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ABSTRACT: Transition radiation is emitted when a perturbation source (e.g., electric charge, mechanical load), which does not 

possess an inherent frequency, moves along a straight line at a constant velocity in or near an inhomogeneous medium. The 

phenomenon was described for the first time in electromagnetics, but it is universal from the physical point of view. Transition 

radiation of elastic waves is emitted, for example, by a train running on a conventional railway track. The wheels of the train 

excite elastic waves in the track due to inhomogeneities such as non-uniform subsoil. Transition radiation of elastic waves has 

been studied in several 1D and 2D elastic systems, but the radiation in an elastic continuum has only been described in an 

idealized model consisting of two half-planes with constant load that crosses the interface. Nevertheless, the study provided 

physical insight into the mechanism of transition radiation. Body waves as well as interface waves can be excited, and the 

radiation spectra of the former show peculiar directivities due to the coupling of the waves at the interface. Here, we describe 

transition radiation in a more realistic continuum model of two elastic layers with a free surface. The constant load now moves 

along the free surface and passes over the interface of the two layers. The major difference from the above-mentioned model is 

the possible radiation of free-surface (Rayleigh) waves. In both layers, the radiation fields consist of a summation of guided 

modes, and the fields are coupled at the interface. Orthogonality relations derived from the elastodynamic reciprocity theorem 

are used to find the modal coefficients. Based on the derived solution, the spectra of radiation energy and their directivities can 

be calculated. 

KEY WORDS: Moving load dynamics, transition radiation in elastic continuum, inhomogeneous medium 

1 INTRODUCTION 

Transition radiation is emitted when a perturbation source 

(electric charge, acoustic monopole, mechanical load, etc.), 

which does not possess an inherent frequency, moves along a 

straight line at a constant velocity in an inhomogeneous 

medium or near such a medium [1]. This phenomenon was 

described for the first time by Ginzburg & Frank [2], who 

analyzed radiation of electromagnetic waves by a charged 

particle crossing the boundary between an ideal conductor and 

vacuum. Already in early studies concerned with transition 

radiation, it was demonstrated that this phenomenon is 

universal from the physical point of view, meaning that it 

occurs irrespective of the physical nature of the waves. 

The first study on transition radiation of elastic waves was 

published by Vesnitskii & Metrikine [3]. Such radiation is 

emitted, for example, by a train running on a conventional 

railway track. The wheels of the train, pressed against the rails 

by gravity, excite elastic waves in the railway track due track 

inhomogeneity caused by sleepers, non-uniform subsoil, etc. 

A review of the early studies on transition radiation of elastic 

waves in one- and two-dimensional elastic systems (i.e., 

strings, beams, membranes and plates) can be found in [4]. 

Recently, the problem of the beam on inhomogeneous 

Winkler foundation again attracted attention due to the 

introduction of some other solution methods (modal 

summation, moving element method; [5,6]) and the 

incorporation of non-linear springs aiming at a more realistic 

description of the track substructure [7]. In addition, transition 

radiation was explicitly addressed – apart from possibly 

giving rise to vehicle instability and passenger discomfort – as 

the physical cause of railroad degradation due to the 

associated and often strong amplification of the stress and 

strain fields [8]. 

Transition radiation of waves in an elastic continuum was 

first described by van Dalen & Metrikine [9]. The adopted 

model consists of two elastic half-planes with a constant load 

that crosses the interface between the half-planes along the 

path normal to this interface. Though the chosen model has no 

direct practical application, the study provides physical insight 

into the mechanism of transition radiation in an elastic 

continuum. Body (compressional and shear) waves as well as 

interface waves (i.e., Stoneley waves) can be excited, and the 

radiation spectra of the former show peculiar directivities, 

which is due to the coupling of the radiated waves at the 

interface. 

In the current paper, we describe the phenomenon of 

transition radiation in a more realistic continuum model of 

two elastic layers having a free surface (i.e., wave guides). 

The constant load now moves along the free surface and 

passes over the interface that connects the two layers, see 

Figure 1. The major difference from the above-discussed 

continuum model is the possible radiation of surface waves 

along the free surface (i.e., Rayleigh waves). The current 

model also requires a different method of solution in which 

the radiation fields consist of summations of guided modes. 

The radiation fields in both layers are coupled at the interface. 

