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ABSTRACT: 

 

Road surface extraction is crucial for 3D city analysis. Mobile laser scanning (MLS) is the most appropriate data acquisition system 

for the road environment because of its efficient vehicle-based on-road scanning opportunity. Many methods are available for road 

pavement, curb and roadside way extraction. Most of them use classical approaches that do not mitigate problems caused by the 

presence of noise and outliers. In practice, however, laser scanning point clouds are not free from noise and outliers, and it is apparent 

that the presence of a very small portion of outliers and noise can produce unreliable and non-robust results. A road surface usually 

consists of three key parts: road pavement, curb and roadside way. This paper investigates the problem of road surface extraction in 

the presence of noise and outliers, and proposes a robust algorithm for road pavement, curb, road divider/islands, and roadside way 

extraction using MLS point clouds. The proposed algorithm employs robust statistical approaches to remove the consequences of the 

presence of noise and outliers. It consists of five sequential steps for road ground and non-ground surface separation, and road related 

components determination. Demonstration on two different MLS data sets shows that the new algorithm is efficient for road surface 

extraction and for classifying road pavement, curb, road divider/island and roadside way. The success can be rated in one experiment 

in this paper, where we extract curb points; the results achieve 97.28%, 100% and 0.986 of precision, recall and Matthews correlation 

coefficient, respectively.  

 

 

1. INTRODUCTION 

Understanding details and getting precise information about a 

road surface and its attached components (e.g., road curb, divider 

and roadside way) is a fundamental task of many applications of 

3D (three-dimensional) city analysis including urban path 

planning, corridor mapping, accessibility diagnosis, road asset 

management, monitoring and reconstruction, autonomous 

vehicle navigation, mobile robotics, intelligent transportation, 

and overall, for ensuring road safety (Sun et al., 2019; Wang et 

al., 2019; Wen et al., 2019; Feng et al., 2021; Xu et al., 2021; 

Zhao et al., 2021; Sholevar et al., 2022).  

 

Road surface extraction and classification of related components 

has been under research for a long time (Auclair-Fortier et al., 

2001). In recent years, LiDAR (Light Detection and Ranging) 

based laser scanning systems have been recognized as an 

efficient and cost-effective means of acquiring precise 

georeferenced point sets (point clouds) of our environment. 

Roads can be sampled at centimetre level using a mobile laser 

scanning (MLS) system. MLS is the most successful system for 

road corridor mapping due to its fast, accurate, continuous and 

cost-effective 3D data collection capability providing a large 

amount of point cloud data. Unlike images, laser scanning point 

clouds offer detailed 3D geometry including distance 

information of objects. But, analysis of point clouds is not very 

easy as point clouds are usually unstructured, have 

inhomogeneous point density and irregular data format, and are 

typically capture sharp features (e.g., edges and corners) and 

arbitrary surface shapes (Nurunnabi et al., 2022). Additionally, 

point clouds are not free from the presence of noise, outliers and 

occlusions. Nurunnabi et al. (2014, 2015) showed that even the 

presence of a very small portion of noise and outliers may 

produce non-robust and misleading results in point cloud 

processing. The objective of this paper, i.e., extraction of road 

surface and its related components (road pavement, curb, divider 

and roadside way) is highly challenging, because in addition to 

the above complexities, more difficulties occur, e.g., roads have 

varying spectral features due to the various kinds of material 

(e.g., asphalt, cement, concrete, and gravel) used, and are 

regularly covered by hindrances (e.g., vehicles, bush and dense 

vegetation) present in the scenes. Moreover, these structures are 

intricate in nature, due to the absence of clearly defined edges, 

corners, while differences in widths, varying heights of curbs, 

and the large and inhomogeneous changes of curvature may 

confuse the extraction of detailed information of various road 

components (Cira et al., 2020; Romero et al., 2021; Zhao et al., 

2021).  

