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A B S T R A C T

Collision avoidance in maritime navigation, particularly between autonomous and conventional vessels, involves 
iterative and dynamic processes. Traditional path planning models often neglect the behaviours of surrounding 
vessels, while path predictive models tend to ignore ship interaction features essential in collision scenarios. This 
study proposes a decision-making framework for collision avoidance, particularly focused on the interaction 
between autonomous and conventional vessels. The framework integrates a human-preference-aware naviga-
tional trajectory prediction model into the collision avoidance process, enhancing the decision-making capa-
bilities in dynamic and interactive environments. We first model human-controlled ship navigational preferences 
using a Long Short-Term Memory (LSTM) autoencoder combined with K-means clustering, by extracting key 
preferences from ship pairs identified through AIS data. These preferences, which reflect strategic trajectory 
adjustments in response to collision risks, are then incorporated into trajectory prediction using a Multi-Task 
Learning Sequence-to-Sequence (seq2seq) attention LSTM model. The predicted trajectories provide a basis for 
the decision-making framework, including a local path planner and a trajectory tracking controller, designed to 
dynamically adjust the predicted reference path for collision-free navigation and ensure its accurate tracking. 
The framework was validated using AIS data from the port of Rotterdam, identifying four distinct navigational 
preferences by combining an LSTM-autoencoder and clustering techniques and demonstrating improved pre-
diction accuracy compared to other existing models. Simulation tests demonstrate that the framework utilises the 
predicted trajectories to inform decision-making, ensuring accurate path tracking while dynamically addressing 
collision risks for autonomous ships. By providing preference-aware and adaptive reference trajectories, the 
framework reduces the likelihood of MASS trajectory misinterpretation by conventional ships, thereby sup-
porting proactive collision avoidance in mixed waterborne transport environments.

1. Background and objectives

With the advent of the Maritime Autonomous Surface Ships (MASS), 
there is an opportunity to enhance navigational safety and efficiency 
(Song et al.). MASS, capable of operating with varying degrees of au-
tonomy, aims to reduce human error and operational costs. However, 
integrating MASS with conventional manned ships in mixed waterborne 
environments presents new challenges, particularly in collision avoid-
ance (Huang et al., 2020).

Current collision avoidance methods primarily focus on algorithmic 
capabilities such as deterministic path planning and optimisation algo-
rithms that prioritise minimising travel time or fuel consumption (Akdağ 
et al., 2024) while maintaining navigational safety (Shu et al., 2023) and 

complying with International Regulations for the Prevention of Colli-
sions at Sea (COLREGs). These methods often use pre-defined rules or 
optimisation criteria to generate collision-free paths for vessels. How-
ever, most of these models typically overlook the dynamic and inter-
active behaviours of surrounding vessels. For instance, human-operated 
ships tend to adjust their manoeuvres based on the perceived intentions 
of neighbouring vessels, a behaviour that is not accounted for in many 
algorithmic models. This oversight can lead to less accurate and inter-
pretable predictions in real-time collision scenarios. Additionally, 
existing models often fail to incorporate dynamic manoeuvres such as 
high speed with a small starboard side turn and a minor acceleration. 
These navigational behaviours, typically exhibited by human operators 
to ensure efficient and safe navigation, highlight the importance of 
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mimicking human-like decision-making behaviours, which will be 
referred to in the present research as ‘human preferences’. By incor-
porating such human-mimic behaviours, future models could better 
capture human operators’ adaptive and flexible nature, improving 
MASS’s accuracy and safety in a mixed waterborne environment.

1.1. Problem statement

Given the limitations of current models, there is a need for enhanced 
predictive models that can integrate navigational preferences in trajec-
tory prediction and, eventually, decision-making algorithms. This re-
quires a comprehensive decision-making framework that not only 
predicts trajectories based on navigational preferences but also in-
tegrates these predictions into collision avoidance strategies.

Automatic Identification System (AIS) data is instrumental in this 
recognition process, providing real-time information crucial for identi-
fying potential collision scenarios and the consecutive evasive ma-
noeuvres reflecting human navigational preferences. The dynamics of 
vessel interactions and the decision-making processes between con-
ventional ships performing collision avoidance can be captured by 
analysing and modelling AIS data through machine learning methods.

1.2. Motivation

This study is motivated by the need to bridge an important gap in 
implicit communication between autonomous collision avoidance sys-
tems and conventional vessels, aiming to develop a framework for MASS 
to understand the navigational intentions of neighbouring ships and 
predict their movements for further decision-making in the collision 
avoidance phase. By incorporating human-mimic behaviours, MASS can 
more effectively interact with human-operated ships. More specifically, 
this study seeks to address the following key research questions. 

1. How can AIS data be utilised to extract the navigational preferences 
of conventional vessels for collision avoidance?

2. How can past vessels’ trajectories be used to develop a real-time 
movement prediction model with improved accuracy and interpret-
ability based on human navigational preferences?

3. How does the prediction result support the interactive collision 
avoidance of MASS in a mixed waterborne environment?

To answer these questions, this study will extract navigational 
preferences from AIS data to gain insights about ship manoeuvring dy-
namics in collision avoidance scenarios based on an LSTM-autoencoder 
with the K-means clustering algorithm. Moreover, the study will develop 
a Multi-Task Learning (MTL) Sequence-to-Sequence LSTM model with 
an attention mechanism, abbreviated as MTL-Seq2Seq-LSTM-Att, to 
predict future trajectories of both the own and neighbouring ships, by 
integrating the navigational preferences extracted from AIS data into the 
model as specific tasks. Finally, in this paper, we extend the decision- 
making framework proposed in a previous study by (Song et al. 2022, 
2024) by taking into account the preference-aware trajectory generated 
by the predictive model to make a safer, more efficient, and more pro-
active interaction in a mixed waterborne transport environment.

This paper is structured as follows: Section 2 reviews existing 
methodologies and highlights the gaps in current approaches to mari-
time collision avoidance. Section 3 details the methodology of the pre-
dictive model and the decision-making framework developed in this 
study. Section 4 describes the experimental setup, evaluates the models’ 
performance through various metrics, and validates the decision-making 
framework through simulation. Sections 5 and 6 discuss the proposed 

methodology, summarise the findings and implications of this research, 
and suggest directions for future research, respectively.

2. Recent work

In the crucial domain of maritime navigation, the detection of 
collision conflicts has evolved greatly, incorporating state-of-the-art big 
data analytics, predictive modelling, and computational techniques to 
improve the safety navigation of MASS, by enhancing MASS’s situa-
tional awareness, predictive capabilities, and further decision-making.

2.1. Collision conflict detection

A study by (Chen et al., 2018) utilises AIS data to analyse collision 
risks dynamically by using a velocity obstacle approach, highlighting 
the necessity of timely and accurate risk assessments. Similarly, research 
conducted by (Liu et al., 2019) applied spatial clustering and analytical 
methods to manage collision risks. Additionally, an investigation by (Xin 
et al., 2021) estimates collision risk among multiple vessels and lever-
ages spatiotemporal patterns and a two-stage Monte Carlo simulation 
algorithm, thereby enhancing prediction accuracy and efficiency for 
potential collision scenarios. Research conducted by (Liu et al., 2021) 
and (Rong et al., 2022) focused on identifying high-collision potential 
areas and analysing ships’ reactions in near-collision scenarios. Addi-
tionally, the studies by (Zhang et al., 2021; Gil, 2021) employed geo-
metric and operational parameter analyses to aid proactive collision 
avoidance. These studies contributed to improved targeted interventions 
and collision conflict detection capabilities.

The concept of ship domain and the Collision Threat parameter area 
method have been extensively studied by (Szlapczynski and Krata, 
2018) and (Szlapczynski and Szlapczynska, 2021). These approaches 
integrate environmental factors and ship stability considerations, sup-
porting navigators executing informed collision avoidance manoeuvres.

