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Abstract
Soft materials play an integral part in many aspects of modern life including autonomy, sustainability, and human health, 
and their accurate modeling is critical to understand their unique properties and functions. Today’s finite element analy-
sis packages come with a set of pre-programmed material models, which may exhibit restricted validity in capturing the 
intricate mechanical behavior of these materials. Regrettably, incorporating a modified or novel material model in a finite 
element analysis package requires non-trivial in-depth knowledge of tensor algebra, continuum mechanics, and computer 
programming, making it a complex task that is prone to human error. Here we design a universal material subroutine, which 
automates the integration of novel constitutive models of varying complexity in non-linear finite element packages, with 
no additional analytical derivations and algorithmic implementations. We demonstrate the versatility of our approach to 
seamlessly integrate innovative constitutive models from the material point to the structural level through a variety of soft 
matter case studies: a frontal impact to the brain; reconstructive surgery of the scalp; diastolic loading of arteries and the 
human heart; and the dynamic closing of the tricuspid valve. Our universal material subroutine empowers all users, not solely 
experts, to conduct reliable engineering analysis of soft matter systems. We envision that this framework will become an 
indispensable instrument for continued innovation and discovery within the soft matter community at large.

Keywords Constitutive modeling · Finite element method · Soft matter · Material modeling · Tissue mechanics

1  Motivation

Understanding the mechanical behavior of soft matter is 
pivotal across various scientific and engineering domains, 
ranging from biophysics, over soft robotics, to biomedical 
and material science engineering. Biological materials, 
composites, polymers, foams, and gels all exhibit complex 

non-linear mechanical behaviors and functions, which result 
from the intrinsic architecture and interactions of their con-
stituent molecules or particles. To characterize this behavior, 
a multitude of constitutive material models have been pro-
posed in the literature [1].

Finite element analysis provides a versatile and pow-
erful framework to evaluate these highly nonlinear mate-
rial models and predict their mechanical response within 
complex geometries and under various loading conditions. 
Most contemporary finite element software packages offer 
an extensive number of standard isotropic and anisotropic 
hyperelastic material models, including neo-Hooke [2], 
Mooney Rivlin [3, 4], Ogden [5], or Yeoh [6]. However, 
the implementation of newly discovered constitutive models 
requires the definition of novel material model subroutines 
or plugins, which map the computational domain’s second-
order kinematic deformation gradient tensor to a second-
order Cauchy stress tensor [7]. These material subroutines 
are evaluated within every finite element, at each integration 
point, within every time step, at each Newton iteration.

Unfortunately, the efficient integration of novel constitu-
tive models into non-linear finite element software packages 
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is a complex task [8, 9]. The user needs to derive and imple-
ment explicit forms of the second-order Cauchy stress ten-
sor and the fourth-order spatial elasticity tensor [10]. The 
derivation and coding of these complicated tensorial expres-
sions can be an extremely hard task [11], and requires a 
non-trivial deep understanding of tensor algebra, continuum 
mechanics, computational algorithms, data structures, and 
software architecture [12]. Non-surprisingly, such endeavors 
are highly subject to human errors [13]. This high degree of 
effort and risk of human error when integrating novel con-
stitutive models in finite element packages limits its use to 
expert specialists, and, as such, hampers research progress, 
dissemination, and sharing of models and results amongst a 
broad and inclusive community.

In this work, we streamline the implementation of novel 
constitutive models into existing finite element analysis 
software, and mitigate the risk for human error. We provide 
a common language and framework for the computational 
mechanics community at large. We design a modular and 
universal material subroutine, which automates the incor-
poration of constitutive models of varying complexity in 
non-linear finite element analysis packages and requires 
no additional analytical derivations and algorithmic imple-
mentations by the user. First, we introduce the concept of 
constitutive neural networks, which form the architectural 
backbone for our universal material model. Next, we illus-
trate the universal material model itself, describe its internal 
structure through pseudocodes, and showcase how this sub-
routine can be effortlessly integrated and activated within 
finite element simulations. We provide specific examples 
on how existing constitutive models fit in our overarching 
framework, and how we can incorporate special constitutive 
cases that feature mixed invariant features. Finally, we show-
case the flexibility of our approach to naturally integrate 
novel constitutive models from the material point level to 
the structural level through various soft matter modeling 
case studies: the mechanical simulation of a frontal impact 
to the brain, reconstructive surgery of the scalp, the diastolic 
loading of arteries and the human heart, and the dynamic 
closing of the tricuspid valve.

2  Constitutive modeling

2.1  Kinematics

We introduce the deformation map � as the mapping of 
material points X in the undeformed configuration to points 
x = �(X) in the deformed configuration [14, 15]. The gradi-
ent of the deformation map � with respect to the undeformed 
coordinates X defines the deformation gradient F with its 
determinant J,

We multiplicatively decompose the deformation gradient F 
into its volumetric Fvol and isochoric F̄ parts [16],

where ⋅ denotes the tensor product between two second order 
tensors. As deformation measures, we introduce the left and 
right Cauchy-Green deformation tensors, b and C , and their 
isochoric counterparts, b̄ and C̄,

We further assume directionally-dependent behavior, with 
three preferred directions, n0

1
 , n0

2
 , n0

3
 , associated with the 

material’s internal fiber directions in the reference configu-
ration, where all three vectors are unit vectors, || n0

1
|| = 1 , 

|| n0
2
|| = 1 , || n0

3
|| = 1 . Based on the volumetric and iso-

choric decomposition, and the underlying fiber orientations 
in the material, we characterize the deformation in terms 
of 15 invariants [17, 18]. More specifically, we define one 
isotropic volumetric invariant,

two isotropic deviatoric invariants,

six anisotropic deviatoric invariants,

and six deviatoric coupling invariants,

where [F̄t
⋅ F̄]2 = C̄ ⋅ C̄ . Note that these coupling invariants 

reverse their sign if one of the fiber directions changes its 
sign, and can therefore not be considered strictly invariant. 
Nevertheless, these pseudo-invariants were found to be con-
venient for the definition of anisotropic constitutive models 
[19].

(1)F = ∇
X
� with J = det(F) > 0,

(2)F = Fvol ⋅ F̄ with Fvol = J
1

3 I and F̄ = J
−

1

3F,

(3)b = F ⋅ Ft

C = Ft
⋅ F

and
b̄ = F̄ ⋅ F̄

t

C̄ = F̄
t
⋅ F̄.

(4)I3 = det(Ft
⋅ F) = J2,

(5)
Ī1 = [F̄

t
⋅ F̄] ∶ I

Ī2 =
1

2
[Ī2
1
− [F̄

t
⋅ F̄] ∶ [F̄

t
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Ī
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5(33) = [F̄
t

⋅ F̄]2 ∶ [n0

3
⊗ n0

3
]

(7)

Ī
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2.2  Free energy function

To ensure thermodynamic consistency, we introduce the 
Helmholtz free energy � as a function of the deformation 
gradient � = �(F) . Assuming no dissipative energy losses 
within the material, and rewriting the Clausius-Duhem 
entropy inequality [20] following the Coleman and Noll 
principle [21, 22], we derive

as the constitutive relation between Cauchy stress � and 
deformation gradient F . To guarantee that our free energy 
function � satisfies material objectivity and material sym-
metry, we further constrain our stress responses to be func-
tions of the invariants of the left and right Cauchy Green 
deformation tensors b and C [17, 23]. This results in the 
general definition of the free energy function � as a function 
of the 15 invariants,

with � , � ∈ {1, 2, 3} and � ≥ � . To account for the quasi-
incompressible behavior of soft materials, we make the 
constitutive choice to additively decompose our free energy 
function � into volumetric �vol and isochoric �̄� parts,

Here, we define the volumetric free energy contribution,

in terms of the isotropic volumetric invariant I3 (Eq. (4)), and 
the deviatoric free energy contribution,

as functions of the isotropic and anisotropic deviatoric 
invariants from Eqs. (5), (6) and (7), with � , � ∈ {1, 2, 3} 
and � ≥ �.

