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Abstract 
 
 
Hypertrophic cardiomyopathy (HCM) is known as a frequent, genetic cardiovascular disease, often 
caused by mutations of sarcomere protein genes. HCM is primarily characterized by the presence of 
an increased left ventricular wall thickness, i.e. left ventricular hypertrophy (LVH). However, the 
disease appears to be asymptomatic in some patients, which makes it a diagnostic challenge. Mutation 
carriers of HCM who have not yet developed LVH are called genotype-positive left ventricular 
hypertrophy-negative (G+/LVH-) patients. The primary aim of this study was to investigate whether a 
radiomics model is able to distinguish between G+/LVH- patients and healthy controls, based on 
cardiac magnetic resonance (CMR) images. 
 
In total three datasets are analysed. A development dataset was used to develop different radiomics 
models and to evaluate the performance of the models. The models were validated on both the 
prospective validation dataset and external validation dataset. G+/LVH- patients had to be known to 
carry a class 4 (likely pathogenic) or class 5 (pathogenic) gene mutation for HCM and a maximum left 
ventricular wall thickness of <13mm. Endocardial and epicardial borders were manually and 
automatically segmented on long-axis view (2-chamber (2CH), 3-chamber (3CH), and 4-chamber (4CH)) 
and short-axis (SA) view in both end-diastolic (ED) and end-systolic (ES) phase. From these 
segmentation 555 features including shape, intensity and texture were extracted. Evaluation of 
radiomics models was performed through a 100x stratified random-split cross-validation in 
development dataset. Next, the models were validated on prospective validation dataset and external 
validation dataset. 
 
The radiomics model with best performance developed on development dataset had a mean area 
under the receiver operating characteristic curve (AUC) of 0.89. A similar performance in prospective 
validation was found (mean AUC of 0.89), while a lower performance was found in external validation 
dataset (mean AUC of 0.63). In addition, the radiomics models performed with automatic 
segmentation showed all a decrease in performance; mean AUC of 0.75, 0.77 and 0.50 in development 
dataset, prospective validation dataset and external validation dataset, respectively.   
 
Our radiomics models using CMR images can non-invasively distinguish between +/LVH- patients and 
healthy controls on both development dataset and prospective validation dataset. However, it was not 
able to distinguish on external validation dataset. 
 
Keywords: Hypertrophic cardiomyopathy, Cardiovascular magnetic resonance imaging, Radiomics, 
Machine learning 
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1. Introduction 
 
 

Hypertrophic cardiomyopathy (HCM) is described as a frequent, autosomal dominant inherited 
cardiovascular disease affecting the heart muscle, i.e., myocardium [1, 2]. Among the different 
cardiomyopathies, HCM is the most common with a prevalence of 1 in 500 people worldwide [3, 4]. In 
most cases, HCM is caused by mutations of sarcomere protein genes [2, 5]. These are known as the 
functional units responsible for the contraction of muscle tissue and can be found with genetic testing 
[6, 7]. However, genetic testing is not widely available [8]. Moreover, patients may not prefer a genetic 
test because the result may affect issues such as life insurance and professional opportunities [9]. 
 
Another way to determine HCM is by visual assessment of medical images such as cardiac magnetic 
resonance (CMR). HCM is characterized by various phenotypic manifestations, but mainly by the 
occurrence of an increased left ventricular wall thickness, i.e. left ventricular hypertrophy (LVH) [3, 10]. 
Most thickenings are asymmetrical and involve the basal interventricular septum [7, 11]. To establish 
a clinical diagnosis of HCM, the maximum left ventricle wall thickness (MLVWT) is used as key factor, 
which is often measured with CMR [12, 13]. The clinical measurement of the MLVWT is preferably 
performed on the short axis and is highly dependent on the accuracy of the assessment, as the distance 
between the endocardial and epicardial borders is measured manually [3, 14]. In general, HCM is 
defined by the presence of a MLVWT of ≥15 mm or ≥13 mm in relatives of HCM patients, measured in 
one or more myocardial segments [5, 7]. These diagnostic conditions are recommended by The 
European Society of Cardiology guidelines [9]. When both a sarcomere mutation and LVH are present, 
we refer to the patient as genotype-positive left ventricular hypertrophy-positive (G+/LVH+) patient. 
Mutation carriers who have not yet developed LVH are called genotype-positive left ventricular 
hypertrophy-negative (G+/LVH-) patients [15]. With the late gadolinium enhancement (LGE) CMR 
sequence, tissue abnormalities, such as myocardial fibrosis, can be assessed using administration of a 
gadolinium-based contrast agent (GBCA) [16, 17]. Myocardial fibrosis is another common phenotypic 
manifestation and is used as a prognostic marker for HCM patients, as the presence of myocardial 
fibrosis indicates an increased risk of sudden cardiac death (SCD) [18,19]. However, since myocardial 
fibrosis can develop over time, repeated LGE with GBCA administration is often required to monitor 
this, which involves additional health risks, such as nephrogenic systemic fibrosis [20]. 
 
To be more specific, HCM appears to be a disease with a heterogeneous pathological and clinical 
profile, with a highly variable degree of manifestation [21, 22]. For example, the same mutation may 
manifest differently between family members and lead to a different clinical outcome [6, 23]. In 
addition, since HCM remains asymptomatic throughout life in many patients, the disease is often 
discovered by coincidence in families with HCM [6, 9]. Despite the absence of manifestation in some 
HCM patients and the fact that many HCM patients have a normal life expectancy, HCM is considered 
a leading cause of SCD observed in young people and athletes [3, 24]. Moreover, HCM is sometimes 
difficult to distinguish from an "athlete's heart" or diseases such as hypertension heart disease (HHD) 
which also involve LVH.  
 
Since the diagnosis of HCM is solely based on observational data from the medical images, diagnosing 
HCM is highly observer dependent. Moreover, subtle pathologic features are often difficult or 
impossible to detect with the naked eye, which makes it a diagnostic challenge [25, 26]. Because of 
the limited phenotypic manifestations and the limitations of qualitative assessment, there is a great 
need for tools to improve the diagnosis and clinical understanding of HCM [24]. To our knowledge, no 
studies have yet been done on quantitative assessment in HCM patients in whom the disease has not 
yet manifested with LVH. 
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However, previous studies have already shown that quantitative analysis of medical images using 
radiomics can be used to diagnose HCM in patients with presence of LVH [3, 12, 18, 27, 28, 29]. 
Radiomic aims to predict clinical labels or outcomes using quantitative medical imaging features, which 
are obtained from medical examinations such as CMR using machine-learning methods [30, 31]. 
Moreover, radiomics is based on the assumption that quantitative medical image features are linked 
to disease-specific processes, such as genetic aberrations, that are difficult to quantify or recognize by 
the human eye [26, 32]. Baeßler et al. (2018) [3] and Amano et al. (2021) [28] showed that radiomics 
can differentiate HCM patients with and without presence of myocardial fibrosis from healthy controls 
on native CMR images. In addition, Neisius et al. (2019) [12] and Schofield et al. (2019) [27] have 
demonstrated on native CMR images that in addition to distinguishing HCM from healthy controls, 
HCM patients can also be distinguished from diseases, such as HHD, which manifest similarly. These 
results showed that, despite similar phenotypic manifestations and the omission of the administration 
of GBCA, it was possible to distinguish HCM patients from healthy controls and other diseases.    
 
Based on these results, it was hypothesized that radiomics could also be used to distinguish HCM 
mutation carriers without manifestation of LVH from healthy controls based on native CMR images. 
The primary aim of this study was to investigate whether a radiomics model based on CMR images is 
able to distinguish between G+/LVH- patients and healthy controls. Additionally, the generalizability 
of the results was evaluated by performing validation on independent, unseen data. Finally, with the 
same radiomics models we compared the performance of manual segmentation to the performance 
of automatic segmentation, which are in general more consistent and reproducible. 
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2. Method 
 
 

2.1 Study population  
In this study we use three independent datasets: 1) development dataset; 2) prospective validation 
dataset; and 3) external validation dataset. The development dataset obtained from Erasmus Medical 
Center (EMC) (Rotterdam, the Netherlands) was used to develop the radiomics model and to evaluate 
the performance of the model. To ensure the performance of the applied approach, the model was 
validated on both the prospective validation dataset and external validation dataset. The prospective 
validation dataset also consisted of data collected from the EMC, while the external validation dataset 
included a two-center dataset obtained from the VU University Medical Center (VUmc) (Amsterdam, 
the Netherlands) and the Radboud university Medical Center (RUMC) (Nijmegen, the Netherlands). An 
overview of the datasets is shown in Table 1.  
 