Studies by (Westrenen et al., 2020) and (Huang et al., 2018) have 
examined the impact of maritime traffic complexity and the application 
of Velocity Obstacle algorithms on collision conflict detection, respec-
tively. By addressing the limitations of traditional techniques and 
introducing methods that consider non-linear and time-dependent ship 
trajectories, these studies offer more realistic solutions for collision 
avoidance and reducing false alarms. Furthermore, the application of 
knowledge graphs has been demonstrated to uncover correlations be-
tween critical factors in ship collision scenarios (Gan et al., 2023), 
enabling the identification of causal relationships and supporting 
decision-making in collision avoidance scenarios.

These efforts highlight the evolution of maritime collision avoidance 
strategies, showcasing innovative methods that integrate dynamic risk 
assessments, spatial clustering, and simulation algorithms to improve 
safety and decision-making in complex maritime environments. While 
these approaches are well-established, our study presents a method 
aimed at extracting trajectory conflict pairs from AIS data. By focusing 
on identifying vessel trajectory pairs at risk of collision and defining 
relevant navigational parameters, this method provides a tailored 
approach for detecting potential collisions for further navigational 
preferences extraction.

2.2. Intention identification

In maritime navigation, the key task of predicting vessel intentions to 
enhance safety and prevent collisions has seen great advancements 
through innovative methodologies.

Research by (Murray and Perera, 2018) introduced trajectory 
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prediction for autonomous vessels, emphasising the need for ships to 
anticipate neighbouring movements for collision avoidance. This foun-
dational work underscores the importance of predictive analytics in 
autonomous maritime navigation. Expanding on predictive approaches, 
the investigation by (Du et al., 2020) focused on situational awareness 
by estimating intentions of give-way and stand-on ships, enabling ves-
sels to make informed decisions and enhance proactive safety measures.

The study by (L. Huang et al., 2020) applied semantic analysis and 
topic modelling borrowed from Natural Language Processing to mari-
time trajectory data. By identifying mobility patterns, this work 
contributed to route discovery (Huang et al., 2024) and anomaly 
detection. The study by (Szlapczynski et al., 2018) utilised the ship 
domain concept to precisely predict time avoidance manoeuvres and 
improve decision-making accuracy in critical scenarios. Additionally, 
environmental factors that influence vessel behavior are important to be 
considered in intention identification. For example, the spatio-temporal 
correlation between tides and ship movements in estuarine ports (Shu 
et al., 2024).

In leveraging AIS, the research presented by (Zhang et al., 2023) devel-
oped a knowledge-based decision support system using AIS data to guide 
ship collision avoidance, including encounter identification, behaviour 
extraction, and scenario matching to generate safe navigation paths. Addi-
tionally, research presented by (Zhang et al., 2020) introduced a dynamic 
system for multi-ship collision avoidance, focusing on predicting vessel in-
tentions through an iterative observation-inference-prediction-decision 
model.

The approach developed by (L. Chen et al., 2018) investigated the 
cooperative control of autonomous vessels, particularly in the formation 
and maintenance of a “vessel train.” This study highlights the signifi-
cance of coordinated behaviour and communication among vessels to 
improve navigational safety and respond effectively to dynamic mari-
time environments.

While existing studies have made much progress in intention iden-
tification and enhancing situational awareness, many approaches focus 
on specific scenarios or utilise methods that may not fully capture the 
sequential features of time-series navigational data. For example, 
directly applying clustering techniques to high-dimensional trajectory 
data may be a challenge due to the complexity and temporal de-
pendencies inherent in such data. This suggests a need for methods that 
can better account for these temporal dynamics, allowing for a more 
detailed analysis of vessel intentions during the interaction.

2.3. Trajectory prediction

LSTM networks are increasingly recognised for their effectiveness in 
sequence prediction, making them particularly well-suited for fore-
casting vessel trajectories using AIS data. Research has consistently 
highlighted LSTM’s capability to handle the sequential nature of AIS 
data, such as the work by (Thind et al., 2022), which focuses on 
dynamically adapting to the most recent known positions.

Building on the foundational strengths of LSTM, recent research has 
introduced hybrid models that combine LSTM’s predictive capabilities 
with other computational techniques to better address the particularities 
of the maritime environment. For example, the study by (Liu et al., 
2022) leveraged the learning capacity of LSTM within an IoT framework 
to promote smart traffic services, demonstrating high accuracy and 
robustness in predicting vessel trajectories. Furthermore, the research 
by (Liu et al., 2023) proposed an interactive vessel trajectory prediction 
framework, embedding the Quaternion Ship Domain into LS and 
addressing dynamic interactions between neighbouring vessels. It has 

demonstrated better performance than existing methods.
Moreover, integrating LSTM with emerging technologies like graph 

convolutional networks and context-aware systems underscores a po-
tential trend in maritime traffic management. Research presented by 
(Gao et al., 2024) utilised an LSTM within a spatiotemporal edge and 
node attention graph convolutional network for handling multi-ship 
encounters. Additionally, research by (Zhang et al., 2024) proposed a 
Dynamic Spatio-Temporal Graph Attention Network incorporating 
LSTM for short-term motion pattern perception. Additionally, the study 
conducted by (Wang et al., 2024) introduced a deep attention-aware 
spatiotemporal graph convolutional network, including an LSTM mod-
ule for motion feature extraction, improving prediction accuracy in 
complex sea areas. In addition, the incorporation of contextual infor-
mation into LSTM models has also been shown to enhance prediction 
outcomes. The study by (Mehri et al., 2023) designed a context-aware 
LSTM framework that integrates contextual information such as wind, 
wave size, and current, showing an improvement in accuracy over 
standard LSTM approaches.

Additionally, the application of LSTM in conjunction with clustering 
techniques has proven effective in enhancing situational awareness of 
autonomous ships and aiding proactive collision avoidance strategies. 
Research by (Murray and Perera, 2022) implemented clustering tech-
niques combined with LSTM for extracting trajectory segments from 
historical AIS data. Another study by (Yang et al., 2022) developed a 
model combining the DBSCAN algorithm and LSTM, which cluster 
vessel tracks before prediction. The study presented by (Alam et al., 
2024) enhanced short-term vessel trajectory prediction by clustering 
routes and using Random Forest algorithms, demonstrating accuracy 
improvements for heterogeneous and multi-modal movement patterns.

Seq2seq models have also been introduced into maritime trajectory 
prediction. A multi-task learning model based on the attentional seq2seq 
framework was proposed by (Jiang et al., 2024), jointly learning route 
patterns and future trajectories. The study by (Düz and van Iperen, 
2024) employed encoder-decoder architectures for ship trajectory pre-
diction using AIS data and achieved an accurate prediction.

The application of LSTM and its variants in vessel trajectory pre-
diction has demonstrated much progress in accuracy and reliability. By 
integrating LSTM with clustering techniques, context-aware frame-
works, graph convolutional networks, and other models, researchers 
have developed various methods that address the prediction of ship 
trajectories. The adaptability of LSTM makes it an essential technology 
in vessel trajectory prediction.

3. Methodology

3.1. Navigational preference modelling and extraction

This section presents the methodological approach to model human 
navigational preferences in collision avoidance scenarios. We detail the 
process from navigational preference definition to collision conflict pairs 
extraction and preference extraction based on an LSTM-autoencoder.

3.1.1. Definition of navigational preference
Understanding and predicting the relative dynamic relationship be-

tween two vessels is crucial in vessel collision avoidance decision- 
making, especially in relatively open waters, such as the open sea or 
port areas. In these environments, geographical constraints on vessel 
movement are minimal, and collision avoidance decisions primarily 
depend on relative motion parameters. This study examines navigation 
preferences in these scenarios with minimal geographical constraints. 
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Definition. Human Navigational preference refers to the decision- 
making tendencies and behavioural patterns exhibited by a vessel 
within the relative motion space based on the dynamic relationship 
between two vessels. This preference is generally independent of abso-
lute position and heading, reflecting the vessel’s operators’ choices in 
collision avoidance through relative motion.

