓ(t)σ∆φj

+ω(sℓ)
ℓ

∑

j=1

ujℓ(t)ψj + λ(sℓ)
ℓ

∑

j=1

vjℓ(t)φj

(11)

with sℓ = uℓ(t, ·)2 + vℓ(t, ·)2 and t ∈ (0, T ]. Next we multiply (10) by ψi, i = 1, . . . , ℓ, (11)
by φi, i = 1, . . . , ℓ, and integrate over Ω. From

∫

Ω
ψjψi dx =

∫

Ω
φjφi dx = δij we obtain

(

u̇ℓ(t)
v̇ℓ(t)

)

= σ

(

Auuℓ(t)
Avvℓ(t)

)

+

(

Fu(uℓ(t),vℓ(t))
Fv(uℓ(t),vℓ(t))

)

+

(

fū
fv̄

)

for t ∈ (0, T ], (12a)

where the vectors uℓ, vℓ, fū, fv̄ satisfy

uℓ =







u1
ℓ
...
uℓℓ






, vℓ =







v1
ℓ
...
vℓℓ






, fū =







∫

Ω
σ∆ūψ1 dx

...
∫

Ω
σ∆ūψℓ dx






, fv̄ =







∫

Ω
σ∆v̄φ1 dx

...
∫

Ω
σ∆v̄φℓ dx






,

the matrices Au, Av are given by

Au =
((

aiju
))

∈ R
ℓ×ℓ with aiju =

∫

Ω

∆ψjψi dx,

Av =
((

aijv
))

∈ R
ℓ×ℓ with aijv =

∫

Ω

∆φjφi dx,
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and the non-linear terms

Fu(uℓ(t),vℓ(t)) =







F 1
u (uℓ(t),vℓ(t))

...
F ℓ
u(uℓ(t),vℓ(t))






, Fv(uℓ(t),vℓ(t)) =







F 1
v (uℓ(t),vℓ(t))

...
F ℓ
v (uℓ(t),vℓ(t))







are defined as

F i
u(uℓ(t),vℓ(t)) =

∫

Ω

(

λ(sℓ)uℓ(t, ·) − ω(sℓ)vℓ(t, ·)
)

ψi dx,

F i
v(uℓ(t),vℓ(t)) =

∫

Ω

(

ω(sℓ)uℓ(t, ·) + λ(sℓ)vℓ(t, ·)
)

φi dx

for 1 ≤ i ≤ ℓ. From (1d) we derive the initial condition
(

uℓ(0)
vℓ(0)

)

=

(

u◦

v◦

)

−
(

ū
v̄

)

(12b)

with

u◦ =







∫

Ω
u◦ψ1 dx

...
∫

Ω
u◦ψℓ dx






, v◦ =







∫

Ω
v◦φ1 dx

...
∫

Ω
v◦φℓ dx






,

ū =







∫

Ω
ūψ1 dx

...
∫

Ω
ūψℓ dx






, v̄ =







∫

Ω
v̄φ1 dx

...
∫

Ω
v̄φℓ dx






.

Summarizing the POD reduced-order model is given by (12) that is solved numerically
in Section 4 for different values for the parameter β in (2) and number ℓ of POD ansatz
functions.

4 NUMERICAL EXPERIMENTS

This section is devoted to present two numerical test examples. All coding is done in
Matlab. The programs are executed on a standard Pentium D, 3 Ghz desktop PC.

We choose the initial conditions

u◦(x, y) = y − 1

2
and v◦(x, y) =

x

2
− 1

4
.

The snapshots {(uj, vj)}nj=1 are computed by applying a finite difference approximation
for the spatial domain (with a five-point discretization for the Laplace operator). In (4) we
choose T = 50, n = 501 and the spatial equidistant mesh size h > 0 and the corresponding
grid points xij = (xi, yj) ∈ Ω are given by

h =
1

N + 1
, xi = ih for 0 ≤ i ≤ N + 1, yj = jh for 0 ≤ j ≤ N + 1.
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After spatial discretization we arrive at an initial-value problem for 2N2 coupled ordinary
differential equations in case of boundary condition (1b) and for 2(N+2)2 coupled ordinary
differential equations in case of (1c). These systems are solved by the Matlab routine
ode15s to obtain an approximation (uh, vh) to the solution of (1). As snapshots we take
the ensemble {(uh(tj , ·), vh(tj , ·))}501

j=1.