 

Many methods are available in literature for road surface and 

related components extraction and analysis (Kumar et al., 2013; 

Rodriguez-Cuenca et al., 2015; Bai et al., 2021; Zhao et al., 

2021). Bottelier et al. (2005) developed an approach for ground 

filtering of echo sounding data. One of the main tasks of road 

surface extraction is road curb detection. Ibrahim and Lichti 

(2012) proposed a five-step curb based street surface extraction 

method, in which density based segmentation was used to find 

the ground, and a Gaussian filtering was used for curb detection.  

Serna and Marcotegui (2013) developed a method for curb 

detection by using raster images with mathematical morphology. 
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Hervieu and Soheilian (2013) introduced a method for semi-

automatic road/pavement modelling and reconstruction of road 

and sidewalk surfaces. This method adjusts a plane to a group of 

points and the angular distances between normal and elevation 

of the points. This method is successful for straight road sections, 

but can fail for curved and occluded areas. Kumar et al. (2013) 

developed a method to extract road edges by using a snake model 

based on the navigation information obtained from the mapping 

vehicles. Yang et al. (2013) proposed a scan line partition based 

approach, that uses a moving window operator to filter out non-

ground points, and curb points are detected based on curb 

patterns. Rodriguez-Cuenca et al. (2015) extracted curbs using 

the information of MLS trajectory, working on perpendicular 

sections to trajectory direction. Sun et al. (2019) proposed a road 

boundary detection algorithm for autonomous vehicles. The 

algorithm is successful for curved road sections, and sections 

with varying road widths, but struggles at road intersections.  

 

Most recently, machine learning (ML) and deep learning (DL) 

approaches have been used for road surface and related 

components extraction. Sholevar et al. (2022) reviewed recently 

introduced ML based methods for road pavement condition 

assessment. Van der Horst et al. (2019) used a Random Forest 

approach to extract the road surface in areas affected by different 

types of damage. Zhang et al. (2018) employed deep residual 

learning and U-Net to develop ResUnet for road extraction by 

semantic segmentation that replaces the convolutional blocks 

with residual modules. Liu et al. (2018) proposed the RoadNet 

framework that composed of a modified version of the VGGNet 

(Simonyan and Zisserman, 2015) architecture, which is a 

standard Convolutional Neural Network (CNN), to analyse and 

predict the pavement, edges, and centrelines of roads in urban 

environments. Wen et al. (2019) introduced a two-step DL 

approach for road marking extraction, classification and 

completion. In this method, at first, a modified U-Net model is 

used for road marking extraction, and then a classification 

framework is developed by integrating multi-scale clustering and 

CNN for different types of road markings classification.  Cira et 

al. (2020) proposed a DL-based solution to extract the surface 

area of secondary roads at a large scale. The method is based on 

hybrid segmentation models trained with high-resolution remote 

sensing orthoimage. In addition to the above methods, recently 

introduced point-based DL semantic segmentation algorithms 

such as Qi et al. (2017), Thomas et al. (2019) and Nurunnabi et 

al. (2021) that have potential for road surface extraction. Bai et 

al. (2021) showed the potential of RandLA-Net for road type 

classification. Romero et al. (2021) and Sholevar et al. (2022) 

presented comprehensive surveys of road surface and related 

components extraction methods.   

 

Most of the existing algorithms have been proposed to extract 

very specific information to serve individual purpose of road 

pavement, road curb or roadside way extractions. They did not 

consider the problems of the presence of noise and outliers in the 

data, and they are reasonably non-robust. It is recognized that in 

the presence of noise and outliers, efficiently and accurately 

extracting road components is still a challenging task (Yang et 

al., 2020). Hence, the main concern in this paper is to develop an 

algorithm which is reliable and robust in the presence of noise 

and outliers. The proposed algorithm performs mainly in two 

parts; at first, separation of ground surface points from the non-

ground objects surfaces has been implemented by using a robust 

statistical filtering approach (Nurunnabi et al., 2016), which 

effectively removes non-ground points in the presence of noise 

and outliers. In second next part, road surface (pavement), curb, 

road divider/island and roadside way are extracted by developing 

a method using yet again robust statistical approaches. Scientific 

contributions of this paper are as follows. (i) This algorithm 

extracts road-ground surface, curb, footpath/sideway, and road 

island/divider, (ii) it performs well in the presence of steep 

slopes, sharp edges, and corners, (iii) it produces robust results 

in the presence of noise and outliers and (iv) it is successful for 

both straight and curved roads.   

