

Delft University of Technology

A Security Verification Template to Assess Cache Architecture Vulnerabilities

Ghasempouri, Tara; Raik, Jaan; Paul, Kolin; Reinbrecht, Cezar; Hamdioui, Said; Taouil, Mottaqiallah

DOI
10.1109/DDECS50862.2020.9095707
Publication date
2020
Document Version
Accepted author manuscript
Published in
2020 23rd International Symposium on Design and Diagnostics of Electronic Circuits and Systems
(DDECS)

Citation (APA)
Ghasempouri, T., Raik, J., Paul, K., Reinbrecht, C., Hamdioui, S., & Taouil, M. (2020). A Security
Verification Template to Assess Cache Architecture Vulnerabilities. In 2020 23rd International Symposium
on Design and Diagnostics of Electronic Circuits and Systems (DDECS): Proceedings (pp. 1-6). Article
9095707 IEEE. https://doi.org/10.1109/DDECS50862.2020.9095707
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/DDECS50862.2020.9095707
https://doi.org/10.1109/DDECS50862.2020.9095707

A Security Verification Template
to Assess Cache Architecture Vulnerabilities

Tara Ghasempouri, Jaan Raik, Kolin Paul Cezar Reinbrecht, Said Hamdioui, Mottaqiallah Taouil
Tallinn University of Technology Delft Univeristy of Technology

{tara.ghasempouri, jaan.raik, kolin.paul}@ttu.ee {C.R.WedigReinbrecht, S.Hamdioui, M.Taouil}@tudelft.nl

Abstract—In the recent years, cache based side-channel attacks
have become a serious threat for computers. To face this issue,
researches have been looking at verifying the security policies.
However, these approaches are limited to manual security verifi-
cation and they typically work for a small subset of the attacks.
Hence, an effective verification environment to automatically
verify the cache security for all side-channel attacks is still
missing. To address this shortcoming, we propose a security
verification methodology that formally verifies cache designs
against cache side-channel vulnerabilities. Results show that this
verification template is a straightforward, automated method in
verifying cache invulnerability.

I. INTRODUCTION

Today, software attacks can compromise hardware security
through so-called Logical Side-Channel Attacks (LSCAs) [1].
Adversaries can use LSCAs to understand the system’s secrets
by simply observing its behavior, e.g. the timing required
to access data from the cache memory. Several examples
of cache attacks have been reported in recent years [2–7].
Such attacks represent a serious threat for the semiconductor
industry. Patching vulnerabilities in the field may be very
costly, degrade the performance, and sometimes even creates
new issues (e.g. reduced battery lifetime of an IoT device) [8].
Therefore, there is a strong need for identifying security
vulnerabilities using verification methods during design time,
while considering both the architecture and threat models.

Several articles address the topic of security verification [9–
12]. In [9], Jha et al. presented a verification scheme that
targeted the validation of access policies in hardware by
different agents. This work is limited to the evaluation of
security policies only and does not consider real threats
and vulnerabilities. In [10], Subramanyan et al. proposed a
verification methodology to evaluate the propagation of system
vulnerabilities using taint-properties (i.e. properties related to
information flow and access control) in a design. Some pre-
defined flows of information are classified up-front as insecure
and the verification methodology verifies in an automated
fashion the occurrence possibility of such a flow in the
design. This technique detects security flaws, however, LSCAs
cannot be detected as even the secure flows leak information.
Regarding this aspect, Deng et al. presented in [11] and [12]
novel approaches to model cache attacks. In both papers, the
authors modelled some famous attacks and thereafter manually
verified the security of different cache solutions. However,
they did not present a methodology or an automated way of
evaluating the cache designs under attacks. The above clearly

Fig. 1: Functional versus security verification flow

shows that an automated security verification method which
includes the design, information flow, as well as the threat and
attack models is missing.

