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Abstract

Single-molecule localization microscopy (SMLM) enables imaging at nanometer-scale resolu-
tion but is highly sensitive to sample drift. Here, I present a live 3D drift correction approach
that uses only fiducial markers and does not require any hardware modifications. The method
uses fluorescent light from fiducial markers, extracted directly from the main imaging camera
during acquisition. Using the computationally efficient Phasor approach to estimate the 3D-
position of the beads [26], the control bandwidth is mostly limited by the maximum frame
rate of the camera during acquisition (e.g. rates of >22 Hz at 25 fps). In addition, a system
identification framework is proposed to identify drift dynamics, enabling the implementation
of an optimal model-based control strategy. Experiments reached closed-loop stability with
a precision of 0.6 nm in lateral direction and 2.4 nm in axial direction, showing the potential
of the hardware-free drift correction approach.
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Chapter 1

Introduction

For centuries, light microscopy has been a cornerstone of biological research, allowing sci-
entists to observe cells and tissues in unprecedented detail. Traditional optical microscopes
rely on visible light to form images, revealing structures such as nuclei, organelles, and larger
protein assemblies. However, the resolution of conventional light microscopy is fundamen-
tally limited by the diffraction of light, which restricts the smallest distinguishable features
to roughly half the wavelength of the light used, typically around 200–300 nm.
Super Resolution Microscopy (SRM) has enabled researchers to reach resolutions far past the
diffraction limit of standard optical microscopy. The research in SRM started in 1992 with
the 4Pi concept, designed by Stefan Hell and Ernst Stelzer [18]. In the past three decades,
research has been thriving with its pinnacle of Hell being awarded a Nobel Prize in chemistry
in 2014 for the development of super-resolved fluorescence microscopy. During this period,
several techniques have been designed to perform SRM for the specific needs of biologists and
microscopists [35]. The best-known methods can be divided into three groups: stimulated
emission depletion [11], structured illumination microscopy [13] and Single-Molecule Local-
ization Microscopy (SMLM) [3][20][34][17].
SMLM provides researchers with the ability to visualize subcellular structures at nanometer
resolution. For example, SMLM has been used to visualize the actin cytoskeleton, a network
of protein filaments that supports the cell’s shape and internal structure. Actin filaments are
highly dynamic: they continuously grow and shrink, particularly in thin, sheet-like protru-
sions at the front of moving cells, called lamellipodia [7]. This dynamic remodeling generates
the forces that push the cell forward, allowing it to move, a process essential for wound heal-
ing, immune responses, and other cellular activities. By imaging these filaments in three
dimensions at a resolution below 20 nm [47], SMLM provides insight into the cellular me-
chanics that drives this locomotion [32]. Beyond structural imaging, SMLM has also become
a powerful tool for quantitative studies: various analysis approaches have been developed to
extract information about the distribution, size, shape and spatial organization of macro-
molecular complexes [46, 28].
In SMLM, maintaining a stable focal point over long acquisition times is essential to achieve
high-resolution image reconstruction. This challenge naturally lends itself to the field of Sys-
tems & Control, as the microscope stage must be actively actuated to stabilize focus drift
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2 Introduction

despite uncertainty and noise in the system dynamics, by using a Kalman Filter for state
estimation and optimal control in the form of Linear Quadratic Regulator (LQR). The goal
is schematically illustrated in Figure 1-1, which shows the closed-loop control structure of the
super-resolution microscope. In this thesis, we explore the current state of drift compensa-
tion methods, present an improved approach to real-time drift correction, and outline future
directions to further enhance drift stability in SMLM.

Kalman 
Filter

LQR

Optical setup

(b)

(a)

ca
m

Sample

Imaging lens

Objective lens

Piezo-electric stage
ca
m

Out-of-focus In-focus

Figure 1-1: Schematic representation of the control objective: stabilization of the focal point
in a super-resolution microscope. (a) Simplified schematic of the microscope setup, where the
control input u is applied to an piezoelectric stage, the output y is derived from camera images,
and the system states x represent the axial focus position. (b) Block diagram illustrating the
closed-loop control architecture. A Kalman filter is used to optimally estimate the state x based
on the control input u, the measurements y, and the statistical properties of the process noise w
and measurement noise v. Subsequently, a LQR computes the optimal control input u based on
the estimated state vector, x̂.

1-1 Background

SMLM relies on the principle that the positions of individual fluorescent molecules can be
precisely determined as long as the Point Spread Function (PSF) do not overlap. When a
fluorophore’s position shifts by less than a pixel, the resulting changes in the intensity dis-
tribution across pixels are predictable, allowing for accurate calculation of its location. The
precision with which a molecule can be localized depends on the distribution of its repeated
localizations if it were imaged multiple times. This precision is primarily determined by
the Signal-to-Noise Ratio (SNR) and the theoretically highest achievable precision given an
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1-1 Background 3

Maximum Likelihood Estimation (MLE) and given experimental parameters can be found us-
ing the Cramér-Rao Lower Bound (CRLB) [29]. To prevent PSF overlap, the emissions from
different molecules are separated over time. This temporal separation is usually achieved
through a process called photoswitching, where fluorescent molecules randomly switch be-
tween an "ON" (bright) state, where they emit light, and an "OFF" (dark) state, where they
remain non-fluorescent. Photoswitching for any given molecule is random, so under optimal
conditions only a few molecules will be in the ON state at any given moment, which ensures
that their PSFs remain spatially distinct and do not overlap. This switching behavior causes
the fluorophores to blink between bright and dark states. To capture all the molecules in a
given Field of View (FOV), thousands of images are acquired in sequence. Over these many
frames, each molecule ideally transitions to the ON state at least once. The images are then
processed computationally to identify which molecules are in the ON state and to calculate
their exact positions. Finally, the positions of all localized molecules from all frames are com-
piled into a single, high-resolution image, allowing the detailed reconstruction of the sample
at a resolution beyond the limits of conventional light microscopy.

A big challenge in SMLM is sample drift relative to the objective during image acquisition. If
this drift is not addressed, small movements can lead to blurred reconstructed images. To mit-
igate this, drift can be measured in multiple ways, which mostly all fall under three primary
categories: image reconstruction-based, beam-based and fiducial marker-based drift identifi-
cation. In image reconstruction-based drift identification, drift can be estimated directly from
single-molecule localizations using for instance image cross-correlation [44]. However, this set
of drift identification approaches require careful handling as the drift can only be compen-
sated for in post-processing. This prohibits live compensation of the z-drift, for which the
resolution drop cannot be restored. Moreover, some of the image reconstruction-based drift
identification methods are only able to provide drift estimation in x- and y-direction. Beam-
based methods enable real-time drift estimation by analyzing the interaction of laser light
with the sample or sample plane. Examples include speckle pattern tracking, secondary laser
reflection systems such as Nikon Perfect Focus, and engineered PSFs like astigmatic or double-
helix designs that allow extraction of the z-position from PSF deformations [1, 6, 21, 33, 43].
While these approaches allow live z-drift compensation, they require substantial optical mod-
ifications, additional lasers, sensors, or moving parts, which can complicate integration with
commercial microscopes. Finally, fiducial marker-based techniques use fluorescent beads or
gold nano-particles as markers to act as a reference point on the sample plane [26, 10, 25].
These markers can be tracked to determine the drift. Subsequently, active control algorithms
can dynamically compensate for the detected drift in real-time.

Currently, these control techniques rely on "simple" PID algorithms [10], which provide sub-
optimal drift correction. In [37], the importance of high-precision drift correction is empha-
sized, as even nanometer-scale movements can mislocalize single-molecule positions. Over
long acquisitions, this leads to blurring in reconstructed images, loss of axial resolution, and
reduced accuracy in quantitative measurements of molecular structures. To achieve enhanced
stability for super-resolution imaging, more advanced model-based controllers are needed, as
they explicitly account for system dynamics and disturbances, enabling more accurate and
robust drift compensation. For this, however, a model of the focal point dynamics is needed
which in super-resolution microscopy is complicated, as the dynamics of the focal point are
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4 Introduction

highly influenced by physical changes to the optical setup due to temperature changes as a
result of environmental temperature variability or heating and vibration from the stage due
to electrical inputs.
One notable contributor to drift is the heating of optical components by the laser itself. In
this thesis, we assume continuous-wave laser excitation. By preheating the optical parts for
approximately 15 minutes before starting an experiment, the drift due to laser-induced heat-
ing stabilizes and can be neglected in the system identification. For setups in which the laser
is not continuously applied, however, laser input variations could be explicitly included in the
system identification procedure, as demonstrated in [15].

Subspace system identification methods, such as Numerical Algorithms for Subspace State
Space System Identification (N4SID) [42], are effective in modeling complex dynamics within
a linear time-invariant (Linear Time Invariant (LTI)) framework [15]. However, since the
focal position dynamics are not autonomously stable and the measurement range is limited,
applying random inputs during open-loop identification risks driving the system outside its
valid operating range. To maintain the system within this range, a controller is necessary to
correct the position, even during the generation of system identification data. In closed-loop
settings, the feedback correlation between inputs and outputs complicates the separation of
control actions from process noise [41]. Therefore, closed-loop system identification methods
such as Predictor-Based Subspace IDentification optimal (PBSIDopt) can be applied to mit-
igate this issue.
When the system can be modeled, optimal control models such as Linear Quadratic Gaus-
sian (LQG) can be implemented to compensate the drift, a similar approach for control in
adaptive optics was previously performed in [22] by Caroline Kulcsár et al.

To maximize impact in the field of SRM, it is essential to identify the optimal combination
of drift identification methods and subsequent control of focal point dynamics by consider-
ing the specific contexts in which SRM is applied. This MSc. Thesis serves as a Proof of
Concept of a drift mitigation strategy that can be used by the largest group of SRM practi-
tioners: biologists utilizing standard CPUs and commercial microscopes with limited capacity
for hardware modification. To ensure the research findings are applicable to this group, the
research objective is defined as follows:

"How can sample drift-induced resolution drop in SMLM be minimized using an actively con-
trolled system that operates under typical SMLM constraints, enabling stable imaging in en-
vironments where computational resources are limited and modifications to the optical setup
are not feasible?"

1-2 Organization

Chapter 2 reviews relevant work in the field of optics that forms the foundation for the method
proposed in this thesis. Section 2-1 presents the current state of drift estimation techniques,
while Section 2-2 explores how model-based control is applied in optical systems.

Chapter 3 highlights the original contributions of this thesis. The first part is structured as
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1-2 Organization 5

a scientific paper, detailing the developed method and presenting experimental results that
demonstrate its significance. The second part serves as a supplementary document, providing
additional experimental data and theoretical background supporting the proposed approach.

