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Abstract

In this paper we study the Cayley graph Cay(Sn, T ) of the symmetric group Sn

generated by a set of transpositions T . We show that for n > 5 the Cayley graph is
normal. As a corollary, we show that its automorphism group is a direct product of
Sn and the automorphism group of the transposition graph associated to T . This
provides an affirmative answer to a conjecture raised by A. Ganesan, Cayley graphs
and symmetric interconnection networks, showing that Cay(Sn, T ) is normal if and
only if the transposition graph is not C4 or Kn.

Mathematics Subject Classifications: 05C25, 20B30

1 Introduction

Given a finite group H and a generating subset T ⊆ H with T = T−1 and id /∈ T , the
Cayley graph of H with respect to T is the simple, undirected, connected graph defined as

Cay(H,T ) := (H, {{a, ta} : a ∈ H, t ∈ T}).

The Cayley graph is vertex transitive as its automorphism group Aut(Cay(H,T ))
contains the right regular representation R(H) = {ρa : a ∈ H}, where ρa denotes the
right multiplication b 7→ ba for b ∈ H. The Cayley graph is called normal if R(H) is a
normal subgroup of the automorphism group.

Denote by Aut(H) the group of group automorphisms of H and by Aut(H,T ) =
{f ∈ Aut(H) : f(T ) = T} the set of group automorphisms that setwise fix T . It is
known [1] that Aut(H,T ) is a subgroup of Aut(Cay(H,T )). The normalizer of R(H) in
Aut(Cay(H,T )) equals the semidirect product of the subgroups R(H) and Aut(H,T ),
see [8, 15]. Hence, the Cayley graph Cay(H,T ) is normal if and only if

Aut(Cay(H,T )) = R(H) o Aut(H,T ).

Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands
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Cayley graphs that are normal can be interpreted as those that have the smallest possible
automorphism groups. The identification of Cayley graphs that are normal is an open
problem in the literature.

In this work, we consider the case where H = Sn, the symmetric group on n elements,
and T is a set of transpositions generating Sn, i.e., permutations of the form (i j) with
i, j ∈ [n] := {1, . . . , n}, i 6= j. Since for any transposition (i j) we have (i j) = (j i), we
can identify a transposition with the unordered pair {i, j}. Let E(T ) denote the set of
unordered pairs corresponding to the transpositions in T . Thus, the set of transpositions
can be encoded as the edge set of a graph G(T ) = ([n], E(T )), the so-called transposition
graph of T . One easily verifies that the set T generates Sn if and only if G(T ) is connected,
and hence T is a minimal generating set for Sn if and only if G(T ) is a tree [7]. Cayley
graphs of the form Cay(Sn, T ) are often studied as the topology of interconnection net-
works, see for instance [6, 9, 13, 16]. Moreover, Cayley graphs generated by transpositions
have a close connection to several sorting algorithms [10] like bubble-sort and modified
bubble-sort, since finding the cheapest way to sort a sequence of integers boils down to
finding a shortest path in Cay(Sn, T ). Finally, graphs of the form Cay(Sn, T ) are recently
exploited to find optimal embeddings of qubits in a quantum computing system [11, 12].

The automorphism group of graphs of the form Cay(Sn, T ) has gathered notable at-
tention in the literature. Godsil and Royle [7] show that if G(T ) is an asymmetric tree,
then Aut(Cay(Sn, T )) is isomorphic to Sn. This result is strengthened by Feng [2], proving
that Aut(Cay(Sn, T )) equals R(Sn)oAut(Sn, T ) when G(T ) is an arbitrary tree, implying
the normality of Cay(Sn, T ). Ganesan [3] further strengthens this result, showing that
the condition can be generalized to G(T ) having girth at least five.

There are known instances where Cay(Sn, T ) is not normal. If G(T ) is a four-cycle,
the group Aut(Cay(Sn, T )) has 768 elements instead of 192 (see [3]). If G(T ) is a complete
graph with n > 3 vertices, then Aut(Sn, T ) ∼= (R(Sn)o Inn(Sn))oZ2 as was shown in [4].
However, it was conjectured in [6] that these are the only two graph structures (with
n > 3) for which normality does not hold.

