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Abstract

Quantum algorithms have shown much potential in solving complex

problems more efficiently than our current classical algorithms, partic-

ularly in search problems with a large and complex search space. When

leveraging the principles of superposition and interference, quantum

walk based algorithms can lead to a faster convergence on a target

state.

The thesis begins with a theoretical framework for the study of clas-

sical and quantum walks on graphs. The usage in search algorithms

is discussed together with the effect of a modified Hamiltonian that

introduces a bias toward the target state. This is analyzed using per-

turbation theory showing a decrease of the ground state energy.

Ultimately, this thesis focuses on the optimization of quantum ran-

dom walk search algorithms using resetting techniques. Simulations of

quantum random walks on simple graph structures, such as path and

cycle graphs are used to provide concrete examples. Results show that

resetting not only improves the probability of finding the target state,

but also has a faster convergence. Furthermore, decoherence effects

are shown to be reduced when using resetting techniques.
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Chapter 1

Introduction

In recent years, quantum mechanics and quantum computing have received more

and more attention. This is driven by the potential for a revolutionary develop-

ment in the complexity of computations and more efficient algorithms. Traditional

algorithms often end up with problems that have an exponential growth in com-

putational time, especially in search problems where the search space can be very

complex. On the other hand, quantum algorithms, which can be based on quan-

tum walks, have interesting properties like superposition that can improve the

search efficiency [1].

In this thesis, we will take an extensive look at how we can optimize quantum

random walk search by using resetting techniques. These quantum random walks

are essential for various quantum algorithms, having unique advantages over their

classical counterpart. For example, properties like interference and the ability to

go on multiple paths simultaneously lead to a faster convergence on target states

in a search process. However, in practical applications, there are many challenges

due to decoherence, which limits the efficiency of quantum algorithms. By using

resetting techniques, you can reset the walker to specific states or a superposition

of states such that the decoherence is countered and the search process can be

optimized.

Before we get there however, we first discuss the foundational concepts in

quantum mechanics, graph theory, and random walks which are needed to under-
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stand the quantum systems that will come later. This theoretical framework in

Chapter 2 begins with a review of quantum mechanics, specifically the role of den-

sity matrices and the Lindblad master equation for describing evolution in open

quantum systems. In contrast with the Schrödinger equation, which is applied

to closed quantum systems, the Lindblad equation accounts for interaction with

the environment, causing decoherence. This makes it an important tool to study

real-world quantum systems.

We then discuss graph theory as a framework for representing the search space

and introduce the classical and quantum random walk. The graph will serve as the

mathematical structure that determine the movement of the walker. A modified

Hamiltonian is used for the quantum random walk to introduce a bias toward the

target state. This will be analyzed using perturbation theory, which gives more

insight into the energy landscape and how the bias affects this landscape.

Simulations of the quantum random walks in Chapter 3 are conducted on var-

ious graphs to provide concrete examples of how the walker traverses the graph.

These graphs have different topologies which influence the quantum walk. The

modified Hamiltonian that introduces a bias and convergence to the target state

is also demonstrated.

In the final section, Chapter 4, we introduce two resetting techniques as a

method to optimize the quantum random walk search. This involves resetting the

walker to a predefined superposition of states. By doing so, decoherence effects

are reduced and the search efficiency is improved. One approach to resetting is

a constant resetting rate towards a fixed dimensionality reset state. This reset

state is a superposition and will be dynamic to increase the search efficiency. The

second approach uses a variable dimensionality reset state that converges to the

pure target state. The simulations show that these techniques can be used to

optimize the probability of finding the target state, while minimizing the time

that it takes.
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Chapter 2

Theory

2.1 Quantum mechanics

In this section, we will present a short overview of the formalism from quantum

mechanics that is used to formulate the quantum random walk.

2.1.1 Density matrices

When dealing with quantum states, we never know the exact state of a system

unless we measure it. To still be able to work with this, we introduce density

matrices as a way of describing mixed states, where the system is in a probabilistic

combination of multiple pure states which are denoted by |Ψk⟩ ∈ H, where H is

the Hilbert space of the system. Suppose for instance that the probability of being

in state |Ψk⟩ is pk, then the density matrix is defined in the following way:

ρ ≡
∑
k

pk |Ψk⟩ ⟨Ψk| ,

where ⟨Ψk| is the Hermitian conjugate of |Ψk⟩.

This density matrix ρ possesses several important properties:

• Hermitian: The density matrix is Hermitian because it is constructed of

Hermitian outer products |Ψk⟩ ⟨Ψk|. Therefore, we also have that ρ† = ρ

and is thus Hermitian.
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2.1 Quantum mechanics

• Positive Semi-Definite: For any vector |ϕ⟩ ∈ H, the probability of obtain-

ing the measurement outcome |ϕ⟩ is given by the expecation value ⟨ϕ| ρ |ϕ⟩,

which is always non-negative. This non-negativity results from the fact that

each term in the sum defining ρ is positive semi-definite. Specifically, pk ≥ 0

and |Ψk⟩ ⟨Ψk| is positive semi-definite for any |Ψk⟩.

• Trace Equals One: The trace of the density matrix is one, Tr(ρ) = 1,

which reflects the property that the total probability of all possible pure

states is normalized.

The diagonal elements of the density matrix ρ̂ correspond to the probabilities

of observing the system in each of the pure states |Ψk⟩ [2]. The off-diagonal ele-

ments of the density matrix, on the other hand, represent the coherences between

different pure states. Coherence in this case is the ability to be in a superposition

of states, where the relative phases between the states are crucial.

2.1.2 Lindblad master equation

Although the motion of particles at the quantum level is described by the

Schrödinger equation, we will be using the Lindblad master equation. The key

distinction here is that the Schrödinger equation applies to closed systems, which

is an idealised scenario of the real-world. To account for the interactions between

particles and their surroundings, as is common in quantum computation, we will

use the Lindblad master equation instead.

