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Online and offline learning of player objectives
from partial observations in dynamic games

Lasse Peters1,2, Vicenç Rubies-Royo3, Claire J Tomlin3,
Laura Ferranti1, Javier Alonso-Mora1, Cyrill Stachniss2 and
David Fridovich-Keil4

Abstract
Robots deployed to the real world must be able to interact with other agents in their environment. Dynamic game theory
provides a powerful mathematical framework for modeling scenarios in which agents have individual objectives and
interactions evolve over time. However, a key limitation of such techniques is that they require a priori knowledge of all
players’ objectives. In this work, we address this issue by proposing a novel method for learning players’ objectives in
continuous dynamic games from noise-corrupted, partial state observations. Our approach learns objectives by coupling
the estimation of unknown cost parameters of each player with inference of unobserved states and inputs through Nash
equilibrium constraints. By coupling past state estimates with future state predictions, our approach is amenable to
simultaneous online learning and prediction in receding horizon fashion. We demonstrate our method in several simulated
traffic scenarios in which we recover players’ preferences, for, e.g. desired travel speed and collision-avoidance behavior.
Results show that our method reliably estimates game-theoretic models from noise-corrupted data that closely matches
ground-truth objectives, consistently outperforming state-of-the-art approaches.

Keywords
Inverse dynamic games, inverse optimal control, multi-agent prediction

1. Introduction

To operate safely and efficiently in environments shared
with other agents, robots must be able to predict the effects
of their actions on the decisions of others. In many such
settings, agents do not form a single team that shares a joint
objective. Instead, each agent may have an individual ob-
jective, encoded by a cost function which they optimize
unilaterally. Unless the objectives of all agents are perfectly
aligned, agents must therefore compete to minimize their
own cost, while accounting for the strategic behavior of
others. For example, consider the highway navigation
scenario in Figure 1. Here, each driver travels along the
highway with an individual objective that encodes their
preferences for speed, acceleration, and proximity to other
cars. In heavy traffic, the objectives of drivers may conflict.
For instance, if car 1 (blue) wishes to maintain its speed, it
must overtake the slower vehicles in front. At the same time,
however, the faster car 2 (orange) may wish maintain its
speed and but would be forced to decelerate if the driver of
car 1 changes lanes.

Mathematically, such interactions of multiple agents
with individual, potentially conflicting objectives are
characterized by a noncooperative dynamic game. The
theory underpinning dynamic games is well established

(Isaacs 1954-1955; Başar and Olsder 1999), and recent
work has put forth efficient algorithms to determine equi-
librium solutions to these problems, given players’ objec-
tives (Fridovich-Keil et al., 2020; Di and Lamperski 2019).
The forward game problem is depicted in Figure 1 (left to
right) for the highway driving scenario: given the cost
functions of all players (left), a forward game solver
computes their rational strategies and corresponding future
trajectories (right).

Unfortunately, the objectives of agents in a scene are
often not known a priori. Therefore, in order for game-
theoretic methods to find practical application in fields such
as robotics, it is imperative to recover these objectives from
data. This inverse dynamic game problem is illustrated in
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Figure 1 (right to left) for the highway driving scenario:
given observations of player’s strategies (right), an inverse
game solver recovers objectives (left) which explain the
observed behavior. This inverse dynamic game problem is
the focus of this work.

The challenge of recovering objectives from observed
behavior has been extensively studied in the literature on
inverse optimal control (IOC) (Kalman 1964; Mombaur
et al., 2010; Albrecht et al., 2011) and inverse reinforcement
learning (IRL) (Ng and Russell 2000; Ziebart et al., 2008).
Unfortunately, however, these methods are fundamentally
limited to the single-player setting. While recent efforts
extend these ideas to multi-agent IRL (Šošić et al., 2016;
Natarajan et al., 2010), those approaches are limited to
games with potential cost structures (Monderer and Shapley
1996) and do not directly apply in general noncooperative
settings. While initial work extends IOC methods to address
this limitation (Rothfuß et al., 2017; Inga et al., 2019;
Awasthi and Lamperski 2020), these inverse dynamic game
solvers rely upon full observation of states and inputs of all
players.

The main contribution of this work is a novel method for
learning player’s objectives in noncooperative dynamic
games from only noise-corrupted, partial state observations.
In addition to learning a cost model for all players, our
method also recovers a forward game solution consistent
with the learned objectives by enforcing equilibrium con-
straints on latent trajectory estimates. This bilevel formu-
lation further allows to couple observed and predicted
behavior to recover player’s objectives even from tempo-
rally incomplete interactions. As a result, our approach is
amenable for online learning and prediction in receding
horizon fashion.

This paper builds upon and extends our earlier work
(Peters et al., 2021). In this work, we provide a more in-
depth analysis of that approach. Additionally, while our
original work was limited to offline operation and could
therefore only recover players’ objectives for interactions
which had already occurred, in this work we remove this
requirement.

We evaluate our method in extensive Monte Carlo
simulations in several traffic scenarios with varying

Figure 1. 5-player highway driving scenario, modeled as a dynamic game. Solving the “forward” problem amounts to finding optimal
trajectories (right) for all cars, given their objectives (left). In contrast, this paper addresses the “inverse,” that is, it estimates the
objectives of each player given noise-corrupted observations of each agent’s trajectories. For example, our method can infer properties
such as the degree to which each player wishes to keep a safe distance from others (heat map, left). These learned objectives constitute an
abstract model which can be used to predict players’ actions in the future.
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numbers of players and interaction geometries. Empirical
results show that our approach is more robust to partial state
observations, measurement noise, and unobserved time-
steps than existing methods, and consequently it is more
suitable for predicting agents’ actions in the future.

2. Prior work

We begin by discussing recent advances in the well-studied
area of IOC. While methods from that field address only
single-player, cooperative settings, this body of work ex-
poses many of the important mathematical and algorithmic
concepts that appear in games. We discuss how some of
these approaches have been applied in the noncooperative
multi-player setting and emphasize the connections between
existing approaches and our contributions.

2.1. Single-player inverse optimal control

The IOC problem has been extensively studied since the
well-known work of Kalman (1964). In the context of IRL,
early formulations such as that of Ng and Russell (2000) and
maximum-entropy variants (Ziebart et al., 2008;
Kretzschmar et al., 2016) have proven successful in treating
problems with discrete state and control sets. In robotic
applications, optimal control problems typically involve
decision variables in a continuous domain. Hence, recent
work in IOC differs from the IRL literature mentioned
above as it is explicitly designed for smooth problems.

One common framework for addressing IOC problems
with nonlinear dynamics and nonquadratic cost structures is
bilevel optimization (Mombaur et al., 2010; Albrecht et al.,
2011). Here, the outer problem is a least squares or max-
imum likelihood estimation (MLE) problem in which
demonstrations are matched with a nominal trajectory es-
timate and decision variables parameterize the objective of
the underlying optimal control problem. The inner problem
determines the nominal trajectory estimate as the optimizer
of the “forward” (i.e., standard) optimal control problem for
the outer problem’s decision variables. A key benefit of
bilevel IOC formulations is that they naturally adapt to
settings with noise-corrupted partial state observations
(Albrecht et al., 2011).

Early bilevel formulations for IOC utilize derivative-free
optimization schemes to estimate the unknown objective
parameters in order to avoid explicit differentiation of the
solution to the inner optimal control problem (Mombaur
et al., 2010). That is, the inner solver is treated as a black-
box mapping from cost parameters to optimal trajectories
which is utilized by the outer solver to identify the unknown
parameters using a suitable derivative-free method. While
black-box approaches can be simple to implement due to
their modularity and lack of reliance on derivative infor-
mation, they often suffer from a high sampling complexity
(Nocedal and Wright 2006). Since each sample in the
context of black-box IOC methods amounts to solving a full
optimal control problem, such approaches remain

intractable for scenarios with large state spaces or additional
unknown parameters, such as unknown initial conditions.

