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H I G H L I G H T S  

• Functional contributions of AI techniques for large-scale renewable energy integrations were discussed. 
• Practical applications and effectiveness of various AI techniques were analyzed. 
• Limitations and challenges associated with large-scale renewable energy integrations using AI techniques were summarized. 
• Some promising research perspectives and recommendations were proposed.  
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A B S T R A C T   

The vigorous expansion of renewable energy as a substitute for fossil energy is the predominant route of action to 
achieve worldwide carbon neutrality. However, clean energy supplies in multi-energy building districts are still 
at the preliminary stages for energy paradigm transitions. In particular, technologies and methodologies for 
large-scale renewable energy integrations are still not sufficiently sophisticated, in terms of intelligent control 
management. Artificial intelligent (AI) techniques powered renewable energy systems can learn from bio- 
inspired lessons and provide power systems with intelligence. However, there are few in-depth dissections 
and deliberations on the roles of AI techniques for large-scale integrations of renewable energy and decarbon-
isation in multi-energy systems. This study summarizes the commonly used AI-related approaches and discusses 
their functional advantages when being applied in various renewable energy sectors, as well as their functional 
contribution to optimizing the operational control modalities of renewable energy and improving the overall 
operational effectiveness. This study also presents practical applications of various AI techniques in large-scale 
renewable energy integration systems, and analyzes their effectiveness through theoretical explanations and 
diverse case studies. In addition, this study introduces limitations and challenges associated with the large-scale 
renewable energy integrations for carbon neutrality transition using relevant AI techniques, and proposes further 
promising research perspectives and recommendations. This comprehensive review ignites advanced AI tech-
niques for large-scale renewable integrations and provides valuable informational instructions and guidelines to 
different stakeholders (e.g., engineers, designers and scientists) for carbon neutrality transition.  
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1. Introduction 

The use of conventional energy systems (e.g., coal, oil and natural 
gas) has caused a dramatic rise in CO2 emissions and resulted in global 
warming [1–3]. The global energy and environmental issues necessitate 
the deployment of large-scale renewable energy. Nowadays, renewable 
energy generation (especially solar and wind energy) has attracted 
considerable attention and large-scale application as the most common 
technologies to mitigate energy and environmental issues [4–6]. How-
ever, solar and wind power generation technologies suffer from inter-
mittency and difficulty in continuity [7–9]. This intermittent availability 
of power output has important implications for the grid system, such as 
voltage fluctuations, frequency fluctuations, reactive power, system 
outages, and frequent switching of electrical equipment, as well as for 
forecasting and scheduling, load management, and storage system [10, 
11]. Large-scale renewable energy generations could lead to voltage 
increases in the grid, which are significant in the scenario of 
grid-connected photovoltaic (PV) generation [12]. In addition, the 
intermittent availability of solar energy could lead to non-uniform 
power generation, and therefore may overload the capabilities of the 
connected transformers, also potentially lead to grid-wide phase im-
balances [13–15]. 

Currently, solar and wind generations have become an essential part 
of smart grids, smart microgrids and smart buildings, which account for 
an increasing sharing proportion in electricity supply [16, 17]. Never-
theless, due to the high-randomness, low-predictability and intermittent 
characteristics of solar and wind energy, reliability and security of 
large-scale grid-connected renewable energy systems (RES) have been 
regarded as most critical issues that need to be addressed [18, 19]. 
Therefore, using intelligent techniques to dispatch, manage and opti-
mize renewable energy sources will be a required effective measure to 
stabilize the grid power and ensure power supply security in electricity 
grids [20]. Intelligent techniques, e.g., artificial intelligence (AI), are 
powerful tools that could address the complexity of the global energy 
transition, improve system effectiveness, reduce costs and accelerate the 
speed of decarbonization transition [21, 22]. They are primarily applied 
to renewable energy generation and demand forecasting, grid operation 
optimization, and energy demand management [23, 24]. 

Numerous researchers have investigated the integrated applications 
of AI techniques with renewable energy, including wind and solar 
complementary power generation, wind power access to electric grid 
system, and solar storage distribution network [25, 26]. The emergence 
of AI techniques has brought new opportunities for renewable energy 
dissipation, grid frequency regulation and peak shaving, which enables 
the smooth connection of renewable electricity generation to the grid 
[27]. Hua et al. [28] indicated that AI technique was one of the optimal 
operational control strategies to underpin electric power systems. Their 
study attempted to address how AI techniques could be incorporated 
into the smart grid to facilitate professional consumers’ participation in 
the energy market. To achieve this goal, they reviewed how policy 
design could be designed to put a price on CO2 emissions resulting from 
fossil fuel-based electricity generation to encourage the integration of 
professional consumers with renewables. Then, they discussed how AI 
techniques could strengthen condition monitoring and determination 
during electricity power system operations. Ghadami et al. [29] pro-
posed a smart city conceptualization using AI and renewable energy, e. 
g., PV technologies. The study aimed to assess the electrical energy 
consumption in Mashhad region of Iran using machine-learning-based 
tools and proposed a dynamical strategy to increase citizens’ willing-
ness to generate electricity from renewables based on expert knowl-
edges. Results showed that an artificial neural network model could 
successfully predict the overall electrical power consumption during 
summer and winter with an accuracy of 99%. Then, according to the 
calculations in the PV system for solar energy, the peaks of electrical 
power consumption can be controlled during the hottest and coldest 
months. Abdalla et al. [24] comprehensively overviewed the 

integrations of RES and energy storage systems (ESS) considering AI 
techniques. This study summarized the functions, classification, design 
optimization approaches and applications of EES in electric power sys-
tems based on the technical characteristics of RES. Also, applications of 
AI techniques in optimizing system configuration, energy control stra-
tegies and applicability of different EES are also thoroughly sorted out, 
which provided new inspirations and conceptions for the future research 
perspectives of large-scale integrated ESS. 

The coexistence of renewable energy and carbon capture presents a 
new pathway where the deployment of carbon capture can provide 
additional flexibility to preferably accommodate renewable energy, 
meanwhile the surplus renewable energy can be used to reduce the 
operation cost of carbon capture [30, 31]. Chen et al. [32] proposed an 
AI-based optimization scheduling strategy for power plants and carbon 
capture systems in terms of renewable energy penetration to show that 
co-benefits between carbon capture and renewable energy generation 
can be achieved when the carbon capture process was fully adjustable. A 
deeply believed neural network with AI was used to reflect the complex 
interactions between carbon, heat and electricity within the carbon 
capture system of the power plant. Multiple operational objectives, such 
as operating cost minimization, renewable power reduction, and carbon 
emissions, were considered within the scheduling, and a particle swarm 
heuristic optimization approach was used to find the best solution. 