To address this shortcoming, we propose a formal security
verification template to assess the security of a hardware
design in an automated way during the early design phase.
Fig. 1 shows the design flow where the security elements
have been integrated in red. Traditionally, a design starts by
converting a design specification into functional requirements
which are subsequently translated into a design. During this
process, the design is translated from functional requirements
to a netlist [13]. To guarantee that the design is correctly
translated during this process, functional verification is applied
at every transition between the abstraction levels [14]. In a
similar manner this concept can be extended to the verification
of the security requirements. We demonstrate the correctness
of the proposed security verification methodology by analyz-
ing the vulnerabilities related to side-channel analysis of nine
cache designs presented in the literature, i.e., one conventional
non-partitioned cache [15], three statically-partitioned caches
[16–18], and five dynamically-partitioned caches [19–23]. The
main contributions of this paper are:

• An innovative automated verification template to evaluate
the security of a cache design, i.e., whether it is vulner-
able to predefined attacks or not.

• A method to analyze the attack models
• An algorithm that automatically synthesizes attack mod-

els into a table with attacks.
• A demonstration of the proposed methodology for the

nine cache designs by analyzing their security require-
ments using an exhaustive set of 28 attack models
(LSCA) [11].

The remainder of this paper is organized as follows. Section II
provides the required background information. Section III
presents our proposed verification methodology. Section IV
shows the experimental results. Section V presents a brief
discussion. Finally, Section VI concludes this paper.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

Fig. 2: The proposed Security Verification Methodology

II. BACKGROUND ON CACHE ATTACKS

Most cache attacks take advantage of the fact that cache
hits and misses are dependent on the cryptographic key [24].
When a cache miss occurs, the cache coherency mechanism
initiates an access to a higher memory level and hence needs
a longer time to fetch the data. Therefore, by observing
traces with cache misses and hits, information regarding the
value of the secret key can be retrieved [24]. The first attack
proposals for caches targeted the secret key of different cipher
implementations, such as DES, RSA or AES [2, 3, 25]. Based
on how the leakage information is collected, cache attacks
can be classified in access-based, timing-based and trace-based
cache attacks [24].

Access-based cache attacks analyze which addresses were
accessed during a cryptographic cipher operation by measuring
the time the attacker needs to access his own data [3, 26].
Timing-based cache attacks measure the total execution time
of a cryptographic cipher operation (encryption or decryption).
As the number of cache misses and hits are key dependent,
different keys lead to a different execution time [2, 27]. Finally,
trace-based attacks collect information regarding cache hits
and misses using external monitors [28, 29]. These attacks are
out of the scope of this paper as they are not cache exclusive
attacks, i.e., they exploit also other components in the system,
such as High Performance Counters (HPC).

III. SECURITY VERIFICATION METHODOLOGY

Figure 2 presents the main steps of the proposed verification
platform. The inputs of the framework are the design model
and the design requirements. The output is a verified cache
model and a report describing whether the design is secure
against the different cache attacks or not. As shown in Figure
2, the framework is divided into four main steps: A) Define
Threat and Attack Models, B) Analyze Attack Models, C) Cre-
ate Verification Template, and D) Verify Vulnerabilities. Next,
we describe each step in more detail.

A. Define Threat and Attack Models

The threat model defines the main vulnerabilities of the
system. In other words, the threat model is composed of a set
of realistic assumptions and definitions of what an adversary
can and cannot do in the system. In addition, the threat model
can be accompanied with attack models. An attack model
describes the behavior of a practical attack.

Our methodology adopts the exhaustive set of 28 cache
attack types proposed by Deng et al. in [11]. These attack
types are described in Table I, where each type is referenced
by a specific ID, i.e., from 1 to 28. The attack types are

TABLE I: Attack Database: 28 types analyzed in this work

ID attack formula * ID attack formula *
1 V x → Ar → V x - 15 V x → V x → Ar d
2 V x → V r → V x - 16 Ar → V x → V r d
3 Ar → A1 → V x - 17 V r → V x → V r d
4 V r → A1 → V x - 18 V x → V x → V r d
5 A1 → A1 → V x - 19 Ar → V x → A1 e
6 V 1 → A1 → V x - 20 V r → V x → A1 e
7 V x → A1 → V x a 21 A1 → V x → A1 f
8 V x → A1 → V x b 22 V 1 → V x → A1 -
9 V r → V 1 → V x b 23 V x → V x → A1 e
10 A1 → V 1 → V x b 24 Ar → V x → V 1 b
11 V 1 → V 1 → V x b 25 V r → V x → V 1 b
12 V x → V 1 → V x c 26 A1 → V x → V 1 -
13 Ar → V x → Ar d 27 V 1 → V x → V 1 c
14 V r → V x → Ar d 28 V x → V x → V 1 b

*Published attacks: a) Evict+Time [3]; b) Cache Collision [24]; c) Berstein
[2]; d) Flush+Flush [27]; e) Flush+Reload [26]; f) Prime+Probe [3]

described by a formula containing three symbols with two
arrows between them. Next we describe the definitions and
the related assumptions (in form of axioms) that composes
our threat and attack model.