The Lindblad master equation can be derived from the von Neumann equation

which is equivalent to the Schrödinger equation when applied to the density matrix

framework [3]. The von Neumann equation describes the time evolution of the

density matrix for a closed quantum system and is given by:

dρ

dt
= −i [HQ, ρ] . (2.1)

Here, the units are taken such that the reduced Planck’s constant ℏ = 1 (this

convention will be used throughout the thesis). The HamiltonianHQ is an operator

that controls the dynamics of the quantum system. We will later show how this
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2.1 Quantum mechanics

Hamiltonian HQ is constructed (see Equation (2.15)). When the Hamiltonian HQ

is time-independent, the solution to the von-Neumann equation is given by:

ρ(t) = U(t)ρ(0)U †(t) (2.2)

with U(t) = e−iHQt being the unitary time-evolution operator and the dagger indi-

cating the conjugate transpose. This however represents the idealised scenario of

a closed system, where we assumed that there is no interaction with the environ-

ment and coherence is preserved. This quantum coherence refers to the property

of a quantum system that is in a superposition of states and has specific phase

relationships between them. As mentioned before, open quantum systems are on

the contrary subject to interactions with their surrounding environment, distort-

ing the phase relationships and causing decoherence [3]. The Lindblad equation

(see Equation (2.3)) accounts for such effects by incorpating terms that model the

dissipative effects of the environment. These effects, described by ’jump’ opera-

tors Lnm can arise from various sources, such as interactions with the surrounding

particles, electromagnetics fields and thermal fluctuations. The Lindblad master

equation is denoted by:

dρ

dt
= −i[HQ, ρ] +

∑
nm

(
LnmρL

†
nm − 1

2

{
L†
nmLnm, ρ

})
≡ Lρ (2.3)

with jump operators Lnm describing the jumps from |n⟩ to |m⟩. For example,

Lnm could model the absorption and emission of a photon, where the system

transitions from state |n⟩ to |m⟩. Furthermore, the notation of anticommutator

{a, b} = ab + ba is used and we have also defined the super-operator L such that

it can be written as a first order differential equation.

As it turns out, we can implement different levels of coherence or dissipative

effects from the environment by transforming Equation (2.3). This is also more

realistic since a fully coherent walk is impossible to obtain in the real-world where

you have to deal with varying levels of decoherence. To interpolate between a fully

coherent (no influence from dissipative effects) and a fully incoherent evolution

(random state transitions), we must introduce a dimensionless parameter ϵ ∈ R≥0
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2.2 Networks

such that we obtain the following equation [4]:

dρ

dt
= −i [(1 − ϵ)HQ, ρ] − ϵ

∑
nm

γnm

[
ρmm |n⟩ ⟨n| − 1

2
{|m⟩ ⟨m| , ρ}

]
. (2.4)

Here, ϵ represents the degree of quantum coherence. When ϵ → 0, it represents

a fully coherent quantum walk which will be discussed in Subsection 2.3.2. Con-

versely, when ϵ → 1, it represents a fully incoherent walk, which is equivalent to

a classical walk. To accurately represent the physical processes and interactions

in the system, we have to define a set E to specify the pairs of states between

which transitions can occur due to damping and decoherence. The jump operators,

which represent these transitions can then be defined as Lnm =
√
ϵγnm |n⟩ ⟨m| for

(n,m) ∈ E with damping constants γnm. We will later see that we can write these

jump operators using the classical Hamiltonian that is given in Subsection 2.3.1.

For convenience, we express Equation (2.4) using the superoperator:

dρ

dt
= L(ϵ)(ρ). (2.5)

This is simulated in Section 3.1 for various levels of decoherence or dissipative

effects that occur from an open system.

2.2 Networks

In the realm of networks, we are dealing with much more than just interconnected

objects. Consider for instance a database network, where navigating through

various data structures resembles the traversing of a complex network. In many of

such cases, one aims to find specific information/files in the network, often seeking

algorithms to aid in the task. This concept isn’t limited to databases alone;

various real-world situations, such as social networks, recommendation systems

and biological systems, can be simplified and analysed using network principles.

In this section, we will provide a framework for understanding such networks.
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2.2 Networks

2.2.1 Graph theory

A network can be mathematically represented using a graph G = (V,E), which

consists of a set of vertices/nodes V (with |V | = N ∈ N) and a set of edges

E ⊆ V ×V between the nodes. Characteristic properties of various graphs can be

captured in two n×n-matrices, the adjacency matrix A and the degree matrix D.

The adjacency matrix describes which nodes are connected by an edge and has

the following entries:

Aij =

1 if there is an edge from node i to node j,

0 otherwise.

In this thesis, we will only consider undirected networks, meaning that all edges

are bidirectional between their associated nodes. This means that the adjacency

matrix A is symmetric, as for any edge (i, j) ∈ E present in the network, its re-

ciprocal (j, i) ∈ E also exists. Furthermore, no self-loops are allowed and there is

only one edge allowed between any pair of nodes, making it a simple graph.

The diagonal degree matrix D denotes the degree ki of each node. This is

the number of edges connected to a certain node i and can be mathematically

formulated as the sum over the i-th row in the adjacency matrix, i.e. ki =
∑N

j Aij.

Dij =

ki if i = j,

0 otherwise.

Both matrices are combined in the so-called Laplacian matrix, which will be

used to formulate the classical random walk (CRW) and the quantum walk (QW)

in Section 2.1. The symmetric Laplacian matrix L (which should not be confused

with the operator L defined in Equation (2.5)) is defined by:

L ≡ D − A, with Lij =


ki if i = j

−1 if (i, j) ∈ E

0 otherwise

(2.6)
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2.3 Random walks

2.3 Random walks

Random walks are a fundamental concept that is used in various fields, such as

probability theory and statistical mechanics, describing the stochastic motion of

particles or in our context, a walker. Applications of this concept include the

so-called PageRank algorithm, which navigates through web pages to assess their

relevance and rank them accordingly [5]. Furthermore, random walks are utilized

to develop search algorithms and to characterize fluctuations on the stock market

[6], [7]. The quantum counterpart has also demonstrated utility and, notably,

surpasses its classical counterpart in certain scenarios, such as search algorithms

[8]. In this section, we will outline both the classical random walk and its quantum

counterpart.

2.3.1 Classical random walks (CRW)

A classical random walk represents the trajectory that is created by taking succes-

sive random steps on a given graph G. Beginning from an initial position or node,

each step involves choosing one of the adjacent nodes. If a node has k adjacent

nodes, then the probability of transitioning to any one of the adjacent nodes is 1
k
.

Consider a classical random walk on a graph as a continuous-time process.

Define pi(t) to be the probability to be on node i at time t which can be represented

in a probability vector:

p(t) = (p1(t), ..., pN(t)) with
N∑
i=1

pi(t) = 1 ∀t

If the walker is on an arbitrary node j at time t, then we have that the prob-

ability to transition from node j to an adjacent node i is given by:

pj→i =
N∑
j=1

Aij

kj
pj(t) (2.7)

Here, Aij denotes the adjacency matrix element, and kj is the degree of node j.