Based on the above-mentioned comprehensive summarizations and 
explanations, it can be seen that the vigorous expansion of RES as a 
substitute for fossil energy is the predominant route of action to achieve 
worldwide carbon neutrality at current periods [33–35]. However, the 
application of RES in the overall energy supply network is still in the 
preliminary stage of energy transition. In particular, the integrated 
technologies and methods for large-scale renewable energy applications 
are still not mature enough [36, 37]. Besides, the intermittent of 
commonly used RES (e.g., solar and wind energy) leads to difficulties in 
matching energy production, supply and utilization, and thus the prac-
tical operational effectiveness of these systems would be seriously 
undermined [38, 39]. To solve this problem, integrating AI techniques 
into RES can be considered as a recommendable option in practical 
applications [40]. The integration of AI techniques with RES has 
received a considerable attention in recent years, and a large number of 
studies have been carried out from different perspectives. For instance, 
Milidonis et al. [41] presented a detailed overview on the applications of 
AI techniques for analysis, design, optimization, control, operation and 
maintenance of solar tower systems. Al-Othman et al. [42] compre-
hensively reviewed the applications of AI techniques in hybrid renew-
able energy systems (HRES), especially solar PV and wind energy 
integrated with fuel cells. This study further clarified that the main 
advantages of AI solutions revolved around predicting the drawbacks of 
HRES during peak load periods as well as intermittent energy genera-
tion. However, there are few in-depth dissections and deliberations on 
the roles of AI techniques for large-scale integration of RES applications 
in different scenarios. Large-scale integration of renewable energy is 
distinguished from conventional RES, which typically possess more 
complex system integration and control strategies. In addition, there is 
still a lack of a comprehensive summarization and analysis on the 
up-to-date research status, existing issues and faced challenges of AI 
techniques in large-scale RES applications for carbon neutrality 
transition. 

To solve above-mentioned scientific gaps, this study will conduct a 
systematic overview on AI techniques in large-scale RES applications to 
provide cutting-edge guidance and energy planning strategies for rele-
vant stakeholders, especially the formulation of relevant energy policies 
and blueprint initiatives. In this study, the commonly used approaches, 
advantages and functional roles of intelligent techniques in various RES 
sectors are summarized, as well as their functional contribution to 
optimizing operational control modalities of RES and improving the 
overall operational effectiveness of these systems. Furthermore, this 
study presents the practical applications of various AI techniques in 
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large-scale renewable energy integration systems, and analyzes the 
effectiveness of these methodologies through theoretical explanations 
and diverse case studies. In addition, this study also analyzes the limi-
tations and challenges associated with the large-scale integration of RES 
using the relevant AI techniques, as well as proposing further promising 
research perspectives and recommendations. This comprehensive 
overview demonstrates the contributions of advanced AI techniques to 
the large-scale integration application of RES and the corresponding 
subsequent development. 

2. Common approaches, advantages and functional roles of AI 
techniques 

2.1. Common AI-related approaches 

With the rapid development of AI techniques, integrating AI tech-
nologies with large-scale RES utilizations has become an increasingly 
promising and imperative tendency. In general, AI techniques indicate 
the ability of one computer or machine to mimic human cognitive 
functions, e.g., learning and trouble-shooting abilities [41, 42]. They can 
be used for performance or property prediction, operational control, 
programming and optimization, etc. This section introduces some pre-
vailing AI techniques, which are well-inspired by the human brains (e.g., 
artificial neural networks (ANN) and fuzzy logic) or animal behaviors (e. 
g., particle swarm optimization (PSO) and ant colony optimization 
(ACO)) [43]. 

2.1.1. Artificial neural networks (ANN) 
ANN is one of the most widely used AI techniques in various fields, 

such as renewable energy technologies (e.g., solar, wind, geothermal, 
etc.) [44], air-conditioning systems (e.g., load prediction, fault detec-
tion) [45, 46], etc. A typical ANN model is usually composed of the input 
layer, hidden layer and output layer. Each layer contains a group of 
neurons that use an activation function to calculate the output based on 
inputs from previous layers. The backward propagation (BP) algorithm 
is commonly used for ANN training to optimize the weights and biases of 
individual neurons. However, the optimal ANN structure, including the 
numbers of hidden layers and hidden neurons, and activation functions, 
are determined in most situations using trial-and-error methods [43]. 

In large-scale energy system optimizations, developing ANN-based 
agent models bypasses the use of computational extension models and 

significantly minimizes the computational time of optimization tasks, 
compared with actual engineering models [47]. Some studies demon-
strated that agent models using ANN could potentially increase the 
computational speed of system optimization by over 100 times, while 
achieving accuracy rates of up to 90% [48]. To achieve minimal envi-
ronmental impacts and maximal economic benefits of HRES and to 
establish a trade-off between government and residents, Luo et al. [49] 
developed a new ANN-based hybrid algorithm (ABHA, whose workflow 
is shown in Fig. 1) to replace the lower-level optimization problems and 
transform the two-level optimization into a single-level optimization 
problem, thereby improving the computational efficiency. The results 
demonstrated that (i) ABHA can achieve high accuracy and significantly 
reduce the calculation time compared to traditional methods; (ii) Under 
the optimal subsidization policy, most of the energy requirements in the 
proposed stand-alone HRES can be fulfilled from solar energy; (iii) 
Increasing the subsidy would expand the scale-up PV installation and 
decrease the carbon emissions; however, the design and operation of the 
HRES would not be further compromised as the subsidy exceeds a 
certain threshold. 

2.1.2. Fuzzy logic control (FLC) 
Fuzzy logic control (FLC) is a prevalent nonlinear and adaptive 

control technique that provides robust performance in the presence of 
parameter uncertainty. Fuzzy logic contributes to conceptualize the 
ambiguity in a system into clear quantifiable parameters [50]. There-
fore, FLC-based models can be used for effective energy management 
planning, and thereby deriving practical solutions. In recent years, 
FLC-based inference systems have been widely used for solar PV con-
trol/smart grid systems. FLC algorithms are also utilized for solar 
PV/wind energy control systems and for finding the optimal topography 
for wind energy generation. Fuzzy expert systems and neuro-fuzzy 
expert systems are AI applications for identifying the optimal energy 
source or maximizing available resources [51]. 

FLC has numerous advantages over other classical expert systems 
due to the possibility of introducing multiple input variables in the 
controller structure with lower complexity [52]. In addition, the ex-
pected FLC performance can be easily described in a textual manner, 
which avoids the requirement for mathematical expressions for the 
entire input ranges. Vigneysh and Kumarappan [53] proposed a simple 
structure that exploited the robustness and adaptiveness of FLC and PI 
controller to effectively improve the dynamic performance of a grid 

Fig. 1. Flowchart of the ANN-based Hybrid Algorithm (ABHA) [49].  
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interactive converter (GIC) under uncertainty. The input gain of the PI 
controller was dynamically adjusted by the operational conditions of the 
fuzzy logic-based supervisory control system. Thus, it provided fast 
dynamic response and reduced overshoot during perturbations. Cai et al. 
[54] determined the optimal strategy for energy management system 
planning under multiple uncertainties using a fuzzy stochastic interval 
programming model. This approach integrated interval linear pro-
gramming, fuzzy stochastic programming, and mixed integer program-
ming. Therefore, fuzzy logic could contribute to effectively capture and 
compress the data and uncertainties associated with energy modeling. 