2.3  Constitutive neural network

With the aim to universally model a hyperelastic history-inde-
pendent soft matter material behavior, we design the modular 
constitutive neural network architecture depicted in Fig. 1. 
Leveraging our prior work on automated constitutive model 
discovery for isotropic [24–26], transversely isotropic [27, 28], 
and orthotropic [29] soft materials, we create a universal func-
tion approximator, which maps the 15 invariants Ī1 , Ī2 , I3 , Ī4(𝛼𝛽) , 
Ī5(𝛼𝛽) of the deformation gradient F onto the free energy func-
tion �(F) . The constitutive relation between the Cauchy stress 
� and the deformation gradient F follows naturally from the 

(8)� =
1

J

��(F)

�F
⋅ Ft

(9)𝜓(F) ≐ 𝜓
(
Ī1 , Ī2 , I3 , Ī4(𝛼𝛽) , Ī5(𝛼𝛽)

)
,

(10)𝜓 ≐ 𝜓vol + �̄� .

(11)�vol = �3(I3),

(12)�̄� = �̄�
(
Ī1 , Ī2 , Ī4(𝛼𝛽) , Ī5(𝛼𝛽)

)
,

second law of thermodynamics as the derivative of the free 
energy function � with respect to the deformation gradient F 
according to Eq.  (8). We ensure a vanishing free energy 
�(F) ≐ 0 in the reference configuration, i.e., when F = I , by 
using the invariants’ deviation from the energy-free reference 
state, [Ī1 − 3] , [Ī2 − 3] , [I3 − 1] , [Ī4(𝛼𝛽) − 𝜁𝛼𝛽] , [Ī5(𝛼𝛽) − 𝜁𝛼𝛽] , as 
constitutive neural network input. Here, ��� = n0

�
⋅ n0

�
 corrects 

invariants Ī4(𝛼𝛽) and Ī5(𝛼𝛽) for their values in the undeformed 
configuration. This correction a priori ensures a stress-free 
reference configuration. To ensure polyconvexity, we design 
the constitutive neural network architecture as a locally con-
nected, rather than a fully connected, feed forward neural net-
work. Specifically, we design the free energy function as a sum 
of individual polyconvex subfunctions with respect to each of 
the individual contributing invariants. As a result, our free 
energy function from Eqs. (9)–(12) can be additively decom-
posed into

(13)

𝜓 = �̄�1(Ī1) + �̄�2(Ī2) + 𝜓3(I3)

+

N∑
𝛼=1

N∑
𝛽=𝛼

�̄�4(𝛼𝛽)

(
Ī4(𝛼𝛽)

)

+

N∑
𝛼=1

N∑
𝛽=𝛼

�̄�5(𝛼𝛽)

(
Ī5(𝛼𝛽)

)
,

Fig. 1  Constitutive neural network architecture. Anisotropic, 
compressible, feed forward constitutive neural network with three 
hidden layers to approximate the single scalar-valued free energy 
𝜓(Ī1, Ī2, I3, Ī4𝛼𝛽 , Ī5𝛼𝛽 ) , as a function of 15 invariants of the left 
Cauchy-Green deformation tensor b . The zeroth layer generates iden-
tity (◦) , the rectified linear unit ⟨◦⟩ , and the absolute value ⟨◦⟩ of the 
15 invariants. The first layer generates powers (◦) , (◦)2 , (◦)3 , etc. and 
the second layer applies the identity (◦) , the exponential (exp(◦) − 1) , 
and the logarithm (−ln(1 − (◦))) to these powers. The network is not 
fully connected by design to satisfy the condition of polyconvexity a 
priori.
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with � , � ∈ {1, 2, 3} and � ≥ � . Following Eq. (8), we derive 
the Cauchy stress

where n̄𝛼 = F̄ ⋅ n0
𝛼
 and n̄𝛽 = F̄ ⋅ n0

𝛽
 represent the deviatoric 

fiber vectors in the current configuration.
Our constitutive network consists of three hidden layers 

with activation functions that are custom-designed to sat-
isfy physically reasonable constitutive restrictions [14, 24]. 
Specifically, we select from the identity (◦) , the rectified 
linear unit function ⟨◦⟩ , and the modulus function |◦| for the 
zeroth layer of the network, from linear (◦) , quadratic (◦)2 , 
cubic (◦)3 , and higher order powers for the first layer, and 
from linear (◦) , exponential exp(◦) , and logarithmic ln(◦) 
for the second layer.

3  A universal material model

To predict the quasi-static response of a system undergo-
ing mechanical loading, a non-linear finite element analysis 
solver iteratively evaluates whether a proposed update to the 
nodal displacement field satisfies the equilibrium equations 
that describe the force and momentum balance within the 
computational domain. This evaluation requires the compu-
tation of the stress tensor and the tangent stiffness tensor as 
functions of the proposed update to the body’s total defor-
mation. At each time step, at each Newton–Raphson itera-
tion, within each element, and for each integration point, the 
solver evaluates the constitutive response that characterizes 
the functional mapping between the deformation gradient F 
and the Cauchy stress tensor �.

Here, we outline the algorithmic framework we devel-
oped to incorporate our universal material model within a 
finite element analysis framework. Specifically, we set up 
a user-defined material model subroutine which function-
ally maps the local deformation gradient F onto the free 
energy function � and computes its derivative with respect 
to the deformation gradient F and the Cauchy stress ten-
sor � using Eq. (8). Additionally, we compute the tangent 
stiffness tensor ℂ to improve the accuracy, stability, and 
efficiency of the iterative solution technique required for 
an accurate prediction of the non-linear material behav-
ior under various loading conditions. The concept of our 

(14)

J � = 2
𝜕�̄�1

𝜕Ī1
b̄ + 2

𝜕�̄�2

𝜕Ī2
[Ī1b̄ − b̄

2
] + 2

𝜕𝜓3

𝜕I3
I3I

+

N∑
𝛼=1

N∑
𝛽=𝛼

𝜕�̄�4(𝛼𝛽)

𝜕Ī4(𝛼𝛽)

[
n̄𝛼 ⊗ n̄𝛽 + n̄𝛽 ⊗ n̄𝛼

]

+

N∑
𝛼=1

N∑
𝛽=𝛼

𝜕�̄�5(𝛼𝛽)

𝜕Ī5(𝛼𝛽)

[
n̄𝛼 ⊗ b̄n̄𝛽 + b̄n̄𝛼 ⊗ n̄𝛽

+ n̄𝛽 ⊗ b̄n̄𝛼 + b̄n̄𝛽 ⊗ n̄𝛽
]
,

universal material subroutine is inherently modular and 
generally compatible with any finite element analysis pack-
age [7, 30–33]. For illustrative purposes we implement our 
universal material model architecture in the Abaqus finite 
element analysis software suite [7] as detailed in Appen-
dix A. We make all our code and simulation files pub-
licly available on GitHub to support the translation of our 
approach to other non-linear finite element analysis solvers.

3.1  Algorithm architecture

Figure 2 showcases the internal code structure of our 
universal material model subroutine. Our subroutine 
computes the free energy function �  , the Cauchy stress 
tensor � , and the tangent stiffness tensor ℂ with respect 
to the scalar invariants Īi derived from the deformation 
gradient F . Following our modular constitutive neural 
network structure, we construct the subroutine as a triple 
set of nested activation functions f0 (= uCANN_h0), f1 (= 
uCANN_h1), and f2 (= uCANN_h2). Each unique path in 
our constitutive neural network forms an additive constitu-
tive neuron contribution to the total free energy function, 
the Cauchy stress tensor, and the tangent stiffness tensor, 
which is assembled in the overarching uCANN subroutine. 
Illustrative pseudocodes for each of our subroutines can 
be found in Appendix E. The following paragraphs sum-
marize our adopted invariant numbering schemes and the 
mathematical derivations of the additive constitutive con-
tributions to the free energy function, the Cauchy stress 
tensor, and the tangent stiffness tensor. We provide solver-
specific integration details in Appendix A.

