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Abstract. We propose a general variational framework for the adaptive finite element
approximation of fluid-structure interaction problems. The modeling is based on an Eule-
rian description of the (incompressible) fluid as well as the (elastic) structure dynamics.
This is achieved by tracking the movement of the initial positions of all ‘material’ points.
In this approach the deformation appears as a primary variable in an Eulerian framework.
Our approach uses a technique which is similar to the Level Set method in so far that it
also tracks initial data, in our case the set of Initial Positions, and from this determines
to which ‘phase’ a point belongs. To avoid the need for reinitialization of the initial posi-
tion set, we employ the harmonic continuation of the structure velocity field into the fluid
domain. Based on this monolithic model of the fluid-structure interaction we apply the
dual weighted residual method for goal-oriented a posteriori error estimation and mesh
adaptation to fluid-structure interaction problems. Results from nonstationary examples
are presented.

1 Introduction

In general most approaches to solving fluid-structure interaction problems can be cat-
egorized into two groups:

• The partitioned approach: in each time step separate the problems, solve each
separately, and so converge iteratively to a solution, satisfying both equation and
the interface conditions.

• The transformation approach: introduce an auxiliary unknown transformation func-
tion ζf for the time-dependent fluid domain based on the initial fluid domain. Then,
all computations are done on the fixed reference domain and as part of the com-
putation the auxiliary transformation function ζf has to be determined at each
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time step. In a more general case this so-called ‘arbitrary Lagrangian-Eulerian’
(ALE) method uses a transformation function ζf that transforms the domains to
an arbitrary domain and not the initial one.

Both, the partitioned and the transformation approach overcome the Euler-Lagrange
discrepancy by explicitly tracking the fluid-structure interface by using mesh adjustment
and are generally referred to as ‘interface tracking’ methods. Both methods leave the
structure problem in its natural Lagrangian setting.

In this paper, we follow the alternative way of posing the fluid as well as the structure
problem in a fully Eulerian framework. In the Eulerian setting a phase variable is employed
on the fixed mesh to distinguish between the different phases, liquid and solid. This
approach to identifying the fluid-structure interface is generally referred to as ‘interface
capturing’, a method commonly used in the simulation of multiphase flows, [18]. Examples
for the use of such a phase variable are the Volume of Fluid (VoF) method [14] and the
Level Set (LS) method [8, 20, 23]. In the classical LS approach the distance function
has to continually be reinitialized, due to the smearing effect by the convection velocity
in the fluid domain. This makes the use of the LS method delicate for modeling FSI
problems particularly in the presence of cornered structures. To cope with this difficulty,
we propose a variant of the LS method that makes reinitialization unnecessary and which
easily copes with cornered structures.

The method we describe does not depend on the specific structure model. The key
variable in structure dynamics is the deformation, and since this depends on the deflection,
it is understandable why structure dynamics is preferably described in the Lagrangian
frame. To be able to describe the deformations in the Eulerian frame, we introduce the
set of ‘initial positions’ (IP set) of all structure points. This set is then transported with
the structure velocity in each time step. Based on the IP set points and their Eulerian
coordinates the displacement is now available in an Eulerian sense. Also its gradient has
to be rewritten appropriately. Since the fluid-structure interface will be crossing through
cells, we will have to also transport the IP set in the fluid domain. For the convection of
the IP set in the fluid domain we use a harmonic continuation of the structure velocity.

The equations we use are based on the momentum and mass conservation equations for
the flow of an incompressible Newtonian fluid and the deformation of a compressible St.
Venant-Kirchhoff solid. The spatial discretization is achieved using a second-order finite
element method with conforming equal-order (bilinear) trial functions using ‘local projec-
tion stabilization’ as introduced by Becker and Braack [2, 3]. The time discretization uses
the second-order ‘Fractional-Step-θ’ scheme originally proposed by Bristeau, Glowinski,
and Periaux [6]. This method has the same complexity as the Crank–Nicolson scheme
but better stability properties, [21].