Athari and Ardehali [55] investigated the influences of time-varying 
electricity prices on the performances of energy storage components of a 
grid-connected hybrid renewable energy system (HRES) managed by a 
prediction-based optimization tuned FLC. The flowchart of the optimi-
zation procedure for FLC-managed grid-connected HRES energy storage 
component performance is shown in Fig. 2, where weekly and daily 
forecast data were used to determine the optimal affiliation function of 
the FLC. The predicted data included grid electricity prices, electrical 
loads and environmental parameters such as wind speed, solar radiation 
and ambient temperature. Simulation results demonstrated that the 
performances of energy storage modules for grid-connected HRES are 
strongly influenced by the grid electricity price. Optimization of FLC 
could decrease fluctuations and improve the average charge status, 
thereby extending the expected battery lifetime. When using 
grid-connected HRES, optimization of FLC based on shorter forecast 
periods was preferred due to the fact that shorter forecast periods would 
result in more accurate data predictions, and not result in more than 
one-day FLC adjustments being its optimal performance. 

2.1.3. Particle swarm optimization (PSO) 
The PSO algorithm is a population-based optimization method 

inspired by the social behavior of bird and fish flocks searching for food, 
which means that individuals in a group move to good regions based on 
their adaptation to the environment [56]. The dimensionality of the 
particles is determined by the number of variables in each question, and 
the quality of the solutions for each particle is measured by the fitness 
function. It is commonly considered that PSO is one type of cluster in-
telligence, which can be incorporated into a multi-subject optimization 
system [57, 58]. There are various upgraded PSO algorithms in practical 
applications, such as evolutionary particle swarm optimization (EPSO) 
algorithm, quantum-behaved particle swarm optimization (QPSO) al-
gorithm, and chaotic Darwinian particle swarm optimization (CDPSO) 
algorithm, etc. 

García-Triviño et al. [59] investigated a PSO-based PI controller for 
the power control of a grid-connected inverter powered by a HRES that 
is composed of two renewable energy sources (wind turbine and 
photovoltaic-PV-solar panel) and two ESS (battery and hydrogen sys-
tem, integrated by fuel cell and electrolyzer). Fig. 3 illustrates the con-
trol scheme of the PSO-based on-line PI controller. Three PSO-based PI 
controllers are implemented: 1) a conventional PI controller with offline 
tuning of the PSO algorithm based on the absolute error index of the 
integration time; 2) a PI controller with online self-tuning of the PSO 
algorithm based on the error; 3) a PI controller with online self-tuning of 
the PSO algorithm based on the absolute error index of the integration 
time. 

Lorestani and Ardehali [60] investigated the optimal integration of 
cooling, heating, and power trigeneration renewable energy sources 

Fig. 2. Flowchart of the FLC optimization process: designing the performance management of energy storage components for grid-connected HRES [55].  
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through a newly developed E-PSO algorithm, which was mainly used to 
optimize different configuration alternatives of a trigeneration cooling, 
heating and power system based on photovoltaic thermal panels, wind 
turbines, and thermal energy autonomy to fulfill cooling, heating and 
power loads. Thereby, it simultaneously achieved the benefits of zero 
emissions and increased energy efficiency for power generation and 
consumption. Nuvvula et al. [61] conducted a comprehensive evalua-
tion for a smart city based on renewable energy technologies including 
floating solar, bifacial rooftop, wind energy conversion systems and 
solid waste-to-energy generation in Visakhapatnam, India. 
Mutation-based Adaptive Local Attractor QPSO (ALA-QPSO) was used to 
obtain the PV and wind energy conversion systems by minimizing the 
techno-economic targets. Srilatha and Yesuratnam [62] applied the 
CDPSO algorithm to determine the optimal scheduling of demand 
response loads on transmission lines in the presence of renewable energy 
sources and the re-scheduling of conventional generators to mitigate 
congestions. The optimization is implemented using the CDPSO algo-
rithm to ensure better search capability and to avoid premature local 
convergence. Fig. 4 illustrates the simulation process of this approach to 
implement real-time hierarchical congestion management using 
rescheduling and demand response in the presence of renewable energy 
sources. 

2.1.4. Ant colony optimization (ACO) 
ACO is a probabilistic algorithm for searching optimization paths in 

graphs, which is a simulated evolutionary algorithm with many excel-
lent properties [63]. Eroğlu and Seçkiner [64] proposed a heuristic ACO 
algorithm based on a pheromone update scheme for the continuous 
optimization of onshore wind farm layouts. The optimization process 
only functioned as a nonlinear maximization problem. The optimal so-
lution by more accurate layout design and less energy loss was illus-
trated using farm layouts, and the performance of the proposed 
algorithm was evaluated on three benchmark problems. It was 
concluded that the use of the ACO algorithm can help to identify better 

wind farm layouts than previous studies without falling into the local 
maximum of the chosen problem in a reasonable solution time. The 
proposed ACO algorithm generally outperformed the existing algo-
rithms presented for the continuous problem. Fetanat and Khor-
asaninejad [65] optimized the sizing in a hybrid PV-wind system based 
on the continuous domain ACO algorithm for integer programming. 
Results showed that the proposed algorithm had significant advantages 
over other AI approaches and conventional optimization methods in 
terms of achieving optimal solutions and efficiency. 

Ju et al. [66] presented a multi-bid game simulation system with an 
improved ACO algorithm. The improved ACO algorithm was used to 
simulate the bidding game process of different subjects at different 
stages to determine the minimum output fluctuation of wind farm and 
PV and the minimum total energy supply costs of microgrid. The 
multi-objective optimization can maximize the bidding revenue and 
minimize the reservation cost, and the overall optimal solution can be 
obtained rapidly and accurately. Güven et al. [67] proposed a multi-
variate heuristic algorithm based on Harmony Search algorithm, Jaya 
algorithm, and ACO algorithm to optimize the HRES consisting of PV, 
wind turbine, battery, diesel generator, and inverter, and the corre-
sponding workflow of which is shown in Fig. 5. The main optimization 
objectives of this study were to fully satisfy the energy requirements of 
an off-grid university campus, to minimize the total annual costs of 
operation of the system, and to identify the optimal PV panel power, 
wind turbine power, and number of batteries. 