Symbols:
SOG1, SOG2:the speeds over ground of the own ship and the 

neighbouring ship, respectively;
ROT1, ROT2: Rates of turn of the own ship and the neighbouring 

ship, respectively;
ACC1, ACC2: Acceleration of the own ship and the neighbouring 

ship, respectively;
α, ϕ: Relative bearing and encounter angle;
DCPA:Distance closest point of approach;
TCPA:Time closest point of approach.
The features presented in Table 1 for modelling navigational pref-

erences are selected to identify the preference required for collision 
avoidance.

3.1.2. Collision conflict pairs extraction
In order to collect information from ship movement for further 

investigation, we propose an algorithm to extract collision conflict pairs 
from raw AIS data (see Algorithm 1). The algorithm focuses on identi-
fying instances where vessels come within a pre-defined proximity 
threshold, thereby filtering out irrelevant data and concentrating on 
encounters that may call for navigational adjustments. This procedure 
ensures that only noticeable events are analysed for potential collision 
risks. This algorithm employs geohashing to facilitate quick spatial 
comparisons, ensuring the efficiency of detecting potential collisions.

The detection process begins with preprocessing raw AIS data to 
ensure high-quality and reliable input. This includes interpolating 
missing data, detecting and removing outliers, and sampling the data for 
efficient processing. Trajectories are segmented based on a time 
threshold Δt, set at 3 min, to differentiate continuous from discontin-
uous vessel movements. Geohashes are then calculated for each 
segment, converting geographic coordinates into compact alphanumeric 
strings. This encoding method allows for rapid spatial comparisons 
within the same geohash bucket (Moussalli et al., 2015), identifying 
potential collision pairs based on spatial proximity and temporal 
overlap.

Finally, the dataset is prepared and indexed by 
{(

mmsim1, segs1
)
,

(
mmsim2, segs2

)}
of potentially colliding ship pairs. Here, mmsim1 repre-

sents the MMSI number (Maritime Mobile Service Identity) of the first 
ship in the pair, and segs1 refers to the s1-th trajectory segment of that 
ship. Similarly, mmsim2 and segs2 correspond to the MMSI number and 
trajectory segment of the second ship. Additionally, critical navigational 
parameters, such as DCPA, TCPA, α,φ, Encountered situations (ES), and 
navigational priorities (NP), are calculated for each identified potential 
collision pair. This data provides a foundation for further data-driven 
preferences investigation. 

Algorithm 1. Potential Collision Conflict Pairs Detection And 
Contextual Info Annotation 

3.1.3. LSTM-autoencoder for preference extraction
To capture and represent navigational preferences, we employed an 

LSTM-based autoencoder architecture, as illustrated in Fig. 1. The pro-
cess begins with an input sequence x, which consists of multiple inter-
action features (SOG1, SOG2, ACC1, ACC2, ROT1, ROT2, DCPA, TCPA, 
α and ϕ) that characterise the dynamic interaction between vessels over 
time.

LSTM-Encoder (f): The LSTM-Encoder, represented by the function 
f, processes this input sequence x to generate a compressed low- 
dimensional representation known as the Representation Vector. 
This vector refers to the latent space representation of the original 
feature sequence, serving as a compact representation of the vessel’s 
interactive actions.

LSTM-Decoder (g): The latent vector, that is, the representation 
vector, is then fed into the LSTM-Decoder, denoted by the function g, 
which attempts to reconstruct the original interaction sequence x̃. The 
objective of this autoencoder is to minimise the difference between the 
original input x and the reconstructed output x̃, ensuring that the rep-
resentation vector accurately captures the relevant features of the 
interaction sequence. The loss function of the autoencoder is repre-
sented by: 

Loss autoencoder=
1
N

∑N

i=1
‖xi − x̃i‖

2 (1) 

Subsequent to the autoencoding process, the Representation Vec-
tor is subjected to K-means clustering for preference extraction. This 

Table 1 
Features selected for preference identification in collision avoidance scenarios.

Variables Explanation of selection

SOG1, 
SOG2

Indicate the rates at which two vessels are approaching or moving 
away from each other.

ROT1, 
ROT2

Indicate the rates at which two vessels change their headings.

ACC1, 
ACC2

Indicate the rates at which two vessels change their speeds.

α,ϕ Uniquely determine the encounter situation and navigational priority 
between vessels.

DCPA, 
TCPA

Denotes the minimum distance and time until the vessels reach the 
closest point of approach.
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step groups similar vectors together, identifying distinct navigational 
preferences. These preferences are derived from patterns within the 
interaction sequences and provide valuable insights into the types of 
interactive manoeuvres in collision avoidance scenarios.

3.2. Preference-based trajectory prediction

3.2.1. Movement predictor-MTL-Seq2seq-LSTM-Att
The movement predictor proposed for trajectory prediction, that is, a 

multi-task learning Sequence-to-Sequence LSTM model, enhanced with 
the Luong attention mechanism (Luong et al., 2015), which aligns and 
weighs the importance of different input sequence elements, is 
employed to predict vessels’ future movement in collision avoidance 
scenarios. An LSTM classifier is employed to predict the preference 
based on the same features as the input features of the 
LSTM-autoencoder. Furthermore, the navigational preferences serve as 
the specific tasks to supervise the predictive process, ensuring the pre-
diction accuracy and stability.

The model consists of the following elements, as illustrated in Fig. 2.

(1) EncoderThe encoder utilises an LSTM network to process a his-
torical data sequence over a defined time window as the input, including 
the positions of both the own and the neighbouring ships, the encoun-
tered scenario, and navigational priority. The LSTM then generate a 
series of hidden states that capture temporal dependencies and contex-
tual features of vessel interactions. These representations are essential 
for the decoder to generate context-aware future trajectories. The 
mathematical representation of the encoder is given by: 
(
henc

t , cenc
t

)
= LSTM

(
xt ,henc

t− 1, c
enc
t− 1

)
, (1≤ t≤Ts) (2) 

Where xt is the input feature vector at time t, Ts refers to the length of the 
input sequence, henc

t and cenc
t are the hidden and the cell states of the 

LSTM at time t. henc
t− 1 and cenc

t− 1 represent the hidden and cell states from 
the previous time step, respectively.

(2) Classifier

The preference is recognised by an LSTM classifier, which receives the 
same features as the LSTM-autoencoder with the time length of Ts to 
predict the preference. The representation is given by: 

ypref = softmax
(

Wprefhenc
Ts

+bpref

)
(3) 

where ypref represents the navigational preference class of prediction, 
Wpref ,bpref refer to the weights and bias vectors, respectively.

(3) Task-specific decoderThe preference predicted by the classifier is 
then transmitted into the MTL-Seq2Seq-LSTM-Att model, where the 
preference is taken as the specific task to decode the input sequences to 
ensure the alignment between realistic navigational strategies. 

htask
t+1 , c

task
t+1 = LSTM

(
ytask

t ,htask
t , ctask

t

)
(4) 

here ytask
t is the input to the decoder at time step t, and htask

t and ctask
t are 

the hidden state and cell state of the decoder, respectively.

(4) Attention mechanism

The Luong attention is employed in our model to enhance the relevance 
and precision of the generated sequences. At each time step t, the 
decoder utilises a task-oriented attention mechanism to weigh the 
encoder outputs, producing the corresponding context vector ct. This 
process aligns the decoders’ focus with the most relevant features of the 
input sequence, thereby ensuring that subsequent interactive manoeu-
vres can be captured based on the ship trajectories over a given 
timeframe. 