Based on the Eulerian variational formulation of the FSI system, we use the ‘dual
weighted residual’ (DWR) method, described in [4, 1], to derive ‘goal-oriented’ a posteriori
error estimates. The evaluation of these error estimates requires the approximate solution
of a linear dual variational problem. The resulting a posteriori error indicators are then
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used for automatic local mesh adaption. The full application of the DWR method to FSI
problems requires a Galerkin discretization in space as well as in time. Due to the use of a
difference scheme in time, in this paper we are limited to ‘goal-oriented’ mesh adaptation
of the quasi-steady states within the time stepping process.

The self-induced oscillation of a thin elastic bar immersed in an incompressible fluid is
treated (FLUSTRUK-A benchmark described in [15]). For this test problem, our method
is compared against a standard ‘arbitrary Lagrange Eulerian’ (ALE) approach. The possi-
ble potential of the fully Eulerian formulation of the FSI problems is indicated by its good
behavior for large structure deformations. All computations and visualizations are done
using the flow-solver package GASCOIGNE [28] and the graphics package VISUSIMPLE
[27]. More details on the software implementation can be found in [9].

The outline of this paper is as follows. Section 2 introduces the basic notation for the
Eulerian formulation of the FSI problem which is then presented in Section 3. Section
4 presents the discretization in space and time and the derivation of a posteriori error
estimates and strategies for mesh adaptation. Finally, Section 5 contains the results
obtained for the nonstationary benchmark problem FLUSTRUK-A (oscillations of a thin
elastic bar) for various combinations of material models and flow conditions.

2 Notation

We begin with introducing some notation which will be used throughout the paper.
By Ω ⊂ R

d ( d = 2 or d = 3 ), we denote the domain of definition of the FSI problem.
The domain Ω is supposed to be time independent but to consist of two possibly time-
dependent subdomains, the fluid domain Ωf(t) and the structure domain Ωs(t). Unless
needed, the explicit time dependency will be skipped in this notation. The boundaries of
Ω , Ωf , and Ωs are denote by ∂Ω, ∂Ωf , and ∂Ωs, respectively. The common interface
between Ωf and Ωs is Γi(t), or simply Γi.

The initial structure domain is denoted by Ω̂s. Spaces, domains, coordinates, values
(such as pressure, displacement, velocity) and operators associated to Ω̂s (or Ω̂f ) will
likewise be indicated by a ‘hat’.

Partial derivatives of a function f with respect to the i−th coordinate are denoted
by ∂if , and the total time-derivative by dtf . The divergences of vectors and tensors are
written as divf =

∑
i ∂ifi and (divF )i =

∑
j ∂jFij . The gradient of a vector valued

function v is the tensor (∇v)ij = ∂jvi.
By [f ], we denote the jump of a (possibly discontinuous) function f across an interior

boundary, where n is always the unit vector n at points on that boundary.
For a set X , we denote by L2(X) the Lebesque space of square-integrable functions

on X equipped with the usual inner product and norm

(f, g)X :=

∫

X

fg dx, ‖f‖2
X = (f, f)X ,

respectively, and correspondingly for vector- and matrix-valued functions. Mostly the
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domain X will be Ω, in which case we will skip the domain index in products and norms.
For Ωf and Ωs, we similarly indicate the associated spaces, products, and norms by a
corresponding index ‘f’ or ‘s’.

Let LX := L2(X) and L0
X := L2(X)/R . The functions in LX (with X = Ω, X =

Ωf (t), or X = Ωs(t)) with first-order distributional derivatives in LX make up the
Sobolev space H1(X). Further, H1

0 (X) = {v ∈ H1(X) : v|∂XD
= 0}, where ∂XD is that

part of the boundary ∂X at which Dirichlet boundary conditions are imposed. Further,
we will use the function spaces VX := H1(X)d , V 0

X := H1
0 (X)d , and for time-dependent

functions

LX := L2[0, T ;LX ], VX := L2[0, T ;VX] ∩H1[0, T ;V ∗
X],

L0
X := L2[0, T ;L0

X ], V0
X := L2[0, T ;V 0

X] ∩H1[0, T ;V ∗
X],

where V ∗
X is the dual of V 0

X . Again, the X-index will be skipped in the case of X = Ω,
and for X = Ωf and X = Ωs a corresponding index ‘f’ or ‘s’ will be used.