2.1.5. Other common AI-related approaches 
Besides the above-mentioned approaches, other AI approaches (e.g., 

genetic algorithm (GA), simulated annealing (SA), and cuckoo search 
algorithm (CSA), etc.) have also been frequently used in renewable en-
ergy systems in recent years. These AI techniques have shown satisfac-
tory performance in most of the previous studies, such as high 
computational efficiency, ability to solve complex optimization prob-
lems and fuzzy uncertainties, and facilitate the full utilization of 

Fig. 3. Inverter power control using PSO-based on-line PI controller [59].  
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renewable energy potentials [26, 68]. 
The GA is an evolutionary algorithm that solves optimization prob-

lems by mimicking the natural selection process and genetic mecha-
nisms. It can address both single- and multi-objective optimizations 
[69]. For instance, to address multi-objective optimization problems, 
the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) could be 
used [70]. Although the GA algorithm may be relatively low efficiency 
compared to some conventional optimization algorithms, it is less likely 
to be trapped in a locality optimum. Therefore, it becomes a prevalent 
tool to search for optimization solutions in many fields, including 
renewable energy, energy storage and other scenarios such as solar, 
wind, geothermal and fuel cells [43, 71, 72]. Besides, SA algorithm, 
which has been recently introduced as an effective optimization tech-
nique, has been widely applied to the optimization of hybrid systems of 
renewable energy and energy storage technologies (e.g., hydrogen 
storage, fuel cells) [73], optimization of wind- and solar-powered 
desalination systems [74], optimization of integrated energy systems 
for smart buildings [75], etc. These applications demonstrated its su-
periority in optimal planning, charging and scheduling of ESS, and en-
ergy management capabilities. The CSA algorithm is a metaheuristic 
optimization algorithm inspired by the reproductive behavior of 
cuckoos. It can be applied to optimize the grid-connected capacity of 

renewable energy generation and to achieve multi-objective optimiza-
tion of integrated systems with constraints on economic, technique and 
environment [76]. In addition, a multi-objective CSA algorithm can 
build national energy transition strategies by minimizing the total 
annual cost and maximizing the shares of renewable energy [77]. 

Although AI approaches can achieve optimization and/or perfor-
mance prediction of renewable energy systems and their integrated 
applications in most cases, each approach has its own shortcomings and 
may encounter different barriers during practical applications [78]. In 
the case of complex integrated systems, achieving well optimization or 
prediction by a single AI approach could be a challenging task due to the 
complex objective function. It reveals the necessity and feasibility of 
combining different AI approaches [79–81]. Therefore, integrating 
different AI techniques for energy management of large-scale renewable 
energy systems seems necessary to maximize the utilization of sustain-
able energy to achieve carbon neutrality. 

2.2. Advantages and functional roles of intelligent techniques 

AI techniques have demonstrated promising performances in most 
previous studies, such as improved computational effectiveness, 
resolved complicated optimization processes with ambiguities or 

Fig. 4. Flowchart of real-time hierarchical congestion management aided by demand response using CDPSO algorithm [62].  
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uncertainties, and contributed to fully exploiting potentials of renew-
able energy sources [82, 83]. In recent years, AI techniques have played 
an essential role in information retrieval, decision-making, automati-
zation, intelligent identification and management [84, 85]. Under the 
help of AI techniques, intelligent large-scale RES creates new avenues 
for researches and applications. 

Existing studies have demonstrated the considerable influence of AI 
techniques on applications of large-scale RES, which replaces traditional 
rule-based approaches with data-driven techniques to aid their scientific 
prediction and decision-making processes [20, 32]. AI-based prediction 
models show the advantage of discovering pattern from data with no 
requiring of expertise knowledge on the predictive problems [86]. Thus, 
AI-based renewable energy predictive models show the ability to ac-
count environmental/social-economic effects. 

Besides, AI-based predictive models could be utilized as a basis for 
energy management or device control. Mahmoud et al. [87] reviewed 
the commonly used intelligent microgrid control strategies, such as 
model predictive controller (MPC) and robust controller. Meanwhile, 
Rostami et al. [88] summarized intelligent optimization methods for 
adjusting the control parameters. The reviewed optimization methods 
include fuzzy logic, PSO, and bacterial search algorithm. The main 
advantage of fuzzy logic is that it could solve non-linear optimization 
problem, while PSO shows the strength of optimizing nonlinear, 
non-differentiable and multi-modal function. 

The advantages of AI-based MPC mainly include:  

• Fast computing.  
• Able to control constraints and interactions among variables.  
• Predictable of system dynamic behaviors.  

• Appliable to large multivariable processes.  
• User-friendly for non-professional researchers and cross-disciplinary 

research. 

On the other hand, the advantages of robust controllers include:  

• Useful for multi-input and multi-output models.  
• Avoiding disturbance from perturbations.  
• Appliable for cross-coupling. 

Moreover, AI techniques could be utilized to detect islanding con-
ditions of renewable energy integrated power systems, which refer to 
abnormal conditions that distributed generation (DG) still provides 
power even though it is disconnected from the distribution grid [88]. 
Panigrahi et al. [89] provided an example of islanding in a 
multi-renewable-energy-integrated power system, as shown in Fig. 6. 
Then, they compared AI-based islanding detection methods with con-
ventional methods, and summarized the advantages of AI techniques as 
below:  

• Better accuracy. 
• Smaller non-detection zone (NDZ), i.e., the period of detection fail-

ure after islanding takes place.  
• Easy to be applied for multiple DG unites.  
• Unnecessary to select thresholds. 

Memon et al. [90] reviewed nine commonly used bio-inspired 
intelligent algorithms (BIAs) for eliminating harmonic in inverters 
when regulating DC power generated from renewable energy into AC 

Fig. 5. Flowchart of green energy system design based on Jaya-Harmony Search and ACO algorithm [67].  

Z. Liu et al.                                                                                                                                                                                                                                       



Energy and AI 10 (2022) 100195

8

power. The reviewed techniques are shown in Fig. 7. Then, they eval-
uated the performance of five best bio-inspired intelligent algorithms 
and found that all of them are easy to implement. Among them, PSO 
shows the best accuracy, fastest convergence speed, and lowest 
computational cost. Besides, it is suitable for generating dataset for 
training ANN and search for the firing angles of type-b output 
waveforms. 

Nevertheless, it is important to note that AI techniques are not 
consistently the optimal alternative under all situations. Conventional 
methodologies may be a preferable choice when the available data 
samples are sparse or the controlled system needs to be remained un-
complicated [43]. In practices, the biggest challenge for traditional 
AI-based models is to characterize complicated wind power fluctuations, 
resulting in suboptimal wind power prediction accuracy [16]. There-
fore, some advanced deep learning-based models should be considered 
to promote developing more feature-powerful wind power prediction 
software in the future studies. 