Other works instead embed the Karush–Kuhn–Tucker
(KKT) conditions of the inner problem as constraints on the
outer problem. Since these techniques enforce only first-
order necessary conditions of optimality, globally optimal
observations are unnecessary and locally optimal demon-
strations suffice. Yet, a key computational difficulty of
KKT-constrained IOC formulations is that they yield a
nonconvex optimization problem due to decision variables
in the outer problem appearing nonlinearly with inner
problem variables in KKT constraints. This occurs even in
the relatively benign case of linear-quadratic IOC.

In contrast to bilevel optimization formulations where
necessary conditions of optimality are embedded as con-
straints, recent methods (Levine and Koltun 2012; Englert
and Toussaint 2018; Awasthi 2019; Menner and Zeilinger
2020; Jin et al., 2021) minimize the residual of these
conditions directly at the demonstrations. Since the ob-
served demonstration is assumed to satisfy any constraints
of the underlying forward optimal control problem, this
method can be formulated as fully unconstrained optimi-
zation. Additionally, these residual formulations yield a
convex optimization problem if the class of objective
functions is convex in the unknown parameters at the
demonstration (Keshavarz et al., 2011; Englert and
Toussaint 2018). This condition holds in the common
setting of linearly parameterized objective functions. Levine
and Koltun (2012) propose a variant of this approach that
utilizes quadratic approximations of the reward model
around demonstrations to derive optimality residuals in a
maximum entropy framework. Englert and Toussaint
(2018) present extensions of this method do accommo-
date inequality constraints on states and inputs. Much like
KKT-constrained formulations, these residual methods
operate on locally optimal demonstrations. However, an
important limitation of residual methods is that they require
observations of full state and input sequences. More re-
cently, Menner and Zeilinger (2020) compared IOC tech-
niques based on KKT constraints and residuals and
demonstrated inferior performance of the latter even in
problems with linear dynamics and quadratic target
objectives.

Our work takes inspiration from the KKT-constraint
formulation for single-player IOC as discussed by
Albrecht et al. (2011) and Menner and Zeilinger (2020).
While these works apply only to single-player settings, we
utilize the necessary conditions for open-loop Nash equi-
libriums (OLNEs) (Başar and Olsder 1999) to generalize
this approach to noncooperative multi-player scenarios.

2.2. Multi-player inverse dynamic games

Many of the IOC techniques discussed above have close
analogues in the context of multi-player inverse dynamic
games.

Peters et al. 919



As in single-player IOC, methods akin to black-box
bilinear optimization have also been studied in the con-
text of inverse games (Peters 2020; Le Cleac’h et al., 2021).
Peters (2020) uses a particle-filtering technique for online
estimation of human behavior parameters. This work
demonstrates the importance of inferring human behavior
parameters for accurate prediction in interactive scenarios.
However, there, inference is limited to a single parameter
and the work highlights the challenges associated with
scaling this sampling-based approach to high-dimensional
latent parameter spaces. Le Cleac’h et al. (2021) employ a
similar derivative-free filtering technique based on an un-
scented Kalman filter. While this approach drastically re-
duces the overall sample complexity, it still relies on exact
observations of the state to reduce the required number of
solutions to full dynamic games at the inner level.

Another line of research has put forth solution techniques
for inverse games that follow from the residual methods
outlined in Section 2.1 (Köpf et al., 2017; Rothfuß et al.,
2017; Awasthi and Lamperski 2020; Inga et al., 2019). Köpf
et al. (2017) study a special case of an inverse linear-
quadratic game in which the equilibrium feedback strate-
gies of all but one player are known. This assumption
reduces the estimation problem to single-player IOC to
which the residual methods discussed above can be applied
directly. Rothfuß et al. (2017) present a more general ap-
proach that does not exploit such special structure but in-
stead minimizes the residual of the first-order necessary
conditions for a local OLNE. Inga et al. (2019) present a
variant of this OLNE residual method in a maximum en-
tropy framework, generalizing the single-player IOC al-
gorithm proposed by Levine and Koltun (2012). Recently,
Awasthi and Lamperski (2020) also extended the OLNE
residual method of Rothfuß et al. (2017) to inverse games
with state and input constraints. This approach extends that
of Englert and Toussaint (2018) to noncooperative multi-
player scenarios.

All of these inverse game KKT residual methods share
many properties with their single-player counterparts. In
particular, since they rely upon only local equilibrium
criteria, they are able to recover player objectives even
from local-rather than only global-equilibrium demon-
strations. However, as in the single-player case, they rely
upon observation of both state and input to evaluate the
residuals.

In contrast to KKT residual methods (Rothfuß et al.,
2017; Awasthi and Lamperski 2020; Inga et al., 2019), we
enforce these conditions as constraints on a jointly estimated
trajectory, rather than minimizing the residual of these
conditions directly at the observation. By maintaining a
trajectory estimate in this manner, our method explicitly
accounts for observation noise, partial state observability,
and unobserved control inputs. Furthermore, in contrast to
black-box approaches to the inverse dynamic game problem
(Peters 2020; Le Cleac’h et al., 2021), our method does not
require repeated solutions of the underlying forward game.
Moreover, our method returns a full forward game solution

in addition to the estimated objective parameters for all
players.

3. Background: Open-loop Nash games

While this work is concerned with the inverse game
problem of learning objectives from observed behavior, we
first provide a technical introduction to the theory of for-
ward open-loop dynamic Nash games. These forward
games correspond to the model that we seek to recover in
this work. Furthermore, as we shall discuss in Section 4,
they may be used at the inner level of a bilevel optimization
problem to formulate the inverse game problem.

As discussed in Section 1, dynamic games provide an
expressive mathematical formalism for modeling the stra-
tegic interactions of multiple agents with differing objec-
tives. Interested readers are directed to Başar and Olsder
(1999) for a more complete discussion. We note that dy-
namic games afford a wide variety of equilibrium concepts;
our choice of open-loop Nash equilibria in this work
captures scenarios in which players do not account for
future information gains and instead commit to a sequence
of control decisions a priori. These conditions may occur
when occlusions prevent future information gains or when
bounded rationality causes players to ignore them. OLNEs
have been demonstrated to capture dynamic interaction
when embedded in receding-horizon re-planning schemes
(Wang et al., 2019; Le Cleac’h et al., 2020). Beyond that,
restricting our attention to OLNEs engenders computational
advantages which are discussed below. Other choices of
solution concept are possible and should be explored in
future work. Recent methods such as those of Di and
Lamperski (2019) and Le Cleac’h et al. (2020) facilitate
efficient solutions to the “forward” open-loop games given
players’ objectives a priori.

3.1. Preliminaries

Consider a game played between N players over discrete time-
steps t 2 [T]d{1,…, T}. The game is composed of three key
components: dynamics, objectives (which are later presumed
to be unknown in this work), and information structure.

We presume that the game is Markov with respect to state
x2R

n. That is, given each player’s control input
ui 2R

mi
, i2 ½N �, the state evolves according to the differ-

ence equation

xtþ1 ¼ ft
�
xt, u

1
t ,…, uNt

�
(1)

For clarity, we shall introduce the following shorthand
notation

x ¼ ðx1,…, xTÞ,
ui ¼ �ui1,…, uiT

�
,

ut ¼ �u1t ,…, uNt
�
,

u ¼ ðu1,…, uN Þ
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Observe that the state x pertains to the entire game, not
only to a single player. In the examples presented in this
paper, x is simply the concatenation of individual players’
states, and correspondingly the dynamics are independent
for all players. However, this is not always the case, and the
methods developed here apply in the more general settings
as well.