 

The rest of the paper is presented as follows. Section 2 briefly 

presents the basic ideas of robust locally weighted regression 

(RLWR), RLWR based ground surface extraction, and an 

existing curb extraction method that is used in this paper to 

compare the performance of our method. In Section 3, we 

propose the methodology of the new algorithm. Section 4 

demonstrates the new algorithm through real-world MLS data. 

Section 5 concludes the paper.    

 

 

2. RELATED PRINCIPLES AND METHODS  

This section presents a brief discussion about related methods 

and principles that are used for the road surface extraction 

algorithm proposed in Section 3 and is used for comparison.   

 

2.1 Locally Weighted Regression (LWR) and robust LWR 

(RLWR)  

A standard regression model can be determined by fitting the 

following parametric function, 

                               𝑦𝑖 = 𝑔(𝑥𝑖) + 𝜖𝑖                              () 

where 𝑦𝑖 and 𝑥𝑖 are the observed values for the response and 

explanatory variable(s), respectively, and 𝜖𝑖 is the random error 

variable, which is assumed normally distributed with mean 0 and 

a variance 𝜎2. Cleveland (1979) introduced local regression, 

which is a nonparametric statistical approach that has been used 

successfully to model regression functions between explanatory 

variable(s) and response variable without any prespecified 

functional relation between the variables. It is nonparametric as 

it does not define a functional form for the data set as a whole, 

but rather focusses locally around a point of interest. Local 

regression is a generalization of ordinary least squares (LS) 

methods for fitting smooth curves to empirical data (Jacoby, 

2000). Locally Weighted Regression (LWR), also dubbed 

‘lowess’ (LOcally WEighted Scatterplot Smoother) is a 

technique that determines a regression surface by fitting 

parametric functions locally in the space of the response 

variables using the well-known weighted LS principle 

(Rousseeuw and Leroy, 2003). LWR uses a local neighborhood 

𝑁(𝑥𝑖) of k points in x-space, and each point in the neighborhood 

is weighted according to its distance to the point of interest 𝑥𝑖. 

Both linear and non-linear polynomial functions can be used to 

fit the model. The following ‘tricube’ weight function is the 

common choice for the LS fit within the local neighborhood.   

     𝑤𝑖(𝑥) = {
[1 − (

𝑑(𝑥𝑖,𝑥𝑗)

𝑚𝑎𝑥𝑗∈𝑁(𝑥)𝑑(𝑥𝑗 , 𝑥𝑖)
)

3

]

3

; 𝑗 ∈ 𝑁(𝑥)

                    0                           ; 𝑗 ∉ 𝑁(𝑥)

          () 

where 𝑑(𝑥𝑖 , 𝑥𝑗) is the Euclidean distance between xi and xj in x-

space. Cleveland (1979) mentioned that the Tricube weight 

function can produce robust results in almost all situations. 

However, due to the use of the LS error minimization principle, 

LWR can be biased to noise and outliers, and may cause 

inaccurate non-robust estimations. A robust fitting process is 

necessary that guards against outlying (deviant) points that can 

distort the smoothed estimates based on the regular (inlying) 
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points. The well-known Tukey’s `bi-square` weight function is 

used to get robust LWR (RLWR). The `bi-square` weight 

function is defined as, 

                      𝐵(𝑟𝑖
∗) = {(1 − 𝑟𝑖

∗2
)

2
, 𝑓𝑜𝑟 |𝑟𝑖

∗| < 1

          0        , 𝑓𝑜𝑟 |𝑟𝑖
∗| ≥ 1

                () 

where 𝑟𝑖 = 𝑦𝑖 − �̂�(𝑥𝑖), 𝑟𝑖
∗ = 𝑟𝑖 6𝑀𝐴𝐷⁄ , and MAD (median 

absolute deviation) is the median of the absolute values of the 

deviations |𝑟𝑖|. Finally, the estimates of the parameters of Eq. 1 

minimize the Eq. 4.  