Definition 1. V1 is a specific cache address that is accessed
by the victim which is known to the attacker.
Definition 2. Vx represents an access by the victim using a
specific cache address which is not known to the attacker.
Definition 3. Vr is a flush operation initiated by the victim for
one or more addresses which is/are not known to the attacker.
Definition 4. A1 represents an access by the attacker using a
specific cache address.
Definition 5. Ar is a flush operation initiated by the attacker
for one or more addresses.
Definition 6. An attack formula is a sequence of three
operations, given by:

attack ⇔ { Stage 1→ Stage 2→ Stage 3 }
Definition 7. Stage 1 (i.e, setup phase) is the step where the
attack is prepared. Usually, a memory operation performed by
either the victim or attacker initializes a single cache line to
a certain initial state.
Definition 8. Stage 2 (i.e., trigger phase) is the step where
the initialization data is modified. This can be done by the
victim or attacker.
Definition 9. Stage 3 (i.e., observation stage) is the step
where the attacker gathers information. For example, the time
required to complete the memory access (by the attacker or
victim) is observed by the attacker during this stage.
Axiom 1. When a victim (Def. 1, Def. 2, and Def. 3) or
attacker (Def. 4, and Def. 5) symbol is used twice in the attack
formula, it is assumed that they refer to the same address. For
example, address Vx of the first stage of attack A28 (see Table
I) is the same address used by the second stage.
Axiom 2. It is unclear which addresses are accessed before
Stage 1, hence the first accesses of both the victim and attacker
may result in cache hits or misses.
Axiom 3. When an attacker and a victim share the same cache
address space, it is assumed that a third party interference has
equivalent impact on the victim’s and attacker’s behavior.
Axiom 4. The attacker and the victim do not share any
memory space in the main memory.

2

Axiom 5. The attacker is able to observe the timing of the
cache operations of the victim.
Axiom 6. The attacker knows which cryptography libraries
are used by the victim. Note that a secure design entails the
disclosure of the implementation [30].
Axiom 7. The attacker is able to force the victim to execute
a specific function. For instance, the attacker can request the
victim to decrypt a certain message.

To understand how each formula addresses the behavior
of an attack, we will use as example the Evict+Time attack
(attack ID 7). In Evict+Time attacks, the attacker reads a
specific address from the cache during the victim‘s operation
and observes if the execution time of the victim application
increased. In case this happens, it means that the attacker
interfered with an address used by the victim [3]. In the
formula of attack id 7, the attack is triggered by the victim
when he accesses a cache address that is unknown to the
attacker (V x). In stage 2, the attacker accesses a certain
address in the cache (A1), aiming to cause interference with
the victim‘s execution by using a specific address that maps
to the same cache line as Vx. In Stage 3, the victim is still
using the same address used during Stage 1 (V x). As the
attacker is able to observe the time required by the victim
during this stage (Axiom 5), he may identify whether the cache
line address of V x equals the one of address A1. Note that
well-known cache attacks are summarized at the bottom of
Table I.

B. Analyze Attack Models

This second step analyzes each model of the database to
identify which input combinations (cache hit/miss conditions)
are possible and additionally are potential attack scenarios.
Each model consists of three stages in which each stage can
result in a cache hit or miss. Therefore, there are theoretically
eight scenarios for each attack. As a result we classify each
scenario into one of the following three groups:

• Group I → Invalid; the combination leads to an invalid
scenario. For example, it is not possible to get a cache
miss during stage 2 for the attack with ID 23, as the same
address is used during stage 1.

• Group PAttack → Valid ∩ ¬ Attack; the combination
leads to a valid but non-exploitable scenario.

• Group PAttack → Valid ∩ Attack; the combination leads
to a valid and exploitable scenario.