αt(s)= softmax
(

score
(

htask
t ,hs

))
=

exp
(

score
(

htask
t ,hs

))

∑
ś exp

(
score

(
htask

t ,hś

)) (5) 

score
(

htask
t ,hs

)
=htask

t
T
Wahs (6) 

ct =
∑

s
αt(s) • hs (7) 

where αt(s) refers to the attention weight for encoder state s at time t, hs 

Fig. 1. The scheme of LSTM-Autoencoder for compressing sequence manoeuvres data.

Fig. 2. The diagram of preference-based movement predictor for trajectory prediction.
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represents each encoder’s hidden state, htask
t is the current decoder 

hidden state, and the score 
(

htask
t ,hs

)
is the score function that measures 

the match between the decoder state htask
t and the encoder state hs 

through the trainable weight matrix Wa.
The attentional state of the decoder h̃t is updated through: 

h̃t = tanh
(
Wc • concat

(
ct ; hʹ

t
))

= tanh
(
Wc •

[
ct ; hʹ

t
])

with Wc being a trainable parameter matrix with the dimension of 
[nh ×2nh] transforms the context vector ct and decoder hidden state ht́ 
into an attentional hidden state.

(5) Output layer
(
henc

t , cenc
t

)
= LSTM

(
xt ,henc

t− 1, c
enc
t− 1

)
, (1≤ t≤Ts) (8) 

otask
t =Wtask

out

[
ct ;htask

t

]
+ btask

out (9) 

where Wtask
out is the weight matrix for the linear transformation of the 

specific task, btask
out is the bias vector for a specific task.

3.2.2. Decision-making framework for collision avoidance
In order to ensure safe and efficient navigation in mixed waterborne 

transport environments, this study proposes a decision-making frame-
work for MASS by integrating the predictive model above with previous 
work. This section details how our framework employs the predictive 
model introduced in section 3.3.2 and integrates it with Knowledge 
Maps (KM) developed in our previous work (Song et al., 2022) and Local 
Planner Dynamic Window Approach (DWA) proposed in a subsequent 
study (Song et al., 2024). The framework is illustrated in Fig. 3.

The core components and their interactions are outlined as follows. 

(1) Knowledge Maps (KM): The module processes real-time envi-
ronmental data and historical movement trajectories to support 
other modules. It provides inputs for the Movement Predictor and 
decision-making algorithms by transferring relevant re-
quirements to executable actions. This module updates continu-
ously, ensuring the system operates with accurate context-aware 
information, as detailed in (Song et al., 2022).

(2) Movement Predictor: When surrounding vessels are detected, 
this module employs the prediction model described in Section 
3.3.2 to forecast the trajectories of both the own and neigh-
bouring ships. Based on these predicted trajectories, the module 
constructs the reference path, a human-preferred evasive route 
for the own ship in the current collision avoidance scenario. This 
reference path ensures that the MASS behaves in a manner that is 
predictable and comprehensible to human operators on nearby 

vessels, reducing the potential for misinterpretation of the 
MASS’s intentions.

(3) Risk Assessment: Risk Assessment evaluates potential collision 
risks based on pre-defined safety thresholds, such as DCPA and 
TCPA, considering the manoeuvrability of the own ship. As 
shown in the bottom-right part of Fig. 3, if any risk is detected, 
the local planner (KM-DWA) proposed by (Song et al., 2024) 
implements the local planning task for refining the reference 
path. Conversely, if no risks are detected, the vessel continues to 
follow the reference path. This mechanism ensures the naviga-
tional safety of MASS in dynamic environments.

(4) Local Planner - KM-DWA: If a collision risk is detected, the Local 
Planner module is activated. Using the KM-DWA algorithm, this 
module refines the reference path by making localised adjust-
ments to mitigate collision risks. This refinement does not involve 
generating a completely new path; instead, it focuses on fine- 
tuning the existing reference path to adhere closely to human 
navigational preferences. The updated reference path ensures 
that the MASS avoids collisions while navigating in a manner that 
remains predictable and understandable to human operators on 
surrounding vessels.

(5) Path Tracking: This module ensures accurate execution of the 
reference path. A non-linear model predictive control (MPC) al-
gorithm proposed by (Zheng et al., 2014) is employed in this 
decision-making framework to track the reference path.

3.3. Model parameters determination

3.3.1. LSTM-autoencoder

(1) Model Structure: The LSTM-Autoencoder consists of an encoder 
and a decoder, each comprising two LSTM layers. The encoder 
compresses the input sequence with a hidden dimension of 128 
into a lower-dimensional latent representation with a dimension 
of 64, while the decoder reconstructs the sequence from this 
compressed form.

(2) Training: The training process utilises the AdamW optimiser 
with a learning rate of 0.001, balancing effective learning and 
regularisation. Additionally, a ReduceLROnPlateau scheduler is 
applied, reducing the learning rate when the model’s perfor-
mance plateaus and helping to fine-tune the model over training 
epochs.

3.3.2. MTL-Seq2Seq-LSTM-Att model

3.3.2.1. (1) Model Structure. The encoder and decoder consist of two 
LSTM layers and a hidden dimension of 128. The encoder processes the 
input sequence to capture temporal patterns and compresses this in-
formation into a context vector, while the decoder outputs the corre-
sponding future trajectories based on the given sequence.

A custom loss function was implemented to handle the multi-output 
nature of the task, particularly focusing on the accuracy of predicted 
trajectories for both the own vessel and the neighbouring vessel.

3.3.2.3. (3) Runtime performance. This module operates as a real-time 
part of the decision-making framework, predicting vessel trajectories 
in the next few minutes. Runtime performance is critical for ensuring the 
system’s feasibility in real-time scenarios, which is evaluated by 
measuring average runtime across multiple trials with an 11th Gen Intel 
(R) Core(TM) i7-1185G7 @ 3.00 GHz processor.

3.3.3. Evaluation metrics
Several metrics were used to assess the model’s performance. 

Fig. 3. The diagram of the decision-making framework based on trajec-
tory prediction.
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1) Root Mean Squared Error (RMSE): RMSE was calculated to measure 
the average magnitude of reconstruction errors, with a lower RMSE 
indicating better model performance.

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

where, yi represents the actual value, ŷi represents the predicted value, 
and n is the number of data points. 

2) Mean Squared Error (MSE): MSE was calculated to measure the 
average magnitude of the squared reconstruction errors, with a lower 
MSE indicating better model performance.

MSE=
1
n
∑n

i=1
(yi − ŷi)

2 

3) Mean Absolute Error (MAE): MAE provided another measure of 
reconstruction accuracy, focusing on the absolute differences be-
tween the actual and predicted values.

MAE=
1
n
∑n

i=1
|yi − ŷi|

4) R-Squared (R2): R2 was used to quantify how well the model 
captured the variance in the data, with a value closer to 1 indicating 
better explanatory power.

R2 =1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − y)2 

where, y is the mean of the actual values. 

5) Variance: Variance was used to measure the spread of the prediction 
errors, denoted by Var. It indicates the degree to which the predicted 
values differ from the mean of the actual values. Lower variance 
suggests more consistent model predictions.

Var=
1
n
∑n

i=1
(yi − y)2 

6) Explained Variance Score (EVS): EVS was calculated to assess the 
proportion of variance explained by the model and the model’s 
overall effectiveness.