Invariant numbering
To discriminate the different scalar invariants that can be 
derived from the deformation gradient F (Eqs. (4)–(7)), 
we adopt the invariant numbering

Dependent on the number of fiber families, this scheme 
automatically adapts itself to account for multiple fiber 
orientations. For example, when our material displays 
an anisotropic behavior with three families of fibers 
( ���� = 3 ), there are a total of 15 invariants: Ī1 , Ī2 , I3 , six 
invariants of type Ī4(𝛼𝛽) , and six invariants of type Ī5(𝛼𝛽) , with 
� , � ∈ {1, 2, 3} and � ≥ �.

(15)

Ī1 → Ī����; ���� = 1

Ī2 → Ī����; ���� = 2

I3 → I����; ���� = 3

Ī4(𝛼𝛽) → Ī����; ���� = 4 + 2 (𝛼 − 1) + 𝛽 (𝛽 − 1)

Ī5(𝛼𝛽) → Ī����; ���� = 5 + 2 (𝛼 − 1) + 𝛽 (𝛽 − 1)
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Free energy function update 
Without loss of generality, we reformulate the free energy 
function � from Eq. (13) in the following form,

where f0 , f1 , f2 are the nested activation functions associated 
with the zeroth, first, and second layers of our modular con-
stitutive neural network; k = 1,… , n defines each unique 
additive constitutive neuron that stems from the expanding 
nested constitutive neural network in Fig. 2; and Īi0 imposes 
the free energy � and Cauchy stress � to be zero in the refer-
ence configuration. As discussed above and shown in Fig. 1, 
these corrections amount to Īi0 = 3 for i = 1, 2 , to Ii0 = 1 for 
i = 3 , and to Īi0 = 𝜁𝛼𝛽 = n0

𝛼
⋅ n0

𝛽
 for i ≥ 4 with respect to the 

invariant numbering scheme in Eq. (15). Our nested activa-
tion functions in Eq. (16) read

The activation function f0 returns the identity, Macauley 
bracketed, or absolute values, (◦) , ⟨◦⟩ , |◦| of the zero-stress 

(16)

𝜓 = f2 ◦ f1 ◦ f0 (Īi − Īi0)

=

n∑
k=1

w2,k f2,k (f1,k (f0,k (Īi,k − Īi0,k;w0,k);w1,k)),

(17)f0 =

⎧⎪⎨⎪⎩

(◦)

⟨◦⟩
�◦�
⋮

f1 =

⎧
⎪⎪⎨⎪⎪⎩

(◦)1

(◦)2

(◦)3

⋮

(◦)m

f2 =

⎧⎪⎨⎪⎩

w1 (◦)

exp(w1 (◦)) − 1

−ln(1 − w1 (◦))

⋮

.

reference configuration corrected invariants; f1 raises these 
invariants to the first, second, third, or any higher order 
powers, (◦)1, (◦)2, (◦)3,…(◦)m ; and f2 applies the iden-
tity, exponential, or natural logarithm, (◦) , (exp(◦) − 1) , 
(−ln(1 − (◦))) , or any other thermodynamically admissible 
function to these powers.

Cauchy stress tensor update
To update the Cauchy stress tensor � , we reformulate Eq. (8) 
in the following form,

which allows us to separate the individual NINV stress ten-
sor contributions from the 𝜕Īi∕𝜕F terms. We compute all the 
invariant-specific scalar 𝜕𝜓∕𝜕Īi contributions

in terms of the first derivatives of our activation functions

(18)

� =
1

J

𝜕𝜓(F)

𝜕F
⋅ Ft =

n∑
k=1

1

J

𝜕𝜓

𝜕Īi,k

𝜕Īi,k

𝜕F
⋅ Ft

=
∑
i

1

J

(
ni∑
k

𝜕𝜓

𝜕Īi,k

)
𝜕Īi

𝜕F
⋅ Ft =

∑
i

1

J

𝜕𝜓

𝜕Īi

𝜕Īi

𝜕F
⋅ Ft

(19)
𝜕𝜓

𝜕Īi
=

ni∑
k

𝜕𝜓

𝜕Īi,k
=

ni∑
k

w2,k

𝜕f2,k

𝜕(◦)

𝜕f1,k

𝜕(◦)

𝜕f0,k

𝜕Īi,k

Fig. 2  Universal material model subroutine schematic. Our universal material model user subroutine computes the free energy function � , its 
first derivatives 𝜕𝜓∕𝜕Īi , and its second derivatives 𝜕2𝜓∕𝜕Īi𝜕Īj with respect to the scalar invariants Īi , derived from the deformation gradient F . 
These functions and derivatives are computed based on a triple set of nested activation functions f0 (= UCANN_h0), f1 (= UCANN_h1), and f2 
(= UCANN_h2), where each unique constitutive path forms an additive constitutive neuron towards the total free energy and its derivatives.
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Tangent stiffness tensor update
Given that the tangent stiffness tensor ℂ expresses the change 
of the Cauchy stress tensor � with respect to a change in 
deformation, its computation requires the second derivatives 
of the free energy function with respect to the invariants 
𝜕2𝜓∕𝜕Īi,k𝜕Īj,k Here, given the nested structure of our univer-
sal material model subroutine, we have 𝜕2𝜓∕𝜕Īi,k𝜕Īj,k = 0 , 
when i ≠ j . As such, we only have non-zero values

in terms of the second derivatives of our activation functions,

where the second derivative of the zeroth layer functions, 
�2f0∕�(◦)

2 , vanishes identically for all three terms.

3.2  Constitutive parameter table

Providing a user interface to employ our developed uni-
versal material model subroutine, we design a constitutive 
parameter table that defines the to-be-evaluated constitu-
tive model and parameters during the simulation. Each 
row of this table represents a neuron of the final layer in 
our modular constitutive neural network and consists of 
seven terms: an integer kfinv that defines the index of the 
invariant Īi according to the invariant numbering scheme 
in Eq. (15); three integers kf0, kf1, and kf2 that define 
the indices of the zeroth, first, and second layer activation 
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𝜕Ī2
i,k

=

ni�
k=1

w2,k

��
𝜕2f2,k

𝜕(◦)2

�
𝜕f1,k

𝜕(◦)

�2
+

𝜕f2,k

𝜕(◦)

𝜕2f1,k

𝜕(◦)2

�

�
𝜕f0,k
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functions; and three floats w0, w1, and w2 that define the 
weights of the zeroth, first, and second layers:

The first index of each row selects between the invariants, 
the second index applies the identity, Macauley brackets, 
or absolute values to the invariants, (◦) , ⟨◦⟩ , |◦| , the third 
index raises them to the first, second, third, or any higher 
order powers, (◦)1, (◦)2, (◦)3,…(◦)m and the fourth index 
applies the identity, exponential, or natural logarithm, (◦) , 
(exp(◦) − 1) , (−ln(1 − (◦))) , or any other thermodynamically 
admissible function to these powers. For brevity, we can 
simply exclude terms with zero weights from the list. We 
provide further details on the integration and interface of 
these constitutive parameter tables with an exemplary non-
linear FEA solver in Appendix A and B.

3.3  Special cases

To showcase the flexibility and modularity of our univer-
sal material model subroutine, we demonstrate how our 
approach naturally integrates the popular neo Hooke [2], 
Mooney Rivlin [3, 4], Yeoh [6], polynomial [34], Holzap-
fel [35], Kaliske [36], and dispersed Holzapfel [37] models 
into an FEA solver. For each model, we provide the free 
energy function and its translation into the UNIVERSAL_
TAB parameter table for the FEA input file.