Finally, Chapter 4 offers a comprehensive summary of the thesis. It discusses the results in
depth and outlines potential directions for future research aimed at advancing drift correction
in super-resolution microscopy.
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Chapter 2

Related Work

2-1 Drift estimation methods

Accurate drift estimation is critical for achieving high-resolution imaging in Single-Molecule
Localization Microscopy (SMLM). Over the years, researchers have developed a variety of
techniques to measure and correct sample drift during long acquisitions. These methods
are commonly classified into three categories: image reconstruction-based, beam-based, and
fiducial marker-based approaches. Each category presents trade-offs in terms of precision,
real-time applicability, and hardware complexity.

2-1-1 Image Reconstruction-Based Drift Estimation

Image reconstruction-based methods estimate drift by analyzing the sequence of images or
localization data. These approaches operate entirely in post-processing and do not require
additional hardware. Three notable techniques are:

• Redundant Cross-Correlation estimates drift by maximizing the cross-correlation
between overlapping image subsets. While computationally efficient, its precision is
lower than other methods [23, 44].

• Bayesian Sample Drift Inference frames drift estimation as a Maximum A Posteriori
problem and applies expectation-maximization to iteratively infer drift. It achieves high
accuracy but can become slow for large datasets [12].

• Drift at Minimum Entropy estimates drift by minimizing the entropy of the final
reconstructed image, assuming that minimal drift yields the sharpest image. It offers
higher accuracy than Redundant Cross-Correlation and lower computational demand
than Bayesian Sample Drift Inference [9].
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8 Related Work

• Adaptive Intersection Maximization estimates drift by maximizing the intersection
of localization pairs across temporally distinct datasets. It enables the most precise
spatial drift estimation out of the image reconstruction-based methods at sub-Ångström
level, while being computationally efficient and usable with a CPU only [24].

These methods are ideal for systems where hardware modifications are not feasible. However,
as they operate post-acquisition, they cannot support real-time drift correction, especially
problematic for axial drift and 3D SMLM.

2-1-2 Beam-Based Drift Estimation

Beam-based methods allow real-time drift correction by analyzing laser light interactions with
the sample. Representative techniques include:

• Speckle pattern tracking leverages the backscattered laser light from the sample
to identify drift via cross-correlation with a pre-recorded z-stack. While effective, it
requires a static sample and repeated removal of emission filters, limiting usability [6].

• Nikon Perfect Focus systems and their derivatives reflect a secondary laser off the
sample plane onto a CCD or QPD sensor. Drift is inferred from beam displacement and
compensated via feedback control [1].

• Engineered Point Spread Function (PSF)s, such as astigmatism or double-helix
PSFs, induce z-dependent PSF deformation. By fitting these PSFs, 3D position can be
extracted with high precision [21, 33, 43].

Despite enabling live compensation, all beam-based methods require significant optical mod-
ifications, additional lasers, lenses, sensors, or moving parts, posing challenges for integration
with commercial microscope systems.

2-1-3 Fiducial Marker-Based Drift Estimation

Fiducial marker-based methods use fluorescent beads or gold Nano Particle (NP) attached to
the sample substrate as stable reference points. During the last decade, it has been shown
that these methods are the most viable approach, reaching sub-nanometer drift correction, as
can be seen in Table 2-1. It is evident that most drift correction methods rely on gold NPs as
fiducial markers and employ near-infrared illumination, either from a laser or LED, alongside
a secondary Complementary Metal-Oxide-Semiconductor (CMOS) camera.
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2-1 Drift estimation methods 9

Publication Fiducial Type Drift Correction
Precision
lateral/axial (nm)

Control
bandwidth

Modification
Needed

P. Bon (2015) [4] 100nm Gold NPs 0.7/2.7 50Hz transillumination
640nm laser + 2nd

CMOS
A. Balinovic (2019)
[2]

200nm fluorescent
beads

7.7 /- 33Hz None

S. Coelho (2020)
[10]

3µm Polystyrene
beads

0.4/1.0 15Hz transillumination of
IR laser + 2nd

CMOS
R. Schmidt (2021)
[36]

40nm Gold
Nanorods

0.4/0.6 40Hz IR laser + 2nd

CMOS
M. Weber (2021)
[45]

40nm Gold
Nanorods

<1/<1 80Hz/30Hz IR LED + 2nd

CMOS
L. Massulo (2022)
[27]

100nm Gold NPs 1.2/2 20Hz IR LED + 2nd

CMOS + 3 BSs
S. Patil (2025) [30] 100nm Gold NPs 0.85/0.89 100Hz Cylindrical lens +

IR laser + 2nd

CMOS
X. Sun (2025) [39] 150nm Gold NPs 0.31/036 50Hz IR laser + 2nd

CMOS

Table 2-1: Comparison of fiducial marker drift correction methods in SMLM.

The IR light is reflected by the gold NPs, and the secondary CMOS is dedicated to capturing
only this reflected signal. This dual-camera configuration is essential because, in a single-
camera setup, the intense reflected light from the NPs would saturate the sensor, thereby
preventing the detection of the much weaker fluorescence signal from the sample. Conse-
quently, most of hese approaches are not compatible with single-CMOS systems and require
additional hardware for effective drift correction.

Single-CMOS approach

For one method fluorescent light emitted by the bead is used to determine the drift by A.
Balinovic [2]. Although, as can be seen from the table, it only reaches a drift correction
precision of 7.7 nm in lateral direction and has not shown results for the axial direction, this
is a method that can be performed with a single camera. That is because the excitation
laser light can be filtered and the emitted light by the beads is not saturating the camera.
Resulting in a similar shaped PSF generated from reflection of gold NPs.

Estimating position from fiducial marker PSF

The fiducial markers are tracked across frames to estimate drift. Two primary approaches
are:

• Centroiding estimates drift by comparing the center of mass (centroid) of two succes-
sive images of a particle. It is computationally simple and efficient but is sensitive to
changes in particle shape or orientation between frames, resulting in low precision drift
estimation. [5].
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10 Related Work

• Gaussian fitting determines the center of the fiducial PSF by fitting a 2D Gaussian
using optimization techniques. This method is accurate but computationally intensive
and benefits from GPU acceleration [25].

• Phasor approach uses the second Fourier components of the image to estimate the
position of the fiducial marker. It achieves similar accuracy as Gaussian fitting but with
over 100-fold speed improvement using only CPU resources [26].
[19]

2-1-4 Conclusion

In summary, while image reconstruction and beam-based methods offer viable drift estimation
strategies, they either lack real-time capabilities or require substantial optical modifications.
In contrast, fiducial marker-based approaches provide a compelling balance between preci-
sion, real-time feedback, and ease of integration, especially when leveraging efficient tracking
algorithms like the phasor method.

However, nearly all high-precision fiducial-based systems rely on a dedicated secondary CMOS
camera to detect the reflected IR light from gold NPs, preventing interference with fluores-
cence imaging. This requirement increases system complexity, cost, and footprint, making
these solutions less accessible for standard commercial microscope platforms.

By using the fluorescence of fiducial markers rather than their reflectance, combined with the
phasor method, we obtain a drift estimation technique well-suited for commercial microscopes
and standard CPUs. This approach strikes a balance between drift measurement precision,
computational efficiency, and practical implementation, requiring only a single camera. As
a result, phasor-based fluorescent fiducial marker tracking becomes the preferred method
for SMLM setups where hardware modifications are not feasible, but sample adaptation is
acceptable.

2-2 Model-Based Control in the Field of Optics

In parallel with the rise of drift estimation methods, the introduction of model-based control
strategies in optical systems has shown significant promise for enhancing stability and preci-
sion. By leveraging mathematical models of system dynamics, model-based control enables
predictive feedforward compensation of disturbances such as focus drift, offering advantages
over traditional feedback methods. In the context of SMLM, combining a drift measurement
approach that does not need a second camera with model-based control paves the way for
real-time, hardware-independent and optimal drift correction.

2-2-1 System Identification

To enable the use of model-based controllers, a mathematical representation of the system
dynamics is essential. In cases where the physics of the system are well understood, a first-
principles model can often be derived directly. However, in many optical systems, especially
those used in high-resolution microscopy such as SMLM, direct modeling becomes impractical
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2-2 Model-Based Control in the Field of Optics 11

due to unmodeled disturbances. These include unknown mechanical vibrations, nonlinearities
introduced by temperature fluctuations, and electrical or sensor noise, all of which are often
system-specific and difficult to characterize analytically.

In such scenarios, system identification becomes a crucial tool. System identification refers
to the process of building mathematical models of dynamic systems based on observed input-
output data. In the context of optics, this allows for capturing the behavior of components
such as stages, actuators, lenses and feedback loops without requiring detailed physical insight.

A commonly used structure in system identification is the discrete-time Linear Time Invariant
(LTI) state-space model:

xt+1 = Axt + But + wt, wt ∼ N (0, Q),
ym

t = Cxt + Dut + vt, vt ∼ N (0, R).
(2-1)

where xt ∈ Rn is the state vector, ut ∈ Rm is the input (e.g., actuator signal), ym
t ∈ Rp is the

measured output (e.g., bead position), and A, B, C, D are system matrices to be estimated.
The terms wk and vk represent process and measurement noise, respectively.

In optical systems, system identification techniques are increasingly used to model complex
interactions that are difficult to describe analytically. For instance, Haber et al. [16] demon-
strate the application of subspace system identification to estimate low-order state-space
models of transient Structural-Thermal-Optical-Performance (STOP) dynamics in reflective
optics. In their work, simulated wavefront aberration data, originating from heat-induced
mechanical deformations, is used to identify a reduced-order model of a Newtonian telescope
system. The identification is performed using a subspace method, which estimates the system
matrices from time series of input (laser power) and output (Zernike coefficients) data. This
approach enables accurate modeling of the coupled thermal-structural-optical dynamics, re-
sulting in compact models suitable for real-time control and prediction of thermally-induced
wavefront aberrations. Such techniques highlight the potential of data-driven modeling for
enabling model-based control strategies in advanced optical setups.

2-2-2 Open-Loop and Closed-Loop System Identification

Traditional subspace identification methods typically assume that the plant under investiga-
tion is identified with open-loop data. However, this assumption does not hold for systems
that must be controlled to remain stable or need to be controlled to a certain operating
range. Using closed-loop data, however, introduces a complication: the control input uk at
time step k becomes correlated with the measurement noise vj at past time step j, violating
the standard system identification requirement that,

E{ukvj} = 0 for j < k, (2-2)

which is true for open-loop systems. Hereby, when using a subspace identification method
such as Numerical Algorithms for Subspace State Space System Identification (N4SID) [42],
the measurement noise is not decoupled from the inputs during subspace matrix estimation.
The resulting correlation between input and noise under closed-loop conditions introduces
bias in the identified system matrices.
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12 Related Work

To address this limitation, Predictor-Based Subspace IDentification optimal (PBSIDopt) [8]
can be employed. PBSIDopt performs a two-step estimation that explicitly handles feedback-
induced input–noise correlation.