4.1 Dirichlet boundary conditions

Let us investigate the λ-ω system with homogeneous Dirichlet boundary conditions.
We analyze numerically the dependence of the accuracy of the reduced-order model on
the parameter β in (2). First we compute the n = 501 snapshots, solve the eigenvalue
problems (7), (8) and determine the POD bases {ψi}ℓi=1 and {χi}ℓi=1. The routine ode15s
needs 2644.09 seconds and the computation of the reduced-order model requires about
4.5 seconds for ℓ = 50. The decay of the first 50 eigenvalues is shown in Figure 3. We

101 20 30 40 50
10

−15

10
−10

10
−5

10
0

Decay of the first eigenvalues

 

 

β=1
β=1.5
β=2
β=3

Figure 3: Decay of the first eigenvalues for different values of β in (1) and homogeneous Dirichlet boundary
conditions.

observe from Figure 3 that the eigenvalues decay slower for increasing parameter β. For
small β only a few modes are needed to reflect the evolution of the whole system, but
with increasing β the model becomes turbulent. Therefore, the eigenvalues decay not as
fast as for smaller parameter β.

Next we take ū = v̄ = 0 (no offsets in the POD Galerkin projection) and solve the
reduced-order model by applying the Matlab solver ode15s. In Figure 4 we compare
the relative errors

t 7→ ‖uℓ(t) − uh(t)‖2

‖uh(t)‖2

for β = 1.5 (left plot) and β = 2 (right plot). It turns out that for β = 1.5 (left plot in
Figure 4) even ℓ = 10 POD ansatz functions are sufficient to obtain a reliable reduced-
order model. On the other hand, for β = 2 the POD solution based on ℓ = 10 is completly

9
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0 10 20 30 40 50

10
−10
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10
0

t−axis

relative error of u for β=1.5

 

 

l=10
l=15
l=25
l=50
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0
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5
relative error of u for β=2
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l=10
l=15
l=25
l=50

Figure 4: Relative errors for β = 1.5 (left plot) and β = 2 (right plot) in case of homogeneous Dirichlet
boundary conditions and ℓ = 10, 15, 25, 50.

different from the finite difference solution. Also for ℓ = 15 and ℓ = 25 we observe that
the relative errors increase drastically for t > 25 and t > 30, respectively. Using ℓ = 50
POD basis functions yields a reliable POD solution that is close to the finite difference
solution uh. In Table 1 the relative errors

Erel(u) =

n
∑

j=1

αj ‖uℓ(tj) − uh(tj)‖2

n
∑

j=1

αj ‖uh(tj)‖2

are presented. We observe that the errors decrease if ℓ increase. Moreover, for larger

ℓ β = 1 β = 1.5 β = 2 β = 2.5 β = 3
10 0.0002742 0.0592466 2.6147003 2.0664552 1.9121706
15 0.0000399 0.0006219 0.7012245 1.6072066 2.0462711
25 0.0000003 0.0000108 0.5548754 1.5939146 1.5950328
50 0.0000001 0.0000039 0.0000519 0.2994985 0.9057551

Table 1: The relative error Erel(u) for different numbers ℓ of POD ansatz functions and for different
values of the parameter β in (1) in case of homogeneous Dirichlet boundary conditions.

values of β the errors increases for fixed number ℓ of POD ansatz functions. In particular,
for β = 3 the error for ℓ = 50 is quite high so that we should include more POD basis
functions in our reduced-order approach. The relative errors Erel(v) for the v are plotted
in Table 2. The results for the POD solution vℓ are similar than the results for uℓ.