To illustrate the above, we use the Evict+Time attack (attack
ID 7 in Table I) again as an example. Table II presents
all the eight scenarios (cache hit/miss combinations) for this
attack. The table shows in which of three groups each scenario
belongs to. The last column summarizes the output of this step
in the verification framework. Next we look at an example for
each of the different groups. The second input combination,
i.e., row 3 in Table II, is Invalid (Group I) because of the
following reason. During Stage 2, the attacker requests data
using A1 which result in a "hit". This means that the address
used in this stage is different than V x in Stage 1. During
Stage 3, the victim requests data using V x resulting in "miss".
However, as the address of V x was previously accessed in

TABLE II: Analysis of the attack ID 7: V x→ A1→ V x

V x A1 V x I PAttack pAttack Analysis Output
hit hit hit no no yes PAttack
hit hit miss yes no no I
hit miss hit no no yes PAttack
hit miss miss no yes no PAttack

miss hit hit no no yes PAttack
miss hit miss yes no no I
miss miss hit no no yes PAttack
miss miss miss no yes no PAttack

1 def check_V (scenario,stage_1,stage_2,stage_3) :
2 valid = True
3 if (stage_1==stage_2):
4 if (scenario[’stage2’]==MISS):
5 valid = False
6 elif (stage_1==stage_3):
7 if (scenario[’stage2’]==HIT):
8 if (scenario[’stage3’]==MISS):
9 valid = False

10 return valid

Listing 1: Python code of the valid analysis function.

Stage 1 and not affected by Stage 2, a hit is expected. Hence,
this combination is invalid.

The scenario of the fourth row of Table II belongs to the
Valid ∩ ¬ Attack (Group PAttack) because of the following
reason. During Stage 2, the attacker requests data using A1
which results in a "miss". This means the attacker may have
accessed the same address in the cache of V x of Stage 1. Then,
during Stage 3, the victim requests again the same address of
V x which now results in a "hit". This means the data requested
during stage 1 is still valid in the cache. Therefore, the attacker
did not interfere with the victim, thus no information is leaked.

The input combination on row 5 of Table II belongs to
the Valid ∩ Attack (Group PAttack) because of the following
reasons. During Stage 2, the attacker requests data using A1
which results in a "miss"; hence, it fetches data from a higher
memory level into cache. There is a possibility to overwrite on
the address of V x. Then, during Stage 3, the victim requests
data using V x which results in a "miss". This means that
the attacker actually replaced the data on the address of V x
during Stage 2. This scenario could lead to an attack, as the
attacker is able to understand which address was accessed by
the victim, simply by analyzing the time it takes to complete
the operation of Stage 3.

We have automated the above analysis using an algorithm
for all the 28 attacks. Listing 1 presents the Python code
that evaluates the invalid conditions for each scenario, while
Listing 2 evaluates the conditions that lead to an access or
timing attack. Note that based on our assumptions in the threat
model, the interpretation of the cache attacks modeled by Deng
et al. can be different. Our assumptions remove any ambiguity
whether a scenario can be an attack or not.

C. Create Verification Template
The third step consists of creating a verification template,

as shown in Figure 3. The first automaton (part 1) models
the attack phases, as defined by the attack models in Subsec-
tion III-A. The second automaton (parts 2 and 3), models the
functionality of the cache design (part 2) and the classification
groups (part 3), defined in Subsection III-B. As a result, any
model checker can use this template to verify whether there
is a valid attack scenario or not.

3

1 def check_A (scenario,stage_1,stage_2,stage_3):
2 attack = False
3 # Access Attacks
4 if (stage_3==A1)or(stage_3==Ar)or(stage_3==V1):
5 if (stage_2==Vx) or (stage_2==Vr):
6 if (scenario[’stage3’]==MISS):
7 attack = True
8 elif (stage_1==A1)or(stage_1==Ar)or(stage_1==V1):
9 if (scenario[’stage2’]==MISS):

10 attack = True
11 elif (stage_1==Vx)or(stage_1==Vr):
12 if (scenario[’stage3’]==MISS):
13 attack = True
14 # Timing Attacks
15 if (stage_3==Vx)or(stage_3==Vr) :
16 if (stage_1==V1)or(stage_1==A1)or(stage_1==Ar) :
17 if (scenario[’stage3’]==MISS) :
18 attack = True
19 if (stage_3==Vx)or(stage_3==Vr) :
20 if (stage_2==V1)or(stage_2==A1)or(stage_2==Ar) :
21 if (scenario[’stage3’]==MISS) :
22 attack = True
23 return attack

Listing 2: Python code of the attack analysis function.

