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1 Introduction 

Surf zone dynamics is a highly complicated topic in hydrodynamics which deals with the waves and 
wave generated phenomena in the region between the breaker line on a beach and the shoreline. 

When waves break on a gently sloping beach, large amounts of energy are released and turned 
into turbulence. As the waves continue breaking and interacting with the bottom topography, 
the momentum flux of the waves decreases along with the decrease in wave height. The forcing 
this represents causes the generation of both longer-period waves and currents. 

The proper analysis of the dynamics of the surf zone requires a detailed knowledge of the 
breaking waves and the turbulence they create. This knowledge is not yet available. However, 
significant progress has been made over the last two decades, in particular, in the area of under­
standing wave-generated phenomena such as wave set-up, cross-shore and longshore currents and 
their stability, turbulence and mixing, and the generation of long-wave phenomena (surf beats, 
edge waves), also termed infragravity waves. 

The significant progress made in recent decades is due to the intensive efi'orts of both ex­
perimental and theoretical research. The theoretical modelling was essentially initiated by the 
discovery of the wave radiation stress in the 60's (Longuet-Higgins & Stewart, 1962, 1964) and 
has been ongoing with increasing intensity since. The collection of experimental data was mostly 
limited to laboratory experiments unti l around 1980 when the first of a series of large field exper­
iments, the Nearshore Sediment Transport Study (NSTS) experiment on two California beaches, 
was carried out. Since then many such collaborative field experiments, each involving an increas­
ing number of researchers have been conducted, first in the U.S., and later, on a smaller scale, 
also i n Europe and in Japan. 

For some time i t has been a prevalent perception that the only way to truly understand the 
complicated processes in the surf zone is through analysis of data from real surf zones in the 
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field. The models are far too simple and exclude too many of the important elements of the total 

picture to be able to illustrate what actually happens on a beach. 

On the other hand i t has been argued that i f you cannot predict even the simplest cases such 
as a laboratory experiment, then how can you hope to be able to understand and dissect the 
highly complex picture encountered on a real beach where not only can the important parameters 
not be controlled but even the most extensive field measuring program wil l give only a sporadic 
glimpse of the total picture because i t is practically impossible ever to measure enough. 

While looking back at the development, however, i t is interesting and encouraging to observe 
that in fact theoretical, laboratory, and field work have all contributed to the new discoveries 
made over the last decades. The longshore currents and the surf zone set-up were recognized 
early on in field data but could not be explained properly until the theoretical concept of radiation 
stress was firmly established. The first quantitative description of the cross-shore circulation and 
undertow was based on laboratory observations on a barred beach. Both surf beats and shear 
waves were observed in the field before they were explained theoretically. On the other hand, 
edge waves were known theoretically long before being observed in the field, and the 3D-vertical 
structure of currents and infragravity waves are theoretical predictions that, to some extent, 
still await fu l l verification, as does the nonlinear mechanism of current-current and wave-current 
interaction. I t is characteristic, however, for these and many other phenomena that a strong 
cross-fertilization between field and modeUing efi'orts has taken place and no uniform pattern for 
progress or discovery can be identified. The two areas, supplemented by laboratory measurements, 
form an integral part in the history of progress towards greater understanding of the complicated 
nature of the area of surf zone dynamics. 

I t is our impression that, as the modelling efforts have matured to become more complete and 
complex and the field measurements have revealed increasingly detailed and accurate pictures of 
the waves and currents, the dichotomy between these two approaches has been nearly wiped out. 
Hence, i t is likely that, in the not too distant future, models wi l l be able to provide additional and 
accurate information about details that were actually not measured in a given field experiment 
and also assist in the planning of new field experiments. 

Today so many contributions have been made towards our understanding of the surf zone that 
it wi l l be impossible, in one review paper, to cover them all. Therefore, the presentation here 
wi l l , in spite of all efforts to the contrary, have to leave out, or only cover sporadically, important 
parts of the picture. In selecting the material for this paper, we have undoubtedly been biased by 
our own firm association with the theoretical or modeUing side of the topic but even there many 
papers have not been included. 

In this review we have chosen to concentrate on "recent progress." Thus, we have chosen not 
to include material that is readily available in standard text books (Phillips 1977, Mei 1983). 
A consequence of this choice is that the paper makes only passing references to some of the 
pioneering works (e.g., Longuet-Higgins & Stewart 1962, 1964; Bowen et al. 1968; Bowen 1969a; 
Thornton 1970; Longuet-Higgins 1970; and many others). 
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In addition to the boolcs by Phillips and Mei, the reader is referred to review papers by 
Peregrine (1983), Battjes (1988), and Battjes et al. (1990) for recent overviews (sometimes from a 
different perspective) of some of the material covered here. Basic material about boundary layers 
in non-breaking waves may be found in Nielsen (1992), but very l i t t le is available about boundary 
layers under breaking waves. Some information about wave boundary layers may also be found 
in texts more specifically oriented towards sediment transport such as Sleath (1984) and Fredsoe 
& Deigaard (1993). 

The paper is organized as follows. The rest of this section is devoted to describing the basic 
assumptions involved in the analysis of surf zone motions. In Section 2, we outline the derivation 
of the "short-wave-averaged" equations in the nearshore. The equations given in that section are 
valid for vertically nonuniform current motions and are hence generalized forms of the equations 
given by Phillips and Mei. Section 3 discusses our present state of knowledge of the short-wave 
motion in the surf zone. A brief discussion of bottom boundary layers and bottom shear stresses 
is given in Section 4. The present state of understanding of steady circulation patterns (including 
the decay of short-waves, longshore currents, and undertow) are reviewed in Section 5. Sections 
6 and 7 are devoted to discussing infragravity and shear waves, respectively. Section 8 discusses 
Quasi 3D comprehensive models, and the paper concludes with a summary in Section 9. 

Basic Assumptions 

The direct approach to describing and analyzing surf zone phenomena would require solution 

of the hydrodynamical equations for the conservation of mass and momentum. Since the flow 

is highly turbulent due to the wave breaking and since the free surface introduces essential non-

linearities, this task has not been accomplished yet. 

Whereas there have been many attempts towards this goal, two major approaches have been 
pursued with particular success. One particularly aims at describing the pattern of currents and 
long ('infragravity') wave motion generated by the ('short') storm waves or swell. This approach 
is based on versions of the hydrodynamical equations which are averaged over the short wave 
period so that in these equations only the mean efi'ect (over a wave period) of the short waves 
such as net mass, momentum and energy fluxes, are included in the equations. 

The second approach solves the hydrodynamical equations in the time domain but only in the 
horizontal plane. This is made possible by approximate representations in the equations of the 
variations of pressure and velocity fields in the vertical direction based on the assumption that 
the horizontal length scale of the wave motion is much larger than the water depth. I t leads to 
the class of descriptions that include the nonlinear shallow-water equations, Boussinesq models, 
and derivatives thereof. 

A fundamental' assumption which underlies all these efforts is the concept of a gently sloping 
bottom which is normally the case on l i t toral beaches. The gentleness of the bottom slope is used 
to assume that, at each location of the region, the local short-wave motion is in equihbrium with 
the local values of the the depth, the wave height, and wave period. 
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I t turns out that this concept of gentleness is related both to the bottom slope hx and to the 
wavelength L. Analysis of the effect the bottom has on the wave motion shows that to the first 
order this effect is proportional to the dlmensionless beach slope parameter 

5 = % ^ (1) 
h 

Here i is a 'local' wave length evaluated L - cT where c is the local phase velocity of the 
wave, T its period. Since L = Ah is the (first Taylor approximation to the) change in depth 
over one wave length, we see that S is the relative change in depth over that distance. 

Hence, we may conclude that i f we want to be able to neglect the effect that a sloping bot­
tom has on the local wave motion (i.e., to assume "locally constant depth"), we should assume 
conditions that everywhere satisfy the requirement that 

S < 1 (2) 

This will also ensure that the assumption of no reflection of wave energy by the bottom topography 
is reasonable. In practice, this usually is assumed to be satisfied i f 5 < 1 though for some results 
S < 0.3-0.5 is probably necessary. For the larger 6'-values, we can expect that the wave behavior 
wi l l depend on the value of S. This problem, however, has not really been discussed in the 
literature yet. 

2 The Short-Wave-Averaged Equations 

2.1 Introduct ion 

In this section we give a brief account of the depth-integrated, time-averaged equations for conser­
vation of mass and momentum. The equations are presented here for currents that are non-uniform 
over the depth. This is a more general form than that given for example by Phillips (1977) or 
Mei (1983). 

Similar equations can be derived for the conservation of total energy, the conservation of 
oscillatory (wave) energy and the conservation of mean (current) energy; however, non-uniform 
versions of the energy equations have not been presented in the literature at the present time. 
For the general form of the depth uniform versions of these equations the reader is referred to the 
book by Phillips (1977). 

In this section we also discuss the local wave-averaged equations used to determine the vertical 
variation of the current and long wave particle velocities in short-wave-averaged models. 
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Figure 1: Sketch defining the various geometrical quantities used in this paper. 

2.2 Descr ipt ion of the Derivat ion 

The depth-integrated, time-averaged equations are derived from the Reynolds equations for con­

servation of mass ^ ^ 

^ + ^ = 0 (3) 

and momentum Q i Q i / a a \ 
du0 dugup dujsw _ 1 dp I fOTgp OTzp\ / . N 

dt dxc, dz pdx0 p \ dxoc dz 

dw duaW dw^ _ dp 1 fdrp^ dTzz\ 

' d t ' ^ ~ d ^ ^ ~ d 7 ~ ~ ' ^ d ^ p \ d x p d z ) 

Here Xa, z are horizontal and vertical coordinates, respectively; up represents the total particle 
velocity in the horizontal direction; w, the vertical component of the total velocity; p, the pressure; 
and Tap, the turbulent shear stresses. Figure 1 shows the definition of the geometrical quantities 
used throughout this paper. 

The derivation of the short-wave-averaged equations requires the following series of operations: 

e The continuity equation and the horizontal components of the momentum equations are 
integrated from the bottom -ho to the instantaneous free surface ( . 

e This yields terms of the form ƒ ^ , ƒ gf^, etc., in the equations. Leibnitz's rule is used to 

transform those terms into terms of the form ^ ƒ, ^ ƒ, etc. 
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e These steps leave a number of other terms in the equations evaluated at —ho and (• Invoking 
the exact boundary conditions at the bottom and the free surface essentially eliminate all 
these terms except for the normal and tangential stresses at the boundaries. 

• Integrating the vertical momentum equation from the free surface to a level z gives an 
expression for the pressure p at level z. This can be used to eliminate the pressure from the 
horizontal momentum equations. 

e Finally, the equations are averaged over the short-wave period. In describing the result of 
this process we use to indicate time averaging, which means that 

1 f'+T 

where T is the wave period. 

y , -dt (6) 

2.3 T h e Equat ions 

Before eliminating the pressure, the depth-integrated equations of continuity and momentum can 
be written as 
Continuity 

1 + ^ = 0 (7) 

where Qa is the total volume flux through a vertical section defined by 

= / Ua dz (8) 
J-hc 

Momentum 

d , Ö , , d f , 1 ,2 \ 

^ ö l + 'd^aU ^"""'^ " " " ^ ^ + 0 ^ - 2"'' ) 

= P5(C + M ^ + ? - ? (9) 

The velocity Ua represents the total instantaneous (horizontal) fiuid velocity at a point, and 

the vertical distribution of this velocity has not yet been specified. r | and are the time-

averaged surface and bottom shear stresses, respectively. As before, are the turbulent shear 

stresses (Reynolds stresses). 

To bring the momentum equation into a more useful form, we separate the total velocity 
(ua, w) into a "current" and a short-wave component by letting 

Ua{= = Va + Uyja \ w{= ^uT") = (10) 
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Here u^a , are the short-wave components which have 

, = 0 below wave-trough level" (11) 

and Va is the current. represents turbulent averaging of the quantity. I f the short waves are 
irregular, we wil l expect the "current" to be varying with time. Va(t) may then be equivalent to 
a long wave particle velocity. 

We also introduce the radiation stress S'^^ defined by 

{pUyjaUy,(3 + pêap) dz - 6af3-pgh? 
-ho ^ 

(12) 

The momentum equation can then be written^ 

Ö— / yaVpdz 
OXa J-ho ^di^^^^'dXaJ-h.""'^'^ ' ''dXah 

d 
+ I "^vJoyH + UwpVadz 

+P9{C + h o ) ^ ^ 
8X0 dxa J-ho 

tdz 

- r l + r | = 0 (13) 

In this form of the equation, we have grouped the S'^^ term, which is the wave contribution, 
and the Tap term, which is the turbulent contribution to the momentum flux. This grouping 
emphasizes the parallel mechanism behind these two terms, one caused by organized (wave) 
fluctuations, the other by disorganized (turbulent) fluctuations. In fact, in some texts this is 
further emphasized by using the same letter "5" for the two contributions 

Wave radiation stress S'ap 

Turbulent "radiation stress" S'ap — - f Tapdz 
J—ho 

I t is important at this point to emphasize that the only approximations that have been made 
in the derivation of these equations, apart from the usual approximations associated wi th fluid 
flow, are associated with neglecting vertical components of bottom and surface stresses (gently 
sloping boundaries). 

Depth Uniform Currents 

Equation (13) allows the currents to vary over depth, and in fact we know today not only 
that nearshore currents normally do so but that this depth variation is an important part of the 
mechanism that controls the horizontal distribution of nearshore circulation. 

^The derivation of this equation for the depth-uniform currents is given by Mei (1983). However, he finds it 
necessary to require Vho small to obtain the result because of an inappropriate use of the result for the pressure 
at an arbitray (i-independent) level z to determine the pressure at the (x-dependent) bottom level —ho. 
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However, making the assumption of depth-uniform currents allows us to simplify ( 2 2 ) some­

what. Introducing the assumption that VQ., Vp are independent of z ( 2 2 ) takes the form 

7 t + è + - - - - " f + ^ 1 - ( - ) 

valid for depth-uniform currents only. In this form of the horizontal momentum equation, the 

radiation stress Sap is given by ( 2 3 ) 

The form (14) is equivalent to the momentum equation used by Phillips with addition of the 

turbulent stresses TQ.̂ , and the horizontal components of the surface stress and the bottom 

shear stress r ƒ , all of which are neglected by Phillips. 

Different Forms of the Momentum Equation for Depth-Varying Currents 

The momentum equation ( 1 3 ) is written in terms of Va, which is the current defined in the 
traditional way: the net velocity at any point below wave-trough level over and above the purely 
oscillatory wave motion. For the general case of depth-varying currents, i t is convenient to split 
this current into a depth-uniform and depth-varying part, and i t turns out that i t is relevant to 
consider two different ways of doing this. 