In the present paper, we prove that this conjecture is indeed true, providing a full
answer to the question which Cayley graphs generated by transpositions are normal and
which are not. Observe that for n 6 4, all Cayley graphs of the form Cay(Sn, T ) fall into
one of the above-mentioned categories. Our goal is to prove the following theorem with
respect to Cayley graphs with n > 5.

Theorem 1. Suppose that n > 5 and that G(T ) is not isomorphic to Kn. Then
Aut(Cay(Sn, T )) = R(Sn) o Aut(Sn, T ), implying that Cay(Sn, T ) is normal.

It was shown in [5] that if T ⊆ Sn is a generating set of transpositions such that n > 3
and Cay(Sn, T ) is normal, then Aut(Cay(Sn, T )) is the internal direct product of R(Sn)
and L(Aut(G(T ))), where L denotes the left regular representation. Hence, we obtain the
following corollary.

Corollary 2. Suppose that n > 5 and that G(T ) is not isomorphic to Kn. Then
Aut(Cay(Sn, T )) is isomorphic to Sn × Aut(G(T )).
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In Section 2 we review and derive some preliminary results on the automorphism group
of Cayley graphs generated by transpositions. Section 3 provides the proof of Theorem 1.

2 Cayley graphs generated by transpositions

Throughout the rest of the paper, we let T ⊆ Sn be a generating set of transpositions.
We will denote by G = G(T ) the associated transposition graph and by Γ = Cay(Sn, T )
the associated Cayley graph. We note that Γ is bipartite since transpositions are odd
permutations.

In this section we consider some structural properties of the graph Γ. We start by
reviewing some preliminaries about Aut(Γ) in Section 2.1, after which we derive some
useful lemmas about transpositions and their induced structure in Γ in Section 2.2.

2.1 Preliminaries on Aut(Γ)

We denote by L(G) the line graph of G, by Kn the complete graph on n vertices and by
Kn,m the complete bipartite graph with partitions of size n and m.

Every automorphism φ of G induces an automorphism φ′ of L(G) given by φ′({i, j}) =
{φ(i), φ(j)} for all {i, j} ∈ E(T ). It is easy to see that if G has at most one isolated
vertex and no component of two vertices, then the map φ 7→ φ′ is an injective group
homomorphism from Aut(G) to Aut(L(G)). Whitney [14] showed that, except for a few
cases, this map is in fact an isomorphism.

Theorem 3 ([14]). Let G be a graph with at most one isolated vertex, and no component
equal to K2. If G has no component equal to K4, K4 − e (i.e., K4 minus one edge) or
a triangle with a pendant edge and G does not have both a K3-component and a K3,1-
component, then the map φ 7→ φ′ is a group isomorphism from Aut(G) to Aut(L(G)).

In particular, Theorem 3 implies that if G is a connected graph on at least five vertices,
every automorphism of L(G) is induced by a unique automorphism of G.

The proof of our main result, Theorem 1, relies on the exploitation of the following
alternative characterization for normality of Γ due to Ganesan [4].

Theorem 4 ([4]). Let T ⊆ Sn be a generating set of transpositions, where n > 5.
Then Cay(Sn, T ) is normal if and only if the identity map is the only automorphism
of Cay(Sn, T ) that fixes the identity vertex id and each of its neighbors.

2.2 Preliminaries on transpositions

We now derive a few preliminary results on the transpositions in T and their induced
structure in the Cayley graph Γ.

Lemma 5. Let a, b, c ∈ T be distinct and let σ ∈ Sn. Then

(a) Transpositions a and b commute if and only if a and b correspond to disjoint edges
in G.
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(b) Transpositions a and b commute if and only if there is a unique τ ∈ Sn such that
(σ, aσ, τσ, bσ, σ) is a 4-cycle in Γ. In this case, τ = ab.

(c) The edges corresponding to a, b, c form a triangle in G if and only if there exist
τ1, τ2 ∈ Sn such that {σ, aσ, bσ, cσ, τ1σ, τ2σ} induces a K3,3 subgraph in Γ. In that
case, {τ1, τ2} = {ab = ca = bc, ba = ac = cb}.

Part (b) was also shown in [4].