The adjacency matrix ensures that only adjacent nodes from node i contribute to
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2.3 Random walks

the sum. The term kj takes into account the degree of the node such that the

walker does not necessarily have to go to i, but can go to other adjacent nodes

with equal probability.

Now, if we consider a small time interval [t, t+ ∆t] with ∆t sufficiently small,

the time evolution of the probability pi(t) can be described by calculating the

probability of going to node i and subtracting the probability of leaving node i.

This results in the following equation:

pi(t+ ∆t) − pi(t) = ∆tpj→i − ∆tpi→j

= −∆t

(
pi(t) −

N∑
j=1

Aij

kj
pj(t)

)
.

(2.8)

The normalization condition can be checked by summing both sides over all

nodes i. The left-hand side would instantly sum to zero, while the right-side

eventually sums to zero because
∑N

i=1
Aij

kj
= 1. This formulation captures the

dynamics of the random walk, where the probability at each node evolves based

on the probabilities at its neighboring nodes and the connectivity of the graph.

As a result, the stationary distribution will be proportional to the degree of each

vertex [9]. Rewriting Equation (2.8) in matrix form yields the differential equation:

dp(t)

dt
= −LD−1p(t) ≡ −HCp(t) (2.9)

Where the Laplacian L is chosen as in Equation (2.6). Furthermore, we have

defined the classical Hamiltonian as we can compare it to the quantum case in

Subsection 2.1.2. The solution to this equation with a certain initial distribution

p(0) is given by

p(t) = p(0)e−HCt (2.10)

For a finite connected graph G = (V,E), the stationary distribution depends

on both the degree of each vertex and the total number of edges in the graph.

Intuitively, vertices with higher degrees tend to have higher probabilities of occu-

pation for the walker.

9



2.3 Random walks

In mathematical terms, for such graphs, the stationary distribution

π = (π1, π2, . . . , πn) is defined by:

πi =
ki

2|E|
(2.11)

where ki denotes the degree of vertex i (i.e., the number of edges incident to vertex

i, and |E| is the total number of edges in the graph G. Each πi represents the

probability of finding the walker at vertex i when the process reaches its stationary

distribution. It can easily be shown that this is indeed the stationary distribution

To see that this is indeed the stationary distribution, note that the transition

probability to go from node i to node j is given by pi→j = 1
ki

for (i, j) ∈ E.

Therefore, the stationary distribution condition

πj =
∑
i

πipi→j

can be verified as follows:

∑
i

πipi→j =
∑

(i,j)∈E

ki
2|E|

1

ki
=
∑

(i,j)∈E

1

2|E|
=

kj
2|E|

= πj.

The last two steps come from the fact that there are kj edges adjacent to node j

and we thus obtain the stationary distribution condition.

Let’s now consider a line graph which is given by vertices V = {n1, n2, . . . , nN}

and edges E = {(ni, ni+1) | ∀i ∈ {1, 2, . . . , N − 1}}. For this finite graph (|V | =

N), we can obtain a stationary distribution by calculating the transition matrix

P = D−1A which corresponds to the term
Aij

kj
in Equation 2.8 and solving for

π = πP . The transitional matrix is then given by:

10



2.3 Random walks

P =



0 1 0 0 · · · 0 0

1
2

0 1
2

0 · · · 0 0

0 1
2

0 1
2

· · · 0 0

0 0 1
2

0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
2

0 0 0 0 · · · 1 0


. (2.12)

The stationary distribution satisfies
∑N

i=1 πi = 1, which yields the following

result:

π =

[
1

2(N − 1)

1

N − 1
. . .

1

N − 1

1

2(N − 1)

]
(2.13)

2.3.2 Quantum random walks (QRW)

The quantum counterpart of the classical random walk we consider is continuous,

meaning that it takes place entirely in a Hilbert space H, contrasting with the

discrete quantum random walk [1]. To establish this quantum analogue, we assign

to each node i in the graph a basis vector represented in Dirac notation as |i⟩ ∈ H.

The Hilbert space H is a finite-dimensional complex vector space, specifically CN ,

for N nodes in the graph. These basis vectors are not only orthogonal but also

normalized which is mathematically expressed as ⟨i|j⟩ = δij. We pick our basis

such that

|1⟩ =



1

0

0
...

0


|2⟩ =



0

1

0
...

0


. . . |n⟩ =



0

0
...

0

1


(2.14)

In this setup, the Hilbert space H = CN is spanned by the orthonormal ba-

sis vectors {|1⟩ , |2⟩ , . . . , |n⟩}, ensuring that any quantum state |Ψ⟩ ∈ H can be

expressed as a linear combination of these basis states:

|Ψ⟩ =
n∑

i=1

αi |i⟩ ,

11



2.3 Random walks

for which αi ∈ C are complex coefficients satyisfying the normalization condition∑N
i=1 |αi|2 = 1.

The evolution of the random walk is described by the Lindbladian, which is

discussed in Subsection 2.1.2.

The Hamiltonian that we use is the normalized graph Laplacian, given by:

HQ = D− 1
2LD− 1

2 (2.15)

where D is the diagonal matrix of node degrees, and L is the combinatorial Lapla-

cian defined as L = D−A, with A being the adjacency matrix of the graph. This

Hamiltonian, HQ, is chosen specifically for several reasons:

• The normalized graph Laplacian HQ ensures that the quantum walk is sym-

metric and unitary, preserving the probability distribution over the nodes.

By normalizing with D− 1
2 , the influence of node degree on the walk dynamics

is balanced.

• The normalized graph Laplacian is similar to the classical Hamiltonian HC

in the sense that the evolution is determined by transition probabilities that

are often proportional to node degrees. The quantum counterpart HQ retains

this property in a probabilistic sense.

• One of the key properties of HQ is that the average long-time probability

distribution for a system in the ground state of this Hamiltonian corresponds

to the stationary distribution of the classical random walk. In classical walks,

the stationary distribution is typically proportional to the node degrees,

meaning that in the long run, the probability of finding the walker at a

particular node is proportional to its degree. This property is mirrored in the

quantum walk governed by HQ, ensuring consistency between the classical

and quantum descriptions.[10]

The significance of HQ being symmetric lies in several aspects. Firstly, a sym-

metric matrix has real eigenvalues and orthogonal eigenvectors, which is crucial
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2.3 Random walks

for the stability of the quantum walk and for ensuring that the evolution operator

U(t) = e−iHQt is well-behaved. Secondly, symmetry allows HQ to be diagonalized

by a unitary matrix Q, such that HQ = QΛQ−1, where Λ is the diagonal matrix

of eigenvalues. This simplifies the computation of the matrix exponential used in

the time-evolution operator. Lastly, symmetric Hamiltonians correspond to real,

measurable physical observables in quantum mechanics, ensuring that the energy

levels (eigenvalues) are real and that the evolution of the system is physically

meaningful.