First, the state-space equations in Eq. 2-1 is rewritten in data equation form as:

Yp,Np =
[
C D

] [
X̂p,Np

Up,Np−1

]
+ Ep,Np , (2-3)

Xp+1,Np−1 =
[
A B L

] X̂p,Np−1
Up,Np−1
Ep,Np−1

 . (2-4)

Here the notation for the set Yp,Np is used to denote a block-row matrix:

Yp,Np =
[
yi yi+1 . . . yi+N−p−1

]
, (2-5)

where Np = N − p.

Equation 2-3 is first solved via least squares to estimate the output matrix C and the in-
novation sequence Ep,Np , which captures the residual prediction error. This innovation is
then treated as a known signal and substituted into Eq. 2-4, which is again solved using least
squares to estimate the matrices A, B, and L.

By modeling the system in predictor form and isolating the innovations, PBSIDopt avoids the
input-noise correlation that biases standard subspace methods like N4SID. A full derivation
of these data equations and estimation steps is provided in Appendix A.

2-2-3 Model-Based Control

Model-based control strategies rely on an internal model of system dynamics to compute
control actions in a predictive, often optimal manner. In contrast to traditional controllers
such as proportional-integral-derivative (PID), which rely solely on error feedback, model-
based approaches incorporate knowledge of system behavior and disturbance characteristics
to anticipate future system states and compensate accordingly. This is particularly useful in
optical systems.

A prominent example of model-based control in optics is provided by Kulcsár et al. [22], who
address residual phase variance minimization in adaptive optics using a Linear Quadratic
Gaussian (LQG) control framework. Their approach separates the control problem into two
parts: an optimal control component, solved via Linear Quadratic (LQ) control, and an opti-
mal state estimation component, solved using a Kalman filter. The resulting LQG controller
minimizes a quadratic cost function of the form

J(u) = lim
n→∞

1
n

n∑
k=1

∥ϕres
k ∥2, (2-6)

where ϕres
k denotes the real residual phase error at time step k. This cost function quanti-

fies image degradation and is minimized by adjusting the control inputs uk based on noisy
measurements from a wavefront sensor. The optimal control law takes the form

K.E. Blokhuis Master of Science Thesis
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uk = Kx̂k+1|k. (2-7)

where x̂k+1|k is the predicted system state, which is obtained from a Kalman filter in which the
lowest variance estimate of the residual phase, ϕ̂res

k+1 is encapsulated. Further, K is a feedback
gain matrix derived from the solution to the LQ problem. The Kalman filter updates the state
estimate by combining the model prediction with new measurement data, thereby reducing
the impact of noise and unmodeled dynamics.

This framework provides a powerful basis for implementing model-based control in SMLM
systems, enabling precise drift correction by explicitly modeling the thermal or mechanical
disturbances affecting the imaging process.
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Abstract: Single-molecule localization microscopy (SMLM) enables nanometer-scale imaging9

but is highly sensitive to sample drift. We present an active 3D drift correction method using10

only fiducial markers, requiring no hardware modifications. Fluorescent light from fiducials11

is extracted directly from the main imaging camera during acquisition. The computationally12

efficient Phasor approach estimates 3D bead positions [1], making correction limited mainly by13

camera frame rate (e.g., >22 Hz at 25 fps). Experiments demonstrate closed-loop stability with14

1.1 nm lateral and 2.9 nm axial precision, highlighting the potential of our hardware modification15

free, real-time drift correction approach for high-resolution SMLM.16

1. Introduction17

Super-resolution microscopy (SRM) has enabled researchers to achieve spatial resolutions far18

beyond the diffraction limit of conventional optical microscopy, which is approximately half the19

wavelength of visible light (≈200 nm). Over the past three decades, various techniques have20

been developed to serve the diverse needs of biologists and microscopists [2]. The best-known21

SRM methods are commonly categorized into three groups: STimulated Emission Depletion22

(STED) [3], Structured Illumination Microscopy (SIM) [4], and Single-Molecule Localization23

Microscopy (SMLM) [5–8].24

Unlike STED and SIM, SMLM typically requires long acquisition times, often lasting several25

minutes, during which thousands of raw images are collected to reconstruct a final super-resolved26

image. During this period, it is critical that the sample remains at a stable focal position relative27

to the objective lens. Even small amounts of three-dimensional (3D) drift can degrade the28

achievable resolution. This drift is primarily caused by environmental instabilities such as29

temperature fluctuations, mechanical vibrations, and thermal effects within the optical path, e.g.30

laser-induced heating of optical components or thermal expansion of the stage due to increased31

environment temperature.32

To mitigate the effect of drift, several strategies for drift measurement have been proposed,33

which can be broadly classified into three categories: image reconstruction-based, beam-based,34

and fiducial marker-based approaches. Image reconstruction-based methods estimate drift35

from the single-molecule localization data itself, for example using image cross-correlation36

techniques [9]. Beam-based methods actively track the sample’s position using a laser reflected37

from the coverslip surface. For example, [10] employ an engineered Point Spread Function38

(PSF) to correlate live back-reflected images from the laser with a reference z-stack. Fiducial39

marker-based methods use fluorescent beads or gold nanoparticles as static reference points40

within the sample [11,12]. These markers can be tracked over time, and active control algorithms41

can dynamically compensate for measured drift in real time. All three methods have limitations.42

Image cross-correlation is restricted to post-processing and therefore cannot provide real-time43

correction, which results in unresolved axial drift resolution loss. Beam-based approaches44

typically require modifications to the optical setup, including the use of a cylindrical lens to45



obtain an engineered PSF and an additional camera or a CCD sensor as in Nikon’s Perfect Focus46

System (PFS) [13] to read the reflection. Similarly, most fiducial marker-based methods rely on47

back-reflected IR light from gold nanoparticles, which also necessitates a separate camera.48

Most existing control implementations rely on relatively simple proportional–integral–derivative49

(PID) controllers [11]. However, to enable optimal control of drift, it is essential to apply Kalman50

filtering to suppress noise in the measurements and perform model-based control to preemptively51

compensate for drift [14]. This requires a mathematical model of the system dynamics, which52

can be obtained through system identification techniques. Subspace-based identification methods,53

such as N4SID [15] and its closed-loop system identification counterpart PBSID𝑜𝑝𝑡 [16, 17],54

have shown to be well suited for estimating the linear time-invariant (LTI) models needed for55

optimal filtering and control [18].56

In this paper, we present a hardware modification free, fiducial marker-based 3D drift correction57

system for SMLM. Our method relies solely on the main acquisition camera to track fluorescent58

fiducial markers, avoiding the need for additional hardware or optical paths, and making it easily59

implementable in both commercial and custom-built microscopes, as only fiducial markers need60

to be bought and added to the sample. To overcome the lower signal-to-noise ratio (SNR) of61

fluorescent fiducials compared to infrared-illuminated gold nanoparticles, we employ optimal62

Kalman filtering to reduce measurement noise and enhance localization precision. By leveraging63

the computationally efficient Phasor approach for 3D position estimation [1], our system operates64

at rates limited only by the camera’s frame rate without the use of a GPU, achieving drift65

correction with a precision of 0.6 nm in lateral and 2.4 nm in axial directions at >20 Hz rates. In66

addition, we implement a smart illumination strategy using periodic z-stacking, to limit falsely67

perceived drift over long acquisitions.68

2. Methods69

2.1. Experimental Setup70

A schematic of the optical setup is illustrated in Fig. 1.(a). The optical setup is a TIRF (Total71

Internal Reflection Fluorescence) microscope, which exploits evanescent wave excitation at the72

glass-water interface to selectively illuminate fluorophores within 100-200 nm of the coverslip,73

reducing background fluorescence. Two lasers, a 405 nm and a 640 nm laser are combined74

using a dichroic mirror and focused onto the coverslip. These lasers excite the fiducial markers,75

and the fluorophores from the sample respectively. The light returning from the cover slip is a76

cumulation of the fluorescent light from the activated single-molecules in the sample and the77

fluorescent beads, as shown in Fig. 1.(b). As presented in Table 1, frequently, setups with fiducial78

marker-based drift correction use a dichroic mirror to split light coming from the markers and79

sample and capture them separately on two cameras. In our setup, no additional dichroic mirror80

or secondary camera is used; instead, all fluorescence emission is collected on a single detector.81

As a result, potential residual drift commonly observed in dual-camera configurations, caused by82

thermally induced mechanical deformations after the optical path is split by a dichroic mirror, is83

inherently avoided. After analysing each recorded image, the piezo-electric stage is controlled to84

account for the drift. A detailed illustration of the optical setup can be found in Fig. S1.85

2.2. Theory for drift estimation86

Estimating the lateral sample drift is achieved by analysing the 2D Discrete Fourier transform87

of the current image 𝐹 (𝑥, 𝑦), to the desired image 𝐺 (𝑥, 𝑦), specifically comparing the second88

Fourier coefficients’ phasor angles of the bead’s PSF at the desired focal point, (𝜙𝑏,0,𝑥 , 𝜙𝑏,0,𝑦)89

and the current focal point (𝜙𝑏, 𝑓 ,𝑥 , 𝜙𝑏, 𝑓 ,𝑦), as presented in [1] such that,90

Δ𝑥𝑏, 𝑓 =
𝑝𝑥(𝜙𝑏,0,𝑥 − 𝜙𝑏, 𝑓 ,𝑥)

2𝜋
, (1)
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Fig. 1. (a) Schematic of the optical setup. M: mirror, DM: dichroic mirror, OL: objective
lens, L: lens, CS: coverslip, F: filter. DM1, L4 and Cam 2 are not included in the
experimental setup but are commonly used in other sub-nanometer drift measurement
methods. (b) Schematic of the position estimation process for the focus point in 2
scenarios: Uncontrolled stage (top), Controlled stage (bottom). Zoomed-in regions
show bead 1 (on the coverslip) and bead 2 (on top of the sample). The bead’s phasor
angles 𝜙𝑏, 𝑓 ,𝑥 , 𝜙𝑏, 𝑓 ,𝑥𝑦 and magnitude 𝐼𝑏, 𝑓 , in the current frame are shown in red; the
green arrow indicates the desired phasor magnitude, 𝐼𝑏,0. The red and green cross
show the current and desired lateral position of the bead, respectively. (As the intensity
profile is symmetrical in both 𝑥 and 𝑦, the phasor magnitude is only displayed once per
bead.) (c) 3D focus drift over time. (d) Final SMLM reconstruction.