                             ∑ 𝐵(𝑟𝑖
∗)𝑤𝑖(𝑥)𝑛

𝑖=1 (𝑦𝑖 − 𝑔(𝑥𝑖))2                 () 

The parameters from each local neighbourhood are used to 

estimate the fitted values for the whole data set at xi, �̂�(xi).  

 

2.2 RLWR based ground point filtering   

Nurunnabi et al. (2013) employed RLWR for the first time to 

develop an algorithm in a statistically robust way for ground 

surface extraction in the presence of noise and/or outliers in point 

clouds. The ground point filtering algorithm, first, slices the data 

set into manageable stripes to process, and then the results from 

every stripe are merged. For each stripe, the algorithm performs 

the same tasks on the two 2D x-z and y-z orthogonal profiles of 

point coordinates. The algorithm performs two main steps 

iteratively. In the first main step, RLWR is used to get a robust 

fit for the whole stripe. Robust linear fitting is used within a 

sufficiently small neighborhood to get an approximation of a 

nonlinear polynomial fit for the whole stripe. The next main step 

consists of four consecutive tasks: (i) calculation of residuals for 

the fit, (ii) classification of points into the points below or on the 

fitted (RLWR) line versus points above the fitted line, (iii) points 

above the fitted lines are down weighted using the bi-square 

weight function, and (iv) the new set of reweighted points is used 

to get the next fit. Task (i) to Task (iii) are repeated until the 

difference between the two consecutive fits is insignificant (i.e., 

less than a predefined small threshold, e.g., 0.005). The last (and 

the lowest) fit is considered as the ground level, and points within 

a band (± a threshold based on similar data) of the lowest level 

are considered as the ground points. Finally, the common points 

that are identified as the ground points from both x-z and y-z 

profiles are filtered as the ground points. The interested reader is 

suggested to consult Nurunnabi et al. (2013, 2016) for more 

details on robust ground surface points filtering.  

 

In the proposed algorithm, we employ the RLWR based ground 

point filtering method proposed in Nurunnabi et al. (2016) to 

remove the non-ground points because, the RLWR based 

algorithm has the following benefits. (i) LWR satisfies many 

desirable statistical properties including its capability to adapt 

with bias problems at boundaries and in areas of high curvature, 

(ii) since significant variable point density is very usual for point 

cloud data, fitting within a local neighborhood enables to 

preserve fine point cloud details by smoothing, (iii) for areas 

with sharp edges and steep slopes, global parametric model 

fitting may lead to misclassification results while local fitting 

may avoid the problems of sharp edges, corners and steep slopes 

within a small local region. Moreover, (iv) to get rid of the 

influence of outliers/noise, the authors couple LWR with a 

regression diagnostic (i.e., assigning robust weight to the 

outlying points) approach or robust regression fitting (e.g., least 

median squares (LMS) and least trimmed squares (LTS); see 

Nurunnabi, 2008; Rousseeuw and Leroy, 2003) for each point 

with its local neighborhood.  

2.3 An existing method to compare 

We compare the proposed algorithm with a recently introduced 

method for street curb extraction in urban environments (Zhao et 

al., 2021). This algorithm performs in three steps. Step 1 uses 

principal component analysis (PCA; Jolliffe, 2002) based 

multiscale dimensionality classification (Brodu and Lague, 

2012) to remove vegetation (grass and trees), Step 2 does the 

main task of curb extraction that follows a filtering approach 

using three characteristics of objects’ points: intensity, elevation 

differences between points, and slope changes between points. 

