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potential mapping: Enhancing electrochemical insight

with OL-EPM and AC-KPFM
Ehsan Rahimi

Local nanoscale mapping of electrostatic surface potential
(ESP) is advancing rapidly to meet the needs of electrochem-
istry and corrosion science. Conventional Kelvin probe force
microscopy (KPFM), while valuable, is limited in liquid and dy-
namic redox environments due to restricted electrochemical
control and spatial resolution. Recent advances in alternating
current KPFM (AC-KPFM) and open-loop electric potential
microscopy (OL-EPM) provide high-resolution, in-situ ESP
imaging while suppressing parasitic Faradaic reactions. AC-
KPFM is powerful for probing ionization and counterion in-
teractions at solid—liquid interfaces, whereas OL-EPM enables
visualization of corrosion initiation, nanoscale defects in coat-
ings, and gradients across grain boundaries. Together, these
methods bridge the gap between surface electrostatics and
electrochemistry. Key challenges remain in temporal resolu-
tion, minimizing probe perturbations, and linking nanoscale
data to macroscopic corrosion behavior. Nonetheless, these
techniques reveal hidden electrochemical heterogeneities,
clarify pathways of localized corrosion, and offer insights for
designing durable, corrosion-resistant materials.
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Introduction

The electrostatic surface potential (ESP) landscape at
material interfaces, especially metals and alloys, governs
essential phenomena in corrosion, catalysis, and energy

updates

conversion systems [1,2]. Spatial heterogeneity, stem-
ming from surface films (oxide film or organic and inor-
ganic nano-film), second phases, grain boundaries, or
local defects (e.g., pores, inclusions, etc), can dramati-
cally influence the onset of degradation or electro-
chemical reactivity [3]. Yet, traditional direct current
(DC) electrochemical tools such as open-circuit poten-
tial (OCP) or potential vs. time (E vs. t) measurements
and potentiodynamic polarization or current vs. voltage
(I vs. V) are inherently limited by their macroscopic
nature, averaging out critical local information [4]. This
gap has motivated the adoption of scanning probe tech-
niques capable of resolving ESP at the nanoscale under
realistic electrochemical conditions [5].

Kelvin probe techniques measure the contact potential
difference (CPD) between a conductive probe and a
sample. CPD arises from differences in vacuum work
function, making it a direct probe of local electronic
properties at interfaces [6]. The macroscopic scanning
Kelvin probe (SKP) implements this principle with a
vibrating probe and conductive sample, yielding non-
contact, area-averaged CPD maps at millimeter to
micrometer scales [7,8]. However, SKP resolution is
fundamentally limited, and its performance deteriorates
under immersed conditions due to electrical noise,
capacitive coupling, dipole screening, and parasitic
electrolysis [9,10]. To overcome these constraints,
Kelvin probe force microscopy (KPFM), an atomic force
microscopy (AFM)-based variant, has been employed to
resolve CPD at the nanometer scale [11]. In KPFM, the
AFM tip acts as a nanoscale vibrating electrode: an
applied electrical bias between tip and sample is
adjusted to nullify the electrostatic force, allowing CPD
measurement with nanometer-scale resolution. Ciriti-
cally, KPFM enables simultaneous mapping of surface
topography and ESP, providing insight into local work
function variation, charge distribution, and electronic
heterogeneity [12,13].

KPFM has been applied extensively to semiconductors,
thin films, energy materials, and metal alloys to study
work function variation, electronic heterogeneity, and
charge trapping. In corrosion studies, ex-situ KPFM has
been used to map ESP differences between interme-
tallic particles and matrix phases in aluminum [14—16]
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and magnesium alloys [17—19], carbon steels/stainless
steel [20—22], identifying passive film evolutions
[23,24], study environmental aging effects [25], and
biological soft matter on biodegradation [26—28].
However, dry or ambient KPFM conditions do not
support the electrochemical double layer formation, and
therefore cannot directly reflect the effect of redox re-
actions on ESP mapping, and they are also limited in
liquid environments, similar to SKP [25]. In response,
recent advances in in-situ KPFM, notably open-loop
electric potential microscopy (OL-EPM) and alter-
nating current-KPFM  (AC-KPFM), now allow re-
searchers to perform non-invasive ESP mapping directly
in liquid media, including corrosive environments.
These techniques bypass several limitations of tradi-
tional DC-bias KPFM [5], offering new insights into
corrosion initiation and surface degradation under real-
istic conditions due to local potential evolutions.