We can rewrite our unitary time-evolution operator U(t) = e−iHQt by diago-

nalizing the Hamiltonian, i.e. HQ = QΛQ−1 with eigenvalues λi and eigenvectors

vi. Using the definition of the matrix exponential, we obtain the following result:

e−iHQt =
∞∑

m=0

(−it)m

m!
Hm

Q =
∞∑

m=0

(−it)m

m!
(QΛQ−1)m =

∞∑
m=0

(−it)m

m!
QΛmQ−1

=
∞∑

m=0

(−it)m

m!

N∑
i=1

λmi |vi⟩ ⟨vi| =
N∑
i=1

e−itλi |vi⟩ ⟨vi|
(2.16)

This representation simplifies the analysis of the quantum walk, as it reduces

the problem to the study of the eigenvalues and eigenvectors of HQ.

Note that if we take our initial density matrix to be a superposition among all

nodes, i.e. a normalized identity matrix ρ(0) = 1√
N
IN , we can write equation 2.2

as follows:

ρ(t) =
1√
N

∑
i,j

ei(λi−λj)tEiEj (2.17)

for which we have defined Ei = |vi⟩ ⟨vi| and Ej = |vj⟩ ⟨vj|. This equation shows

that all elements of the density matrix will contain periodic terms with frequencies

determined by the energies of the stationary states. An example will be shown in

section 3.1 and 3.2.
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2.4 Random walk search

2.4 Random walk search

A random walk search is a concept that can be studied in the classical and in

the quantum domain. For the classical random walker, it usually takes random

successive steps on a graph or lattice. At some point, it can reach a target state,

or in other words, the state that you would like the walker to reach. These are

called absorbing states such that the random walk is terminated when it reaches

that specific state.

In many applications, one is interested in the expected time that it takes to

reach this absorbing state, often referred to as the mean time to absorption (MTA).

This is an important measure for the efficiency of search algorithms, diffusion mod-

els and other stochastic processes.

For the quantum random walk, it works rather differently. While it shares

similarities with its classical counterpart, the evolution typically involves a super-

position of states, which can lead to a faster search or absorption time if manip-

ulated in a specific manner. In this section, we explore the concepts of random

walk search for both the classical and quantum domain.

2.4.1 Classical random walk with absorbing target

As discussed, the classical random walk has been studied extensively regarding

absorbing states or in the context of this thesis, target states. If you simulate a

diffusion process without a reset rate, there is no guarantee that it reaches the ab-

sorption state. However, as it turns out the mean time to absorption (or reaching

the target) is finite if you introduce a certain reset rate r [11].

For example, a well-known result from diffusion theory shows that a one-

dimensional diffusion process with resetting rate r can be analyzed to obtain an

expression for the mean time to absorption. In this process, the particle moves

randomly along a line and is reset to a specific position Xr with rate r. The motion

is governed by the diffusion constant D, which determines how quickly the parti-
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2.4 Random walk search

cle moves or spreads out over time. The absorbing state in this case represents a

boundary condition. Once the particle reaches this state, it is absorbed and reset

to the reset state. This means that the absorbing state is not fixed, since you

cannot predict where the particle will be when it resets. The expression for the

mean time to absorption is given by:

⟨T (Xr)⟩ =
1

r

(
eαXr − 1

)
. (2.18)

Here, α =
√

r
D

in which D is the diffusion constant. This has been plotted in

Figure 2.1 where it clearly shows to have a minimum. This minimum, around

r = 2.54 s−1 is the optimal reset rate for reaching the target or absorbing state

when using the reset position and diffusion constant are one.

Furthermore, Equation 2.18 shows that without resetting (r = 0), the search

can take on an arbitrarily long time to reach the absorbing state.

As we will later see in Chapter 4, the quantum walk that we simulate there

won’t have an optimal reset rate, but depends on various other properties.
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2.4 Random walk search

Figure 2.1 The mean time of absorption (MTA) plotted against the reset rate
using Equation 2.18. The diffusion constant and the resetting position have been
chosen to be one. Clearly, the reset rate has a minimum. The optimal reset rate
in this case is approximately r = 2.54 s−1.

2.4.2 Quantum random walk search

Quantum walks are frequently used to enhance the performance of classical algo-

rithms. In this section we specifically look at how they are used to find a certain

object or state in a network structure.

To have a higher probability of reaching that target state, we need the ground

state of our Hamiltonian to be the target state. One way to achieve this, is by

adding a term that lowers the energy for the target state and adding a factor that

increases the energy of non-target states, as prescribed in [12]. This Hamiltonian

is given below:

HS = γHQ +Hw = γD− 1
2LD− 1

2 −
∑
w

|w⟩ ⟨w| (2.19)

In our case we will only consider one target state, i.e. −
∑

w |w⟩ ⟨w| = − |w⟩ ⟨w|,

but it is important to note that this framework can be used for multiple target

states. An extra parameter would be needed in front of this term if γ > 1 to make
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2.4 Random walk search

sure that the energy of the ground state is lowered and becomes the target state.

This is due to the fact that HQ is normalized using the degree matrix, but can be

amplified by the γ in front of it. Considering the limits of this Hamiltonian, we

have that when γ → ∞, the ground state of the system will be described by HQ

and will be minimally influenced by the target Hamiltonian Hw. However, γ = 0

shows that the ground state is determined by the target Hamiltonian with HS

being a matrix with only one nonzero element. The eigenvectors of this matrix

are given by vi = ei and eigenvalues λw = w and λi = 0 for i ̸= w. This results in

the constant ρ(t) = ρ(0).

Example

Consider the Erdős–Rényi graph below and take as target state |0⟩:

Figure 2.2 Erdős–Rényi graph G8, 1
2

consisting of eight nodes and each possible

edge having 1
2

probability of being included.

When simulating the search Hamiltonian HS in equation 2.19, we can see what

happens for multiple values of γ in figure 2.3. We can clearly see that for higher

values of γ, the time-averaged probability (see equation 2.20) is lower and slowly

converges to the distribution of the fully coherent quantum walk given by HQ.