To determine the intensity threshold for separating different 

objects such as road markings and buildings, Otsu (1979) 

thresholding, an image-based approach is employed because it 

does not require a user to define parameters for finding the 

threshold. It is assumed that the elevation values of road points 

are usually lower than the elevation of those points from 

buildings, trees and street lamps. Necessary thresholds for the 

elevation filtering have been fixed empirically based on the 

underlying data, study area and street conditions.  The slope 

filtering is performed based on pseudo scan line generation and 

road edge detection. Finally, a curb refinement algorithm 

following quadratic Bezier curve spline (Bian, 2017) has been 

used to refine the curb edges and to fit the curb boundary line 

segment. The Radial Bounded Nearest Neighbor (RBNN) graph 

clustering (Klasing et al., 2008) algorithm is used for boundary 

points clustering.  In this paper we did not include the last two 

tasks of curb line fitting and boundary line clustering as they are 

not necessary to serve the focus of our paper. The authors 

claimed that their algorithm is successful in the scenarios of 

vegetation covering curbs, curved curbs and occluded curbs. The 

reader is referred to Zhao et al. (2021) for more details on the 

curb extraction algorithm. 

 

 

3. METHODOLOGY 

The road ground surface and related components extraction 

algorithm proposed in this section, first employs a RLWR based 

ground surface filtering method (Nurunnabi et al., 2016) to 

remove non-ground points. Then road surface points are 

classified into pavement, curb, road divider, and roadside way. 

The new algorithm couples robust and diagnostic regression 

(Nurunnabi et al., 2008) as well as robust statistical approaches 

to produce robust results in the presence of noise and outlying 

points. It develops a 5-step process for road surface extraction 

(workflow is summarized in Fig. 1). It starts with slicing the 

whole data set into many parts (stripes) and then extracts road 

surfaces and its components stripewise (small portion across the 

road). Finally, all stripes are accumulated yet again to get full 

results of the given road point cloud data.  

 

3.1 Step 1:  Slicing the raw point clouds 

At first, we slice the raw point cloud, a road data set into a 

number of road stripes with sufficient length perpendicular to the 

road direction, so that stripes pass the road from one side to the 

other (Fig. 2a). The following sequential steps (Step 2 to Step 5) 

are performed for all the stripes. 

 

3.2 Step 2: Filtering ground and non-ground points  

Removing non-ground objects/surface points can minimize time, 

cost, and labour, and increase the efficiency of the remaining 

works. Hence, in this step non-ground objects are separated from 

the ground surface (Fig. 2b). To avoid effects of the presence of 

noise and outliers, a RLWR based robust filtering method,  
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Figure 1. Workflow of the proposed road surface extraction 

method. 

 

introduced in Nurunnabi et al. (2016) is employed. As discussed 

in the Section 2.2, this filtering algorithm is performed on 2D 

(both x-z and y-z) profiles of points coordinates. The height (z) 

values of the points for both profiles are down-weighted 

gradually in an iterative fashion, based on their residuals of a 

robust local regression fit (Rousseeuw and Leroy, 2003). This 

process continues until reaching the lowest (i.e., ground) level 

(see Fig. 3 d, e; Experiment 1).  

 

3.3 Step 3: Slicing the stripes from Step 2 into small patches 

Road curbs can be geometrically defined as the road edges where 

the roadside suddenly is raised by a significant height from the 

main road surface (pavement). Since road curbs jump with a 

certain height within a very small area (along the road’s width), 

the range of the z (elevation) values 𝑅𝑧 of the points of the road 

curbs will be rationally larger than the z range of the road 

pavement points (see Fig. 2b, c). To get the 𝑅𝑧 values, and to find 

the differences/changes within a small distance, we subdivide the 

stripes from Step 2 into many small patches (see Fig. 2d; 

portrayed in multiple colors) along the road’s width (i.e., x) 

direction.  

 

3.4 Step 4: Calculation of the range 𝑹𝒛 of the patches  

We find the z values of the patches from Step 3 and calculate the 

𝑅𝑧 values. An example of a bar diagram of the 𝑅𝑧 values versus 

x can be seen in Fig. 3h (Experiment 1). The diagrams show that 

most of the 𝑅𝑧 values (bars) are consistent and lower than some 

others, and very few of the bars are significantly higher. That 

indicates that some of the 𝑅𝑧 values for some of the patches are 

abnormal, and can be considered as outlying cases.  

