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1 Introduction

There is certainly some behavior that you want to change. Maybe you want to
become more physically active, call your mother more often or snack less when
watching TV at night. Let’s assume that you want to quit smoking. You are not
doing this alone, but are supported by your coach Hannah. Hannah constantly
persuades you to stick to your intervention. How does she decide how to do that?
First, Hannah has a lot of theoretical expertise. Moreover, you are not Hannah’s
first client, so she can draw upon her experience with other and especially similar
clients. Third, Hannah considers your current situation - are you confident or
stressed about a deadline? In addition, she will persuade you in such a way that
she can persuade you again in the future. And lastly, Hannah will keep adapting
her strategy over time. Now, let’s suppose that you have another coach, Sam.
Unlike Hannah, Sam is a virtual coach. Can Sam do what Hannah can?

Changing personal behavior is a very promising way to improve health and
reduce premature death. For example, nearly 40% of deaths in the United States
are caused by behavior [21][26], and smoking alone contributes to 19,000 annual
deaths in the Netherlands [22][29]. To support such behavior change, recent
years have seen a surge of eHealth applications [4][8][17][18]. Yet, while such
interventions have the advantage that they are available at all times, scalable,
cost-effective and can facilitate tailoring [16], adherence to them remains low
[4][15]. We thus aim at developing persuasive communication for a virtual coach
that aids people in adhering to their intervention. Previous work has shown that
data gathered on other people [13][14], similar people [11][30] or an individual
[12][13][14][20][25] can be used to choose a persuasion type. Yet, little work has
also incorporated the context of a persuasive attempt, which has been supposed
to have an important impact on the effectiveness of different persuasion types
[2][3][24]. In addition, persuasion types also differ in their impact on the context
of future persuasive attempts [28]. We thus propose a reinforcement learning
approach to persuading people that considers a person’s current and future states
as well as the similarity of people. We test this approach based on persuading
people to do small preparatory activities for smoking cessation and physical
activity increase such as listing reasons for wanting to quit smoking.
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2 Approach

We created a text-based virtual coach that attempts to persuade people to
do small activities. For each persuasive attempt, the virtual coach selects a
persuasion type based on its learned policy. After a certain time interval, the user
provides the virtual coach with feedback by reporting the effort they put into
their suggested activity. This feedback is used by the agent to update its policy.
Formally, we can define our approach as a Markov Decision Process 〈S,A,R, T, γ〉.
The action space A thereby consists of different persuasion types, which include
a subset of Cialdini’s persuasion types [6], action planning [5][10][27], and the
option to not persuade. The reward function R : S ×A→ [−1, 1] is determined
by the self-reported effort, T : S×A×S → [0, 1] describes the transition function,
and the discount factor γ is set to 0.85 to favor rewards obtained in the near
future over rewards obtained in the more distant future. The finite state space S is
defined by answers to questions that are based on the COM-B Model for Behavior
Change [19] and capture a person’s capability, opportunity and motivation to
perform an activity (e.g. ”I feel that I need to do the activity”). To further
incorporate the similarity of people, the agent maintains a policy πi for each user
i. When updating πi, an observed sample from user j is weighted based on how
similar i and j are with regards to their personality [9] and stage of change for
becoming more physically active based on [23].

3 Experiment

To gather data for and test our approach, we have conducted an experiment with
more than 500 daily smokers who planned or contemplated to quit smoking [7].
Participants interacted with the virtual coach Sam in five conversational sessions.
In each session, the virtual coach suggested a new activity, together with a per-
suasion type. The first two sessions thereby served as training sessions in which
participants were persuaded by a random persuasion type, whereas the last three
sessions were used to test the algorithm components. To this end, participants
were randomly split into four groups after session 2. Based on the data gathered
in sessions 1 and 2, participants in the four groups were subsequently persuaded
based on 1) a persuasion type with the highest immediate reward average, 2) a
persuasion type with the highest immediate reward average in their state, 3) a
persuasion type with the highest Q-value in their state, and 4) a persuasion type
with the highest similarity-weighted Q-value in their state. The data from the
experiment will be analyzed according to our Open Science Framework (OSF)
pre-registration [1]. We will also share our collected data in anonymized form.
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