EVS=1 −
Var(yi − ŷi)

Var(yi)

3.3.4. Decision-making framework
1) MPC: The MPC (model predictive control) framework is designed 

to ensure trajectory tracking a set of waypoints, with intermediate po-
sitions interpolated to generate a smooth trajectory. The prediction 
horizon is set to N = 15 steps, with sampling time (dt) set to 0.1s. The 
vessel’s dynamics are modelled using the 3 degrees of freedom model, 
shown by Equations (11) and (12). The equations governing the vessel’s 
motion are discretised using the fourth-order Runge-Kutta method 
during the simulation. The continuous-time state-space representation is 
given by the following equations: 

η̇=R(ψ(t))v(t) (11) 

Mv̇(t)+C(v(t))v(t) + D(v(t))v(t) = τ(t) (12) 

where η = [x, y,ψ]T represents the position and heading of the vessel, v =

[u, v, r]T denotes the velocities in surge, sway, and yaw, and τ =
[
τx, τy,N

]T corresponds to the control inputs (forces and moment).
The rotation matrix R(ψ(t)) that transforms velocities from the body- 

fixed frame to the inertial frame is expressed by Equation (13). Addi-
tionally, the state-output relationship is defined by the output Equation 
(14). 

R(ψ(t))=

⎡

⎣
cos(ψ(t)) − sin(ψ(t)) 0
sin(ψ(t)) cos(ψ(t)) 0

0 0 1

⎤

⎦ (13) 

y(t)=C •
[
η(t)T

, v (t)T]T
;C=

[ 1 0 0 0 0 0

0 1 0 0 0 0

]

(14) 

In this framework, the MPC optimisation problem seeks to minimise the 
cost function J, presented by Equation (15), penalising deviations from 
the interpolated reference trajectory and the magnitude of control 
inputs. 

J=
∑N

n=1

((
y(k + n) − yref (k + n)

)T
Q
(

y(k+ n) − yref (k+ n)
))

+
∑N− 1

n=0
u(k + n)TR u(k+ n) (15) 

Q=

[
100 0
0 100

]

,R=

[
1 0
0 1

]

(16) 

where yref (k+n) represents the interpolated reference trajectory at 
future time steps, u(k+n) represents the magnitude of control inputs, 
and Q and R are weighting matrices, see Equation (16). These matrices 
prioritise minimising the tracking error while keeping the control inputs 
within practical limits.

2) KM-DWA: the KM-DWA algorithm uses a set of the same weights 
as the setting in (Song et al., 2024) to balance different objectives during 
navigation, including obstacle avoidance, path keeping, heading sta-
bility, etc. The DCPA and TCPA thresholds are set at 50 m and 20 s to 
trigger evasive actions when necessary.

4. Experiment

4.1. Dataset preparation and simulation setting

The dataset used in this study is derived from Dutch maritime traffic 
data within the Rotterdam port area, covering the period from 00:00 
UTC on October 1, 2023 to 00:00 UTC on October 15, 2023. The data 

Fig. 4. The focused areas in the port of Rotterdam in the experiment.
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was collected through VesselFinder and includes detailed vessel move-
ment information within the geographical coordinates of 
51.833◦–52.167◦ latitude and 3.167◦–4◦ longitude. This dataset specif-
ically focuses on three high-risk areas within the Rotterdam port region, 
selected for their higher potential for navigational conflicts, as illus-
trated in Fig. 4.

Through the conflict pairs extraction algorithm, Algorithm 1, pro-
posed in Section 3.1.2, we identified and extracted 1587 potential 
conflict pair sequences from the original dataset. These sequences were 
subsequently used for preference extraction and trajectory prediction 
model training and validation. During the preprocessing phase, nu-
merical features were normalised and categorical features were encoded 
to ensure consistency and facilitate their utilisation by the models.

Specifically, the preference extraction was conducted on the entire 
dataset, using the LSTM-Autoencoder for feature compression and 
clustering to identify the full spectrum of the navigational preferences. 
Furthermore, to ensure the generalisability of the trajectory prediction 
model, the data was divided into a training set and a test set using an 80/ 
20 split. In this case,1,269 conflict pairs were allocated for training, 
while the remaining 318 conflict pairs were reserved for further testing 
and validation.

A simulation was implemented in Area 1 of Rotterdam Port to vali-
date the proposed decision-making framework. The goal of the simula-
tion was to evaluate the ability of a tugboat to navigate safely along 
predetermined routes while avoiding collisions with neighbouring ves-
sels. For this purpose, we utilised Tito-Neri, a 1:30 scale model of a tug 
boat developed by TU Delft (Haseltalab et al., 2020). The parameters of 
Tito-Neri are provided in Table 2. These parameters can be converted 
according to Froude scaling of various physical quantities (Moreira 
et al., 2007).

In this experiment, we selected a navigational scenario from real AIS 
data where the own ship acts as the stand-on vessel, while the neigh-
bouring vessel is the give-way vessel. Fig. 5 presents not only the pre-
dicted and actual trajectories for both the own and the neighbouring 
ships on the left side but also DCPA and TCPA variation during this 
interaction on the right side. In this case, the own ship (represented by 
red and blue markers) acts as the stand-on vessel, while the neigh-
bouring ship (represented by green and cyan markers) is the give-way 
vessel. The predicted trajectories for the own ship and neighbouring 
ship are shown in blue and purple, respectively. Additionally, the vari-
ation of motion characteristics, including SOG, COG, DCPA and TCPA, 
are given in the right panel. As shown in Fig. 5. DCPA decreases as the 
vessels approach each other, reaching their lowest point near zero before 
increasing as they move apart. The TCPA similarly decreases, hitting 
zero at the closest point of approach, and becomes negative as the ves-
sels begin to separate. This situation requires the own ship to be vigilant 
for imminent evasive actions.

4.1.1. Preference extraction
The performance of the LSTM-autoencoder model was evaluated by 

several key metrics: the RMSE of 0.048 and the MAE of 0.0284, indi-
cating a high degree of accuracy in the model’s reconstruction capa-
bilities. Additionally, the model achieved an R2 value of 0.936 and an 
EVS of 0.936, reflecting its effectiveness in capturing the underlying 
variance in the data.

Furthermore, we applied K-means to the encoded data produced by 
the LSTM-autoencoder model to identify the optimal number of clusters 
with identified manoeuvring preferences. The evaluation was based on 
three key metrics: Sum of Squared Errors (SSE), Silhouette Score, and 
Davies-Bouldin Index, as illustrated in Fig. 6. The selection of 4 clusters 
reflects a balanced consideration of these metrics. While the SSE curve 
shows diminishing improvements beyond 4 clusters, suggesting limited 
benefits from additional clusters. Additionally, although the Silhouette 
Score does not reach its maximum at 4 clusters, it remains relatively 
high, indicating a balance between intra-cluster cohesion and inter- 
cluster separation. Furthermore, while the lowest value of the Davies- 
Bouldin Index occurs at 2, the index at 4 clusters is relatively low 
compared to other numbers, further supporting this as the most effective 
configuration.

Based on this cluster selection, Figs. 7 and 8 illustrate the results of 
our collision avoidance experiment in port water areas, showing vessel 
interaction trends across the four identified manoeuvring preferences. 
Each trend represents specific behaviours in terms of the features of 
navigational preferences, including SOG, ACC, ROT, and other vari-
ables. The four clusters represent distinct vessel interaction preferences, 
summarised in Table 3.

Each cluster represents a different manoeuvring pattern in collision 
avoidance: Cluster 0 exhibits a cautious and stable interaction pattern, 
where vessels maintain low speeds and straight courses with minimal 
adjustments. Cluster 1 reflects a proactive strategy of accelerating 
through encounter points, with vessels making significant speed and 
course adjustments near the encounter, indicating a preference for rapid 
passage through potential collision areas. Cluster 2 represents a gradual 
adjustment strategy, with slow changes in speed and heading, indicating 
a preference for steady navigation in low-risk scenarios. Cluster 3 
demonstrates a response to potentially hazardous situations, with ves-
sels significantly increasing speed and making large course adjustments 
near the encounter point, suggesting a reactive strategy to avoid 
imminent collisions.