3. Advanced applications of AI techniques in large-scale 
renewable energy integrations 

The aforementioned extensive analysis shows that AI techniques can 
make large-scale renewable energy generation more intelligent and 
reliable, optimize demand response, manage power, and improve 
computational efficiency [42]. Acharya [91] classified the common 
problems in large integration of RES into two categories, i.e., 
supply-demand problems and distribution network side problems. 
Supply-demand problems mainly include energy saving and/or CO2 
generation reduction during renewable energy generation and con-
sumption. On the other hand, distribution network side problems are 
usually related to distribution network planning, renewable penetration 
percentage in the grid, and component allocations, etc. 

Besides, Blaabjerg et al. [92] summarized the requirements for 
design/operate RES from perspectives of generator, power conversion 
and grid. These requirements for wind turbine power and PV power 
systems are illustrated in Figs. 8 and 9, respectively. They also reviewed 
the grid integration requirements, which required the RES to enable 

passive injection of extracted power into the grid and proactively 
manage the power exchange between generating units and the grid. 

Furthermore, Serban and Lytras [93] summarized AI technique ap-
plications in large-scale integration of RES, with respect to generator 
side, grid side, and consumer side, respectively, as shown in Fig. 10. 
Simulating renewable energy sector through AI techniques could ach-
ieve a better monitoring, operation, maintenance and storage for RES. 
For instance, AI-based renewable energy generation prediction could 
provide a basis for demand side management to narrow the gap between 
energy generation and consumption, and thus, improve the grid 
stability. 

Therefore, in the next section, overviews on AI techniques in 
renewable energy studies are organized from perspectives of generator 
side, distribution network side and demand side. 

3.1. Generator side 

3.1.1. Configuration optimization 
For typical solar or wind energy systems, the drawbacks and limi-

tations that arise from intermittent power supply need to be taken into 
account. This indicates more robust, resilient, manageable and reliable 
solutions with consideration of economics and system energy absorption 
for a well-designed HRES. Oversized systems involve high investment 
costs and additional difficulties associated with a large system footprint. 
Otherwise, an undersized system may involve little investment cost, but 
operational limitations may cause inadequate energy supply. To effi-
ciently utilize renewable energy sources, it turns out to be essential to 
perform an optimal design of HRES, especially considering the intelli-
gent techniques that are available for providing load requirements under 
reliability and cost constraints to determine its optimal design [94]. 
Mercado et al. [95] applied genetic algorithm to optimally size a HRES 
that contained wind turbines, PV panels and battery storage systems. 
Detailed configuration of the HRES is shown in Fig. 11. The optimal 
number of wind generators, PV panels and battery banks was calculated 
to balance the cost and reliability of the proposed system. In other 
words, the objective functions included the loss of power supply, initial 
capital cost, and life cycle cost. 

Fig. 6. Islanding in a multi-renewable-energy-integrated power system [89].  

Z. Liu et al.                                                                                                                                                                                                                                       



Energy and AI 10 (2022) 100195

9

Al-falahi et al. [96] conducted a comprehensive review and critical 
comparison on optimization approaches based on independent solar and 
wind hybrid energy systems. This study revealed an increasing interest 
towards developing optimization algorithms for stand-alone HRES. To 
date, the reported optimization methods can be roughly classified into 
classical algorithms, modern techniques, and software tools. The mod-
ern techniques, based on a single AI algorithm, are getting preferred 
over classical algorithms due to their capability to address some 
complicated problems. Recently, a noticeable trend has been towards 
using hybrid algorithms instead of single algorithms, predominantly due 
to their capability for providing more promising optimized results. In 
addition, this study also provided a rigorous comparison of hybrid al-
gorithms, single algorithms, and software tools to determine the scale of 
stand-alone solar and wind-based HRES. An assessment of all potential 
combinations of stand-alone solar and wind systems was also presented, 
including their evaluation parameters in terms of economic and reli-
ability, as well as environmental and social considerations. 

3.1.2. Renewable energy prediction 
With the increasing advancement of PV power generation technol-

ogy, grid-connected scale of PV power generation is also expanding. 
However, the indirectness, randomness and fluctuations influenced by 
climatic factors of PV power generation have posed many problems for 
its grid connection [97]. Power forecasting has been an essential task, 
however, short-term forecasting (e.g., hourly to daily) at different pre-
diction time scales plays an important determining role in real-time grid 
dispatch, which directly affects the security of the grid and the stability 
of system operation. Hu et al. [98] extracted the dynamical features of 
sky clouds using indirect prediction methods, and processed the input 
data in accordance with different meteorological characteristics, and 
then forecasted the PV output via radial basis functional neural 
networks. 

As a fact, the conventional machine learning theory requires a large 
amount of trained data and performs unsatisfactorily when the amount 
of data is small. Therefore, to streamline the forecasting process and 
further enhance the short-term forecasting accuracy of PV power 

Fig. 7. Selective harmonic elimination techniques [90].  
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outputs, an advanced model with less automatic parameters and higher 
generalization capabilities is required as a prediction model for small 
sample. Li et al. [99] proposed a hybrid improved multi-verse optimizer 
(HIMVO) algorithm, whose running process is presented in Fig. 12, to 
improve the photovoltaic predictive performance of support vector 
machine (SVM). The hybrid HIMVO-SVM model outperforms PSO-SVM, 
multi-verse optimizer SVM, reverse propagation, and radical base 
functional neural network. The predictive output could be further uti-
lized to maintain the power system stability. Results indicated that the 
proposed model had a high prediction accuracy and stability. The values 
of the average square error of HIMVO-SVM model were decreased by at 
least 0.0026, 0.0030 and 0.0012, and the corresponding average abso-
lute percentage errors were decreased by at least 3.6768%, 1.9772% and 
2.7165%, respectively. This proposed method was beneficial to the 
output power prediction, as well as economic dispatch of power grid and 
maintenance of power system stability. 

Regarding the forecasting of renewable energy generation and power 
loads under univariate and multivariate scenarios, Xia et al. [100] 
proposed an adapted superposed gated recurrent unit-recurrent neural 
network (GRU-RNN) to predict wind power generation. The structure of 
GRU-RNN is shown in Fig. 13. In this study, AdaGrad and mobilizable 

quantities were integrated to modify the training algorithm with adap-
tive learning rate to improve the training effectiveness. The constructed 
GRU-RNN was then used to establish an accurate mapping between 
monitoring parameters and renewable energy generation or electricity 
loads. The developed prediction method can satisfy both multivariate 
and univariate scenarios. The improved GRU-RNN can decrease the 
model complexity by using less parameters, thereby saving computa-
tional costs and requiring less training data. Experimental results of 
actual wind power generation and electric load forecasting demon-
strated the feasibility and superiority of the proposed method by 
comparing it with other advanced data-driven forecasting methods. 
However, several limitations of this method still remained, such as some 
hyperparameters being empirically determined, the training time being 
much longer than that of the shallow model, and the requirement of a 
considerable training sample. In the future, the forecasting performance 
can be potentially improved by further upgrading the trained strategies 
and investigating additional monitoring parameters. In addition, it is 
possible to develop advanced modeling and accurate prediction of 
power generation from multiple renewables, as well as to detect power 
load anomalies caused by extreme conditions. 

