
P-STreeD
A Multithreaded Approach for DP Optimal Decision Trees

Albert-Alexandru Sandu1

Supervisor(s): Emir Demirović1, Jacobus G. M. van der Linden1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Albert-Alexandru Sandu
Final project course: CSE3000 Research Project
Thesis committee: Emir Demirović, Jacobus G. M. van der Linden, D.M.J. Tax An electronic
version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Decision trees are valued for their ability to logically and transparently classify data.
While heuristic methods to compute such trees are efficient, they often compromise on
accuracy, prompting interest in Optimal Decision Trees (ODTs), which have the best
misclassification score for a given tree size limit and training dataset. The dynamic
programming (DP) approach for ODTs has shown improvements over alternatives such
as mixed-integer or constraint programming. That being said, it requires further im-
provements to handle exponential runtime scaling with the depth of the tree and the
number of features of the dataset. Leveraging modern hardware, such as multiple CPU
cores, offers a promising solution to improve efficiency. This paper proposes a multi-
threading method for DP ODTs which we apply to STreeD specifically. We introduce
a shared memory model and determine which components of the original program can
be made local to the threads. We investigate whether it is more efficient to start mul-
tithreading at the root of the search tree than near its leaf nodes. We find the former
to be superior, resulting in faster runtimes and less shared resource access. Empiri-
cal evaluations against the state of the art demonstrate better runtimes, particularly
beneficial for large datasets. Finally, thread scaling analyses reveal substantial speed-
ups, exceeding 2.5 times with four threads, highlighting our approach’s effectiveness
for computationally-intensive tasks.

1 Introduction
Decision trees are data structures which allow us to logically and transparently classify
data. We can divide the data into smaller parts based on various features of the objects it
encompasses. Such trees have applications in Machine Learning and are popular thanks to
their simplicity, interpretability, and ability to handle both numerical and categorical data
(Costa & Pedreira, 2023). Moreover, they can capture non-linear relationships in data.

We understand an Optimal Decision Tree (ODT) as the best tree in terms of misclassi-
fications for a given depth limit. Unlike traditional greedy decision tree heuristics, such as
CART (Breiman et al., 1984) and C4.5 (Quinlan, 1993), which may stop growing the tree too
early or create suboptimal splits, optimal decision tree algorithms choose the best feature
and threshold for splitting the data at each step. This approach often results in trees with
better generalization performance and interpretability when compared to heuristic-based
methods (Aglin et al., 2020).

However, as proven by Hyafil and Rivest (1976), finding the optimal tree is a NP-Hard
problem. For large datasets, scalability is an issue, impacted by the number of features and
the depth of the tree. Some other limitations of ODTs are that their optimality is only
guaranteed for the training data (thus, they could be prone to overfitting) and that (for
many methods) they assume already binarized data; the binarization process may affect
their performance.

There are various approaches towards constructing optimal decision trees, such as mixed-
integer programming (MIP), constraint programming (CP), and SAT based ones. Dynamic
programming (DP) based solutions were shown to usually perform better than their counter-
parts (Aglin et al., 2020). That being said, improvements to DP approaches are still needed
because constructing the tree scales exponentially with depth and number of binary features
(Demirović et al., 2022). This makes tuning and training for complex data time-consuming
and inaccessible, depending on one’s resources. Improving scalability is important because
the amount of data we work with is ever-increasing, as technologies such as IoT further

1

develop and encompass multiple complex systems (Costa & Pedreira, 2023). Examples of
applicability within IoT for decision trees are in security (Puthal et al., 2022).

One of the possible improvements to DP based approaches is multithreading. The main
motivation behind this is that DP divides a problem into multiple, independent subproblems,
which we can then use to find the solution for the original one. In the case of constructing
ODTs, the left and right subtree are independent subproblems. This means that computing
either of them should not depend on the other. Therefore, threads could be leveraged for
the two subtrees to be done in parallel. In reality, the subtrees are not truly independent
due to various optimizations in the state of the art. This means that multithreading for this
case is not trivial, but there are still parts of the DP approach to analyze and potentially
multithread.

Our contribution We investigate the feasibility of applying multi-threading to DP-
based ODTs. The optimality of the tree must be maintained (so the misclassification score
should be identical to that of a sequential algorithm, despite the possibility of a different
tree output). We identify the most promising sections of a DP approach to parallelize and
outline a shared memory model to implement the multithreading. We implement the most
promising approach, which parallelizes the feature split loop. This implementation is done
over STreeD (van der Linden, de Weerdt, & Demirović, 2023), using C++ threads.

We investigate whether applying multithreading is more efficient close to the root of the
search tree or to its leaf nodes. Our experimental results show that the root-based strategy
results in better runtimes and less cache access.

We compare the new program (which we call P-STreeD) with the state of the art: STreeD,
Murtree, DL8.5. Our method is generally faster than the others, with the difference being
most pronounced for larger datasets. We measure the speed-up achieved through multi-
threading and how it relates to the number of threads, but also the dimensions of the
problem (tree depth and dataset size). We find speed-ups of more than 2.5 times for some
datasets.

The following describes the structure of the paper. Section 2 outlines the existing work
in the literature and how it relates to our contribution. Section 3 gives the necessary
background to understand our method through a review of Murtree. Section 4 contains
our main contribution. It explains how we parallelized STreeD and what changes had to
be made to the original algorithm. Section 5 features our experimental set-up and results.
Section 6 is a reflection on the reproducibility and ethical aspects of our research. Section 7
provides a discussion on the results of the experiments. Italso features the applicability of
our contribution towards different DP ODT algorithms, as well as how it could be adapted
to work on a supercomputer. Section 8 summarizes the main findings of this paper, our
results, as well as recommendations for future work.