The objective of player i is encoded by their distinct cost
function Ji, which they seek to minimize. This cost can in
general depend upon the sequence of states and inputs for all
players.1 In this paper, we presume that objectives are
expressed in time-additive form, as is common across the
optimal control and reinforcement learning literature

J iðx,uÞ : ¼
XT
t¼1

git
�
xt, u

1
t ,…, uNt

�
(2)

Since the state trajectory x follows equation (1), these
cost functions can also be written in terms of the initial
condition x1 and the sequence of control inputs for all
players u. For this reason, we shall also use the notation Ji

(u; x1) and refer to the tuple of initial state, dynamics, and
objectives as follows

Γ : ¼ �x1, fftgt2½T �, fJ igi2½N �
�

(3)

Finally, the information structure of a dynamic game
refers to the information available to each player when they
are required to make a decision at each time. At time t, then,
Player-i’s input is a function γit : I i

t →R
mi
, where I i

t is the set
of information available to Player-i at time t. In this paper,
we consider open-loop information structures, that is, where
I i
t ¼ fx1g.2 In open-loop information, then, it suffices for

Player-i to specify their input sequence ui given a fixed
initial condition x1. For this reason, we neglect a more
detailed treatment of strategy spaces and information
structure and simply refer to the finite-dimensional se-
quence of control inputs for each player.

This characterization of a dynamic game is intentionally
general. Our solution methods will rely upon established
numerical methods for smooth optimization, however, and
as such we require the following assumption.

Assumption 1: (Smoothness) Dynamics f and objectives
Ji have well-defined second derivatives in all state and
control variables, at all times and for all players.

Most physical systems of interest and interactions
thereof are naturally modeled in this way. However, we note
that, for example, hybrid dynamics such as those induced by
contact do not satisfy this assumption.

We shall illustrate key concepts using a consistent
“running example” throughout the paper.

Running example: Consider an N = 2-player linear-
quadratic (LQ) game that is, one in which dynamics ft
are linear in state xt and control inputs ut, and costs J

i are
quadratic in states and controls. Let each player

independently follow the dynamics of a double integrator
in the Cartesian plane. State x¼ðp1x ,p1y , _p1x , _p1y ,p2x ,p2y ,
_p2x , _p

2
yÞ then evolves with inputs ui ¼ ð€pix, €piyÞ according to

xtþ1 ¼
"
~A 0

0 ~A

#zfflfflfflfflffl}|fflfflfflfflffl{A

xt þ
"
~B

0

#zffl}|ffl{B1

u1t þ
�
0
~B

�zffl}|ffl{B2

u2t ,
(4)

where ~A ¼

2
666664
1 0 Δt 0

0 1 0 Δt

0 0 1 0

0 0 0 1

3
777775, ~B ¼

2
666664

0 0

0 0

Δt 0

0 Δt

3
777775,

and Δt is a uniform time discretization, for example., 0.1s.
Each player has a quadratic objective of the form

J i ¼ 1

2

XT
t¼1

 
θiQx

T
t Q

i
txt þ

XN
j¼1

θijRu
j•
t R

ij
t u

j
t

!
(5)

In this simple example, Qi
t and Rij

t are known, positive
definite matrices encoding the preferences of each player.
The scalars θiQ 2R and θijR 2R weight these known ma-
trices. In this paper, we develop a technique to learn a priori
unknown parameters such as the costs weights above from
both offline and online data. Note that this simple LQ game
shall only serve to explain the general concepts of our
method. For our experiments presented in Section 7, we
consider more complex problems with nonlinear dynamics
and nonquadratic costs, such as the 5-player highway
navigation problem shown in Figure 1.

3.2. The Nash solution concept

Combining these components, each player i in an open-loop
dynamic game seeks to solve the following optimization
problem

"i2 ½N �
(
min
x,ui

J iðu; x1Þ ð6aÞ
s:t: xtþ1 ¼ ftðxt,utÞ,"t2 ½T � 1�: ð6bÞ

There exist a variety of distinct solution concepts for
such smooth open-loop dynamic games. In this paper, we
consider the well-known Nash equilibrium concept,
wherein no player has a unilateral incentive to change its
strategy. Mathematically, the Nash concept is defined as
follows.

Definition 1: (Open-loop Nash equilibrium) The strat-
egies u*d(u1*, …, uN∗) constitute an open-loop
Nash equilibrium (OLNE) in the game Γ ¼
ðx1, fftgt2½T �, fJ igi2½N �Þ if the following inequalities
hold:

J i* ¼ J iðu*; x1Þ ≤ J iððui,u�i*Þ; x1Þ,"i2 ½N � (7)
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Here, we use the shorthand (ui, u�i*) to indicate the col-
lection of strategies in which only Player-i deviates from the
Nash profile, that is, ui ≠ ui*.

Note that, at a Nash equilibrium, each player must in-
dependently have no incentive to deviate from its strategy.
Since players’ objectives may generally conflict, the Nash
concept encodes noncooperative, rational, and potentially
selfish behavior.

Unfortunately, Nash equilibria are known to be very dif-
ficult to find in general (Daskalakis et al., 2009). In this work,
we seek only local equilibria which satisfy the Nash conditions
equation (7) to first order. That is, following similar approaches
in both single-player IOC (Albrecht et al., 2011; Englert and
Toussaint 2018) and forward/inverse open-loop games (Le
Cleac’h et al., 2020; Awasthi 2019), we encode forward op-
timality via the corresponding first-order necessary conditions.
These first-order necessary conditions are given by the union
of the individual players’ KKT conditions, that is

0 ¼ Gðx,u, λÞ:¼
=xJ

i þ =xFðx,uÞ•λi

=uiJ
i þ =uiFðx, uÞ•λi

)
"i2 ½N�

Fðx,uÞ

2
664

3
775
(8)

Here, the first two block rows are repeated for all players,
and the function F (x, u) accumulates the dynamic constraints
of equation (6a) at all time steps, with the tth row given by
xtþ1 � f tðxt, u1t ,…, uNt Þ. Note that we have also introduced
costate variables λi :¼ ðλi1,…, λiT�1Þ for each player, with
λit 2R

n the Lagrange multiplier corresponding to Player-i’s
dynamics constraint in equation (6a) at time step t. Note that, as
with control inputs, we use the notation λd(λ1, …, λN).

Running example: Consider the two-player LQ example
above with double integrator dynamics given by equation
(4) and quadratic objectives given by equation (5). The
tth block of the first row of equation (8) is given by

0 ¼ θiQQ
i
txt þ λit�1 � A•λit (9)

for Player-i. Likewise, the tth block of the second row of
equation (8) for Player-i is given by

0 ¼ θiiRR
ii
t u

i
t � Bi•λit (10)

Finally, the tth block of the final row of equation (8) is given
by

0 ¼ xtþ1 � Axt � B1u1t � B2u2t (11)

Computationally, the KKT conditions of the forward game,
given in equation (8), are a set of, generally nonlinear, equality
constraints in the variables x,u, and λ. To find a solution, that is,
a root of G (x, u, λ), we may employ a root-finding algorithm
such as a variant of Newton’s method (Nocedal and Wright
2006: Chapter 11). This is the approach taken by, for example,
Le Cleac’h et al. (2020).

Running example: For our LQ example, it can be seen
that a single step of Newton’s method on G(�) amounts to
the well-known Riccati solution to an open-loop LQ
game (Başar and Olsder 1999: Chapter 6.3

4. Problem setup

Solving a forward Nash game amounts to identifying op-
timal strategies for all players, provided a priori knowledge
of their objectives J i. By contrast, in this work we are
concerned with the inverse Nash problem, that is, that of
identifying players’ objectives which explain their observed
behavior. To develop the inverse Nash problem, here we
shall presume that learning occurs offline, given a sequence
of noisy, partial observations of all players’ state. The
method we develop for this setting, however, is amenable to
trajectory prediction and online, receding horizon operation
as discussed in Section 5.2.

We formulate the inverse Nash problem as one of offline
learning, in which players’ objectives belong to a known
parametric function class. To that end, we make the fol-
lowing assumption.

Assumption 2: (Parametric objectives) Player-i’s cost
function is fully described by a vector of parameters
θi 2R

ki . That is, J ið�; θiÞ≡PT
t¼1g

i
tðxt, u1t ,…, uNt ; θ

iÞ.
Recalling Assumption 1, the functions gitð�; θiÞ have

well-defined derivatives in states xt and controls u
i. We shall

also extend this smoothness assumption to include the
parameters themselves.