 

3.5 Step 5: Decision making to identify road surface 

categories (components)  

We use the robust statistical principle (Hadi et al., 2009: 

Rousseeuw and Hubert, 2018) to find the outlying cases of the 

𝑅𝑧 values, which are treated as curb candidates (CC) and are 

defined in Eq. 5, 

                   𝐶𝐶 (𝑅𝑧) > 𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝑧) + 𝑐𝑀𝐴𝐷 (𝑅𝑧),             (5) 

where 𝑀𝐴𝐷 (𝑅𝑧) = 1.4826 ∗ median|𝑅𝑧 − median (𝑅𝑍)|, and 

c (a constant) value can be fixed as 2, 3 or 4, or the user can 

define it based on their own data and the study area. In this paper, 

we use 𝑐 = 3. It is possible to get several CC patches, we will 

select the two patches as curbs that have the highest and similar 

length of Rz and are closer to the trajectory of the road. We define 

the points of the road pavement as the points for which the 

following two conditions are true. 

                  (i)   𝑅𝑧 ≤ 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑅𝑧) + 𝑐𝑀𝐴𝐷 (𝑅𝑧),                (6) 

i.e., mostly 𝑅𝑧 ≈ 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑅𝑧), and (ii) points having a position 

between the two curbs, excluding road divider/island points.  

 

Some of the bars based on the 𝑅𝑧 values can be significantly 

higher around the end of the roadsides, because they are wrongly 

filtered as ground points. This may happen in the presence of 

roadside non-ground objects such as bushes, trees, road furniture 

or buildings. We can simply eliminate them by considering their 

positions regarding the x values. Sometime, we can get few more 

bars significantly taller than the pavements height and located 

within the curbs that can be identified as road divider or 

traffic/road island. An example is given by the topmost outlying 

cases for 𝑅𝑧, i. e., the three highest bars marked with red asterisks 

on the top as shown in Fig. 4h (Experiment 2). We can identify 

the middle one as road island/divider, and the other two as curbs. 

Thus, the respective patches will be classified as road curbs, road 

island and sideway/footpath. Points outside (i.e., on the left side 

of the left curb and on the right side of the right curb) of the road 

curbs having 𝑅𝑧 values almost similar to the road pavement 

points are points corresponding belonging to the roadside way. 

Significantly distant points from the road curbs can be eliminated 

as unwanted objects. The same above steps will be repeated for 

all the stripes of the full data set. Final results are found by 

merging all the results from different stripes as made in Step 1.   

 

 
 

Figure 2. Illustration of stripe and patch; (a) an individual 

stripe of a road point cloud, (b) extracted ground surface, (c) 

sketch of road surface, and (d) three different patches 

corresponding to sideway, curb and pavement respectively.  

 

 

4. EXPERIMENTS, EVALUATION AND DISCUSSION  

In this section, we demonstrate the proposed algorithm, and 
compare results with an existing method (Zhao et al., 2021). Two 
experiments are conducted on two MLS data sets. To quantify 
the performance of the methods, we use the following well-
known metrics: True Positive (TP), False Positive (FP), True 
Negative (TN), False Negative (FN), precision (P), recall (R) and 
Matthews Correlation Coefficient (MCC) that are defined as:  

                                       P =  
TP

TP+FP
,                                       (7) 

                                     R =  
TP

TP+FN
, and                                  (8) 

                 MCC =
TP×TN−FP×FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
.                (9) 
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We consider MCC rather than the classical F1-score or overall 

accuracy, because MCC has some nice statistical properties, e.g., 

it is perfectly symmetric, i.e., every class gets equal importance.  

  

4.1 Experiment 1.  

In the first experiment, we use a data set acquired by an MLS 
system. This data set (Fig. 3a) covers around 53 m of road along 
an urban road corridor having 1,112,462 points of ground surface 
(road pavement, curbs, footpath/roadside ways), and non-ground 
objects (trees, buildings, and road furniture such as sign posts 

and traffic signs). We slice the data along the road length 
(trajectory) into 106 stripes of equal length. We perform the 
ground filtering algorithm (RLWR) for every stripe, results of 
one stripe (Fig. 3c) are shown in Fig. 3f. Now, we subdivide the 
stripe again into 100 smaller patches along the road width (x), 
results are shown in different colors in Fig. 3g. We calculate the 
𝑅𝑧 values for all the patches and arrange them according to their 

x values. We draw a bar diagram based on the 𝑅𝑧 values in Fig. 
3h. We find the median value and outlying cases for the 𝑅𝑧 
values.     