2 Related Work
The field of decision tree learning has seen significant advancements in recent years, with
researchers exploring various optimization approaches to improve scalability. Traditional
heuristic methods like CART (Breiman et al., 1984) and C4.5 (Quinlan, 1993) have long been
favored for their effectiveness and scalability. However, with increasing computational power,
optimal decision tree search for limited depth has become feasible, prompting researchers to
explore MIP, SAT, CP, and DP-based approaches.

MIP-based approaches, such as those proposed by Bertsimas and Dunn (2017) and
Verwer and Zhang (2019), offer the advantage of finding globally optimal trees but suf-

2

fer from scalability issues, particularly for medium to large datasets. Nevertheless, they
have shown promise in optimizing various objectives, including misclassification error and
fairness metrics. Recently, Hu, Rudin, and Seltzer (2019) introduced an algorithm that bal-
ances misclassifications and the number of nodes, achieving good performance with sufficient
sparsity.

SAT-based approaches, pioneered by Narodytska et al. (2018), aim to construct the small-
est tree that perfectly describes the dataset, focusing on zero misclassifications, although
there are variations such as MAX-SAT that maximize accuracy instead.

DP-based approaches started seeing more improvements recently. Examples include DL8
(Fromont & Nijssen, 2007) and DL8.5 (Aglin et al., 2020), which build upon the work of
Agrawal et al. (1996), in the itemset mining literature. These provide better scalability
compared to MIP and SAT solvers. DL8.5 introduces upper and lower bounding for nodes,
allowing for more efficient pruning and a considerably faster algorithm. Lin et al. (2020)
introduced several advancements with GOSDT. They propose a generalized approach to
optimize sparse decision trees, accommodating various objective functions beyond accuracy.
They allow continuous features and present a new search space representation. The algo-
rithm works best with datasets that have a small to moderate number of features. They also
compute bounds asynchronously, using a priority queue to schedule bound updates to the
parents from the children. This was of particular interest to us when devising our method.
That being said, there are conceptual differences between GOSDT and STreeD and we de-
cided to implement our method for STreeD. Using a similar strategy to that of theirs would
have involved abstracting STreeD into a system of tasks and making it iterative instead
of recursive. It would have also involved using a dependency graph in order to find which
subproblem to schedule.

Demirović et al. (2022) introduce MurTree, which allows for constraints on tree depth
and node count while employing dynamic programming and search principles. It introduces
a specialized algorithm for depth-two trees, leveraging frequency counting due to the binary
nature of input data. Additionally, they propose a similarity-based bounding mechanism,
facilitating efficient pruning of the search space by examining previously computed subtrees.
Extensions to DL 8.5 are also presented, including enhancements to caching techniques to
consider depth and node constraints. Furthermore, they provide novel implementations
of two caching schemes and discuss dynamic node exploration strategies. van der Linden
et al. (2023) introduced a generalized framework for optimizing separable objectives and
constraints, based on the Murtree algorithm: STreeD. They establish necessary and sufficient
conditions for separability, extending the applicability of dynamic programming approaches.
STreeD also outperforms general-purpose solvers in scalability while maintaining similar or
better accuracy and size optimization.

In terms of multi-threading, efforts have been made to parallelize dynamic programming
techniques in general. Stivala et al. (2010) devised a general technique for parallelizing
top-down dynamic programming approaches through the use of lock-free hash-tables for
memoization, as well as the randomization of subproblem computation. They explained how
this leads to a higher probability of thread computations to diverge, thus scheduling less
sub-problems to be solved by the same thread simultaneously. These contributions result in
substantial speed-ups over their serial counter-parts. That being said, the approach requires
careful, problem-specific, analysis. We attempted to build upon these ideas but haven’t
found success, as explained in Section 4.5.

Narlikar (1998) has leveraged divide-and-conquer parallelism for the original C4.5 deci-
sion tree building algorithm. They exploited this at the outer level (throughout the nodes),

3

and at the inner level (within each node) by improving sorting operations. The approach
is adaptable to varying numbers of CPU cores and introduces a space-efficient scheduling
algorithm. We were inspired by their contributions to investigate the terminal solver paral-
lelization approach featured in Section 4.2.

3 Preliminaries
Our approach is based on STreeD (van der Linden et al., 2023), which in turn builds on
many ideas introduced in Murtree (Demirović et al., 2022). We consider STreeD to be rep-
resentative of the class of DP ODT algorithms, especially because of its ability to generalize
tasks. By using it as our base, we can in turn extend our contributions to other similar
DP ODT solutions. This section represents a review of the Murtree algorithm, along with
optimizations relevant to our use case.

3.1 Murtree
Dynamic Programming Formulation The formulation in Equation 1, as given by Demirović
et al. (2022), describes the high-level ODT computation approach of Murtree. The input
parameters are the dataset (D), its features (F), as well as the upper bounds on the depth
of the tree (d) and the number of feature nodes (n). The first two cases deal with depth and
feature node limits. The third case represents nodes where the label is determined by the
majority class, whereas the fourth represents the general recursion case. It involves iterating
over the possible feature splits and feature node count distributions for the left and right
subtrees in order to find the split with the minimum misclassification score.

T (D, d, n) =

T (D, d, 2d − 1) if n > 2d − 1

T (D, n, n) if d > n

min{|D+|, |D−|} if n = 0 ∨ d = 0

min{T (D(f̄), d− 1, n− i− 1) if n > 0 ∧ d > 0

+T (D(f), d− 1, i) : f ∈ F , i ∈ [0, n− 1]}

(1)

Similarity-Based Lower Bounding Murtree introduces a method for deriving a lower
bound on the misclassification score of an optimal decision tree. This technique compares a
new dataset Dnew to a previously analyzed dataset Dold. The lower bound is defined as:

LB(Dnew, Dold, d, n) = T (Dold, d, n)− |Dout|

where Dout is the set of instances in Dold but not in Dnew. The algorithm maintains two
datasets per depth, using the most similar ones to compute the lower bound, and caches
optimal solutions and bounds for efficient reuse.