Proof. Part (a) is clear. For part (b) and (c) we may assume σ = id and set p = ba−1 = ba.
The paths (a, sa, tsa = b) of length 2 from a to b in Γ correspond bijectively to the
decompositions p = ts of p as a product of transpositions t, s ∈ T . We have the following
cases:

I. Transpositions a and b commute. Say, without loss of generality, that a = (1 2) and
b = (3 4). There are exactly two ways to write p as a product of two transpositions:
p = (3 4)(1 2) and p = (1 2)(3 4). Hence, (a, id, b) and (a, ba, b) are the only paths of
length 2 from a to b. We see that there is a unique τ such that (id, a, τ, b, id) is a
4-cycle in Γ, and τ = ba = ab.

II. Transpositions a and b do not commute. Say, without loss of generality, that a =
(1 2) and b = (2 3). There are exactly three ways to write p = (1 3 2) as a product
of two transpositions:

(1 3 2) = (2 3)(1 2) = (1 3)(2 3) = (1 2)(1 3).

If (1 3) 6∈ T we see that (a, id, b) is the only path of length 2 from a to b. If
(1 3) ∈ T , there are exactly three paths of length 2 from a to b: (a, id, b), (a, τ, b),
(a, τ ′, b) where τ = (2 3)(1 2) = (1 3 2) and τ ′ = (1 3)(1 2) = (1 2 3).

The proof of (b) now follows. If a and b commute, a unique τ as in (b) exists. If a and b
do not commute there is either no such τ or there is more than one.

To show (c), we first suppose that a, b, c form a triangle in G. We may assume that
a = (1 2), b = (2 3) and c = (1 3). We see that {id, (1 2 3), (1 3 2)} ∪ {(1 2), (2 3), (1 3)}
induces a K3,3 in Γ and we can take τ1 = (1 2 3) and τ2 = (1 3 2).

Conversely, if a, b are vertices of an induced K3,3 in Γ, then there must be at least
three paths of length 2 from a to b (as Γ is bipartite, a and b are in the same color class
of the K3,3.) So a and b must be part of a triangle in G.

The following intermediate result is used to derive another substructure in Γ based on
non-commuting transpositions.

Lemma 6. The 4-tuples of transpositions a, b, c, d such that abcd = (1 2 3) and no two
consecutive transpositions in the sequence (1 2), a, b, c, d, (2 3) commute, are precisely the
tuples of the following eight types, where k 6∈ {1, 2, 3}:
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• (1 3), (2 3), (1 2), (1 3)

• (1 3), (1 k), (1 2), (2 k)

• (2 3), (1 2), (2 3), (1 2)

• (2 3), (3 k), (1 k), (3 k)

• (2 k), (2 3), (3 k), (1 3)

• (2 k), (1 k), (3 k), (2 k)

• (1 k), (3 k), (1 k), (1 2)

• (1 k), (1 2), (2 3), (3 k)

Proof. It is easy to check that in each of the eight cases abcd = (1 2 3) and that consecutive
transpositions in (1 2), a, b, c, d, (2 3) do not commute. It remains to be shown that these
are all possibilities.

For a transposition t = (i j), we will say that i and j are the elements used by t.
Any two consecutive transpositions in the sequence a, b, c, d do not commute and must
therefore use a common element. This implies that a, b, c and d together use at most
five elements. Since abcd = (1 2 3), three of these elements must be 1, 2 and 3. Hence,
without loss of generality, we may assume that a, b, c, d ∈ S5.

Suppose that a, b, c, d together use all elements of {1, . . . , 5}. Since consecutive
transpositions do not commute, the graph on vertex set {1, . . . , 5} and as edges the four
pairs corresponding to a, b, c, d, is connected and therefore a tree. It now follows (see [7])
that abcd is a 5-cycle, contradicting the fact that abcd = (1 2 3). We conclude that either
4 or 5 is not used by a, b, c, d, so we may assume that a, b, c, d ∈ S4.

The statement now follows from checking all decompositions of a(1 2 3)d into a product
of two transpositions for all sixteen combinations a ∈ {(1 3), (1 4), (2 3), (2 4)} and d ∈
{(1 2), (1 3), (2 4), (3 4)}.

Based on Lemma 6, we now show the following result, which is a generalization of
Ganesan [3, Theorem 4], which relied on the girth of G to be at least 5.