One way of splitting the current is by defining a Vi such that 

Va=^ + V^a{z) ( 1 5 ) 

Closer inspection shows that 

ho 
Viadz = -Q^i ( 1 6 ) 

I f we introduce this definition into ( 1 3 ) , the momentum equation can be written as 

+p-a— / UwaVip + u^pViadz + pg{C+ho) 

+ 
d 

dXa 

dxp 

S'aP ~ j 'Tapdz 
J—ho 

r | + r ƒ = 0 ( 1 7 ) 

Alternatively, the current may be divided by defining Vma by 

V^a = ( 1 8 ) 
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where 

Qwa = / u^a dz • (19) 
J-ho 

so that the depth-varying part, V^, of the current can be defined by 

Va^V^a + Vdaiz) (20) 

Vdadzr.0 (21) 
J-ho 

I t may be verified that 

Then (13) may be written as 

'm^^ + 'd^^-JT^ + 'd^a J-ho ^^""^^'^ 

+P-^ f UyjaVdp + u^pVdadz - f pg{C, -I- ho) 
aXaJ Ct 

+ 

'dx 

dXa 
Sap - I Tapdz 

J-ho 
-Tl + ri=^0 (22) 

where Sap is a radiation stress defined by 

O C/ QwaQwfS /r)Q\ 
Sap = Sap - P l ^ - i j 

Discussion. 

Before we discuss the differences between the forms of equations (17) and (22), i t is worthwhile 
to discuss the role of various terms in these equations. In both these equations, the first term 
represents the temporal acceleration and the second term represents the convective accelerations. 
The dC/dxp term represents the pressure gradients; Sap and Tap terms represent the interaction 
between the mean flow and the short waves and turbulence, respectively, represents the 
applied surface shear stress and the bottom stress. Finally, the two integral terms represent 
current-current and wave-current interaction terms. 

We see that the two definitions of how the current is divided into a depth-uniform and a 
depth-varying part are closely connected to two different definitions of the radiation stress, the 
first of which is the definition given by (12), the second is given by the expression (23). In both 
cases the nonlinear interaction terms have been separated into a contribution which is equivalent 
to the only nonlinear term for depth uniform currents in (14) and a set of integrals that only 
contain contributions from the waves and the depth varying part of the currents. 

We notice that the two forms are equivalent in the sense that the structural forms are exactly 
the same. The differences only occur in the definitions of the radiation stress and the way in which 
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the current has been divided into a depth-uniform and a depth-varying part. The form (22) and 
the variables used in that equation correspond to a generaUzed version of the form introduced by 
Phillips (1977). Similarly, (17) resembles the momentum equation given by Mei (1983) generalized 
to non-uniform currents. The algebraic similarity between (12) and Mei's radiation stress is 
somewhat formal, however, because Mei uses a different definition of Uwa and also neglects the 
QwaQwp/h -term. Mei defines the wave particle velocity by requiring ji}^^ u^,Meidz = 0. This 
implies that the return current is included in his definition of the wave particle velocity. Hence, 
in our notation, Wtu,Mei = - Qwjh. Quite paradoxically, i t turns out that substituting this into 
Mei's expression for the radiation stress we obtain an expression identical to (23). Or, in other 
words, the effect of using a different wave particle velocity in the definition of the radition stress 
(as Mei does) is balanced by the omission of the QwaQwp/h -term. 

Comparing with (23), we see that the difference between the equations (17) and (22) and 
the equivalent equations for depth-uniform currents is represented by the current-current and 
wave-current interaction terms 

p - ^ t ViaVipdz + p-^ u^aVip + UnjpViadz m(17) (24) 
dXa J-ho OXa JCt 

and _ 

P ^ f ViaVipdz + I u^aVdp + u^pViadz m(22) (25) 
OXa J-ho OXa Jit 

These terms essentially represent the contribution from the depth variation of the current 
velocities. Little is known about the importance of these terms except that i t is from these terms 
the dispersive mixing originates; this dispersive mixing appears to give important contributions 
to the lateral mixing for longshore currents (see section 5.2 for further discussion). 

Another issue which needs some discussion is the choice of Ct, the wave-trough level, as lower 
l imit for the integrations around the surface. This clearly is a logical choice because above that 
level there is only water part of the time so that i t becomes questionable how the mean velocity 
(the current) should be defined in that region. I t is also clear, however, from (13) that this choice 
does not free us from identifying what is wave and what is current above C<, since i t has not been 
possible to write the integral above that level in terms of the total velocities only and at the same 
time extract the wave part (which is part of the radiation stress). 

Hence i t is necessary to separate the flow above trough level into wave and current part no 
matter which choice of integration l imit we make. I f we use C as the l imit for the second integral 
in (13), i t is necessary to remember that to get an equation similar to (13) with C as the lower 
integration limit i n the second integral i t wi l l be necessary to assume that the u^a we then define 
between G and C satisfies (11), which means assuming defined also when there is no water 
above the trough. In order to generate the correct integral, the current Va given by (10) would 
then have to be defined as the difference between the total (actual physical) velocity and the wave 
component. This implies that during the period where there is no water the current would be 
minus the assumed wave component. 
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In contrast to this, using (t as the lower limit of the second integral in (13) allows us to define 
both the wave and the current component of the total velocity only during the period of time 
when there actually is water. This is our reason for choosing (* as the integration l imi t . As 
mentioned earlier, however, we still have to make the separation between wave and current part 
whether we choose (t or ( as integration limit . We also emphasize that (17) and (22) are stil l 
exact in the same sense as (13). 

2.4 T h e E n e r g y E q u a t i o n 

The energy equation for the combined wave and current motion is needed in wave-averaged models 
to determine the wave height variation and it can be derived by the same depth integration and 
time-averaging processes outlined for the momentum equation. In its general form, the energy 
equation is even more complicated than the momentum equation (13). 

For a derivation for the case of depth-uniform currents, reference is made to Phillips (1977). 
In this general form, the energy equation includes a number of terms describing the interaction 
between the short-wave motion and the currents/long wave motion. These current terms, however, 
are usually of minor importance for the simple applications discussed here. If restricted to the 
wave motion only, the energy equation simply reads 

^ = V (26) 
OXa 

Here, Efa is the energy flux of the short waves in the Xa direction and V is the energy dissipation 

per unit time and area of bottom. 

The energy flux for the waves is an abbreviation for a number of terms that emerge through 

the derivation of the equation. I t is defined as 

For sine waves, (27) yields the well known result 

Ef = -^pgcH\l + G) (28) 

where G = s7h2kh dissipation of energy V can be described by the work done by internal 
(turbulent) stresses, but this does not lead to a viable means of determining V f rom our present 
knowledge of the wave motion. 

Note that in (26) energy dissipation corresponds to V < 0. The practical evaluation of Ef^a 

and V is discussed in more detail in Sections 3. 
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2.5 Wave-Averaged Quanti t ies 

As we have seen in equations (7), (22) and (26) describing the wave generated currents and long­
wave phenomena, the effects of the short waves are represented by the volume flux, Q^, due to 
the wave motion; the excess momentum flux or radiation stress, S^p; and the energy flux, 
An essential aspect of the definitions of these quantities is that they are exact in the sense that 
i f we substitute exact short-wave expressions for the velocities and pressures in these definitions 
then we get the exact results for Q^, Sap, and The difiiculty of course is that we do not 
have such exact results for the short-wave motion, in particular in the surf zone. Therefore, i t is 
important to realize that the approximation used instead for the short-wave motion is one of the 
major sources of inaccuracy in the prediction of nearshore circulation. An additional, important 
wave-averaged quantity is the energy dissipation V caused by the wave breaking. 

To be able to predict steady nearshore circulation and long-wave phenomena from the averaged 

models in the surf zone, these quantities must be expressed in terms of wave height, wave period, 

water depth, etc. 

The Radiation Stress 

The radiation stress is by far the most complicated of these quantities. For reference, i t is 
worth noticing that i t can be written in several useful forms. Thus, i f we eliminate the pressure 
from (12) using the vertically integrated vertical component of the momentum equation, we get 

Sai3 = P u^aUwp - ^ap wl + dz + -pgr]^ - p r (29) 

where w' is the vertical component of the turbulent velocity fluctuations. 

In the vertical plane of the direction of wave propagation the wave-induced particle velocities 

are 

n = K ^ v l f l ' (30) 

w = w^ui (31) 

and the mass flux is 

Qw = [Qlx + Q l y f ^ (32) 

We can then define (the scalars) 

= pu^dz-p^ (33) 
J-ho h 

so that 

- pw^+w'^dz+ ^pgT]^ (34) 
J-ho ^ 

Sr = Sm + Sp (35) 
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'xy 

X 
'yx 

Figure 2: Positive directions for the radiation stress components. Note that the positive directions 
for the radiation stresses are opposite to the normal positive directions for stresses. 

represents the radiation stress on a vertical surface with the normal vector in the direction of 
wave propagation. 

The four components of Sa/s that represents the radiation stress elements parallel and perpen­
dicular to the X, y axes can then be written 

Sap = Sm eap + SpSap (36) 

where 

I cos^a,^ sina^„cosQ;^ 1 . . 

^ sm aw COS aw sm a^ 

Hence, from the results Sm and Sp for the radiation stress components on a surface perpen­
dicular to the direction of wave propagation, i t is possible to determine the radiation stress Sap 
in any direction. 

Notice that the negative sign in front of the Tap term in (13) indicates the difference between 
the positive sign on the UaUp term in the traditional definition (12) for Sap and the negative 
sign on the UaUp term in the definition normally adopted for Tap. This implies that the sign 
convention for Sap and T^p is opposite—a point worth bearing in mind when checking direction 
of terms in the equations. The positive directions are shown in Fig. 2. 

Dlmensionless parameters for wave-averaged quantities 

Without loss of generality, in the wave direction we may write the wave parameters in the 
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following way 

Qw = c ^ B q (38) 

Sr = pgH'P (39) 

Ef = pgcH^B (40) 

V = (41) 

Essentially, these expressions define dlmensionless parameters Bq, P, B and D for the four 

wave-averaged quanties that appear in the depth-integrated, short-wave-averaged equations. In 

a simplified manner, one can say that the dimensional components h, H, T and c in (38)-(41) 

measure the size of the wave motion, whereas the dlmensionless parameters are measures of the 

shape of the wave motion (understood as surface profile, velocity and pressure fields, etc.). 

One of the important questions is how accurate are the approximations (such as sine wave 

theory) normally used for calculating these quantities? This is discussed in section 3.4. 

2.6 T h e L o c a l Wave-Averaged Equat ions 

The local wave-averaged equations are essentially the Reynolds equations (4) in which we split the 

total velocity Ua into a short-wave and a current component by substituting (10) for Ua followed 

by a short-wave averaging. The result for the current motion can be written (see Svendsen & 

Lorenz, 1989) 

~ W ^ ~ d ^ ^ ~ d r ^ dxa ^ dz ~ ^dxp^ pKdxa^ dz ) ^ ' 

Usually, the turbulent shear stresses T^p in this equation are modelled by an eddy-viscosity 

assumption and i t is also assumed that W is negligible. The resulting equation reads 

dUp dUglJp djuwaUwp) - wl duwpww _ 

dt dxa dxa dz 

d( 1 d ( (dUa ^dUp\\ ^ 1 d f^dUp\ 

-^dTp -^-pd^aV'\d^^d^))^~pd'^ \ ' ^ ) ^ ^ 

Special forms of this equation have been solved for the vertical distribution of the current 

velocity Up. Thus the simplest case of steady, one-dimensional cross-shore circulation on a straight 
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beach leads to a description of the undertow current, see Section 5. Also discussed in that 
section are other special cases, such as the vertical distribution of the longshore current on a long 
straight beach and the nonlinear interaction between cross-shore and longshore currents (leading 
to the concept of dispersive mixing). Section 5.4 also includes a brief discussion of the boundary 
conditions used for solving (43). The time-varying velocity profiles in infragravity surf-beats (the 
special cross-shore form of infragravity waves in general) are discussed in Section 6.5. These 
results are all derived as solutions to special cases described by (43). 
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OUTER REGION INNER REGION 
RUN-UP 
REGION 

Rapid transitions of 
wave shape . 

Rotfier slow change in wave shape 
Front part resembles (periodic) bore. 

No "sur ­
face roller.' .It 

Point of 
breaking 

MWS 

Figure 3: A scliematic description of tlie wave characteristics in the surf zone [from Svendsen et 

al. (1978)]. 

3 The Short-Wave Motion 

3.1 Introduct ion 

In this section we review our present understanding of surf zone waves. T i l l recently, our under­
standing of surf zone waves was entirely qualitative and limited to describing patterns observed 
in laboratory and field experiments. These are reviewed in Section 3.2. As seen from the equa­
tions derived in the previous section, predictions of short-wave-averaged motions in the surf zone 
require information about the integral quantities associated with surf zone waves. Theoretical 
and empirical results for these quantities are discussed in Section 3.3. The turbulence generated 
by the breaking undoubtedly plays a crucial role in the dynamics of the surf zone, and this topic 
is reviewed in Section 3.4. Finally, recent contributions to modelling breaking waves in the time 
domain are discussed in Section 3.5. 

3.2 Qualitat ive Descr ipt ion 

Figure 3 shows a schematic of the wave motion from the breaker point to the shoreline of a gently 
sloping beach as most l i t toral beaches are. The way in which the waves break depends on the 
wave characteristics (deep-water wave height, wave period) and the bottom slope. The patterns 
range from the relatively controlled "spilling" to the violent and relatively sudden "plunging" 
breaker type (Galvin 1968, 1972). 

In any type of breaking, there wi l l be a rapid and substantial change in the shape of the wave 
immediately following the initiation of breaking. This happens over a relatively short distance 

16 



f B^— 

-T 1 1 T—I I I 

-i-e'i i i-"-f44 

•••i-e4-'4 |-4-f-f 
•ri-o-i fy-i-i-j" 
lp \ I 1\ i i I 
• f - ^ l I [••4 ' ' 

i o ' i M i ' 

-l-O-i 4 i"4" 

\4> 

1/s 
1 2 3 4 8 10 20 30 100 

Figure 4: Empirical breaking criterion for solitary waves on a plane slope (ful l line), s is the 

bottom slope, Ho is the height of the wave generated at ho. [from Gril l i et al. (1994)]. 

of 8-10 water depths after the breaker point, and this region has been termed the "outer" or 

"transition region" (Svendsen et al, 1978). 

Shoreward of the transition region, the waves wil l change much more slowly. In this region, 
the broken waves have many features in common with bores. This is the so-called "inner" or 
"bore region" which stretches all the way to the shore (or, i f the breaking occurred on a longshore 
bar, t i l l the waves stop breaking by passing into the deeper water shoreward of the bar). 

On many natural beaches, the foreshore is much steeper than the rest of the beach. In the 
run-up on the shore on such beaches (termed the swash zone), the wave motion often shows a 
different pattern from that of the rest of the surf zone. Here the waves sometimes turn into 
'surging' breakers which represent the transition stage to no-breaking/full-reflection. 