As an illustrative example, we will describe the creation
of the verification template of the secure PL cache presented
in [22]. This cache uses dynamic partitioning where each
partition operates on a cache block (a group of cache lines).
To control the access to each block, a lock bit is used for each
cache line that verifies the process ID. In the automaton model,
the hit and miss states are shared between the victim and
attacker due to the dynamically partitioned cache. An internal
variable "Lock" is used to represent the lock bit, which is
used to check the access rights. Part 2 of Figure 3 represents
this cache and the classification groups (part 3) are added in
the same automaton for convenience reason. Thereafter, we
integrate this automaton with the attack phases (part 1) to
create the verification template, as shown in Figure 3.

To understand how these automata run, we use the first
scenario that may lead to an attack in Table II (i.e., V x=hit,
A1=miss, V x=miss) as example. This attack can only happen
for the cache under consideration when all 3 stages are
validated. First, the left automaton (part 1) starts the process
by reading the inputs of the target scenario (Table II) and
stores them. When the automaton traverses to stage 1, it syncs
this information with the cache automaton (parts 2 and 3).
Based on the first input value (V x=hit), the cache automaton
traverses to the hit state. Thereafter, the automaton traverses
to the Check Lock state. In case the cache line is locked, the
automaton traverses further to the bypass state and back to the
initial state. In case it is not locked, the automaton traverses
also back to the initial state but via the return state. Each time
the automaton traverses through the bypass state it uses an
internal variable to invalidate the current stage, i.e., this stage
could not take place in the evaluated cache. Thereafter, the left
automaton moves to the state Stage 2 and processes the second
input (A1=miss). It again synchronizes this information with
the cache automaton and the cache automaton repeats the same
operations as during Stage 1. This is again repeated when the
third input (V x=miss) is processed. However, during the third
stage the cache automaton traverses to part 3 of the template

Group I

Group
PAttack

Group
PAttack

Lock = on
Stage 1

Stage 2

Stage 3

Part 1
Part 3

initial

Hit Miss

Check
Lock

Check
Lock

replacereturn

bypass

Lock = on

Lock = off Lock = off

Part 2

initial

After each stage in
(part 1) data is
synchronized with
(part 2 and part3)

Fig. 3: Verification template of the PL Cache evaluation.

where the classification is made. When none of the stages have
been invalidated, the scenario is considered valid and attack.
Otherwise, it is re-classified as Group PAttack (valid but not
attack). Note that the scenarios classified as invalid in Table
II are not evaluated and that the scenarios valid but not attack
are only functionally verified.

D. Verify Vulnerabilities

The fourth and last step of the methodology verifies cache
vulnerabilities, i.e., to verify whether the state Group PAttack

is reached or not. If the template reaches this state, it means
that the model is leaking information with respect to the
considered attack model and hence might not be secure. This
can be formulated by reachability properties [31]. Reachability
properties are used to identify whether a certain state is reach-
able or not from the initial state. Subsection IV-A provides
more details on this property.

IV. EXPERIMENTAL RESULTS

This section provides the experimental setup and results.
A. Experimental Setup

1) Cache designs: We organized the caches evaluated in
this work based on their architecture model denoted as conven-
tional (non-partitioned), static-partitioned, dynamic-partitioned
and dynamic-randomization. Fig. 4 demonstrates the automata
of all these cache categories. Note that for verifying the
security of the cache designs only part 2 of the verification
template in Fig. 3 should be replaced. For instance, for the
Conventional Cache [15] part 2 should be replaced with the
automaton of Fig. 4(a). Next, we briefly describe the different
caches and briefly explain how we model them.
Conventional Cache [15]: The conventional non-partitioned
cache is commonly used where all applications share the
complete address space. Due to this, the memory space of
both the common and sensitive may (partially) overlap.
SP Cache [16]: This design uses static partition and divides
the cache ways into two levels: high (H) and low (L). The H
way is assigned to the victim, while the L way to the attacker.
The access is controlled by the process ID. To model this in
the cache automaton, the attacker and victim have independent
states to represent isolated accesses to each partition. A
specific variable (i.e. process_id) is used to identify the victim
and attackers for proper access.
SecVerilog Cache [17]: This cache design also employs
static partitioning and is very similar to SP Cache. The main
difference is the implementation, which uses a label instead

