

Delft University of Technology

Keyword Search Shareable Encryption for Fast and Secure Data Replication

Wang, Wei; Liu, Dongli; Xu, Peng; Yang, Laurence Tianruo; Liang, Kaitai

DOI
10.1109/TIFS.2023.3306941
Publication date
2023
Document Version
Final published version
Published in
IEEE Transactions on Information Forensics and Security

Citation (APA)
Wang, W., Liu, D., Xu, P., Yang, L. T., & Liang, K. (2023). Keyword Search Shareable Encryption for Fast
and Secure Data Replication. IEEE Transactions on Information Forensics and Security, 18, 5537-5552.
https://doi.org/10.1109/TIFS.2023.3306941

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TIFS.2023.3306941
https://doi.org/10.1109/TIFS.2023.3306941

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023 5537

Keyword Search Shareable Encryption for
Fast and Secure Data Replication
Wei Wang , Member, IEEE, Dongli Liu , Peng Xu , Member, IEEE,

Laurence Tianruo Yang , Fellow, IEEE, and Kaitai Liang , Member, IEEE

Abstract— It has become a trend for clients to outsource
their encrypted databases to remote servers and then leverage
the Searchable Encryption technique to perform secure data
retrieval. However, the method has yet to be considered a crucial
need for replication on searchable encrypted data. It calls for
challenging works on Dynamic Searchable Symmetric Encryption
(DSSE) since clients must share the search capability of the
encrypted data replicas and guarantee forward and backward
privacy. We define a new notion called “Keyword Search Share-
able Encryption” (KS2E) and the corresponding security model
capturing forward and backward privacy. In our notion, data
owners are allowed to share search indexes of the encrypted
data with users. A search index will be updated with a new
search key before sharing to guarantee the data privacy of the
source database. The target database also inherits data search
efficiency along with the shared data. We further construct an
instance of KS2E called Branch, prove its security, and use
real-world datasets to evaluate Branch. The evaluation results
show that Branch’s performance is comparable to classical DSSE
schemes on search efficiency and demonstrate the effectiveness
of searching encrypted data replicas from multiple owners.

Index Terms— Searchable symmetric encryption, forward and
backward privacy, encrypted data replication.

I. INTRODUCTION

IN 2012, Kamara et al. developed Dynamic Searchable Sym-
metric Encryption (DSSE) [1] to bring forward/backward

privacy attention to newly updated retrieval entries on

Manuscript received 17 October 2022; revised 4 March 2023 and 10 June
2023; accepted 3 August 2023. Date of publication 21 August 2023; date of
current version 8 September 2023. The work of Wei Wang was supported
in part by the National Key Research and Development Program of China
under Grant 2021YFB3101304 and in part by the National Natural Science
Foundation of China under Grant 62372201. The work of Peng Xu was
supported in part by the National Natural Science Foundation of China under
Grant 62272186. The work of Kaitai Liang was supported by the European
Union’s Horizon Europe Research and Innovation Programme under Grant
101073920 (TENSOR), Grant 101070052 (TANGO), and Grant 101070627
(REWIRE). The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Sushmita Ruj. (Corresponding
author: Peng Xu.)

Wei Wang and Dongli Liu are with the School of Computer Science and
Technology, Huazhong University of Science and Technology, Wuhan 430074,
China (e-mail: viviawangwei@hust.edu.cn; nsffldl@hust.edu.cn).

Peng Xu is with the National Engineering Research Center for Big Data
Technology and System, Services Computing Technology and System Lab-
oratory, Big Data Security Engineering Research Center, School of Cyber
Science and Engineering, Huazhong University of Science and Technology,
Wuhan 430073, China (e-mail: xupeng@mail.hust.edu.cn).

Laurence Tianruo Yang is with the School of Computer Science and
Technology, Huazhong University of Science and Technology, Wuhan 430074,
China, and also with the Department of Computer Science, St. Francis Xavier
University, Antigonish, NS B2G 2W5, Canada (e-mail: ltyang@ieee.org).

Kaitai Liang is with the Department of Intelligent Systems, Delft Univer-
sity of Technology, 2628 CD Delft, The Netherlands (e-mail: kaitai.liang@
tudelft.nl).