I f the slope becomes sufficiently steep, the waves stop breaking and fu l l reflection occurs. The 
slope at which this transition occurs has not been properly studied for periodic waves, but the 
breaking/reflection of solitary waves on uniform slopes has been studied intensively (Synolakis 
1987, Synolakis & Skjelbreia, 1993, Grill i et al, 1994). Synolakis (1987) provided experimental as 
well as analytical results based on Boussinesq theory. The very accurate computations for solitary 
waves using the Boundary Element Method (BEM) (Grill i et al. 1994) indicate that solitary waves 
break on a bottom slope hx i f the initial height Ho of the wave satisfies the relation 

^ > IQ.^hl (44) 
no 

where ho is the water depth in front of the slope. (44) is an empirical result based on the 
computations, and Figure 4 shows the results. 

The Transition Region 

The literature about the transition region is almost entirely descriptive and based on photo-

17 



graphic and optical methods. Basco & Yamashita (1986) give an interpretation of the flow based 
on such information particularly for a plunging breaker and show how the overturning of the wave 
creates patterns that look chaotic but are nevertheless largely repeated from wave to wave. Simi­
lar interpretations are given by Tallent et al. (1989). Janssen (1986) has mapped the variation of 
the free surface in this region through high speed video recordings of fluorescent tracers. Finally, 
Okayasu (1989) gives detailed measurements of the entire velocity field in the transition region 
from experiments using laser doppler velocimetry. The results have been obtained by repeat­
ing the same experiments many times and each time averaging over several waves and therefore 
cannot quite be regarded as a picture of the instantaneous velocity field in a particular wave. 

The Bore Region 

In the bore region, the information about the wave properties is also almost entirely empirical. 

I t is only recently that predictive models of the actual wave motion have started to appear in the 

literature, and so far they can only predict the wave surface profiles. These models are discussed 

further in Section 3.5. 

Knowledge about the waves in this region is far more quantative, however, than for the outer 
region. Among the experimental results for the bore region, i t can be mentioned that Svendsen 
et al. (1978) found that the wave surface profiles develops a relatively steep front with a much 
more gently sloping rear side. The shape of the rear side of the wave wil l change from a concave 
towards an almost linear variation as the waves propagate shoreward while continuing to break 
so that near the shore of a gently sloping beach the wave is close to a sawtooth shape. Figure 5 
shows the tendency. 

Measurements of velocity fields using laser doppler velocimetry in propagating waves have been 
reported by Stive (1980), Stive & Wind (1982), Nadaoka & Kondoh (1982), Nadaoka (1986), and 
Okayasu (1989). In all cases, however, the measurements are limited to the regions away from 
the crest because none of the measuring techniques available today make i t possible to measure 
velocities in the highly aerated region near the front of the breaker. That means that wave-
averaged quantities such as radiation stresses, Sr, and energy flux, Ef, which get significant 
contributions from those regions, can only be determined with limited accuracy on the basis of 
such measurements. Stive & Wind (1982) give a detailed account of the problem. A further 
discussion of the available results is given in the following subsection. 

3.3 Theoret ica l and E m p i r i c a l D a t a for Surf Zone Waves 

In most cases, linear (or "sine") wave theory has been used to calculate the wave-averaged quan­
tities also inside the surf zone in spite of the fact that the breaking waves are far from sinusoidal 
in shape and are also not of small amplitude. The wave model used by Svendsen (1984a) ac­
knowledges that surfzone waves are non-sinusoidal, long waves (length > depth) and especially 
accounts for the fact that in breakers a volume of water (the surface roller) is carried wi th the 
wave at speed c. The situation is illustrated in Fig. 6. 
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Figure 5: The development of wave profiles in the surf zone [from Svendsen et al. (1978)]. 

Figure 6: An assumed vertical variation of the horizontal velocity in surf zone waves [from Svend­
sen (1984a)]. Note that i n this model the efi'ect of the 'roUer' is incorporated by assuming that 
the roller is carried wi th the wave speed, c. 
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Bo defined as 

Using tliese assumptions, i t is found that in the wave direction the radiation stress is given by 

Sr = Sm + Sp • (45) 

where 

- P3H'{BO + ^ , ^ ) (46) 

Sp = ^pgH'Bo (47) 

= pgcH^[Bo + \ 4 , ^ ) (48) 

Bo = ^ (49) 

A is the area of the surface roller in the vertical plane. A was measured by Duncan (1981), 

and Svendsen (1984a) found the approximation A/H"^ - 0.9 constant over the surf zone based 

on Duncan's data. Later, Okayasu (1989) suggested that a more accurate expression may be 

A/HL = 0.06. 

The energy dissipation due to breaking is often assumed equal to the dissipation in a hydraulic 

jump or bore of height H. This was first suggested by LeMehaute (1962), and has been widely 

used since then (e.g., Miller & Barcilon 1978, Thornton & Guza 1983, Svendsen 1984a; Battjes and 

Janssen (1978) used i t in an approximate form). Then the dlmensionless dissipation D becomes 

D = î bore = (50) 
dt dc 

where dt and dc are the depths under the wave trough and wave crest, respectively (Svendsen et 

al, 1978). I t turns out that this relationship can be expressed in terms of the wave height to 

water depth ratio ^ and the ratio r]c/H where rjc is the crest elevation. For most surf zone waves 

(50) gives values of î bore ~ 0.9 (Svendsen, 1984a). 

Thus the characteristics of the wave motion used as parameters in this theory (in addition 
to A ) are Bo, the wave phase velocity c, and t]C/H. For sine waves. Bo = 1/8 = 0.125 and 
rjc/H — 0.5. However, all of these are physical quantities that can be measured fairly easily. 
Hansen (1990) analyzed original data from most of the detailed laboratory experiments available 
and developed empirical representations for those parameters that, in most cases, f i t the data 
remarkably well. 

Dally et al (1985) observed that i f the ratio of wave height to water depth decreases below 

a certain level (roughly between 0.35 and 0.40) real waves wi l l stop breaking. They therefore 

asssumed that the energy dissipation at any point is given by 

D = ^ { E c , - iEc,)s) (51) 
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where K is a dlmensionless decay coefiicient. The value of {Ecg)s is chosen so that the dissipation 
D becomes zero when the wave height H decreases to or below approximately 0.40 times the 
water depth. This approach is particularly realistic on beaches with bars or shoals where the 
ratio of wave height to water depth may decrease below the threshold when the waves propagate 
from shallower into deeper water, e.g., shoreward of a bar. 

Empirical Results for Surf Zone Waves 

As discussed previously, a satisfactory wave theory does not exist for surf zone waves. In 
consequence, almost all of our knowledge about surfzone waves comes from analyzing observations 
of breaking waves. Presently, empirical results are available for the wave celerity and some of the 
integral quantities (radiation stress, energy flux, and rate of energy dissipation). These results are 
briefly discussed below. Clearly, an accurate estimation of these quantities is crucial for proper 
quantitative modeling of surf zone circulations. 

The celerity of surf zone waves has been analyzed by Svendsen et al. (1978) and Thornton & 
Guza (1982). Svendsen et al. analyzed the celerity of regular waves in a laboratory and found i t 
to be somewhat higher than the shallow-water prediction (c = ^/gK). Thornton & Guza measured 
the wave celerity in a natural surf zone. They showed that well oifshore of the surf zone (in 7m 
water depth) the measured speed agreed well with the predictions of hnear wave theory. Inshore 
of this location, however, they found marked discrepancies between the measurements and linear 
theory predictions. In particular, they found that in the surf zone and just offshore the wave 
celerities showed weak amplitude dispersion and almost no frequency dispersion. 

The energy dissipation in breaking waves has been analyzed by Svendsen et al. (1978) and 

Stive (1984). Both studies found that the energy dissipation in breaking waves is somewhat higher 

than that in a bore. 

Recently, Svendsen & Putrevu (1993) analyzed a number of laboratory measurements to de­
termine the variation of thenondimensional radiation stress (P) , energy flux (B), and energy 
dissipation ( D ) inside the surf zone. As an example, Figure 7 shows results for the dlmensionless 
radiation stress P for different relative bottom slopes represented by 

the value at the breaking point of the slope parameter mentioned earlier, hx is the bottom slope 
(constant) in the experiments, L = cT the wave length, and hB the water depth at breaking. Also 
shown (for comparison), in Figures 7 is the P value of 1/8 corresponding to the linear long wave 
theory. 

Several conclusions were drawn from the results presented by Svendsen & Putrevu: 

1. First, the (not very surprising) conclusion that sine wave theory is inappropriate as approx­

imation for P (and hence B). 
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Figure 7: Empirically determined cross-shore variations of the nondimensional radiation stress P 
[from Svendsen & Putrevu (1993)]. The solid line in these figures represents the predictions of 
linear long wave theory, curves marked S & W are based on the experiments by Stive & Wind 
(1982), the curves marked SxCx on are based on the experiments of Okayasu (1989), H & S is 
Hansen k. Svendsen (1984), and Visser x is experiment x from Visser (1982). The first four figures 
represent four intervals of values for Si namely: a) S}^ < 0.4, b) 0.4 < Sb < 0.5, c) 0.5 < 5^ < 0.85, 
d) 0.85 > 56. 
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2. Though the variation of the wave properties such as radiation stress, Sap, and energy flux, 
Ef^a, clearly depend on the variation of the wave height (the most important parameter), 
the variation of the wave shape represented by P (and B) is also important for the correct 
prediction of radiation stress and energy flux. 

3. I f the breaking were almost equal to that in a bore, we would have D ~ -Dbore, that is, 
D 1. In most cases, the actual dissipation is substantially larger (from 50% to several 
hundred percent). 

The Surf Similarity Parameter 

The empirical results for the short-wave-averaged quantities were presented above in terms of 
the beach slope parameter 5" (introduced in Section 1). An alternative parameter, the so called 
Surf Similarity parameter ^, has also been frequently used in the surf zone. I t is deflned as 

where Lq is the linear deep water wave length. This parameter was first introduced by Irribarren 
& Nogales (1949), and the derivation modified by Battjes (1974). The name of this parameter 
is somewhat misleading, however, because i t is derived on the basis of a situation with standing 
(rather than breaking) waves on a steep beach with fu l l reflection, and i t is (somewhat heuristically 
i t seems) assumed that the (standing) waves break at the first node from the shoreline. The depth 
at that node is then used as a characteristic depth which is used to determine the breaking wave 
height. 

I t is evident that this situation has lit t le resemblance with the wave motion in an actual surf 
zone where waves are propagating and breaking at a depth which is more a function of what 
happens seaward of the breaking point than of the distance to the shore. It is therefore surprising 
that this parameter has been so widely successful in classifying surfzone conditions. I t may partly 
be due to the fact, that on a plane beach i t has been shown that a special version of the Surf 
Similarity parameter = / , is related to - the value of the Beach Slope parameter at 

the breaking point - by the expression 

Sb = 2.30^ (54) 

(Svendsen, 1987). Thus, since H at the break point is often close to jffo, evaluating ^ closely 
corresponds to evaluating the (more appropriate) parameter Sh- This could be part of the reason 
for the meaningful results obtained using ^. 

Whereas S}, may be the appropriate sustitute for ^, the general parameter S has another 
advantage in addition to being based on assumptions closely related to actual surfzone conditions: 
i t is a local parameter, defined at each point in the surf zone. Hence i t can describe the situations 
on arbitrary beach profiles. 

Thus, in the present paper we have decided to use S and as surf zone parameters. 
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3.4 B r e a k e r - G e n e r a t e d Turbulence 

TaTbulence 

In a surf zone wave the separation of measured velocities into "wave" and "turbulent" compo­
nents is not straightforward. In steady flows, the turbulent component of the velocity is usually 
defined using an ensemble-averaging procedure. In principle, an analogous procedure could be 
used to define the turbulent component in monochromatic surf zone waves - averaging the velocity 
from the same phase from successive waves would lead to a quantity equivalent to an ensemble 
average. However, this method is far from being trivial. I t turns out that even in well controlled 
laboratory experiments the wave period of initially monochromatic waves does not remain con­
stant as the waves propagate in the surf zone. This makes the identification of the phase of the 
wave motion problematic. As can be easily appreciated, the situation is far more complicated in 
a natural surf zone where the waves are irregular. A completely satisfactory method of separating 
the velocity in surf zone waves into "wave" and "turbulent" components has not been developed 
yet. I t is important to keep this in mind while considering the results described below. 

Peregrine and Svendsen (1978) found experimentally that the turbulence generated by the 
breaking, while initiated at the toe of the turbulent wave front, spreads downwards and continues 
to do so long after the breaker has passed. They speculated that the spreading mechanism is 
similar to that in a shear layer. Battjes & Sakai (1981) presented LDV measurements for the 
velocity field underneath the breaker generated by a hydrofoil positioned some distance below 
the water surface in a steady current. Their results for the rate of variation of the turbulence 
indicated that the flow has more similarities to the flow in a wake. The truth is probably that 
the turbulence generated by wave breaking and its dispersion is different from all other turbulent 
phenomena. 

Measurements in a steady breaker behind a hydrofoil were also made by Duncan (1981) who 
used photographic techniques to detemine the extent of the roller, which is the recirculating mass 
of water created by the highly turbulent flow down the front of the slope of the breaker. Lately, Lin 
& Rockwell (1994) have used the technique of Particle Image Velocimetry (PIV) to determine the 
entire velocity fleld beneath a similar breaker. They also obtained information about the vorticity 
field which shows that the maximum vorticity occurs in a region positioned approximately where 
we would expect to find the dividing steamline to the surface roller. Above that (in the 'roller'), 
the vorticity is very weak. They concluded that the instantaneous velocity fields do not show clear 
signs of a vortex type of surface roller (though the present authors seem to find indications of such 
a roller in Fig. 2a in the paper). I t is obvious, however, that the strong turbulent fluctuations 
totally dominate over the weak mean flow in the roller region, and hence the roller structure can 
only be expected to show up in the picture of the mean velocity field. 

For completeness i t is noted that not too far from the free surface the velocities under hydrofoil-
generated breakers used by Battjes & Sakai (1981) and Lin & Rockwell (1994) wil l probably closely 
resemble those in a (deep water) breaking wave, whereas at some distance farther down from the 
surface the fiow is likely to be disturbed by the flow around the hydrofoil and hence be quite 
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different from at least what we find in a surf zone breaker. 

Laboratory measurements of the distribution of turbulent intensities below the M W L in peri­
odic waves were reported by Stive & Wind (1982), Nadaoka & Kondoh (1982), Nadaoka (1986), 
and in more detail by Okayasu (1989) and Ting & Kirby (1994). Thornton (1979) and George et 

al. (1994) reported similar measurements in the field. 

Data for breaker-generated turbulence has also been provided by Hattori & Aono (1985) 
who found that the turbulent energy spectra have large proportions of the energy at frequencies 
only somewhat higher than the wave frequency indicating the existence of large scale vortices. 
Nadaoka (1986) and Nadaoka et al. (1989) identified a regular system of vortices with axes sloping 
downwards from the free surface and developing at some distance behind the front. 