Assumption 3: (Smoothness in parameter space)
Extending Assumption 1, we require that stage cost
functions gitð�; θiÞ have well-defined first- and second-
derivatives with respect to the parameter vector θi.

This smoothness assumption is quite general. For example,
players’ stage costs gitð�; θiÞ may be encoded as arbitrary
function approximators such as artificial neural networks. In
this work, we choose a more interpretable (though less
flexible) parametric structure; we defer an investigation of
more general cost structures for future work. In particular, the
examples considered here use a linearly parameterized
structure in which gitð�; θiÞ is a linear function of θi, that is,
gitð�; θiÞ≡ θiT~gitð�Þ for some set of potentially nonlinear basis
functions ~gitð�Þ. By incorporating appropriate domain-specific
knowledge, however, these relatively simple cost structures
are able to encapsulate complex, strategic interactions such as
the highway lane changes of Figure 1.

Running example: Recall the quadratic objectives of
equation (5), and take cost parameters θi ¼ ðθiQ, θijRÞj2½N �.
Observe, therefore, that Player-i’s objective depends line-
arly upon its cost parameters θi.

Thus equipped, the objective learning problem reduces
to maximizing the likelihood of a sequence of partial state
observations yd(y1,…,yT) for the parametric class of
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games ΓðθÞ ¼ ðx1, f , fJ ðiÞð�; θðiÞÞgi2½N �Þ. Formally, we seek
to solve a problem of the form

max
θ, x,u

pðyj x,uÞ (12a)

s:t: ðx,uÞ is anOLNE of ΓðθÞ (12b)

ðx,uÞ is dynamically feasible under f , (12c)

where θ aggregates all players’ cost parameters, that is,
θd(θ1,…,θN), and p(yjx, u) constitutes a known obser-
vation likelihood, or measurement, model.

Remark 1: (Initial state) Observe that x1 is an explicit
decision variable in equation (12a), whereas it repre-
sents a constant (known) initial condition in the forward
game problem discussed in Section 3. This reflects the
fact that the state trajectory, including initial conditions,
must be estimated as part of the inverse problem. As we
shall see, estimating the state trajectory jointly with the
cost parameters allows our method to be less sensitive to
observation noise.

This measurement model is arbitrary, though, following
Assumption 1 and Assumption 3, it must be smooth. In the
simplest instance, wemay receive an exact measurement of the
sequence of states and inputs for all players. In that case, the
measurementmodel p(yjx,u) reduces to aDirac delta function.
More generally, p(yjx, u) may be an arbitrary smooth prob-
ability density function, making our formulation amenable to
realistic sensors such as cameras or LiDARs.

Prior work in both single-player IOC, such as that of Englert
and Toussaint (2018), and inverse games, such as those of
Awasthi and Lamperski (2020) and Rothfuß et al. (2017),
presumes a degenerate measurement model in which states and
controls are observed directly without any noise. When perfect
observations are unavailable, these methods naturally extend by
first estimating a sequence of likely states and controls (a
standard nonlinear filtering problem). In Section 6, we describe
these sequential estimation methods in greater detail. In contrast,
our formulation given in equation (12b) encodes a coupled
estimation problem in which states, control inputs, and cost
parameters must all be estimated simultaneously. Thus, our
method exploits the additional coupling imposed by the Nash
equilibrium constraints onto the unknowns. In Section 7, we
conduct a series of Monte Carlo experiments to quantify the
advantages afforded by simultaneous learning over sequential
estimation.

5. Equilibrium-constrained cost learning

Here we present our core contribution, a mathematical
formulation of objective inference in multi-agent, nonco-
operative games. We express this problem as a nonconvex
optimization problem with equilibrium constraints, which
we relax into a standard-format equality-constrained non-
linear program.

5.1. Offline learning

We first consider the problem of learning each player’s
objective from previously recorded data of prior interac-
tions, offline.

Equation (12c) is a mathematical program with equi-
librium constraints (Luo et al., 1996; Ferris et al., 2005),
with the nested equilibrium conditions of equation (12b)
encoding the Nash inequalities of Definition 1. Equilibrium
constraints generalize bilevel programming, and compu-
tational approaches tend to be less mature than those for
standard-form (in)equality-constrained programming.

We relax the equilibrium constraint of equation (12b) by
replacing it with its KKT conditions, that is, by substituting
equation (8). This yields the following equation

max
θ, x, u, λ

pðyj x,uÞ (13a)

s:t: Gðx,u, λ; θÞ ¼ 0 (13b)

Here, we have explicitly written the KKT conditions from
equation (8) in terms of the cost parameters θ. Additionally,
observe that in equation (13a), the costates λ required to
evaluate the KKT conditions G (�; θ) appear as additional
primal variables. The constraints of equation (subsection 13b)
will be assigned their own Lagrange multipliers, which are
distinct from the original costates. By letting states, control
inputs, and costates be primal variables, the KKT conditions
G (�) do not depend explicitly upon the observations y. Thus,
solving equation (13b) does not require complete state or input
observations; rather, the equilibrium constraints of equation
(subsection 13b) allow us to reconstruct this missing infor-
mation while we estimate cost parameters θ, simultaneously.
Several remarks are in order.

Remark 2: (Multiple observed trajectories) We have
developed equation (13a) for the setting in which a single
trajectory (x, u) has been observed, yielding a mea-
surement sequence y. However, our approach affords
straightforward extension to settings in which player’s
objectives are learned from multiple demonstrations. In
this instance, the primal variables (x, u, λ) would be
replicated for all trajectories, although the cost pa-
rameters θ would be shared. The objective given by
equation (13a) would be replaced by the joint probability
of all measurements conditioned on all underlying tra-
jectories, and the equilibrium constraints in equation
(13b) would be concatenated for all trajectories.

Remark 3: (Regularizing parameters) Depending upon
the parametric structure of players’ objectives Ji(�; θi),
and hence the structure of KKT residualG(�; θ), it can be
critical to regularize and/or constrain cost parameters.
For example, if there exists a choice of θi for Player-i
such that Ji(x, u; θi) is constant for all dynamically
feasible trajectories (x, u), then every such trajectory
would satisfy the equilibrium constraint of equation
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(12b). Such choices of θmust be avoided, for example, by
regularizing or otherwise constraining parameters.

Running example: Following Remark 3, we constrain
the parameters θi ≥ c > 0. Moreover, to account for scale
invariance, we constrain their sum to unity, that is,P

i2½N �ðθiQ þPj2½N �θ
ij
RÞ ¼ 1.

5.1.1. Least squares. A common observation model p(yjx,
u) is the additive white Gaussian noise (AWGN) model.
Here, each observation yt depends only upon the current
state xt and control inputs ut, that is

yt ¼ htðxt,utÞ þ nt (14)

where the (potentially nonlinear) function ht computes the
expected measurement and nt is a zero-mean Gaussian white
noise process with known covariance, that is, nt ∼Nð0, ΣtÞ.
In this case, following standard methods in maximum
likelihood estimation (Gallager 2013), it is straightforward
to express the maximization in equation (13a) as nonlinear
least squares by taking the negative logarithm of p(yjx, u)

min
θ, x, u, λ

XT
t¼1

ðyt � htðxtÞÞ•Σ�1
t ðyt � htðxtÞÞ (15a)

s:t: Gðx, u, λ; θÞ ¼ 0 (15b)

in summary, this inverse problem entails the following task:
Find those parameters θ for which the corresponding game
solution generates expected observations near the observed
data. This formulation of the inverse game problem can be
encoded using well-established numerical modeling lan-
guages such as CasADi (Andersson et al., 2019) or JuMP
(Dunning et al., 2017), and solved using off-the-shelf op-
timization routines such as IPOPT (Wächter and Biegler
2006) or SNOPT (Gill et al., 2005).