where 𝑝𝑥 represents the pixel size (nm). The lateral displacement between the two for bead, 𝑏, at91

frame, 𝑓 , is denoted as 𝑑𝑏, 𝑓 = (Δ𝑥𝑏, 𝑓 ,Δ𝑦𝑏, 𝑓 ).92

By only comparing two Fourier coefficients of the current frame, to two Fourier coefficients93

of the desired frame, this approach is computationally efficient and requires only a CPU, in94

comparison to [19], where GPU optimization is used to perform a full cross-correlation of the95

Fourier transformations, to reach an acceptable control bandwidth.96

For axial drift estimation, a z-stack is captured prior to the acquisition sequence. The second97

Fourier coefficients’ amplitude of the bead’s PSF, 𝐼𝑏, is determined at each z-position. While98

the bead’s PSF is not altered by e.g. an astigmatic lens, it can be represented as a symmetric99

2D-Gaussian. Therefore, as the beads go in and out of focus, both the x and y phasors’ amplitude100

follow an identical Gaussian fit. This fit is used during the acquisition sequence. First the101

𝑧-position of the desired focal point is determined. In the following frames, the desired position is102

compared with the current frame’s z-position, which is estimated using the current phasor magni-103

tude and precalculated Gaussian fit. Completing the drift vector to 𝑑𝑏, 𝑓 = (Δ𝑥𝑏, 𝑓 ,Δ𝑦𝑏, 𝑓 ,Δ𝑧𝑏, 𝑓 ).104

The average over all 𝑁 beads is taken as the final measurement, 𝑑 𝑓 = (Δ𝑥 𝑓 ,Δ𝑦 𝑓 ,Δ𝑧 𝑓 ).105

106

Table 1. Comparison of fiducial marker-based drift correction methods.

Publication Fiducial Type Drift Correction
Precision lateral/axial
(nm)

Control
bandwidth

Modification Needed

P. Bon (2015) [20] 100 nm Gold NPs 0.7/2.7 50 Hz Transillumination 640
nm laser + 2𝑛𝑑 CMOS

A. Balinovic (2019) [21] 200 nm fluorescent
beads

7.7 /- 33 Hz None

S. Coelho (2020) [11] 3𝜇m Polystyrene beads 0.4/1.0 15 Hz Transillumination of IR
laser + 2𝑛𝑑 CMOS

R. Schmidt (2021) [22] 40 nm Gold Nanorods 0.4/0.6 40 Hz IR laser + 2𝑛𝑑 CMOS
M. Weber (2021) [23] 40 nm Gold Nanorods <1/<1 80 Hz/30 Hz IR LED + 2𝑛𝑑 CMOS
L. Massulo (2022) [24] 100 nm Gold NPs 1.2/2 20 Hz IR LED + 2𝑛𝑑 CMOS +

3 BSs
S. Patil (2025) [25] 100 nm Gold NPs 0.85/0.89 100 Hz Cylindrical lens + IR

laser + 2𝑛𝑑 CMOS
X. Sun (2025) [19] 150 nm Gold NPs 0.31/036 50 Hz IR laser + 2𝑛𝑑 CMOS

Fig. 1.(b) shows the phasor approach drift estimation of two beads in two scenarios; actively107

controlled and uncontrolled. The first bead lays on top of the coverslip, the second bead is on108

top of the sample. The first frame taken in the acquisition cycle is the manually determined109

in-focus frame and therefore the desired frame. With the uncontrolled setup, lateral drift results110

in an equal lateral drift of the beads and change in phasor angles 𝜙𝑏, 𝑓 ,𝑥 and 𝜙𝑏, 𝑓 ,𝑦 . Due to a111

shift in the axial direction, the phasor magnitudes moved away from their initial magnitude as112

well. In the controlled scenario, the phasor angle and magnitude are actively estimated and113

compared to the desired angles and magnitudes. Interaction of these measurements with the114

stage then compensates for any drift estimated with the phasor approach such that phasor angle115

and magnitude remain at the desired values.116

It is important to note that, in the absence of prior knowledge of the bead positions, the magnitude117

of the PSF phasor alone cannot distinguish between positive and negative axial offsets. This118

is due to the symmetry of the fit with respect to the focal plane (see Supplementary Fig. S2).119

However, after we perform the z-stack, we know each bead’s z-position based on the peak of the120

Gaussian fit, such that when the desired focal position is set, it is possible to determine whether it121

is positioned above or below each bead. Therefore, only the corresponding half of the phasor122

magnitude curve can be used for position estimation.123

Since the sensitivity of axial position estimation is proportional to the derivative of the intensity124



with respect to the axial position, 𝑑𝐼/𝑑𝑧, the operational axial range of each fiducial bead, denoted125

𝑧𝑜𝑟,𝑏, is manually selected based on the axial profile of the Gaussian fit. For 1𝜇𝑚 fiducial beads,126

this operational range typically spans from approximately 400 nm below to 100 nm below the127

focal plane of the bead, and from 100 nm to 400 nm above the focal plane of the bead. The128

±100 nm region surrounding the focal plane of the bead is excluded due to the ambiguity in129

determining whether the focal plane lies above or below the bead, as well as the reduced sensitivity130

of the intensity profile in this region, where 𝑑𝐼/𝑑𝑧 approaches zero at the point of maximum131

phasor magnitude. This is accompanied by a trade-off with bead size: larger beads exhibit a132

wider operating range due to their broader axial response, but they also occupy more space in the133

imaging frame, which can reduce the number of usable fiducials or interfere with the sample.134

An alternative strategy to overcome the limited axial range of individual fiducials is to embed135

beads at different axial heights within a transparent medium such as agarose gel, allowing their136

operational ranges to overlap. This effectively extends the total usable axial detection range for137

drift correction or localization.138

2.3. System identification139

The dynamics of the focus point can be described using a linear discrete-time state-space model:140

𝒙𝒌+1 = 𝐴𝒙𝒌 + 𝐵𝒖𝒌 + 𝑤𝑘 , 𝑤𝑘 ∼ N(0, 𝑄), (2)
𝒚𝒌 = 𝐶𝒙𝒌 + 𝐷𝒖𝒌 + 𝑣𝑘 , 𝑣𝑘 ∼ N(0, 𝑅), (3)

where 𝒙𝒌 ∈ R𝑛 is the state vector, 𝒖𝒌 ∈ R𝑚 is the input (e.g., stage input), 𝒚𝒌 ∈ R𝑝 is the141

measured output (e.g., focus position), and 𝐴, 𝐵, 𝐶, 𝐷 are system matrices to be estimated. The142

terms 𝑤𝑘 and 𝑣𝑘 represent the process and measurement noise, respectively, with 𝑄 and 𝑅143

denoting their corresponding covariance matrices, i.e., E[𝑤𝑘𝑤
⊤
𝑘 ] = 𝑄 and E[𝑣𝑘𝑣⊤𝑘 ] = 𝑅.144

Assuming that the drift follows a purely Gaussian process and that the piezoelectric stage145

introduces motion strictly proportional to the applied control inputs, without exerting a direct146

effect on the measurements, the system matrices can be reduced. Specifically, the state-space147

representation simplifies to 𝐴 = 𝐵 = 𝐶 = 𝐼3 and 𝐷 = 0. We refer to this simplified structure as148

the Identity model. While this model serves as a useful baseline, it does not capture potentially149

significant higher-order dynamics present in the experimental system. Therefore, to obtain150

a more accurate representation of the underlying system behavior, we employed data-driven151

system identification techniques. In particular, the Numerical algorithms for Subspace State152

Space System Identification (N4SID) method [15] and the optimal Predictor-Based Subspace153

Identification approach (PBSIDopt) [17] were used to estimate the state-space matrices from154

observed input-output data.155

Identifying such a model is critical for optimal control strategies, as it provides a structured156

representation of the system’s dynamics in terms of states, inputs, and outputs. In particular,157

expressing the system in a state-space form enables the use of linear control and estimation158

techniques, such as the Kalman filter and Linear Quadratic Regulator (LQR). Even for systems159

with nonlinear behavior, linear state-space models around an operating point allow for effective160

local control, in this case around our desired focus point. Moreover, having an explicit model161

of the dynamics allows for one-step-ahead predictions of the system’s evolution, enabling162

anticipatory feedback that can preemptively counteract disturbances. A detailed description of163

the system identification experiments is provided in Supplementary Section 3, which includes164

the methodology for model order and hyperparameter selection. This section also presents a165

comparison between open-loop and closed-loop identification approaches, as well as a validation-166

based evaluation of the identified model against a simplified identity model.167



2.4. Counteracting Bead Emission Instability Effects168

A fundamental limitation of using fluorescent fiducial markers for axial drift estimation is the169

photo instability of their fluorescence emission. Since the axial position is inferred from the170

phasor magnitude, which is proportional to the fluorescence intensity, photo instability can lead171

to systematic errors. In particular, a reduction in phasor magnitude may be falsely interpreted as172

axial drift, prompting the system to apply incorrect compensatory stage movements.173

During experiments we have observed two causes for photo instability, first: under constant174

excitation conditions, the normalized fluorescence intensity of the markers decays exponentially175

over time, and can be modeled as: 𝐹 (𝑡) = 𝑒−𝑡 𝜏 , where 𝜏 is the bleaching rate constant. Increasing176

the excitation power leads to an increase in 𝜏, thereby accelerating photobleaching [26]. It177

is therefore crucial to minimize excitation power to preserve photostability, as previously178

recommended in [21]. In our experiments, we found that maintaining the excitation intensity at179

approximately 35 W/cm2 ensured both sufficient signal strength and stable drift estimation when180

using 1𝜇m Thermo Fisher Tetra speck beads.181

Despite low-power excitation, residual photobleaching persists. To correct for its impact on182

phasor magnitude, we employ autonomous intermittent 𝑧-stacking to recalibrate phasor intensity183

curves over time. We found that updating the reference 𝑧-stacks every 1000 frames effectively184

mitigated bleaching-induced errors in drift estimation (see Supplementary Section 5 for additional185

details).186

However, when acquiring multiple 𝑧-stacks in rapid succession, we occasionally observed187

unexpected increases in the phasor magnitude. Several factors may contribute to this phenomenon.188