Table 1: Overview of the three different datasets used in this study; development dataset used to develop the 
model, prospective validation dataset and external validation dataset used to validate the model.  

 
Abbreviations: G+/LVH-, genotype-positive left ventricular hypertrophy-negative. 
 
 

This study was approved by the institutional review boards of the EMC (MEC-2014-096). For all 
datasets, informed consent was obtained from both the G+/LVH- patients and healthy controls.  
 
Inclusion criteria for G+/LVH- patients and healthy controls were: presence of a scanned balanced 
steady-state free precession (bSSFP) CMR in long-axis view (2-chamber (2CH), 3-chamber (3CH), and 
4-chamber (4CH)) and short-axis (SA) view to perform the analysis on; presence of complete cardiac 
cycle to determine end-diastolic (ED) and end-systolic (ES) phase; and a measured MLVWT of <13mm, 
such that HCM patient has not yet been identified with LVH according to the diagnostic conditions 
recommended by The European Society of Cardiology guidelines [9]. In addition, G+/LVH- patients had 
to be known to carry a class 4 (likely pathogenic) or class 5 (pathogenic) gene mutation for HCM, 
according to the recommendations of the American College of Medical Genetics and Genomics [33]. 
Control groups had to be unrelated healthy controls without cardiovascular disease. However, healthy 
controls were not required to be genetically tested for pathogenic DNA variants that cause HCM. 
 
The ED and ES phases were determined on the SA series, ensuring that the same phase was used within 
each patient. The ED and ES phases were determined by selecting the phase with the visually highest 
and lowest estimated left ventricular volume, respectively, obtained on the SA view. In other words, 
the phases in which the bloodpool was depicted largest and smallest were chosen as ED and ES phase, 
respectively. The phases obtained on the SA view were then selected and chosen as ED and ES phase 
for the long-axis views as well.  
 

2.1.1 Development dataset 
The dataset as described in N. van der Velde et al. (2021) [34], was used as model development dataset. 
This dataset consists of 57 G+/LVH- patients, with a CMR performed between October 2008 and 

Dataset Medical center
Number of    

G+/LVH- patients
Scanning period

Number of         

healthy controls
Scanning period

Development
Erasmus Medical Center,    

Rotterdam, The Netherlands
57 12/2008 - 09/2020 40 06/2018 - 11/2019

Prospective validation
Erasmus Medical Center,   

Rotterdam, The Netherlands
11 01/2021 - 08/2021 25 06/2018 - 06/2019

VU University Medical Center, 

Amsterdam, The Netherlands
18 05/2005 - 10/2011 14 10/2006 - 04/2007

Radboud University Medical Center, 

Nijmegen, The Netherlands
9 10/2012 - 07/2013 10 07/2020 - 08/2021

External validation
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September 2020. The control group consisted of a total of 40 unrelated healthy controls, scanned 
between June 2018 and November 2019. The control group was matched for age and sex on group 
level to the patient group. 
 
In addition to the CMR images, manually scored morphological features of the development dataset 
obtained from N. van de Velde et al. (2021) [34] were collected. These included: 1) right-to-left 
ventricular ratio; 2) presence of ≥2 myocardial crypts; 3) presence of hooked thickening basal anterior 
wall; 4) maximal wall thickness/posterior wall thickness ratio; and 5) maximal wall thickness/left 
ventricular mass indexed by body surface area and normalized by sex ratio. An example of an 
anterobasal hook and a myocardial crypt is depicted in Appendix A (Figure A1). 
 

2.1.2 Prospective validation dataset  
The prospective validation dataset consisted of eleven G+/LVH- patients and 25 healthy controls, 
scanned in the EMC, between January 2021 and August 2021 for G+/LVH- patients and between June 
2018 and June 2019 for healthy controls.  
 

2.1.3 External validation dataset  
The external validation dataset consisted of a multi-center imaging dataset obtained from two 
different medical centers with a total of 27 G+/LVH- patients and 24 healthy controls. Of these, 
eighteen G+/LVH- patients and fourteen healthy controls were collected from VUmc, performed 
between May 2005 and October 2011, and between October 2006 and April 2007, respectively. The 
remaining nine G+/LVH- patients and ten healthy controls were collected from RUMC, scanned 
between October 2012 to July 2013, and between July 2020 and August 2021, respectively.  
 

2.2 Segmentation 

2.2.1 Manual segmentation 
After collecting the CMR images and defining ED and ES phase, segmentation was performed. 
Segmentation of endocardial and epicardial borders of the datasets was done manually on both the 
ED and ES phase slice-by-slice, resulting in a 3D volume for SA view and a 2D volume for 2CH, 3CH and 
4CH view. A medical PhD student performed segmentation on the SA view for the developmental 
dataset; the long-axis view for the development dataset and all views for the two validation datasets 
were segmented by a biomedical engineering student. 
 

Based on the endocardial and epicardial borders, two segmentations were composed: 1) LVBloodpool: all 
voxels within the endocardial border; and 2) LVMyocard: all voxels between the epicardial and 
endocardial borders. In addition, LVBloodpool+Myocard denotes a combination of the two segmentations, on 
which both analysis was performed. Examples from the obtained segmentations are shown in Figure 
1. The segmentations were performed in Medis Suite MR software (Qmass software version 8.1, 
Medis, Leiden, the Netherlands).  
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Figure 1: Examples of the 2D slices of retrieved segmentations with LVBloodpool and LVMyocard in (a) 2CH, (b) 3CH, (c) 
4CH and (d) SA view depicted in red. Abbreviations: CMR, Cardiac Magnetic Resonance; 2CH, 2-chamber; 3CH, 3-
chamber; 4CH, 4-chamber; SA, short axis  
 
 

2.2.2 Automatic segmentation 
In addition to manual segmentation of the datasets, automatic segmentation was performed on 2CH, 
3CH, 4CH and SA views, in the Medis Suite MR software. To assess the agreement between manual 
and automatic segmentation, the pairwise Dice Similarity Coefficient (DSC) was calculated in Python 
3.8. The DSC results in a value between 0 and 1, with a value close to 1 indicating high agreement [35, 
36]. In addition, manual and automatic segmentations were visually assessed to determine common 
areas of disagreement. 
 

2.3 Feature extraction 
Before feature extraction, pre-processing was performed. Since CMR images does not have a fixed unit 
and scale, images are normalized using z-scoring, to obtain image intensities with similar scale.  

 

2.3.1 Image features 
After delineation of the borders and image pre-processing, imaging features were extracted. By 
default, for each segmentation, 564 features are extracted using the Workflow for Optimal Radiomics 
Classification (WORC) toolbox [30]. These features quantify shape, intensity, texture and orientation 
texture [37, 38]. However, since orientation features depend on the location and orientation of the 
segmentation, they were omitted to avoid bias. As result, a total of 555 imaging features were 
extracted in this study, details can be found in Appendix B (Table B1). Feature extraction was 
performed using the open-source Python packages PyRadiomics [37] and PREDICT [39]. 
 



  9 
 

A total of 35 shape features were extracted. The shape features describe morphological characteristics 
of the segmentation, which include features such as volume, the surface-to-volume ratio, sphericity 
and compactness. These features are extracted based solely on the segmentations and do not require 
the underlying image intensity data. 
 
For the intensity features, thirteen features are included. Intensity features are extracted directly from 
the image, or derived from the intensity histogram. These features consist of various first-order 
statistics to quantify the raw intensity distribution within the segmentation. The most basic intensity 
features include features such as the mean, maximum, minimum and standard deviation (std). In 
addition, features that measure the distribution of the histogram are extracted, such as skewness and 
kurtosis. 
 
Texture features, also called second-order features, consist of a total of 507 features. These features 
quantify intensity properties between surrounding pixels. The algorithms that are included are; the 
Gray Level Co-occurrence Matrix [40], the Grey-Level Run-Length Matrix [40], the Gray Level Size Zone 
Matrix [40], the Neighbouring Grey Tone Difference Matrix [40], the Gray Level Dependence Matrix 
[40], the Gabor filter [40], the Laplacian of Gaussian filter [41], Local Binary Patterns [42], local phase 
features [43, 44] and vessel filter features [41]. These features include more complex patterns such as 
heterogeneity and are extracted based on the spatial relationship between neighbouring pixels within 
the segmentation. 
 

2.4 Decision model creation 
In this study, a decision model is created within the Workflow for Optimal Radiomics Classification 
(WORC), i.e., a computational radiomics workflow. An schematic overview of the methodology is 
depicted in Figure 2.  
 