4.2 Neumann boundary conditions

Now we consider the λ-ω system with the homogeneous Neumann boundary conditions
(1c). It turns out that the dependence of the quality of the reduced-order model depends

10
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ℓ β = 1 β = 1.5 β = 2 β = 2.5 β = 3
10 0.0002699 0.0588345 2.6087718 2.0671781 1.9116376
15 0.0000038 0.0006968 0.6998566 1.5974137 2.0528978
25 0.0000026 0.0000105 0.5590867 1.5945250 1.5956316
50 0.0000001 0.0000039 0.0000512 0.2970237 0.9108994

Table 2: The relative error Erel(v) for different numbers ℓ of POD ansatz functions and for different
values of the parameter β in (1) in case of homogeneous Dirichlet boundary conditions.

on the size of the parameter β. The computation of the reduced-order model for (1) is done
analogously as described in Section 4.1. The CPU time to compute the n = 501 snapshots
is 3176.03 seconds and the calculation of the POD bases requires about 4.5 seconds for
ℓ = 50 ansatz functions. The decay of the first 50 eigenvalues is shown in Figure 5. Thus,

1 10 20 30 40 50
10

−15

10
−10

10
−5

10
0

Decay of the first eigenvalues

 

 

β=1
β=1.5
β=2
β=3

Figure 5: Decay of the first eigenvalues for different values of β in (1) and homogeneous Neumann
boundary conditions.

the decay rate of the eigenvalues has the same dependence on the parameter β as in the
case of homogeneous Dirichlet boundary conditions.

Let us compare the quality of the reduced-order solution with respect to the choice of
the offset ū and v̄ in the POD Galerkin projection (compare Remark 2). In Table 3 we
plot the relative errors Erel(u) and the CPU times for the solution of the reduced-order
model (12) for β = 1.5. We observe that there is no big difference in the errors. Thus, for
small values of β we can take ū = 0 to get a reliable reduced-order model. between the
two methods. Note that the POD solve is — depending on ℓ — much faster than the finite
difference solve. In Table 4 we compare the errors for the two different offsets in case of
β = 2, where the λ-ω systems has already turbulent features. For β = 2 with ℓ < 40 we
get no usefull results, so we compare the errors for the choice ℓ = 40, 45, 50. We observe
that the POD model reduction performs better provided we take ū = umean. Note that
for ū = 0 the POD solutions differ significantly from the finite difference solution in case
of ℓ = 40 and 45.
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ū = 0 ū = umean CPU-time

ℓ = 10 0.0058895 0.0059449 17.0 seconds
ℓ = 15 0.0003499 0.0003351 35.9 seconds
ℓ = 25 0.0000305 0.0000257 54.3 seconds
ℓ = 50 0.0000093 0.0000092 139.2 seconds

Table 3: The relative error Erel(u) for different numbers ℓ of POD ansatz functions and for different types
of POD calculation and for β = 1.5 in (2) in case of homogeneous Neumann boundary conditions (1b)
and the CPU times.

ū = 0 ū = umean

ℓ = 40 0.5774415 0.4601877
ℓ = 45 0.8986130 0.2976193
ℓ = 50 0.0710348 0.0017736

Table 4: The relative error Erel(u) for different numbers ℓ of POD ansatz functions and for different types
of POD calculation for β = 2 in (2) in case of homogeneous Neumann boundary conditions.

4.3 Predictor corrector method

From the numerical experiments carried out in Sections 4.1 and 4.2 we observe that
for β ≥ 2 the number of POD basis functions used for the model reduction should be
larger than 25. On the other hand, the more POD ansatz functions in the POD are used,
the more time is needed by the POD solver of the λ-ω system. Since the most energy is
contained in the lower modes, we split the ansatz for u and v as follows:

uℓ(t,x) = ū(x) +

ℓ1
∑

j=1

ujℓ(t)ψj(x) +
ℓ

∑

j=ℓ1+1

ujℓ(t)ψj(x) = ū(x) + ulow(t,x) + uhigh(t,x),

vℓ(t,x) = v̄(x) +

ℓ1
∑

j=1

vjℓ(t)φj(x) +

ℓ
∑

j=ℓ1+1

vjℓ (t)φj(x) = v̄(x) + vlow(t,x) + vhigh(t,x),

where

ulow(t,x) =

ℓ1
∑

j=1

ujℓ(t)ψj(x), uhigh(t,x) =
ℓ

∑

j=ℓ1+1

ujℓ(t)ψj(x),

vlow(t,x) =

ℓ1
∑

j=1

vjℓ(t)φj(x), vhigh(t,x) =

ℓ
∑

j=ℓ1+1

vjℓ(t)φj(x).

Algorithm 2 (Predictor-Corrector method)

0) Let ℓ = ℓ1 + ℓ2, ∆τ ∈ (0, T ]; put k = 1.