5.1.2. Problem complexity. Let us examine the structure of
the least squares problem in equation (15a) more carefully.
In general, the observation map ht (�) and KKT conditions
G(�; �) may be arbitrarily nonlinear. Therefore, without
further structural assumptions, our formulation is an
equality-constrained nonlinear least squares problem. Due
primarily to the nonlinearities in G, equation (15b) is
generally nonconvex. Solution methods, therefore, may be
sensitive to initial values of primal variables; we discuss a
straightforward initialization scheme in Section 6.1.

Perhaps surprisingly, this nonconvexity persists in the LQ
setting of our running example, even when ht (�) is the identity.

Running example: Consider the LQ setting, with θi ¼
ðθiQ, θijRÞj2½N � as before. Let the observation map be the
identity, that is, ht(xt) = xt and presume AWGN. The
resulting nonlinear least squares problem in equation
(15a) has constraints of the form given in equations (9) to
(11). Let us consider the first of these constraints for a
single time step t and Player-i

0 ¼ θiQQ
i
txt þ λit�1 � A•λit

Recall that the decision variables in our formulation are
(θ, x, u, λ). Here, we see that θi multiplies xt. At best,
therefore, this constraint is a bilinear equality, making the
overall problem in equation (15b) nonconvex even for this
minimal inverse LQ game.

When we directly observe both state and control inputs
without noise, that is, yt ≡ (xt, ut), these constraints become
linear even in the general non-LQ setting, so long as
players’ objectives are linearly parameterized. In this set-
ting, we may rewrite equation (9) as follows

0 ¼ =xtg
i
tðxt, ut; θiÞ

θiu~gi
tð � Þ þ λit�1 � =xtftðxt, utÞ•λit

(16a)

¼ θiT=xt~g
i
tðxt, utÞ þ λit�1 � =xtftðxt, utÞ•λit (16b)

with this observation model, then, the only decision vari-
ables are ðθi, λit, λit�1Þ, which all appear linearly. Further-
more, the least squares objective in equation (15a) becomes
unnecessary, since, by assumption, the measurements y
already include the states x exactly. Incorporating these
simplifications, the entire constrained least squares problem
of equation (15a) reduces to the problem

f ind θ, λ (17a)

s:t: 0 ¼ θiu=xt~g
i
tðxt, utÞ þ λit�1� =xtftðxt, utÞ•λit,"i, t

(17b)

0 ¼ θiu=uit
~gi
tðxt, utÞ� =uit

ftðxt, utÞ•λit,"i, t (17c)

Because the constraints in equation (17a) are linear, the
problem is equivalent to a linear system of equations.
Moreover, since the constraints are completely decoupled
for each player, they may be solved separately and in
parallel for all players to obtain cost parameters θ i and
costates λi. This reduction forms the basis for the state of the
art in solving inverse dynamic games (Rothfuß et al., 2017;
Awasthi and Lamperski 2020), which only apply in settings
with perfect state and input observations. To compare
against these methods in more general settings that feature
noise, unobserved inputs, and partial state measurements,
we augment these methods with a sequential optimization
procedure in Section 6. Comparative Monte Carlo studies of
all approaches are presented in Section 7.

5.2. Online learning

While Section 5.1 estimates the objectives of interacting
agents from recorded data offline, our formulation for in-
verse Nash problems extends naturally to an online learning
setting; i.e. cost learning from observations of ongoing
interactions. As we shall discuss below, our method can
perform online cost learning and trajectory prediction
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simultaneously, making it suitable for receding horizon
applications.

5.2.1. Learning with prediction. Equipped with a tractable
solution strategy for the setting of offline learning, we now
consider a coupled prediction and learning problem. Similar
problems have been considered in the single-agent setting
by, e.g. Jin et al. (2021) and Mukadam et al. (2019). Here,
we aim to learn the cost parameters θ from only a subset of
the game horizon; i.e., we presume that observations y ¼
ðy1,…, y~T Þwhere the observation horizon ~T≤T . Despite this
change, the original problem of equation (12a) remains
effectively unchanged; only the objective has changed. In
particular, by substituting the KKT conditions for an OLNE
in place of the original equilibrium constraint as in equation
(13a), and making AWGN assumptions, we recover a
variant of the constrained least squares formulation of
equation (15a)

min
θ, x,u, λ

X~T
t¼1

ðyt � htðxtÞÞ•Σ�1
t ðyt � htðxtÞÞ (18a)

s:t: Gðx,u, λ; θÞ ¼ 0 (18b)

Note that the upper limit of addition is ~T , rather than T as
in equation (15a), while the OLNE KKT conditions in
equation (subsection 18b) depend upon states, inputs, and
costates for all times t 2f1,…, ~T ,…,Tg.

Despite the similarities between this problem and
equation (15a), the Nash trajectory (x∗, u*), which emerges
as a solution, affords a new interpretation. In particular, for
times t ≤ ~T , these equilibrium states and controls constitute
filtered estimates of the observed quantities y, while for
times t > ~T they represent predictions of the future. Im-
portantly, however, extending trajectories beyond the ob-
servation horizon ~T adds additional constraints to equation
(15b). This ability to incorporate future, unobserved states
makes the method more robust and data efficient when only

a fraction of the game horizon is observed. Consequently,
this formulation can be employed for online learning in
scenarios of ongoing interactions. We provide a detailed
empirical analysis of this setting in Section 7.2.2. A sum-
mary of this variant of our inverse game solver is provided
in Figure 2(a).

5.2.2. Receding horizon learning. Our method is directly
amenable to receding horizon, online operation. Here, we
suppose that the agents interact over the half-open time-
interval t2f1,…, ~T ,…,∞g, and that observations exist for
t ≤ ~T . Here, ~T may be interpreted as the current time and, as
time elapses, both ~T and the overall prediction horizon T
increase accordingly. Unfortunately, however, increasing
the overall problem horizon increases the number of vari-
ables in equation (12a), eventually making the problem
intractable.

To simplify matters, we approximate the learning
problem at each instant by neglecting all times outside the
interval f~T � so,…, ~T ,…, ~T þ spg, where so is the length
of a fixed-lag buffer of past observations and sp is the
horizon of future state predictions. In this setting, the total
number of variables remains constant (since the length of
this interval is constant), rendering equation (12b) tractable
to solve online. More precisely, at time ~T (and under AWGN
assumptions), we solve a modified version of equation (18b)

min
θ, x, u, λ

X~T
t¼~T�so

ðyt � htðxtÞÞ•Σ�1
t ðyt � htðxtÞÞ (19a)

s:t: Gðx,u, λ; θÞ ¼ 0 (19b)

where the KKT constraint G (�) is understood to depend
upon times t2f~T � so,…, ~T ,…, ~T þ spg and states, con-
trol inputs, and costates are also limited to that interval. At
each later time, we solve a problem with identical structure,
with the understanding that ~T will have changed to reflect
the elapsed time. In effect, this procedure amounts to

Figure 2. Schematic overview of inverse game solvers set up for online operation. (a) Our method computes player’s objectives, state
estimates, and trajectory predictions jointly. (b) The baseline requires full knowledge of states and inputs and therefore must preprocess
raw observations before it can estimate players’ objectives. In order to generate trajectory predictions, the baseline must solve an
additional forward game formulated over the estimated initial states and objectives.
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simultaneous fixed-lag smoothing and receding-horizon
prediction. We simulate this online learning procedure in
Section 7.3.2.

6. Baseline

Recall the discussion of Section 5.1.2, in which we show
that—with noiseless observations of states x and controls u,
and linear cost parameterization gitð�; θiÞ≡ θiT~gitð�Þ—our
formulation reduces to the linear system of equations of
equation (17a). This reduction underlies state-of-the-art
methods for learning the objectives of players in games
(Rothfuß et al., 2017; Awasthi and Lamperski 2020).
Therefore, such methods unfortunately require noiseless
observations of the full state and input sequences for all
players. In contrast, our approach in equation (13b) is
amenable to noisy, partial observations.