The decision model creation consists of several steps, including feature selection and machine learning. 
For example, within these steps, the features with the highest predictive value are selected and with 
machine learning, patterns in these features are identified that differentiate between G+/LVH patients 
and healthy controls. Numerous algorithms are involved in these steps. With the WORC toolbox, 
different algorithms are automatically analysed and automated machine learning is used to determine 
which combination of algorithms yields the best prediction performance on the development dataset.  
Since a single best solution may be a coincidence, the resulting radiomics model is an ensemble of the 
50 best performing solutions. For more details, refer to M.P.A. Starmans (in press) [30].    
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Figure 2: Schematic overview of the radiomics approach: adapted from M. Vos (2019) [25]. Input to the algorithm 
are (1) cardiac magnetic resonance images and (2) segmentations by delineation of the endocardial and 
epicardial borders. The processing steps include (3) feature extraction and (5) the creation of a machine learning 
decision model, using (4) an ensemble of the best 100 workflows from 1.000 candidate workflows, in which the 
workflows are different combinations of the different analysis steps (e.g. the classifier used). 
 
 

2.5 Experimental setup 
First, to assess which segmentations, phases and sequences had the most predictive value, radiomics 
models were created based on all different combinations of segmentation (LVBloodpool, LVMyocard or 
LVBloodpool+Myocard), phase (ED or ES), and sequence (SA, 2CH, 3CH or 4CH), totalling 24 models, called 
baseline models. The baseline models with the highest performance were selected for further 
evaluation. Second, based on the results of these models, three radiomics models were externally 
validated: 1) based on the single sequence, view, and phase with the highest performance ; 2) for each 
view, the segmentation with the highest performance within the phase with highest mean 
performance; and 3) for each view, in both ED and ES phase, the segmentation with the highest 
performance. Because the different views are highly dependent on how the CMR is planned and not 
all morphological features are visible on a single view, model 2 and 3 are expected to extract more 
information from the imaging features and thus obtain higher performance. Model 2 is included to 
obtain the added value of the different views within a single phase. Model 3 is included to obtain the 
added value of the CMR as a totality. 
 
Next, manually scored morphological features obtained from N. van der Velde et al. (2021) [34] were 
used to create two additional models: 4) based on manually scored features solely, and 5) a 
combination of manually scored features and the setup used in model 3. To compare the performance 
of the WORC methodology with the performance of the methodology applied by N. van der Velde et 
al. (2021) [34], model 4 was performed. Finally, model 5 is evaluated and seen as the most complete 
model comparable to the clinic, with both CMR image features and manually scored features 
determining performance.  
 
The predictive value of models 1 through 5 were assessed by training and evaluating the development 
dataset. Moreover, the models 1 to 3 were evaluated with the prospective and external validation 
dataset. In addition, these models were also applied with automatic segmentation. 
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2.5.1 Elimination of biases  
Due to the use of data from other medical centers in external validation dataset, the use of different 
scanning parameters may cause the CMR images to be displayed differently compared to the 
developmental dataset. As a result, this may affect the predictive value of intensity and texture 
features. In addition, some features are related to slice thickness, and this may be different in the 
different datasets. Therefore, three additional models were evaluated with external validation dataset, 
with broadly adopting the setup of model 1 for simplicity. These additional models were performed to 
eliminate biases due to different signal intensities resulting from different scan parameters and biases 
due to different slice thicknesses. The additional models were based on: 1A) shape features extraction 
only, 1B) manual adjustment of slice thickness in both development and external validation dataset to 
create same slice thickness, and 1C) shape features extraction performed with the adjusted slice 
thickness.  
 
In addition, the difference in signal intensity is examined more in detail by focussing on two intensity 
features. Within the intensity features, hf_mean and hf_std were considered, to obtain a better insight 
into the histogram distribution within the different datasets. Furthermore, two shape features, 
sf_Max2DDiameterSlice and sf_area_avg_2D, were also examined to eliminate difference in cardiac 
size within the two datasets. The median and interquartile range (IQR) of the features for both LVMyocard 
and LVBloodpool segmentation were examined. 
 

Finally, given that G+/LVH- patients during standard examinations received administration of GBCA 
before scanning the SA view, for detection of myocardial fibrosis on the LGE sequence, it is considered 
that GBCA is present on SA views in G+/LVH- patients. It is assumed that this will affect performance, 
as healthy controls will not receive unnecessary administration of GBCA. If confirmed in baseline 
models, SA views are omitted from radiomics models. 
 

2.6 Evaluation 

2.6.1 Cross-validation set-up 
By default in WORC, the performance of the models on the development dataset were evaluated 
through a 100x stratified random-split cross-validation. In each iteration, the dataset was randomly 
split in 80% for training and 20% for testing, as shown in Figure 3A. To eliminate the risk of overfitting 
on the test set, model optimization was performed within the training set, in which an internal 5x 
random split cross-validation was performed. The training set was split in 15% for validation to 
optimize the model hyperparameters and 85% was used for actual training. In the evaluation of the 
prospective validation and external validation dataset, which both used a fixed, independent training 
and testing set, only an internal 5x random split cross-validation was performed, see Figure 3B.  
 
The performance of all models on development dataset, prospective validation dataset and external 
validation dataset were assessed by using the Area Under the Curve (AUC) of the Receiver Operating 
Characteristic (ROC) curve, sensitivity, specificity, and accuracy. ROC confidence bands were 
constructed using fixed-width bands [30, 35]. The G+/LVH- patients were defined as positive class.  
 
For development dataset, the corrected resampled t-test, which takes into account that the cross-
validation samples are not statistically independent, were used to construct the 95% confidence 
intervals (CIs) of the performance metrics [35, 36]. To evaluate whether the developed models on the 
development dataset generalize well to independent, unseen data, the models were validated on both 
a prospective validation and external validation dataset. For these datasets, 95% Cis were constructed 
using 1000x bootstrap resampling [30, 45]. Only models 1, 2, and 3 could be evaluated within the 
validation datasets, due to the absence of manually scored morphological features in these datasets. 
Performance on the three different datasets was assessed for both manually and automatically 
generated segmentations. 
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Figure 3: Schematic overview of the cross-validation setup used by the WORC framework for optimization and 
evaluation. (A) The 100x random-split cross-validation used in development dataset; (B) and the 1000x bootstrap 
resampling in prospective validation and external validation dataset. Adapted from M.P.A. Starmans et al. (in 
press) [30]. 
 
 

2.6.2 Model insights 
The Mann–Whitney U test was used in order to assess the predictive value of the individual features 
for the different datasets. To correct the p-values for multiple testing, Bonferroni correction was used, 
i.e., multiplying the p-values by the number of tests. After correction, p-values were considered 
statistically significant at p-value ≤ 0.05.  
 
Furthermore, to gain insight into the models performed on development dataset, patients were ranked 
from typical to atypical, based on the consistency of the model predictions. The consistency was 
determined by the percentage that a patient was classified correctly when occurring in the test set. 
Typical examples were patients who were always correctly classified, patients who were always 
classified incorrectly were considered atypical..  
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3. Results 
 
 

3.1 Study population  
An overview of clinical and imaging characteristics of the three different datasets is summarized in 
Table 2.  
 
Within these three datasets, a total of 184 CMR scans were performed. Within the development 
dataset and prospective validation dataset, CMR was performed with General Electric (GE), while the 
external validation dataset was performed with Siemens. The median age for the development dataset 
was 46 years (IQR 32–54 years) and 34% of the patients were male. Development dataset and 
prospective validation dataset, both scanned at EMC, were comparable in image acquisition protocols. 
For the external validation dataset, consisting of a dataset from two centers, other image acquisition 
protocols were used but were homogeneous within the dataset. 

 
Table 2: Clinical characteristics and CMR scan parameters of the three datasets included in this study.  

 
Abbreviations: G+/LVH-, genotype-positive left ventricular hypertrophy-negative. 
* Values are given in median (interquartile range). Other values than those given in the median and interquartile 
range do occur. 