Battjes (1975) and later Svendsen (1987) analyzed turbulent kinetic energies under breaking 
waves. Battjes analysed the value of the eddy viscosity under breaking waves based on the 
assumption that ut = iVk and related k, the turbulent kinetic energy, to the energy dissipated 
in the breaking process. Svendsen found that most of the energy is actually dissipated in the 
crest above the M W L . George et al. (1994) analysed data from field experiments and compared 
the results for the turbulence intensities with the laboratory data. They found that while the 
intensity of the turbulence in the field was reduced relative to laboratory data, the characteristics 
of the turbulence remain the same. 

The details of the highly turbulent area at the front (the so-called "roller") were analyzed 
by Longuet-Higgins & Turner (1974) who assumed that air entrainment played a vi tal part in 
maintaining this roller in position on the sloping front. Later results of experiments by Duncan 
(1981), and analysis such as Svendsen & Madsen (1984), Banner (1987, and Deigaard & Fredsoe 
(1989) all in various ways attribute the support of the roller to turbulent shear stresses. Longuet-
Higgins (1973) also analyzed the nature of the flow in the neighborhood of the toe of the roller 
assuming a separation point here. An alternative flow pattern with a singularity in the vertical 
velocity gradient at the toe but continuity in the shear stress was used in the model developed by 
Svendsen & Madsen (1984). 

3.5 T i m e - D o m a i n Models 

Time-domain models are models that essentially solve the hydrodynamical equations i n a form 
that can include the process of wave breaking and hence provide information about the phase 
motion. Several such models are presently in use and they are discussed below on the basis of the 
basic approximation used to derive the underlying equations. They are all based on long-wave 
assumptions such as the Nonlinear Shallow-Water (NSW) equations or Boussinesq equations, and 
i t has become increasingly evident that these representations are much more accurate than the 
nature of the underlying assumptions would lead us to believe. 

Nonlinear Shallow-Water Equation Models 
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The nonlinear shallow-water equations are based on the assumption that the characteristic 

horizontal scale A is large in comparison to the water depth h (i.e., = j < 1) and the wave 

amplitude to depth ratio 6 - Hjh is of order one. In Boussinesq terms, this means that the Ursell 

parameter TJr = = is much larger than one. This leads to equations that correspond to the 

linear shallow-water equations (equivalent to the mild-slope equation) with additional nonlinear 

terms even in the first approximation. I t also follows from the mentioned scale assumptions that in 

that approximation the pressure is hydrostatic and the horizontal velocity is uniform over depth. 

This leads to the following equations which essentially are the equations for conservation of 

mass and momentum 

| i + V , ( u ( / i + C)) = 0 (55) 

^ -f uV;,u + gVhC = 0 (56) 

where u represents the (depth uniform) horizontal velocity vector and V/ j is the horizontal gradient 

operator. Notice that in (56) the bottom friction, represented by the friction factor ƒ, can be 

included by replacing the zero on the right hand side of (56) by the term - | ^ | u | u . 

I f we disregard the bottom friction term (which is small) these equations conserve mass and 
momentum and they include no terms that represent the dissipation of energy at wave breaking. 
Hence, an exact solution to (55) and (56) wiU also conserve energy. Due to the lack of frequency-
dispersion mechanisms, they also do not have solutions of constant form: any init ial wave, no 
matter how small, wi l l steepen on its front side as i t propagates and eventually the front wil l 
become vertical as i f the wave were breaking. At that point, however, the underlying assumptions 
of course break down because the characteristic horizontal length (the length from trough to crest, 
say) is no longer large in comparison to the water depth. 

The use of these equations to describe breaking waves is then based on the fact that i f solved 

numerically by means of a Lax-Wendroff (or similar dissipative) scheme artificial dissipation is 

introduced in such a way that the steepening of the front of the wave stops just before the front 

becomes vertical. We then have a permanent-form long wave of finite amplitude for which mass 

and momentum are conserved and i t can be shown, by methods similar to the analysis of a 

hydraulic jump, that in such a wave energy is dissipated. On a constant depth with no change in 

wave form the dissipation wil l then equal the dissipation in a bore of the same height (Svendsen 

et al, 1978) (hence the relevance of the assumption that the energy dissipation in the short-wave 

averaged energy equation is equal to that in a bore, see Section 3.3). 

This method for describing breaking waves has been developed extensively in the past fifteen 

years, starting with Hibberd k Peregrine (1979), followed by Packwood k Peregrine (1980) and 

Packwood (1983) which particularly discussed the effect that the porous bed on sandy beaches 

has on the final stages of the runup process. Watson k Peregrine (1992), Watson et al (1992), 

Barnes et al (1994) have continued the exploration of the wave propagation using an alternative 

numerical method for the solution. 

Other details of the wave motion such as surface profile, particle velocities, set-up etc. have 
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also been analysed using the NSW equations from just before the onset of breaking by Kobayashi 
and co-workers who first developed the computer program IBREAK (Kobayashi et al., 1989) and 
later the improved version RBREAK (Kobayashi & Wurjanto, 1992). They have particularly 
explored the benefits of the method in the swash zone where the bottom slope is steep. This is 
particularly useful because under those conditions the motion is poorly covered by gentle slope 
assumption underlying the wave averaged models. Much of their work deals with the steep slopes 
of engineering structures. 

The strengths of this method include the following: 

1. The method is relatively simple and robust, though the time step in the integration process 
needs to be kept small enough to keep the Courant-number less than one. This becomes a 
practical problem where the water depth is small as in the runup. 

2. Being a time-domain model, i t is also capable of describing the temporal development of 
random wave motion (see, e.g., Kobayashi & Wurjanto, 1992; Cox et al., 1992, 1994). I t 
also is not restricted to a plane beach (see the same references). 

3. Properly used the results such as wave surface profiles and wave heights have remarkably 
close resemblance with observations in particular in the swash zone (Cox et al. 1992, 1994). 

4. So far these models have only been used in one-dimensional cross-shore computations. How­
ever, the equations (55, 56) apply to two horizontal directions and hence can in principle 
describe situations with obliquely incident waves and longshore variations in the topography. 
Wi th appropriate boundary conditions, the model should also be able to reproduce net flows 
in the swash zone such as currents and long-wave motion at least with some accuracy. There 
would be some doubt, though, as to the capability of these equations to correctly model 
the part of the radiation stress originating from the front of the breaking waves because the 
fronts are not accurately modelled by these equations (see below). 

The weaknesses of this method are the following: 

1. Since the model does not contain the mechanism that, in nature, balances the nonlinearity 
and resists the wave steepening (such as non-hydrostatic pressure), i t cannot predict the 
onset of breaking. The position of breaking is determined by the distance from the offshore 
boundary of the computation: the waves wi l l break a certain distance from that boundary. 
Hence the position of the offshore boundary needs to be chosen so that the model reproduces 
the "correct" (known) breaking point. For irregular waves, that may not always be possible 
for all waves in the time series. 

2. The front steepens until a certain point where the (numerical) dissipation is large enough 
and then remains frozen. The steepness of the front in that situation corresponds to a few 
times dx. Hence the actual form of the front is not represented by the model but depends 
on the choice of discretization length. 
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3. Having a deptli-uniform velocity, the model only reproduces the depth-averaged velocity i n 
the waves. (See point 4 above.) 

Boussinesq Models 

In recent years models based on Boussinesq approximations [Ur = 0(1)] have been extended 
to describe conditions similar to breaking waves. The first of these models was based on simply 
adding a dissipation term to the momentum equation in the Boussinesq model. Thus Karambas 
et al. (1990) solve the equations 

% + i-{{h + Oü) = 0 (57) 

in which a bottom friction term represented by the Chezy coefiicient C has also been included, ü 
is the depth-averaged velocity; V f , an eddy viscosity. (See also Karambas & Koutitas (1992)). 

Zelt (1991) essentially solved the same equations but on Lagrangian form and focused on the 
runup of the solitary waves. The cases with wave breaking were surging or collapsing breakers 
and he found that the agreement with measurements of the surface profiles of the waves was quite 
good though obviously the Boussinesq assumptions are not satisfied when the front of the actual 
wave turns vertical. 

A somewhat different approach was used by Brocchini et al. (1992) and by Schaffer et al. 
(1992, 1993). Both these models include the effect of the surface roller in the breaking waves. 

Brocchini et al. used the Serre equations. These equations represent the next order of approx­
imation [to 0(/ i^)] from the NSW equations in terms of the long-wave parameter fi. Hence they 
include the same dispersive terms as ordinary Boussinesq waves but assume the Ursell parameter 
t/r > 1. Brocchini et al. focused on the effect that the roller has on the frequency dispersion 
term. 

Schaffer et al, on the other hand, only included the effect of the roller in the nonlinear term. 
They solve the depth integrated form of the Boussinsq equations 

where Q is the depth-integrated horizontal velocity and the R term represents the only explicit 
effect of the surface roller. Implicit effects are included in Q, however. R is calculated f rom a 
heuristically assumed velocity distribution, which includes a representation of the roller. 
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The results of all these models show that waves become skew and decrease in height as i t is 
seen in the surf zone. In the first type of the models, however, the effect is achieved by including 
a dissipation term that essentially originates from the horizontal component of the turbulent 
normal stresses. This term is usually considered a small contribution to the momentum balance. 
The other two models (Brocchini et al. and Schaffer et al.) each use different assumptions to 
incorporate the roller effect. This seems likely to be the dominating effect that wave breaking 
has on the momentum balance. In contrast to the NSW models, the Boussinesq waves are stable 
and wi l l never develop a vertical front because, as the wave height increases towards the breaking 
height, the crest steepens, and at this stage of the process all Boussinesq models overestimate 
the dispersive effects of the surface curvature. This overstabilizes the wave and prevents vertical 
fronts from developing in the model. Hence i t applies to these models as well that they actually 
cannot predict the point at which the waves are breaking. I t must be specified (e.g., f rom the 
shape of the wave surface profile in combination with empirical information). The velocity profiles 
are quadratic in the vertical coordinate. Though this is clearly a much better approximation to 
the actual velocity variation in waves than the depth-uniform velocity in the NSW equations, i t 
still falls short of predicting the sharp increase in the velocity near the crest of a breaking wave 
(van Dorn 1976, Gril l i et al. 1994). 
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4 Bottom Boundary Layers and Shear Stresses 

Near the bed a boundary layer develops which gives rise to bottom shear stresses and locally 

generated turbulance. 

The Bottom Shear Stress 

Since the current velocity usually is weaker than the velocity amplitude in the wave motion, 

this boundary layer is essentially oscillatory in nature and its thickness is small in comparison to 

the water depth. 

Under non-breaking waves, i t is important to understand the mechanisms behind generation 
and diffusion of turbulence in the wave-current flow above the boundary layer because this sig­
nificantly influences the current motion. In breaking waves, however, the turbulence generated 
in the bottom boundary layer only dominates inside that boundary layer. In the water column 
above the boundary layer, by far the dominating source of turbulence is the wave breaking, and 
the turbulence spreads downwards from the surface usually within one wave period or less rather 
than diffusing upwards from the bottom (see section 3.4). 

As a consequence of the structure of this flow, the bottom boundary layer can be expected 
primarily to exercise influence on the flow in the main part of the water column through the 
effect of the bottom shear stress. This has particular bearing on the depth-integrated, short­
wave-averaged models as well as time domain models as the equations show [see, e.g., (13) and 
(56)]. Hence in such models we only need to establish a relationship between the mean bottom 
shear stress t§ and the current outside the boundary layer. Conversely, the current and wave 
velocities and pressure gradients determined by such models wi l l act as forcing for the boundary 
layer flow. 

Several such relationships have been developed through the solutions described below for the 
boundary layer flow. However, a practical approach introduced by Longuet-Higgins (1970) has 
been to assume that the instantaneous shear stress (i) can be expressed in terms of a frict ion 
factor ƒ by a relation of the form 

r^ = \ p f [ y a ' r Uwa{t)\Va + Uwa{t)\] (61) 

which can be considered a generalization of the relationship for the maximum shear stress in­
troduced by Jonsson (1966). [Note that the summation rule does not apply to (64) because 
|Va -I- Uy]a{t)\ is a scalar]. For weak currents and waves nearly perpendicular to the currents, this 
can (after time averaging) be simplified to the following expression for the short wave averaged 
shear stress 

T^ = ^pfUoVa (62) 

where Uo is the bottom velocity amplitude in the waves. Liu & Dalrymple (1978) studied various 
other cases of derived from (61) such as strong currents relative to the wave motion, and 
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Svendsen and Putrevu (1990) showed that in general obtained from (61) can be written 

7B=^-pfUo{VaPl+Uoa(i2] (63) 

where /3i and (i^ are functions of Uo = \uoa\ and Vh = \Va\ and of the angle p. between the wave 
and the current directions. The variable Uoa is the amplitude of the wave particle motion 

The Bottom Boundary Layer 

The motion is almost always a combination of a wave and a current motion so analysis of 
the boundary layer flow needs to include the effect of the current. Analytical theories for wave-
current interactions in bottom boundary layers have been developed by Grant & Madsen (1979), 
Trowbridge & Madsen (1984), Fredsoe (1983), Christoffersen & Jonsson (1985), Davies et al. 
(1988), all for essentially non-breaking wave conditions which flrst of all means sinusoidal or 
second order Stokes waves. Schaffer & Svendsen (1986) analyzed the effect of breaker-like wave 
motion represented by a sawtooth time profile for the velocity above the boundary layer. 

There are also numerical solutions of the boundary layer equations using one and two equation 
turbulent closure models. These, however, are to the authors' konwledge for situations with non­
breaking waves and are therefore not included here. 

One of the questions that have been raised (Svendsen et al. 1987) is whether in fact the vortices 
of the breaker induced turbulence reaching the bottom may be strong enough and of sufficiently 
large scale to momentarily and locally wash away the entire bottom boundary layer. 

Although very important, the details of the bottom boundary layer flow is one of the topics 
that we have, due to space limitations, left out of this review. 
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5 Nearshore Circulation, Short-Wave-Averaged Models 

5.1 Introduct ion 

In the present section we briefly review some of the problems studied in the past 20 years. These 
problems have been studied using short-wave-averaged modelling, and we review the progress 
made in the development of these models. At the same time, the steady nearshore circulation 
has also been subject to substantial analysis on the basis of laboratory and, particularly, field 
measurements, and some of these efforts are reviewed as well in this section. 

5.2 Recent Advances in Steady Circulat ions 

The Cross-Shore Wave Height and Set-up Variation 

As shown in Section 3,, the short-wave-averaged quantities (radiation stresses, energy flux, 
etc.) are proportional to the square of the wave height. Briefly one can say that in short-wave-
averaged models, solution of the energy equation wi l l supply information of the variation of the 
wave height, H, and hence the mass flux and radiation stress forcing, whereas solution of the 
continuity and momentum equations wil l provide information about water level variations C and 
currents Va induced by this forcing. Therefore, the prediction of the wave height, in particular 
inside the surf zone, is important for a successful modelling of all the wave-generated nearshore 
phenomena. As also mentioned earlier, this prediction is closely linked to the correct assessment 
of the nondimensional parameters P for radiation stress and D for the energy dissipation due to 
breaking. This problem was addressed in Section 3.4. Wi th these parameters known, the wave 
height follows from the energy equation. 