This mini-review highlights recent advances in -situ
nanoscale ESP mapping, with a particular focus on OL-
EPM and AC-KPFM techniques as applied to electro-
chemistry and corrosion science. After a brief overview
of OL-EPM and AC-KPFM technical foundations, five
representative systems are presented to illustrate the
unique capabilities of these methods in visualizing the
influence of localized redox reactions on ESP imaging at
the nanoscale.

Technical foundation: OL-EPM and AC-
KPFM

Conventional KPFM employs a DC bias to nullify the
clectrostatic force between tip and sample [29]. In
liquid or high-ionic-strength environments, however,
this DC component induces parasitic electrochemical
reactions, ion migration, and gas evolution, severely
compromising measurement stability [10]. To overcome
these limitations, OL-EPM and AC-KPFM avoid DC
bias application, enabling non-invasive electrostatic
measurements even in aqueous conditions.

OL-EPM applies a single high-frequency AC voltage
between the tip and sample [30]. The resulting canti-
lever oscillations at frequency (w) and its harmonic 2w
are used to derive local ESPs, eliminating the need for a
feedback loop. In dual-frequency operation, additional
mixed-frequency signals (e.g., |w; — wp|) further
enhance sensitivity and spatial resolution. Since no low-
frequency components are involved, OL-EPM effec-
tively suppresses electrochemical artifacts.

AC-KPFM, by contrast, replaces the conventional DC
bias with a second AC component at twice the fre-
quency [10]. The combined excitation, Ug = a-sin
(wz) + b-cos(2wr), is tuned such that the electrostatic
force at w is canceled (F, = 0). Under this condition,
the local ESP (¢) is determined directly from the

amplitude (4), where ¢ = 4/2. As no DC voltage is
applied, AC-KPFM is inherently immune to Faradaic
processes and can be reliably operated in aqueous or
reactive environments. Together, OL-EPM and AC-
KPFM offer robust alternatives to conventional KPFM
for high-resolution, quantitative ESP mapping in liquid
and biological systems, without inducing electro-
chemical side effects. Table 1 summarizes how factors
such as the measurement environment, probe size,
feedback mechanism, and experimental limitations
affect the performance of each technique and the

interpretation of ESP measured using classical SKP,
KPFM, AC-KPFM, and OL-EPM.

Applications of AC-KPFM and OL-EPM in
electrochemistry and corrosion studies

This section highlights representative applications of
AC-KPFM and OL-EPM, demonstrating how these
techniques provide high-resolution, in-situ mapping of
ESP distribution, enable real-time visualization of
corrosion initiation, and reveal nanoscale electro-
chemical heterogeneities in diverse materials.

lonization and counterion interactions at the
Solid-Liquid interface using AC-KPFM
Understanding the evolution of surface charge at
solid—liquid interfaces is critical for applications in
energy conversion, biomaterials, and corrosion inhibition
using organic molecules [31,32]. AC-KPFM enables
precise mapping of nanoscale surface charge distribu-
tions, but its performance in liquid environments is
strongly influenced by lift height and ionic screening.

In a landmark study, Hackl et al. investigated the ESP
distribution of charged alkanethiol self-assembled
monolayers (SAMs) on gold and examined how their
ionization state varies with pH using AC-KPFM
(Figure 1a and b) [10]. They observed that ESP sig-
nals decay with increasing tip—sample distance, with
distinct behaviors in air and water. In air, contrast de-
creases gradually and remains detectable up to
~ 1.5 um, whereas in deionized water, the signal decays
exponentially and becomes negligible beyond ~1 pm
due to ionic screening in the electrical double layer
(Figure 1c and d). These results emphasize that main-
taining minimal lift heights (<500 nm) is essential for
reliable, high-resolution ESP mapping in electrolytic
environments. This study highlights AC-KPFM’s ability
to correlate ESP variations with chemical ionization
states while also demonstrating the practical consider-
ations necessary for accurate in-liquid imaging.