Lemma 7. Let σ ∈ Sn and let s, t ∈ T be non-commuting. Suppose that s and t are not
in a common cycle of length at most 4 in G. Then there exist unique τ1, τ2, τ3 ∈ Sn such
that

(σ, sσ, τ1σ, τ2σ, τ3σ, tσ, σ)

is a 6-cycle in Γ of which any two consecutive edges correspond to non-commuting trans-
positions. Moreover, we have

τ1 = ts, τ2 = sts, τ3 = tsts = st.

Proof. Without loss of generality, we assume that s = (2 3) and t = (1 2). Choosing
τ1 = (1 2 3), τ2 = (1 3) and τ3 = (1 3 2), it is clear that the given 6-cycle exists in Γ.

To prove uniqueness, write

s = (2 3), τ1 = d(2 3), τ2 = cd(2 3), τ3 = bcd(2 3), t = (1 2) = abcd(2 3).

Observe that a, b, c, d satisfy the conditions in Lemma 6. Since (1 2) and (2 3) are not
part of a cycle of length at most 4, we have (1 3) 6∈ T and for k > 4 at most one of (1 k)
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1

2 3

k

(1 2)

(2 3)

Figure 1: Subgraph of G induced by vertices 1, 2, 3 and any k /∈ {1, 2, 3}. Existing and
non-existing edges are denoted by solid and dotted lines, respectively.

and (3 k) can be in T , see Figure 1. Hence, from the eight types in Lemma 6, only one
remains and we must have a, b, c, d = (2 3), (1 2), (2 3), (1 2), proving the uniqueness of the
induced 6-cycle.

3 Proof of main theorem

We are now ready to prove Theorem 1. Let Φ ∈ Aut(Γ) be an automorphism that fixes
the identity vertex id and every transposition in T . Based on Theorem 4, it suffices to
show that Φ fixes every vertex of Γ. Let

U = {σ ∈ Sn : Φ(τ) = τ for all τ ∈ N(σ) ∪ {σ}}, (1)

where N(σ) denotes the set of neighbors of σ in Γ. Observe that id ∈ U , so U is nonempty.
Let σ ∈ U . Since Γ is connected, it suffices to show that aσ ∈ U for all a ∈ T .

Observe that for every a ∈ T the automorphism Φ fixes aσ and induces a bijection
N(aσ) → N(aσ). Since each edge adjacent to aσ is associated with a transposition
in T , this induces a bijection T → T . By part (b) of Lemma 5, it follows that this
bijection preserves commutativity, i.e., commuting pairs of transpositions are mapped to
commuting pairs of transpositions. So identifying transpositions with their corresponding
edges in G, the bijection is an automorphism φ′a of L(G). By Whitney’s Theorem, i.e.,
Theorem 3, this automorphism originates from a unique automorphism φa ∈ Aut(G).

It suffices to show that φa is the identity permutation for all a ∈ T . Before we do so,
we need the following three intermediate results about the automorphisms φa.

Lemma 8. Let a = (i j) ∈ T . Then

(i) φa({i, j}) = {i, j}.

(ii) Let {k, `} be an edge of G disjoint from {i, j}. Then φa({k, `}) = {k, `}.

Proof. Since a(aσ) = σ is fixed by Φ it follows that φ′a fixes the edge {i, j} and therefore
φa fixes the set {i, j}.

Write b = (k `). Since σ, aσ, bσ are fixed by Φ and a and b commute, it follows by part
(b) of Lemma 5 that baσ is fixed by Φ. This means that the set {k, `} is fixed by φa.
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Lemma 9. Let {i, j, k} induce a triangle in G. Then φ(i j)(k) = k.

Proof. Since {i, j}, {j, k} and {i, k} form a triangle in G, it follows from part (c) of
Lemma 5 that the vertices σ, (i j)σ, (j k)σ and (i k)σ of Γ are contained in a unique K3,3

subgraph of Γ. Since σ ∈ U , it follows that these vertices are fixed by Φ. This implies
that the other two vertices in the K3,3, i.e., (j k)(i j)σ and (i k)(i j)σ, are setwise fixed by
Φ. In other words, φ′(i j) fixes {{j, k}, {i, k}}. This implies that φ(i j)(k) = k.

Lemma 10. Let {i, j, k} induce a triangle in G. Suppose that φ(i j) fixes i, j and k. Then
φ(i k) and φ(j k) also fix i, j and k.