Subtree computation order The algorithm first computes the left subtree. If it is
infeasible, it skips the computation of the right one. It then subtracts the misclassification
of the left subtree from the upper bound. By doing so, it establishes a new upper bound for
the right subtree before computing it recursively.

Branch caching Subtrees can be cached as branches, defined as sets of features extend-
ing from the root to any given node. Each branch is stored as a sorted array of integers,
where features are encoded based on their index and whether they are present or not. A
standard hash function is utilized to compute the hash value of these arrays. It is worth

4

noting that different branches may correspond to the same dataset, which is not detected,
potentially leading to the recomputation of equivalent subproblems.

Dataset caching Subtrees can also be represented more generally by utilizing datasets.
At the beginning of the algorithm, each instance is assigned a unique identifier, with in-
stances within each class sorted according to these identifiers. The hash value of a dataset
is computed using these instance identifiers and stored for subsequent use, enabling the
algorithm to determine the equivalence of two datasets in linear time. Dataset caching is
capable of correctly identifying all equivalent subproblems.

Node selection strategy Murtree uses dynamic ordering in order to determine the
first subtree to explore. It computes a heuristic on the number of misclassifications for both
children and chooses the one with the higher value. This allows the algorithm to prune
infeasible solutions earlier. STreeD opts for a different approach though. It chooses the first
child node to explore based on which one has the larger data size.

Terminal solver Murtree uses a specialized algorithm for computing trees of depth-2.
It has two phases: frequency counting and the optimal tree computation. The first phase
involves computing for each feature pair the number of instances where both are present.
This way, the second phase avoids directly manipulating the data itself. Said phase has a
better time complexity than the generalized ODT case due to manipulating tree properties.
The algorithm also re-uses past computations; instead of computing the frequency counts
each time the terminal solver is called, it maintains the previous state and updates it instead.
This is based on the following observation: datasets differing by small amounts have similar
frequency counts. It uses set operations, which are efficient in the context of datasets.
Both Murtree and STreeD use two such terminal solvers. The terminal solver with the
most similar dataset to that of the current subproblem is chosen. Around 90% of STreeD’s
runtime resides in the terminal solver procedure.

4 Multithreading for STreeD
To the end of parallelizing STreeD, we have outlined the shared memory of the algorithm,
as well as certain considerations for the correctness of a multithreaded approach. It is worth
noting that our contribution is based on the full STreeD algorithm. Therefore, the effect
of various features of STreeD on the feasibility of certain multithreading designs is also
investigated. We then present in detail P-STreeD: an approach parallelizing the feature
loop within the fourth case of Equation 1, using a fixed amount of threads.

4.1 Shared memory
Cache The dataset and branch caches are global in STreeD through a single object. This has
to be shared in our multithreaded version(s). The cache is used at many points throughout
the algorithm. Efficiently using it is required to avoid computing the same subproblem.

Terminal solvers STreeD uses two terminal solvers. They keep track of previous state
as well as their most recently computed solution. They need to be locked each time they are
accessed. While it is possible to modify the data structure to not keep track of the solution
itself (and therefore avoid data races involving it), storing the previous frequency counts
still poses an issue. We risk corrupting them and removing them is not feasible due to their
use as an optimization. Therefore, we choose not to modify the terminal solver algorithm or
its afferent data structures. Instead of locking, it is possible to assign fixed terminal solvers
to threads.

5

Similarity lower bound computer STreeD’s updates to the cache using similarity
lower bounds employ a data structure where similar solutions are stored. This data structure
is not thread-safe, therefore, mutual exclusion is needed to use it correctly in a multithreaded
context.

Solutions Any multithreading approach involves improving an area of the computation
of the subtree. Because most of the runtime resides in the terminal solver, any approach will
involve parallelizing terminal solver calls or the terminal solver itself. Either of these modify
a solution. Updating it requires mutual exclusion between the threads. Whereas the cache
and terminal solvers are global (so they should be accessed by any threads) the solutions
updated should be shared only between threads at the same level. If the main thread of
the program creates n threads to solve the subproblems, the local variable representing a
solution at the point of creating the threads should be shared only with these n threads.
Indifferent of the multithreading approach taken, if these threads create others at any other
point, their "children" should not update this original variable.

4.2 Overview of other investigated multithreading designs
In this subsection, we outline the multithreading designs which we considered, but not used,
for our implementation. Each design is briefly explained, along with reasons why it was not
considered feasible or worthwhile for our use case.

Thread each call to T (D, d, n) This naive approach involves trying to apply multi-
threading to any recursive call. We find it to be infeasible. On one hand, it implies creating
and managing too many threads. In the case of using a thread pool, it still implies creating
too many tasks to assign to the worker threads. On the other hand, it is incompatible with
computing a child node first to determine the upper bound for the other. If we were to
enforce computing a child node first then the multithreaded solution would be practically
equivalent to the sequential one, resulting in no parallelism.

Thread the feature loop within the terminal solver On a level of abstraction,
this is the design we proceed with, but within the terminal solver. The idea behind this is
that if the terminal solver represents 90% of the runtime of the algorithm, then improving
it would have a strong effect. Despite this, we find this approach to not be worth pursuing.
This is because most of the runtime of the terminal solver itself is spent in the frequency
counter. Therefore, synchronization is needed on the frequency counter, resulting in too
much contention. The shared memory model required is also completely different, involving
cost calculators, the left and right solution, and the branch context.