Shami and Cuffe [101] discovered the value of predicted market 

Fig. 8. Design/operation requirements of wind turbine power systems [92].  

Fig. 9. Design/operation requirements of PV power conversion systems [92].  
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price on renewable energy prediction. Their proposed binary prediction 
market was applied to probabilistic onshore wind power forecasting. 
Test cases were established for three onshore wind farms in Australia. 
Results showed that the proposed method outperformed individual 
models in terms of reducing the electricity market imbalance costs. 
Furthermore, there are also a plenty of studies on renewable energy 
prediction by AI techniques, and the detailed review on these studies 
could be found in [102–105]. 

3.2. Distribution network side 

3.2.1. Harmonic elimination (HE) during power conversion 
Inverters perform an essential function with regard to dynamic sta-

bility control and voltage adjustment of power systems, which are 
widely used in the renewable energy and power industries, and they 

have numerous advantages in large-scale energy systems [106, 107]. 
However, the output voltages of conventional inverters contain a sub-
stantial amount of unwanted harmonics that may negatively affect the 
system’s mechanical and electrical components. The existence of har-
monics in the inverters increases the switching losses of energy switches, 
thereby lowering RES efficiency and deteriorating the overall system 
performance [108, 109]. Mohamed et al. [110] proposed an adaptable 
controller for DC-AC inverters in grid-connected PV power systems for 
supplying pulsed AC loads, as shown in Fig. 14. The predictive neural 
network controller (PNNC) can forecast control parameters by tracking 
the mean square errors of grid electric current and DC base-voltage, and 
eliminating these errors in a remarkably short finite time. Results 
revealed that the proposed adaptive controller provided a more rapid 
dynamic response with shorter stabilization time and smaller maximum 
overshoot of current and voltage variables. In addition, these data also 

Fig. 10. Application of AI techniques in RES [93].  

Fig. 11. Configuration of the HRES [95].  
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indicated a significant reduction in the harmonics injected into the 
power grid, displaying a total harmonic distortion of only 1.97% 
compared to that of 5.06% for the conventional controller. This enables 
the used PV systems to fulfill the requirements of international standard 
IEEE 519 for harmonic control of power systems. 

Rao et al. [111] proposed an adaptive neuro-fuzzy interference sys-
tem (ANFIS) to eliminate the voltage harmonics being present in 
multi-level inverters. Through the augmented knowledge rule bases, the 
proposed ANFIS generated switching angles for suitable voltage varia-
tions, which can be realized by lowering the total harmonic distortion 
(THD) of the multilevel inverter output voltage. Its performance was 
compared with the output voltage THD of the multi-level inverter 

without controller and with neuro-fuzzy controller (NFC). Results 
revealed that ANFIS controller performed better than NFC, and the 
proposed method had less THD under various load conditions. Rahmani 
and Deihimi [112] presented an intelligent system with nonlinear 
auto-regressive model based on exogenous inputs and wavelet analysis. 
The proposed system can be regarded as one monitor that eliminates 
sensitive loads, thereby lowering the optimal number of power quality 
monitors and monitoring costs for distribution networks. 

3.2.2. Fault and islanding detection 
Islanding occurs when renewable DG supplies power to the load after 

the grid is disconnected, which is dangerous for the site personnel and 
related machinery because maintenance workers are unaware that they 
are connected and powered by DG [113, 114]. The critical explanations 
for such accidental islanding are incidents such as power grid faults, 
deliberate opening of breakers for maintenance and other events that 
cause the breakers to be opened towards the grid [115, 116]. Effective 
diagnosis of islanding detection with imbalance conditions, 
non-detection zones, and fault misoperation can be performed using 
ANN. Mohapatra et al. [117] used artificial neural network techniques 
with decision-making tree features and multi-stage perceptual neural 
networks (MLPNNs). MLPNNs would be trained by reverse propagation 
method to diagnose faults. Studies showed that the accuracy of obtained 
results using artificial neural network techniques was 99.1% in fault 
diagnosis. The existing SVM, Bagging, Random Forest (RF) and Decision 
Tree Algorithms (DTA) achieved accuracies ranging from 97.8%, 98.9%, 
98.9% and 83.33%. Therefore, the proposed method in this study had 
higher accuracy, resulting in better diagnostic quality than the existing 
methods. 

Darab et al. [118] pointed out that the commonly utilized AI tech-
niques, such as ANN, SVM, fuzzy logic, and GA, were difficult to be 
implemented to detect faults in distribution power systems, due to the 
fact that they required high volume of training dataset and its time 
consuming for data collection and model training. They proposed a 
novel AI algorithm, namely wavelet transform, to transiently detect 
islanding conditions based on frequency change in a short period, as 
shown in Fig. 15. The proposed method used frequency domain and time 
domain analysis to examine the voltage variations in the grid. The ad-
vantages of the wavelet transform method over conventional islanding 
detection methods were the capability to determine frequency varia-
tions transiently in a short time. Overall, the proposed detection method 
can overcome conventional methods with regard to detecting balanced 
and unbalanced voltage sawtooth/surge as well as frequency-dependent 
variations in DG networks. 

3.2.3. Control of renewable energy storage 
Energy storage, as a significant and regulated component of power 

grids, can supply a short-term energy supply that enables seamless off- 
grid switching [119–121]. Energy storage technologies have been 
considered as an essential factor to facilitate renewable energy absorp-
tion, enhance grid control, and ensure the security and cost effectiveness 
of power grid services [43, 122]. Applications of AI techniques cover 
many aspects including parameter estimation, optimization design, and 
operational control of energy storage and RES integration [24]. Zhou 
et al. [123] proposed a gray prediction model based on error correction 
to predict the renewable energy storages. This model ensured the 
long-term predictive accuracy on remining useful lifetime for 
lithium-ion battery and fuel cell. Considering the predictive results, 
maintenance of renewable energy storage could be scheduled earlier. 
Zangeneh et al. [124] proposed an intelligent multi-input/output FLC to 
manage the HRES’s operation (as shown in Fig. 16) that included a PV 
panel, a lithium-ion battery box and access to the power grid. The 
proposed controller ensures that the battery was charged by solar energy 
or the power grid and discharged in special weather conditions. 