The simplest possible approach, however, is to utilize the observation that on a gently sloping 
beach the waves break due to the decreasing water depth maintaining an almost constant ratio 
between breaking wave height and local water depth (Munk 1949a). Thus, by this approach, the 
surf zone wave height is determined as 

H = ^h (64) 

where 7 is assumed constant. Essentially (64) replaces the energy equation (26). This assumption 
has been used extensively and can, in many cases, be justified by the fact that i t gives qualitatively 
the correct type of variation of the wave height. Examples that use (64) include the first paper 
determining the variation of setup, ( , in the surf zone (Bowen et al. 1968) and the first papers 
dealing with the cross-shore distribution of longshore currents (Bowen 1969a, Thornton 1970, 
Longuet-Higgins 1970). 

The simplifying assumption (64), however, is at variance with the fact that, at a closer look, 
the ratio of wave height to water depth in the surf zone is not constant. This was already 
discovered experimentally by Horikawa k Kuo (1966). They showed that not only does the ratio 
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decrease from an initial maximum at the breaking point but the experiments also suggested that 
on a plane beach this ratio may reach a minimum near the shoreline and then increase again. 

The first complete solution of the cross-shore variation of wave height and setup in which the 
energy equation was solved together with the cross-shore momentum equation instead of using 
(64) was given by Hwang & Divoky (1970). They used cnoidal wave theory for the short-wave-
averaged quantities in the surf zone. Later, by evaluating the short wave averaged parameters in 
the energy and momentum equations by the method described in Section 3.3, Svendsen (1984a) 
confirmed the existence of a minimum for the wave height to water depth ratio. I t turns out 
that by simply sustituting the the definitions for B and D into the energy equation (26) and 
rearranging the terms this equation can be written as the following equation for the wave height 
to water depth ratio (Svendsen et al., 1978) 

( H ) - f h + 2l + Ë±)E + ^ ( E . y (65) 
\hJx \ h 2c 2BJ h 8LB \h J 

where index x represents differentiation with respect to x. Since the only assumption used to derive 

this equation from (26) is that the waves are periodic, this equation is well suited to identify the 

various mechanisms that determine wave height variation, in particular in the surf zone. The first 

parenthesis on the right hand side represents the shoaling effect due to the variations in water 

depth which, in addition to the direct hx-tevm, comes in through the change in phase velocity c 

and in the wave shape represented by B. The second parenthesis represents the energy dissipation 

(or gain through, say, wind generation i f D is assumed > 0). I t is evident from the fact that the 

energy term is proportional to that as the value of ^ decreases through the surf zone the 

shoaling mechanism (first parenthesis) may begin to dominate which causes the above mentioned 

minimum in I * also turns out that i f B and D are independent of ^ then (65) is a Bernoulli 

equation which can be solved analytically (Svendsen, 1984a). 

One of the observations made by Svendsen (1984a) was that, in spite of the dramatic reduction 
in wave height that occurs shortly after breaking, the mean water level stays horizontal for quite a 
distance shoreward of the break point. The only possible explanation is that the radiation stress 
also stays constant which, using (43), can only happen i f the shape of the wave changes so that 
P, the non-dimensional shape parameter in the radiation stress, increases in proportion to the 
decrease in H^. This increase in P is reflected in the empirical results shown in Fig. 7. 

In parallel wi th these efi'orts towards refining the accuracy of the prediction for regular waves, 
Battjes & Janssen (1978) developed the solution of energy and cross-shore momentum equations 
for a statistical description of random waves. In this work the wave height distribution is assumed 
to be a truncated Rayleigh distribution. 

Battjes & Janssen also assume that at any given location a certain percentage of the waves 
are breaking. Offshore the percentage is zero, close to the shore 100% of the waves are breaking. 
Battjes & Stive (1985) calibrated this model using both laboratory and field data and showed 
that the model predicts the root-mean-square wave height well. The Battjes & Janssen model 
was refined by Thornton & Guza (1983). They analyzed field data for wave heights and showed 
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that the Rayleigh distribution describes the random wave height variation well throughout the 
nearshore region. Based on their observations, Thornton & Guza propose an empirical function 
for the distribution of breaking waves. Thornton & Guza also show that their model predicts both 
the root-mean-square wave height and the distribution well. The work on the transformations of 
random waves in the surf zone has been continued by Dally (1990, 1992) who only assumes that 
the waves are initially Rayleigh distributed and calculates the ensuing change in the distribution of 
the wave heights as they propagate shoreward and break. The method is based on the assumption 
that each wave represents an isolated event for which the local wave height causes a local energy 
dissipation and hence a reduction in the height of that particular wave. The percentage Q of 
waves that are breaking is one of the parameters of the model that is still being investigated. 

At the present time, i t is found that the wave-height-setup models are quite accurate for 
prediction of the wave height variation; in particular, such models that include empirical constants 
which have actually been calibrated to predict the experimental results for the wave height. The 
major inaccuracy usually occurs in the prediction of the setup, even if the delay after breaking is 
included artificially. The reason seems to be that the assumptions made about the value of P, the 
nondimensional radiation stress (in particular the use of sine wave theory), are too inaccurate. 
This is particularly unfortunate because, as (36) shows the radiation stress in any direction can be 
determined from the radiation stress of plane waves, and as (13) shows, the gradient of the general 
radiation stress is the major forcing for currents and infragravity motion in the surf-zone. Hence 
the inaccuracy of these models in predicting the cross-shore set-up on a simple, long straight coast 
really represents a similar inability to predict the proper forcing in general nearshore circulation 
problems (Svendsen & Putrevu, 1993). 

Longshore Currents 

The first solutions to the cross-shore variation of the longshore current pattern were given 
by Bowen (1969a), Thornton (1970), and Longuet-Higgins (1970). These early works clearly 
demonstrated that i t was necessary to include lateral mixing to properly model the cross-shore 
distribution of longshore currents. As a result, much effort was devoted to understanding the 
mechanisms responsible for this mixing [early discussions may be found in Inman et al. (1971), 
Bowen and Inman (1974) and Battjes (1975)]. 

In most investigations, the mixing inside the surf zone was attributed to the strong turbulence 
generated by wave breaking in that region [see, e.g., the discussion in Mei (1983), pp. 484-485]. 
The works of Bowen, Thornton, and Longuet-Higgins also suggested that i t was necessary to 
assume a level of mixing outside the surf zone that was of the same order as the mixing inside 
the surf zone. However, no explanation was forthcoming for the source of the mixing outside the 
surfzone as observations (Harris et al. 1963, Inman et al. 1971, Nadaoka & Kondoh 1982) showed 
that the turbulence outside the surf zone was very weak. 

Nearshore Mixing 

In the field, the random nature of the incident wave field leads to a time variation of the 
point at which each individual wave is breaking. This corresponds to variations in the width 
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of the forcing region for longshore currents. Thornton & Guza (1986) demonstrated that these 
variations, when averaged over some time, provide an effect that is similar to mixing. They also 
demonstrated that when the time variation of the break point is taken into account, the additional 
smoothing of the longshore current profile, by including the turbulent mixing, is minor. Thus, 
Thornton & Guza suggest that the smoothing of the longshore current profile in the field may be 
due to the random nature of the incident wave field. While this mechanism is clearly important, 
i t does not provide an explanation for the high level of mixing found in laboratory measurements 
of longshore currents generated by regular waves {e.g., Visser 1984). 

Oltman-Shay et al. (1989) identified temporal oscillations of longshore currents in the field. 
These oscillations (further discussed in Section 7) may be interpreted as a shear instability of the 
longshore current (Bowen & Holman, 1989). Such instabilities contribute a mixing mechanism 
which, under certain conditions, may be strong enough to account for the required mixing (Dodd k 
Thornton, 1990; Putrevu k Svendsen, 1992a; Church et al. 1994). However, theoretical estimates 
(Putrevu k Svendsen 1992a) as well as laboratory measurements (Reniers et al. 1994) suggest 
that i t is unlikely that these instabilities develop under laboratory conditions involving plane 
beaches. Hence, they cannot account for the mixing observed in the laboratory experiments even 
though they clearly represent an important mechanism in the field. 

Putrevu k Svendsen (1992b) and Svendsen & Putrevu (1994a) showed that the vertical nonuni-
formity of the current profiles leads to lateral mixing through a momentum dispersion mechanism. 
This mechanism is analogous to the dispersion of pollutants in a shear flow first discovered by 
Taylor (1954) and expanded on (among others) by Elder (1959) and Fischer (1978). Given below 
is a brief account of the mechanism considered by Svendsen k Putrevu. 

On a long straight coast, the cross-shore distribution of alongshore uniform, steady longshore 

currents is governed by 

C \ Id [<• 
U^V+VyjUdZ + Sxy - / Txydz 

, J pdx [ J-ho 
+ r^ = 0 (66) 

In the above, U is the undertow, V is the longshore current, and r^y is the Reynolds' stress which 

is usually parameterized as 
dVm 

= ^ ^ ^ ^ ^^^^ 

where Vm is the depth-averaged longshore current. 

The first two terms in the first paranthesis of (66) arise from the vertical nonuniformity of 
the currents and are usually neglected in longshore current calculations [see, e.g., Mel (1983, eq. 
5.3, p. 471)]. The last term in the first paranthesis is either neglected (Mel) or absorbed in the 
definition of the radiation stress (Phillips 1977). 

The fïj^^ UVdz term in (66) represents the cross-shore transport of longshore momentum by 

the cross-shore current and the J^^ u^V term represents the net cross-shore transport of longshore 
momentum by the waves. Hence, in combination, these terms represent the total cross-shore 
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transport of longshore momentum by the waves and the currents. I t is easily verified that in a 
situation with no net cross-shore mass flux these terms oppose each other and exactly cancel in 
the special case of depth-uniform longshore currents. 

Svendsen & Putrevu showed that the paranthetic term in (66) may be written as 

/ UVdz + f UwV + VyjUdz = -Doh-^ + FiVm + F2 (68) 
J-ho JCt dx 

where Dc (the dispersion coeflicient) is given by 

Dc = T t U t - r U dz dz dz (69) 
h J-ho Jz vt J-ho 

Fl and F2 are similar, but less important, coefiicients determined by the vertical structure of the 
currents. Substitution of (67) and (68) into (66) shows that the Dc term adds to the lateral mixing 
caused by the turbulent Reynolds stresses. I t turns out that for typical surf zone conditions, 
Dc > i^t- For example, Figure 8 shows typical cross-shore variations of the dispersion and 
turbulent eddy viscosity coefficients. I t is clear from this figure that Dc > f t which means 
that lateral mixing is totally dominated by the dispersion mechanism in the nearshore. 

The calculations described by Svendsen & Putrevu lead to the conclusion that the lateral 
structure of nearshore currents is controlled by the vertical structure of those currents. While this 
result is somewhat surprising, analogues of this result for the lateral spreading of contaminants 
in shear fiows are well known [see, e.g., Fischer et al. (1979), Chapter 4]. 

One of the important consequences of this result is that i t unifies (at least for the alongshore 
uniform situation) the estimates of the magnitude of the eddy viscosity in the surf zone required 
for predictions of different phenomena such as the crosshore distribution of longshore currents 
and the vertical distribution of both cross-shore circulation and the longshoe current velocities. I t 
furthermore suggests that the major part of the lateral mixing may be due to predictable nonlinear 
interactions, rather than turbulence effects which in the models of today are only described 
empirically or semi-empirically through higher-order closure models. 

A current problem in longshore current modelling 

Recently, the prediction of longshore currents on barred beaches has become a topic of intense 
research interest. The motivation for this comes from field observations showing that the strongest 
longshore current on beaches with sand bars often occurs in the trough between the bar and the 
shoreline (Bruun, 1963; Allender & Ditmars, 1981; Greenwood & Sherman, 1986; Church & 
Thornton, 1993; Smith et al, 1993; Kuriyama & Ozaki, 1993). Efforts to reproduce this pattern 
on the basis of theoretical models that assume longshore uniformity result in longshore velocity 
profiles with two maxima, one over or close to the crest of the bar and one very close to the 
shoreline (several of the above quoted references and Allender et al, 1978; Ebersole & Dalrymple, 
1980; Larson & Kraus, 1991). Various modifications based on increasing the mixing in the trough 
behind the bar or adding a turbulent transport equation have been unable to significantly change 
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Figure 8: Cross-shore variations of the dispersion coefficient Dc and the turbulent eddy viscosity 

ut (from Putrevu & Svendsen (1992b). 

this main result. [See also Church et al. (1994)]. I t is important to emphasize, however, that the 
dispersive process of mixing cannot create a maximum velocity in the middle of a steady flow. 

There have been a number of informal suggestions that the maximum in the trough could be 
attributed to longshore pressure gradients. Church & Thornton (1993) discuss this possibility. 
Based on the high level of correlation between the observed direction of the longshore current in 
the trough of the bar and the changes in the wave incidence quadrant, they argue that longshore 
pressure gradients are unlikely to be the cause of the observed longshore current maximum in 
the trough of the bar. On the other hand, recent laboratory measurements by Reniers et al. 
(1994) indicate that, under conditions of longshore uniformity, the maximum longshore current 
does occur over the bar crest as predicted by the models, not in the trough of the bar. This 
observation suggests that the longshore current maximum in the trough of the bar could be 
attributed to longshore variations (including longshore gradients in the mean water level) that 
were not adequately resolved by the instrument arrays in the field experiments. The occurrence of 
wave breaking also in the trough behind the bar (Lippmann & Holman 1992) and the occurence 
of shear waves are additional features, the effects of which yet have to be fuUy analyzed in this 
context. 

Longshore Nonuniform Longshore Currents 

Variations in the bottom topography will usually be associated with similar variations in the 
pressure (due to mean water level changes). Longshore variations of the bottom topography wil l 
therefore lead to pressure gradients in the longshore direction. The effect that longshore pressure 
gradients (caused either by topographic variations in the surfzone or by longshore variations i n the 
wave height and angle at breaking) have on longshore current distributions has received very li t t le 
attention even though i t has been clearly demonstrated that relatively smaU longshore pressure 
gradients can drive strong longshore currents (Dalrymple 1978, Wu et al. 1985). For example, Wu 
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Figure 9: Calculated variations of the nearshore currents over an alongshore varying bottom 
topography [from Wu et al. (1985)]. 

et al. compared the predictions of a 2D surf-zone circulation model with data obtained during 
the NSTS experiment. Their computations showed that a topography with even a relatively 
small longshore variability wi l l create substantial longshore changes in the current (Figure 9). 
Recently, Putrevu et al. (1994) extended Mei k Liu's (1977) work to study the effect of longshore 
topographic variability on longshore current predictions under simplified circumstances. The 
results confirm that longshore pressure gradients can alter the longshore currents substantially. 