Thread the node budget distribution loop Here we refer to the inner loop within
the fourth case of Equation 1. This approach is comparable to the one we proceed with,
requiring a similar shared memory model and dividing left tree sizes, instead of the features,
into blocks. The datasets for the subproblems computed in parallel might have a higher
degree of similarity than in the other designs, thus triggering more cache hits and retrieving
solutions earlier. We find this to not be worth pursuing though. It is ineffective in speeding
up the computation of complete trees (they do not require the node budget distribution).
Each thread call also implies heavier overhead due to a larger context, as more variables have
to be passed. Moreover, there is a larger degree of threads being created or tasks assigned
to worker threads.

6

4.3 Parallelizing the feature loop within the general case
Our chosen design for parallelizing STreeD is applying multithreading to the outer loop
featured within the general recursion case. The high-level overview can be found in Figure 1.

Figure 1: Overview of the design for P-STreeD. (S) denotes the global shared memory,
(L) local memory of the thread which would’ve been shared, (O) the feature loop, (D) the
node distribution budget loop for the left subtree and (R) the recursive calls for the left and
right subtree.

The design approach involves splitting the features to be looped over into several blocks.
The original logic of the loop is separated into a function which is given to the threads to
execute. All of these threads have to finish before the master thread continues its computa-
tion. We place mutual exclusion on the shared solution the threads are working on together.
This shared solution is only updated and locked within the loop itself.

4.4 Threading strategy
We use at most as many threads as physical CPU cores. We do not base the number of
threads on that of logical processors. That is because our tasks are computationally heavy,
we are not bound by input or other forms of waiting. Therefore, using as many threads as
logical processors does not improve the runtime and poses unnecessary overhead from the
system managing more threads than it can run concurrently.

In the case of ODT DP, one of the consequences of multithreading is that a larger part
of the problem search space is explored than in the sequential version. Multiple threads can
compute equivalent subproblems, with the same features, but in a different order. Because
neither of them is finished, none of them is able to retrieve a solution from the cache.
Therefore, there is redundancy, which results in overhead.

Our approach starts parallelizing at the root level. Alternatively, multithreading could
be applied close to the leaf nodes, before calls to the terminal solver. This results in too
many such redundant solutions. This approach also involves an exponential amount of tasks
to be created, implying a degree of overhead. The hypothesis that parallelizing closer to the
root is faster is tested in the next section.

7

4.5 Feature order strategy
We use the in-order feature order. Stivala et al. (2010) recommend using a random order
for the subproblems in order to encourage search space divergence for the threads. We
implemented this by randomizing the feature vector for each level of the tree. We also
investigated a variant where we randomized the first level after starting the multithreading
procedure. We found no improvement from either. We believe this is because the ODT
DP algorithm makes use of similarity and other such optimizations benefiting from a fixed
order.

4.6 Terminal solver and similarity computer strategy
Incremental solving is an important part of the original algorithm. A degree of compatibility
between the dataset of the current subproblem and the terminal solver it is going to use
is required. STreeD and Murtree use two terminal solvers but results in much contention
over them. To address this, we use two terminal solvers for each thread. This completely
negates the need of synchronization. This applies to the similarity lower bound computer
too (of which there is only one in STreeD and Murtree). We use one such computer for each
thread.

5 Experimental Setup and Results

5.1 Experimental setup
Method We implement P-STreeD over the STreeD C++ library source code. We use
C++11 threads; task scheduling is done with std::async and std::future. We evaluate the
runtime performance of constructing the tree in our approach when parallelizing at the root
level and close to the leaf nodes. We compare how the better performing variation compares
with the state of the art: Murtree, STreeD, and DL8.5. Our hypothesis is that P-STreeD
performs better than the state of the art. Then, we investigate how the speed-up scales with
the maximum depth and number of binary feature nodes. We do not compare with GOSDT
as Demirović et al. (2022) already compared Murtree with it and it is much faster.

The machine used for the experiments features an Intel i5-9300H CPU, with 4 physical
cores and a base speed of 2.4 GHz. It also has 8GB of RAM running at 2667 MHz. The
code is compiled using GCC. We run each test 10 times.

Metrics In tables, we report the averages of the experiment runtimes, as well as other
aspects such as calls to the terminal solver, cache hits and misses. We compare the runtimes
of our method with STreeD and Murtree using the two-sided Wilcoxon Signed Ranked Test,
which is suitable for non-normally distributed data. The results from the test are a p-
value and the W-statistic. If the p-value is below 0.05, we consider the results statistically
significant. The larger the W-statistic is, the greater the difference is between the two
methods. To confirm our hypothesis, the obtained W-statistic must be larger than the
critical-value, which is 8 (for our chosen p-value and number of runs per dataset).

5.2 Root versus leaf parallelization
We aim to determine whether parallelizing close to the root is more efficient than close to
the leaf nodes. We measure the runtime, number of terminal calls, cache hits and cache
misses. We run P-STreeD with both branch and dataset caching.

8

Our base assumption is that the leaf-based version explores a larger part of the search
space due to the proximity of the multithreading procedure to the terminal solver - the base
case of the recursion. Thus, a larger degree of terminal calls, cache hits and misses are
expected. Table 1 features results for d = 5, n = 31, which represents a complete tree for
the given depth. The root-based scenario outperforms both the baseline and the leaf-based
scenario for all datasets.

Experiments are also done for d = 4, n = 15 and d = 5, n = 24. The latter represents
a non-complete tree. We are interested in this scenario as tuning might be done for the
number of feature nodes too, not only for the depth. The results can be found in Table 4
and Table 5. For the former, results are quite similar for all datasets. The leaf-based version
tends to have more terminal calls and is generally slower than the root, but is close to or
faster than the baseline.