3 Formulation

In this section, we introduce the Eulerian formulation of the FSI problem. We introduce
the fluid and structure models in the respective domains and with respective boundary
conditions. The domains and boundary conditions are later unified. For the sake of
brevity we write down the final complete model for fluid-structure interaction governed
by the equations for conservation of mass and momentum. A detailed explanation of how
this model is derived can be found in our previous paper [10].

3.1 Fluid

For the liquid part, we assume a Newtonian incompressible fluid governed by the usual
Navier-Stokes equations, i.e., the equations describing conservation of mass and momen-
tum. The (constant) density and kinematic viscosity of the fluid are ρf and νf , respec-
tively. The equations are posed in an Eulerian framework in the time-dependent domain
Ωf (t). The physical unknowns are the scalar pressure field pf ∈ Lf and the vector veloc-
ity field vf ∈ vD

f + Vf . Here, vD
f is a suitable extension of the prescribed Dirichlet data

on the boundaries (both moving or stationary) of Ωf , and g1 is a suitable extension to all
of ∂Ωf of the Neumann data for σf · n on the boundaries. We ‘hide’ the fluid-structure
interface conditions of steadiness of velocity and normal stress in parts of the boundary
conditions vD

f and g1. These are addressed in Section 3.2.1, below.

3.2 Structure

The density of the structure is ρs. The material elasticity is usually described by a set
of two parameters, the Poisson ratio νs and the Young modulus Es, or alternatively, the
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Lamé coefficients λs and µs. These parameters satisfy the following relations:

νs =
λs

2(λs + µs)
, Es = µs

3λs + 2µs

λs + µs

, µs =
Es

2(1 + νs)
, λs =

νsEs

(1 + νs)(1 − 2νs)
,

where νs = 1
2

for incompressible and νs <
1
2

for compressible material.
We consider a compressible elastic material described by the St. Venant-Kirchhoff

(STVK) model governed by the equations for conservation of mass and momentum. Usu-
ally these equations are formulated in Lagrangian coordinates in the domain Ω̂s with the
vector displacement and velocity fields ûs ∈ ûD + V̂0

s , v̂s ∈ v̂D
s + V̂0

s . Here, ûD and v̂D
s

are suitable extensions of the prescribed Dirichlet data on the boundaries of Ω̂s , and ĝ2

is a suitable extension to all of ∂Ω̂s of the Neumann data for σ̂s · n on the boundaries.
Again, similarly as for the fluid problem, we ‘hide’ the fluid-structure interface conditions
of steadiness of velocity and normal stress in parts of the boundary conditions v̂D

s and
ĝ2. These are addressed in Section 3.2.1, below.

For the sake of simplicity, we assume that the only boundary displacements that take
place are on Γ̂i, i.e.,

ûD = v̂D
s = 0 on ∂Ω̂s \ Γ̂i.

3.2.1 Combination to a unified Eulerian frame

By rewriting the structure equations into an Eulerian frame, both the fluid and the
structure equations can be combined into one unified formulation. This is achieved mainly
by introducing the ’set of initial positions’ (IP set) φ(Ω) of all points of Ω at time t .
If we look at a given ‘material’ point at the position x ∈ Ω and the time t ∈ (0, T ],
then the value φ(t, x) will tell us what the initial position of this point was at time
t = 0. These points are transported in the full domain with a certain velocity w . The
convection velocity in the structure will be the structure velocity itself, w|Ωs

= vs. In
the fluid domain we use the harmonic continuation of the structure velocity to the whole
domain Ω , which is likewise denoted by w .