⟨pγi (T )⟩ =
1

T

∫ T

0

pi(t)dt for i ∈ {0, 1, . . . , 7} (2.20)
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2.4 Random walk search

Figure 2.3 Time-averaged probability ⟨pγi (T )⟩ plotted for all node indices i ∈
{0, 1, . . . , 7} in the Erdős–Rényi graph G8, 1

2
(see figure 2.2). In this simulation,

T = 200 s, dt = 0.01 s, ϵ = 0 (fully coherent) and the initial density matrix is a
superposition over all states. The result has been checked for different values of
T and remains unchanged. Note that for higher values of γ, the time averaged
probability converges to the distribution prescribed by the quantum Hamiltonian
HQ, i.e. the nodes with the highest degree have highest time averaged probability.

This corresponds to our theoretical observation that the ground state is deter-

mined by the target state for lower values of γ. Furthermore we notice that the

higher values of γ indeed converge to the fully coherent quantum walk given by

HQ. The initial condition, which in this case is a superposition over all states, is

important since the evolution of the quantum walk starting from a pure state is

slow and would impact the average excessively.

In Chapter 4, we try to optimize the probability of being in the target state

by using resetting techniques.

2.4.3 Perturbation Theory

In this subsection, we apply perturbation theory to examine the effect of the

search Hamiltonian HS. The concept of perturbation theory is to treat the system

as having two components. In this case, we have the base Hamiltonian H0 = γHQ
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2.4 Random walk search

which governs the evolution of the quantum walk and a perturbation V that

influences the search for the target state.

The search Hamiltonian is therefore composed of the following components:

HS = H0 + V,

with

1. H0 = γHQ = γD− 1
2LD− 1

2 is the unperturbed Hamiltonian which corre-

sponds to the quantum walk.

2. V = − |w⟩ ⟨w| is the perturbation term that lowers the energy of the target

state |w⟩, therefore leading the walker towards the target state.

We denote the eigenstate and eigenvalues of the unperturbed Hamiltonian H0

as follows:

H0 |ψ(0)
n ⟩ = E(0)

n |ψ(0)
n ⟩ . (2.21)

Here, |ψ(0)
n ⟩ are the eigenstates and E

(0)
n are the corresponding eigenvalues of H0.

The first-order energy correction E
(1)
n for the energy of the n-th state caused

by the perturbation V is given by:

E(1)
n = ⟨ψ(0)

n |V |ψ(0)
n ⟩ . (2.22)

By using that V = − |w⟩ ⟨w|, the correction term is dependent upon the overlap

between the eigenstates ψ
(0)
n and the target state |w⟩. Therefore we have the

following result:

E(1)
n = −| ⟨w|ψ(0)

n ⟩ |2. (2.23)

A worked out example can be found in Section 3.1.

A similar analysis can be done for the first-order wavefunction correction. This

term is given by:

|ψ(1)
n ⟩ =

∑
m̸=n

⟨ψ(0)
m |V |ψ(0)

n ⟩
E

(0)
n − E

(0)
m

|ψ(0)
m ⟩ . (2.24)
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2.4 Random walk search

In our case, when substituting the perturbation term V = − |w⟩ ⟨w|, we get the

following expression:

|ψ(1)
n ⟩ = −

∑
m̸=n

⟨ψ(0)
m |w⟩ ⟨w|ψ(0)

n ⟩
E

(0)
n − E

(0)
m

|ψ(0)
m ⟩ . (2.25)

These corrections show how the target state influences the energy levels and

wavefunctions of the system.
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Chapter 3

Quantum Random Walk on

Simple Graphs

In this chapter, we will be simulating the quantum random walk on simple graphs.

We explore both the fully coherent and incoherent aspects of the walk, which are

described respectively by the von Neumann equation and Lindblad master equa-

tion as discussed in subsection 2.1.2. Additionally, we will show some interesting

properties that emerge from these simulations.

3.1 Path graph

A path graph shows interesting results when simulating both random walks dis-

cussed in section 2.3. This graph is constructed by numbering the nodes V =

{n1, n2, . . . , nN} and connecting the edges E = {(ni, ni+1) | ∀i ∈ {1, 2, . . . , N−1}}.

The result for the simulation is shown in Figure 3.1.

Note that for the quantum walk, two initial conditions were selected: the

red line corresponds to a pure initial state on node n49, while the orange line

corresponds to a (normalized) superposition over all nodes. The latter is more

spread out over the nodes and the walker has a higher probability of being observed

on the outer nodes compared to the pure initial state. Additionally, the stationary

distribution π for the classical walker has been plotted, as given by Equation 2.13.

21



3.1 Path graph

Figure 3.1 This graph shows the time-averaged probability of being at each node
on a line graph consisting of N = 100 nodes for both a classical random walk (blue)
and a quantum random walk (red and orange). For the quantum walk, two initial
states were chosen: the red line corresponds to a pure state at node 50, and the
orange line corresponds to a normalized superposition over all nodes. Both were
simulated for 100 s according to the von-Neumann equation (see Equation 2.1).
The time-averaged probability for the classical walk is the stationary distribution
given in Equation 2.13. All walks exhibit symmetric behavior, which is expected
given the symmetry of the graph. Over time, the quantum walk which started in
the superposition tends to disperse more widely throughout the network compared
to the classical walk and the pure state evolution, resulting in a greater likelihood
of occupying nodes located further from the central region.

For relatively small graphs, it is possible to derive an analytical expression for

the evolution of a quantum walk on a line graph. These analytical expressions are

derived using the theory discussed in Section 2.3.

Let’s consider a path graph containing N = 5 nodes. The graph Laplacian

L = D − A is given by:

L =



1 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1


(3.1)
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3.1 Path graph

In this matrix, the entries on the diagonal come from the degree of each node, and

the the other non-zero entries come from the adjacency matrix. Transforming this

into the normalized graph Laplacian HQ = D− 1
2LD− 1

2 yields:

HQ =



1 − 1√
2

0 0 0

− 1√
2

1 −1
2

0 0

0 −1
2

1 −1
2

0

0 0 −1
2

1 − 1√
2

0 0 0 − 1√
2

1


(3.2)

We diagonalize this matrix such that we can later use it when calculating the uni-

tary operator U(t) = e−iHQt. The eigenvalues and eigenvectors of our Hamiltonian

are given by:

λ1 = 0 : v1 =
[
1

√
2

√
2

√
2 1

]T
,

λ2 = 1 − 1

2

√
2 : v2 =

[
−1 −1 0 1 1

]T
,

λ3 = 1 +
1

2

√
2 : v3 =

[
−1 1 0 −1 1

]T
,

λ4 = 1 : v4 =
[
1 0 −

√
2 0 1

]T
,

λ5 = 2 : v5 =
[
1 −

√
2

√
2 −

√
2 1

]T
(3.3)

The eigenvalues correspond to the energy of the stationary states which are in turn

described by the (normalized) eigenvectors. Our unitary operator now becomes:

U(t) = Q



e−iλ1t 0 0 0 0

0 e−iλ2t 0 0 0

0 0 e−iλ3t 0 0

0 0 0 e−iλ4t 0

0 0 0 0 e−iλ5t


Q−1 (3.4)

Here, Q is the matrix whose columns are the eigenvectors of HQ. Furthermore we

have applied the exponent to the diagonal matrix containing the eigenvalues of HQ.