Neo Hooke model. The free energy function of the com-
pressible linear first invariant neo Hooke model [2]

translates into the following two-line parameter table

Mooney Rivlin model. The free energy function of the com-
pressible linear first and second invariant Mooney Rivlin 
model [3, 4]

translates into the following three-line parameter table
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Yeoh model. The free energy function of the compressible 
first invariant Yeoh model [6]

translates into the following six-line parameter table

Polynomial model. The free energy function of the com-
pressible first invariant polynomial model [34]

translates into the following parameter table

Holzapfel model.  The free energy function of the compress-
ible two-fiber family Holzapfel model [35]

translates into the following six-line parameter table
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We provide more details on the modified Ogden volu-
metric free energy contribution [5] and its derivation into 
the constitutive parameter table in Eqs. (43) and (44) in 
Appendix C.

Kaliske model. The free energy function of the compressible 
two-fiber family Kaliske model [36]

translates into the following parameter table

Holzapfel dispersion model. The free energy function of the 
Holzapfel dispersion model [37]

uses the two mixed invariants
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Ī∗
1∕4(11)
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where � describes the dispersion of the collagen fibers rang-
ing from � = 0.0 for ideally aligned fibers to � = 1∕3 for 
isotropically distributed fibers. Using an additional con-
stitutive parameter table definition "MIXED_INV" (see 
Appendix D), we generalize our universal material model 
subroutine to include mixed invariants and translate this free 
energy in the following parameter tables

4  Illustrative applications

In the following sections, we showcase examples of soft 
matter systems where our universal material model subrou-
tine naturally integrates both existing and newly discovered 
constitutive models from the material point level to the 
structural level.

4.1  The human brain

Brain tissue is among the softest and most vulnerable tis-
sues in the human body [38]. The tissue’s delicate packing 
of neurons, glial cells, and extracellular matrix functionally 
regulates most vital processes in the human body and gov-
erns human cognition, learning, and consciousness [39]. As 
mechanics play a crucial role in neuronal function and dys-
function [40], understanding the mechanical behavior of brain 
tissue is essential for anticipating how the brain will respond 
to injury, how it evolves during its development, or how it 
remodels as disease advances. Computational models play 
a crucial role in this endeavor, allowing researchers to simu-
late the multi-faceted behavior of brain tissue and explore the 
biomechanical role of mechanical forces in health and disease 
[41–44]. These models require adequate constitutive models 
that capture the complex and unique characteristics of this 
ultrasoft, highly adaptive, and heterogeneous tissue.
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Constitutive modeling
Over the past decade, various research groups around the 
world have made significant process in the experimental and 
constitutive characterization of human brain tissue [45]. This 
has led to multiple competing constitutive models to char-
acterize the behavior of gray and white matter tissue. Most 
notably, neo Hooke [2], Blatz Ko [46], Mooney Rivlin [3, 
4], Demiray [47], Gent [48], and Holzapfel [35] models were 
proposed as successful candidates to characterize the stress-
stretch response of these tissues. Given brain tissue’s intricate 
behavior, fitting a constitutive model to one single loading 
mode, tension, compression, or shear, does not generalize well 
to the other modes [25, 49]. Therefore, we consider a widely-
used benchmark dataset where 5 × 5 × 5mm3 human brain 
samples were tested in tension, compression, and shear [38, 
45, 50]. We concomitantly discover and fit the best possible 
constitutive models considering these loading modes together 
and find the following three best models and parameters [25].

The Mooney Rivlin model [3, 4]

with parameters �1 = 0.0021 kPa, �2 = 1.8817 kPa for the 
gray matter cortex, and �1 = 0.0168 kPa, �2 = 0.9697 kPa 
for the white matter corona radiata. This translates into

The Blatz Ko model [46]

with parameters � = 1.9043 kPa for the gray matter cortex, 
and � = 0.9556 kPa for the white matter corona radiata. This 
translates into

Our newly discovered six-term model [25, 26]
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Ī2 − 3

])
+ 𝜇2

[
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with non-zero terms �1 = 1.2520 kPa, �1 = 0.9875 , 
�2 = 3.8007 kPa, a2 = 6.2285 kPa, b2 = 1.6495 , �2 = 4.6743 
kPa, and �2 = 1.6663 for the gray matter cortex and 
�1 = 0.2215 kPa, a1 = 0.2350 kPa, b1 = 0.2398 , a2 = 6.3703 
kPa, b2 = 1.8893 , �2 = 4.5065 kPa, and �2 = 1.1789 for the 
white matter corona radiata. We translate this model into the 
following six-line parameter table of our universal material 
model:

The Mooney Rivlin, the Blatz Ko, and the newly discovered 
six-term material models have a gray and white matter good-
ness of fit of R2 = 0.8784 and R2 = 0.7414 , R2 = 0.8809 and 
R2 = 0.7355 , and R2 = 0.9306 and R2 = 0.8361 respectively 
to the combined tension, compression, and shear testing data 
[25].

Simulation
Utilizing our universal material model subroutine, we incor-
porate these brain models into a realistic vertical head impact 
finite element simulation [26]. Based on magnetic resonance 
images [51], we create the two-dimensional sagittal finite ele-
ment model in Fig. 3. In this model, gray and white matter 
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are spatially discretized using 6,182 gray and 5,701 white lin-
ear triangular elements, resulting in 6,441 nodes, and 12,882 
degrees of freedom in total. We embed our model into the skull 
using spring support at the free boundaries and apply a fron-
tal impact to the brain that we represent with all three models, 
the Mooney Rivlin, Blatz Ko, and new discovered models, as 
shown in Fig. 3. While our results showcase equal spatial stress 
magnitudes across the brain for all three, the Mooney Rivlin, 
Blatz Ko, and constitutive neural network models, the simula-
tion underestimates the maximum deformation for the Mooney 
Rivlin and Blatz Ko models compared to the constitutive neural 
network model.

4.2  Skin

Skin is the largest organ of the human body [52]. It serves vital 
functions for our survival such as being the first line of defense 
against mechanical injury while at the same time allowing us 
to move and interact with the world [53]. Surgery of any kind 
entails skin rupture and manipulation [54]. Especially dur-
ing reconstructive procedures, skin tissues are subjected to 
extreme deformations [55]. The complex stress field generated 
by skin tissue manipulation has a direct effect on the subse-
quent wound healing response, with excessive stress causing 
increased inflammatory response that can lead to fibrosis [56]. 
In some cases, excessive stress can even result in tissue necro-
sis [57]. Thus, accurate computational models of skin are key 
to design safe reconstructive surgical procedures.

Fig. 3  Universal material modeling of the human brain. Deformation and stress profiles for frontal impact to the human brain. The finite 
element models simulate the deformation and internal tissue loading corresponding to best-fit Mooney Rivlin, Blatz Ko, and newly discovered 
constitutive models from left to right. All simulations leverage our universal material model subroutine and only differ in the definition of the 
UNIVERSAL_TAB constitutive parameter table in the finite element analysis input file.
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Constitutive modeling
Skin modeling has received significant attention for more 
than half a century [58, 59]. Isotropic models such as the 
neo Hooke [2] or Mooney Rivlin [3, 4] models have been 
used, but show significant limitations. Not only do they fail 
to describe the anisotropy of skin, they also lack the ability 
to capture this tissue’s rapid strain-stiffening behavior [58]. 
To overcome these issues, we examine combined uniaxial 
and biaxial tensile testing data of porcine skin tissue sam-
ples [60, 61] to discover more accurate material models that 
depict the anisotropic stress-stretch behavior. First, we fit the 
microstructure-inspired Holzapfel model [35],

This model was originally developed for arterial tissues and 
combines the isotropic linear first invariant neo Hooke term, 
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invariant term, ⟨Ī4(11) − 1⟩ , along the collagen fiber direction. 
Here, our best possible fit to the combined uniaxial and biax-
ial testing data results in � = 0.2492 MPa, a4 = 0.1054 MPa, 
and b4 = 10.7914 . We naturally incorporate this constitutive 
model and parameters in our universal material model sub-
routine using the following two-line parameter table