5.3 D e p t h Averaged 2D-Horizonta l Models , Nearshore Circu la t ion 

Nearshore circulation is the term referring to the current patterns generated by waves, wind and 
tidal motion. I t has long since been recognized as a major source of coastal change. The depth-
averaged circulation in the horizontal plane can be described by wave-averaged models and the 
first of these were developed by Noda et al. (1974). Such models traditionally solve the wave 
averaged equations (7) and (14) assuming that the short-wave-averaged velocities are uniform 
over depth. The bottom boundary layer only influences the flow through the short-wave-averaged 
shear stress and is usually related to the mean velocity through, a friction factor as described in 
Section 4. In (14) the turbulent shear stresses T^p along the vertical sides of the water coloumn 
are normally modelled by means of a (lateral) eddy viscosity. 

Noda et al. cast these equations on a special form by introducing a streamfunction but in 
most models the equations are solved directly for the physical variables C and Qa- The primary 
forcing in the equations is the variation of the radiation stresses and they are usually determined 
from the wave height variation using sine wave theory. As can be seen from (14), however, i t is 
straight forward to include the effect of wind stresses as well. 
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Inside tlie surf zone, the wave height is invariably determined from (64) whereas the wave 
height outside the surf zone often is determined using various techniques for calculating the 
refraction pattern. This allows for application to arbitrary bottom topography. Examples are 
Noda et al (1974) who use the ray tracing method of Munk & Arthur (1952); and Ebersole & 
Dalrymple (1980), Wu & Liu (1985), and Watanabe (1982), who all use the fact that the wave 
number field is irrotational. In some cases, the models are limited to long straight beaches wi th 
longshore uniformity for which Snell's law applies which means the wave heights and directions 
are readily known. The model presented by Wind & Vreugdenhil (1986) is special in that i t uses 
a two-equation turbulent closure model to determine the eddy viscosity and the dissipation of 
turbulent kinetic energy. The wave heights are given by (64), however, and the dissipation of 
wave energy is then calculated from the wave-averaged energy equation and this dissipation is 
used in the turbulaent closure equations to determine the eddy viscosity. The eddy viscosity is 
then used to determine the lateral mixing. The accuracy of this approach is unknown. 

Some of the models are used for problems wi th a periodic bottom topography, in connec­
tion wi th periodicity boundary conditions at the upstream and downstream boundaries (Noda, 
Ebersole and Dalrymple), some analyse the circulation in a closed basin with various geometric 
features (Wu & Liu, Wind & Vreugdenhil, Watanabe) with similarity to the circulation patterns 
associated with rip currents. 

In general, these models have only been used sporadically to analyze the many problems of 
coastal circulation which they, in spite of their simplified form, actually are capable of describing. 

One of the major limitations at the moment is probably the absence of an appropriate wave 

driver model (see Section 8 for further discussion). 

Rip Currents 

Depth-averaged, 2D, horizontal models have also been used to study rip currents. These 
strong, seaward-oriented, jetlike flows are sometimes found emanating from the surf zone in nature 
[e.g., Shepard et al. (1941), Shepard & Inman (1950), Harris et al. (1963), Bowen & Inman 
(1969), Inman et al. (1971), Sonu (1972), Dalrymple & Lozano (1978), to mention a few]. These 
seaward-oriented currents, which are often periodic in the longshore direction {e.g., Figure 10), 
are called rip currents and are a particular source of concern to swimmers. Observations have 
shown that these narrow seaward oriented jets disintegrate outside the surf zone. Most of the field 
observations further show that the rip currents occur at locations where the wave height is the 
lowest. The reader is referred to Hammack et al. (1991) for a set of laboratory observations that 
provide a description of the characteristics of rip currents. For somewhat more detailed overviews 
of rip currents than that presented below, the reader is referred to Dalrymple (1978) and Tang & 
Dalrymple (1988). 

A number of possible mechanisms have been proposed for the generation of rip currents. 
According to Tang & Dalrymple (1988), the generation models can be broadly classified into 
three categories: 
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Figure 10: An example observation of rip currents (from Inman et al, 1971) 

1. Alongshore nonuniformities, 

2. Wave-wave interactions, and 

3. Instability mechanisms 

In the first class of models, i t is hypothesized that rip currents are generated by longshore 
variations of the wave height or bottom topography, which create longshore variations of the radi­
ation stresses that in turn drive the rip currents. Bowen (1969b) showed that longshore variations 
of the breaker height force currents that flow seaward at locations where the wave heights are 
lowest. Noda (1974) used his circulation model to analyse similar situations and claimed favor­
able agreement with Sonu's (1972) observations. Mel & Liu (1977) developed analytical results 
of the circulation in the presence of a longshore perturbation of a plane beach. For simplicity, 
the variations were assumed to be sinusoidal. Their results showed that the direction of the cir­
culation was contoUed by the ratio of the surf zone width to the alongshore wave length of the 
bottom topography. Dalrymple (1978) considered the case of normally incident, non-breaking 
waves propagating over a longshore bar with periodic rip-channel openings. He assumed, on a 
heuristic basis, that the 2D horizontal flow pattern could be treated as a combination of two I D 
flows: the shoreward cross-shore flow of water over the bar caused by the non-breaking waves, and 
the longshore flow in the trough that was fed by the cross-shore flow and hence had an increasing 
discharge as i t approached the rip channel. His analysis indicated that gaps in alongshore bars 
do produce rip currents. 

The presence of lateral boundaries {e.g., breakwaters) introduces another type of longshore 
nonuniformity that can drive rip currents. Such problems have been studied theoretically by 
Liu & Mel (1976) and Dalrymple et al. (1977), and theoretically and experimentally by Wind & 
Vreugdenhil (1986). 

The second class of models involves wave-wave interactions. Bowen (1969b) found that the 
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nonlinear interaction between edge waves and normally incident waves produces an alongshore 
variation of the wave height which, in turn, generates rip currents. This was verified in a laboratory 
experiment by Bowen & Inman (1969). Similarly, Dalrymple (1975) showed that two intesecting 
wave trains leads to a short-crested wave pattern which leads to rip currents. Experimental 
evidence of this driving mechanism was given by Dalrymple & Lanan (1976) and Hammack et al. 

(1991). 

The third class of models hypothesizes that the state of longshore uniform wave set-up could 
be unstable under certain conditions and that the instability manifests itself in terms of periodic 
nearshore circulation cells. Early attempts at showing that steady horizontal circulation cells 
could be produced by perturbing the basic state of alongshore uniform set-up were made by 
LeBlond & Tang (1974), Hino (1974), and Iwata (1976). Miller & Barcilon (1978) and Dalrymple 
& Lozano (1978) questioned some the assumptions made in the earlier works and refined the 
models. Since these models solve eigenvalue problems, they only predict the spacing between 
the rips. They do not predict the strength of the rip currents. Dalrymple & Lozano included 
the refraction of the waves by the rip currents which provides a physical mechanism for the 
maintainance of the circulation cells. They also showed that their predicted rip current spacing 
compared favorably with field data. As pointed out by Dalrymple & Lozano, these models do not 
address the initiation mechanisms for the circulation patterns. They only show that circulation 
patterns other than that of an alongshore uniform set-up can exist on a beach. 

5.4 Models w i t h Vert i ca l F l o w Resolut ion 

Undertow 

On a long straight coast with no variation in the longshore (y-) direction, the net cross-shore 
mass flux — 0. Nevertheless, there is a cross-shore circulation associated with the mass 
flux Qwx near the surface. This circulation is particularly strong in the surf zone where Q^x 
is enhanced by the breaking process. Figure 11 shows the principal flow pattern with a strong 
undertow (generally of the order 8-10 % of ^/gE) near the bottom to compensate for the shoreward 
mass flux of the waves. 

This circulation pattern was first described quantatively by Dyhr-Nielsen & Sorensen (1970) 
for the special case of a barred profile and analysed theoretically for a plane beach by Svendsen 
(1984b). Addtional contributions to the clarification of the phenomenon have been provided by 
Dally & Dean (1984, 1986), Hansen & Svendsen (1984), Stive & Wind (1986), Svendsen et al. 
(1987), Okayasu et al. (1988), and Deigaard & Fredsoe (1989), to mention as few. 

I t has been found that the undertow is a balance among the forces on the fluid particle caused 
by a combination of the radiation stress, the pressure gradient from the sloping mean water 
surface, and the turbulent shear stresses. Over most of the water column, the turbulent stresses 
are dominated by the breaker-generated turbulence. Near the bottom, however, the turbulence 
intensity is small and domninated by the bottom boundary layer (Svendsen et al. 1987, Okayasu 
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Figure 11: The circulation flow in the vertical plane including the undertow (from Svendsen, 

1984b) 

et al. 1988). The boundary layer also generates a steady streaming which is of no significance in 
the surf zone but turns out to be important outside the surf zone (Putrevu & Svendsen, 1993a). 
Finally, the effect of the disturbance of the wave motion due to the dacay of the wave height 
was addressed by Deigaard & Fredsoe (1989). In essence, they studied the modification of a sine 
wave motion required to transport wave energy to the region of energy dissipation, particularly 
the surface roller. The modification due to the variation in depth was discussed by Putrevu & 
Svendsen (1993a). 

Basically the equation solved is obtained from (43) by assuming steady, 2D vertical flow: 

where u'w' represents the Reynolds stresses. Various approximations have been used by different 
authors for the terms in this equation. Generally, however, the Reynolds stresses are modeled 
using an eddy viscosity ft, which reduces (70) to 

In most models, the variation of Pt is parameterized from comparison with measurement, 
though Deigaard et al. (1991) used a one equation turbulence closure to assess the variation of 
the eddy viscosity. 

Also, the proper boundary conditions have been discussed. (71) is a second-order equation in 
the ^r-direction and hence requires two boundary conditions. The first of those is a condition for 
the velocity at the bottom, asssuming the bottom shear stress linked to the bottom velocity by a 

(70) 

(71) 
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friction factor ƒ ( see Section 4) wliicli, assuming a small boundary layer thickness and sinusoidal 

short-wave motion, gives the condition 

i ^ t ^ ) ^ ^ = - f u M (72) 

An alternative to (72) is to specify a variation of Ut at the bottom that is compatible wi th the 
variation in a bottom boundary layer including î t 0 at the bottom. I f so, the condition Ub = 0 
is the appropriate bottom boundary condition. 

Being short-wave-averaged, the equation, only applies to the region below trough level (or 
mean water level - see the discussion in Section 2) The second boundary condition can either be a 
shear stress at the trough level (mean water level), representing the contribution of the radiation 
stress and pressure gradient above that level, or i t can be the requirement that 

Udz = -Qw (73) 
J-ho 

Equation (71) has the closed form solution 

U(x,z)= r — r aidzdz + Ci r —dz + Ub (74) 
J-ho Vtz J-ho J-ho Vtz 

where Ci and TJb are integration constants, and « i represents the right hand side of (71). Figure 
12 shows a comparison between (74) and measurements for a case where a linear variation over 
depth is assumed for vt (Okayasu et al., 1988). I t is important to emphasize that wi th such a 
variation of vt the condition C/j = 0 can be satisfied and (74) describes the mean flow inside the 
bottom boundary layer as well. 

A more complete solution of (43) was given by Svendsen & Lorenz (1989) who also analysed the 
longshore current velocity profiles and hence established that the total current profiles essentially 
have a 3D structure. They also found that for the longshore currents the variation over depth 
is much weaker relative to the total velocity in that direction than that for the undertow. Due 
to the entirely different conditions (strong breaker-generated turbulence over most of the profile 
combined with the weak turbulence in the bottom boundary layer), the longshore current velocity 
profile is also distinctly different from the logarithmic velocity profile of open channel flow. 

Quasi 3D models 

Models for short-wave-averaged flow with resolution of the vertical current structure have been 
presented by DeVriend k Stive (1987), Sanchez-Arcilla et al. (1990), Svendsen k Putrevu (1990), 
Sanchez-Arcilla et al. (1992), Van Dongeren et al. (1994), among others. 

Though far f rom equal in approach these models are all based on representing the vertical 
structure of the current velocities and their direction through some solution to the chosen ap­
proximation of the local wave averaged equations (43). This structure is then used in the solution 
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Figure 12; Comparison between measured and predicted undertow profiles on a 1/30 slope, [from 

Okayasu et al (1988)]. 

for the depth-integrated, short-wave averaged equations. Wi th the exception of Van Dongeren et 
al, however, all the quasi 3D works assume that the interaction between currents and between 
currents and waves can be neglected, not only in the determination of the vertical current struc­
ture (which is probably a good approximation), but also in the integration of the 2D-horizontal 
equations (which is probably a less realistic assumption). Figure 13 shows as an example the 
variation of the 3D current velocity profiles in the time-varying flow initiated by the onset from 
rest of longshore currents on a long beach. 

These models potentially describe so many of the nearshore circulation phenomena that sub­
stantial numerical experiments should be carried out to explore their relevance and accuracy. This 
would also encompass a thorough validation by comparison with laboratory and fleld data, which 
has not been carried out yet. In addition, further development of many of the model components 
and modification of underlying assumptions are likely to be needed. This particularly apply to 
addition of the dispersive mixing mechanism described in Section 5.2. 

6 Infragravity Waves 

6.1 Introduct ion 

The class of gravity waves with periods ranging from about 20 to 200 seconds have come to be 
known as infragravity waves. The first observations of infragravity motions were reported by 
Munk (1949b) and Tucker (1950) who coined the term "surf beats" to denote these motions. 
Later field measurements (Wright et al 1979, 1982; Huntley et al 1981; Holman 1981; Guza 
& Thornton 1982, 1985; Oltman-Shay & Guza 1987; Howd et al 1991 to mention a few) have 
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Figure 13: Three dimensional current velocity profiles at three different times during the start-up 
of a longshore current on a long straight beach, a) - c) at 25% of breaker depth, d) - f ) near the 
breaker line (from Van Dongeren et al., 1994). 

45 



clearly revealed that infragravity motions are ubiquitous in the nearshore. In the swash zone, the 
energy at infragravity frequencies often dominates, exceeding the energy at wind-wave frequencies 
(Wright et al. 1982; Guza & Thornton 1982, 1985). 

Infragravity waves are solutions to the depth-integrated, short-wave-averaged equations of 
continuity and momentum [equations (7) and (13) of Section 2]. For the linearized versions of 
these equations, Q can be eliminated to yield the following equation for the infragravity surface 
elevation (Foda & Mel 1981, Symonds et al. 1982, Schaffer k Svendsen 1988) 

^ _ J - ( a h ( ^ \ \ = - ^ ' ^ " ^ (75) 
0*2 dxa V ° \dxa)j p dxa dxp 

where the radiation stress {Sap) could vary with time i f the short-wave height varies wi th time 

(and where for convenience we have omitted the overbar on ( ) . 

Most of the work on infragravity motions assumes that the bathymetry does not vary in 

the longshore direction. Hence, the discussion below also assumes longshore uniform bottom 

bathymetry. 