12



H. Müller and S. Volkwein

1) Set

ukhigh =
ℓ

∑

j=ℓ1+1

〈u◦, ψj〉ψj(x), vkhigh =
ℓ

∑

j=ℓ1+1

〈v◦, φj〉φj(x),

ukhigh =







〈ukhigh, ψℓ1+1〉
...

〈ukhigh, ψℓ〉






, vkhigh =







〈vkhigh, φℓ1+1〉
...

〈vkhigh, φℓ〉







and solve the ℓ1-dimensional problem

(

u̇ℓ1(t)
v̇ℓ1(t)

)

= σ

(

Auuℓ1(t)
Avvℓ1(t)

)

+

(

F k
u (uℓ1(t),vℓ1(t))
F k
v (uℓ1(t),vℓ1(t))

)

+

(

fū
fv̄

)

on the interval
[

(k − 1)∆τ, k∆τ ] = [0,∆τ ], where

(F k
u )i(uℓ1(t),vℓ1(t)) =

∫

Ω

(

λ(sℓ)
(

uℓ1(t, ·) + ukhigh

)

− ω(sℓ)
(

vℓ1(t, ·) + vkhigh

)

)

)ψi dx,

(F k
v )i(uℓ1(t),vℓ1(t)) =

∫

Ω

(

ω(sℓ)
(

uℓ1(t, ·) + ukhigh

)

+ λ(sℓ)
(

vℓ1(t, ·) + vkhigh

)

)

φi dx

for i = 1, . . . , ℓ1 by the explicit Euler method.

2) Compute (uk+1
high,v

k+1
high) ∈ Rℓ2 × Rℓ2 from

1

∆τ

(

uk+1
high − ukhigh

vk+1
high − vkhigh

)

= σ

(

Auu
k
high

Avv
k
high

)

+

(

F k
u (uℓ1(t),vℓ1(t))
F k
v (uℓ1(t),vℓ1(t))

)

+

(

fū,high

fv̄,high

)

.

Set k = k + 1 and define

ukhigh =

ℓ
∑

j=ℓ1+1

(

ukhigh

)j
ψj(x), vkhigh =

ℓ
∑

j=ℓ1+1

(

vkhigh

)j
φj(x).

3) Solve the ℓ1-dimensional problem

(

u̇ℓ1(t)
v̇ℓ1(t)

)

= σ

(

Auuℓ1(t)
Avvℓ1(t)

)

+

(

F k
u (uℓ1(t),vℓ1(t))
F k
v (uℓ1(t),vℓ1(t))

)

+

(

fū
fv̄

)

on the interval
[

(k − 1)∆τ, k∆τ ] = [∆τ, 2∆τ ].

4) Go back to step 2) unless the terminal time T is reached.

13
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Note that we use the first ℓ1 POD basis functions for the (linear) POD Galerkin ap-
proximation and utilize the estimates (ukhigh,v

k
high) as an approximation for the higher

(j > ℓ1) POD modes. This estimates are taken to correct the estimated POD solutions
(uℓ1 ,vℓ1).

Let δt = 0.001 be the time step for the explicit method and ∆τ = lδt. First we compare
the predictor-corrector method to the linear Galerkin algorithm for β = 2 and homogeneou
Neumann boundary conditions on the time interval [0, 40]. For every combination of ℓ1
and ℓ2 two runs with l = 10 and l = 100 are made. Because of the turbulent behavior of the
system t > 20, we take the same large values of ℓ as in Table 4 and also the mean ū = umean

is used in both methods. The Galerkin method with ℓ = 50 has the lowest relative error,

Solve of (12) Algorithm 2
l = 10 l = 100

ℓ = 40 0.22277 ℓ1 = 20, ℓ2 = 30 0.13152 1.27117
ℓ = 45 0.04672 ℓ1 = 25, ℓ2 = 25 0.02288 0.96374
ℓ = 50 0.00036 ℓ1 = 30, ℓ2 = 20 0.00624 0.02526

Table 5: Comparison of the relative error Erel(u) between the solution of (12) for fixed ℓ on [0, T ] and
the predictor corrector method for T = 40, β = 2 and homogeneous Neumann boundary conditions.

because all modes are updated in every step. Choosing l = 100 the predictor-corrector
method with ℓ1 lower than 30 results in a large relative error, for ℓ1 = 30 the results are
slightly better than the solution of (12) in case of ℓ = 45. Reducing l to 10 really improves
the predictor-corrector method, because the higher modes are updated more often.