To address the poor goodness of fit R2 = 0.6857 of the neo 
Hooke Holzapfel model, we adopt a tranversely isotropic 
constitutitive neural network to discover a more accurate 
model [27]. From a library of 216 = 65, 536 possible com-
binations of terms, we discover a model in two exponential 
quadratic terms,
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Fig. 4  Universal material modeling of skin. Deformation and stress profiles in the human scalp following a melanoma resection reconstruction 
procedure. The finite element models simulate the deformation and internal tissue loading corresponding a two-stage flap rotation and suturing 
procedure, with the first stage shown in the top row and the second stage shown in the bottom row. The remaining wound is closed with a skin 
graft to avoid excessive tissue stresses and damage. Both tissue manipulations are modeled using the best-fit constitutive neural network model 
in the three left columns. For comparison, we also showcase the resulting stress profiles for the best-fit neo Hooke Holzapfel model in the right 
column. All simulations leverage our universal material model subroutine and only differ in the definition of the UNIVERSAL_TAB constitutive 
parameter table in the finite element analysis input file
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with parameters a1 = 1.3291 MPa, b1 = 0.8207 , a4 = 0.2656 
MPa, and b4 = 0.3921 [27]. To integrate this new model into 
a finite element simulation, we incorporate the following two 
parameter lines in our universal material subroutine

In contrast to the neo Hooke Holzapfel model with a good-
ness of R2 = 0.6857 , our newly discovered model has a mean 
good of fit R2 = 0.8629 for the biaxial skin testing data [27].

Simulation
Leveraging our universal material subroutine, we integrate both 
material models in a finite element simulation of a 62-year-old 
adult male patient undergoing reconstructive surgery following 
surgical melanoma resection [55]. A three-dimensional patient 
specific geometry was obtained via multi-view stereo recon-
struction of a sequence of photos taken in the operating room 
before and after surgery. The scalp was approximated based on 
the skin surface and spatially discretized using 75,282 linear 
tetrahedral elements and 25,394 nodes, leading to a total 76,182 
degrees of freedom. Our simulation recapitulates the closure 
of the resected tissue defect by imposing nodal constraints 
to nodes on either edge of the defect to mimic sutures used 
to close the wound. Figure 4 showcases the deformation and 
internal tissue tension profiles following the two-step surgical 
skin reconstruction procedure. We clearly observe the limited 
tissue deformation and loading profiles during the first stage in 
the top row. In contrast, during the second stage surgery in the 
bottom row, substantial deformations develop across the skin. 
Specifically, we appreciate the regional differences between 
the isotropic Ī1 and anisotropic Ī4(11) deformation invariants. 
Figure 4 also showcases noticeable stress profile differences 
between the newly discovered material model and the neo 
Hooke Holzapfel model in the third and fourth columns. In 
the lower stretch regimes shown in the first stage reconstruc-
tion, the neo Hooke Holzapfel model clearly overestimates the 
stresses in the skin. In the higher stretch regimes, shown during 
the second stage reconstruction in the bottom, the neo Hooke 
Holzapfel fit underestimates the stresses in the tissue. While a 
modeling-based overestimation of the stress state holds limited 
risks from a medical point of view, an underestimation could 
have harmful consequences as clinical decisions co-informed 
by such models could cause excessive tissue damage and scar-
ring. Figure 4 showcases the crucial aspect that proper constitu-
tive modeling and calibration plays in this regard, in which the 
neo Hooke Holzapfel model, which does not properly capture 
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skin tissue’s strain-stiffening, underestimates the tissue stress 
in comparison to the more accurate newly discovered model.

4.3  Human arteries

Computational simulations play a pivotal role in understanding 
and predicting the biomechanical factors of a wide variety of 
arterial diseases [32, 62–64]. In vascular medicine, knowing 
the precise stress and strain fields across the vascular wall is 
critical for understanding the formation, growth, and rupture 
of aneurysms and dissections [65–67]; for identifying high-risk 
regions of plaque formation, rupture, and thrombosis [68, 69]; 
and for optimizing stent design and surgery [70, 71].

Constitutive modeling
Over the past four decades, various phenomenological poly-
nomial [72, 73], exponential [74], logarithmic [75], and expo-
nential-polynomial [28, 76, 77] models have been proposed to 
describe the non-linear elastic, anisotropic, quasi-incompress-
ible behavior of arterial tissue. Recently, microstructurally-
informed models were brought forward, including symmetric 
two- and four-fiber family models [35, 37, 78], either sym-
metric or unsymmetric [79]. All these material models can 
fit uniaxial and biaxial arterial tissue testing data, but do not 
always generalize well to off-axis testing regimes [80].

We consider biaxial tensile testing of thoracic aortic tis-
sue samples at five differing circumferential-axial stretch 
ratios [81, 82]. Using data-driven constitutive neural net-
works, we discover the most appropriate arterial material 
model. From a library of 216 = 65, 536 possible combina-
tions of terms, we discover

with an isotropic linear and exponential linear first invari-
ant term and an anisotropic quadratic fifth invariant term. 
Our best-fit parameters read �1 = 33.45 kPa, a = 3.74 
kPa, b = 6.66 , �5 = 2.17 kPa for the media at an angle 
� = ±7.00◦ , with a goodness of fit of R2 = 0.9682 , and 
�1 = 8.30 kPa, a = 1.42 kPa, b = 6.34 , �5 = 0.49 kPa for 
the adventitia at an angle � = ±66.78◦ , with a goodness of fit 
of R2 = 0.9650 . This translates into the following four-line 
parameter table of our universal material model,

(36)
𝜓 =

𝜇1

2
[Ī1 − 3] +

a

2b
(exp [b(Ī1 − 3)] − 1)

+
�
i=1,2

1

2
𝜇5⟨Ī5(ii) − 1⟩2

∗��������� �����, ���� = "���������_���"

1, 1, 1, 1, 1.0, 1.0, �1∕2

1, 1, 1, 2, 1.0, b, a∕2b

5, 2, 2, 1, 1.0, 1.0, �5∕2

9, 2, 2, 1, 1.0, 1.0, �5∕2
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Alternatively, in the classical microstructure-inspired disper-
sion type Holzapfel model [68]

our best-fit parameters are � = 48.68 kPa, a = 6.67 kPa, 
b = 23.17 , � = 0.074 for the media at � = ±7.00◦ , with a 
goodness of fit of R2 = 0.9228 , and � = 13.22 kPa, a = 0.93 
kPa, b = 12.06 , � = 0.091 for the adventitia at � = ±66.78◦ , 
with a goodness of fit of R2 = 0.9525 . We translate this 
model into the following parameter table of our universal 
material model

(37)𝜓 =
1

2
𝜇[Ī1 − 3] +

�
i=1,2

a

2b
(exp [b⟨Ī∗

1∕4(ii)
− 1⟩2] − 1)

∗��������� �����, ���� = "�����_���"

�, �, �.�, �.�, (1 − 3�), �.�, �.�, �.�, �.�, �.�,

�.�, �.�, �.�, �.�, �.�, �.�

�, �, �.�, �.�, �.�, �.�, �.�, �.�, (1 − 3�), �.�,

�.�, �.�, �.�, �.�, �.�, �.�

∗��������� �����, ���� = "������
��_���"

1, 1, 1, 1, 1.0, 1.0, �∕2

101, 2, 2, 2, 1.0, b, a∕2b

102, 2, 2, 2, 1.0, b, a∕2b

Simulation
Using our universal material subroutine, we integrate both 
models in a finite element simulation of the human aortic 
arch under hemodynamic loading conditions [83]. Our aortic 
arch geometry is extracted from high-resolution magnetic 
resonance images of a healthy, 50th percentile U.S. male 
[84]. We assume an average aortic wall thickness of 3.0 mm, 
where the inner 75% of the wall make up the media and the 
outer 25% make up the adventitia. We discretize our geome-
try using 60,684 linear tetrahedral elements for the media and 
30,342 linear tetrahedral elements for the adventitia, leading 
to a total 61,692 degrees of freedom. The local collagen fiber 
angles against the circumferential direction are ± 7.00◦ in the 
media and ± 66.78◦ in the adventitia and are locally defined 
as a vector field variable for each element. We use continuum 
distributed coupling boundary conditions at the aortic outlets 
to constrain the arch in space [85], and leverage Neumann 
boundary conditions to simulate the hemodynamic loading 
conditions the aortic arch undergoes during a single cardiac 
cycle. Figure 5 showcases the computed diastolic stresses 
in the media and the adventitia for both our newly discov-
ered model and the microstructure-informed dispersion-type 
Holzapfel model [28]. Comparing the best-fit Holzapfel dis-
persion material model with a goodness of fit of R2 = 0.9228 