The solutions to the homogeneous version of (75) (frequently referred to as free waves) are 
the normal modes of oscillation on a beach. These modes are separated into two kinematically 
distinct classes. The first class - edge waves - have a discrete set of eigenvalues in the range 
a^/g <ky< a'^/ghx where a is the frequency and ky is the longshore wave number (Ursell 1952). 
The second class - leaky waves - have a continuous spectrum of eigenvalues in the range > gky. 

Edge waves (discussed in Section 6.2) are infragravity waves that are trapped in the nearshore 
region by refraction.^ Leaky waves, on the other hand, are infragravity motions that escape back 
out into the deep ocean upon reflection from the shoreline. 

The solutions to the inhomogeneous version of (75) represent forced infragravity motions. 
Offshore of the surf zone, in intermediate water depth (relative to the infragravity waves), the 
solution to the inhomogeneous version of (75) are referred to as bound waves. Bound infragravity 
waves are locally generated by the short-wave groups and propagate along with, the groups (or 
are "bound" to the groups). The solutions for the bound waves on a horizontal bottom were 
given by Longuet-Higgins k Stewart (1962, 1964), Hasselmann (1962), and Gallagher (1971) [see 
also Bowen & Guza (1978)]. These solutions will not be discussed here. Inside the surf zone, 
mechanisms that cause the RHS of (75) to be non zero and hence force infragravity motions have 
been proposed by Symonds et al. (1982) and Schaffer k Svendsen (1988). These mechanisms are 
further discussed in Section 6.4. 

^The reader is referred to Holman (1984) and Oltman-Shay & Hathaway (1989) for more detailed discussions 
than that given below of the basic solution for edge waves and to Schaffer & Jonsson (1992) for a discussion of edge 
wave solutions from a geometric optics standpoint. 
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6.2 Edge Waves 

On a plane beach, the solutions for the free edge wave modes were given by Stokes (1846), Eckart 
(1951), and Ursell (1952). Stokes gave the solution for the so-called zero-mode edge wave [the 
first normal mode of oscillation of (75)]. Eckart gave the solution for all the edge wave modes 
assuming that the depth is shallow everywhere (relative to edge wave scales). The extension of 
Eckart's solution to arbitrary depth was given by Ursell who showed that edge waves follow the 
dispersion relationship 

= gkysm[{2n + l)hx] (76) 

where n is the mode number of the edge waves. He further showed that the wavenumbers of the 

edge waves are constrained to be in the range 

- < k y < ^ (77) 

A consequence of this constraint is that no edge waves exist with wavenumbers higher than 
(wavelengths smaller than) those given by the mode-zero edge wave dispersion relationship. 

Experimental and theoretical analysis of edge wave properties 

Some of the interest in edge waves stems from the fact that they have been postulated to be 
responsible for many features observed on natural beaches. Examples include rip currents (Bowen 
k Inman 1969) and observed topographic features (Bowen k Inman 1971, Guza k Inman 1975, 
Bowen 1980, Guza k Bowen 1981, Holman & Bowen 1982, to mention a few). 

Motivated by the possible consequences of the presence of edge waves, much effort has been 
spent since the 70's, trying first to prove the existence (or the lack thereof) of edge waves in a 
natural surf zone, later to unveil their dominant properties. Since edge waves are very difficult to 
generate in a controlled way in the laboratory, much of the effort has been oriented towards field 
data and towards theoretical modelling. While analysis of measurements from cross-shore arrays 
showed substantial amounts of infragravity energy in the surf zone, the presence of edge waves 
could not be conclusively inferred because close to the shore the cross-shore structure of the edge 
wave modes and leaky waves modes are very similar [see Holman (1983) for a discussion]. 

By analyzing the longshore structure of the infragravity motions, Huntley et al. (1981) pro­
vided the first compelling evidence for the presence of edge waves in a natural surf zone. They 
concentrated on a subset of the data collected during the NSTS experiments and demonstrated 
that edge waves could be detected in the measurements of the longshore currents. Based on 
their analysis, Huntley et al. concluded that "only one progressive edge wave dominates at any 
particular frequency." Oltman-Shay k Guza (1987) demonstrated, using synthetic data testing, 
that at any frequency longshore velocity variance would indeed be dominated by one edge wave 
mode even i f all edge wave modes were present. 

An extensive analysis by Oltman-Shay k Guza of the data collected during the NSTS exper­
iments showed that edge waves were always present during these experiments. Oltman-Shay k 
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Guza found that the longshore current variance was dominated by low mode edge waves while 

the cross-shore current was dominated either by higher mode (> 3) edge waves or by leaky waves 

(because of the limitations of the data set, they were not able to distinguish between high mode 

edge waves and leaky waves). Their analysis suggested that all the low mode edge waves ( < 2) 

had comparable amplitudes at the shoreline. Combining this with the result that the longshore 

velocity variance would be dominated by one edge wave mode, they showed tkat i f all the edge 

wave modes have comparable shoreline amplitudes (a white spectrum), the longshore current 

at a particular location wil l be dominated by the lowest edge wave mode that is not trapped 

significantly shoreward of that location. 

Thus, the work of Huntley et al. and Oltman-Shay & Guza demonstrated the presence of low 

mode edge waves in the surf zone. Recent work by Elgar et al. (1992), Herbers et al. (1992), and 

Oltman-Shay (1994) has provided evidence that high mode edge waves are also present in the surf 

zone. 

Recent work has also clarified the effects that nonplanar bottom topography and longshore 

currents have on edge waves. The effect of the topography was studied by Holman & Bowen 

(1979), and Kirby et al. (1981) while Howd et al. (1992) and Falques & Iranzo (1992) studied 

the effects of the longshore current. Oltman-Shay & Howd (1993) included both these effects in 

a model-data comparison. 

I t was found that the concave beach face that often is found in nature substantially influences 
both the dispersion relationship and the cross-shore structure of the edge waves (Holman & Bowen 
1979, Oltman-Shay & Howd 1993). In particular, Holman & Bowen showed that 1) assuming a 
simple beach proflle could result in errors up to 100% for the wave number and 2) the relative 
importance of the longshore and cross-shore velocities is altered by the beach concavity. Oltman-
Shay & Howd showed that the influence of concave beach faces on the cross-shore structure of 
the edge waves occurs even at frequencies where the wave numbers are not substantially altered 
by the topography. An example calculation showed that assuming a simple beach profile could 
overestimate the shoreline cross-shore velocity variance by a factor of four (see their Figure 5). 

These results are similar to the findings of Kirby et al. (1981) who investigated the behavior of 

edge waves in the presence of longshore sand bars. Their results indicated that, for the topogra­

phies they considered, the edge wave dispersion relationship was unaltered from the plane beach 

case. They suggested that, on barred beaches, the edge wave dispersion relationship is controlled 

by the mean beach slope (as opposed to the class of beach profiles investigated by Holman & 

Bowen). Their calculations also demonstrated that even though the dispersion relationship is 

unchanged, the cross-shore structure of the edge waves is considerably altered by the presence of 

sand bars. They found that the edge wave surface elevation (cross-shore velocity) profile adjusts 

itself so that the antinodes (nodes) occur at the bar locations. 

Restricting themselves to longshore currents that have Vmax/c < 1, Howd et al. (1992) demon­
strated that the cross-shore shapes of the edge waves are sensitive to the presence of a current. 
They found that for typical field conditions the presence of the longshore current could change 
the alongshore wave number of the edge waves by up to 30%. This result suggests that when 
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analyzing field measurements i t is important to account for tlie presence of the longshore cur­
rent. An important consequence of the presence of the longshore current is that i t introduces an 
asymmetry: the longshore wavenumber increases for a longshore current opposing the edge wave 
propagation and the wavenumber decreases for a longshore current in the direction of edge wave 
propagation [see also Oltman-Shay & Guza (1987)]. These results were confirmed by Oltman-Shay 
& Howd (1993) who showed that the effect of the shear in the longshore current is particularly 
dramatic on the longshore velocity of edge waves. Their results also showed that for the NSTS 
data sets assuming a simple topography (plane beach) and neglecting longshore currents could 
lead to errors as high as 45% while estimating the variances at the shoreline. 

Falques & Iranzo (1992) removed the restriction on the strength of the longshore current 
imposed by Howd et al. and demonstrated that, in most cases, the offshore extent of the edge waves 
increases (decreases) when they propagate against (with) the current. They also demonstrated 
analytically that in the case of edge waves propagating with a strong longshore current (strong 
enough so that F = c at some locations), the edge wave is tightly bound to the shore - i t cannot 
extend seaward of the location where 7 = c. Similarly, there is a region in wavenumber-Froude 
number space in which edge waves cannot propagate against the current. 

Field observations suggest that many quantities characterizing infragravity waves in the surf 
zone (wave heights, velocity fluctuations, run up) are well correlated with the offshore incident 
wave height (Holman 1981; Guza & Thornton 1982, 1985; Holman & Sallanger 1985; Howd et 
al. 1991) which points at the short wave motion as one of the sources of the infragravity waves. 
Guza & Thornton (1982) showed that the infragravity swash amplitude varied linearly wi th the 
incident wave height. Holman & Sallanger analyzed data from a different beach and found that 
while the infragravity swash amplitude did depend on the offshore wave height the variation was 
more complicated than that found by Guza & Thornton. In particular, they suggested that the 
normalized (by the offshore significant wave height) infragravity swash amplitude depends on the 
"surf similarity" parameter for the short-wave motion. Similar results were obtained by Guza & 
Thornton (1985) and Howd et al. (1991) 

Recent observations of infragravity energy offshore of the surf zone (Elgar et al. 1992, Herbers 
et al. 1992, Oltman-Shay 1994) may have interesting implications for the importance of surf zone 
forcing of infragravity motions. Elgar et al. show that offshore of the surf zone the locally forced 
bound waves contribute very l i t t le to the total infragravity energy except under the rare conditions 
of very energetic swell [see also OMhiro et al. (1992)]. This observation indicates that free (or 
nonlocally forced) infragravity motions are frequently the dominant source of infragravity energy 
offshore of the surf zone. Furthermore, Herbers et al. showed that for swell conditions the free 
infragravity energy at an offshore location is well correlated with and depends linearly on the 
incident swell energy [see also Oltman-Shay (1994)]. Present models of surf zone generation of 
infragravity motions (discussed below) suggest that the infragravity energy generated in the surf 
zone wil l exhibit a linear dependence on the incident wave energy. Thus, at present there are 
strong indications that a substantial amount of infragravity wave generation may be taking place 
in the surf zone. 
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6.3 Generat ion of Infragravi ty Waves in the Sur f Zone 

Offshore of the surfzone, Longuet-Higgins & Stewart (1962,1964), Hasselmann (1962), Gallagher 
(1971) and Bowen k Guza (1978) showed that the group structure of the incident wave field could 
generate infragravity motions. Surf zone generation of one-dimensional infragravity motions (leaky 
waves) was considered by Symonds et al. (1982) and Schaffer k Svendsen (1988). The first of 
these works considered the generation of infragravity motions due to temporal variations of the 
break point on a plane beach due to the variations of the short-wave height. Briefly, Symonds 
et al. argued that since individual waves in a group have different heights, they are likely to 
begin breaking at different locations and have different heights at the initial location of breaking. 
Hence, the position of the break point is a function of time. Symonds et al. assumed that the 
group structure of the incident waves is destroyed by the breaking process. Thus, the long-wave 
generation only takes place in a narrow region which is termed as the "zone of init ial breaking." 

The time variation of the break point generates long waves at the group period (and its higher 
harmonics) which are radiated both shorewards and seawards. The shoreward radiated waves are 
reflected at the shoreline and radiate back out seaward. The model of Symonds et al. predicts 
that the amplitude of this outgoing free wave is a strong function of the frequency of the long 
wave. On the other hand, the shoreline amplitude of the infragravity motion was found not to 
exhibit frequency dependence. They attribute this lack of resonant behavior to the radiation of 
energy seaward. Symonds k Bowen (1984) extended the model to include the presence of an 
alongshore bar. • 

The following heuristic argument is often used to explain the mechanism proposed by Symonds 
et al. (1982). As discussed previously, the loss of the cross-shore-directed momentum flux due 
to the breaking process is balanced by changes in the mean water level (set-up). Bowen et al. 

(1968) showed that, under simplified circumstances, this set-up is proportional to the breaking 
wave height. Thus, temporal variations of the breaker height lead to corresponding temporal 
variations of the set-up. This time-varying set-up is equivalent to the infragravity wave surface 
elevation. 

Looking at the other extreme situation relative to Symonds et al., Schaffer k Svendsen (1988) 
assumed that all the waves in a group begin to break at the same fixed location. This implies 
that all the groupiness of the incident wave field is transmitted into the surf zone. Hence they 
could study the generation of infragravity waves due to wave height variation throughout the 
surf zone, and in parallel with Symonds et al. they found that the groupiness of the broken-wave 
field generates of long waves at the group period. This generation can be very strong, and they 
quantified the strength of the generation in terms of a "reflection coefficient" defined as the ratio 
between the outgoing free long wave and the incoming bound long wave. 

In Schaffer k Svendsen's model, a bound long wave generated by the Longuet-Higgins k 
Stewart mechanism is assumed incident at the seaward boundary of the model domain. Further 
generation of the long waves takes place as the incident short waves shoal over the sloping bottom 
and after they break. Thus, the "refiection coefficient" could more descriptively be termed as the 
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"amplification factor" for the nearshore region because i t measures how much the incident (set-
down) waves are amplified by the nearshore processes of shoaling and breaking. They find that 
the "reflection coefficient" can attain values as high as 25-30 suggesting very strong generation 
of infragravity wave energy in the nearshore region. Though some of this amplification is due 
to the long-wave generation on the slope, Schaffer & Svendsen found that a large fraction of the 
outgoing free long wave is indeed generated in the surf zone. 

Schaffer (1993) combined the models of Symonds et al (1982) and Schaffer & Svendsen to 
allow for both a time variation of the break point as well as a partial transmission of the groupiness 
into the surf zone. He compared the predictions of this model wi th laboratory measurements of 
Kostense (1984) and found qualitative agreement. He also found that his model consistently 
overpredicts the long wave generation. Schaffer attributes this overprediction to his neglect of 
bottom friction and the feedback between the long waves and the short waves. 

A n extension of this model to two horizontal dimensions (Schaffer 1994) shows that for small 
angles of incidence leaky waves are generated whereas for larger angles of incidence edge waves are 
generated by the same mechanisms. Schaffer (1994) compared his predictions of the amplitude of 
the forced edge wave with the laboratory measurements of the same quantity by Bowen & Guza 
(1978). Schaffer's solution assumes a beach of infinite alongshore extent so that the edge waves 
generated are steady state, whereas the experiments conducted by Bowen & Guza had limited 
longshore extent which prevented the development of steady edge waves. This is probably the 
reason why Schaffer predicts much higher edge wave amplitudes than the laboratory measurements 
of Bowen & Guza. 