 
 

3.2 Development of radiomics models  
Based on the AUC values of the 24 baseline models, the models for further evaluation were 
established. The performance of these 24 baseline models can be found in Appendix C (Table C1). As 
predicted, the SA image showed extremely high predictive values (mean AUC between 0.99 and 1.00), 
which can be attributed to the presence of GBCA on the CMR images. As a result, SA views were 
omitted from the radiomics models for validation in this study. Overall, the 2CH, 3CH and 4CH views 
all showed high performance with mean AUCs between 0.77 and 0.86 for ES phase, while ED phase 
showed lower performance with mean AUCs between 0.65 and 0.81. The same was apparent for other 
performance metrics in ED and ES phase; a mean accuracy between 0.59 and 0.75 vs. 0.69 and 0.79, a 
mean sensitivity between 0.57 and 0.81 vs. 0.68 and 0.84, and a mean specificity between 0.59 and 
0.77 vs. 0.65 and 0.78, respectively. This is noteworthy because it shows that a better predictive value 
is found in the ES phase, whereas for the determination of certain phenotypic manifestations the ED 
phase is preferentially used in clinical practice [46, 47]. In addition, within the three views (2CH, 3CH 
and 4CH) and the two phases the highest performance was obtained in LVBLoodpool+Myocard segmentation 
in four out of six setups. This shows that features extracted from both segmentations have predictive 
value and that the predictive value generally increases when they are combined. 

Dataset

G+/LVH- patients Healthy controls G+/LVH- patients Healthy controls

VU RUMC VU RUMC

Number of subjects 57 40 11 25 18 9 14 10

Age (years) * 46 [32-53] 45 [33-55] N/A 26 [28 - 30] N/A N/A N/A N/A

Male sex (%) 18 (32%) 15 (38%) N/A 19 (76%) 5 (28%) 4 (44%) 9 (64%) 3 (30%)

Length (cm) * 171 [165-182] 174 [169-181] N/A 185 [180 - 189] N/A N/A N/A N/A

Weight (kg) * 71 [62-85] 70 [65-79] N/A 84 [74 - 85] N/A N/A N/A N/A

Magnetic field strength

1.5 Tesla 51 40 11 25 18 9 14 10

3.0 Tesla 6

Manufracturer 

Siemens 18 9 14 10

GE 57 40 11 25

Slice thickness(mm) 8 8 8 8 5 6 5 5

Pixel spacing (mm) * 0.70 [0.70-0.70] 0.70 [0.70-0.70] 0.70 [0.70-0.70] 0.70 [0.70-0.70] 1.33 [1.33-1.33] 1.45 [1.45-1.45] 1.33 [1.33-1.39] 1.37 [1.37-1.37]

Repetition time(ms) * 3.78 [3.65-3.78] 3.78 [3.77-3.78] 3.78 [3.75-3.78] 3.78 [3.75-3.78] 47.10 [47.10-47.10] 42.00 [42.00-42.00] 47.10 [46.20-47.10] 44.55 [44.55-44.55]

Echo time (ms) * 1.69 [1.64-1.70] 1.69 [1.68-1.70] 1.69 [1.68-1.70] 1.69 [1.68-1.70] 1.57 [1.57-1.57] 1.18 [1.18-1.18] 1.57 [1.55-1.57] 1.25 [1.25-1.25]

Flip angle * 65 [65-65] 65 [65-65] 65 [65-65] 65 [65-65] 60 [60-60] 80 [79-80] 60 [60-60] 78 [78-78]

"*: median (Q1-Q3)"

(n = 24)(n = 27)

Development dataset Prospective validation dataset External validation dataset 

G+/LVH- patients Healthy controls
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After selecting the baseline models with the highest performance, the following models were 
composed: model 1) LVBloodpool+Myocard in 2CH view in ES phase; model 2) LVBloodpool+Myocard in 2CH, 3CH and 
4CH view in ES phase; model 3) LVBloodpool+Myocard in 2CH, 3CH and 4CH view in ES phase, and LVMyocard in 
2CH view, LVBloodpool in 3CH view and LVBloodpool+Myocard in 4CH view all three in ED phase; model 4) 
manually scored features from N. van der Velde et al. (2021) [34], and model 5) a combination of 
manually scored features and setup used for model 3. 
 

3.3 Evaluation of radiomics models 
The results of the radiomics models performed with manual segmentation for development dataset, 
prospective validation dataset and external validation dataset are depicted in Table 3. The obtained 
ROC curves are shown in Figure 4. In addition, the performance values and ROC curves obtained from 
radiomics models performed with automatic segmentation are given in Appendix D (Table D1 and 
Figure D1). Lastly, the performance values and ROC curves obtained from the additional models to 
eliminate biases in external validation dataset are found in Appendix E (Table E1 and Figure E1) 
 
Table 3: Performance values of the three datasets performed with manual segmentation based on: model 1: 2CH 
view LVBloodpool+Myocad in ES phase; model 2: 2CH, 3CH and 4CH view in LVBloodpool+Myocad ES phase; model 3: 2CH, 3CH 
and 4CH view in LVBloodpool+Myocad ES phase and 2CH view LVMyocard, 3CH view LVBloodpool and 4CH view LVBloodpool+Myocard 

in ED phase; model 4: manually scored features from N. van der Velde et al. [34]; and model 5 a combination of 
manually scored features and setup used for model 3.  

 
Abbreviations: AUC, Area Under the Curve 
* Outcomes are presented with the 95% confidence interval. 

 
 

3.3.1 Evaluation of radiomics models on development dataset 
Model 1, based on one long-axis view in one phase, resulted in a mean AUC of 0.86 (95% CI: 0.78-0.94), 
mean accuracy of 0.79 (95% CI: 0.70-0.88), mean sensitivity of 0.79 (95% CI: 0.66-0.93) and mean 
specificity of 0.78 (95% CI: 0.64-0.93). Model 2, based on the three long-axis views in one phase, had 
a slightly higher mean AUC of 0.89 (95% CI: 0.81-0.97). Moreover, no improvement was detected in 
accuracy, sensitivity and specificity. Model 3, based on three long-axis views in both ED and ES phase, 
had similar performance with an AUC of 0.88 (95% CI: 0.81, 0.96). The manually scored features in 

Development dataset

Model 1 Model 2 Model 3 Model 4 Model 5

AUC 0.86 [0.78, 0.94] 0.89 [0.81, 0.97] 0.88 [0.81, 0.96] 0.86 [0.77, 0.94] 0.89 [0.81, 0.96]

Accuracy 0.79 [0.70, 0.88] 0.79 [0.69, 0.89] 0.77 [0.66, 0.87] 0.75 [0.65, 0.84] 0.78 [0.69, 0.87]

Sensiticity 0.79 [0.66, 0.93] 0.79 [0.65, 0.93] 0.74 [0.58, 0.90] 0.72 [0.59, 0.85] 0.78 [0.64, 0.91]

Specificity 0.78 [0.64, 0.93] 0.79 [0.65, 0.93] 0.80 [0.67, 0.93] 0.79 [0.64, 0.93] 0.79 [0.66, 0.92]

Prospective validation dataset

Model 1 Model 2 Model 3

AUC 0.83 [0.69, 0.98] 0.89 [0.74, 1.03] 0.85 [0.66, 1.03]

Accuracy 0.78 [0.64, 0.92] 0.83 [0.71, 0.96] 0.86 [0.75, 0.98]

Sensiticity 0.64 [0.34, 0.93] 0.55 [0.24, 0.85] 0.55 [0.23, 0.86]

Specificity 0.84 [0.70, 0.98] 0.96 [0.88, 1.04] 1.00 [-, -]

External validation dataset

Model 1 Model 2 Model 3

AUC 0.58 [0.42, 0.75] 0.63 [0.47, 0.79] 0.65 [0.48, 0.81]

Accuracy 0.53 [0.39, 0.67] 0.53 [0.39, 0.67] 0.53 [0.39, 0.67]

Sensiticity 1.00 [-, -] 1.00 [-, -] 1.00 [-, -]

Specificity 0.00 [-, -] 0.00 [-, -] 0.00 [-, -]
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model 4 resulted in an AUC of 0.86 (95% CI: 0.77-0.94), where the obtained AUC with the radiomics 
method was lower compared to the methodology described in N. van der Velde et al. (2021) [34] (mean 
AUC of 0.92 (95% CI: 0.87-0.97)). Finally, model 5, combining the manually scored features and the 
imaging features extracted from both phases in all three long-axis views, did not further improve the 
performance (AUC of 0.89 (95% CI: 0.81, 0.96)).  

 

3.3.2 Evaluation of radiomics models on prospective and external validation dataset 
Model 1, based on one long-axis view in one phase, resulted in a mean AUC of 0.83 (95% CI: 0.69-0.98) 
for prospective validation dataset and an AUC of 0.58 (95% CI: 0.42-0.75) for external validation 
dataset was obtained. Model 2, based on the three long-axis views in one phase, had a slightly higher 
mean AUC as well for both validation datasets with an AUC of 0.89 (95% CI: 0.74-1.03) and 0.63 (95% 
CI: 0.47-0.79), respectively. Finally, model 3, based on three long-axis views in both ED and ES phase, 
had again a similar performance to model 2 with an AUC of 0.85 (95% CI: 0.66-1.03) for the prospective 
validation dataset and an AUC of 0.65 (95% CI: 0.48-0.81) for the external validation dataset.  
 