The steadiness of velocity across the fluid-structure interface Γi is strongly enforced
by requiring one common continuous field for the velocity on Ω . The Dirichlet boundary
data vD

f and vD
s on parts of ∂Ω are merged into a suitable velocity field vD ∈ V . Finally,

the force balance condition σf · n = σs · n on Γi now appears as a boundary integral of
the jump [σ · n] on the right hand side,

([σ · n], ψv)Γi
=

∫

Γi

(σf − σs) · nfψ
v do.

By omitting this boundary integral the (weak) continuity of σ · n becomes an implicit
condition of the combined variational formulation. The remaining parts of the Neumann
data g1 and g2 now form the Neumann boundary data on ∂Ω and are combined to g3.

Again, we refer to the previous paper [10] which contains a detailed explanation of how
this model is derived.
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3.3 Eulerian formulation of the FSI problem

Find fields {v, w, u, p} ∈ {vD + V0} × V0 × V0 × L, such that v(0) = v0 , u(0) = u0 ,
and

(ρ(∂tv + v · ∇v), ψ) + (σ, ǫ(ψ)) = (g3, ψ)∂Ω + (f3, ψ) ∀ψ ∈ V 0,

(χfdivv, χ) + (χsαp∇p,∇χ) = 0 ∀χ ∈ L,

(∂tu− w + w · ∇u, ψ) = 0 ∀ψ ∈ V 0,

(χs(w − v), ψ) + (χfαw∇w,∇ψ) = 0 ∀ψ ∈ V 0,

(1)

where αp is a small positive constant, ρ := χfρf + χsρs and σ := χfσf + χsσs , with

χf :=

{
1, x− u ∈ Ω̂f \ Γ̂i,

0, x− u ∈ Ω̂s,
χs = 1 − χf ,

and

σf := −pI + 2ρfνf ǫ(v),

σs := J−1F (λs(trE)I + 2µsE)F T

F := (I −∇u)−1, J := detF, E := 1
2
(F TF − I).

In this variational formulation the position of the fluid structure interface Γi is implicitly
given by the displacement u and the characteristic function χs ,

Γi(t) = {x ∈ Ω, x− u(x, t) ∈ Γ̂i}. (2)

Notice that the system (1) is nonlinear even if the two subproblems are linear, e.g., for a
Stokes fluid interacting with a linear elastic structure.

4 Discretization

In this section, we detail the discretization in space and time of the FSI problem based
on its Eulerian variational formulation (1).

4.1 Mesh notation

The spatial discretization is achieved by using a conforming finite element Galerkin
method on meshes Th consisting of cells denoted by K , which are (convex) quadrilaterals
in 2d or hexaedrals in 3d. The mesh parameter h is a scalar cell-wise constant function
defined by h|K := hK = diam(K) . ‘Refinement’ of cells is always by bisection, i.e., by
joining opposite midpoints (or midedges) of sides or faces. ‘Coarsening’ of a cell is possible
if it has been generated by prior refinement of some ‘parent cell’. The ‘finest level’ of cells
of a mesh Th consists of all cells that can be removed by coarsening in one sweep.
The resulting coarsened mesh is referred to as T2h. To facilitate mesh refinement and
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coarsening, we allow the cells to have a certain number of nodes that are at the midpoint of
sides or faces of neighboring cells. These ‘hanging nodes’ do not carry degrees of freedom
and the corresponding function values are determined by linear or bilinear interpolation
of neighboring ‘regular’ nodal points. For more details on this approach see [7] or [1].

4.2 Galerkin formulation

For arguments U = {v, w, u, p} and Ψ = {ψv, ψw, ψu, ψp} ∈ W := V × V × V × V, we
introduce the space-time semilinear form

A(U)(Ψ) :=

∫ T

0

{
(ρ(∂tv + v · ∇v), ψv) + (σ(U), ǫ(ψv))

+ (χfdivv, ψp) + (χsαp∇p,∇ψ
p)

− (g3, ψ
v)∂Ω − (f3, ψ

v) + (∂tu− w + w · ∇u, ψu)

+ (χs(w − v), ψw) + (χfαw∇w,∇ψ
w)

}
dt.