In fact, this constitutes an interaction or coupled problem in 

which each mode in one layer is coupled to all modes of the 
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other. Orthogonality relations, which are derived from the 

Rayleigh-Betti elastodynamic reciprocity theorem [10-13] and 

interrelate the modal eigenfunctions, are employed to find the 

modal amplitudes. The presented solution can be used to 

calculate the spectra of radiation energy.  

 

2 MODEL AND SOLUTION 

We consider a point load F that moves over the interface of 

two elastic layers, as shown in Figure 1. The elastic layers 

have a stress-free surface and are fixed to a rigid bottom. 

Though we restrict the model to two dimensions, it allows for 

the existence of body and free-surface waves and is thus 

appropriate for providing new insights into the mechanism of 

transition radiation. The velocity of the load is taken sub-

critical and constant so that the transition radiation does not 

interfere with other possible radiation effects (like 

Mach/Vavilov-Cherenkov radiation); however, the method of 

solution described in this paper is not restricted to this 

assumption. Furthermore, we note that we disregard start-up 

effects of the load.  

 

 
 

Figure 1: Two-dimensional model of a point load F moving 

over the interface of two elastic layers at velocity V. The 

thickness of the layers is L. 

 

The behaviour of the layers is described by the equations of a 

classical elastic continuum [11-13]. The boundary conditions 

for the stress σ  and the displacement u  at the different edges 

are (superscripts 1 and 2 denote left and right layers, 

respectively) 
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at x = 0; here, x and z are the horizontal and vertical 

coordinates, respectively, L the thickness of the layer (see 

Figure 1), t denotes time, and (...)  the Dirac delta function. 

An analytical solution to the stated problem can be found by 

splitting it into a steady-state part and a transient part for each 

of the domains (x < 0 and x > 0). The steady-state part is the 

so-called eigenfield of the load that is stationary in the 

reference system that moves with the load if it moves along a 

homogeneous layer [4]; this field is confined to the vicinity of 

the load (due to its sub-critical velocity). The eigenfield 

changes as the load crosses the interface at x = 0, which can 

be thought of as the source of transition radiation. The 

transient part of the solution captures the corresponding 

radiation field that, though excited by the load, propagates 

independently of it; hence, it is referred to as the free field (or: 

fields, when explicitly referring to the solutions in both 

layers). Thus: 
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where the superscripts “e” and “f” indicate the eigenfield and 

the free field, respectively, and i = 1,2. 

The eigenfield of the load can be found by applying the 

Fourier transform over time and over the horizontal 

coordinate. Upon applying Helmholtz decomposition, two 

decoupled ordinary differential equations are obtained that can 

be solved in a straightforward manner. Then, after applying 

the inverse Fourier transform over horizontal wavenumber, 

the following result is obtained: 
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where ̂  and ̂  denote the Helmholtz potentials for 

dilatation and rotation, respectively, the hats refer to the 

space-frequency domain,   denotes angular frequency, i the 

imaginary unit, 
( )

1, 2, 1, 1

i

P P S S
A  are coefficients determined by the 

boundary conditions (1) and (2), and the factors in the 

exponent are defined as 
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Here, 
( )

,

i

P S
c  denote the compressional and shear wave 

velocities of the two layers. The space-frequency domain 

displacements and stresses can be obtained from the 

expressions in Eq. (5) by taking the appropriate derivatives 

[12]. 

Now that the eigenfields have been found, the free fields 

can be determined. Since the eigenfields already account for 

the presence of the load, the free-field boundary conditions at 
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the upper surface are homogeneous [cf. Eq. (1)], as well as at 

the rigid bottom: 
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Using the known eigenfields, the interface conditions in Eq. 

(3) can be written in the space-frequency domain as  
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which expresses that the difference in eigenfields is 

responsible for the generation of transition radiation. The free 

fields can be expressed in terms of a summation of infinitely 

many guided wave modes: 
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where the minus and the plus in the exponent correspond to 

the left and right layers, respectively,  (1) (2)

; ;
Im 0,

x k x n
k k   to 

comply with the radiation conditions, and  
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Throughout the paper, summation over repeated indices is 

not invoked. The 
(1) (2)

 and 
k n

C C  are modal coefficients to be 

determined by the interface conditions, 
(1) (2)