Fig. 5  Universal material modeling of human arteries. Diastolic deformation and stress profiles in the media and adventitia layer of the 
human ascending aortic arch. The finite element models simulate the deformation and internal tissue loading corresponding to the best-fit 
Holzapfel dispersion model in the top row and newly discovered model in the bottom row. Both simulations leverage our universal material 
model subroutine and only differ in the definition of the UNIVERSAL_TAB constitutive parameter table in the finite element analysis input file
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for the media and R2 = 0.9525 for the adventitia to the newly 
discovered model with a goodness of fit of R2 = 0.9682 for 
the media and R2 = 0.9650 for the adventitia, we observe 
substantial differences in both the isotropic and anisotropic 
spatial deformation components as well as the overall aortic 
arch deformation under the same loading and boundary con-
ditions. Figure 5 also highlights higher stress magnitudes for 
the best-fit neural network model.

4.4  Heart valves

The tricuspid valve is our right atrioventricular valve which 
ensures unidirectional blood flow through the right side of the 
heart. Often as a result of other primary diseases [86, 87], a dis-
eased tricuspid valve can fail to close and regurgitate. Tricuspid 
valve disease affects over one million Americans and is associ-
ated with increased patient mortality and morbidity [88, 89]. 
Computational models of the tricuspid valve provide valuable 
insights into the workings of the valve, and have been used to 
increase our understanding of the progression of valve disease 
[90] and to work towards improved repair outcomes [91].

Constitutive modeling
Numerous studies have investigated the mechanical behavior 
of atrioventricular valve leaflets. Valvular leaflets exhibit a 
pronounced anisotropy and a non-linear behavior, motivat-
ing an anisotropic exponential material model to capture 
this complex material behavior [92]. Others have used 
microstructurally-informed models [37, 93] or anisotropic 
exponential Fung-type models [94] to capture the material 
response of the tricuspid valve leaflets. However, the tricus-
pid valve leaflets specifically only exhibit slight anisotropy 
[95]. To improve the ease of use in computational models, 
recent studies have proposed a simplified isotropic Fung-
type exponential function [96]. Leveraging force-controlled 
400 mN equibiaxial mechanical tests on 7 × 7 mm valve 
leaflet tissue samples [97], we fit the following two-term 
isotropic exponential Fung-Type model [98]

with an isotropic linear first invariant term describing the 
response at small-strains and under compression and an 
exponential first invariant term determining the strain-
stiffening response under large strains [96]. Our best-fit 
parameters are c0 = 1.0 kPa, c1 = 0.124 kPa, c2 = 4.57 for 
the anterior, c0 = 1.0 kPa, c1 = 0.188 kPa, c2 = 14.86 for the 
posterior, and c0 = 1.0 kPa, c1 = 0.191 kPa, c2 = 17.75 for 
the septal leaflets. To incorporate this constitutive model in 
our universal material subroutine, we define the following 
two parameter lines

(38)𝜓 =
c0

2
[Ī1 − 3] +

c1

2
(exp

[
c2(Ī1 − 3

)2
] − 1)

Simulation
Using our universal material subroutine, we integrate the 
constitutive behavior of all three leaflets into a personalized 
finite element model of the tricuspid valve, the Texas 1.1 
TriValve [98, 99]. Through personalized pressure and annu-
lar displacement recordings in the realistic hemodynamic 
environment of an organ preservation system and image-
based planimetry meaurements on the excised valve, a three-
dimensional reconstruction of the tricuspid valve is build at 
end-diastole. The valve and chordae geometries are spatially 
discretized using 8,283 linear quadrilaterial shell elements 
and 4,169 three-dimensional linear multi-segmented truss 
elements, resulting in a total 25,761 degrees of freedom. By 
imposing the recorded personalized annular displacements 
and an end-systolic transvalvular pressure of 22.95 mmHg 
on the ventricular surface of the valve, we simulate valvular 
loading from end-diastole to end-systole. Figure 6 showcases 
the resulting deformation and maximum principal stress con-
tours in the tricuspid valve. Notably, the varying stiffnesses 
of the anterior, septal, and posterior leaflets result in notice-
able differences in the first invariant of the Cauchy-Green 
deformation tensor, but in comparable maximum principal 
stress profiles across the leaflets.

4.5  The human heart

Cardiac disorders are a leading cause of morbidity and death 
worldwide [100]. Computational models of cardiac function 
hold immense potential to contribute to our understanding of 
health and disease, improve our diagnostic analyses, and opti-
mize personalized intervention [84, 101–105]. For example, 
corrective surgeries in obstructive cardiomyopathy [106] and 
congenital heart defects [107], the replacement of diseased 
valves [108], or the implantation of a cardiac assist device 
[109] all involve complex and delicate procedures that demand 
careful planning and simulation to ensure their success. Cru-
cially, the accuracy and reliability of these computational mod-
els hinge on precise constitutive modeling of the underlying 
mechanical behavior of myocardial tissue.

Constitutive modeling
Research on constitutive models that accurately describe 
passive myocardial mechanics spans over five decades. One 
of the earliest models described cardiac muscle tissue as an 
isotropic hyperelastic material [110]. Later, with increas-
ing experimental insights, more sophisticated transversely 

∗��������� �����, ���� = "���������_���"

1, 1, 1, 1, 1.0, 1.0, c0∕2

1, 1, 2, 2, 1.0, c2, c1∕2
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isotropic [111, 112], and eventually orthotropic [19, 113] 
constitutive models were introduced with three principal 
directions, the fiber direction f  as principal direction i = 1 , 
the sheet direction s as principal direction i = 2 , and the 
normal direction n as principal direction i = 3 . This latter 
orthotropic Holzapfel material model is currently one of the 
most popular models for heart muscle tissue and fits simple 
shear tests of myocardial tissue well [114]. Nevertheless, 
it displays limitations when simultaneously fitted to differ-
ent loading modes [115]. Therefore, we consider triaxial 
shear and biaxial extension tests on human myocardial tis-
sue [116], and use these data to discover the best possible 
model and parameters to characterize both loading condi-
tions combined [29].

We begin with the four-term Guan model [115] that 
features an exponential linear term in the first invariant Ī1 , 
exponential quadratic terms in the fiber and normal fourth 
invariants Ī4(11) and Ī4(33) , and an exponential quadratic term 
in the fiber-sheet coupling invariant Ī4(12),

Calibrating this model simultaneously on biaxial tensile and 
triaxial shear data for human myocardial tissue, we obtain a 
mean goodness of fit R2 = 0.867 for parameters a = 0.782 
kPa, b = 7.248 , af = 4.488 kPa, bf = 14.571 , an = 2.513 kPa, 
bn = 10.929 , afs = 0.436 kPa, and bfs = 4.959 . To incorpo-
rate this constitutive model in our universal material subrou-
tine, we define the following four parameter lines,

(39)

𝜓 =
a

2b
[exp(b[Ī1 − 3])] +

af

2bf
[exp

�
bf⟨Ī4(11) − 1⟩2� − 1]

+
an

2bn
[exp(bn⟨Ī4(33) − 1⟩2) − 1]

+
afs

2bfs
[exp(bfs[I4(12)]

2) − 1].

Next, we consider the seven-term generalized orthotropic 
Holzapfel model [19] which features an exponential linear 
term in the first invariant Ī1 , exponential quadratic terms of 
all fourth anisotropic invariants Ī4(11) , Ī4(22) , Ī4(33) , and an 
exponential quadratic term in all fourth coupling invariants 
Ī4(12) , Ī4(13) , Ī4(23).