With this notation, we can write the variational problem (1) in compact form: Find
U ∈ UD + W0 , such that

A(U)(Ψ) = 0 ∀Ψ ∈ W0, (3)

where UD is an appropriate extension of the Dirichlet boundary and initial data and the
space W0 is defined by

W0 := {Ψ ∈ V0 × V0 × V0 × V0, ψu(0) = ψv(0) = 0}.

For discretizing this problem in space, we use equal-order Q1 finite elements (d-linear
shape functions) for all unknowns, where the corresponding finite element spaces are
denoted by Lh ⊂ L , Vh ⊂ V , Wh ⊂ W , etc.. Within the present abstract setting the
discretization in time is likewise thought as by a Galerkin method, such as the dG(r)
(‘discontinuous’ Galerkin) or the cG(r) (’continuous’ Galerkin) method. Here, the dG(0)
method is closely related to the backward Euler scheme and the dG(1) method to the
Crank–Nicolson scheme. However, in the test computations described below, we have
used a Galerkin method only in space but finite difference schemes in time. The full
space-time Galerkin framework is mainly introduced as basis for a systematic approach
to residual-based a posteriori error estimation as described below.

The spatial discretization by ‘equal-order’ finite elements for velocity and pressure
needs stabilization in order to compensate for the missing ‘inf-sup stability’. We use the
so-called ‘local projection stabilization’ (LPS) introduced by Becker and Braack [2, 3]. An
analogous approach is also employed for stabilizing the convection in the flow model as
well as in the transport equation for the displacement u . We define the mesh-dependent
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bilinear form

(ϕ, ψ)δ :=
∑

K∈Th

δK (ϕ, ψ)K ,

δK := α
(
χfρfνfh

−2
K + + βρ|vh|∞;Kh

−1
K + γ|wh|∞;Kh

−1
K

)−1
.

Further, we introduce the ‘fluctuation operator’ πh : Vh → V2h on the finest mesh level
Th by πh = I − P2h , where P2h : Vh → V2h is the L2-projection. The operator πh

measures the fluctuation of a function in Vh with respect to its projection into the next
coarser space V2h . With this notation, we define the stabilization form

Sδ(Uh)(Ψh) :=

∫ T

0

{
(∇πhph,∇πhψ

p
h)δ + (ρvh · ∇πhvh, vh · ∇πhψ

v
h)δ

+ (wh · ∇πhuh, wh · ∇πhψ
u
h)δ

}
dt,

where the first term of δK stabilizes the fluid pressure, the second one the transport in the
flow model, and the third one the transport of the displacement uh . Then, the stabilized
Galerkin approximation of problem (3) reads: Find Uh ∈ UD

h + W0
h, such that

Aδ(Uh)(Ψh) := A(Uh,Ψh) + Sδ(Uh)(Ψh) = 0, ∀Ψh ∈ W0
h. (4)

The LPS has the important property that it acts only on the diagonal terms of the
coupled system and that it does not contain any second-order derivatives. However, it is
only ‘weakly’ consistent, as it does not vanish for the continuous solution, but it tends to
zero with the right order as h→ 0. The choice of the numbers α, β, γ in the stabilization
parameter δK is, based on practical experience, in our computations α = 1/2 , and
β = γ = 1/6 .

4.3 Time discretization

The discretization in time is by the so-called ‘fractional-step-θ scheme’ in which each
time step tn−1 → tn is splitted into three substeps tn−1 → tn−1+θ → tn−θ → tn .

The ‘fractional-step-θ scheme’ is a less dissipative scheme than most of the other
second-order implicit schemes and therefore suitable for computing oscillatory solutions;
for more details, we refer to [21], [22], and [11].