4.1.2. Trajectory prediction results

4.1.2.1. (1) Preference prediction. An LSTM classifier was trained and 
evaluated to predict navigational preferences. As shown in Fig. 9, the 
model achieved strong performance on the training set, with accuracy at 
0.9179, precision at 0.9163, recall at 0.9179, and an F1 score of 0.9165. 
The slightly lower validation metrics—accuracy of 0.8460, precision of 
0.8614, recall of 0.8460, and an F1 score of 0.8498—indicate minor 
overfitting. Nevertheless, the model demonstrates reasonable general-
isation capability, which forms a solid foundation for subsequent tra-
jectory prediction tasks.

4.1.2.2. Trajectory prediction. The proposed movement predictor, uti-
lising the MTL-Seq2Seq-LSTM-Att model, was designed to integrate the 
results of preference prediction into the trajectory prediction process. 
Fig. 10 shows the training and validation loss curves for the trajectory 
prediction model over three prediction horizons: 10 min, 15 min, and 
20 min. The validation loss follows a similar trend, stabilizing slightly 
above the training loss, which suggests good generalisation. In terms of 
runtime performance, the module completed each trajectory prediction 
in an average of 12.8 ms, meeting real-time requirements in dynamic 
collision avoidance scenarios.

4.1.2.3. (3) Comparative performance analysis. We compared the per-
formance of the proposed predictive model with the following baseline 
methods over different forecasting horizons (10min, 15min, and 
20min): (1) Basic Seq2Seq RNN (2) Basic Seq2seq attention LSTM (3) 
Basic Seq2Seq LSTM (4) Bi-LSTM, see Table 4 for details. These baseline 
models were selected because they represent different levels of 
complexity commonly used in sequence-to-sequence prediction. The 

Table 2 
The parameters of the Tito-Neri ship model.

Quantity Length Width Thruster 
forces

Mass Actuators

0.97 m 0.30 m τx = [-5, 5], 
(N) 
τy = [-5, 5], 
(N) 
N = [-2.5, 2.5] 
(N⋅m)

16.9 
kg

1) Two stern 
azimuth thrusters 
2) One bow 
thruster
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Basic Seq2Seq RNN serves as a basic model for comparison, while the 
Basic Seq2Seq LSTM improve upon it by handling long-term de-
pendencies, and the Basic Seq2seq attention LSTM and the Bi-LSTM 
further enhance the ability to focus on important parts of the sequence 
or process data in both directions. The metrics used include MSE, MAE, 
R2, variance, evaluating the models’ ability to predict future trajectories 
of the own ship and a neighbouring ship based on initial 5-min trajectory 
data. 

1) 10-Minute Forecasting Horizon: The Basic Seq2Seq LSTM model 
shows the lowest MSE (0.0002) and MAE (0.0097), indicating 
slightly better short-term prediction accuracy. However, the pro-
posed MTL-Seq2Seq-LSTM-Att model also demonstrates acceptable 
performance with an MSE of 0.0003 and a high R2 of 99.2%, com-
parable to the best-performing models.

2) 15-Minute Forecasting Horizon: Extending the horizon to 15 min, 
the proposed model continues to perform competitively with an MSE 

of 0.0036 and an R2 of 89.4%. These results suggest that the model 
retains a good balance between accuracy and variance explanation. 
Although the Bi-LSTM model exhibits a lower MAE, the proposed 
model maintains robust overall performance. Notably, the Basic 
Seq2seq LSTM with Attention and without attention models show a 
reduction in R2 to 86.7% and 86.19%, respectively, along with 
higher MSEs and MAEs, indicating a decrease in predictive accuracy 
over longer horizons.

3) 20-Minute Forecasting Horizon: For the 20-min horizon, the per-
formance of the models diverges more noticeably. The proposed 
model achieves the lowest MSE of 0.0060 and a relatively high R2 of 
85.2%, suggesting it remains effective for longer-term predictions 
compared to other models.

The proposed MTL-Seq2Seq-LSTM-Att model demonstrates consis-
tent performance across different prediction horizons. While some 
baseline models exhibit strengths in specific metrics at certain horizons, 
the proposed model provides a reliable balance between accuracy and 
variance explanation, particularly in long-term prediction scenarios.

4.1.2.4. (4) Visual analysis of prediction results. The prediction results 
are further visualised in Figs. 13–15 in Appendix, showcasing the 
model’s performance over 10-min, 15-min, and 20-min horizons, 
respectively.

For the 10-min horizon, the model generally captures the trajectory 
trends but exhibits deviations in certain cases, such as case 3 and case 4, 
indicating difficulties in handling short-term dynamics. In contrast, the 
15-min horizon provides the most accurate predictions, with a close 
alignment between predicted and actual trajectories, demonstrating the 
model’s ability to balance global trends with local details. At the 20-min 
horizon, while overall trends are still captured, slight distortions and 
deviations appear, particularly in more complex scenarios, reflecting a 
decrease in prediction precision as the forecast period extends.

The visualisation results suggest that the model performs best at the 
15-min horizon, where it achieves an optimal balance between accuracy 
and stability. The 10-min predictions, though capturing general trends, 
reveal shortages in capturing fine-grained and foreseeable predictions. 
The 20-min horizon, on the other hand, shows the model’s reduced 
precision over longer periods, likely due to increased uncertainty and 
cumulative errors. Overall, the 15-min horizon is the most suitable for 
practical decision-making, balancing immediate accuracy and longer- 
term trend stability.

4.2. Decision-making results

To anticipate the future positions of the vessels involved in the sce-
nario, we employed the developed movement predictor in the decision- 

Fig. 5. Trajectory prediction vs actual trajectory for ships in a crossing scenario.

Fig. 6. The illustration of optimal clustering number investigation.
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making framework, shown in Fig. 3. This model leverages historical 5- 
min AIS data to forecast the future paths of the vessels over the 
selected horizon of 15 min. By predicting the future trajectories, we 
could determine the optimal waypoints for safe navigation of the own 
ship. Based on the predicted trajectories, we established a series of 

turning points that the vessel should follow to avoid collisions based on 
human-preference-aware paths. These turning points were then fed into 
the MPC framework, which was tasked with tracking the desired tra-
jectory while performing local collision avoidance. The MPC was 
configured to optimise the vessel’s control inputs, ensuring that it 

Fig. 7. Experiment of MASS in port water areas.

Fig. 8. Experiment of MASS in port water areas.
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adhered to the reference path while dynamically adjusting to any 
emerging threats.

While in many studies – including our previous work (Song et al., 
2024) - it is assumed that neighbouring vessels maintain their speed or 
course during interactions, this study focuses on validating the proposed 
predictive model in a situation where the own ship’s trajectory tracking 
is performed based on the future trajectory points of both the own ship 
and the neighbouring vessels, as predicted by our model. Moreover, we 
also address situations where the predicted trajectory of the neigh-
bouring vessel poses a collision risk to the own ship. In such cases, we 
validated the intervention of the KM-DWA local planner to facilitate 
decision-making throughout the collision avoidance process. This 
approach was integral in demonstrating the effectiveness of our pro-
posed model in handling dynamic maritime scenarios involving poten-
tial collision risks.

The simulation results are illustrated in Figs. 11 and 12, where the 
blue arrows indicate the moving direction of the own vessel, while the 
yellow arrows indicate the moving direction of the neighbouring vessel. 
Fig. 11 illustrates the path-tracking results without the local KM-DWA 

Table 3 
Characteristics of the four identified vessel interaction preferences.

Cluster 0 1 2 3

SOG1 Slight decrease 
followed by a 
recovery to its 
initial level, 
with relatively 
low speed 
throughout the 
interaction.

Stabilise in the 
first half, 
followed by 
acceleration, 
with a slightly 
wider 
confidence 
interval in the 
first half.

The lowest 
overall speed, 
with a slight 
upward trend 
during the 
interaction.

Steadily 
increases, with 
a faster initial 
rise followed by 
a period of 
stability, then a 
slower ascent 
toward the end.