The three models evaluated with the prospective validation and external validation dataset were found 
to have varying performances. Overall, the performance of the prospective validation dataset was 
similar to the development dataset, while the external validation dataset was slightly above random 
guessing.  
 
The ROC curves for the models showed some sharp bends, while the curves for the development 
dataset were smoother. All models on the external validation dataset had a sensitivity of 1.00 and a 
specificity of 0.00. This means that each model within this dataset correctly classifies all G+/LVH- 
patients, while all healthy controls are incorrectly classified as G+/LVH- patients. In addition, 
prospective validation dataset showed that with multiple views, sensitivity decreased from 0.64 to 
0.55, while specificity increased from 0.84 to 0.96 obtained from model 1 and model 2, respectively. 
 

Figure 4: ROC curves of manual segmentation present the model on development dataset (red), prospective 
validation dataset (blue) and external validation dataset (green). The ROC curves show: a) model 1: 2CH view 
LVBloodpool+Myocad in ES phase; b) model 2: 2CH, 3CH and 4CH view in LVBloodpool+Myocad ES phase; c) model 3: 2CH, 3CH 
and 4CH view in LVBloodpool+Myocad ES phase and 2CH view LVMyocard, 3CH view LVBloodpool and 4CH view LVBloodpool+Myocard 

in ED phase; d) model 4: manually scored features from N. van der Velde et al. [34]; and e) model 5 a combination 
of manually scored features and setup used for model 3. 
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3.3.3 Evaluation of radiomics models with automatic segmentation  
The obtained mean ± standard deviation of the DSC, given in Appendix D (Table D2), indicated high 
agreement with an overall DSC of 0.93±0.05, 0.93±0.05 and 0.92±0.04 for the development, 
prospective validation and external validation dataset, respectively. Visual inspection showed that 
differences between manual and automatic segmentations were mainly located at the ends of basal 
wall, shown in Appendix D (Figure D2). In addition, the delineation of the automatic segmentation was 
smoother, which resulted in less prominent myocardial recesses in the segmentation.  
 
Despite high agreement, performance was generally lower compared to manual segmentation. For 
example, an AUC of 0.73 (95% CI: 0.62-0.85) was found with automatic segmentation in model 1 while 
an AUC of 0.86 (95% CI: 0.78-0.94) was obtained with manual segmentation. 
 

3.3.4 Evaluation of biases on external validation dataset  
Model 1A, based on shape feature extraction solely, was evaluated by the external validation dataset 
and showed an even slightly lower performance with an AUC of 0.46 (95% CI: 0.29-0.62) than the 
original model 1. Model 1B, based on a manually adjusted slice thickness, in both training and 
evaluating, resulted in a slightly higher performance with an AUC of 0.63 (95% CI: 0.47-0.78). Finally, 
model 1C, based on a manually adjusted slice thickness and shape feature extraction solely, resulted 
in a similar performance as model 1A, with a AUC of 0.47 (95% CI: 0.31-0.63). 
 
In addition, similarly, the sensitivity and specificity were found to be 1.00 and 0.00 for both model 1A 
and 1B, respectively. However, in model 1C, a slight decrease in sensitivity and a slight increase in 
specificity was found resulting in mean sensitivity of 0.93 and mean specificity of 0.08. 
 
Finally, the obtained values of the two shape features (sf_Max2DDiameterSlice and sf_area_avg_2D) 
and two intensity features (hf_mean and hf_std) are shown in Table 4. Within the shape features, the 
IQR of the healthy controls from the external validation dataset were more similar to the IQR of the 
G+/LVH- patients from the development dataset than those of the healthy controls. Overall, the IQR 
of the two shape features in healthy controls within the development dataset is higher than in the 
other subjects. Within the different datasets, the two intensity features were found within the same 
range, with the largest different visible in hf_mean value of LVBloodpool in G+/LVH- patients (IQR of 0.82-
1.25 in development dataset and IQR of 0.99-1.70 in external validation dataset).  
 
 

 
Table 4: Values of two shape (sf_Max2DDiameterSlice and sf_area_avg_2D) and two intensity (hf_mean and 
hf_std) features in both LVMyocard and LVBloodpool segmentation obtained from development dataset and external 
validation dataset.  
Abbreviations: G+/LVH-, genotype-positive left ventricular hypertrophy-negative. 
* Values are median [interquartile range].  
 
 
 

 

Dataset Subjects

sf_Maximum2DDiameterSlice sf_area_avg_2D sf_Maximum2DDiameterSlice sf_area_avg_2D

Development G+/LVH- 81.23 [77.46, 88.87] 3229.22 [2948.18, 3564.82] 71.58 [68.08, 78.91] 1913.37 [1677.02, 2236.66]

Healthy control 87.81 [83.46, 92.32] 3526.62 [3206.35, 4107.00] 81.93 [76.38, 86.63] 2205.82 [1969.86, 2618.63]

External Validation G+/LVH- 83.25 [77.70, 86.61] 3205.04 [2994.69, 3508.10] 73.64 [65.96, 76.71] 2032.91 [1672.49, 2147.89]

Healthy control 86.51 [78.23, 91.95] 3356.01 [2905.21, 3865.83] 75.46 [66.03, 79.77] 1952.12 [1651.35, 2373.26]

hf_mean hf_std hf_mean hf_std

Development G+/LVH- -0.11 [-0.26, 0.01] 0.22 [0.19, 0.26] 1.07 [0.82, 1.25] 0.50 [0.46, 0.58]

Healthy control -0.10 [-0.20, -0.05] 0.23 [0.22, 0.25] 1.10 [1.03, 1.20] 0.53 [0.48, 0.58]

External Validation G+/LVH- -0.13 [-0.21, 0.01] 0.22 [0.19, 0.25] 1.23 [0.99, 1.70] 0.68 [0.63, 0.80]

Healthy control -0.25 [-0.33, -0.19] 0.21 [0.19, 0.26] 0.98 [0.72, 1.30] 0.66 [0.53, 0.74]

LVMyocard LVBloodpool
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3.4 Model analysis 
As the models within datasets showed a similar performance, the model insight analysis was only 
conducted for model 1. After Bonferroni correction, a total of 39 features showed statistically 
significant differences in model 1 performed with manual segmentation, with p-values from 7.00x10-5 
to 4.11x10-2. These included eight shape feature, one intensity feature and 30 texture features. In 
addition, a total of 3 features showed statistically significant differences in model 1 performed with 
automatic segmentation, with p-values from 8.56x10-3 to 2.93x10-2. These included two shape feature 
and one texture feature. The features with p-values ≤0.05 of the Mann-Whitney U test obtained from 
manual and automatic segmentation are shown in Appendix F (Table F1 and Table F2). The majority of 
the features that were considered statistically significant consisted of features extracted from the 
LVBloodpool segmentation, with 34 out of 39 features from manual segmentation and two out of three 
from automatic segmentation.  
 
Of the 97 subjects in the development dataset with manual segmentation, 47 were always classified 
correctly, i.e. in all 100 cross-validation iterations. In contrast, eight subjects were always classified 
incorrectly, including four G+/LVH- patients and four healthy controls. Examples of the CMR images 
from G+/LVH- patients and healthy controls that were labelled as typical or atypical are shown in Figure 
5. In addition, with automatic segmentation 33 out of 97 subjects were always classified correctly and 
twelve were always classified incorrectly. The subjects who were always incorrectly classified were 
visually checked for possible segmentation errors or unusual features. Based on visual inspection of 
the CMR images, there was no clear relationship visible. In addition, no clear relationship was found 
between atypical and typical subjects in terms of scan parameters or clinical characteristics.  
 

 

 
Figure 5: Examples of typical and atypical subjects within development dataset. Abbreviations: G+/LVH-, 
genotype-positive left ventricular hypertrophy-negative. 
 
 
 

 
 
 
 
 
 

G+/LVH- patients Healthy controls

Atypical     _

Typical  	  
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4. Discussion 
 
 

 

The primary aim of this study was to investigate whether radiomics is able to distinguish between 
G+/LVH- patients and healthy controls based on native CMR images. In this study, we showed that our 
radiomics models can distinguish G+/LVH- patients from healthy controls, in an internal cross-
validation and in prospective validation dataset.  
 