To summarize, the root-based version of P-STreeD clearly outperforms the leaf-based
one, having better runtimes, as well less terminal calls or interactions with the cache.

Table 1: Comparison of statistics between multithreading versions for depth d = 5 and
maximum number of feature nodes n = 31. |D| and |F | refer to the number of instances
and features of the dataset, respectively. Type refers to where we apply the multithreading
procedure; none is a version of our program with multithreading disabled. Time measured
in seconds. D2S Calls denotes calls to the terminal solver. D2S Calls, Cache Hits and
Cache Misses are measured in thousands. Best runtimes marked with bold.

Dataset |D| |F| Type Time D2S Calls Cache Hits Cache Misses

root <1 9444 1469 30920
anneal 812 93 leaf 6 13667 4059 58294

none 2 8300 1543 27235

root 14 96310 22361 215745
diabetes 768 112 leaf 28 100305 33609 294868

none 31 95094 20985 208154

root 3 32733 2767 85983
heart-cleveland 296 95 leaf 8 31699 3246 106454

none 7 27885 2119 74101

root <1 1427 55 3460
hepatitis 137 68 leaf <1 1470 68 3920

none <1 1273 42 3090

root 2 9854 584 26953
kr-vs-kp 3196 73 leaf 8 9625 980 36721

none 5 8848 528 24167

root <1 1160 12 3143
mushroom 8124 119 leaf <1 383 2 1028

none <1 232 <1 603

root 119 56137 1345 148188
pendigits 7494 216 leaf 208 63778 1728 177897

none 227 47315 1036 124998

9

5.3 State of the art comparison
We compare the runtimes of DL8.5, STreeD, P-STreeD (parallelizing at the root) and
Murtree. We run Murtree, STreeD and P-STreeD with dataset caching enabled and branch
caching disabled for a fair comparison. We note that we cannot set the maximum number of
feature nodes for DL8.5. Therefore, we only set the depth. The results for depth = 5, n = 31
can be found in Table 2. For any tests taking more than 1 second, P-STreeD outperforms
the state of the art. The only exceptions are mushroom (depth = 5, n = 24), ionosphere
(depth = 5, n = 31), and splice-1 (depth = 5, n = 24). For tests with runtimes below 1
second, P-STreeD is generally slower than the other methods (including STreeD). The re-
sults for depth = 4, n = 15 and depth = 5, n = 24 can be found in Table 6 and Table 7,
respectively. The results for these are similar, with P-STreeD being faster for longer tests
and exhibiting the same behavior for the specific datasets mentioned earlier.

Table 2: Comparison of runtime performance between algorithms for depth d = 5 and
maximum number of feature nodes n = 31. |D| and |F | refer to the number of instances and
features of the dataset, respectively. Timeouts of 600 seconds represented with −−. Best
runtimes marked with bold.

Dataset |D| |F| DL8.5 STreeD P-STreeD Murtree

anneal 812 93 5 2 <1 2
audiology 216 148 9 <1 <1 <1
breast-wisconsin 683 120 12 3 <1 2
diabetes 768 112 72 35 14 20
fico-binary 10459 17 <1 2 <1 2
german-credit 1000 112 114 102 42 55
heart-cleveland 296 95 15 7 3 4
hepatitis 137 68 2 <1 <1 <1
ionosphere 351 445 −− 301 370 135
kr-vs-kp 3196 73 12 6 2 7
lymph 148 68 2 <1 <1 <1
mushroom 8124 119 18 <1 <1 <1
pendigits 7494 216 −− 271 119 235
tic-tac-toe 958 27 <1 <1 <1 <1
vehicle 846 252 258 146 77 137
yeast 1484 89 43 12 6 14

Average rank 3.72 2.72 1.55 2.00

We compare our method with STreeD and Murtree (as DL8.5 is generally outperformed
by both of them) using the Wilcoxon Signed-Ranked Test. The results can be found in
Table 3. For depth = 5, n = 24 against Murtree, the p-value is too large (above 0.05),
indicating that our test is not statistically significant. For depth = 4, n = 15 against
STreeD, the recorded W-statistic (1.0) is lower than the critical value of 8. This indicates
that our hypothesis that P-STreeD is faster than STreeD in this case is rejected. indicating
that our hypothesis is rejected. For the other cases, it is confirmed that our method is faster
than STreeD and Murtree.

10

Table 3: Wilcoxon Signed-Rank Test results for depths d = {4, 5}. Each entry includes the
W-Statistic, followed by the p-value in parentheses. Significant results marked with bold.

depth n P-STreeD vs Murtree P-STreeD vs STreeD
4 15 14.0 (0.0008) 1.0 (0.0000)
5 24 63.0 (0.3465) 26.0 (0.0077)
5 31 35.0 (0.0268) 30.0 (0.0139)

5.4 Speed-up scaling
We compare the speed-ups for different numbers of threads used. The datasets we test
on are diversified in terms of their number of instances and features. The results can be
found in Figure 2. P-STreeD generally gets faster with more threads, although some smaller
datasets experience slow-downs instead.

Figure 2: Speed-up comparisons by number of threads {2-4}. Depth and maximum number
of feature nodes are d = 4, n = 15 and d = 5, n = 24. Baseline is our method with a single
thread.

6 Responsible Research

6.1 Reproducibility
Our approach is implemented on top of STreeD. If one were to follow the design outlined
they would have similar findings. The runtimes for P-STreeD and its variations might
differ, depending on system configuration. The machine employed for the experiments uses
Windows 11. Running on a different operating system might have different results due to
kernel-level machinations and thread scheduling mechanisms such as pre-emption (which is
entirely out of our control). The code for our experimental set-up and the full results can
be found at github.com/albsd/P-STreeD-experiments. The code for our implementation
is in a branch of a private repository which will be made public in the future. The datasets
can be found in the Murtree paper (Demirović et al., 2022).