First, laser power instability is a likely cause; fluctuations were particularly noticeable at output189

powers below 5% of the nominal value, where laser regulation is less precise. Second, variations190

in optical throughput due to thermal expansion of optical components may alter system efficiency191

over time. Third, although a pi shaper is used to transform the excitation beam from a Gaussian192

to a top-hat profile, residual non-uniformities across the field of view (FOV) may still be present,193

potentially leading to localized intensity fluctuations.194

3. Results195

3.1. System Identification196

To identify the system dynamics, we analyzed the mean position of eight 1 µm Thermo Fisher197

TetraSpeck fluorescent beads, excited with a 488 nm laser at 35 W/cm2 and recorded using a198

camera exposure time of 35 ms. A schematic overview of the system identification workflow is199

provided in Supplementary Section 5. The measurement noise standard deviations were estimated200

to be 𝜎𝑚
𝑥 = 0.53 nm, 𝜎𝑚

𝑦 = 0.81 nm, and 𝜎𝑚
𝑧 = 2.2 nm in the respective spatial directions.201

Among the models tested, the identity model yielded the lowest Root Mean Squared Error202

(RMSE) between the measured and estimated displacements: RMSEΔ𝑥 = 0.62 nm, RMSEΔ𝑦 =203

1.1 nm, and RMSEΔ𝑧 = 2.8 nm. Although the identified models captured the dominant drift204

dynamics with relatively high accuracy in all three spatial directions. No improvement in RMSE205

was observed when increasing the model order, suggesting that the drift dynamics do not exhibit206

significant higher-order behavior. Additional quantitative results are presented in Supplementary207

Section 3.208

3.2. Drift Correction Performance209

The proposed hardware modification free drift correction method demonstrated stabilization210

performance at the nanometer scale. To validate the correction performance, the same optical211

setup and experimental conditions were used as in the system identification procedure.212

Fig. 2(a) shows the 3D mean bead displacements over time, including their desired position at213

Δ̄ = 0. It is shown that the active control loop is able to actively stabilize the focus point around214



(a) (b)

Fig. 2. (a) Mean displacements Δ𝑥, 𝑦, 𝑧 of the focus point from the reference position,
estimated using fiducial beads. (b) Estimated probability density functions of the
standard deviations of 3D sample drift from (a), computed over 5-second segments.
Solid lines show Gaussian fits to the histograms; dashed lines indicate the corresponding
distribution means.

the desired point.215

In Fig. 2(b), a histogram of the standard deviation of the bead position measurements, calculated216

over a sliding window of 5 seconds, is shown alongside a fitted Gaussian distribution. The217

mean standard deviations over the full duration of the experiment were found to be 𝜎̄𝑥 = 0.6 nm,218

𝜎̄𝑦 = 0.9 nm, and 𝜎̄𝑧 = 2.4 nm in the respective spatial directions. These values closely match219

the estimated measurement noise levels obtained during system identification, indicating that the220

closed-loop drift correction approaches the theoretical lower bound imposed by the measurement221

noise. This suggests that the residual motion is dominated by the stochastic measurement process222

rather than uncorrected drift. Counteracting bead emission instability was reached using the223

proposed intermittent z-stacking protocol. It results in acquisition pauses of only 6.3 seconds224

during each 𝑧-stack, yielding an average of falsely perceived drift of 3.2 nm.225

3.3. SMLM imaging of C3T3 cells226

To evaluate the performance of our system during practical imaging of biological samples, an227

SMLM experiment was conducted using our real-time 3D drift correction method. Peptide-based228

PAINT was performed in fixed MC3T3 cells using Atto643-conjugated purified lifeAct that229

transiently bound to filamentous actin for single-molecule reconstructions. LifeAct-Atto643 was230

diluted 1:2.000.000 from stock solution so that single binding and unbinding events could be231

observed. Fiducial markers consisting of 0.22 𝜇m LightYellow Spherotech beads were deposited232

onto the coverslip for active drift correction. A 642 nm laser was used for sample excitation and233

a 405 nm laser was used for bead excitation, imaging was performed using an excitation power234

density of approximately 35 W/cm² for sample excitation and 0.650 kW/cm² for bead excitation.235

The camera was operated with an exposure time of 35 ms and an effective pixel size of 108.33 nm236

in the sample plane. A total of 30,000 frames were recorded during the experiment. The resulting237

reconstruction is found in Figure 3(a), zooming in at one of the 0.22 𝜇m Spherotech Light Yellow238

beads used for drift corrections in Figure 3(b) shows that its reconstruction forms a 2D Gaussian239

as highlighted in the intensity plot Figure3(c) indicating that most drift is compensated for.240
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Fig. 3. Reconstructed image of fixed MC3T3 cells labeled with Atto643-conjugated
purified lifeAct and using 0.22𝜇𝑚 Spherotech Light Yellow beads for drift correction.
(a) SMLM image with active drift correction. (b) Zoomed region showing the
reconstruction of one of the fluorescent beads. (c) Intensity plot along the blue dotted
line in (b), showing symmetrical intensity distribution of the fluorescent bead.

4. Discussion and conclusions241

We have designed a hardware modification free active drift correction system that reaches high242

precision drift correction, relying only on fluorescent fiducial markers. Our method approaches243

the performance of many modification based drift correction systems, making it a viable option244

for commercial and non-commercial optical setups. With experimental validation we show sub-1245

nm lateral and sub-3 nm axial drift correction. By using the computationally efficient phasor246

approach for measuring the drift, the control bandwidth is only limited by the camera’s fps during247

acquisition, without the use of a GPU.248

As there is no physical separation between the single-molecules reaching the acquisition camera249

and the fiducial markers’ fluorescence reaching the drift correction camera, the implementation250

of a second camera is unnecessary. Consequently, this design inherently avoids the issue of251

residual drift, which is frequently neglected in other drift correction methodologies.252

However, in contrast to reflectance-based approaches, our fluorescence-based method is sus-253

ceptible to photo instability of the fluorescent beads. This photo instability induces changes254

in the phasor magnitude, which may be falsely interpreted as drift. To mitigate this limitation,255

we propose two strategies. First, we employ low-power excitation to minimize the rate of256

photobleaching. Second, we implement autonomous intermittent 𝑧-stacking at intervals of every257

1000 frames to compensate for residual bleaching effects. While this approach mitigates the258

effects of bead photobleaching during acquisition, it also introduces limitations to the drift259

correction strategy. In particular, the reliance on intermittent 𝑧-stacking precludes continuous260

correction and results in a mean residual drift of 3.3 nm. A more advanced alternative would261

involve explicitly modeling the photobleaching process by incorporating the bleaching constant 𝜏262

into the dynamical system following its identification. This would enable a continuous correction263

scheme that compensates for the gradual decay in fluorescence emission over time.264



System identification methods such as N4SID and PBSIDopt did not result in improved perfor-265

mance compared to the Identity model, which assumes drift dynamics behave as Brownian motion.266

This suggests that, under the current measurement conditions, the drift is well-approximated by a267

random walk. However, the use of modified approaches with lower measurement noise could268

enable the identification of higher-order system dynamics. In this work, we have presented a269

structured framework for system identification, which may facilitate more accurate modeling and270

further improvements in drift correction performance in future implementations.271
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1. OPTICAL SETUP
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Fig. S1. Detailed schematic of TIRF microscope used for experiments. List of components in
Table S1.



Table S1. Component Table

Component Abbr. Function Parts Description /
Name(s)

Vendor / Link Qty

Optic Fibre F Guides light from
laser combiner to
microscope; “cleans
up” laser modes

Polarization maintain-
ing optic fibre, custom
patch cable (PM-S405-
XP, 3m, dual SMA
connectors)

Thorlabs (PM-
S405-XP)

1

Collimator Co Collimates laser
beam to 6 mm

f = 35 mm, Ø1” Achro-
matic Doublet (AC254-
035-A), f = 75 mm,
Ø1” Achromatic Dou-
blet (AC254-075-A)

Thorlabs
(AC254-035-
A,AC254-075-
A)

1

Pi-Shaper πS Creates top-hat
beam profile; input
beam diameter
critical

VIS Flat Top Beam
Shaper (πShaper 6_6
Series, #12-644)

Edmund Op-
tics (πShaper
6_6 Series)

1

Mirror (1 & 2) M Reflects beam; align-
ment, beam walking

Ø1” Broadband Dielec-
tric Mirror (400–750 nm),
mounts

Thorlabs (BB1-
E02)

2

Telescope
(Beam Ex-
pander)

T Expands beam by
factor 3

f = -100 mm (ACN254-
100-A), f = 300 mm
(AC254-300-A-ML)

Thorlabs
(ACN254-100-
A, AC254-300-
A-ML)

1

Excitation filter ExF Cleans excitation
light spectrally

25 mm bandpass fil-
ter (Quad Line ZET
405/488/561/640)

AHF (F59-405) 1

Mirror (3 & 4) M Reflects beam; align-
ment, beam walking

Ø2” Broadband Dielec-
tric Mirror (400–750 nm)

Thorlabs (BB2-
E02)

2

Tube lens (illu-
mination)

TLill Focuses beam into
back focal plane of
objective

f = 200 mm, Ø2” Achro-
matic Doublet (ACT508-
200-A-ML)

Thorlabs
(ACT508-200-
A-ML)

1

Mirror (TIRF) M On translation
mount for TIRF
angle introduction

Ø2” Broadband Di-
electric Mirror + stage
(LNR25M/M)

Thorlabs
(BB2-E02,
LNR25M/M)

1

Dichroic mirror DiM Reflects excitation,
transmits fluores-
cence

Quadband TIRF
beamsplitter
(zt405/488/561/640rpc)

AHF F73-
410T3)

1

Objective lens O High NA lens for ex-
citation and fluores-
cence collection

Nikon CFI Apo TIRF
60x, NA 1.49, Oil
(MRD01691)

Nikon Nikon
CFI Apo TIRF
60XC Oil)

1

Mirror M Reflects collected
fluorescence to
camera

Ø2” Broadband Dielec-
tric Mirror (400–750 nm)

Thorlabs (BB2-
E02)

1

Emission filter EmF Cleans emission
light from laser
back-reflections

Quad Line Re-
jectionband
ZET405/488/561/640

AHF (F57-406) 1

Tube Lens (de-
tection)

TLdet Detection tube lens f = 200 mm Tube Lens
(TTL200-A)

Thorlabs
(TTL200-A)

1

Camera C Records fluores-
cence

Andor Zyla 4.2 sCMOS Andor (Andor
Zyla 4.2 sC-
MOS)

1

2



2. PHASOR MAGNITUDE FITTING
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Fig. S2. Phasor magnitude fitting across a z-stack. Due to optical aberrations, the phasor mag-
nitude of a single bead deviates from an ideal Gaussian profile. Although a fourth-degree
polynomial provides a better fit, a Gaussian model is used to reduce computational complexity.
Moreover, the polynomial fit is prone to overfitting, which can result in significant errors in the
fitted profile.