Kermani et al. [125] proposed a centralized energy management 
system with supervisory control and data acquisition to minimize the 

Fig. 12. The running process of HIMVO algorithm [99].  
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power exchange between a microgrid and main grid by controlling the 
energy storage in battery energy storage system. The proposed system 
declined monthly electricity bill by ~87% and leaded to a near zero 
energy building system. Fikiin et al. [126] discussed the possibility of 
utilizing refrigerated warehouse as an intelligent hub within the power 
grid to enhance the efficiency the cryogenic energy storage and thus to 
ensure the power grid sustainability when integrating renewable energy 
into it. The arrangement of proposed system is illustrated in Fig. 17. 

3.3. Demand side 

Similar to renewable energy prediction, AI techniques have been 
already extensively applied for load demand prediction [127–130]. The 
predictive results of energy consumer and supplier could be utilized as a 
basis for demand-side management to increase the percentage of 
renewable energy utilization, decrease electricity bill, or shift the peak 
load. Shah and Ansari [131] mentioned that an intelligent energy 
management system in a direct current microgrid integrated with RES 

Fig.13. Structure of GRU-RNN [100].  

Fig. 14. Control scheme of DC-AC voltage source inverter for considered grid-connected PV system [110].  
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could minimize energy usage of AC grid by consuming energy from 
efficient renewable source and scheduling critical energy load events. Its 
functions were achieved by intelligent electronic devices that showed 
the ability of power transmission, information exchange and load 
control. 

AL Hadi et al. [132] tested an intelligent demand response algorithm 
on a microgrid system that contained air conditioners, lights, PV panels, 
wind turbine system, and lead-acid battery banks, as shown in Fig. 18. 
This algorithm controlled the load patterns considering the predicted 
state of charge of batteries, to provide users an uninterrupted power 
supply while maximizing the renewable energy usage. Their experi-
mental result showed the capability of maximizing RES’s utilizations 
while decreasing peak requirements, cost of end-users, and CO2 
emissions. 

Javaid et al. [133] utilized evolutionary algorithms, e.g., binary PSO, 
genetic algorithms, and cuckoo search, to optimize appliances in resi-
dential homes integrated with PV panels. Simulation results showed that 
these methods, especially cuckoo search, could reduce the electricity bill 
through scheduling appliances. Ma and Li [134] proposed an energy 

scheduling system for a home RES to reduce energy consumption and 
increase renewable energy usage rate based on some advanced predic-
tion methods. Ameur et al. [135] presented a multi-agent framework to 
optimize the power demand in a HRES. The proposed framework in-
cludes a supervisory agent, wind turbine agents, PV agents and load 
agents. These agents can achieve decentralized control of the studied 
system. Results indicated that this system could fulfill the load 
requirement and simultaneously maintain battery levels between the 
minimum discharge rate of 30% and the maximum charge rate of 80%. 

4. Challenges and limitations of AI techniques for large-scale 
renewable energy integrations 

According to the global decarbonization target and the current 
development tendency, a large number of renewable energy generation 
systems will be connected to the grid in the future [136, 137]. For 
example, small distributed RES may generate electricity and sell it back 
to the grid. Electric vehicles and associated techniques (such as fast 
charging piles) will show boosting demand in the market. Smart home 

Fig. 15. (a) Wavelet sampling representation; (b) Algorithm logic representation [118].  

Fig. 16. The studied hybrid power system [124].  
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devices may be connected to the grid even without the awareness of the 
grid operator. All of these would have a significant impact on the power 
stability of local utility grid [138–140]. Optimizing the grid operation 
with the aid of AI techniques, further improving the transmission and 
distribution capacity of existing lines, and extending the service lifetime 
of equipment would be critical factors in supporting the renewable en-
ergy transformations [141–143]. However, the application of AI tech-
niques in large-scale renewable energy integration still encounters many 
barriers and limitations [4]. They are mainly reflected in the following 
aspects.  

1) Slow update of intelligent equipment integration: the large-scale 
integrated application of renewable energy, especially with the 
network grid or fulfilling different requirements of users, requires 
advanced intelligent control equipment. However, the traditional 
grid control equipment is generally relatively outdated, leading to 
the mismatch with latest advanced systems and difficult to realize 
diversified control at the same time [144, 145]. The simultaneous 
application of existing intelligent control equipment and those new 
ones will bring some challenges to the development of AI techniques. 
The existing control equipment is difficult to support the new 
renewable energy generation network. Therefore, these old control 
devices need to be updated to support the new layout of the energy 
sectors [146, 147]. In addition, exploring new intelligent control 
methods or advanced algorithms to achieve synergistic operation 
between existing equipment and new intelligent equipment, is also 
beneficial to the large-scale development of RES and reduce the 
replacement of old control equipment. 

2) Limitations of advanced algorithms for AI techniques: the perfor-
mance uncertainty about how to predict RES via deep learning the-
ory is one of the most significant factors for the successful application 
of AI techniques [68, 148]. This is primarily due to the large number 
of uncertainties in renewable energy generation systems. Among 
them, there are stochastic factors in the source-grid-load-storage, 
and generation-transmission- distribution-transmission for RES. 

These uncertainties are one of the critical challenges for the devel-
opment of AI prediction techniques.  

3) AI prediction techniques encounter multiple challenges: existing 
techniques show that predicting the generation time and power 
output of solar and wind energy facilities remains difficult. AI tech-
niques could enable prediction of power generation from solar and 
wind facilities by learning from historical weather data, sensor data 
(e.g., real-time wind speed and sunlight intensity measurements), 
and image and video data (e.g., satellite cloud maps) [141, 149]. 
Furthermore, AI-power surrogate model can be user-friendly, 
computational efficiency with high prediction accuracy [150], per-
formance prediction under multi-level scenario uncertainties [151], 
and robust optimization with multi-level uncertainties [152]. How-
ever, this forecasting process is also quite complicated and may lead 
to power outages or shortages of renewable energy generation if it is 
not handled appropriately. In addition, extreme disasters, major 
epidemics, disasters and other emergencies also bring greater and 
more challenges to AI prediction techniques.  

4) Shortage of high-tech talents related to AI techniques: AI techniques 
regarded as the essential new growth points for economic and social 
development, and all countries attach great importance to the 
development of AI techniques. The process of empowering AI tech-
niques to large-scale renewable energy generation involves cross- 
composite knowledge of specific industry specialties and AI spe-
cialties, which requires more long-term layout at the talent training 
side, so as to make the trained talents familiar with the operational 
framework and critical crux of specific industries [153, 154]. How-
ever, there is currently a lack of composite talents with the knowl-
edge system of AI techniques and renewable energy application. And 
the professional settings of universities have lagged behind the actual 
development of science and technology, and there are issues such as 
lack of practice, broad field, old knowledge and serious fragmenta-
tion in the professional teaching of AI techniques. Meanwhile, the 
industries have the issues of inadequate talent employment and 
incentive mechanism, lack of effective measures on how to evaluate 

Fig. 17. Integration of refrigerated warehouse into RES and cryogenic energy storage [126].  
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the contribution of scientific and technical personnel, and no effec-
tive incentives for the selection, appointment, training and employ-
ment of AI skilled personnel [155].  