11

github.com/albsd/P-STreeD-experiments

6.2 Ethical considerations
Our research in itself doesn’t pose any ethical considerations. Decision trees can be used
for any sort of task. Training them for particular domains such as healthcare might require
the use of sensitive data. Applying them in various scenarios might have different ethical
implications but it is impossible to list all of those. Within our research, we used publicly
available datasets complying with ethical and legal standards.

7 Discussion
We discuss the results of the experiments conducted in Section 5, as well as some aspects of
the applicability of our contribution. We address the performance of the leaf-based version
of P-STreeD. Then, we explain the best use cases for our program. Finally, we iterate how
our approach can be applied to other similar DP ODT methods.

7.1 Leaf-based parallelization
Parallelizing close to the root of the search tree was shown to be more efficient than close
to the leaf nodes. The leaf-based version performs similarly to the baseline for complete
trees. The differences are much more pronounced for the non-complete tree described by
depth = 5, n = 24, although the difference in terminal solver calls is not as noticeable. There
are instances when the leaf-based version has less terminal calls than the root-based one,
but it still has more cache hits and misses. An example is for diabetes, for depth = 4, n = 15.
A possible explanation we could offer for this behavior is that terminal calls may be done
in parallel, with bounds and solutions updated to the cache too late. This would result in
nodes not being pruned, but also redundant computation.

As for the considerably worse runtime performance, we consider two probable reasons.
The first is the behavior just explained above. The second is that we require an exponential
amount of tasks to be scheduled in this scenario (compared to only as many as CPU cores
for the root-based one). While there are only as many tasks as threads at a time, there
is still an overhead incurred from creating and managing them. We note that std::async
is used for tasks. Its underlying implementation depends on the compiler used. For GCC,
std::async creates a new std::thread, which is a native thread. LLVM has the same behavior.
MSVC, on the other hand, uses Windows’ concurrency API to create a thread pool which
manages std::async calls. Our program was compiled using GCC. Switching to MSVC might
reduce this overhead and yield competitive runtimes. Finally, we note that we previously
used a naive thread pool implementation for task creation and management. This thread
pool lacked any work-sharing or work-stealing features and did not result in significant
improvements. Implementing a more complex thread pool tailored for our use case might
result in noticeable speed-ups.

7.2 Ideal scenarios
As shown by the experiments, our method generally has a better performance than the
state of the art. There are datasets for which its runtime is worse though, and these are
datasets with small amounts of instances and features. These issues are also pronounced
when running tests for depth = 4. This is because computing the solution for these kinds
of input is very fast for sequential solutions. The overhead from creating threads and the

12

contention on shared resources cause this decrease in performance. The base time to compute
the solution sequentially is so low that the time spent on ensuring synchronization exceeds
it. Figure 2 shows this the best, as the more threads are used for some cases, the lower the
speed-up is.

But, these are problems we can already solve very quickly with the already-existing
methods. Therefore, we place much importance on results for "harder" problems. The same
figure shows how the speed-up is increasingly larger for datasets with many instances and
features. We consider ionosphere to be an outlier, and suspect that the reason why our
method is slower for it (when searching for a complete tree) is that it has more features
than instances, but this requires further investigation. Therefore, our method complements
the state-of-the-art by allowing us to compute the ODT for larger, more complex datasets
in feasible time.

7.3 Limitations
While our method generally outperforms the state of the art, it comes with a few limita-
tions. Due to time and resource restrictions, we could not conduct the experiments on a
different compiler or machine. As mentioned earlier, using MSVC instead of GCC might
yield different results. Results for the leaf-based version might be considerably different,
although we expect those for the root-based version to be similar. To ensure the optimality
of our solutions, we compared the misclassification scores with those of STreeD. While this
suggests that our solutions are correct, we do not have a formal proof to guarantee thread
safety at this time. We also note that we cannot guarantee thread-safety specifically for
partially ordered solutions (this means that the algorithm returns multiple solutions instead
of just one). This is because we did not require synchronization on the upper bounds (UBs)
in the case of totally-ordered solutions. That being said, fixing this is trivial, requiring locks
on UB updates and retrieval. Due to time constraints, we could not fix this as it would
have involved re-running all the experiments, although preliminary testing showed a minor
difference in runtime performance.

7.4 Abstracting and Generalizing the Method
Our method can be easily applied to Murtree, considering that, for a large part, it shares
the same algorithms and features as STreeD. That being said, we can extend it to other
DP-based solutions. A base condition would be that there is a formula involving iteration
over the features. Our shared memory model can be easily abstracted, any variables updated
from multithreaded recursive calls would have to synchronized.

7.5 Applying P-STreeD to a Supercomputer
Machine Learning models nowadays (such as LLMs) may be trained on supercomputers.
Using supercomputers for ODT computation would likely result in being able to use larger
depths for even more complex problems or issues. Porting P-STreeD to a supercomputer
requires adapting to MPI (Message Passing Interface) though. This involves transitioning to
distributed memory parallelism. Each thread from our original approach would be instead
represented by a MPI process (working on a subset of the features). To facilitate the
adaptation of the shared memory model, a specific MPI process could be designated as a
memory manager. It would handle requests from the other processes (through MPI routines)
for operations involving the cache or solution. The cache would still require modifications

13

though, in order to address contention. An idea would be to keep two values for each entry,
one of them would be synchronized and continuously updated. The other of them is given
to the processes retrieving from it and is updated once an arbitrary time period with the
value of the first. Alternatively, the cache could be made entirely local to each MPI process,
with only the solution being shared.