6.1. Recovering unobserved variables

To provide a meaningful comparison between our proposed
technique and the state-of-the-art in settings with imperfect
observations, we augment (Rothfuß et al., 2017; Awasthi
and Lamperski 2020) with a pre-processing to estimate
unobserved states and inputs. To that end, we solve the
following relaxed version of equation (13a)

~x, ~u : ¼ argmax
x,u

pðyj x,uÞ (20a)

s:t: Fðx,uÞ ¼ 0 (20b)

As in Section 5.1.1, under an AWGN assumption
equation (20a) becomes equality-constrained nonlinear least
squares. However, unlike equation (15a), we have neglected
the first two rows of the equilibrium constraint given in
equation (8). That is, equation (20b) computes a maximum
likelihood estimate of states and inputs irrespective of the
underlying game structure.

The solution of this smoothing problem is used as an
estimate of states and inputs when the baseline is employed
in partially observed settings. Beyond that, the same pro-
cedure serves as simple, yet effective initialization scheme
for our method to tackle issues of non-convexity discussed
in Section 5.1.2.

6.2. Minimizing KKT residuals

Like our proposed method, the state-of-the-art methods
developed by Rothfuß et al. (2017) and Awasthi and
Lamperski (2020) use the forward game’s KKT condi-
tions to measure the quality of a set of cost parameters θ.
While we compare to this derivative-based, KKT condition
approach, we note that other approaches outlined in Section
2.2 such as Le Cleac’h et al. (2021) utilize black-box op-
timization methods and do not require or exploit derivative
information. These significant algorithmic differences and
the resulting differences in sample complexity, locality of

solutions, etc., make a direct comparison difficult to
interpret.

Specifically, the KKT residual method of Awasthi and
Lamperski (2020) and Rothfuß et al. (2017) fixes the state
and input sequences to their observed—or in our case,
estimated via equation (20a)—values. Fixing these vari-
ables, however, the resulting linearly constrained satisfi-
ability problem of equation (17c) may be infeasible,
depending upon the parametric structure of costs gitð�; θiÞ. In
lieu, state-of-the-art approaches minimize the KKT residual
itself, that is

min
θ, λ

kGð~x, ~u, λ; θÞk22 (21)

In prior work (Awasthi and Lamperski 2020; Rothfuß
et al., 2017), ~x and ~u are assumed to be directly observed. As
discussed in Section 6.1, here we presume they are the
results of the pre-processing step given in equation (20a).
Additionally, like the linear system of equations in equation
(17a), the only decision variables here are the objective
parameters θ and the costates λ. In effect, the baseline does
not refine the state and input estimates given by the pre-
processing step of equation (20b). Furthermore, as in
equation (17b), the problem may be decomposed into
separate problems for each player and solved in parallel. In
essence, then, this KKT residual formulation neglects the
coupling between players’ actions which is encoded in the
equilibrium conditions; computationally, it reduces to
solving separate IOC problems for each player neglecting
game-theoretic interactions with others.

A schematic overview of this baseline approach is de-
picted in Figure 2. By first estimating the states x and inputs
u frommeasurements y, and only afterward learning the cost
parameters θ and associated costates λ, the KKT residual
method can be thought of as a sequential decomposition of
our approach. By contrast, our formulation maintains (x, u)
as decision variables and refines the initial guess of ð~x, ~uÞ by
identifying all variables simultaneously.

7. Experiments

In this work, we develop a technique for learning players’
objectives in continuous dynamic games from noise-
corrupted, partial state observations. We conduct a series
of Monte Carlo studies to examine the relative performance
of our proposed methods and the KKT residual baseline in
both offline and online learning settings.4

7.1. Experimental setup

We implement our proposed approach as well as the KKT
residual baseline of Rothfuß et al. (2017) in the Julia
programming language (Bezanson et al., 2017), using the
mathematical modeling framework JuMP (Dunning et al.,
2017). As a consequence, our implementation encodes an
abstract description of equation (13b), making it straight-
forward to use in concert with a variety of optimization
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routines. In this work, we use the open source COIN-OR
IPOPT algorithm (Wächter and Biegler 2006). The source
code for our implementation is publicly available.5

To evaluate the relative performance of our proposed
approach with the KKT residual baseline, we perform
several Monte Carlo studies. The details of these studies are
described below. However, all of these studies share the
following overall setup: we fix a cost parameterization for
each player, find corresponding OLNE trajectories as roots
of equation (8) using the well-known iterated best response
(IBR) algorithm (Wang et al., 2019), and simulate noisy
observations thereof with additive white Gaussian noise
(AWGN) as in equation (14). Each study then presents
samples across a different problem parameter to test the
sensitivity of both approaches to observation noise
(Sections 7.2.1 and 7.3.1) and unobserved time-steps
(Section 7.2.2) in two different problem settings.

In each of the studies below, we consider N vehicles
navigating traffic, and instantiate game dynamics and player
objectives as follows. Each vehicle has its own state xi such
that the global game state is concatenated as x = (x1,…, xN).
Further, each vehicle follows unicycle dynamics at time
discretization Δt

xitþ1 ¼

ðx� positionÞ pix, tþ1 ¼ pix, t þ Δt vitcosψ
i
t

ðy� positionÞ piy, tþ1 ¼ piy, t þ Δt vitsinψ
i
t

ðheadingÞψi
tþ1 ¼ ψi

t þ Δtωi
t

ðspeedÞ vitþ1 ¼ vit þ Δt ait,

8>>>><
>>>>:

(22)

where uit ¼ ðωt, atÞ includes the yaw rate and longitudinal
acceleration. Finally, each player’s objective is character-
ized by a stage cost git which is a weighted sum of several
basis functions, that is

git ¼
X5
l¼1

wi
lg

i
l, t

gi1, t ¼ 1
�
t ≥ T � tgoal

�
d
�
xit, x

i
goal

�
ð23aÞ

gi2, t ¼ �
X
j ≠ i

log
�		pi � pj

		2
2

�
ð23bÞ

gi3, t ¼ ðviÞ2 ð23cÞ
gi4, t ¼

�
ωi

t

�2 ð23dÞ
gi5, t ¼

�
ait
�2
: ð23eÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

Here, the cost parameters θi ¼ ðwi
lÞl2½5�,wi

l2Rþ are
positive weights for each cost component. Further,
pi ¼ ðpix, piyÞ denotes the planar position of Player-i, and d (�, �)
is an arbitrary distance mapping. For example, we may choose
dðxit, xigoalÞ ¼

		pit � pigoal
		2
2
to compute squared distance from

a fixed goal position. Note, however, that this map is generic
and can also be used to encode more complex goal-reaching
specifications as in the highway lane-changing example de-
picted in Figure 1. Taken together, the basis functions encode
the following aspects of each player’s preferences:

1. Be close to the goal state within the last tgoal time steps
(23a).

2. Avoid close proximity to other vehicles (23b).
3. Avoid high speeds (23c).
4. Avoid large control efforts (23d, 23e).

Games of this form are inherently noncooperative since
players must compete to reach their own goals efficiently
while avoiding collision with one another. Hence, they must
negotiate these conflicting objectives and thereby find an
equilibrium of the underlying game.

In all of the Monte Carlo studies, we evaluate the ap-
proaches for two different noisy observation models hfullt
and hpartialt . In hfullt ðxtÞ : ¼ xt, estimators observe the full
state, and in hpartialt ðxtÞ : ¼ ðp1t ,ψ1

t ,…, pNt ,ψ
N
t Þ, estimators

observe the position and heading but not the speed of each
agent, that is, they receive a partial state observation.

7.2. Detailed analysis of a 2-player game

We first study the performance of our method in a sim-
plified, N = 2-player game. This set of experiments dem-
onstrates the performance gap of our approach and the KKT
residual baseline in methods in a conceptually simple and
easily interpretable scenario. Here, the game dynamics are
given as in equation (22), and player objectives are pa-
rameterized as in equation (23a). In particular, we let
dðxit, xigoalÞ ¼

			pit � pigoalk22. In summary, therefore, each
vehicle wishes to reach a fixed, known goal position in the
plane while avoiding collision with the other.