For now we are only interested in the diagonal elements of the density matrix
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3.1 Path graph

ρ(t) = Uρ(0)U †, since they represent the pure states. We take the initial density

matrix ρ(0) as a 5 × 5-matrix with a single nonzero element in the center, repre-

senting the pure quantum state |3⟩. More specifically, we have that ρ33(0) = 1,

such that we can express the diagonal entries of ρ(t) as follows:

ρii(t) = Ui3U
∗
i3 ∀i ∈ {1, 2, . . . , 5} (3.5)

From this observation, we note that the elements of ρ(t) are given by a linear

combination of complex exponentials with a frequency that is determined by the

energy or eigenvalues of the stationary states. Indeed, the (real) diagonal elements

are given by (see Appendix A.1 for more details):

ρ11(t) = ρ55(t) =
3

16
− 1

8
cos (ω14t) +

1

16
cos (ω15t) −

1

8
cos (ω45t)

ρ22(t) = ρ44(t) =
1

8
− 1

8
cos (ω15t)

ρ33(t) =
3

8
+

1

4
cos (ω14t) +

1

8
cos (ω15t) +

1

4
cos (ω45t)

(3.6)

In which ωij ≡ λi − λj is the energy splitting between stationary states. Note

that the average of each density matrix element ρ̄ii(t) is given by the first term in

Equation 3.6. This means that the average probability to be in the outer states

|1⟩ and |5⟩ is higher than for states |2⟩ and |4⟩ as ρ̄11 = 3
16
> 1

8
= ρ̄22. Both the

simulated and theoretical result is shown in figure 3.2
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3.1 Path graph

Figure 3.2 Theoretical probability of occupation for nodes one to three versus
the numerically solved master equation in the Qubit Python package. The graph
considered in this case is a line graph consisting of 5 nodes for which the time
evolution is fully coherent, i.e. ϵ = 0. Due to graph symmetry around node three,
we have that ρ11(t) = ρ55(t) and ρ22(t) = ρ44(t). The averages are given by the
first term in Equation 3.6.

We could however also use a different initial condition such as a superposition

over all nodes/states. This can be represented by the density matrix with elements

ρij = 1
5

for i, j ∈ {1, 2, . . . , 5}. The result of this initial condition is shown in Figure

3.3. To derive this analytically, we can use Equation 2.2 and replace the previous

pure state initial condition with the superposition of states initial condition. This

yields the following result for the diagonal elements:

ρii(t) =
1

5

[(
5∑

j=1

Uij

)(
5∑

k=1

U∗
ik

)]
, i ∈ {1, 2, . . . , 5}. (3.7)

Here, U∗
ik denotes the conjugate of matrix element Uik which is the same matrix

as in the pure state initial condition and can be seen in Appendix A.1.

An important difference is that the average probability for the center node

ρ̄33 is subtantially lower when compared to the pure state initial condition seen

in Figure 3.2. In other words, the average probabilities do not deviate as much
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for all nodes and are closer to one another. So we conclude that starting in

superpositions is a better way of looking for target states. This result is used in

Section 4.1 to optimize that probability by occasionally resetting the state to a

new superposition of states.

Figure 3.3 Simulation of a line graph consisting of N = 5 nodes using a superpo-
sition over all states as initial condition, i.e. ρij(0) = 1

5
for i, j ∈ {1, 2, . . . , 5}. The

average probability ρ̄ii to be in a specific pure state is the same as the stationary
distribution of a classical random walk on a graph, in contrast with the pure state
initial condition.

Furthermore, if we allow for decoherences to take place, we observe that the

probabilities start to decay exponentially to their respective classical probabilities,

see Figure 3.4. In this figure, the probability for various values of ϵ is given by the

diagonal element of the density matrix ρ33(t) of which the evolution is given by

Equation 2.4. Multiple values of ϵ are shown in the figure to show how decoherence

affects the probability to observe the quantum state |3⟩.

Several key observations should be noted, including the damping of the oscil-

latory behavior when increasing ϵ. This effect is due to the jump operators that

were added in the Lindblad equation. Eventually, the probability will exponen-

tially drop to its classical value given by ϵ = 1. However, the amplitude is not the

only characteristic that is changing, as we also observe a slight frequency change
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3.1 Path graph

in which the frequency drops when increasing ϵ which is due to the damping of

the jump operators.

Figure 3.4 Diagonal density matrix element ρϵ33(t) for ϵ ∈ {0, 0.1, 0.2, 0.5, 1}
plotted over time. Higher values of ϵ correspond to a stronger decoherence level
where it eventually converges to the classical random walker stationary distribu-
tion probability π3. This probability is described in section 2.3.1 and is given by
π3 = k3

2|E| = 1
4
. A slight change in frequency is also noticeable with increasing ϵ,

as the frequency clearly decreases. This is due to the damping phenomena of the
jump operators.

If we now change our Hamiltonian to include the search term, as in Equation

2.19, we obtain the following equation for our system:

HS = HQ − |0⟩ ⟨0| (3.8)

with γ = 1 and target state |0⟩. Simulating this Hamiltonian with ϵ = 0 gives

interesting results as the probability to observe the quantum particle in the target

state has increased a substantial amount, see Figure 3.5. This is what we expected

as the ground state now corresponds to the target state, as discussed in Section

2.4. We observe strong oscillatory behaviour just as in Figure 3.2 since we have

a fully coherent quantum state throughout time. This changes when we have

a nonzero ϵ and implement decoherences into the simulation, as can be seen in

Figure 3.6 where we have simulated the same configuration with ϵ = 0.1. We can
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3.1 Path graph

see that after some period of time, the target state is not the most probable state

to be observed and fades among the other states. In the next chapter, we will try

to optimize this probability ρ00(t) by using resetting techniques.