; ;
 and 

x k x n
k k  are 

modal horizontal wavenumbers computed from the 

characteristic equations of the corresponding eigenvalue 

problems that are formed by substitution of the solutions 

given by Eq. (9) into the boundary conditions Eq. (7) (i.e., for 

both layers, a similar eigenvalue problem needs to be solved); 

the  ( )i

P
Z z  and  ( )i
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Z z  functions are the associated modal 

eigenfunctions of the potentials whose coefficients 
( )
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i

P P S S
B  

are found from the eigenvectors of the eigenvalue problem 

(modal indices omitted for brevity). The vertical modal 

wavenumbers are defined as 
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where 
( ) ( )

, ,

i i

P S P S
k c  are the body wavenumbers of the 

compressional and shear waves, respectively. 

In order to determine the unknown modal coefficients, the 

free-field solution [Eq. (9)] is substituted into the interface 

conditions [Eq. (8)]: 
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where the z dependence is included for clarity. The 

eigenfunctions for stresses and displacements 
( ) ( ) ( ) ( )

,  ,   and 
i i i i

xx zx x z
Z Z Z Z  (modal indices left out) are obtained 

by applying the appropriate derivatives to the above-defined 

eigenfunctions of the potentials. Eq. (12) shows that each 

wave mode of layer 1 is coupled to all modes of layer 2, and 

vice versa. Hence, the problem to determine the free fields can 

be referred to as an interaction or a coupled problem. Now, to 

derive the coefficients 
(1) (2)

 and 
k n

C C  from Eq. (12), a relation 

is required that expresses the orthogonality of the different 

modes for each of the layers: 
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where 
lm

  is the Kronecker delta and 
( )i

m
N  is a complex 

number. This relation can be derived from the reciprocity 

theorem of the convolution type and thus interrelates the 

properties of different depth-dependent eigenfunctions in each 

of the layers [10-13]; it is sometimes referred to as a bi-

orthogonality relation [14]. Now, by taking combinations of 

the interface conditions in Eq. (12) and integrating them over 
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the depth of the layers, the orthogonality relation can be 

employed. Finally, the following expression is obtained in 

terms of the coefficients of layer 1 only: 
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where M1 and M2 represent the finite number of modes in 

layers 1 and 2 (see explanation below), respectively, and 
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Here, 
km

D  is a matrix that contains cross multiplications of 

the eigenfunctions of the two layers, and 
;I m

S  and 
;II n

S  can be 

considered as source terms for mode m (in layer 1) and mode 

n (in layer 2) that depend on the difference in eigenfields of 

the adjacent layers. 

The modal coefficients can be solved for using Eq. (14) by 

writing it in matrix-vector form and subsequently inverting 

the obtained equation. This is, however, only possible when a 

finite number of modes is incorporated in each of the layers, 

and for this reason truncation was applied in Eq. (14). Once 

the coefficients of layer 1 have been determined, those of 

layer 2 can be computed from the following relation: 
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This concludes the derivation of the free fields. By adding 

them to the eigenfields according to Eq. (4), the total space-

frequency domain solution of the transition radiation problem 

is obtained. 

 

3 NUMERICAL RESULTS 

In this section, we give some preliminary results to show that 

obtained analytical solution satisfies the interface conditions 

given by Eq. (8). Approximate solutions will not satisfy the 

interface conditions exactly, which possibly gives rise to 

inaccuracies in the directivities of the radiation field and the 

energy distribution over different modes. The directivities of 

the radiation fields are known to have peculiar shapes that 

depend on the intimate coupling of all wave modes at the 

interface x = 0 [9]. Non-exact solutions might therefore 

influence the nature of the predicted transition radiation field. 

 

Table 1. Material properties of layers 1 and 2. 

 Youngs 

modulus 

[MPa] 

Poisson’s 

ratio 

Material 

density 

[kgm-3] 

Layer 1 50 0.3 1700 

Layer 2 70 0.4 1700 

 

To illustrate the match in the interface conditions, we use 

the example of a load (F = 10 kN) moving over relatively soft 

soil of thickness L = 20 m, with a transition to slightly stiffer 

soil (for material parameters, see Table 1), and a load velocity 

V = 50 ms-1, which is smaller than the body-wave velocities 

and the Rayleigh wave velocities of both layers to ensure that 

the load does not radiate waves while moving over 

homogeneous soil.  