7.2.1. Offline learning. We begin by studying both our
method’s and the baseline’s ability to infer the unknown
objective parameters θ, as developed in Section 5.1. To do
so, we conduct a Monte Carlo study for the aforementioned
2-player collision-avoidance application.

We generate 40 random observation sequences at each of
22 different levels of isotropic observation noise. For each
of the resulting 880 observation sequences, we run both our
method and the baseline to recover estimates of weights
θi ¼ ðw i

lÞl2½5� for each player. Note that in this offline
setting both methods learn these objective parameters from
noisy observations of a single, complete game trajectory.
That is, each estimate relies upon 25 s of simulated inter-
action history from a single scenario.

Figure 3 shows the estimator performance for varying
levels of observation noise in two different metrics.
Figure 3(a) reports the mean cosine error of the objective
parameter estimates. That is, we measure cosine-
dissimilarity between the unobserved true model parame-
ters θtrue and the learned estimates θest according to

Dcosðθtrue, θestÞ ¼ 1� 1

N

X
i2½N �

θiutrueθ
i
est		θitrue		2		θiest		2 (24)

where the mean is taken over the N players. The normal-
ization of the parameter vectors in equation (24) reflects the
fact that the absolute scaling of each player’s objective
parameters does not affect their optimal behavior, holding
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Figure 3. Estimation performance of our method and the baseline for the 2-player collision-avoidance example, with noisy full and
partial state observations. (a) Error measured directly in parameter space using equation (24). (b) Error measured in position space
using equation (25). Triangular data markers in (b) highlight objective estimates which lead to ill-conditioned games. Solid lines and
ribbons indicate the median and IQR of the error for each case.
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other players’ parameters fixed. In sum, this metric mea-
sures the estimator performance in objective parameter
space.

Figure 3(b) shows the mean absolute position error for
trajectory reconstructions computed by finding a root of
equation (8) using the estimated objective parameters.
Reconstruction error allows us to inspect the quality of
learned cost parameters for explaining observed vehicle
motion, providing a more tangible metric of algorithmic
quality. In addition to the raw data, we highlight the median
as well as the interquartile range (IQR) of the estimation
error over a rolling window of 60 data points.

Figure 3(a) shows that both our method and the baseline
recover the true parameters θ reliably even for partial ob-
servations, if the observations are noiseless. However, the
performance of the baseline degrades rapidly with in-
creasing noise variance. This pattern is particularly pro-
nounced in the setting of partial observations. On the other
hand, our estimator recovers the unknown cost parameters
more accurately in both settings, and with a smaller variance
than the baseline. Thus, compared to the KKT residual
baseline, the performance of our method degrades grace-
fully when both full and partial observations are corrupted
by noise.

Next, we study these methods’ relative performance as
measured by reconstruction error, as shown in Figure 3(b).
Here, reconstruction error is measured according to

Drecðθtrue, θestÞ ¼ 1

NT

X
i2½N �

X
t2½T �

			pirec, t � pitrue, t

			
2

(25)

where pitrue, t denotes the true position of Player-i at time step
t and pirec, t denotes the position reconstructed from a Nash
solution to the game with estimated cost parameters θest. We
see similar patterns here as in the parameter error space,
indicating the reliability of our method in both noisy full and
partial observation settings.

Additionally, note that we have denoted some data points
for the baseline method with triangular markers. For these
Monte Carlo samples, the learned parameters θest specify ill-
conditioned objectives that prevent us from recovering roots
of equation (8)—essentially rendering the parameter esti-
mates useless for downstream applications. This can hap-
pen, for example, when proximity costs dominate control
input costs. For the baseline, a total of 104 out of 880 es-
timates result in an ill-conditioned forward game when
states are fully observed. In the case of partial observations,
the number of learning failures increases to 218. In contrast,
our method recovers well-conditioned player objectives for
all demonstrations and allows for accurate reconstruction of
the game trajectory.

For additional intuition of the performance gap, Figure 4
visualizes the reconstruction results in trajectory space for a
fixed initial condition. Figure 4(a) shows the noise corrupted
demonstrations generated for isotropic AWGN with stan-
dard deviation σ = 0.1. Figures 4(b) and (c) show the
corresponding trajectories reconstructed by solving the

game using the objective parameters learned by our method
and the baseline, respectively. Note that our method gen-
erates a far smaller fraction of outliers than the baseline.
Furthermore, the performance of our method is only mar-
ginally affected by partial state observability, whereas
baseline performance degrades substantially.

7.2.2. Online learning with prediction. Next, we study the
performance of both our proposed method and the KKT
residual baseline in the setting of objective learning with
prediction. Following the problem description of Section
5.2.1, here, only the beginning of an unfolding dynamic
game is observed. This problem naturally describes a single
time frame of online operations where observations accu-
mulate as time evolves.

We conduct a Monte Carlo analysis of the two-player
collision-avoidance game from Section 7.1 in which we
vary the number of observed time steps of a fixed-length
game. For this truncated observation sequence, each method
is tasked to learn the players’ underlying cost parameters θi

and predict their motion for the next sp = 10 time steps. Our
method accomplishes these coupled tasks jointly by solving
equation (18b). The KKT residual baseline, however, op-
erates on the estimates provided the preceding smoothing
step, therefore, cannot couple unobserved, future time steps
with cost inference. Instead, it achieves this task in a two-
stage procedure: First, parameter estimates are recovered
from a truncated game over only the observed ~T time steps.
With these parameters in hand, the baseline then predicts
future game states by re-solving a forward game starting
from the final state estimate ~x~T with time steps simulated
from t2f~T ,…, ~T þ 10g.

In Figure 5, we vary the observation horizon
~T 2f5,…, 15g for a ground-truth game played over 25 time
steps. For each value of ~T , we sample 40 sequences of
observations fytgt¼1

~T . Here, we fix an isotropic Gaussian
noise level of σ = 0.05 and measure the performance of both
our method and the baseline using two distinct metrics. In
Figure 5(a), we measure learning performance in parameter
space using the metric given in equation (24). As shown, our
approach consistently estimates the cost parameters more
accurately than the baseline. Furthermore, as the observa-
tion horizon ~T increases, both methods improve. In
Figure 5(b), we see that these patterns persist when we
measure performance in trajectory space, applying the
metric of equation (25) to the predicted states
xt, t2f~T ,…, ~T þ 10g. Indeed, in this case, the performance
gap is even more pronounced. By observing only ~T ¼ 5
steps, our method reliably outperforms the baseline even
when the baseline is given triple the number of
observations.

To inspect these results more closely, in Figure 6 we
show the output of both methods for a single observation
sequence of length ~T ¼ 10. This visualization highlights a
key advantage of our approach compared with the baseline.
In this scenario, Player-2 (bottom) turns left early on in
order to avoid Player-1 (left) later along the path to its goal.
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Their ground truth trajectories are shown in black. However,
the methods only receive noise-corrupted partial state ob-
servations of the first ~T ¼ 10 time steps shown in gray. Our
method models the players’ interactions as continuing into

the future, allowing it to attribute observed behavior to
future costs. In this instance, our method correctly explains
Player-2’s observed left turn as the result of a modest
penalty on proximity, which becomes important only later in

Figure 4. Qualitative reconstruction performance for the 2-player collision-avoidance example at noise level σ = 0.1 for 40 different
observation sequences. (a) Ground truth trajectory and observations, where each player wishes to reach a goal location opposite their
initial position. (b, c) Trajectories recovered by solving the game at the estimated parameters for our method and the baseline using noisy
full and partial state observations.
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Figure 5. Estimation performance for our method and the baseline for varying numbers of observations of the 2-player collision-
avoidance example at a fixed noise level of σ = 0.05. (a) Estimation performance measured directly in parameter space using equation
(24). (b) Prediction error over the next 10 s beyond the observation horizon using equation (25).
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the trajectory when the players are close to one another. Cost
estimation is shown at the bottom of Figure 6. The KKT
residual baseline is incapable of such attributions. More
precisely, it can only consider the KKT residuals G (�; θ) of
equation (21) for time steps t 2 ½~T �. Hence, the baseline must
presume that the game terminates at ~T rather than at some
time in the future. Thus, it cannot anticipate the immediate
future consequences of particular cost models. In Figure 6,
the baseline can only explain the players’ early observed
collision avoidance maneuver with an extremely large
penalty on proximity to their opponents. As a result, it
predicts that the players will quickly drive away from one
another. Unlike our method, the baseline’s prediction rap-
idly diverges from the ground truth.