 

 

Figure 3. Road surface extraction, Experiment 1: (a) road point cloud, (b) different stripes in different colors, (c) one selected stripe 

along the road length, (d) iterative fitting for ground filtering using RLWR on the x-z profile, (e) iterative fitting for ground filtering 

using RLWR on the y-z profile , (f) filtered ground points for plot (c), (g) patches along the road width, (h) bar diagram for the 𝑅𝑧 

values for the patches of plot (g), (i) classified road surface points for plot (c), (j) ground truth curb surface, (k) curb extracted by the 

proposed method, (l) curb extracted by Zhao et al. (2021), and (m) classified road and non-ground surfaces for the full data set. 
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Following the rules described in Section 3.5, we find the road 
pavement, road curb, and roadside ways/footpath. Results are in 
Fig. 3i. We perform the same process for all the stripes, and the 
results are merged together to get the final result (Fig. 3m) for 
the given point cloud in Fig. 3a. Results show that the new 
method is highly successful for road surface extraction and 
classification. To compare with Zhao et al. (2021), we perform 
their method and their results for the curb points are in Fig. 3l. 
Results clearly show that our algorithm extracts significantly 
better results than theirs. The main cause of their lower 
performance is as they mentioned, that their algorithm does not 
work for high/steep-slopes. Fig. 3i shows the presence of high 
and steep slopes of the ground surface. Although we have some 
points close to the curbs (within the black rectangle) that are miss 
classified (Fig. 3k), the method of Zhao et al. (2021) has many 
non-ground points belonging to surrounding objects that are 
falsely identified as curb points. For quantitative evaluation of 
the proposed algorithm, we manually labelled (ground truth; GT) 
the points by careful visual inspection. We calculate P, R and 
MCC for Zhao et al., (2021) and our method. Results of our 
method show that almost all (pavement, sideway and curb) 

values of P and R are over 99.56% while MCC values are higher 
than 0.986. When we consider the results of curb point 
identification, our method outperforms every measure of P, R 
and MCC. For example, P for the new method and Zhao et al. 
(2021) are 97.28% and 72.61%, respectively.  Zhao et al (2021) 
has more advantages of curb line fitting and boundary points 
clustering.  
 

Method Point 

label 

No. of points Performance metrics 

GT D P (%) R (%) MCC 

Proposed 

method  

 Pavement 707,458 707,400 99.99 99.99 0.999 

 Sideway 86,922 86,541 100.00 99.56 0.997 

 Curb 14,928 15,346 97.28 100.00 0.986 

Zhao et al. 

(2021) 

 Curb 14,928 16,663 72.61 81.05 0.764 

Table 1. Road surface extraction results for Experiment 1. 

Ground-truth; GT, and detected; D.  

 

 

 

Figure 4. Road surface extraction, Experiment 2: (a) road point cloud, (b) different stripes in different colors, (c) one stripe along the 
road length, (d) iterative fitting for ground on x-z profile, (e) iterative fitting for ground on y-z profile, (f) ground surface points for 
plot (c), (g) patches along the road width, (h) bar diagram for the 𝑅𝑧 values for the patches of plot (g), (i) classified road surface points 
for plot (c), (j) extracted curbs and road island, two ellipses indicate missing points due to the presence of vehicles on the road (a), and 
(k) classified road and non-ground surfaces for the full data set in (a). 
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4.2 Experiment 2.  