SOG2 Initially slightly 
decreases, then 
steadily 
accelerates.

Shows a 
continuous 
increase in 
speed, with a 
wider 
confidence 
interval.

Slow and 
steady 
acceleration, 
maintaining a 
relatively low 
speed.

Initially 
decreases 
slightly, 
remains stable, 
then accelerates 
toward the end.

ACC1 A high 
acceleration 
initially, 
followed by a 
decline.

Gradually 
decreases, 
remaining 
mostly in the 
acceleration 
phase, with 
the highest 
initial 
acceleration 
and the widest 
confidence 
interval early 
on.

Mostly in the 
acceleration 
phase, with a 
slight decrease 
followed by an 
increase, 
ending with a 
decline into 
negative 
acceleration.

Shows a 
consistent 
downward 
trend from 
positive to 
negative 
acceleration, 
with a wider 
confidence 
interval in the 
middle phase.

ACC2 Gradually 
increases, with 
a stable middle 
section.

Increases 
initially, then 
decreases, 
with a wide 
confidence 
interval.

Relatively 
stable, 
remaining in 
the positive 
acceleration 
zone, 
indicating 
consistent 
acceleration.

Initially 
increases 
slowly, then 
decreases 
toward the end, 
showing a 
gradual 
transition from 
acceleration to 
deceleration.

ROT1 The overall 
trend indicates 
a left turn, with 
a wide 
confidence 
interval, 
suggesting 
variability in 
the turning 
behaviour.

Starts with a 
slight left turn, 
then shifts to a 
right turn, 
with the 
turning rate 
decreasing but 
remaining 
positive and 
the widest 
confidence 
interval across 
all clusters.

Initially 
increases, 
then 
decreases, 
followed by a 
slow rise back 
to 0, 
indicating a 
fluctuating 
turning 
behaviour.

Maintains a 
slightly 
negative rate 
(indicating a 
slow left turn), 
with a wider 
confidence 
interval.

ROT2 Displays a 
minor right 
turn, initially 
decreasing and 
then stabilizing 
at 0, with a wide 
confidence 
interval.

A continuous 
right turn, 
with a stable 
mid-section 
near 0, 
followed by 
further 
increase; the 
confidence 
interval is the 
widest.

Declines 
steadily into 
negative 
values, 
indicating a 
consistent left 
turn, with a 
large 
confidence 
interval 
suggesting 
variability.

Increases 
initially, then 
declines below 
0 and stabilises, 
indicating a 
right turn 
followed by a 
left turn, with 
significant 
variability.

DCPA Remains stable 
around 2.5 nm.

Increases 
initially, then 
decreases 
slightly before 
increasing 
again, with 
the largest 
overall DCPA 
among the 
clusters.

Remains 
stable at 
around 2.5 
nm, then 
decreases 
slightly 
toward the 
end.

Initially 
increases by 
about 0.5 nm, 
then decreases 
to 
approximately 
2.8 nm, 
indicating an 
overall larger  

Table 3 (continued )

Cluster 0 1 2 3

DCPA but lower 
than Cluster 1.

TCPA Decreases 
gradually 
toward 0 and 
then increases.

Decreases to 
about 0.5 min, 
stabilises, and 
then decreases 
further below 
0, showing the 
ships passing 
the closest 
point.

Mostly 
negative, 
exhibiting 
fluctuations, 
suggesting 
consistent 
proximity 
during the 
interaction.

Decreases to 
about 0.2 min, 
stabilises, then 
decreases below 
0, similar to 
Cluster 1.

ϕ Maintains a 
stable 
encounter angle 
of around 245◦ .

Maintains a 
steady 
increase with 
a large range 
of variability.

Exhibits 
fluctuations, 
initially 
decreasing, 
then 
increasing, 
and 
decreasing 
again.

Displays 
significant 
fluctuations, 
initially 
increasing and 
then decreasing.

α Remains stable 
at 
approximately 
300◦.

Rises and then 
returns to the 
initial level.

Remains 
stable and at 
the lowest 
value among 
all clusters.

Shows minor 
fluctuations, 
with a slight 
initial rise 
followed by a 
steady decline.

Fig. 9. Training metrics of the preference prediction classifier.
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intervention, while Fig. 12 shows the path-tracking results with KM- 
DWA intervention. In the left panel of the two figures, the reference 
path is depicted as a red dashed line, the path generated by the MPC 
controller is represented as a solid blue line, and the yellow line illus-
trates the predicted trajectory of the neighbouring vessel. A close 
alignment between the reference path and the MPC tracking path 
demonstrates effective path-following control, ensuring the vessel ad-
heres closely to the desired trajectory. The right panel presents the ship 
motion parameters during the avoidance process, such as speed, head-
ing, and relative motion characteristics between the vessels, with a focus 
on DCPA and TCPA. The own vessel maintains stability by controlling 
the surge speed throughout the tracking process. Meanwhile, the sway 

and yaw speeds remain near zero as the ship adjusts its heading to follow 
the desired trajectory. The observed trend of DCPA initially decreasing 
and then increasing, along with TCPA continuously decreasing, reflects 
the scenario where the two vessels approached each other before 
reaching the closest point of approach and subsequently diverged in 
opposite directions.

Fig. 12 presents the path-tracking results where the knowledge maps- 
based DWA path planner is applied. In this case, the DWA was triggered 
upon the DCPA and TCPA values reaching the set thresholds of 50 m and 
20 s, respectively. As shown in the blue tracking path in the left panel, 
the vessel makes an early right turn at t = 61s in response to the detected 
risk. This manoeuvre, reflected in changes to sway and yaw speeds, 
adjusts the COG1 and gradually increases the DCPA. As shown in the 
right panel, the minimum DCPA improves from 21.59 to 24.67 after 
intervention, indicating a safer distance between the vessels.

The results from these simulations underscore the importance of the 
proposed decision-making framework for autonomous vessel naviga-
tion. While the MPC is capable of tracking the reference path well, the 
inclusion of KM-DWA enhances the safety of the navigation by 
responding dynamically to emerging collision risks by taking account of 
the ship’s manoeuvrability. This approach underscores the potential of 
combining MPC and KM-DWA to ensure precise path following, collision 
avoidance, and operational efficiency in real-world maritime 
navigation.

5. Discussion

This study aimed to develop a human-preferences-aware trajectory 
prediction model, which serves as the foundation for a decision-making 
framework aimed at enabling autonomous vessels to perform human- 
mimic navigation during collision avoidance in a mixed waterborne 
environment. The results demonstrated that the proposed framework 
successfully extracted navigational preferences from AIS data, predicted 

Fig. 10. Training loss of the MTL-Seq2Seq-LSTM-Att model for prediction of future length.

Table 4 
The prediction results of the proposed method and other baseline predictive 
methods.

T Metrics Predictive models

MTL- 
Seq2Seq- 
LSTM-Att

Basic 
Seq 2 
Seq RNN

Basic 
Seq2seq 
attention 
LSTM

Basic 
Seq2Seq 
LSTM

Bi-LSTM

10min MSE 0.0003 0.0003 0.0004 0.0002 0.0005
MAE 0.0113 0.0106 0.0129 0.0097 0.0156
R2 99.2% 99.2% 98.6% 99.2% 98.5%
var 0.0003 0.0003 0.0004 0.0002 0.0005

15min MSE 0.0036 0.0042 0.0046 0.0048 0.0039
MAE 0.0389 0.0414 0.0435 0.0408 0.0381
R2 89.4% 87.8% 86.7% 86.19% 88.7%
var 0.0036 0.0042 0.0045 0.0048 0.0039

20min MSE 0.0060 0.0117 0.0105 0.0103 0.0100
MAE 0.0488 0.0754 0.0612 0.0564 0.0566
R2 85.2% 71.0% 74.23% 74.5% 75.4%
var 0.0060 0.0116 0.0102 0.0102 0.0098

Fig. 11. Demonstration of path tracking based on predictive trajectory results.
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future trajectories with high accuracy, and enhanced collision avoidance 
strategies by incorporating these predictions into the decision-making 
process.