Definitive field evidence for the importance (or the lack thereof) of the generating mechanisms 
discussed above has not yet been presented. On the one hand, List (1992) solved (7) and (14) 
numerically assuming that the groupiness of the short-wave field is destroyed by the breaking 
process (thus his calculations do not include the Schaffer & Svendsen mechanism). He compared 
his numerical solutions with field data and found that for the particular data set he was working 
with the long wave generated by the Symonds et al mechanism is secondary to the bound long 
waves. This contradicts the results discussed in Section 6.2 of Herbers et al (1992) and Oltman-
Shay (1994), who suggested that the linear correlation between the variances of the infragravity 
and swell waves indicates that the free infragravity wave variance is predominantly generated in 
the nearshore. As List pointed out, however, his conclusions are only valid for the conditions of 
the data set that he analyzed. For example, his numerical experiments show that the importance 
of the long-wave forced by the break point variations increases with increasing beach slope. 

I t is also pointed out here that the theories of Symonds et al and Schaffer k Svendsen assume 
that the forcing wave groups are steady. This wi l l usually not be true in practice. Thus, these 
theories have to be extended to unsteady wave groups before their importance in the field can be 
determined. 
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Figure 14: An estimated frequency-alongshore wavenumber spectrum for low frequency motions 

in the surf zone [from Oltman-Shay et al. (1989)]. 

6.4 Veloci ty Profi les in Infragravi ty Waves 

Putrevu & Svendsen (1993b) and Svendsen & Putrevu (1994b) presented a local solution for 
the vertical structure of the velocity profiles in infragravity waves. Their solution predicts that 
i f there is no local forcing of infragravity waves, then the infragravity velocity profiles wi l l not 
exhibit vertical structure. On the other hand, the solution predicts that the infragravity waves wi l l 
exhibit vertical structure i f there is local forcing of infragravity waves by short-wave variations. 
Thus the Putrevu k Svendsen solution predicts vertical structure in the infragravity velocity field 
in the zone of ini t ial breaking as well as throughout the surf zone i f the groupiness of the incident 
short-wave field is not completely destroyed by the breaking process. 

7 Shear Waves 

Analysis of data collected during the SUPERDUCK field experiment (Crowson et al. 1988) by 
Oltman-Shay et al. (1989) demonstrated the presence of low frequency wave like oscillations of 
the longshore currents. These oscillations were found to be progressive longshore with longshore 
wave lengths and periods of order 100 m and 100 s, respectively. For example, Figure 14 shows a 
typical longshore wavenumber-frequency spectrum of the longshore velocity (see Oltman-Shay et 
al. for details). The solid lines in this figure represent the dispersion relationships of the various 
edge wave modes and the rectangular boxes show the locations and half power bandwidth of the 
estimated variance peaks. ^ 

^Though shear waves were first detected in the data collected during the SUPEDUCK field experiment, there is 
evidence that these motions were also present during the NSTS experiments (Dodd et al. 1992). 
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As discussed under "Edge Waves," no surface gravity motions exist for wavenumbers higher 
than (wavelengths lower than) those given by the mode-0 edge wave relationship. The field data in 
Figure 14 clearly shows the presence of motions with, wavenumbers too short to be surface gravity 
motions (the linear dispersion line to the right of the mode-0 edge wave curve in Figure 14). 
Thus, Oltman-Shay et al. concluded that the observed concentration of variance located outside 
the mode-0 edge wave curve is derived from a source other than surface gravity motions. The 
motions represented by these dispersion lines have come to be known as shear waves. Observations 
have shown that shear waves can be quite energetic with velocity amplitudes greater than 30cm/s 
(Oltman-Shay et al.) and can contribute up to 33 % of the longshore current variance (Howd et 
al. 1991). 

Oltman-Shay et al. demonstrated that shear waves have the following characteristics: 

1. They are almost non dispersive and propagate in the direction of the longshore current; 

2. Their kinematics are closely linked to the strength of the mean longshore current; 

3. The speed of propagation is in the range 0.5Vp - Vp where Vp is the peak longshore current 

magnitude; 

4. Longshore and cross-shore velocity components are in quadrature phase; and 

5. The magnitude of the longshore current does not aff'ect the range of observed wavenumbers. 

Bowen & Holman (1989) suggested that shear waves may be generated by a shear instability 
of the mean longshore current profile. Using very simple variations of the longshore current 
and bottom topography, Bowen & Holman showed that longshore currents could be potentially 
unstable over a range of wave numbers. They further demonstrated that the predicted scales 
compared favorably with those observed in the field. Bowen & Holman also found that the 
critical parameter i n the stability problem is the shear on the seaward face of the longshore 
current. Subsequent work by Dodd & Thornton (1990), Dodd et al. (1992), Putrevu & Svendsen 
(1992a), and Falques & Iranzo (1994) have confirmed these results. 

Dodd et al. solved the stability equation using measured longshore current and depth profiles 
and compared the predictions of the instability theory (frequencies and wavenumbers) to mea­
surements made during NSTS and SUPERDUCK experiments. They found that the predictions 
of the instability theory compared well with the observations at SUPERDUCK. Wi th the NSTS 
data set, however, Dodd et al. found that the instability theory predicted no shear wave generation 
whereas field data clearly showed the presence of shear waves. 

Putrevu k Svendsen (1992a) studied the effect of bottom topography on the stability char­
acteristics of longshore currents. Their results demonstrated that the bottom topography has a 
considerable influence on the stability characteristics. For example, their results showed that the 
presence of a bar signiflcantly destabilizes the longshore current. This, in turn, suggests that shear 
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waves are more likely to be observed on barred beaches rather than on plane slopes (a conjecture 

already made by Bowen & Holman). 

Falques & Iranzo (1994) presented an efficient numerical solution to the stability problem 
which relaxes the rigid l id assumption made in the theoretical works mentioned above. They 
also included the effects of a horizontal eddy viscosity (neglected in all previous works) and 
bottom friction (also included by Dodd et al) using very simple formulations. Their results 
confirm the strong influence the bottom topography has on the stability characteristics. They 
also demonstrate that the rigid l id assumption is reasonable as long as the maximum local Froude 
number (the maximum value of Vly/gK) is much smaller than unity. (This requirement is met 
in most cases.) They also found that both the bottom friction and horizontal eddy viscosity can 
substantially influence the stability characteristics of longshore currents. 

Recently, Reniers et al (1994) presented laboratory experiments on the generation of shear 
waves. They generated longshore uniform longshore currents using a technique of recirculation 
similar to that used by Visser (1984). Preliminary results indicate the presence of shear waves 
on barred beaches. Whereas on a plane slope, they flnd that shear waves do not develop. Given 
the close connection between this finding and the theoretical predictions, i t seems likely that 
the generating mechanism of shear waves may indeed be the instability mechanism proposed by 
Bowen & Holman. 

The theoretical studies described above consider the linear stability problem only. Because of 
the exponential growth predicted by the linear theory, all of the above-mentioned analyses wil l 
only be applicable at the init ial stage when the assumption of linearity is applicable. While i t 
may be reasonable to expect that the scales predicted by the Unear theory are applicable also 
later in the development process, a nonlinear analysis is required to predict the amplitude and 
the spatial structure. Preliminary reports of such nonlinear analyses are just now appearing in 
the literature (Allen et al 1994, Ozkan & Kirby 1994). 

Finally i t should also be mentioned that alternative mechanisms for the generation of very low 
frequency motions have been proposed by Fowler & Dalrymple (1990) and Shemer et al (1991). 
T i e mechanism of Fowler k Dalrymple essentially consists of the interaction of two wave trains 
of slightly different frequencies. They show that such an interaction produces a migrating rip 
current which has a low frequency signature in the wavenumber-frequency space that is similar 
to that of the shear waves. Similarly, Shemer et al show that a side band instability of the 
incident gravity waves could lead to a modulation of the longshore component of the radiation 
stress which, in turn, causes a modulation of the longshore current that resembles the observed 
motions. 
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8 Comprehensive Quasi-3D Models 

Comprehensive quasi-3D nearshore models can be developed on the basis of the equations pre-

sentented above though this has not yet been fully accomplished. The basis for such models is 

the following: 

A model that solves the depth-integrated, short-wave-averaged equations would represent a 
nearshore circulation model that would be capable of predicting wave-generated current motions 
under general topographical and wave conditions. If such a model is combined with a state-of-
the-art model that predicts short-wave transformations over abritrary bottom bathymetry, the 
resulting model system would represent a comprehensive nearshore model that wi l l be capable 
of predicting waves and wave-averaged motions in the nearshore. Though significant strides are 
being made these years such general model systems still remain to be developed [see Van Dongeren 
et al. (1994) for a preliminary report on a comprehensive circulation model]. Such models wi l l be 
extensions of the models discussed under "Quasi 3D models" in Section 5, and they would consist 
of the following elements: 

1. A component that solves the depth-integrated, short-wave-averaged equations of horizontal 
momentum giving the 2D horizontal variation of the current/infragravity-wave pattern. 
Early versions of such model components were developed by Noda (1974), Noda et al. 
(1974), Ebersole and Dalrymple (1980), Kirby & Dalrymple (1982), Wu & Liu (1985), and 
Winer (1988). 

2. A component that evaluates the analytical solutions to the vertical distribution of horizontal 
velocities of the time varying currents - which are equivalent to the particle velocities of the 
infragravity waves - and calculates the quantities required for the 2D-horizontal equations 
under 1) (for example, the lateral dispersive mixing coefficient). 

3. A short-wave transformation model ("wave driver") that describes the propagation of the 
short-waves in the computational region with particular emphasis on predicting the radia­
tion stresses, mass iuxes, etc. of the short period wave motion. This element essentially 
determines the short-wave forcing for the equations in 1) and 2). 

There are several important features of the 2D-horizontal equations which are worth mention­

ing. 

First of all, virtually no approximations have been made in the derivation of these equations 
other than the approximations already embedded in the fundamental Reynolds equations for 
turbulent fluid motion. Thus they automatically satisfy the (exact) nonlinear boundary conditions 
at the bottom and the free surface, which means that the effects of bottom friction, wind stresses 
on the surface, etc. can be incorporated exactly to the extent we need for the sediment processes. 
This means that we can expect the solutions to these equations to include the actual processes that 
occur on a real beach even i f we do not presently have simple representations (or even knowledge) 
of these processes. 
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Secondly, today it is possible to solve these equations using state of the art numerical tech­
niques, which are both highly efficient and accurate, without omitting any of the terms in the 
equations. This means that we can expect such solutions to include the actual processes that 
occur on a real beach even i f we do not presently have simple representations or even knowledge 
about these processes. An example of this is the discovery of the importance that the nonlinear 
current-current and wave-current interactions have for the lateral mixing (Putrevu & Svendsen, 
1992b, Svendsen & Putrevu, 1994a) described in Section 5.3, and actually the original discovery 
of the radiation stress as a term in the equations is another example. 

The opportunities this accuracy provides have not been fully explored yet in the literature. 

The second, integral part of such a model system is the solution for the vertical structure 
of the currents and infragravity wave particle velocities. As described elsewhere in this paper i t 
has been found that in the nearshore region currents not only vary in strength over the depth 
(as one would expect) but often also have widely different directions at the bottom and at the 
surface. This variation also changes quite dramatically over time. An example was shown in Fig 
13, Section 5.3. 

The lateral dispersive mixing mechanism crucially depends on this vertical variation. However, 
in addition to influencing the horizontal distribution of the currents (as the mixing does), the 
vertical variation clearly wi l l also have a strong effect on how currents and long waves move 
sediments. This is because the major part of the sediment transport occurs close to the bottom, 
whereas the water transport involved in the large scale current and infragravity-wave patterns 
is determined by the flow over the entire depth. Hence the sediment motion generated by the 
currents and infragravity-waves wil l i n general be in a different direction than what is perceived 
as the current direction i f only the depth averaged motion is considered. Therefore the resolution 
of the vertical current structure is crucial not only for the correct modelling of the hydrodynamics 
but also to the sediment transport processes. Hence i f a sediment-transport component is added 
to such a quasi-3D model we can expect that the model wi l l include these mechanisms. 

The third component of the model system is the socalled wave driver. The wave driver 
can in principle be any short-wave transformation model. Though there are exceptions (see, 
e.g., Watanabe 1982, Winer 1988), most nearshore models published so far have assumed a long 
straight coast. The wave driver is then replaced simply by Snell's law, which provides the wave 
pattern, plus the wave-averaged energy equation, which provides the wave height variation. This 
approach is not possible on a general bathymetry and for general wave input. A bonafide wave 
propagation model is needed as a driver for such cases. 

Since the short-wave time scale is much smaller than the time scale of the nearshore circulation, 
the short-wave models suitable as drivers must be reasonably crude in order to be computationally 
economical, and they are not accurate enough to actually predict the nearshore circulation. They 
must, however, include a reasonably accurate description of wave-height decay in the surf-zone. 
Their primary function here is to provide the driving forces for the circulation in the form of 
radiation stress, mass flux etc. Wi th this as forcing, the nearshore circulation can then be deter­
mined by solution of the equations described under 1) and 2). However, i f a sediment-transport 
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component is added to the qnasi-3D model the wave driver would have the additional function of 
providing sufiicient information about the local wave particle velocity near the bottom to make 
i t possible to determine the net efi'ect of the oscillatory part of the sediment motion. 

9 Concluding Remarks 

In this review, we have attempted to discuss the present state of understanding of surf zone 
hydrodynamics. As has hopefully become clear from this review, considerable progress has been 
made in the last thirty years even though there are still many areas where our understanding is 
far f rom satisfactory. 

Wave breaking provides the forcing for larger scale motions in the surf zone. I t is therefore 
probably both somewhat ironic as well as unfortunate that at the present time there exists no 
satisfactory theory to describe breaking and broken waves in the surf zone. This is currently a 
topic of intense research interest and we are confident that substantial progress wi l l be made in 
the near future. 

While our overall understanding of wave-induced nearshore circulations seems to be fairly 
sound, there are a number of phenomena that clearly require further study. These include, but 
are not limited to, quantitatively accurate predictions of rip currents; the predictions of longshore 
currents on barred beaches; and the importance of alongshore inhomogenieties on nearshore cir­
culations. Once again, these topics are currently being pursued by a number of investigators, and 
we expect considerable progress in the near future. 

Recent work has demonstrated that the surf zone is an important region for the generation 
of infragravity motions. While the present indications are that a substantial fraction of the 
infragravity energy seems to be generated in and near the surf zone, the existing models of surf 
zone generation of infragravity motions have not been verified. 

Shear waves seem to be amenable to an interpretation as a manifestation of an instability 
of the longshore current. Ongoing work on the nonlinear development of the instability and the 
importance of wave group forcing on these motions promises to yield interesting results. 

In conclusion, the subject of surf zone hydrodynamics is at an exciting stage of development 
right now and we expect that many of the issues wi l l be clarified in the near future. We may also 
expect that the ongoing and future work wil l discover phenomena which we are currently unaware 
of. 
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