In the second experiment, we use another MLS data set (Fig. 4a) 
that covers a road section of around 31 m long with a total of 
899,017 points covering road pavement, curbs, roadside way, 
road island, trees, building facades, vehicles, and road furniture: 
signposts, billboard and traffic signs. We slice the data along the 
road length into 62 stripes of 0.5m for each stripe. We perform 
the ground filtering algorithm for every stripe, results of one 
stripe Fig. 4c are shown in Fig. 4f. Now we subdivide the stripe 
again into 80 smaller patches along the road width (x), results are 
shown in Fig. 4g. We calculate the 𝑅𝑧 values for all the patches, 
draw a respective bar diagram (Fig. 4h), and arrange them 
according to their x values. We find the median value and 
outlying cases for the 𝑅𝑧. Following the rules described in 
Section 3.5, we find the road pavement, road curb, road island, 
and roadside walkways. Results are in Fig. 4i. We perform the 
same process as for the previous experiment for all the stripes, 
and the results are merged together to get the final result (Fig. 
4k) for the given point cloud. Results show that the method is 
successful for road surface extraction and classification. In Fig. 
4j, we see some curb points are missed within the ellipses 
because of the presence of vehicle.  
 
We manually labelled the ground truth (GT). Table 2 presents 
the quantitative results for the performance metrics. Results 
show road pavement classification accuracies are of 99.9% and 
99.6% for P and R, respectively. In this experiment, we find road 
island with R of 99%. This time the results (P, R and MCC) for 
the curb points are slightly less accurate than the previous 
experiment mainly due to the curved road. Some pavement 
points are misclassified (FP) as curb points.   
 

Point 

label 

No. of points Performance metrics 

GT D P (%) R (%)  MCC 

Pavement 400,192 399,326 99.9 99.6 0.996 

Road island 15,193 15,601 96.4  99.0 0.976 

Roadside way 127,956 127,159 99.6 98.9 0.992 

Curb 16,103 17,087 91.9 97.5 0.946 

Table 2. Road surface extraction results for Experiment 2. 

Ground-truth; GT, and detected; D. 
 
 

5. CONCLUSIONS 

In this paper, a statistically robust algorithm for road surface and 

its related components (road pavement, curb, road 

divider/islands, roadside way) extraction in MLS data is 

presented. The algorithm can be considered as a split and merge 

approach that performs its workflow on a number of small stripes 

and then merges results to get the final and complete results. For 

each slice, it begins with a RLWR based approach to filter out 

non-ground points. Using the robust statistical filtering 

algorithm, it is possible to extract ground surface successfully in 

complex areas including large and tall buildings, high vegetation, 

and road furniture. RLWR based ground filtering is an iterative 

approach, hence this step takes significantly more time than the 

classification process in the next step. Although the proposed 

algorithm works in an iterative fashion, using local weights for 

the x-z and y-z profiles of the small slices for the proposed 

workflow makes the algorithm efficient and effective. Then three 

other sequential steps are performed in an iterative fashion to 

detect and delineate road pavement, curbs, road divider and 

roadside ways. Use of robust statistical approaches for small 

stripes and patches produces robust results in the presence of 

noise and outliers. Additionally, our method, unlike many of the 

methods that use local neighborhood based geometric features 

(e.g., normals and curvatures) typically influenced by outlier and 

noise, is robust in the presence of noise and outliers.  This 

proposed algorithm is successful for both straight and curved 

roads, additionally it is independent on characteristics of road 

boundary (e.g., boundary type), because it divides data into many 

sufficiently small pieces (stripes and patches) in both along and 

across road directions (x and y).  For the same advantage of using 

small and apposite sizes of stripes and patches; unlike, many 

existing methods, the new method performs well also for high-

slope areas. Our method does not require the conversion of 3D 

point clouds into 2D images or any structured regular format that 

could result in possible information loss.  

 

The new method was demonstrated on two road sites in an urban 

environment. As the proposed approach is applied to small 

stripes of long road, it is scalable to a large extent as it is easy to 

run in parallel. Some parameters e.g., sizes of stripes and patches 

are data dependent, and need careful tuning, when dealing with 

long and curved roads point clouds. The new algorithm struggles 

when curb surface points are missing due to obstructions such as 

vehicles, human, etc. Future study will attempt fixing some of 

the above limitations by robustly fitting a curb line to the road 

edge.  
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