Previous studies have already evaluated radiomics for the differentiation HCM patients and healthy 
controls. These studies showed promising results [3, 12, 27, 28]. However, these studies did not involve 
external validation, leaving a gap in the reproducibility of the results. In addition, these studies 
included HCM patients with presence of LVH, while our study was focusing on HCM patients in whom 
the disease did not yet manifested with a thickened left ventricle.  
 
The models trained and evaluated on development dataset and models validated on prospective 
validation dataset, performed all above random guessing (0.50). The best performance was found in 
model 2, using 2CH, 3CH and 4CH view in ES phase. However, model 1, using a single view, showed 
similar performance. As demonstrated, radiomics managed to achieve good performance in both the 
development dataset and the prospective validation dataset with a single view, while adding additional 
views did not improve performance. Adding additional views might even lead to too much noise, 
resulting in overfitting. With model insight analysis, it was excluded that the subjects classified as 
atypical/typical were related to scan parameters or patient characteristics. Moreover, no deviations 
were apparent using visual inspection. In addition, model insight analysis also revealed that in 
development dataset the majority of features that showed a statistically significant differences were 
derived from the LVBloodpool segmentation. These results suggest that a larger difference in structure 
and thus more tissue abnormalities are found in LVBloodpool compared to LVMyocard. Further, for 
prospective validation dataset none of the features showed statistically significant differences. This 
may be due to the lack of power for these radiomics models. 
 
In addition to the high performance obtained for development dataset and prospective validation 
dataset, the external validation dataset in contrast showed a low performance. The external validation 
dataset was not able to distinguish between G+/LVH- patients and healthy controls, with performance 
slightly above random guessing. It was assumed that this is the result of training models on a 
homogeneous dataset, while external validation dataset was performed with different scan 
parameters. Since different scan parameters were used in development dataset and external 
validation dataset, it may be assumed that this will have an effect on the histogram distribution and 
thus extraction of intensity and texture features. To eliminate this bias, a model was performed from 
which only shape features were extracted. This model showed that the performance in external 
validation dataset remained low. As a result, it was suggested that the cardiac shape in general was 
different in external validation dataset. Moreover, examination of two shape features showed that 
there was a slight difference in maximum diameter and area. These values demonstrated that the 
median and IQR of the shape features obtained from healthy controls in developments dataset differed 
somewhat from the other subjects. This may be the result of a difference in CMR planning or a 
difference in study population. Further research should reveal whether these differences are the 
reason for low performance. The two intensity features, mean and std, were used to assess 
information about signal intensities. The values of the two intensity features showed a minimal 
difference. Nevertheless, the histogram distributions can still be very different within the different 
datasets. Therefore, this is not sufficient to completely eliminate the effect of variation in scan 
acquisition protocols on performance. Finally, it was demonstrated with the additional model in which 
slice thickness was manually adjusted, that the different slice thickness between the different datasets 
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had a minimal negative impact on performance. As a result, the slice thickness can be eliminated as a 
bias. 
 
To compare the radiomics models with more consistent and reproducible segmentations, the 
performance is compared to radiomics models performed with automatic segmentation. The different 
segmentation methods showed high agreement using DSC. Despite the high agreement, a generally 
lower performance was found. Visual inspection revealed a minimal difference in segmentation, with 
difference mainly visible at the ends of the basal wall. In addition, the delineation was generally tighter 
around endocardial and epicardial borders compared to manual segmentation. Despite this minimal 
difference, due to the tighter delineation, information from pixels/shape of crypts and anterobasal 
hooks may be missed and therefore result in lower performance. It would be of great benefit to clinical 
practice if equally high performance could be achieved with automatic segmentation, as there is no 
dependence on inter- and intra-observer variation and it is less time consuming. It is hypothesized that 
the application of semi-automatic segmentation, another less time consuming application, would be a 
good option, where delineation around crypts/hooks would have to adjusted manually. 
 
Our study has several limitations. First, our radiomics models were developed and evaluated on a 
homogeneous dataset, which reduces the chance of reproducing the obtained performance in a clinical 
setting. This could therefore be reflected in the drop in performance on the external validation dataset 
where other MRI scanners were used, resulting in a lack of generalizability. Second, due to bias in SA 
views by contrast agents, these views were not included in the radiomics models. Whereas, this was 
often the view in which other studies preferably measured the MLVWT or examined the predictive 
value of radiomics for HCM patients [46, 47, 48]. Third, 3D features could not be extracted, since only 
2D views were used. However, these 3D features may provide additional predictive value. In addition, 
orientation-dependent features were included. These are dependent on orientation of segmentation 
and may have a negative effect on the predictive value. To exclude these biases it is recommended not 
to include features that are orientation dependent in the future. Another limitation is that healthy 
controls were not required to be tested for presence of pathogenic DNA variants. However, due to the 
low prevalence its impact may be neglected. Finally, this study demonstrates how strongly the 
performance of radiomics models is affected by segmentation. Despite the high DSC, a decrease in 
performance was observed in models performed with automatic segmentation. This suggests that 
radiomics actually demonstrates that there are important differences between the two segmentations 
that affect performance. 
 
Future research, in addition to the previously mentioned points, should include training the radiomics 
model on multi-center data, including different scan parameters, field strengths and manufacturers, 
to obtain better generalizability of the results. In addition, it would also be interesting to see if 
radiomics can distinguish between the different mutation types in G+/LVH- patients. Considering that 
Wang et al. (2020) [5] demonstrated that this is possible in patients with G+/LVH+, it is assumed that 
it should also be possible with G+/LVH- patients. Finally, the ultimate goal for future research would 
be the prediction of manifestation using radiomics, including predictive value for SCD. With the aim of 
gaining a better clinical understanding of HCM and providing better treatment.  
 

5. Conclusion  
 

 
In conclusion, our radiomics model based on native CMR images was able to distinguish between 
G+/LVH- patients and healthy controls, in an internal cross-validation and in prospective validation 
dataset. The model was not able to differentiate G+/LVH- patients in external validation dataset. 
Further research is needed to improve the generalizability of results.  
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Appendix A: Morphological features 
 

 
Figure A1: Example of anterobasal hook and crypt, indicated by arrow and asterisk, respectively. Adapted from 
N. van der Velde et al. (2021) [34]. 
 
 

Appendix B: Extracted image features 
 
 
Table B1: Overview of the 555 features used in this study: GLCM and GLCMMS features were calculated in four 
different directions (0, 45, 90, 135 degrees) using 16 gray levels and pixel distances of 1 and 3. LBP features were 
calculated using the following three parameter combinations: 1 pixel radius and 8 neighbours, 2 pixel radius and 
12 neighbours, and 3 pixel radius and 16 neighbours. Gabor features were calculated using three different 
frequencies (0.05, 0.2, 0.5) and four different angles (0, 45, 90, 135 degrees). LoG features were calculated using 
three different widths of the Gaussian (1, 5 and 10 pixels). Vessel features were calculated using the full mask, 
the edge, and the inner region. Local phase features were calculated on the monogenic phase, phase congruency 
and phase symmetry. Adapted from M.P.A. Starmans (in press) [30]. 

 
Abbreviations: LoG: Laplacian of Gaussian; GLCM: gray level co-occurrence matrix; MS: multi slice; NGTDM: 
neighborhood gray tone difference matrix; LBP: local binary patterns; GLSZM: gray level size zone matrix; GLRLM: 
gray level run length matrix; GLDM: gray level dependence matrix; std: standard deviation. 