4

Fig. 4: Automata: (a) Conventional, (b) Static-partitioned , (c) Dynamic-partitioned, and (d) Dynamic-randomization caches.

of the process ID to control the accesses. Since we focus only
on a high abstraction level, it is modelled by the same cache
automaton used for SP Cache.
SecVerilog Cache v2 [18]: This cache is an extension of the
previous one. Although the caches strictly do not share the
ways, data might be copied from L to H and vice versa. This
happens in the case both the victim and attacker access the
same location in the main memory. In case one of the partitions
has a cache miss, it will be copied from the other partition
when available but with the same timing penalty as a cache
miss. Hence, it obfuscates cache hits from another partition.
Therefore, the same cache automaton model can be used here,
as the behaviour at high level is the same as the previous one.
SecDCP cache [19]: This design extends the SecVerilog cache
by applying dynamic partitioning. The size of L partition is
dynamically defined by the percentage of cache misses it
has. We modeled the dynamic partitions by having shared
functional states that are both accessible by the attacker and
victim. In the cache automaton this is modeled by transversing
from the functional state to the bypass state, and subsequently
returning to the initial state.
NoMO cache [20]: This dynamically partitioned cache checks
access control using the thread ID. The cache automaton
model of SecDCP is used to model this cache as well, as
they only differ in the implementation.
DAWG cache [21]: This dynamically-partitioned cache as-
signs a domain ID to each process to determine which partition
each process can access. The automaton of SecDCP is also
used to model this cache, since they only differ in the
implementation.
SHARP cache [23]: This cache uses both dynamic parti-
tioning and randomization. It uses a lock bit called core
valid bit (CVB) to control access to the victim partition. The
randomization is used in the replacement policy. We modeled
this special condition inside the miss and hit states by applying
a random variable which may deactivate the lock bit for certain
accesses.

As expected, the four categories of architectures results
in four different verification templates, denoted as Conv.
(conventional cache, related to Fig. 4(a)), Static (for SP,
SecVerilog and SecVerilog v2 caches, related to Fig. 4(b)),
Dyn (for SecDCP, NoMO, DAWG and PL caches, related
to Fig. 4(c)) and Dyn-Randomization (for SHARP cache,
related to Fig. 4(d)). Merging the similar templates has several
benefits. First, as the approach is implementation independent,
a limited number of templates are sufficient to evaluate a wide
range of possible designs. Second, our evaluation provides
exact details of which input combination causes the leakage.
Third, the approach has a low time overhead and hence can be

used to design exploration.The following subsection presents
the verification results.

2) Model checker: The purpose of model checking is to
verify the correctness of a system by evaluating a set of
properties while traversing an automaton model of the system
[32]. In this work, the cache automata are implemented in
UPPAAL (Def. 10). Note that any other model checker such
as NuSMV [33] or PAT [34] can be adopted for this purpose.
UPPAAL [35] is a timed automata which is able to check a
complex real-time model. In this work, we modeled the time
using the stages of an attack formula (Def. 6).
Definition 10. UPPAAL automaton is defined by the following
Tuple (L,E,G, Sync, T), where:

• L is a finite set of states,
• E is the set of edges that connects the states,
• G is the set of constraints on the edges which activate

the transition between the states,
• Sync is a set of synchronization actions which can sync

the data from one automaton (denoted by o!) to another
(denoted by o?),

• T represent the time instant,

Based on (Def. 10), the automaton in part 1 is defined as
(|L|=4, |E|=4, |G|=0, |Sync|=3, |T|=4), where L, E, G are finite
set of states, edges and constraints on the edge, respectively.
Sync is the synchronization channels. In this specific model
checker predefined elements such as o! and o? can synchronize
values between the states. T refers to the time instant. In this
model checker, T is equal to execution time of each stage in the
attack formula (i.e. traversing from stage 1 to stage 2 in part
1). Note that C code can be implemented in each state and
thus sometimes no constraints (G parameter from the tuple,
such as this illustrative example) can be seen on the edges
of the automaton. For the sake of brevity, we do not describe
further implementation details.