5) Lack of a maturing financial support system: The application of AI 
techniques in large-scale renewable energy generation is still 
immature, and there is still a lack of scientific and reasonable 
financial support policies [156, 157]. This is specifically reflected in 
the fact that a more comprehensive and deeper penetration of AI 
techniques into large-scale RES requires a large number of skilled 
professionals with sufficient AI and corresponding supporting funds 
to facilitate this transformation, but the AI-enabled energy market is 
currently lacking in both of them. In addition, the deployment of AI 
techniques in RES involves the production, improvement and man-
agement of software, which will likewise involve significant funding 
and capital. Therefore, the lack of a well-established financial sup-
port system is also one of the critical challenges affecting the appli-
cation of AI techniques in RES. 

5. Outlook and recommendations 

In recent years, the proportion of renewable energy generation used 
in power grids has been increasing, which has contributed significantly 
to the reduction of carbon emissions worldwide [7, 158]. However, 
numerous studies have shown that the renewable energy generation will 
make the grid highly volatile due to the massive application of inter-
mittent and fluctuated renewable energy (such as wind and solar en-
ergy). Therefore, reasonable operation methods of renewable energy 
generation equipment are required to achieve automated system control 

and improve the automation with grid intelligence [29, 159]. It is 
important to actively promote new intelligent infrastructures to reduce 
energy consumption and measures that are consistent with sustainable 
development of AI techniques to reduce grid instability. The mainte-
nance of grid stability using infrastructure-based solutions requires 
years of planning and construction, as well as significant capital ex-
penditures. It would be a wrong move forward to install investments in a 
centralized grid with more transformer system infrastructures. Instead, 
governments would be required to make plans for a smart regional grid 
that is self-generated by communities and buildings, as well as being 
managed in real-time through an intelligent software platform. 

A large number of energy storage equipment or systems are required 
for equalization in practical applications to effectively decrease the grid 
fluctuation and improve its longevity. By mitigating the intermittency 
issues faced by renewable energy sources, energy storage technologies 
could contribute to removing the barriers that prevent the increased 
adoption of wind and solar resources. ESS could not only support a peak- 
hour operating grid, but also maintain the existing grid infrastructure 
without the risk of grid overload and collapse [160, 161]. However, 
using the traditional centralized model of energy storage would not only 
be costly, but could also be a source of risk within the cities (e.g., fire 
catastrophe or explosion). Based on this, if the building is combined with 
distributed smart energy storage devices, it would not only solve the 
issue of energy storage in the building itself, but also make a great 
contribution to creating a safe urban smart grid [68, 162]. For example, 
the efficiency and reliability of PV power generation can be further 
improved by better matching PV with flexible direct current technology 
under advanced intelligent control technologies. 

Fig. 18. Diagram of the studied microgrid system [132].  
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As a transportable energy storage device with great potential, elec-
tric vehicles are increasingly being widely used by consumers. The 
average storage capacity of each electric vehicle on the market today is 
about 60 kWh [163], which indicates that electric vehicles will have a 
huge amount of storage capacity if they could be reasonably connected 
to the grid [164, 165]. These storage capacities could be deployed 
through smart technologies to enable reliable grid operation. For 
example, by using the community’s distributed energy microgrid and 
electric vehicle energy storage to form a “micro-energy intelligent sys-
tem”, all electric vehicles parked in the community could be automati-
cally charged at a low cost during valley or sub-valley periods [166]. 
During the peak period, the electricity stored in electric vehicles could 
be sold to the grid through the V2G interaction, so as to enable vehicle 
owners obtain economic benefits under the peak-to-valley price differ-
ences [167, 168]. This intelligent control method on building load 
shifting under peak shaving and valley filling can regulate the energy 
consumption of the grid and bring extra economic profits to electric 
vehicle owners. If there is a sudden power outage in the community or 
the local power system suffers from attack, these electric vehicles could 
be used as a temporary power supply for each household through the 
intelligent control hub. In this way, such a residential intelligent com-
munity is actually a power generation unit, and also a very resilient 
virtual power plant. 

In addition, policymakers are highly recommended to consider 
public financing issues for renewable energy generation in order to 
effectively promote regional decarbonization ambition. The economic 
investors only participate in the projects only when they can obtain 
sufficient economic benefits. Moreover, it is necessary to provide 
enough incentives to call for strong participation willingness of house-
holds and private enterprises with energy subsidies [169–171]. 
Furthermore, industry-approved AI-software management platforms 
would also need to be developed to ensure interoperability, trans-
parency and equality across the renewable energy generation sector. 
Based on this, consistent data standards and data sharing mechanisms 
should be established to improve the quality of monitoring data and 
make them more available and controllable. 

6. Conclusions 

With the growing global climate and environmental challenges, the 
energy transition of using clean renewable energy instead of traditional 
fossil energy has already emerged as the prevailing trend. However, the 
adverse implications of large-scale renewable energy applications, 
including safety & stability and economical operation, are becoming 
more prominent. AI techniques with unique advantages in automation, 
intelligent identification, monitoring and management have been 
widely recognized in the existing studies. With the assistance of AI 
techniques, the applications of large-scale RES can be increasingly 
rational and intelligent, which paves a promising pathway for promot-
ing their large-scale implementations. This paper presented a compre-
hensive literature summarization and analysis on the applications of AI 
techniques in large integration of renewable energy, including 
commonly used approaches, advantages and functional roles of AI 
techniques, prospective applications, and bottleneck technology chal-
lenges, etc. 

Numerous studies have demonstrated that AI techniques can 
contribute to the accurate performance prediction of large-scale RES, as 
well as to reasonable energy distribution and control optimization of 
integrated systems. These enable to achieve the targets of matching 
customers’ energy demands, cost-effectiveness and improvement of 
renewable energy utilization as well as minimizing environmental 
impact. However, there are also many issues and challenges with AI 
techniques in large-scale renewable energy applications, such as slow 
integration and updating of intelligent devices and limitations of 
advanced algorithms for AI techniques. Also, forecasting techniques to 
predict complicated real processes are also lacking, such as extreme 

disasters, major epidemics and catastrophes. In addition, the shortage of 
AI-related technical professionals and unavailability of a sophisticated 
financial support system are also essential factors affecting its rapid 
development. To address these issues, this paper also presents several 
promising perspectives and recommendations for future studies. Using 
AI techniques to facilitate the optimal integration of advanced ESS, 
energy communities, electric vehicles, and other technologies with 
large-scale RES is the promising research framework. To promote ap-
plications of AI techniques in these fields, governments across countries 
are required to establish robust national energy strategic plans, reliable 
technical guidelines, and substantial financial incentives in the future. 
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