Figure 3.5 A simulation of a line graph consisting of N = 5 nodes with no
decoherence (ϵ = 0) in which the time evolution is characterised by the search
Hamiltonian HS in Equation 3.8. The averages are shown on the right side. For
nodes zero to four, the probabilities are 0.42, 0.14, 0.10, 0.20, and 0.13, respec-
tively.
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3.2 Cycle graph

Figure 3.6 A simulation of a line graph consisting of N = 5 nodes with a slight
decoherence level of ϵ = 0.1. The time evolution is again described by the search
Hamiltonian HS in Equation 3.8. Note that we can only distinguish the target
state within the first ten seconds of the simulation, after which it becomes equally
probable to observe any other quantum state.

Further analysis can be done by using the perturbation theory as discussed

in Section 2.4.3. For example, the first-order energy correction for the lowest

energy state ψ0 can be computed by normalizing the corresponding eigenvector in

Equation 3.3. This results in:

E
(1)
0 = −| ⟨w|ψ0⟩ |2 = −1

8
(3.9)

As expected, the correction term turns out negative. The ground state energy is

thus lowered and the probability of observing the walker in the ground state will

be higher.

3.2 Cycle graph

Another interesting and analytically solvable graph is a cycle graph for which we

can perform a similar analysis as compared to the line graph in section 3.1.
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3.2 Cycle graph

Let’s consider a square graph (N = 4) for which the Laplacian is given by:

L =


2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2

 (3.10)

Computing the Hamiltonian HQ = D− 1
2LD− 1

2 (see Appendix A.2) and determin-

ing its eigenvalues and eigenvectors yields:

λ1 = 0 : v1 =
[
1 1 1 1

]T
,

λ2 = 1 : v2 =
[
−1 0 1 0

]T
,

λ3 = 1 : v3 =
[
0 −1 0 1

]T
,

λ4 = 2 : v4 =
[
−1 1 −1 1

]T
(3.11)

Again, using Q to denote the matrix constructed from the eigenvectors, we obtain

an expression for U(t):

U(t) = Q


e−iλ1t 0 0 0

0 e−iλ2t 0 0

0 0 e−iλ3t 0

0 0 0 e−iλ4t

Q
−1 (3.12)

If we were to take ρ(0) to be a superposition over all states, then that would

coincide with the stationary distribution for the classical walk since all exponential

terms would cancel out. Therefore, it is more interesting to look what happens

to the evolution of a pure initial state ρ(0) = |1⟩ ⟨1|. Computing ρ(t) = Uρ(0)U †

yields the following expressions for the diagonal elements of the density matrix

ρ(t):

ρ11(t) = ρ33(t) =
3

8
+

1

4
cos (ω12t) +

1

8
cos (ω14t) +

1

4
cos (ω24t)

ρ22(t) = ρ44(t) =
1

8
− 1

8
cos (ω14t)

(3.13)
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Figure 3.7 Theoretical probability of occupation for node one and two as well
as the numerically solved master equation in the Qubit Python package. The red
line is the stationary distribution for a classical walker, which coincides with the
quantum evolution of a normalized superposition over all states.

If we now use the search Hamiltonian HS to search for state/node |1⟩, the

Laplacian L is changed to:

L =


1 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2

 (3.14)

Also, we take as initial state, a superposition over all states, since that has

proven itself more useful when looking for a target state in Section 3.1. As we can

see in Figure 3.8, the walker shows a much higher probability of being observed in

target state |1⟩. Another important observation is the fact that the probability of

observation for adjacent nodes is lower than the opposite or further node, in this

case |3⟩.
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3.2 Cycle graph

Figure 3.8 Probability for the walker to be in each state for a cycle graph con-
taining N = 4 nodes and target state |1⟩. Notice how the probability of being in
state |2⟩ and |4⟩ is equal due to the symmetry of the graph. The probability of
being in the opposite node or state, in this case |3⟩ keeps slowly increasing. This
is an important finding since it can be used for further optimization and faster
convergence towards the target state.
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Chapter 4

Resetting

Not only has it been shown that a quantum random walk can provide exponential

speedup compared to a classical random walk [13], but also that it can be used for

database searching [14]. This is due to the fact that a quantum random walk can

be in a superposition of states and traverses the graph faster when compared to

its classical counterpart, as discussed in section 3.1. In this chapter, we will show

that resetting can help and optimize the process of finding a certain target node

using the quantum walk search framework discussed in section 2.4. Furthermore,

the reset process is needed to omit the effects of decoherence.

4.1 Constant resetting with dynamic reset state

First, we consider a scenario in which we reset the walker at a constant rate r and

thus a reset time τ = 1
r
, but change our reset state over time. Mathematically,

this results in various stages of density matrix evolution denoted by ρ(t). Note

that if we were to maintain our reset state as constant, the system would not

exhibit significant changes, as it would remain within the same evolutionary cycle.

Therefore we consider two cases:

• The reset state is determined by the basis states that have the highest prob-

ability of being observed when resetting. Using the result of section 3.1, a

superposition of states causes the evolution to be more scattered throughout

the network in contrast with a pure state of which the average probability

may peak in certain states. Therefore, we want to keep using superpositions
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4.1 Constant resetting with dynamic reset state

and choose this selection of highest probable states when resetting. For the

next stage of density matrix evolution, we take a superposition of states con-

taining the observed basis states, such that ρ(ti = i
r
) = 1

|Si|
∑

sj ,sk∈Si
|sj⟩ ⟨sk|,

with i ∈ N and in which the set Si contains the observed states at the i-th

reset and the index i is the number of resets. Here, we assume that we fully

know the probability distribution of observing each state at times ti = i
r

with

i ∈ {0, 1, . . . , R}, else we cannot know the states with the highest probabil-

ity of being observed. Practically, one would thus have to measure multiple

times to get an idea of the state distribution. Furthermore, we have that

|Si| = |Sj| for i, j ∈ {0, 1, . . . , R}, such that the number of bases is fixed.

• The reset state is again a superposition of states but instead of a fixed

number of bases in the superposition, it decreases throughout time, such

that the reset algorithmically converges to the pure target state.

These cases are motivated by the problem of maximizing the probability of ob-

serving the target state in the shortest amount of time. The evolution will be

described by the Lindblad master equation, as expressed in equation 2.4, which

includes the parameter ϵ to simulate and amplify either the coherent or incoherent

component.