3. SYSTEM IDENTIFICATION

If the dynamics of the drift are known, it becomes possible to design two key components: (1) an
optimal filter that separates the true system dynamics from measurement noise, enabling accurate
feedback control of the stage, and (2) a predictive model that anticipates future drift, allowing for
preemptive control actions to minimize its effect.

A widely used framework for modeling such systems is the discrete-time LTI (Linear Time
Invariant) state-space representation:

xk+1 = Axk + Buk + wk, wk ∼ N (0, Q) (S1)

ym
k = Cxk + Duk + vk, vk ∼ N (0, R) (S2)

where xk ∈ Rn is the state vector, uk ∈ Rm is the input (e.g., stage input), ym
k ∈ Rp is the

measured output (e.g., focus position), and A, B, C, D are system matrices to be estimated. The
terms wk and vk represent process and measurement noise, respectively.
Here we describe how the unknown subspaces, A, B, C, D and noise correlation matrices Q and R
can be determined. By either subspace estimation methods such as: N4SID and PBSIDopt or by
making additional assumptions on the drift such that it can be described as a Brownian walk. In
A we describe how input-output data is generated for system identification. In B we describe
the different models and how hyperparameters for these models are chosen. Finally in C, we
compare the different models.

A. Input-output data generation
Although our primary interest lies in characterizing the optical system’s dynamics at the nanome-
ter scale, utilizing input-output behavior directly at this scale is challenging due to significant
measurement noise, denoted by σm

∆i for each axis i. To ensure a sufficient signal-to-noise ratio and

3



to maintain observable correlations between inputs and outputs, pseudo-random step excitation
amplitudes were set to ui = 3σm

∆i.
Furthermore, since the system does not exhibit autonomous stabilization, open-loop motion

of the stage can cause the focal point to drift outside the optical system’s operating range. To
mitigate this, a proportional feedback controller was employed to maintain focus. However,
the presence of feedback introduces correlations between the control inputs and the measured
outputs, potentially biasing the system identification process. To reduce this effect, relatively
small proportional gains were selected: Kp = [0.05, 0.05, 0.1] for the [x, y, z] axes, respectively.
These gains were chosen to balance the need for stabilization with the goal of preserving the
intrinsic system dynamics. As a result of the low feedback gains, the stabilization response was
slower, requiring the step input intervals to be extended to 15 frames, roughly 1Hz, to avoid
exceeding the system’s operational bounds. This only limits the identification of subspace matrix
C between the inputs and the states but does not limit the identification of subspace matrix A. The
piezo stage is assumed to act linear at higher frequency stage inputs up to 35Hz, as specifications
of the used stage positioner indicate linear behaviour up until 1kHz. A representation of the
inputs can be seen in Figure S6.

B. Model selection
We implemented three models to describe the system dynamics, listed here in order of increasing
complexity: the identity model, the N4SID algorithm, and its closed-loop variant, the PBSIDopt
algorithm.

The identity model assumes that the system follows a pure Brownian motion. Under this
assumption, the state-space matrices are defined as identity matrices, i.e., A = B = C =
I, implying that the state evolves as a random walk without deterministic dynamics. The
measurement noise covariance matrix R is estimated empirically by analyzing the displacement of
beads over 100 consecutive frames, with the standard deviation used as a proxy for measurement
noise level. The process noise covariance matrix Q is defined as:

Q =




10q 0 0

0 10q 0

0 0 10q


 , (S3)

where q is a tunable scalar parameter that determines the magnitude of the process noise. The
value of q was selected empirically by inspecting the filter response to various noise levels, as
illustrated in Figure S3. A value of q = −0.5 was found to offer a suitable trade-off between noise
suppression and responsiveness of the filtered signal.
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-20

-10
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Fig. S3. Comparison of measured and estimated axial drift ∆z. Increasing the process noise
parameter q in the Kalman filter increases reliance on measurements, resulting in estimates that
more closely track the observed data.

Making only use of the aforementioned identity model provides a simple baseline, but it does
not capture any underlying deterministic behavior in the drift. To address this, we also explored
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system identification methods, which aim to learn dynamic models directly from data. One
widely used approach is the Numerical algorithms for Subspace State Space System Identification
(N4SID) [1]. This method constructs a low-dimensional subspace from observed input-output
data and uses it to estimate the system matrices A, B, C, D of a discrete-time state-space model.
However as seen in A, inputs and process noise become correlated as the system is running
closed-loop while generating system identification data, this correlation introduces bias in the
identified model when standard open-loop identification methods such as N4SID are used. To
address this, closed-loop subspace identification methods such as PBSIDopt (Prediction-Based
Subspace Identification with optimal weighting) can be employed. PBSIDopt extends subspace
identification to closed-loop conditions by incorporating a predictor form that explicitly accounts
for the process noise [2, 3].
For both open-loop and closed-loop system identification, the past window size p in the block
Hankel matrix must be appropriately selected. To identify the optimal value of p, the Akaike
Information Criterion (AIC) was computed for various combinations of past window sizes and
model orders. The AIC balances model fit and model complexity, enabling principled model
selection [4].

The AIC is defined as:

AIC = N · log

(
det

(
1
N

N

∑
t=1

ε(t, θ̂)ε(t, θ̂)⊤
))

+ 2np + N · ny · (log(2π) + 1) (S4)

Here, N is the number of measurements in the dataset, ε(t, θ̂) is the ny × 1 vector of prediction
errors at time t based on the estimated parameters θ̂, np is the number of estimated parameters in
the model, and ny is the number of model outputs. Based on the results presented in Figure S4,
although the AIC stabilizes beyond a past window size of p = 3, we select p = 6 to allow
flexibility for additional states, given the condition n ≤ p [3]. Similarly, the singular value plot
shown in Figure S5 indicates that the singular values exhibit negligible jumps after model order 3,
which implies that the main dynamics are captured within three states [5] . Therefore, in addition
to the direct linear relationships between ∆x, ∆y, and ∆z with the inputs, no higher-order linear
dynamics can be reliably identified using subspace identification methods.
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Fig. S4. AIC for different past window sizes, showing a minimum at p = 6.
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Fig. S5. Singular Value Plot, showing a big drop only after model order 3.

C. Model validation
After performing system identification, model quality is assessed using the Root-Mean-Squared-
error metric,

RMSE =

√
1
n

n

∑
k=1

(yk − ŷk)
2

A lower RMSE indicates that the model closely reproduces the observed behavior of the system,
implying better predictive accuracy and a more faithful representation of the system dynamics. To
determine the RMSE of the different models, we identified the model using N4SID and PBSIDopt
with training sets of 500 measurements. After which they were validated over the complete 2500
measurement dataset. The Identity model did not need training but used the same data set for
validation.

Table S2. Mean and standard deviation of the Root Mean Squared Error over 5 system iden-
tifications, reported in nm for each model and axis. (Identity model is not identified using
multiple training sets so has no standard deviation)

Model RMSE∆x (nm) RMSE∆y (nm) RMSE∆z (nm)

Identity 0.62 1.1 2.8

N4SID 0.87 ± 0.058 1.2 ± 0.098 2.6 ± 0.087

PBSIDopt 0.90 ± 0.02 1.2 ± 0.12 2.6 ± 0.11

As shown in Table S2, the N4SID and PBSIDopt models yield comparable RMSE values, indi-
cating similar overall identification performance, indicating that the Closed-Loop data did not
severely decrease model performance. Notably, the Identity model achieves a significantly lower
RMSE in estimating ∆x compared to both the other models and its own estimation of ∆y. This
outcome is unexpected, considering that ∆x and ∆y are measured using identical procedures.
Additionally, the Identity model exhibits a slightly higher RMSE in estimating ∆z, indicating a
modest reduction in performance along that axis. The difference between the ∆x and ∆y estima-
tion performance of the Identity model can be further understood by examining Figure S6, which
displays the measured outputs, stage inputs, and state estimations for all three models. A detailed
inspection of the data around frames 40 and 60 reveals a coupling effect between ∆y and ∆z.
Specifically, for identical inputs in ∆y, the system exhibits varying dynamic responses depending
on the concurrent input in ∆z. As the Identity model does not account for such cross-axis coupling,
this limitation likely contributes to its comparatively poorer performance in estimating ∆y relative
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to ∆x. A plausible explanation for the observed coupling is a mechanical tilt in the piezoelectric
stage along the x-axis, which causes the y-position of the bead projections on the camera to vary
with changes in the z-axis position and vice versa, also explaining the poorer estimation of ∆z.
Such a tilt would be easily implementable in the Identity model by multiplying the B matrix with
a rotational transformation matrix:

Rx(θ) =




1 0 0

0 cos θ − sin θ

0 sin θ cos θ


 . (S5)

Where θ must be found such that the RMSE are minimal. The identified models are not able to
properly correlate the inputs to the outputs as the measured value rises more at each pseudo
random input than the estimated states, but seems to identify the tilt. This causes ∆x to be
relatively worse than the identity model but ∆y and ∆z to perform similarly well as it benefits
from identifying the tilt despite improper correlation of the inputs.

The identified models exhibit limited ability to accurately correlate the stage inputs with the
measured outputs; the measured signals show larger increases in response to each pseudo-random
input than are reflected in the estimated states, suggesting a systematic underestimation of the
input magnitude. Despite this mismatch, the models effectively capture the underlying tilt present
in the data, which appears to compensate for the poor input-output correlation. Consequently,
while the estimation of ∆x is degraded relative to the Identity model, the estimations of ∆y and
∆z remain comparable due to the benefit of capturing the tilt component.
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Fig. S6. Measured outputs and one step ahead predicted outputs of PBSIDopt, N4SID and
Identity method first 100 frames of validation set.

Moreover, we perform residual analysis through the autocorrelation of the estimation error,ϵk =
yk − ŷk , and the cross-correlation between the error and inputs, uk. A well-identified model
should yield a residual autocorrelation resembling a Dirac impulse, indicating that the resid-
uals are white and that no significant system dynamics have been left unmodeled. Similarly,
the absence of cross-correlation between past inputs and residuals implies that the model has
adequately captured the input–output relationship.

Figure S7 illustrates that the autocorrelation of the residuals for both PBSIDopt and N4SID
remains within the 0.1 confidence bounds for nearly all time lags, with the exception of lag τ = 1.
This observation supports the earlier conclusion that the identified models underestimate the
input magnitude, leading to residual correlations between consecutive frames. In such cases, the
system appears to require an additional measurement step to fully adjust to changes in position.
In contrast, the Identity model exhibits low residual autocorrelation for ∆x even at lag τ = 1,
indicating a more immediate response. However, since the tilt is not explicitly modeled in the
Identity case, a similar autocorrelation pattern to the identified models is observed for ∆y and
∆z, again suggesting that the system dynamics in these directions are not fully captured without
incorporating cross-axis effects.