To implement the reachability property, the CTL [36] syntax
equal to E � PL_cache.GroupPAttack is defined, where
PL_cache is the name of the automaton, Group PAttack the
target state, and E � means “if there is an existing path that
eventually reaches” the state Group PAttack.
B. Results

Table III reports the analysis results. The first and 5th

column contain the attack ID. The remaining columns present
the results of the four verification templates. Three possible
outputs are shown in the table, S as secure against such attack,
N as not secure against such attack, and P as partially secure
against such attack. P denotes cases where the outcome is
sometimes secure and other times not. This occurs for example
due to randomization.

5

TABLE III: Security analysis of different cache models.
Attack

ID
Templates Attack

ID
Templates

Conv. Static Dyn Dyn-R Conv. Static Dyn Dyn-R
1 N S S S 15 N S S S
2 N S N P 16 N S N P
3 N S N P 17 N S N P
4 N S S S 18 N S N P
5 N S N P 19 N S S S
6 N S S S 20 N S S S
7 N S S S 21 N S S S
8 N S S S 22 N S S S
9 N N N P 23 N S S S

10 N S N P 24 N S N P
11 N N N P 25 N N N P
12 N N N P 26 N S N P
13 N S S S 27 N N N P
14 N S S S 28 N N N P

(S)

denotes Secure, (N) Not Secure, and (P) Partially Secure

As observed in the table, the conventional caches are
vulnerable against all attack types. The statically-partitioned
caches are only vulnerable against timing attacks. Even when
fully isolated, if at least the address of V 1 is known to the
attacker, a timing attack is possible as the attacker can observe
the time of the third operation (Axiom 5). The dynamically-
partitioned caches are less secure and are vulnerable against
timing attacks and some few access attacks. The exception
is the SHARP Cache [23], which employs randomization for
some cache misses. The randomization used in SHARP makes
the same scenario sometimes secure. As a result, we labeled
this as a partially secure (letter P). One could understand P as a
potential vulnerability, but less practical, i.e. the vulnerability
exists but it is statistically difficult to achieve.

V. DISCUSSION

The proposed verification methodology allows designers to
evaluate for a given design whether certain attacks are possible
and understand in which scenarios they occur. Hence, trade-off
analysis can be made between the security and cost overhead,
allowing important design decisions to be made early in the
design process. For example, one could start with an SP Cache
and use the information in Table III to make it more secure.
Although it is very secure compared to the other cache designs,
it is still vulnerable to some attacks. To improve this, our
method can be used to identify which scenarios cause this.
As a result, the SP Cache can be tuned for these specific
cases. The vulnerabilities of SP Cache are due to cache miss of
victim accesses. A countermeasure against them would be to
randomly invalidate some cache lines to increase the amount of
cache misses, thus adding noise to the observing attacker. This
randomization could be applied only in the victim’s partition;
hence minimizing the timing penalty. Most of the efforts in
the verification template are required in part 2 (automaton
design), whereas parts 1 (stages) and 3 (classification) are
automated. Therefore, the proposed verification template can
be used by the semiconductor industry to evaluate the security
performance trade-offs in an early design stage.

VI. CONCLUSION

This paper presented a formal verification template to eval-
uate the possibility of cache attacks for a given cache model.
The template can be used to identify threats during the early
design stage. The proposed methodology was demonstrated
on nine different cache designs by analyzing their security
using an exhaustive set of 28 models of LSCA attacks.

Using this flow, designers are able to perform a design space
exploration considering different countermeasures and analyze
their performance and security trade-offs. ’

ACKNOWLEDGMENTS

The work has been supported by Estonian Research Council
grant IUT19-1 and Estonian centre of excellence EXCITE.

REFERENCES

[1] B. Gulmezoglu et al., “Undermining user privacy on mobile devices
using ai,” in Asia CCS ’19, 2019.