A combined triaxial-biaxial training of this model cali-
brates the model parameters to a = 0.950 kPa, b = 5.457 , 
af = 3.318 kPa, bf = 23.701 , as = 1.405 kPa, bs = 20.067 , 
an = 2.037 kPa, bn = 16.976 , afs = 0.586 kPa, bfs = 1.081 , 
asn = 0.047 kPa, and bsn = 11.842 . This model has a mean 
goodness of fit R2 = 0.876 [29]. We translate this constitu-
tive model into our universal material subroutine through 
the definition of the following parameter lines in our finite 
element analysis input file

∗��������� �����, ���� = "���������_���"

1, 1, 1, 2, 1.0, b, a∕2b

4, 2, 2, 2, 1.0, bf , af∕2bf
14, 2, 2, 2, 1.0, bn, an∕2bn
6, 1, 2, 2, 1.0, bfs, afs∕2bfs

(40)

𝜓 =
a

2b
[exp(b[Ī1 − 3])] +

af

2bf
[exp(bf⟨Ī4(11) − 1⟩2) − 1]

+
as

2bs
[exp(bs⟨Ī4(22) − 1⟩2) − 1]

+
an

2bn
[exp(bn⟨Ī4(33) − 1⟩2) − 1]

+
afs

2bfs
[exp(bfs[Ī4(12)]

2) − 1]

+
asn

2bsn
[exp(bsn[Ī4(23)]

2) − 1].

Fig. 6  Universal material modeling of heart valves. Personalized tricuspid valve loading during the cardiac cycle. The finite element models 
simulate the deformation, left, and internal tissue loading, right, in response to the inter-ventricular pressure changes from end-diastole to end-
systole. The tricuspid valve is shown from a side and top view. Each valvular leaflet leverages our universal material model subroutine and only 
differs in the definition of the UNIVERSAL_TAB constitutive parameter table in the finite element analysis input file.
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Finally, we leverage an orthotropic constitutive neu-
ral network to discover the best model and param-
eters to explain the experimental data. From a library of 
232 = 4, 294, 967, 296 possible combinations of terms and a 
sparsity-promoting regularization with � = 0.01 , we discover 
a four-term model,

∗��������� �����, ���� = "���������_���"

1, 1, 1, 2, 1.0, b, a∕2b

4, 2, 2, 2, 1.0, bf , af∕2bf
8, 2, 2, 2, 1.0, bs, as∕2bs
14, 2, 2, 2, 1.0, bn, an∕2bn
6, 1, 2, 2, 1.0, bfs, afs∕2bfs
12, 1, 2, 2, 1.0, bsn, asn∕2bsn with a mean goodness of fit R2 = 0.894 [29]. Here, our 

discovered material parameters amount to � = 5.162 kPa, 
af = 3.426 kPa, bf = 21.151 , an = 2.754 kPa, bn = 4.371 , 
afs = 0.494 kPa, and bfs = 0.508 . We integrate this newly 
discovered model for myocardial tissue in our finite element 
analysis through the following four-line parameter table

(41)

𝜓 = 𝜇(Ī2 − 3)2 +
af

2bf
[exp(bf⟨Ī4(11) − 1⟩2) − 1]

+
an

2bn
[exp(bn⟨Ī4(33) − 1⟩2) − 1]

+
afs

2bfs
[exp(bfs[Ī4(12)]

2) − 1].

Fig. 7  Universal material modeling of the human heart. Personalized isotropic and directional deformation invariant and maximum princi-
pal stresses stress profiles, in short-axis slices frontal views, resulting from a healthy left and right ventricular end-diastolic pressure loading of 
8mmHg and 4mmHg. The finite element models simulate the deformation and internal tissue loading corresponding to the best-fit Guan model 
in the top row, the generalized Holzapfel model in the middle row, and the newly discovered model in the bottom row. All three simulations lev-
erage our universal material model subroutine and only differ in the definition of the UNIVERSAL_TAB constitutive parameter table in the finite 
element analysis input file
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Simulation
We incorporate all three constitutive models for myocardial 
tissue in the finite element analysis software solver Abaqus 
[7] using our universal material subroutine, and predict the 
stress state of the left and right ventricular wall during dias-
tolic filling. We create a finite element model of the left 
and right ventricular myocardial wall from high-resolution 
magnetic resonance images of a healthy 44-year-old Cauca-
sian male with a height of 178 cm and weight of 70 kg [83, 
84]. We spatially discretize our computational domain using 
99,286 quadratic tetrahedral elements and 154,166 nodes, 
leading to a total 462,498 degrees of freedom. We com-
pute the helically wrapped myofibers by solving a Laplace-
Dirichlet problem across our computational domain, and 
assume a transmural fiber variation from +60◦ to −60◦ from 
the endocardial to the epicardial wall [117]. The resulting 
microstructural organization covers 99,286 local element-
based fiber, sheet, and normal vectors, f 0 , s0 , n0 . We apply 
homogeneous Dirichlet boundary conditions at the mitral, 
aortic, tricupid, and pulmonary valve annuli to fix the heart 
in space [85], and load it with hemodynamic Neumann 
boundary conditions that correspond to the endocardial 
blood pressure during diastolic filling. Figure 7 showcases 
the resulting deformation and stress profiles in both ventri-
cles in response to left and right ventricular pressures of 8 
and 4 mmHg. In a row-to-row comparison of the short-axis 
views, we observe small differences between the deforma-
tion invariants and the maximum principal wall stresses of 
all three models, with larger values for our newly discovered 
model and the Guan model and smaller values for the gen-
eralized myocardial Holzapfel model. We can explain these 
differences by the varying constitutive goodness of fit of 
the three models. Moreover, we observe that our diastolic 
hemodynamic loading conditions enforce deformation and 
stress states that surpass the homogeneous tissue testing 
protocols of the triaxial shear and biaxial extension training 
data. This creates local regions of extrapolation beyond the 
initial training regime [29].

5  Conclusion

In this work, we designed a universal constitutive mode-
ling framework to predict the mechanical behavior of soft 
materials across a wide range of applications. We set up a 
modular material subroutine architecture which seamlessly 

∗��������� �����, ���� = "���������_���"

2, 1, 2, 1, 1.0, 1.0, �∕2

4, 2, 2, 2, 1.0, bf , af∕2bf
14, 2, 2, 2, 1.0, bn, an∕2bn
6, 1, 2, 2, 1.0, bfs, afs∕2bfs

integrates with a commercial FEA framework and can eas-
ily be generalized towards other non-linear FEA solvers. 
Doing so, our framework mitigates the risk for human error 
and streamlines the integration of newly discovered mate-
rial models in their simulations, thus alleviating the users 
to perform lengthy algebraic derivations and extensive pro-
gramming. Furthermore, our material subroutine serves as 
an excellent verification tool for more expert finite element 
software developers aiming to debug their own soft mate-
rial models and finite element analysis implementations. 
We demonstrated the versatility of the universal material 
subroutine through numerical simulations of various living 
systems including the brain, skins, arteries, valves and the 
human heart. Providing a common language and material 
subroutine for the computational mechanics community at 
large, we aspire to democratize the computational analysis of 
soft materials amongst a broader cohort of researchers and 
engineers. With one single subroutine, everyone - and not 
just a small group of expert specialists - can now perform 
reliable engineering analysis of artificial organs, stretchable 
electronics, soft robotics, smart textiles, and even artificial 
meat. Fostering this inclusivity, our framework can form an 
invaluable tool towards continued innovation and discovery 
in the field of soft matter overall.