8 Conclusions and Future Work
Dynamic programming solutions for Optimal Decision Tree building have seen notable ad-
vancements in recent years. As the demand for larger datasets and more complex problems
continues to grow, improving the runtime for tree construction becomes increasingly impor-
tant. One effective approach to enhance runtime is through multithreading, which leverages
multiple CPU cores. However, applying multithreading is complex and carries risks, such as
losing correctness and experiencing worse performance due to the need for synchronization.

To address these challenges, we proposed a multithreading approach for existing methods
similar in concept to Murtree and STreeD. We divided features among the threads at the root
level to compute their respective subproblems. We outlined a shared memory model for the
solution and cache. We also investigated which commonly shared objects should be local to
each thread. In our approach, each thread has its own two-terminal solvers and a similarity
bound computer. We applied our method specifically to STreeD and compared two versions
of when to start multithreading: close to the root level or the leaf nodes (the end of the
recursion). We found that the root-based version tends to have fewer terminal calls, cache
hits or misses, as well as better runtime performance than the leaf-based one. Comparing our
method with DL8.5, Murtree, and STreeD, we observed generally faster runtimes, especially
for larger datasets. We also investigated the speed-up for the number of threads employed
and found that it is more pronounced for large datasets, with improvements exceeding 2.5
times in some cases when using 4 threads. However, for smaller datasets, the speed-up
can be less significant, sometimes falling below 1, indicating worse performance than the
baseline.

Despite these advancements, there is still future work to be done. We recommend investi-
gating the use of a single cache for each thread instead of a shared cache. The implementation
or integration of a threadpool into our current implementation should be explored. Further
experiments should be conducted to compare the root and leaf versions using the MSVC
compiler. We recommend examining the behavior of our method on specific datasets, such
as ionosphere, where it was slower than its baseline. Finally, we recommend assessing the
applicability of P-STreeD for supercomputers using MPI.

References
Aglin, G., Nijssen, S., & Schaus, P. (2020). Learning Optimal Decision Trees Using Caching

Branch-and-Bound Search. In Proceedings of AAAI-20 (pp. 3146–3153).
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H. T., & Verkamo, A. I. (1996). Fast Dis-

covery of Association Rules. In Advances in Knowledge Discovery and Data Mining.
Bertsimas, D., & Dunn, J. (2017, 07). Optimal classification trees. Machine Learning , 106 .

doi: 10.1007/s10994-017-5633-9
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and Regression

Trees. Taylor & Francis.

14

Costa, V., & Pedreira, C. (2023). Recent advances in decision trees: an updated survey.
Artificial Intelligence Review , 56 , 4765–4800. doi: 10.1007/s10462-022-10275-5

Demirović, E., Lukina, A., Hebrard, E., Chan, J., Bailey, J., Leckie, C., . . . Stuckey, P.
(2022). MurTree: Optimal Decision Trees via Dynamic Programming and Search.
Journal of Machine Learning Research, 23 (26).

Fromont, Ã., & Nijssen, S. (2007, 08). Mining Optimal Decision Trees from Itemset Lattices..
doi: 10.1145/1281192.1281250

Hu, X., Rudin, C., & Seltzer, M. (2019). Optimal Sparse Decision Trees. In Advances in
Neural Information Processing Systems (Vol. 32). Curran Associates, Inc.

Hyafil, L., & Rivest, R. L. (1976). Constructing optimal binary decision trees is NP-complete.
Information Processing Letters, 5 (1). doi: 10.1016/0020-0190(76)90044-9

Lin, J., Zhong, C., Hu, D., Rudin, C., & Seltzer, M. (2020). Generalized and Scalable
Optimal Sparse Decision Trees. In Proceedings of the 37th International Conference
on Machine Learning (ICML-20) (pp. 6150–6160).

Narlikar, G. J. (1998, December). A Parallel, Multithreaded Decision Tree Builder (Tech.
Rep. No. CMU-CS-98-184). Pittsburgh, PA 15213: School of Computer Science,
Carnegie Mellon University.

Narodytska, N., Ignatiev, A., Pereira, F., & Marques-Silva, J. (2018). Learning Optimal
Decision Trees with SAT. In International Joint Conference on Artificial Intelligence.

Puthal, D., Wilson, S., Nanda, A., Liu, M., Swain, S., Sahoo, B. P., . . . Prasad, M.
(2022). Decision tree based user-centric security solution for critical IoT infrastruc-
ture. Computers and Electrical Engineering , 99 , 107754. doi: https://doi.org/10.1016/
j.compeleceng.2022.107754

Quinlan, J. (1993). C4.5: Programs for Machine Learning. Elsevier Science.
Stivala, A., Stuckey, P. J., de la Banda, M. G., Hermenegildo, M., & Wirth, A. (2010).

Lock-free parallel dynamic programming. J. Parallel Distrib. Comput..
van der Linden, J., de Weerdt, M., & Demirović, E. (2023). Necessary and Sufficient

Conditions for Optimal Decision Trees using Dynamic Programming. In Advances in
Neural Information Processing Systems 36 (NeurIPS 2023) (Vol. 36, pp. 9173–9212).
(37th Annual Conference on Neural Information Processing Systems, NeurIPS 2023 ;
Conference date: 10-12-2023 Through 16-12-2023)

Verwer, S., & Zhang, Y. (2019, Jul.). Learning Optimal Classification Trees Using a Bi-
nary Linear Program Formulation. Proceedings of the AAAI Conference on Artificial
Intelligence, 33 (01), 1625-1632. doi: 10.1609/aaai.v33i01.33011624

15

A Experiments

A.1 Root versus leaf parallelization

Table 4: Comparison of statistics between multithreading versions for depth d = 4 and
maximum number of feature nodes n = 15. |D| and |F | refer to the number of instances
and features of the dataset, respectively. Type refers to where we apply the multithreading
procedure; none is a version of our program with multithreading disabled. Time measured
in seconds. D2S Calls denotes calls to the terminal solver. Best times marked with bold.