4.4 Solution of the algebraic systems

After time and space discretization, in each substep of the fractional-step-θ scheme
(or any other fully implicit time-stepping scheme) a quasi-stationary nonlinear algebraic
system has to be solved. This is done by a standard Newton-type method with adaptive
step-length selection. The resulting linear subproblems are then solved by the GMRES
method with preconditioning by a geometric multigrid method with block-ILU smoothing.
This approach is well known, we omit its details and refer to the relevant literature, e.g.,
[25], [21], or [16].
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4.5 Mesh adaptation

Now, we come to the main issues of this paper, namely the automatic mesh adaptation
within the finite element solution of the FSI problem. The computations shown in Section
5, below, have been done on two different types of meshes:

• locally refined meshes obtained using a purely geometry-based criterion by mark-
ing all cells for refinement which have certain prescribed distances from the fluid-
structure interface,

• locally refined meshes obtained using a systematic residual-based criteria by marking
all cells for refinement or coarsening which have error indicators above or below a
certain threshold.

The main goal of this project is to employ the ‘dual weighted residual method’ (DWR
method) for the adaptive solution of FSI problems. This method is explained in [4] (see
also [1]) as an extension of the duality technique for a posteriori error estimation de-
scribed in [12]. The DWR method provides a general framework for the derivation of
‘goal-oriented’ a posteriori error estimates together with criteria of mesh adaptation for
the Galerkin discretization of general linear and nonlinear variational problems, including
optimization problems. It is based on a complete variational formulation of the prob-
lem, such as (3) for the FSI problem. In fact, this was one of the driving factors for
deriving the Eulerian formulation underlying (3). In order to incorporate also the time
discretization into this framework, we have to use a fully space-time Galerkin method,
i.e., a standard finite element method in space combined with the dG(r) od cG(r) (‘dis-
continuous’ Galerkin or ‘continuous’ Galerkin) method in time. The following discussion
assumes such a space-time Galerkin discretization, though in our test computations, we
have used the fractional-step-θ scheme which is a difference scheme. Accordingly, in this
paper the DWR method is used only in its stationary form in computing intermediate
quasi-steady states within the time stepping process.

We begin with the description of the DWR method for the special case of an FSI prob-
lem governed by an abstract variational equation such as (3). For notational simplicity,
we think the nonhomogeneous boundary and initial data UD to be incorporated into a
linear forcing term F (·) , or to be exactly representable in the approximating space Wh .
Then, the problem reads as follows: Find U ∈ UD + W0, such that

A(U)(Ψ) = F (Ψ) ∀Ψ ∈ W0. (5)

The corresponding (stabilized) Galerkin approximation reads: Find Uh ∈ UD
h +Wh, such

that

A(Uh)(Ψh) + Sδ(Uh)(Ψh) = F (Ψ) ∀Ψh ∈ W0
h. (6)

Suppose now that the goal of the computation is the evaluation of the value J(U) for some
functional J(·) which is defined on W and (for notational simplicity only) assumed as
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linear. We want to control the quality of the discretization in terms of the error J(U−Uh) .
To this end, we introduce the directional derivative

A′(U)(Φ,Ψ) := lim
ǫ→0

1

ǫ

{
A(U + ǫΦ)(Ψ) − A(U)(Ψ)

}
, Φ,Ψ ∈ W0,

the existence of which is assumed.
With the above notation, we introduce the bilinear form

L(U,Uh)(Φ,Ψ) :=

∫ 1

0

A′(Uh + s(U − Uh))(Φ,Ψ) ds,

and formulate the ‘dual problem’

L(U,Uh)(Φ, Z) = J(Φ) ∀Φ ∈ W0. (7)

In the present abstract setting the existence of a solution Z ∈ W0 of the dual problem
(7) has to be assumed. Now, taking Φ = U − Uh ∈ W0 in (7) and using the Galerkin
orthogonality property

A(U)(Ψh) −A(Uh)(Ψh) = Sδ(Uh)(Ψh), Ψ ∈ W0
h,

yields the error representation

J(U − Uh) = L(U,Uh)(U − Uh, Z)

=

∫ 1

0

A′(Uh + s(U − Uh))(U − Uh, Z) ds

= A(U)(Z) − A(Uh)(Z)

= F (Z − Ψh) −A(Uh)(Z − Ψh) − Sδ(Uh)(Ψh)