Appendix A: FEA integration

The concept of our universal material subroutine is inher-
ently modular and generally compatible with any finite 
element analysis package. For illustrative purposes we 
implement our universal material model architecture in 
the Abaqus finite element analysis software suite. More 
specifically, we leverage the UANISOHYPER_INV user-
defined subroutine architecture in Fig. 8 to seamlessly 
integrate our universal constitutive neural network archi-
tecture within the Abaqus FEA solver. This subroutine pro-
vides three input arrays: the constitutive model properties 
we provide through a constitutive parameter table in the 
finite element analysis input file; the deformation gradient 
invariants as defined in Eqs. (4), (5), (6), and (7); and an 
array of state-dependent field variables. Upon each evalu-
ation, our user-defined subroutine updates the free energy 
function UA(1) = �̄� and UA(2) = �vol , the array of first 
derivatives of the free energy with respect to the scalar 
invariants UI1(NINV) = 𝜕𝜓∕𝜕Īi , and the array of second 
derivatives of the free energy with respect to the scalar 
invariants UI2(NINV)*(NINV+1)/2)= 𝜕2𝜓∕𝜕Īi𝜕Īj . 
We detail these computations through the pseudocodes 
provided in Appendix E. To enable our UANISOHYPER_
INV subroutine to read in a constitutive parameter table, 
we declare the format of this input parameter table using 
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the parameter table type definition in the UNIVERSAL_
PARAM_TYPES.INC file. This file reads

and is introduced using the call

at the start of our Abaqus FEA input files.

Appendix B: FEA interface

To activate the universal material subroutine within our finite 
element analysis input file, we need to call our user-defined 
material model. When we incorporate a fully incompressible 
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constitutive material model (i.e. including no I3 invariant con-
tributions), we call our user-defined material model through 
the command

where integer NDIR defines the number of local fiber direc-
tions in our material. This input file command is followed up 
with the constitutive parameter table definitions described 
in Sect. 3.2. In contrast, when our free energy function con-
tains a volumetric free energy �vol contribution, our uni-
versal material subroutine needs to additionally introduce 
UA(2), UI1(3) and UI2(6) (following the NINV= 3 
invariant numbering scheme in Eq. (15)) during its evalua-
tions. To incorporate compressible material behavior in our 
FEA simulation, we change the TYPE keyword argument 
line in our Abaqus input file to TYPE = COMPRESSIBLE,

where integer NDIR defines the number of local fiber direc-
tions of our material. Similar to above, this input file com-
mand is followed up with the constitutive parameter table 
definitions described in Sect. 3.2.

Importantly, our universal material subroutine com-
putes the instantaneous elastic stress and stiffness response 
and allows a modular integration with other inelastic mate-
rial behaviors that are commonly supported in commercial 
finite element analysis codes. For instance, in Abaqus the 
user can leverage the universal material model in con-
junction with linear viscoelasticity to model the relaxa-
tion behavior of soft matter materials, and with damage 
or Mullins effect to account for stress softening in soft 
tissues. Additional combinations with plasticity, nonlinear 
viscoelasticity or creep, and more general damage models 
are also supported.

Appendix C: Volumetric free energy 
functions

To model compressible material behavior using our modular 
material subroutine, we add the volumetric contributions 
to our constitutive parameter table along with all the other 
deviatoric free energy contributions,

For example, the volumetric free energy function [118]
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∗����������� ������������, ����, ����������� = ���������,
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Fig. 8  Interaction between the finite element analysis solver and 
the universal material subroutine. Flowchart of the interaction 
between Abaqus and the UANISOHYPER_INV subroutine architec-
ture which embeds our universal constitutive material model. Dur-
ing each Newton–Raphson iteration and at each Gauss integration 
point, the UANISOHYPER_INV subroutine computes the free energy 
function � (= UA), its first derivatives with respect to the deforma-
tion invariants 𝜕𝜓∕𝜕Īi (= UI1(NINV)), and its second derivatives 
with respect to the deformation invariants 𝜕2𝜓∕𝜕Īi𝜕Īj (=UI2(NINV

∗

(NINV+1)/2)) with respect to the scalar invariants Īi , derived from 
the deformation gradient F . These quantities are used by Abaqus to 
compute the components of the Cauchy stress tensor and the mate-
rial tangent stiffness tensor, to construct the element force vector and 
stiffness matrix, and to assemble the global righthand side vector and 
stiffness matrix. Abaqus then performs a Newton–Raphson iteration 
based on the residual between the internal and external forces, until it 
achieves convergence
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translates into the following contribution to the input file

Alternatively, the volumetric free energy function

which is a special case of the modified Ogden formulation 
[5], can be reformulated to

which translates into the following lines in the input file

Appendix D: Mixed‑invariant free energy 
functions

It is straightforward to generalize our universal material 
model architecture towards mixed-invariant models. Spe-
cifically, we create these mixed invariants as parameter-
weighted combinations of two or more individual invariants. 
To incorporate mixed invariants in our material subroutine, 
we create a second parameter table type,

where each of the 15 �j,◦ mixed invariant coefficients denotes 
contributions to the mixed invariant I�,◦,

(42)�vol =
K

2
(I3 − 1)2

∗��������� �����, ���� = "���������_���"

3, 1, 2, 1, 1.0, 1.0, K∕2

(43)�vol =
K

2

(
I2
3
− 1

2
− ln(I3)

)

(44)
�vol =

K

2

(
(I3 − 1) +

1

2
(I3 − 1)2 − ln(1 − (−1)(I3 − 1))

)
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⋮ ⋮ ⋮
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(45)Ī𝜅,◦ =

15∑
j=1

𝜅j,◦ Īj

in which Īj follows the invariant numbering in Eq. (15). 
To activate these mixed invariants in our FEA model, we 
include the following lines in our FEA input file,

We activate any novel constitutive neuron associated with 
these mixed invariants, using the following argument lines 
in our FEA input file,

To avoid any potential confusion between the standard invar-
iants and the mixed invariants, we number all derived mixed 
invariants starting at NINV= 101.

Appendix E: Pseudocodes

In the following five algorithmic boxes, we summarize 
our universal material subroutine as pseudocode. Algo-
rithm 1 illustrates the UANISOHYPER_INV pseudocode 
to compute the arrays UA(1), UA(2), UI1(NINV), 
and UI2(NINV ∗(NINV+1)/2) at the integration point 
level. First, we initialize all relevant arrays and read the 
activation functions kf0,k , kf1,k and kf2,k and weights w0,k , 
w1,k and w2,k of the n constitutive neurons of our constitu-
tive neural network from our user-defined parameter table 
UNIVERSAL_TAB (see Appendix B). Then, for each 
node, we evaluate its row in the parameter table UNIVER-
SAL_TAB and additively update the free energy density 
function and its first and second derivatives, UA, UI1, 
UI2. Algorithm 2 summarizes the additive update of the 
free energy and its first and second derivatives, UA, UI1, 
UI2, within the universal material subroutine uCANN. 
Algorithms 3, 4 and 5 provide the pseudocode for the three 
subroutines uCANN_h0, uCANN_h1 and uCANN_h2 that 
evaluate the zeroth, first and second network layers for 
each network node with its discovered activation functions 
and weights.

∗��������� �����, ���� = "�����_���"

1, �1,1, �2,1, �3,1, �4,1, �5,1, �6,1, �7,1, �8,1, �9,1
�10,1, �11,1, �12,1, �13,1, �14,1, �15,1

2, �1,2, �2,2, �3,2, �4,2, �5,2, �6,2, �7,2, �8,2, �9,2
�10,2, �11,2, �12,2, �13,2, �14,2, �15,2

…

∗��������� �����, ���� = "���������_���"

101, ������, ������, ��
���, �0,101, �1,101, �1,101
102, �����
, �����
, ��
��
, �0,102, �1,102, �1,102
…
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Algorithm 1  Pseudocode for universal material subroutine 
UANISOHYPER_INV 

Algorithm 2  Pseudocode to update energy and its deriva-
tives UA, UI1, UI2 

Algorithm 3  Pseudocode to evaluate output of zeroth net-
work layer f,df,ddf 

Algorithm 4  Pseudocode to evaluate output of first net-
work layer f,df,ddf 

Algorithm 5  Pseudocode to evaluate output of second net-
work layer f,df,ddf 
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