Beyond inference and prediction accuracy, a key factor
for online operation is the computational complexity. To
investigate this point, Figure 7 shows the computation time
of both methods for the same dataset underpinning Figure 5.
These timing results were obtained on an AMD Ryzen
9 5900HX laptop CPU. Overall, we observe that the KKT

Figure 6. Qualitative prediction performance of our method and the baseline for the 2-player collision-avoidance example when only the
first 10 out of 25 time steps are observed.

Figure 7. Runtime of our method and the baseline for varying
numbers of observations of the 2-player collision-avoidance
example at a fixed noise level of σ = 0.05.
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Figure 8. Estimation performance of our method and the baseline for the 5-player highway overtaking example, with noisy full and
partial state observations. (a) Error measured directly in parameter space using equation (24). (b) Error measured in position space
using equation (25). Triangular data markers in (b) highlight objective estimates which lead to ill-conditioned games. Solid lines and
ribbons indicate the median and IQR of the error for each case.
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residual baseline has a lower runtime than our approach.
The reduced runtime can be attributed to the fact that, by
fixing the states and inputs a priori, the KKT residual
formulation yields a simpler convex optimization problem
in equation (21). Nonetheless, our method’s runtime still
remains moderate and scales gracefully with the observation
horizon. We note that our current implementation is not
optimized for speed. In practical applications in the context
of receding-horizon applications—a topic that we shall
discuss in Section 7.3.2-the runtime may be further reduced
via improved warm-starting and memory sharing across
planner invocations.

7.3. Scaling to larger games

While our approach is more easily analyzed in the small,
two-player collision-avoidance game of Section 7.2, it
readily extends to larger multi-agent interactions. In order to
demonstrate scalability of the approach, we therefore rep-
licate the offline learning analysis of Section 7.2.1 in a larger
5-player highway driving scenario depicted in Figure 1.
Finally, we demonstrate a proof of concept for online,

receding horizon learning in this scaled setting following
the setup of Section 5.2.

In the highway scenario discussed through the re-
mainder of this section, each player wishes to make for-
ward progress in a particular lane at an unknown nominal
speed, rather than reach a desired position as above.
Therefore, ground-truth objectives use a quadratic penalty
on deviation from a desired state that encodes each player’s
target lane and preferred travel speed rather than a specific
goal location. Despite these differences, this class of ob-
jectives is still captured by the cost structure introduced in
equation (23e).

7.3.1. Offline learning. First, we study the performance of
our method and the KKT residual baseline in the setting of
offline learning without trajectory prediction. Figure 8
displays these results, using the same metrics as in
Section 7.2.1 to measure performance in parameter space-
Figure 8(a)-and position space-Figure 8(b). As before, our
method demonstrably outperforms the baseline in both fully
and partially observed settings. Furthermore, whereas our
method performs comparably according to both metrics in
the full and partial observation settings, the baseline

Figure 9 . Demonstration of our method in an online application of simultaneous objective learning and trajectory prediction for the 5-
player highway navigation scenario. At each time step, objective learning is performed on a fixed-lag buffer of 5s of observation data
which is coupled with trajectory prediction 10s into the future.
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performance differs between the two metrics. That is, while
the performance of the baseline measured in parameter
space is not significantly affected by less informative ob-
servations, the effect is significant in trajectory space. This
inconsistency can be attributed to the fact that certain ob-
jective parameters have stronger influence on the resulting
game trajectory than others. Since our method’s objective is
observation fidelity, here measured by the measurement
likelihood of equation (subsection 13a), it directly accounts
for these varying sensitivities. The baseline, however,
greedily optimizes the KKT residual of equation (21), ir-
respective of the resulting equilibrium trajectory.

7.3.2. Online learning and receding horizon prediction. Finally,
we demonstrate the application of our method for simultaneous
online learning and receding-horizon prediction in the 5-player
highway navigation scenario depicted in Figure 1.

Here, the information available to the estimator evolves
over time and the problem only admits access to past ob-
servations of the game state for cost learning. Following the
proposed procedure of Section 5.2, here, we limit the
computational complexity of the estimation problem by
considering only a fixed-lag buffer of observations over the
last 5s and predict all player’s behavior over the next 10s.
The qualitative performance of our method under noise-
corrupted partial state observation is shown in Figure 9. As
can be seen, from only a few seconds of data, our method
learns player objectives that accurately predict the evolution
of the game over a receding prediction horizon. Note that,
by design, objective learning and behavior prediction are
achieved simultaneously by solving a single joint optimi-
zation problem as in equation (13a). This ability to couple
online learning and prediction makes it particularly suitable
for online applications.

8. Conclusion

In this paper, we have introduced a novel approach to learn
the parameters of players’ objectives in dynamic, nonco-
operative interactions, given only noisy, partial observa-
tions. This inverse dynamic game arises in a wide variety of
multi-robot and human–robot interactions and generalizes
well-studied problems such as inverse optimal control,
inverse reinforcement learning, and learning from demon-
strations. Contrary to prior work, our method learns players’
cost parameters while simultaneously recovering the for-
ward game trajectory consistent with those parameters, with
overall performance measured according to observation
fidelity. We have shown how this formulation naturally
extends to both offline learning and prediction problems, as
well as online, receding horizon learning.

We have conducted extensive numerical simulations to
characterize the performance of our method and compare it
to a state-of-the-art baseline method (Rothfuß et al., 2017;
Awasthi and Lamperski 2020). These simulations clearly
demonstrate our method’s improved robustness to both
observation noise and partial observations. Indeed, existing

methods presume noiseless, full-state observations and thus
require a priori estimation of states and inputs. Our method
recovers objective parameters, reconstructs past game tra-
jectories, and predicts future trajectories far more accurately
than the baseline. Beyond that, our method’s structure al-
lows to perform all of these tasks jointly as the solution of a
single optimization problem. This feature renders our
method suitable for online learning and prediction in a
receding horizon fashion.

In light of these encouraging results, there are several
directions for future research. Most immediately, our
method lends itself naturally to deployment onboard
physical robotic systems such as the autonomous vehicles
considered in the examples of Section 7. In particular, the
online, receding horizon learning and prediction procedure
of Section 5.2 may be run onboard an autonomous car. Here,
the “ego” agent would seek to learn other vehicles’ ob-
jective parameters while simultaneously using the receding
horizon game solution to respond to predicted opponent
strategies.

Another exciting, more theoretical direction consists of
extending our formulation to more complex equilibrium
concepts than OLNE. For example, recent solution methods
for forward games in state feedback Nash equilibria
(Fridovich-Keil et al., 2020; Laine et al., 2021; Di and
Lamperski 2021) might be adapted to solve inverse games
along the lines of equation (12a).
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Notes

1. State and input constraints are also possible, although they
complicate the notion of equilibrium solution. Solution
methods such as those of Dirkse and Ferris (1995) and Laine
et al. (2021) address constrained forward games. The present
paper readily extends to the constrained case; however, we
neglect them for clarity of presentation.

2. Recent work in solving forward games also considers feedback
information in which I i

t ¼ fxtg; see Fridovich-Keil et al.
(2020) and Laine et al. (2021).

3. Note that this Newton step differs from that given by the Riccati
solution to a feedback LQ game.

4. Some result figures and descriptions are drawn from the earlier
conference version of this work (Peters et al., 2021).

5. https://github.com/PRBonn/PartiallyObservedInverseGames.jl
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