=: ρ(Uh)(Z − Ψh) − Sδ(Uh)(Ψh),

where Ψh ∈ W0 is an arbitrary element, usually taken as the generic nodal interpolant
IhZ ∈ W0

h of Z . For the evaluation of the terms on the right-hand side, we split the
integrals in the residual term ρ(Uh)(Z−Ψh) into their contribution from the single mesh
cells K ∈ Th and integrate by parts. This results in an estimate of the error |J(U −Uh)|
in terms of computable local residual terms ρK(Uh) multiplied by certain weight factors
ωK(Z) which depend on the dual solution Z ,

|J(U − Uh)| ≤
∑

K∈Th

ρK(Uh)ωK(Z) + |Sδ(Uh)(Ψh)|. (8)

Since the dual solution Z is unknown, the evaluation of the weights ωK(Z) requires
further approximation. We linearize by assuming

L(U,Uh)(Φ,Ψ) ≈ L(Uh, Uh)(Φ,Ψ) = A′(Uh)(Φ,Ψ)
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and use the approximate ‘discrete’ dual solution Zh ∈ W0
h defined by

A′(Uh)(Φ, Zh) = J(Φh) ∀Φh ∈ W0
h. (9)

From Zh , we generate improved approximations to Z in a post-processing step by patch-
wise higher-order interpolation. For example in 2d, on 2× 2-patches of cells in Th the 9
nodal values of the piecewise bilinear Zh are used to construct a patchwise biquadratic
function Z̃ . This is then used to obtain the approximate error estimate

|J(U − Uh)| ≈ η :=
∑

K∈Th

ρK(Uh)ωK(Z̃) (10)

which is the basis of automatic mesh adaptation, [5, 1].

4.5.1 Mesh adaptation algorithm.

The approach we use for the adaptive refinement and coarsening of the spatial mesh is
straightforward. The goal here is to keep the number of cells below a given threshold Nmax.
On the basis of the (approximate) a posteriori error estimate (10), the mesh adaptation
proceeds as follows:

1. Compute the primal solution Uh from (6) on the current mesh, starting from some
initial state, e.g., that with zero deformation.

2. Compute the solution Z̃h of the approximate discrete dual problem (9).

3. Evaluate the cell-error indicators ηK := ρK(Uh)ωK(Z̃h).

4. Determine the cells whose error indicators are above and 50% below the average
error indicator value. The cells of the second group are coarsened and if the number
of cells is below Nmax then only so many of the cells of the first group are refined
(in order of ηK) so that the resulting number of cells is below Nmax. Then, continue
with Step 1.

5 Numerical test 3: FSI benchmark FLUSTRUK-A

We use the FSI benchmark FLUSTRUK-A described in [15]. A thin elastic bar im-
mersed in an incompressible fluid develops self-induced time-periodic oscillations of dif-
ferent amplitude depending on the material properties assumed. In order to have a fair
comparison of our Eulerian-based method with the traditional Eulerian-Lagrangian ap-
proach, we have also implemented an ALE method for this benchmark problem.

The configuration of this benchmark shown in Figure 1 is based on the successful CFD
benchmark ‘flow around a cylinder’, [26].
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A

�

Figure 1: Configuration of the FSI benchmark ‘FLUSTRUK-A’.

Configuration: L = 2.5, H = 0.41, left bottom corner at (0, 0). The center of the circle
is positioned at C = (0.2, 0.2) with radius r = 0.05. The elastic bar has length l = 0.35
and height h = 0.02. Its right lower end is at (0.6, 0.19) and its left end is clamped
to the circle. The control point A(t) is fixed at the trailing edge of the structure with
A(0) = (0.6, 0.20).

Boundary and initial conditions: Along the upper and lower boundary the ‘no-slip’ con-
dition is used for the velocity. At the (left) inlet a constant parabolic inflow profile,

v(0, y) = 1.5 Ū 4y(H−y)
H2 , is prescribed, and at the (right) outlet zero-stress σ · n = 0 is

realized by using the ‘do-nothing’ approach in the variational formulation, [13, 21]. The
initial condition is zero flow velocity and structure displacement.