Various simulations are shown in Figure 4.1. The graph for these simulations

is an Erdős–Rényi graph with N = 10 and p = 0.5 such that each possible edge

is chosen with probability p. The target state has been set on state or node

|4⟩ and multiple scenarios have been simulated for |Si| ∈ {3, 5} and reset rate

r ∈ {0.1, 0.3}. The figure illustrates that you want to keep |Si| small since the

probability for |Si| = 3 is eventually higher for the target state when compared to

the other scenarios. However, at the beginning of the evolution, a smaller |Si| is

more advantageous. This can be seen by the fact that the target state |4⟩ reaches

a higher probability early on.

On top of that, the optimization of the reset rate r is also not straightforward.

This can be seen in scenario three and four, where the higher reset rate r = 0.3

eventually has the best average probability for the target state but only after three
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4.2 Constant resetting to dynamic superposition dimensionality

resets. The smaller reset rate r = 0.1 reaches a higher probability much quicker

and needs only one reset before entering a series of cycles.

Figure 4.1 Erdős–Rényi graph G10, 1
2

consisting of N = 10 nodes and a probability

of p = 1
2

for each edge to be included. The reset rate r is varied with r ∈ {0.3, 0.5},
the dimensionality of the reset state is varied as well with |Si| ∈ {3, 5}. Further-
more, the decoherence level has been set at ϵ = 0.1. As can be seen when compar-
ing scenario one and three, it is more advantageous to have a lower dimensionality
for the reset state. However, this comes at a cost because it converges slower to
the target state |4⟩ when looking at scenario two and four. The reset rate should
also be between a certain margin, as for higher values of r, the evolution converges
slower to the target state. In contrast, the lower values of r lead to lower proba-
bilites throughout the evolution.

4.2 Constant resetting to dynamic superposition

dimensionality

As described in previous Section 4.1, we can change the dimensionality of the reset

state |Si| over time. This will help to let the walker converge to the target state

with complete assurance since |Si| → 1 as t → ∞. An exponential function can
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4.2 Constant resetting to dynamic superposition dimensionality

best be used to obtain this convergence property and to quickly reach the target

state. For example, consider the exponential decay function of the form:

f(x) = 1 + (a− 1)e−bx (4.1)

where a, b ∈ R with a > 1 and b > 0. This would make sure that the walker

quickly converges to the target state due the exponential decay, starting from su-

perposition dimensionality a. Not only that, the reset state would be the pure

target state eventually as the superposition dimensionality converges to one.

An example of this is shown in Figure 4.2 where we used Equation 4.1 to let

the dimensionality of the reset state converge to one. This is the optimal result

for this specific graph as it enters a loop after reset i = 8 in which the probability

of observing the target state |4⟩ is almost one. Further optimization would be

possible if we were to increase the reset rate linearly or exponentially with each

reset.

Figure 4.2 Erdős–Rényi graph G10, 1
2

consisting of N = 10 nodes and a probability

of p = 1
2

for each edge to be included. The decoherence level is ϵ = 0.1 and the
dimensionality of the reset state is described by Equation 4.1 with the parameters
a = 5 and b = 0.2. The number of resets is R = 9 and the target state is |4⟩.
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Chapter 5

Conclusions

This thesis has explored the optimization of quantum random walk search al-

gorithms using resetting techniques. The goal was to have a faster convergence

towards a pure target state together while dealing with decoherence effects that

take place in an open quantum system.

We began by discussing the theoretical framework that was needed, includ-

ing important principles and concepts from quantum mechanics, focusing on the

Lindblad master equation for open systems. This equation provides the basis for

modelling quantum random walks in open systems where interactions with the

environment are accounted for. The normalized graph Laplacian was used as the

Hamiltonian that controls the evolution of the quantum walk. We were able to

simulate the quantum interactions on various graphs using the QuTip Python li-

brary.

Our simulations demonstrated the effect of a modified Hamiltonian, which was

backed up using perturbation theory. The simulations provided concrete examples

for simple graphs like path and cycle graphs. These graphs were also analytically

studied which provided a broader understanding of the quantum walk.

The importance of this thesis lies in the application of resetting techniques

to quantum random walks. We discussed two important strategies: constant re-

setting to a fixed dimensionality reset state that changes throughout time and

resetting to a variable dimensionality reset state. Our findings show that resetting
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towards a variable dimensionality super position optimizes the probability of find-

ing the target state, while at the same time mitigating the effects of decoherence.

In this process, we did make the assumption that you know the full probability

space of the evolution when resetting. Although this is clearly not true, by per-

forming the evolution a few times, it can still be practically applicable. On top

of this, large graphs could not be analyzed using simulations because of computa-

tional difficulties. This makes it such that the limit of the resetting techniques is

still unknown regarding larger graphs.

In conclusion, this thesis contributes to the understanding of quantum random

walk search algorithms and how they can be optimized using resetting techniques.

We provided frameworks and concepts for more efficient quantum searches which

still have to be explored on more complex networks and real-world quantum sys-

tems. This creates an opening for possible future work, that could focus on testing

the limit of our resetting techniques.

38



References

[1] J. Kempe, “Quantum random walks: An introductory overview”, Contem-
porary Physics, vol. 44, no. 4, pp. 307–327, 2003.

[2] D. J. Griffiths and D. F. Schroeter, Introduction to quantum mechanics,
Third edition. Cambridge ; New York, NY: Cambridge University Press,
2018.

[3] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems.
Oxford University Press, January 2007.
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Appendix A

A.1 Line graph

U =
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Diagonal Density Matrix Element for a Pure State Initial Condition:

General form:

ρii(t) = Ui3U
∗
i3, i ∈ {1, 2, . . . , 5}

First diagonal element ρ11(t):

ρ11(t) = U13U
∗
13 =

(√
2

8
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2

4
e−iλ4t +
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8
e−iλ5t

)(√
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8
eiλ5t

)
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3

16
− 1

8
cos (ω14t) +

1

16
cos (ω15t) −

1

8
cos (ω45t)

Diagonal Density Matrix Element for a Superposition of States Initial

Condition:

ρii(t) =
1

5

[(
5∑

j=1

Uij

)(
5∑

k=1

U∗
ik

)]
, i ∈ {1, 2, . . . , 5}.
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A.2 Cycle graph

A.2 Cycle graph
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A.3 Code

The Python code that was used to simulate various quantum walks and create the

figures can be found on Github using this link: https://github.com/Mystery4U/quantum walk
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