5.1. Interpretation of results

The extraction of navigational preferences using the LSTM- 
autoencoder and K-means clustering revealed four distinct clusters 
representing different manoeuvring patterns during vessel encounters. 

Each cluster provided insights into how vessels adjust their speed, ac-
celeration, and rate of turn in response to potential collision scenarios. 
For instance, Cluster 0 reflected a cautious and stable interaction 
pattern, while Cluster 3 demonstrated a more reactive strategy involving 
significant course adjustments and speed variations. These human 
preference patterns were critical in improving the accuracy and inter-
pretability of the trajectory predictions, allowing the MTL-Seq2Seq- 
LSTM-Att model to capture the dynamic interactions between vessels 
more effectively. Additionally, with an average prediction time of 12.8 

Fig. 12. Demonstration of path tracking based on refined path results.

Fig. 13. The visualisation results for the prediction horizon of 10min.
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ms on a standard computation platform, the module ensures the real- 
time requirement for collision avoidance.

The predictive performance of the trajectory prediction model is 
related to the roles of its components. The encoder captures temporal 
dependencies by transforming historical trajectory data into latent 
representations, which preserve critical information for accurate pre-
dictions. The decoder integrates navigational preferences to generate 
future trajectories that align with specific manoeuvring patterns, while 
the attention mechanism dynamically weighs input features to focus on 
relevant aspects of vessel interactions. These components collectively 
contribute to reducing prediction errors and exhibit good performance 
across various time horizons, particularly at the 15-min horizon. The 
model effectively balanced global trend capture with local detail fidel-
ity, demonstrating that the inclusion of human navigational preferences 
enhances the credibility and accuracy of trajectory predictions. This 
improved accuracy is crucial for the subsequent decision-making pro-
cesses, where these predictions inform both the own ship’s and the 
neighbouring ship’s future paths.

The extension of the decision-making framework with the predicted 
trajectories allowed for more context-aware navigation. Unlike previous 

approaches, which assumed constant speed and course for neighbouring 
vessels, this study leveraged the trajectory prediction model to proac-
tively anticipate and react to potential collision risks. By integrating 
real-time human-preference-aware predictions into the decision-making 
framework, the framework facilitated avoidance manoeuvres and 
enabled local path-planning adjustments based on real-time DCPA and 
TCPA evaluations. This dual approach ensures that both navigational 
preferences and safety considerations are addressed.

The primary innovation lies in the predictor model, which integrates 
navigational preferences extracted from AIS data to predict future tra-
jectories. The decision-making framework, designed around this pre-
diction model, incorporates the KM-DWA module for local path 
refinement and the MPC module for trajectory tracking. The integration 
demonstrates the feasibility of combining human-preference-aware 
trajectory predictions with established decision-making methods, 
serving as the practical foundation for achieving human-mimic navi-
gation during the interactive collision avoidance process in a mixed 
waterborne environment.

Fig. 14. The visualisation results for the prediction horizon of 15min.
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5.2. Practical implications

By providing a more accurate prediction of both the own ship’s and 
the neighbouring vessel’s trajectories, the framework supports safer and 
more human-friendly navigation in mixed waterborne environments. 
This approach allows for more proactive collision avoidance strategies 
that account for the movement of surrounding vessels rather than 
relying on static assumptions.

Furthermore, maintaining mutual trust between autonomous vessels 
and human-operated ships becomes critical in environments where 

direct communication between vessels is limited or nonexistent. This 
study acknowledges that autonomous ships while making independent 
navigational decisions, must also act in predictable and trustworthy 
ways to human operators—both those on neighbouring vessels and 
those supervising the autonomous ships. By adhering to predictable 
navigational patterns and demonstrating an understanding of naviga-
tional preferences, autonomous vessels can foster trust (Poornikoo et al., 
2024), reduce uncertainty, and improve safety in mixed waterborne 
scenarios.

Fig. 15. The visualisation results for the prediction horizon of 20min.
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7. Conclusion

This study advances state of the art by integrating real-time trajec-
tory predictions into a MASS decision-making framework, enabling safer 
and smoother interaction for collision avoidance, addressing human- 
preference-based manoeuvres and real-time local planning for avoid-
ing obstacles. The methods of MPC (Zheng et al., 2014) and KM-DWA 
proposed by (Song et al. 2022, 2024) used in this study validated the 
feasibility and effectiveness of combining these approaches with a new 
navigational predictive model based on human preference data.

The key contributions of this research include. 

1. Human navigational preference extraction: Developed a methodology 
to extract navigational preferences based on ship conflict pairs 
extracted from AIS data through an LSTM-autoencoder and K-means 
clustering.

2. Trajectory prediction model: Designed and validated an MTL-Seq2Seq- 
LSTM-Att model to predict ship trajectories considering extracted 
human navigational preferences for improved accuracy.

3. Framework integration: Proposed a decision-making framework that 
integrates the prediction model with established path planning and 
tracking methods, demonstrating the practical applicability of the 
prediction model in real-time collision avoidance.

Despite these promising results, several limitations are acknowl-
edged, including the limited geographic scope and timeframe of the 
dataset, the focus on two-vessel interactions, the absence of environ-
mental considerations, the increased computational complexity in high- 
density traffic scenarios, and the need for a better understanding of 
human trust dynamics. These limitations highlight the need for further 
research to enhance the generalisability and robustness of the 
framework.

Future work will pursue further refinement, testing and validation of 
the framework in these directions. These efforts are crucial for ensuring 
that autonomous maritime systems can operate safely and efficiently in 
complex and congested environments by remaining predictable and 
trustworthy, ultimately leading to broader acceptance and adoption of 
autonomous technologies in the maritime industry.
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6. Limitations and future work

While the study successfully demonstrates the integration of a tra-
jectory prediction model with established decision-making methods, 
several limitations must be acknowledged. 

(1) Data limitations: The dataset, while detailed, was limited to the 
Rotterdam port area and a specific timeframe. This geographic 
and temporal restriction may limit the generalisability of the 
findings to other maritime navigational environments.

(2) Scope of vessel interactions: The study primarily focused on 
two-vessel interactions, simplifying the real-world complexity of 
maritime navigation where multiple vessels often interact 
simultaneously. While the KM-DWA provides local path refine-
ment to ensure safety, it is designed for pairwise interactions and 
does not address the interactive effects of the movements of 
multiple vessels in congested environments. In multi-vessel sce-
narios, the interdependence of vessels’ trajectories requires 

dynamic conflict modelling, which was not explored in this work. 
Future research should extend the current framework to incor-
porate multi-vessel coordination mechanisms in collision avoid-
ance scenarios.

(3) Consideration of environmental factors: The current simula-
tions do not consider environmental factors such as wind, waves, 
currents, or restricted visibility, which directly affect vessel 
manoeuvring and collision avoidance. Future work will include 
these factors to test the framework’s performance in more real-
istic and diverse maritime conditions.

(4) Computational complexity: The integration of multiple pre-
dictive and decision-making models increases the computational 
complexity, which may affect real-time performance in high- 
density traffic scenarios or when deployed on vessels with 
limited processing capabilities.

(5) Human trust dynamics: While the framework accounts for the 
navigational preferences of both the own ship and the neigh-
bouring ship, it does not fully model the dynamics of trust be-
tween human operators/supervisors and MASS. In scenarios 
where direct communication is limited, autonomous ships must 
behave in a way that earns and maintains the trust of human 
operators. This aspect of human-autonomous interaction is 
crucial for ensuring safe and coordinated manoeuvres in mixed 
environments.
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