 

 

Figure 2. Location of incorporated roots 
( 2 )

;x n
k  for layer 2.  

 

 

We calculated the modal horizontal wavenumbers 
(1) (2)

; ;
 and 

x k x n
k k  for a single frequency, f = 20 Hz. We 

incorporated all roots in the complex plane up to 

 (1) (2)

; ;
Im , 16

x k x n
k k   , giving M1 = 205 and M2 = 203 roots for 

the left and right layers, respectively. Most of them are 

located in the interior of the complex plane, as can be seen in 

Figure 2, where the roots for layer 2 are depicted (the 

corresponding figure for layer 1 looks very similar); the layers 

have only 12 and 10 real-valued roots, respectively, and only 

a few imaginary ones. The largest real-valued roots 

correspond to the Rayleigh wave at the free surface, and their 

values are almost the same as that provided by the true 

Rayleigh root (related to a half-space). The free fields were 

then computed using the difference in eigenfields (Section 2). 

For an increasing amount of incorporated roots, the 

horizontal interface displacements are depicted in Figures 3 – 

6 for f = 20 Hz. The absolute value of the difference in free 

fields (black line) and that of the difference in eigenfields (red 

line) are shown; i.e., the left- and right-hand sides of the third 

line of Eq. (8). 

In Figure 3, only the real-valued roots are incorporated in 

the computation. 15 additional roots are included for both 
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layers (starting from the real axis, with decreasing imaginary 

part for the successively included roots) in Figure 4, while 

Figure 5 includes 35 more roots and Figure 6 is the result with 

all roots M1 = 205 and M2 = 203. It is clear that the fit is not 

perfect in Figure 3. Incorporating a few imaginary roots and 

some complex roots seems to make the fit even poorer (Figure 

4), which is probably the result of the associated relatively 

strong oscillations; so, there is no monotonous convergence. 

In Figure 5, however, the difference becomes smaller, and the 

convergence is quite good in Figure 6. Incorporating even 

more roots will certainly improve the result further. 

To conclude, the shown results illustrate that the derived 

solution satisfies the interface conditions at each depth, in 

principal, and not only a depth-integrated form of them. 

 
 

 
Figure 3. Horizontal displacement at x = 0: magnitudes of 

difference in free fields (black) and eigenfields (red). Number 

of roots M1 = 12, M2 = 10. 

 
Figure 4. Horizontal displacement at x = 0: magnitudes of 

difference in free fields (black) and eigenfields (red). Number 

of roots M1 = 27, M2 = 25. 

 

 
Figure 5. Horizontal displacement at x = 0: magnitudes of 

difference in free fields (black) and eigenfields (red). Number 

of roots M1 = 62, M2 = 60. 

 
Figure 6. Horizontal displacement at x = 0: magnitudes of 

difference in free fields (black) and eigenfields (red). Number 

of roots M1 = 205, M2 = 203. 

4 CONCLUSIONS AND DISCUSSION 

We derived an analytical solution for the problem of a load 

that moves over the interface of two elastic layers. We showed 

that the associated transition radiation field, also referred to as 

the free field as it propagates independently of the load, has 

the form of a summation over infinitely many guided wave 

modes, in both layers. Each mode in one layer is coupled to 

all modes in the other, which constitutes a coupled problem. 

We showed that the modal coefficients can be computed from 

the difference of the eigenfields, which move with and are 

confined to the vicinity of the load, by using orthogonality 

relations of the modes. Finally, we illustrated that the 

analytical solution satisfies the interface conditions in the 

strong sense (not only in an integrated way). The latter finding 

is important to retain the essential features of the transition 

radiation field such as directivity and energy distribution over 

modes. 

Regarding the convergence in the interface conditions, we 

note that more modes are needed to guarantee a match in the 

stresses than in the displacements (we considered the latter). 

 ˆ
xu z

 (m)z

 ˆ
xu z

 (m)z

 ˆ
xu z

 ˆ
xu z

 (m)z
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This is due to the fact that stresses are related to derivatives of 

the displacements.  

Furthermore, we expect that the solution method described 

in this paper also works for layered media, perhaps even with 

structures on top of them (i.e., between the load and the elastic 

layers, such as a beam), which enables analysis of energy loss 

for moving trains due to non-uniform subsoil and prediction 

of the associated ambient vibrations in practical situations. 
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