Proof. That φ(i j) fixes i, j and k, implies that φ′(i j) fixes the edges {i, k} and {j, k}. So

Φ fixes τ = (i k)(i j)σ and τ ′ = (j k)(i j)σ.
Rewriting τ = (j k)(i k)σ and τ ′ = (i j)(i k)σ we see that φ′(i k) fixes the edges {j, k}

and {i, j}, and also the edge {i, k} by part (i) of Lemma 8. It follows that φ(i k) fixes i,
j and k. Similarly, rewriting τ = (i j)(j k)σ and τ ′ = (i k)(j k)σ, we find that φ′(j k) fixes

the edges {i, j}, {i, k} and {j, k}, and therefore φ(j k) fixes i, j and k.

Lemma 11. Let {i, j} and {i, k} be edges of G that are not on a common cycle of length
at most 4. Then φ(i j) fixes i, j and k.

Proof. As the transpositions (i j) and (i k) do not commute and their corresponding edges
are not in a common cycle of length at most 4, it follows from Lemma 7 that the vertices
(i j)σ, σ and (i k)σ are consecutive vertices on a unique 6-cycle in Γ with the property
that any two consecutive edges correspond to transpositions that do not commute. Since
Φ fixes the vertices (i j)σ, σ and (i k)σ it must fix all vertices in this 6-cycle. In particular,
it fixes (i k)(i j)σ, so φ′(i j) fixes {i, k}. Since φ′(i j) also fixes {i, j}, it follows that φ(i j) fixes
i, j and k.

To complete the proof of Theorem 1 we will now show that φa is the identity per-
mutation for all a ∈ T . Without loss of generality, we will assume a = (1 2). Let
H := G[{3, . . . , n}] be the graph obtained by deleting the vertices 1 and 2 from G. Let
C be a connected component of H. We consider the following cases.

Case I. Suppose C consists of a single vertex v. Then φa fixes 1, 2 and v.

Proof. First suppose that {1, 2, v} induces a triangle in G. Since n > 5, it follows
that at least one of the vertices 1 and 2 has a neighbor in a different component.
So without loss of generality, we will assume d(1) > d(v), where d(·) denotes the
degree of a vertex in G. Since the automorphism φ(1 v) fixes the pair {1, v} and these
vertices have different degrees, it must fix both vertex 1 and v. By Lemma 9, it also
fixes vertex 2. Hence, by Lemma 10, it follows that also φa fixes vertices 1, 2 and v.

Next, suppose that {1, 2, v} does not induce a triangle in G. Without loss of gener-
ality, suppose {2, v} 6∈ E, but {1, v} ∈ E. Since {1, v} and {1, 2} are adjacent edges
not in a cycle in G, Lemma 11 implies that φa fixes the vertices 1, 2 and v.
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Case II. Suppose that C has 2 vertices, say v and w. We consider the following subcases,
see Figure 2.

(a) Suppose that {1, 2, v, w} induces a path or a K4− e. Then φa fixes 1, 2, v and
w.

Proof. Since φa fixes the pair {v, w} by Lemma 8 and d(v) 6= d(w), it fixes
both v and w. Since φa also fixes the pair {1, 2} and they do not have the
same number of neighbors among {v, w}, φa must fix both 1 and 2.

(b) Suppose that {1, 2, v, w} induces a triangle with a pendant edge. Then φa fixes
1, 2, v and w.

Proof. If {1, 2} is the pendant edge, we may assume without loss of generality
that the triangle is induced by {2, v, w}. Then {1, 2} and {2, w} are adjacent
edges not in a common cycle, so by Lemma 11 the vertices 1, 2 and w are fixed
by φa. Then since {v, w} is fixed by Lemma 8, also v is fixed by φa.

If {v, w} is the pendant edge, we may assume without loss of generality that
{1, 2, v} induces a triangle. We first consider the automorphism φ(1 v). Since
{1, v} and {v, w} are adjacent edges not in a common cycle, Lemma 11 implies
that φ(1 v) fixes the vertices 1, v and w. By Lemma 9, φ(1 v) also fixes vertex
2. It now follows from Lemma 10 that also φa fixes vertices 1, 2 and v, and
therefore also vertex w as it fixes {v, w}.

(c) Suppose that {1, 2, v, w} induces a K4. Then φa fixes 1, 2, v and w.