Nanoscale corrosion behaviour of copper wire
fabricated on silicon wafer using OL-EPM

Corrosion of copper (Cu) fine wires is a critical issue in
semiconductor device fabrication, where transient
exposure to dilute electrolytes during processing can
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Figure 1
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(a) AC-KPFM in aqueous solution: The cantilever deflection amplitude X,,, induced by electrostatic forces from ions, is nulled by adjusting the AC bias

amplitude b. (b) Surface charge modulation via pH: At low pH (~0), carboxyl groups are mostly protonated (Q =

0); at high pH (~14), they are

deprotonated (Q < 0). The Q—pH inflection point defines the effective pKa. (¢, d) Impact of tip-sample distance. Surface potential measured by AC-
KPFM on a COOH/CH3 sample in (c) air and (d) deionized water for different lift heights. Adapted with permission [10]. Copyright 2022, American

Chemical Society.

lead to nanoscale defects [33]. Understanding where
and how local corrosion cells initiate is essential for
developing prevention strategies. In a prior study by
Honbo et al. employed OL-EPM to investigate struc-
tural and ESP changes on 2 pm Cu wires formed on a Si
wafer, immersed in 10 pM NaCl solution [30]
(Figure 2a). Initial topographic and ESP images showed
nanoscale variations, indicating pre-existing corrosion
from sample preparation (Figure 2b). After 63 min of
immersion, significant surface dissolution was observed.
Importantly, regions that initially exhibited higher ESP
(anodic) had corroded more, while lower-ESP regions
(cathodic) remained more stable. This confirmed that
localized anodic sites drive corrosion (Figure 2b). It is
important to note that during a corrosion process, posi-
tive current flows from anodic to cathodic areas through
the electrolyte. As a result, the electric potential near
the anodic region in solution is expected to be higher
than near the cathodic region. These results demon-
strate the capability of OL-EPM to directly correlate
nanoscale ESP variations with localized anodic and
cathodic activity, providing powerful, real-time insight
into the initiation of corrosion processes in microelec-
tronic structures.

Nanoscale corrosion observation of sensitized
duplex stainless steel using OL-EPM

Duplex stainless steel, composed of roughly equal
ferrite (o) and austenite (y) phases, is widely used in

harsh environments, such as nuclear, desalination, and
chemical plants, due to its superior corrosion resistance
[34—36]. However, assessing localized corrosion is
challenging, as detectable effects may take months to
appear, rendering conventional imaging methods (e.g.,
scanning electron microscopy (SEM), AFM, and scan-
ning tunneling microscopy (STM)) inefficient. Oper-
ando OL-EPM reveals its capability to provide real-
time, nanoscale monitoring of corrosion-prone sites,
linking local ESP wvariations to eventual material
degradation before visible damage occurs.

"To overcome this, operando OL-EPM was employed to
study the corrosion behavior of duplex stainless steel
(UNS S32750), particularly in weld-sensitized regions
where corrosion resistance degrades [30]. Optical
microscopy revealed that welding significantly
enlarged ferrite grains in the heat-affected zone
(Figure 2c). OL-EPM enabled nanoscale monitoring of
corrosion at various distances from the weld (data
shown for P1), offering practical, real-time insight into
local corrosion behavior. Time-lapse ESP imaging
revealed that regions with initially elevated surface
potential (visible at 37 min) underwent progressive
selective dissolution, forming topographic depressions
by 144 min (Figure 2d). These depressions aligned
with the original high-ESP regions, demonstrating
OL-EPM’s predictive ability to identify corrosion-
prone sites before visible damage emerges. Overall,
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Figure 2
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(a) Schematic representations indicating typical corrosion reactions and OL-EPM measurement of local corrosion cells. (b) Topographic and surface
potential images of a 2 um copper wire acquired using OL-EPM in a 10 uM NaCl solution (V¢ = 0.3 V, f; = 700 kHz, fo = 730 kHz). “0 min” denotes the
start of imaging for this region. The “0 min” reference in the height scale approximately corresponds to the average height of the insulating SiO, regions.
For consistent comparison across the time series, the lower-potential areas identified at 0 min are marked by dotted lines in all subsequent images. (c)
Optical micrographs of the duplex stainless-steel sample used in this study. Low-magnification image of the as-received surface before polishing. The
region outlined by dotted lines indicates the weld-sensitized zone. Higher-magnification image of the same region after mechanical polishing, corre-

sponding to the rectangular area. OL-EPM measurements were carried out at positions P1—-P3 within this area. (d) Topographic and potential images of
the sensitized duplex stainless steel were obtained in a 10 mM NaCl solution at point P1 under the conditions V. = 1V, f; = 700 kHz, and f, = 730 kHz.
The time “0 min” corresponds to the moment imaging of this area began. Note that the 0 nm reference in the topographic images is arbitrary. Adapted

with permission [30]. Copyright 2016, American Chemical Society.

these results highlight how welding-induced micro-
structural changes increase corrosion susceptibility
and how OL-EPM enables early detection at
the nanoscale.