Histogram Vessel Gabor NGTDM LBP 

(13 features): (12*3=39 features): (13*4*3=156 features): (5 features): (13*3=39 features):

min min min busyness min

max max max coarseness max

mean mean mean complexity mean

median median median contrast median

std std std strength std

skewness skewness skewness skewness

kurtosis kurtosis kurtosis kurtosis

peak peak peak peak

peak position peak position peak position peak position

range range range range

energy energy energy energy

quartile range quartile quartile range quartile range

entropy entropy entropy entropy

GLDM Shape Local phase 

(14 features): (13*3=39 features):

Dependence Entropy min

Dependence Non-Uniformity max

Dependence Non-Uniformity Normalized mean

Dependence Variance median

Gray Level Non-Uniformity std

Gray Level Variance skewness

High Gray Level Emphasis kurtosis

Large Dependence Emphasis peak

Large Dependence High Gray Level Emphasis peak position

Large Dependence Low Gray Level Emphasis range

Low Gray Level Emphasis energy

Small Dependence Emphasis quartile

Small Dependence High Gray Level Emphasis entropy

Small Dependence Low Gray Level Emphasis

surface area

surface volume ratio

maximum diameter 2D (rows, columns, slices)

sphericity

ZonePercentage ShortRunHighGrayLevelEmphasis minor axis length

ZoneVariance ShortRunLowGrayLevelEmphasis maximum diameter 3D

SmallAreaLowGrayLevelEmphasis RunVariance least axis length

ZoneEntropy ShortRunEmphasis major axis length

SmallAreaEmphasis RunLengthNonUniformityNormalized elongation

SmallAreaHighGrayLevelEmphasis RunPercentage flatness

SizeZoneNonUniformity RunEntropy area (mean, std, min + max

SizeZoneNonUniformityNormalized RunLengthNonUniformity volume (total, mesh, volume)

Large Area Low Gray Level Emphasis Long Run Low Gray Level Emphasis ell iptic variance (mean + std) 

Low Gray Level Zone Emphasis Low Gray Level Run Emphasis solidity (mean + std)

Large Area Emphasis Long Run Emphasis circular variance (mean + std)

Large Area High Gray Level Emphasis Long Run High Gray Level Emphasis principal axes ratio (mean + std)

radial distance (mean + std)

Gray Level Variance Gray Level Variance roughness (mean + std) 

High Gray Level Zone Emphasis High Gray Level Run Emphasis convexity (mean + std) 

(16 features): (16 features): (35 features):

Gray Level Non Uniformity Gray Level Non Uniformity compactness (mean + std)

Gray Level Non Uniformity Normalized Gray Level Non Uniformity Normalized

quartile

entropy

GLSZM GLRM 

peak position

range

energy

skewness correlation (normal, MS mean + std)

kurtosis

peak

mean homogeneity (normal, MS mean + std)

median angular second moment (ASM) (normal, MS mean + std)

std energy (normal, MS mean + std)

LoG GLCM (MS)

(13*3=39 features): (6*3*4*2=144 features):

min contrast (normal, MS mean + std) 

max dissimilarity (normal, MS mean + std)
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Appendix C: Baseline models 
 
Table C1: Performance values of the 24 baseline models. Baseline models with the highest performance, which 
were eventually included in the radiomics models for further evaluation, are shown in bold 

 
Abbreviations: 2CH, 2-chamber; 3CH, 3-chamber; 4CH, 4-chamber; SA, short axis; ED, End-diastolic; ES, End-
systolic; AUC, Area Under the Curve 
* Outcomes are presented with the 95% confidence interval. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Phase View Segmentation AUC Accuracy Sensiticity Specificity 

LVBloodpool 0.74 [0.64, 0.85] 0.65 [0.55, 0.75] 0.57 [0.41, 0.73] 0.77 [0.60, 0.94]

LVMyocard 0.81 [0.72, 0.90] 0.75 [0.66, 0.83] 0.81 [0.69, 0.93] 0.66 [0.49, 0.82]

LVBloodpool+Myocard 0.77 [0.67, 0.86] 0.69 [0.60, 0.79] 0.69 [0.53, 0.85] 0.70 [0.53, 0.87]

LVBloodpool 0.76 [065, 0.87] 0.67 [0.56, 0.77] 0.67 [0.52, 0.82] 0.67 [0.49, 0.85]

LVMyocard 0.65 [0.53, 0.76] 0.59 [0.49, 0.69] 0.59 [0.43, 0.75] 0.59 [0.40, 0.77]

LVBloodpool+Myocard 0.72 [0.61, 0.82] 0.62 [0.51, 0.73] 0.58 [0.39, 0.77] 0.69 [0.50, 0.89]

LVBloodpool 0.73 [0.63, 0.83] 0.64 [0.55, 0.73] 0.64 [0.47, 0.80] 0.65 [0.49, 0.81]

LVMyocard 0.70 [0.57, 0.82] 0.63 [0.52, 0.75] 0.65 [0.48, 0.82] 0.60 [0.38, 0.82]

LVBloodpool+Myocard 0.75 [0.64, 0.86] 0.66 [0.56, 0.76] 0.64 [0.47, 0.81] 0.70 [0.52, 0.88]

LVBloodpool 0.99 (0.98, 1,01) 0.95 (0.89, 1.00) 0.93 (0.85, 1.01) 0.97 (0.91, 1.03)

LVMyocard 1.00 (0.98, 1.01) 0.97 (0.93, 1.01) 0.96 (0.90, 1.02) 0.99 (0.95, 1.03)

LVBloodpool+Myocard 1.00 (0.99, 1.01) 0.98 (0.95, 1.01) 0.97 (0.93, 1.02) 1.00 (0.98, 1.02)

LVBloodpool 0.82 [0.71, 0.93] 0.74 [0.64, 0.85] 0.81 [0.66, 0.95] 0.65 [0.47, 0.82]

LVMyocard 0.80 [0.70, 0.90] 0.73 [0.62, 0.84] 0.76 [0.60, 0.91] 0.69 [0.52, 0.85]

LVBloodpool+Myocard 0.86 [0.78, 0.94] 0.79 [0.70, 0.88] 0.79 [0.66, 0.93] 0.78 [0.64, 0.93]

LVBloodpool 0.82 [0.72, 0.91] 0.73 [0.63, 0.83] 0.74 [0.60, 0.88] 0.71 [0.54, 0.88]

LVMyocard 0.77 [0.67, 0.88] 0.69 [0.59, 0.78] 0.68 [0.53, 0.83] 0.70 [0.54, 0.86}

LVBloodpool+Myocard 0.83 [0.74, 0.92] 0.74 [0.64, 0.84] 0.72 [0.58, 0.85] 0.78 [0.63, 0.93]

LVBloodpool 0.84 [0.75, 0.93] 0.75 [0.66, 0.84] 0.76 [0.63, 0.90] 0.73 [0.59, 0.87]

LVMyocard 0.86 [0.76, 0.95] 0.77 [0.67, 0.87] 0.84 [0.72, 0.96] 0.67 [0.51, 0.83]

LVBloodpool+Myocard 0.86 [0.77, 0.94] 0.77 [0.68, 0.86] 0.80 [0.66, 0.93] 0.74 [0.60, 0.88]

LVBloodpool 0.99 (0.98, 1.01) 0.96 (0.91, 1.01) 0.95 (0.89, 1.01) 0.96 (0.88, 1.05)

LVMyocard 0.99 (0.97, 1.01) 0.95 (0.90, 0.99) 0.95 (0.89, 1.01) 0.94 (0.86, 1.02)

LVBloodpool+Myocard 1.00 (0.99, 1.00) 0.96 (0.92, 1.00) 0.97 (0.92, 1.02) 0.96 (0.88, 1.03)

ES  

2CH

3CH

4CH

SA

ED  

2CH

3CH

4CH

SA
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Appendix D: Automatic segmentation 
 

 
Table D1: Performance values of the three datasets performed with automatic segmentation based on: model 1: 
2CH view LVBloodpool+Myocad in ES phase; model 2: 2CH, 3CH and 4CH view in LVBloodpool+Myocad ES phase; model 3: 2CH, 
3CH and 4CH view in LVBloodpool+Myocad ES phase and 2CH view LVMyocard, 3CH view LVBloodpool and 4CH view 
LVBloodpool+Myocard in ED phase.  

 
Abbreviations: AUC, Area Under the Curve 
* Outcomes are presented with the 95% confidence interval. 

 

 

 
Table D2: The pairwise Dice Similarity Coefficient (DSC) values between manual and automatic segmentation 
within different datasets used in this study. 