In a second test with the same β, but only on the time interval [0, 20] we compare the
methods for a smaller number of modes. Now for the smaller l the relative error of the

Solve of (12) Algorithm 2

l = 10 l = 100
ℓ = 15 0.47865 ℓ1 = 10, ℓ2 = 15 0.08831 0.56038
ℓ = 25 0.09955 ℓ1 = 15, ℓ2 = 10 0.09243 0.11447

Table 6: Comparison of the relative error Erel(u) between the solution of (12) for fixed ℓ on [0, T ] and
the predictor-corrector method for T = 20, β = 2 and homogeneous Neumann boundary conditions.

predictor-corrector approach is even a little smaller than for the Galerkin with ℓ = ℓ1 +ℓ2,
but this has no significance. The Galerkin method with ℓ = 15 is much worse than the
predictor-corrector method. After setting l = 100 the number of lower modes has to be
increased to 15, otherwise the error is to large.

When the cost for the solution of the reduced system depends strongly on the number
of modes, then the proposed predictor-corrector method gives the chance to get accurate
results in a shorter time, because the higher modes are not updated that often.

14
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4.4 Snapshot archetypes by Adrover

If the calculation of the POD basis from all snapshots is very time-consuming, then it is
usefull to reduce the number of snapshots. On one hand, this could be done by increasing
the time differences ∆t between the snapshots, on the other hand a selection rule like the
one proposed in [1] can be applied.

Algorithm 1 (Choice of snapshots [1])

0) Fix the number k̄ ∈ {2, . . . , n} of snapshots.

1) Set ũ1 = u◦, ti1 = t1 = 0 and k = 1.

2) Determine

tk+1 = argmax

{

min
1≤l≤k

∥

∥u(tj, ·) − u(til, ·)
∥

∥

∣

∣

∣
tj ∈ {t1, . . . , tn} \ {ti1 , . . . , tik}

}

3) Set k = k + 1 and ũk(x) = u(tk,x) for all x ∈ Ω. If k < k̄, go back to step 2).

We choose the parameter β = 1.5, the terminal time T = 50 and homogeneous Neu-
mann boundary conditions (1c). The goal is to perform the POD reduced-order modeling
by taking only k̄ = 100 instead of n = 501 snapshots. We compute the snapshots {ũj}100

j=1

by Algorithm 1 with the ensemble {ūj}100
j=1 with ūj = u((j − 1)5∆t, ·) (i.e., compared to

(4) we take a 5 times coarser grid). In Table 7 we compare the relative error Erel(u)
for different numbers ℓ of POD ansatz functions, where the POD basis is determined by
utilizing the snapshots {ūj} (coarse time grid), {ũj}100

j=1 (Algorithm 1) and {ûj}501
j=1 (fine

time grid). Let us mention that we take zero offsets in (9). We observe that the results

coarse time grid Algorithm 1 fine time grid

ℓ = 10 0.0059044 0.0087575 0.0058895
ℓ = 15 0.0003583 0.0005443 0.0003499
ℓ = 25 0.0000285 0.0000541 0.0000305
ℓ = 50 0.0000081 0.0000127 0.0000093

Table 7: The relative error Erel(u) for different numbers ℓ of POD ansatz functions and β = 1.5, where
the POD was calculated on a coarse time grid, by the preselection rule (Algorithm 1) or on the fine time
grid (4).

for the coarse time grid are as good as the corresponding ones for the fine time grid,
but the errors for the POD Galerkin solution computed via the snapshots determined by
Algorithm 1 are higher.
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5 CONCLUSIONS

In this article reduced-order approximations for λ-ω systems are considered by ap-
plying POD Galerkin projection. It turns out that the quality of the POD Galerkin
approximation depends on a parameter β in the λ-Ω system. The higher the parameter
β is chosen the more turbulent behavior the solution has. Numerical experiments for
the Dirichlet- and Neumann boundary conditions are presented. We compare the linear
Galerkin scheme with a predictor-corrector method. Motivated by our observations the
extension of our predictor-corrector method to non-linear Galerkin approximations can
be a focus of future research.
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