Detecting nanoscale carbon-based overcoat defects
using OL-EPM

Cobalt-based hard disk media (HDM) is a key compo-
nent in hard disk drives (HDDs) [37]. To enhance

Current Opinion in Electrochemistry 2025, 54:101763
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HDD durability, a carbon-based overcoat (COC) is
applied to protect the HDM surface [38]. However,
increasing recording density requires reducing the
spacing between the HDM and the magnetic head,
driving demand for thinner COC layers (Figure 3a) [39].
Thinning the COC can lead to local defects that expose
the HDM, initiating corrosion when water adsorbs onto
these defects. Therefore, reducing COC thickness
without compromising coverage is critical to prevent
corrosion while increasing HDD capacity. OL-EPM
directly addresses this challenge by detecting

Figure 3
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nanoscale defects and mapping ESP variations linked to
localized electrochemical activity, thereby enabling early
identification of corrosion-susceptible regions in pro-
tective coatings.

In a study by Hirata et al., an OL-EPM was used to
measure the topography and ESP distribution of two
HDMs with different COC thicknesses in dilute HNO3
solution (Figure 3b) [40]. The topographic images of two
various COC thicknesses, including T'1 (2.71 nm) and T2
(2.62 nm) showed surface corrugations (~20 nm in
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(a) The principle behind enhancing the areal storage density of a hard disk medium (HDD); (b) OL-EPM measurements performed on the carbon
overcoat (COC) and hard disk medium (HDM); (¢) High-resolution (i) topographic and (ii) potential images of the T1 and T2 samples obtained by OL-
EPM in 1 mM HNOj3 solution (Vac = 0.8 V, f1 = 700 kHz, f 2 = 800 kHz). Adapted with permission [40]. Copyright 2024, American Chemical Society. (d)
SEM image plus (e) OL-EPM measurements performed at the GB in water and a pH 2.2 H,SO, solution, indicating topographic and surface potential
images. (Measurement conditions: V,; = 800 mV, f; = 700 kHz, f, = 800 kHz). (f) A possible model to describe the corrosion mechanism at GB, indicating
anodic dissolution of the MgZn, precipitates. Adapted with permission [41]. Copyright 2023, American Chemical Society.
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Table 1

Comparative overview of Kelvin probe techniques: SKP, KPFM, AC-KPFM, and OL-EPM.

Feature SKP KPFM AC-KPFM OL-EPM
Scale Macroscopic Nanoscopic Nanoscopic Nanoscopic
Probe size Micro to millimeter tip Nanometer tip radius Nanometer tip radius Nanometer tip radius

radius

Operating environment Moist surface, thin

Dry, ambient, or

Liquid or humidified Liquid or humidified

water film, or large vacuum

droplet
Spatial resolution Micro to millimeter Nanometer Nanometer Nanometer
Feedback mechanism DC feedback DC feedback Closed-loop, AC Open-loop,

Must consider oxide
resistivity, film
thickness, and
relative humidity
(RH)

Limitations

Usually not
electrochemical;
sensitive to surface
work function,
dipoles, and charges

voltage of twice the frequencies of w and
frequency (2w) 2w

Requires frequency Requires frequency
optimization to optimization to
suppress Faradaic suppress Faradaic
reactions; measures reactions; measures
relative, not absolute relative, not absolute
ESP ESP

lateral size), reflecting the underlying magnetic layer’s
texture [37] (Figure 3c). Importantly, the ESP images
revealed nanoscale regions of elevated ESP, particularly at
grain boundaries, suggesting these sites are prone to
COC defects and anodic dissolution (Figure 3c). The
ESP maps showed that potential variations in the thinner
COC sample (T2) reached ~100 mV, compared to
~60 mVin T1. This indicates that T2 experienced more
active corrosion, consistent with expectations for thinner,
more defect-prone coatings.