In Figure S8, the identified models exhibit similar cross-correlation behavior between the
state estimation error and the control inputs, characterized by a pronounced peak at the initial
lags followed by stabilization. This pattern reinforces the earlier observation that the models
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tend to underestimate the true state position. As a result, the residuals exhibit correlation with
subsequent control inputs, which act to steer the system back toward the center of the operating
region. This correlation is not observed for ∆x and ∆y in the Identity model, indicating that the
residuals in these directions are largely uncorrelated with the control inputs. However, in the case
of ∆z, a negative correlation is present at lag τ = 1, which may be attributed to the mechanical
tilt discussed earlier. Specifically, an input to the z-stage appears to induce a coupled response,
producing motion along the y-axis and a reduced displacement in the z-direction. This coupling
leads to an estimation error in ∆z that is inversely correlated with the subsequent control input.

Fig. S7. Auto-correlation of the residuals of the different models. With 0.1 boundaries shown
with black dashes. Frame lag τ is shown on the x-axis.

9



Fig. S8. Cross-correlation of the errors and input data of the different models. Frame lag τ is
shown on the x-axis. Graphs correspond to legend in Figure S7.

4. CONSISTENCY OF BEAD EXCITATION

One limitation of using fiducial markers for axial drift estimation is the variability in the intensity
of their fluorescence emission upon excitation. Since this intensity directly influences the phasor
magnitude, fluctuations can introduce artifacts in the axial position estimate. Specifically, a change
in phasor magnitude, may be misinterpreted as axial drift, prompting the stage to incorrectly
apply a correction.

To investigate the stability of bead excitation and its impact on drift correction, a sample
containing 0.5 µm Tetraspeck beads was prepared. Drift compensation was performed over a
50-minute period, during which a z-stack was acquired every 30 seconds. These z-stacks were
analyzed to monitor changes in the Gaussian fits of the phasor magnitude over time, as shown in

10



Figure S9.
A closer inspection around the controlled focus position at 1180 nm in Figure S10 reveals

fluctuations in bead excitation intensity, indicating non-uniform photostability. To quantify the
effect of these fluctuations on axial position estimation, the fitted z-positions assuming a constant
phasor magnitude were compared across time. The resulting residual drift after each new z-stack
are presented in Figure S11, showing clear fluctuations.
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Fig. S9. Gaussian fits of 100 z-stacks over 50 minutes of a single bead’s phasor magnitude.
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Fig. S10. Zoomed-in figure of S9 around desired focus point.
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Fig. S11. Residual of the estimated axial focus position after each new Gaussian fit.

Photobleaching is an inherent photophysical property of fluorescent dyes that leads to a progres-
sive loss of fluorescence emission, typically following an exponential decay. This phenomenon
is the primary cause of the observed decrease in phasor magnitude over time. As the phasor
magnitude diminishes, the estimated axial position, ∆z is biased: when the focal plane is above
the bead, the estimated ∆z decreases, and when the bead lies above the focal plane, the estimated
∆z increases. This is evident from Figure S2.

Since photobleaching is directly related to the excitation intensity, beads located further from the
focal plane experience reduced photobleaching. Consequently, this spatial dependence leads to
bead-specific deviations in the estimated ∆z over time, as shown in Figure S12. In this experiment,
seven 1 µm TetraSpeck beads were employed for drift correction. The final drift estimate was
computed as the mean of the individual bead estimates. As a result, the individual ∆z trajectories
are centered around zero but show systematic deviations due to variations in photobleaching
rates.
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Fig. S12. Estimated axial drift (∆z) of seven fiducial beads over time during a single acquisition
with live closed-loop control. A 1000-frame moving average was applied to reduce noise and
emphasize long-term trends in the position estimation and bead excitation inconsistency. Black
dotted: estimated ∆z by different beads, red solid line: ∆z.
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5. IMPLEMENTATION WORKFLOW OF THE DRIFT CORRECTION SYSTEM DURING
SMLM ACQUISITION

Determine Bead Locations

Gaussian fits on phasor magnitude

Filter beads

System 
Identifcation

N4SID/ PBSID
model

Take inital frame

Perform z-stack

Identity 
model 
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control?
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Control stage
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Fig. S13. Schematic overview of the imaging and drift correction workflow. The process begins
with system calibration, where bead locations are identified from an initially captured frame.
A z-stack is then acquired to generate Gaussian fits on the phasor magnitude, enabling 3D
localization of all fiducial beads. Using Ncheck frames, the measurement noise for each bead
is estimated, and beads exhibiting excessive noise are filtered out. In the subsequent model
selection stage, the control method is chosen: either a proportional (P) controller or a model
based controller using the identity model, which requires no system identification, or a model-
based controller using N4SID or PBSIDopt, both of which require system identification. After
selecting the control strategy, the user manually sets the initial focus position, and the SMLM
acquisition begins. The chosen model is then used to filter the focus position and control the
system states over NSMLM frames. The procedure concludes with image reconstruction.
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Chapter 4

Conclusion

This chapter presents a summary of the key findings of this thesis. Section 4-1 provides an
overview of the main contributions and results. Section 4-2 discusses the limitations of the
experimental approach and the interpretation of the results. Moreover, it outlines potential
directions for future research enabled by this work and suggests avenues for further develop-
ment of drift correction methods for Single-Molecule Localization Microscopy (SMLM).

4-1 Summary

Super Resolution Microscopy (SRM) enables biologists to study structures and processes at
the nanoscale, well below the diffraction limit of conventional light microscopy. By surpassing
this fundamental resolution barrier, SRM allows precise visualization of molecular organiza-
tion and dynamics that were previously inaccessible with standard optical techniques.

One such SRM method, SMLM, achieves super-resolution by localizing individual fluorescent
molecules with high precision, provided their Point Spread Function (PSF)s do not overlap.
This is enabled by photoswitching, where fluorophores stochastically blink between bright
and dark states, allowing only a sparse subset to emit at any time. Thousands of sequential
images are captured, and the positions of ON-state molecules are computed and compiled to
reconstruct a high-resolution image beyond the diffraction limit. Without drift, localization
precision is fundamentally bounded by the Cramér–Rao lower bound.

However, if drift occurs during the acquisition phase in SMLM, it degrades the precision of
single-molecule localization by introducing an additional source of uncertainty. Specifically,
the smallest possible variance of the estimated position, assuming CRLB can be reached, is
given by Var(x̂) = σ2

x,CRLB + Var(∆x), where σ2
x,CRLB denotes the theoretical lower bound

determined by the maximum likelihood estimator using the intensity of the molecules, back-
ground intensity information, PSF and camera pixel size [38]. Var(∆x) represents the variance
introduced by system drift. As a result, effective drift correction is essential to preserve the
localization precision inherent to the imaging system. This requirement becomes increas-
ingly critical with the emergence of advanced localization techniques such as MINFLUX,
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which approach the Cramér–Rao lower bound (CRLB) with nanometer or sub-nanometer
precision [14]. In such high-precision regimes, even minor uncorrected drift can significantly
compromise localization performance. Therefore, the development of precise and universally
applicable drift correction methods is vital for enabling the full potential of cutting-edge
single-molecule localization microscopy.

Although drift correction modules capable of nanometer precision are commercially available,
they typically rely on the integration of additional microscope hardware. This often includes
a secondary optical path equipped with at least one supplementary camera and an infrared
laser, along with other necessary optical components to enable precise drift estimation. For
many experimental setups, such modifications result in significant additional costs, which
may not be feasible for all research groups. Furthermore, laboratories utilizing commercial
microscope systems frequently encounter physical constraints that preclude the integration
of a secondary optical path, making the implementation of such drift correction modules not
only expensive but also physically impractical.

That is why this thesis focused on finding the answer to the research question: "How can
sample drift-induced resolution drop in SMLM be minimized using an actively controlled sys-
tem that operates under typical SMLM constraints, enabling precise imaging in environments
where computational resources are limited and modifications to the optical setup are not fea-
sible?"

The proposed solution requires only the inclusion of fluorescent fiducial markers in the sample,
a sample preparation step that is commonly used in existing drift correction approaches
and can be readily performed by biologists. Consequently, this method is non-invasive and
fully compatible with standard super-resolution microscopy workflows. The fiducial markers
could be excited using the same lasers, already present in most super-resolution microscope
systems, and emit fluorescence that is detected by the same camera used for imaging single
fluorophores. This eliminates the need for additional excitation sources or detection devices,
thereby minimizing both cost and system complexity.

Since the fiducial markers were immobilized relative to the sample plane, their recorded PSFs
could be used to infer any relative displacement between the sample and the focal plane.
Estimating this displacement required determining the marker positions from their image
data. A computationally efficient method for doing this was the Phasor approach, which used
the phase angles of the (1, 0) and (0, 1) Fourier coefficients to estimate lateral displacements
and their magnitudes to estimate axial shifts. By averaging measurements from multiple
fiducial markers, measurement noise was reduced. However, the number of usable markers is
constrained by the camera’s field of view. To further enhance drift estimation precision under
such limitations, a Kalman filter was employed. To enable Kalman filtering, this thesis also
investigated the development of a suitable dynamical model of the drift process.

Three models were evaluated. First, the Identity model assumed that the drift follows a
Brownian motion and could be described solely by characterizing the process and measure-
ment noise. Second, the open-loop system identification method Numerical Algorithms for
Subspace State Space System Identification (N4SID) was employed to capture potential un-
derlying drift dynamics by recording drift trajectories at 30 Hz over the course of one minute.
Finally, recognizing that fiducial markers emit sufficient photons to resolve axial drift only
within a limited range, the measurements were used in a closed-loop feedback configuration to
stabilize the focal plane. In this scenario, the correlation between noise and input introduces
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bias into standard identification methods. To mitigate this, the closed-loop identification
method Predictor-Based Subspace IDentification optimal (PBSIDopt) was also applied.

Model validation metrics were compared using the autocorrelation of the error between mea-
sured and estimated outputs over time, as well as the cross-correlation between the error
and the input. These comparisons between open-loop and closed-loop system identification
methods revealed no significant differences. Further results showed that only minor system
asymmetries, specifically, slight stage misalignments causing correlation between y- and z-axis
measurements, could be detected using the identification procedures. These small couplings
led to modest improvements in the identified models. However, the input magnitude was
underestimated during model identification, leading to a mismatch between the modeled and
actual system response. As a result, only the x-axis estimation performance, determined as
the RMSE between the measured output and estimated output, of the Identity model (0.62
nm) was significantly lower than for the identified models N4SID (0.87 nm) and PBSIDopt (0.9
nm). For the y- and z-axes, the RMSE values were approximately the same across all models,
as the modest improvements gained from capturing coupling effects in the identified models
were counteracted by the Identity model not suffering from input magnitude underestimation.
No other significant deterministic dynamics were observed, and the final state-space model
retained a minimal structure with three independent states, each corresponding to a spatial
axis and influenced solely by stochastic drift.