Material properties: The fluid is assumed as incompressible and Newtonian, the cylinder
as fixed and rigid, and the structure as (compressible) St. Venant-Kirchhoff (STVK) type.
The following test cases are considered:

• FSI test: A configuration is treated with a prescribed inflow velocity and mate-
rial stiffness parameter; the Eulerian approach is compared to the standard ALE
method. A uniform time-step size of 0.005 s is used.

• FSI with large deflections: The fluid is set to be initially in rest around the bar. The
gravitational force on the bar is very large, causing a large deformation of the bar
and eventually it reaching and running up against the channel wall. We compare
results obtained from coarse heuristic meshes, refined heuristic meshes and meshes
obtained using the DWR methods. This case is difficult for the ALE method but
can easily be handled by the Eulerian approach.

5.1 FSI test

The parameters are chosen such that a visible transient behavior of the bar can be
seen. To ensure a ‘fair’ comparison of results, we calculate the comparison values using
the ALE method.
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Table 1: Parameter settings for the FSI test cases.

parameter FSI-2 FSI-2*
structure model STVK STVK
ρf [103kg m−3] 1 1
νf [10−3m2s−1] 1 1

νs 0.4 0.4
ρs[103kg m−3] 10 20
µs[106kg m−1s−2] 0.5 0.5

Ū [ms−1] 1 0

Some snapshots of the results of this simulation are shown in Figure 2. The time-
dependent behavior of the displacements for the tests are shown in Figure 3.

Figure 2: FSI-2: Snapshots of results obtained by the ALE (top two) and by the Eulerian (bottom two)
approaches.
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Figure 3: FSI-2: Vertical displacement of the control point A, obtained by the Eulerian approach (left,
N = 2082 cells) with maximum amplitude 2.226·10−2 and frequency 1.92 s−1, and by the ALE approach
(right, N = 2784 cells) with maximum amplitude 2.68 · 10−2 and frequency 1.953 s−1.

5.2 FSI test with large deformations

In the test case FSI-2* (see Table 1) the fluid is initially in rest and the bar is subjected
to a vertical force. This causes the bar to bend downward until it touches the bottom
wall. A sequence of snapshots of the transition to steady state obtained by the Eulerian
approach for this problem is shown in Figure 4. The position of the trailing tip A is show
in Figure 5.
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N ∼ 3, 000 N ∼ 12, 000 N ∼ 1, 900

Figure 4: A sequence of snap-shots of the bar’s large deformation under gravitational loading obtained
by the Eulerian approach.
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Figure 5: Position xA(t) of point A , CPU-time: heuristic refinement: 30h, adaptive refinement: 4h

6 Summary and future development

In this paper we presented a fully Eulerian variational formulation for ‘fluid-structure
interaction’ (FSI) problems. This approach uses the ‘initial position’ set (IP set) method
for interface capturing, which is similar to the ‘level set’ (LS) method, but preserves sharp
corners of the structure. The harmonic continuation of the structure velocity avoids the
need of reinitialization of the IP set. This approach allows us to treat FSI problems
with free bodies and large deformations. This is the main advantage of this method
compared to interface tracking methods such as the arbitrary Lagrangian-Eulerian (ALE)
method. In the examples the Eulerian approach yields results which are in good agreement
with those obtained by the ALE approach. In order to have a ‘fair’ comparison both
methods have been implemented using the same numerical components and software
library GASCOIGNE [28].
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The full variational formulation of the FSI problem provides the basis for the applica-
tion of the ‘dual weighted residual’ (DWR) method for ‘goal-oriented’ a posteriori error
estimation and mesh adaptation. In this method inherent sensitivities of the FSI problem
are utilized by solving linear the ‘dual’ problem.

As a next step, we plan to use the Eulerian approach for FSI problems with large
deformations and topology changes. Finally, we intend to extend the variational Eulerian
approach and the DWR method to the optimal control of FSI systems.
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