Proof. Since G has at least five vertices, we may assume without loss of gener-
ality that d(1) > 4 in the graph G. Since d(v) = 3 < d(1), the automorphism
φ(1 v) must fix vertices 1 and v. By Lemma 9, also vertex 2 is fixed by φ(1 v). By
Lemma 10 it now follows that also φa fixes vertices 1, 2 and v, and therefore
also vertex w.

(d) Suppose that {1, 2, v, w} induces a C4. Then either φa fixes the four vertices
1, 2, v, w, or φa swaps vertices 1 and 2 and also swaps vertices v and w.

Proof. Since φa fixes the pair {1, 2} and the pair {v, w} by Lemma 8, these are
clearly the only two options.

Case III. Suppose that C has at least three vertices. Then vertices 1 and 2 and all
vertices in C are fixed by φa.

Proof. Since all edges in C are disjoint from {1, 2}, it follows from Lemma 8 that
φa fixes every edge of C. Since C is connected and has at least three vertices, there
must be a vertex v that is incident with multiple edges. Hence v is fixed by φa.
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1 2

v w

1 2

v w

1 2

v w

1 2

v w

1 2

v w

1 2

v w

1 2

v w

1 2

v w

1 2

v w

(a) K4 − e (b) triangle with pendant edge

(c) K4

(d) C4(a) path

Figure 2: Options (up to renaming v and w) for the subgraph of G induced by {1, 2, v, w}
corresponding to case II.

Since φa fixes all edges, any neighbor of a fixed vertex is fixed, so φa fixes every
vertex of C.

If vertex 1 and 2 do not have the same neighbors in C, then 1 and 2 are fixed by φa

and we are done. Therefore, we will assume that vertex 1 and 2 have the same set
S of neighbors in C. Suppose there exists a v ∈ S with d(v) 6= d(1) or d(v) 6= d(2),
say without loss of generality that d(v) 6= d(1). Then vertex 1 and v are fixed
in φ(1 v), and by Lemma 9 so is vertex 2. It then follows by Lemma 10 that 1, 2
and v are also fixed by φa and we are done. So from now on, we will assume that
d(1) = d(2) = d(v) for all v ∈ S.

If C \ S = ∅, then d(1) = d(2) > |S| + 1 > d(v) = d(1) for all v ∈ S. But equality
can only hold if every two vertices in S are connected by an edge and 1 and 2 have
no neighbors in other components. This means that G = K2+|S|, which is prevented
by the theorem statement.

So we can assume that C \ S 6= ∅. Since C is connected, there must exist a w ∈ S
that is adjacent to a vertex u ∈ C \ S. This situation is depicted in Figure 3. If u
has only one neighbor in S, then {1, w} and {w, u} are not in a common cycle of
length at most 4. Hence, by Lemma 11, the automorphism φ(1w) fixes vertices 1, w
and u. It also fixes vertex 2 by lemma 9. It follows by Lemma 10 that also φa fixes
vertices 1, 2 and w and we are done.

So we may assume that every u ∈ C \ S that is a neighbor of w has at least one
other neighbor in S. Set W = V (C)∪ {2} \ {w}. It follows that G[W ] is connected
and has at least three vertices. So φ(1w) fixes all vertices in W . Since 1 and w do
not have the same neighbors in W , also 1 and w are fixed by φ(1w). By Lemma 10
it now follows that also φa fixes vertices 1, 2 and w.
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1

2

S C \ S

w u

Figure 3: Overview of component C with |C| > 3 when S \ C 6= ∅. Edge {w, u} does
exist. Dotted edges might or might not exist.

Combining the three cases above, we see that φa is the identity unless every component
of H is of type II(d). In that case, there must be t > 2 such components and {1, 2} is the
unique edge of G that is adjacent to 2t edges. Thus, the transposition (1 2) is the unique
transposition that does not commute with 2t other transpositions. So the edges of the
Cayley graph Γ corresponding to (1 2) are permuted among themselves by Φ. Since there
is a unique 6-cycle through vertices (1 2)σ, σ, (1 v)σ in Γ using three edges corresponding
to (1 2), the vertices of this 6-cycle must be fixed by Φ, implying that φa fixes 1, 2 and v.

We conclude that the automorphism φa is the identity permutation, completing the
proof of Theorem 1.
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