4-2 Discussion and Future Work

4-2-1 Bead Selection and Stability

The choice and stability of fiducial beads were found to be critical for precise drift correction.
While gold nanoparticles were initially considered, they proved highly unstable when used
as fluorescent markers. Consequently, fluorescent beads were selected. Bead size played
a significant role in localization precision: larger beads exhibit reduced photobleaching and
higher signal-to-noise ratios, improving localization precsion. However, they also occupy more
space in the field of view. In the used experimental setup, a size of 1 µm was determined to
be optimal, balancing visibility, precision, and minimal spatial intrusion.

Color selection was equally important. To ensure precise multi-channel imaging, the emission
wavelength of the fiducial beads had to be sufficiently separated from the single-molecule
signal. This allowed for effective spectral separation and channel-specific regulation.

4-2-2 Fitting Accuracy and Model Limitations

In this work, a Gaussian model was used to fit the bead point spread function (PSF), de-
spite the presence of optical aberrations. While this approach is computationally efficient and
robust in many conditions, it may not fully capture PSF distortions introduced by aberra-
tions. In certain cases, higher-order polynomial models or physically-motivated PSF models
may offer improved fitting accuracy at the cost of increased computational complexity. In
particular, fitting aberration-specific polynomials could yield better results [40].
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4-2-3 Bleaching-Induced Drift Artifacts

Photobleaching of fiducial beads presented a significant source of error in drift estimation.
As the beads bleach, the emitted photon count decreases, which can be misinterpreted by
the fitting algorithm as a spatial displacement, thus inducing a false drift signal. To mitigate
this effect, low laser powers and pre-bleaching strategies were employed, as recommended in
[2]. Nonetheless, bleaching effects remained a concern due to the dependence of excitation
efficiency on axial position and lateral illumination inhomogeneities, despite the use of a
PiShaper beam shaper to turn the Gaussian excitation beam into a tophat.

To compensate for bleaching-related artifacts, intermittent z-stacking was used to model and
correct for intensity changes. However, fluctuations in laser power occasionally led to poorly
fitted intensity profiles, introducing bias and reducing the robustness of the correction.

Future work could explore methods to detect and compensate for bleaching more systemati-
cally. One promising approach involves positioning fiducial beads both above and below the
focal plane. Due to the asymmetry in the PSF and its phasor magnitude response, bleaching-
induced intensity loss would cause opposite estimation shifts depending on the bead’s axial
position: beads below the focus plane would appear lower than their true position, while
beads above would appear higher. By analyzing the divergence of these estimates, it may
be possible to detect and quantify bleaching. This information can be used to adjust the
measured data accordingly, allowing the affected beads to remain usable for drift estimation
while compensating for the bleaching-induced error.

4-2-4 Limitations of System Identification

Due to photobleaching effects, the input-output dataset was limited to 500 samples acquired at
30 Hz to minimize bias in the system identification caused by bleaching-induced virtual drift.
As a result, the identification process was primarily sensitive to high-frequency dynamics.
Under these constraints, no significant system dynamics were detected, aside from indications
of possible stage misalignment. In optical systems equipped with high-speed, hardware-
based tracking methods capable of higher temporal resolution and precision, it is likely that
additional dynamic components, such as vibrations induced by electronic interference, could
be observed and reliably identified using system identification techniques.

Low-frequency processes such as thermally induced drift were not adequately captured be-
cause of the relatively small amount of data. However, during extended acquisition periods
exceeding one hour, a recurring drift pattern was observed, which appeared to correlate with
the activation cycle of the local HVAC system. Similar correlation between ambient tempera-
ture and drift was seen previously in [39]. To better capture and compensate for low-frequency
drift, future work could incorporate ambient temperature measurements, for example by in-
tegrating a temperature sensor into the setup. This would allow correlation analysis between
temperature fluctuations and the estimated drift states. Identifying such relationships could
enable model-based compensation for thermally induced drift, improving long-term stability
in prolonged acquisitions.
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Appendix A

Derivation PBSIDopt

The algorithm is similar to what is done in the open-loop Numerical algorithm for the Sub-
space State Space System IDentification (N4SID) class of algorithms [42]. The following
derivation is conducted according to [41]. First Eq. 2-1 is extended and rewritten as,

xt+1 = Ãxt + B̃ut + Lym
t (A-1)

ym
t = Cxt + vt, vt ∼ N (0, R), (A-2)

where Ã ≡ A − CL and B̃ ≡ B − LD. Here matrix L is the Kalman observer gain with which
it is assumed that the pair (A, C) is observable and has eigenvalues inside the unit circle and
the pair (A, [B LR

1
2 ]) is reachable, where R is the covariance matrix of the measurement

noise. Some extra notation has to be declared before deriving the estimation of the Markov

parameters, needed for N4SID. A new stacked vector ζt defined as, ζt =
[

ut

ym
t

]
, makes it

possible to write down,

ζ
(p)
t =

[
ζT

t−p, ζT
t−p+1, . . . , ζT

t−1

]T
(A-3)

where p denotes the past window size. Besides that, a reversed extended controllability matrix
K̃(p) is defined as,

K̃(p) = [Ãp−1B̄, Ãp−2B̄, . . . , B̄] (A-4)

where B̄ = [B̃, K]. With these new notations the data equation common to many closed-loop
subspace algorithms can be derived. The propagation in time in Eq. A-1 can be redefined
with some initial state xk as,

xk+p = Ãpxk + K̃(p)ζ
(p)
k+p. (A-5)

The new notations also make it be possible to rewrite Eq. A-2 as,

ym
k+p = CÃpxk + CK̃(p)ζ

(p)
k+p + vk+p. (A-6)
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By the previously stated assumption that Ã has all its eigenvalues inside the open unit disc,
the term Ãp can be made arbitrarily small, which gives, ||Ãp||2 ≃ 0 by choosing p sufficiently
large. Hereby, a new set Yp,Np can be constructed, where Np is defined as Np = N − p which
consists of the expressions for yp up to yN−1, resulting in

Yp,Np = CK̃Z0,p,Np + Ep,Np , (A-7)

Where Ep,Np is used to define the set of measurement errors. Here the block Hankel matrix
is also introduced for Z0,p,Np , which is constructed from data sequences as,

Zi,p,Np =


ζi ζi+1 . . . ζi+N−p−1

ζi+1 ζi+2 . . . ζi+N−p
...

... . . . ...
ζi+p−1 ζi+p . . . ζi+N−p+p−2

 (A-8)

With Eq. A-7 it is now possible to estimate the predictor Markov parameters [31]. The
Markov parameters are found as performed in [41], by solving the Frobenius norm least
squares problem,

min
CK̃(p)

∥∥∥Yp,Np − [CK̃][Z0,p,Np ]
∥∥∥2

F
. (A-9)

When the data matrix, Z0,p,Np , is full-rank, the least squares solution is found by calculating
the RQ factorization of the following stacked data matrices,

[
Z0,p,Np

Yp,Np

]
=

[
R11 0
R21 R22

] [
Q1
Q2

]
(A-10)

By using back-substitution it can be found that an estimate of the Markov parameters ĈK̃(p)

can be found from

R21 = ĈK̃(p)R11. (A-11)

Now it will be shown how the Markov parameters in the estimated controllability matrix,
ĈK̃(p) can be used together with the extended observability matrix,

Γ̃(f) =


C

CÃ
...

CÃf−1

 , (A-12)

to construct the observability-times-controllability matrix Γ̃(f)K̃(p) with future window f > n,
n being the total amount of identified states.

Γ̃(f)K̃(p) =


CÃp−1B̄ CÃp−2B̄ · · · CB̄

CÃpB̄ CÃp−1B̄ · · · CÃB̄
...

... . . . ...
CÃp+f−2B̄ CÃp+f−3B̄ · · · CÃf−1B̄

 (A-13)
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Because of the earlier assumption that, ||Ãp||2 ≃ 0, the observability-times-controllability
matrix can be reduced to,

Γ̃(f)K̃(p) ≈


CÃp−1B̄ CÃp−2B̄ · · · CB̄

0 CÃp−1B̄ · · · CÃB̄
... . . . . . . ...
0 · · · 0 CÃf−1B̄

 = CK̃(p). (A-14)

Thus, an estimation for Γ̃(f)K̃(p) can be found using the estimated Markov parameters. From
A-1, it can be deducted that ignoring the first term, the product K̃(p)Z0,p,Np represents the
state sequence Xp,Np . By definition, the product Γ̃(f)K̃(p)Z0,p,Np equals to the observability
matrix times the state sequence, Γ̃(f)Xp,Np . With this a Singular Value Decomposition (SVD)
can be performed,

Γ̃(f)Xp,Np = Γ̃(f)K̃(p)Z0,p,Np = ĈK̃(p)Z0,p,Np = UnΣnVT
n (A-15)

After which the state sequence can be found from,

X̂p,Np = ΣnVT
n . (A-16)

The SVD in Eq. A-15, can also be used to determine the amount of states that the plant can
be described with. For a perfect LTI system the amount of states n would equal the amount
of non-zero singular values, however as the SVD is recovered from an estimate of the Markov
parameters, this will not necessarily be true. The size of the past and future window affects
the variance of the system’s pole locations.
Finally, solving two least-squares problems can determine the state space matrices. The
state-space equations in A-1 and A-2 can be rewritten in their respective data equation form
as,

Xp+1,Np−1 =
[
A B L

] X̂p,Np−1
Up,Np−1
Ep,Np−1

 (A-17)

Yp,Np = CX̂p,Np + Ep,Np . (A-18)

Instead of first determining the state-space matrices A, B, C, D and then estimating the pro-
cess and measurement noise covariance matrices Q and R simultaneously, as is typically done
in N4SID, PBSIDopt proceeds differently. First, a least-squares solution to Eq. A-18 is used
to estimate C and the innovation sequence Ep,Np . This estimated innovation is then sub-
stituted into Eq. A-17, allowing for a second least-squares problem to estimate A, B, and
L. By explicitly modeling and isolating the innovations, which are uncorrelated with past
inputs, PBSIDopt avoids the input-noise correlation issue that biases estimates in closed-loop
identification scenarios.
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