[2] D. J. Bernstein, “Cache-timing attacks on aes,” Tech. Rep., 2005.
[3] Osvik et al., “Cache attacks and countermeasures: The case of AES.”
[4] P. Kocher et al., “Spectre Attacks: Exploiting Speculative Execution,”

in IEEE SP, 2019.
[5] M. Lipp et al., “Meltdown: Reading Kernel Memory from User Space,”

in 27th USENIX Security Symposium, 2018.
[6] S. Schaik et al., “RIDL: Rogue in-flight data load,” in S&P, May 2019.
[7] M. Minkin et al., “Fallout: Reading kernel writes user space,” 2019.
[8] G. Doychev et al., “Rigorous analysis of software countermeasures

against cache attacks,” SIGPLAN Not., vol. 52, Jun. 2017.
[9] S. Jha et al., “Towards formal verification of role-based access control

policies,” Transactions on Dependable and Secure Computing, 2008.
[10] P. Subramanyan et al., “Formal verification of taint-propagation security

properties in a commercial soc design,” in DATE, March 2014.
[11] S. Deng et al., “Cache timing side-channel vulnerability checking with

computation tree logic,” in HASP ’18, 2018.
[12] S. Deng et al., “Analysis of secure caches using a three-step model for

timing-based attacks,” Cryptology ePrint Archive, 2019.
[13] R. Hariharan et al., “From rtl liveness assertions to cost-effective

hardware checkers,” in 2018 Conference on Design of Circuits and
Integrated Systems (DCIS). IEEE, 2018, pp. 1–6.

[14] A. Danese et al., “Automatic generation and qualification of assertions
on control signals: A time window-based approach,” in IVLSI, 2015.

[15] J. Handy, The cache memory book. Morgan Kaufmann, 1998.
[16] R. B. Lee et al., “Architecture for protecting critical secrets in micro-

processors,” in ISCA’05, June 2005.
[17] D. Zhang et al., “Language-based control and mitigation of timing

channels,” SIGPLAN Not., vol. 47, Jun. 2012.
[18] D. Zhang et al., “A hardware design language for timing-sensitive

information-flow security,” SIGPLAN Not., vol. 50, Mar. 2015.
[19] Y. Wang et al., “Secdcp: Secure dynamic cache partitioning for efficient

timing channel protection,” in 53nd ACM/EDAC/IEEE DAC, June 2016.
[20] L. Domnitser et al., “Non-monopolizable caches: Low-complexity mit-

igation of cache side channel attacks,” ACM TACO, Jan. 2012.
[21] V. Kiriansky et al., “Dawg: A defense against cache timing attacks in

speculative execution processors,” in 51st IEEE/ACM MICRO, 2018.
[22] Z. Wang et al., “New cache designs for thwarting software cache-based

side channel attacks,” SIGARCH Comp. Arch. News, 2007.
[23] M. Yan et al., “Secure hierarchy-aware cache replacement policy (sharp):

Defending against cache-based side channel atacks,” in ISCA ’17, 2017.
[24] A. Bogdanov et al., “Differential cache-collision timing attacks on aes

with applications to embedded cpus,” in CT-RSA 2010.
[25] Y. Tsunoo et al., CHES 2003, ch. Cryptanalysis of DES Implemented

on Computers with Cache.
[26] Y. Yarom et al., “Flush+reload: A high resolution, low noise, l3 cache

side-channel attack,” in 23rd USENIX, 2014.
[27] D. Gruss et al., “Flush+flush: A fast and stealthy cache attack,” in

DIMVA, 2016.
[28] O. Acıiçmez et al., “Trace-Driven Cache Attacks on AES,” in Informa-

tion and Communications Security, 2006.
[29] C. Rebeiro et al., “An Enhanced Differential Cache Attack on CLEFIA

for Large Cache Lines,” in INDOCRYPT, 2011.
[30] F. A. P. Petitcolas, Kerckhoffs’ Principle. Springer US, 2011.
[31] B. Bérard et al., Systems and software verification: model-checking

techniques and tools. Springer Science & Business Media, 2013.
[32] A. Sanghavi, “What is formal verification?” EE Times_Asia, 2010.
[33] A. Cimatti et al., “Nusmv: a new symbolic model checker,” International

Journal on Software Tools for Technology Transfer, vol. 2, 2000.
[34] J. Sun et al., “Fair model checking with abstraction.” Springer, 2009.
[35] G. Behrmann et al., “A tutorial on uppaal.” Springer, 2004.
[36] E. M. Clarke et al., “Design and synthesis of synchronization skele-

tons using branching time temporal logic,” in Workshop on Logic of
Programs. Springer, 1981, pp. 52–71.

6