Nanoscale corrosion observation at grain

boundaries of Al-Zn—-Mg alloy using OL-EPM
Localized corrosion in aluminum (Al)-based alloys is
primarily driven by microgalvanic coupling from micro-
structural inhomogeneities such as grain boundaries
(GBs) and intermetallic particles [42,43]. In
Al—Zn—Mg alloys, GBs often host MgZn;, precipitates,
flanked by precipitate-free zones (PFZs) of pure Al
(30—500 nm wide) [44], forming nanoscale electro-
chemical cells that promote corrosion. While this model
is widely supported, the real-time spatial evolution of
corrosion cells at GBs has remained unclear, and existing
theories do not fully explain the transition to large-scale
pit formation after MgZn; dissolution. By directly
tracking nanoscale corrosion dynamics in real time, OL-
EPM bridges this gap, linking microstructural features
to local ESP variations associated with electrochemical
activity, and thereby revealing the early stages of inter-
granular corrosion and pitting initiation.

In a landmark study, Yamamoto et al. used OL-EPM to
track corrosion dynamics of AlI—Zn—Mg alloys in H,SO4
(pH 2.2), observing the same regions imaged via SEM
(Figure 3d) [41]. Initial OL-EPM scans in pure water

(not very corrosive) revealed GB depressions in topog-
raphy and line-shaped low-ESP regions aligning with
PFZs (Figure 3e—(i)), suggesting PFZs act as cathodic
zones, while MgZn; and Al matrix regions are anodic
(Figure 3f). Upon exposure to acidic solution, ESP
contrast intensified dramatically (Figure 3e—(ii)), with
anodic spots forming along GBs and distinct surrounding
cathodic zones. Notably, topography remained largely
unchanged, confirming these shifts reflect true electro-
chemical activity rather than geometric artifacts. This
study offers real-time insight into corrosion cell evolution
and refines the mechanistic understanding of pitting
initiation in Al—Zn—Mg alloys.

Conclusions and perspectives

In-situ surface potential techniques, particularly AC-
KPFM and OL-EPM, have significantly advanced
nanoscale ESP imaging for electrochemistry and
corrosion science. Unlike traditional DC-KPFM,
limited to dry environments and electrostatic inter-
pretation, these methods enable direct, non-invasive
mapping of ESP under fully immersed or humid con-
ditions, key to capturing realistic corrosion evolution.
OL-EPM excels in detecting localized anodic/cathodic
activity at grain boundaries, phases, and intermetallics
without tip bias or Faradaic interference. AC-KPFM,
using high-frequency excitation, stabilizes measure-
ments in reactive electrolytes by minimizing electro-
chemical reactions. Together, they bridge high
spatial resolution with electrochemical insight. Chal-
lenges include the lack of standardized calibration,
complex signal interpretation due to hydration
layers and oxides, and inconsistent protocols for probe
design and electrolyte control. Future progress will
depend on.
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e Establishing standardized protocols for tip—sample
operation to reliably distinguish electrostatic from
redox signals.

e Integration with operando spectroscopy (e.g., in-situ
Raman, IR, X-ray photoelectron spectroscopy
(XPS)) to provide complementary chemical insight.

e Developing chemically robust probes, such as doped-
silicon/silicon nitride [45], PtSi [46], and conductive
doped diamond [47] tips which could withstand
aggressive electrolytes and extend operational
lifetimes.

e Incorporating machine learning approaches for auto-
mated defect recognition, noise reduction, and real-
time data interpretation, drawing inspiration from
recent advances in artificial intelligence (Al)-enabled
scanning probe microscopy [48,49].

e Advancing multiphysics modeling to link experi-
mental ESP maps with predictive electrochemical
simulations of localized corrosion [5].

In short, AC-KPFM and OL-EPM are emerging as
indispensable tools for mechanistic insight into corro-
sion and interfacial chemistry at the nanoscale. With
improved probe design, standardized protocols, and
integration of machine learning—driven analysis, these
techniques hold promise to evolve from specialized
research tools into broadly applicable platforms for
automated, real-time nanoscale electrochemistry.
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