Dataset |D| |F| Type Time D2S Calls Cache Hits Cache Misses

root <1 869 88 2544
anneal 812 93 leaf <1 1127 115 3433

none <1 812 73 2360

root <1 4529 510 9527
diabetes 768 112 leaf 2 4432 613 11504

none 2 4411 562 9138

root <1 2497 201 5721
heart-cleveland 296 95 leaf <1 2370 282 6449

none <1 2247 231 5148

root <1 795 26 1818
hepatitis 137 68 leaf <1 812 48 2106

none <1 697 33 1608

root <1 993 40 2474
kr-vs-kp 3196 73 leaf <1 1035 61 2796

none <1 1000 36 2470

root <1 238 1 616
mushroom 8124 119 leaf <1 545 6 1485

none <1 441 4 1206

root 19 6586 284 16585
pendigits 7494 216 leaf 32 7971 278 21474

none 51 7467 277 18147

16

Table 5: Comparison of statistics between multithreading versions for depth d = 5 and
maximum number of feature nodes n = 24. |D| and |F | refer to the number of instances
and features of the dataset, respectively. Type refers to where we apply the multithreading
procedure; none is a version of our program with multithreading disabled. Time measured in
seconds. D2S Calls denotes calls to the terminal solver. Timeouts of 600 seconds represented
with −−. Best times marked with bold.

Dataset |D| |F| Type Time D2S Calls Cache Hits Cache Misses

root 4 20.588 20.990 87.808
anneal 812 93 leaf 105 27.392 82.914 572.911

none 6 18.287 19.776 75.086

root 35 177.010 356.276 558.730
diabetes 768 112 leaf 238 179.604 624.795 1610.588

none 71 176260 365.107 498.902

root 9 91.808 90.755 294.381
heart-cleveland 296 95 leaf 111 90.974 125.710 853.270

none 17 84879 83.333 256.523

root <1 4.722 2.840 11.595
hepatitis 137 68 leaf 2 3.702 3.437 21.106

none <1 3.542 2.416 9.141

root 5 15.834 6.693 59.548
kr-vs-kp 3196 73 leaf 132 15.893 19.092 371.014

none 10 14.334 6.080 53.680

root 4 5.771 621 18.761
mushroom 8124 119 leaf 2 2.009 0.242 6.777

none 3 2.002 0.236 6.303

root 322 137.341 38.893 377.413
pendigits 7494 216 leaf −− −− −− −−

none −− −− −− −−

17

A.2 State-of-the-art comparison

Table 6: Comparison of runtime performances between algorithms for depth d = 4 and
maximum number of feature nodes n = 15. |D| and |F | refer to the number of instances
and features of the dataset, respectively.

Dataset |D| |F| DL8.5 STreeD P-STreeD Murtree

anneal 812 93 <1 <1 <1 <1
audiology 216 148 <1 <1 <1 <1
breast-wisconsin 683 120 <1 <1 <1 <1
diabetes 768 112 2 2 <1 2
fico-binary 10459 17 <1 <1 <1 <1
german-credit 1000 112 3 3 2 2
heart-cleveland 296 95 <1 <1 <1 <1
hepatitis 137 68 <1 <1 <1 <1
ionosphere 351 445 54 103 54 58
kr-vs-kp 3196 73 <1 <1 <1 <1
letter 20000 224 83 84 42 165
lymph 148 68 <1 <1 <1 <1
mushroom 8124 119 3 <1 <1 <1
pendigits 7494 216 24 39 20 47
splice-1 3190 287 61 211 106 134
tic-tac-toe 958 27 <1 <1 <1 <1
vehicle 846 252 6 9 5 7
yeast 1484 89 <1 <1 <1 <1

18

Table 7: Comparison of runtime performance between algorithms for depth d = 5 and
maximum number of feature nodes n = 24. |D| and |F | refer to the number of instances
and features of the dataset, respectively. Timeouts of 600 seconds represented with −−.

Dataset |D| |F| DL8.5 STreeD P-STreeD Murtree

anneal 812 93 5 6 3 4
audiology 216 148 9 <1 <1 <1
breast-wisconsin 683 120 12 9 5 5
diabetes 768 112 72 65 31 34
fico-binary 10459 17 <1 4 2 3
german-credit 1000 112 114 189 93 100
heart-cleveland 296 95 15 16 8 8
hepatitis 137 68 2 <1 <1 <1
ionosphere 351 445 −− −− −− 272
kr-vs-kp 3196 73 12 11 5 12
lymph 148 68 2 <1 <1 <1
mushroom 8124 119 18 3 5 3
pendigits 7494 216 −− −− 345 −−
tic-tac-toe 958 27 <1 2 <1 2
vehicle 846 252 258 398 201 255
yeast 1484 89 43 30 13 19

19

	Introduction
	Related Work
	Preliminaries
	Murtree

	Multithreading for STreeD
	Shared memory
	Overview of other investigated multithreading designs
	Parallelizing the feature loop within the general case
	Threading strategy
	Feature order strategy
	Terminal solver and similarity computer strategy

	Experimental Setup and Results
	Experimental setup
	Root versus leaf parallelization
	State of the art comparison
	Speed-up scaling

	Responsible Research
	Reproducibility
	Ethical considerations

	Discussion
	Leaf-based parallelization
	Ideal scenarios
	Limitations
	Abstracting and Generalizing the Method
	Applying P-STreeD to a Supercomputer

	Conclusions and Future Work
	References
	Experiments
	Root versus leaf parallelization
	State-of-the-art comparison