 
Abbreviations: 2CH, 2-chamber; 3CH, 3-chamber; 4CH, 4-chamber; ED, End-diastolic; ES, End-systolic; AUC, Area 
Under the Curve 
* Values are given in mean ± std 
 

 

 

Development dataset

Model 1 Model 2 Model 3

AUC 0.73 [0.62, 0.85] 0.75 [0.65, 0.84] 0.77 [0.67, 0.87]

Accuracy 0.67 [0.56, 0.77] 0.63 [0.52, 0.74] 0.66 [0.55, 0.76]

Sensiticity 0.69 [0.54, 0.85] 0.54 [0.31, 0.77] 0.57 [0.39, 0.75]

Specificity 0.62 [0.43, 0.81] 0.76 [0.58, 0.94] 0.78 [0.61, 0.96]

Prospective validation dataset

Model 1 Model 2 Model 3

AUC 0.73 [0.53, 0.93] 0.77 [0.58, 0.97] 0.84 [0.66, 1.01]

Accuracy 0.72 [0.58, 0.87] 0.78 [0.64, 0.92] 0.81 [0.68, 0.93]

Sensiticity 0.64 [0.34, 0.93] 0.45 [0.15, 0.76] 0.55 [0.25, 0.84]

Specificity 0.76 [0.59, 0.93] 0.92 [0.81, 1.03] 0.92 [0.81, 1.03]

External validation dataset

Model 1 Model 2 Model 3

AUC 0.64 [0.48, 0.80] 0.50 [0.32, 0.68] 0.57 [0.41, 0.73]

Accuracy 0.55 [0.42, 0.68] 0.53 [0.39, 0.67] 0.53 [0.39, 0.67]

Sensiticity 1.00 [-, -] 1.00 [-, -] 1.00 [-, -]

Specificity 0.04 [-0.03, 0.12] 0.00 [-, -] 0.00 [-, -]

Dataset Segmentation 2CH 3CH 4CH 2CH 3CH 4CH

LVBloodpool 0.97 ± 0.01 0.96 ± 0.02 0.97 ± 0.02 0.93 ± 0.03 0.92 ± 0.04 0.92 ± 0.03

LVMyocard 0.88 ± 0.03 0.87 ± 0.03 0.89 ± 0.03 0.91 ± 0.03 0.89 ± 0.09 0.90 ± 0.03

LVBloodpool+Myocard 0.93 ± 0.05 0.92 ± 0.05 0.93 ± 0.05 0.92 ± 0.03 0.90 ± 0.07 0.91 ± 0.03

LVBloodpool 0.97 ± 0.01 0.96 ± 0.02 0.97 ± 0.01 0.93 ± 0.02 0.92 ± 0.04 0.92 ± 0.03

Prospective validation LVMyocard 0.88 ± 0.04 0.88 ± 0.03 0.89 ± 0.02 0.91 ± 0.03 0.87 ± 0.15 0.91 ± 0.02

LVBloodpool+Myocard 0.93 ± 0.05 0.92 ± 0.05 0.93 ± 0.04 0.92 ± 0.03 0.89 ± 0.11 0.92 ± 0.02

LVBloodpool 0.96 ± 0.01 0.95 ± 0.02 0.95 ± 0.02 0.90 ± 0.02 0.90 ± 0.06 0.89 ± 0.03

External validation LVMyocard 0.86 ± 0.03 0.85 ± 0.03 0.85 ± 0.03 0.90 ± 0.03 0.88 ± 0.03 0.89 ± 0.03

LVBloodpool+Myocard 0.91 ± 0.06 0.90 ± 0.05 0.90 ± 0.06 0.90 ± 0.02 0.89 ± 0.05 0.89 ± 0.03

ED ES

Development
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Figure D1: ROC curves of automatic segmentation present the model on development dataset (red), prospective 
validation dataset (blue) and external validation dataset (green). The ROC curves show: a) model 1: 2CH view 
LVBloodpool+Myocad in ES phase; b) model 2: 2CH, 3CH and 4CH view in LVBloodpool+Myocad ES phase, and c) model 3: 
2CH, 3CH and 4CH view in LVBloodpool+Myocad ES phase and 2CH view LVMyocard, 3CH view LVBloodpool and 4CH view 
LVBloodpool+Myocard in ED phase. 
 

 

 

  

  

Figure D2: Example of manual and automatic segmentation from development dataset. Difference in 
segmentation visible in ends of basal wall and overall smoother delineation 
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Appendix E: Additional models 
 

  

 

Figure G1: ROC curves present the additional model on external validation dataset (green). The ROC curves show: 
a) model 1A: shape feature extraction solely; b) model 1B: manually adjusted the slice thickness to same slice 
thickness as training set, and c) model 1C: combined setups of model 1A and 1B. 
 
 
Table D1: Performance values of the additional models performed on external validation dataset based on: model 
1A: shape feature extraction solely; model 1B: manually adjusted the slice thickness to same slice thickness as 
training set, and model 1C: combined setups of model 1A and 1B. 

 
Abbreviations: AUC, Area Under the Curve 
* Outcomes are presented with the 95% confidence interval. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External validation dataset

Model 1A Model 1B Model 1C

AUC 0.46 [0.29, 0.62] 0.63 [0.47, 0.78] 0.47 [0.31, 0.63]

Accuracy 0.53 [0.39, 0.67] 0.53 [0.40, 0.66] 0.53 [0.39, 0.67]

Sensiticity 1.00 [-, -] 1.00 [-, -] 0.93 [0.83, 1.03]

Specificity 0.00 [-, -] 0 [-, -] 0.08 [0.03, 0.20]
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Appendix F: Significant features  
 
Table F1: Overview of radiomics features with their statistically significant p-values obtained from development 
dataset performed with manual segmentation. The statistical significance was assessed using a Mann-Whitney 
U test. Only the features that showed statistically significant different are included. All p-values were corrected 
for multiple testing by multiplying the p-values with the total number of tests. CT_0 represents features extracted 
from LVMyocard segmentation, CT_1 represents features extracted from LVBloodpool segmentation. 

 
 

 

Features p-value

tf_Gabor_energy_F0.05_A0.0_CT_1 7.00E-05

sf_Maximum2DDiameterRow_CT_1 4.35E-04

tf_Gabor_mean_F0.05_A0.0_CT_1 6.67E-04

sf_rad_dist_std_2D_CT_1 6.92E-04

sf_Maximum3DDiameter_CT_1 8.01E-04

sf_Maximum2DDiameterSlice_CT_1 8.01E-04

tf_Gabor_energy_F0.05_A0.79_CT_1 2.42E-03

phasef_monogenic_entropy_WL3_N5_CT_1 3.19E-03

tf_LBP_energy_R15_P36_CT_1 4.64E-03

sf_solidity_avg_2D_CT_0 4.64E-03

phasef_phasesym_entropy_WL3_N5_CT_1 5.13E-03

tf_Gabor_entropy_F0.05_A0.0_CT_1 5.67E-03

tf_Gabor_min_F0.5_A0.79_CT_1 5.67E-03

tf_Gabor_entropy_F0.05_A0.79_CT_1 6.07E-03

tf_LBP_energy_R8_P24_CT_1 7.66E-03

tf_LBP_entropy_R3_P12_CT_1 9.03E-03

sf_MajorAxisLength_CT_1 9.03E-03

tf_LBP_entropy_R15_P36_CT_1 9.96E-03

tf_Gabor_entropy_F0.5_A2.36_CT_1 1.10E-02

tf_Gabor_entropy_F0.5_A0.79_CT_1 1.10E-02

tf_Gabor_entropy_F0.2_A0.0_CT_1 1.13E-02

tf_Gabor_entropy_F0.5_A1.57_CT_1 1.17E-02

tf_Gabor_entropy_F0.5_A0.0_CT_1 1.21E-02

tf_Gabor_kurtosis_F0.2_A0.0_CT_0 1.25E-02

tf_Gabor_entropy_F0.2_A2.36_CT_1 1.29E-02

tf_Gabor_entropy_F0.2_A0.79_CT_1 1.29E-02

tf_Gabor_kurtosis_F0.2_A2.36_CT_0 1.33E-02

tf_Gabor_entropy_F0.2_A1.57_CT_1 1.56E-02

tf_Gabor_entropy_F0.05_A2.36_CT_1 1.56E-02

tf_LBP_entropy_R8_P24_CT_1 1.56E-02

tf_NGTDM_Busyness_CT_1 2.08E-02

hf_entropy_CT_1 2.15E-02

tf_Gabor_entropy_F0.05_A1.57_CT_1 2.51E-02

sf_Sphericity_CT_0 2.59E-02

sf_rad_dist_avg_2D_CT_1 2.59E-02

tf_Gabor_kurtosis_F0.05_A0.0_CT_1 2.76E-02

tf_Gabor_kurtosis_F0.5_A0.0_CT_1 2.93E-02

tf_NGTDM_Strength_CT_1 3.02E-02

tf_Gabor_energy_F0.2_A2.36_CT_0 4.11E-02
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Table F2: Overview of radiomics features with their statistically significant p-values obtained from development 
dataset performed with automatic segmentation. The statistical significance was assessed using a Mann-Whitney 
U test. Only the features that showed statistically significant different are included. All p-values were corrected 
for multiple testing by multiplying the p-values with the total number of tests. CT_0 represents features extracted 
from LVMyocard segmentation, CT_1 represents features extracted from LVBloodpool segmentation. 

 
 

 

 

Label p-value

sf_Maximum2DDiameterRow_1_0_CT_1 8.56E-03

sf_solidity_avg_2D_1_0_CT_0 2.67E-02

tf_Gabor_min_F0.5_A0.79_1_0_CT_1 2.93E-02