Digital Object Identifier 10.1109/TIFS.2023.3306941

historical/future search results [2]. DSSE schemes usually
employ search indexes to retrieve logical file addresses, and
they should update search indexes along with the update of
ciphertexts. Research works on DSSE consider data updating
as adding or deleting outsourced encrypted data on a server
via maintaining a solo search index table [3]. Besides, the
high efficiency of DSSE also attracts researchers to extend
the search function from a single client to multiple clients.
This advantage avoids the fundamental efficiency bottleneck
in public encryption schemes like PEKS [4].

Multi-Key Searchable Encryption (MKSE) [5] can be
applied as a heuristic ciphertext-sharing approach, which
enables search tokens to search shared ciphertexts via the
adjust-key that can re-encrypt the search token from one search
key to another search key. In our view, the search capability
relies on the corresponding search key other than the client.
Moreover, [6] additionally uses shared data information as the
input of sharing process in the Multi-Key Searchable Encryp-
tion scheme. We call such key-sharing processes for searching
shared ciphertexts “static” methods since this scheme pre-
defines the usage of outsourced ciphertexts. Inspired by the
DSSE research of adding and deleting data along with search
indexes, we consider that sharing processes may need variabil-
ity on data users and ciphertexts in “dynamic” ways. Hence,
we seek efficient schemes that can search the shared data
via search indexes without long-term maintenance of auxiliary
keys, which is desirable in realistic scenarios:

A. Data Backup

Inter-cloud data replication [7], [8] is an essential operation
for backup, even though the data are stored as ciphertexts. The
data owner delivers replicas to the nearest backup database,
and the replicas will be re-encrypted with the key of the
backup database. The indexes associated with the data play
a critical role in determining the performance of search
queries [9]. In this example, sharing search indexes can help
clients to achieve a natural efficiency in securely searching
encrypted replicas authorized by the data owner.

B. Health Monitoring

Electronic health record (EHR) data [10] are usually
encrypted to guarantee privacy. When patients are transferred
among different health centers, their EHR should be repli-
cated and shared with doctors automatically. Recall that the
replication is encrypted with patients’ private keys. Without
those keys, the doctors should be able to find a way to put the
encrypted records into the local database but also to search
them correctly and efficiently.

1556-6021 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 09,2023 at 08:14:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4457-6709
https://orcid.org/0000-0003-2628-1739
https://orcid.org/0000-0003-4268-4976
https://orcid.org/0000-0002-7986-4244
https://orcid.org/0000-0003-0262-7678

5538 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 1. The generic scenario of secure data replication. Alice and Bob
outsource EDB A and EDB B to Server, respectively. The highlighted search
indexes are shared from Alice to Bob. In the index table, Ei.SC j (ki) denotes
the j th searchable ciphertext encrypted by ki from EDB i , and Fileidi
denotes the corresponding logical file address idi .

Fig. 1 illustrates this scenario. Alice and Bob use separate
encrypted databases and search indexes, but they need to
exchange data. When the data is shared from Alice to Bob,
Alice takes the owner role while Bob is the user. Firstly, the
server sends the encrypted data from Alice’s database to Bob
as the replication. Secondly, Bob derives the search capability
over the shared data. To this end, Bob should derive the search
index for the replica.

1) Motivation: Most prior works predefine sharing keys
to establish long-term sharing relationships. For example,
MKSE [5], [6] delegates the search capability by adjust-keys.
An adjust-key is predefined to re-encrypt the search tokens
from the user to the owner on the server side. Multi-user
Searchable Encryption (MUSE) [11], [12], [13] allows multi-
ple users to search an owner’s encrypted data securely. To do
so, the owner must enroll the keys of the users in advance.
We conclude the characteristic of MKSE and MUSE in Tab. I.
Key-Aggregate Searchable Encryption (KASE) [14] uses
aggregate-keys to share the search capability over encrypted
ciphertexts. An aggregate-key enables re-encrypt search tokens
to be generated from the keywords specified by the owner.
Hybrid Searchable Encryption (HSE) [15] combines the cryp-
tographic primitives of DSSE and ID-Coupling Key-Aggregate
Encryption (ICKAE). This scheme prepares a set of initialized
keys for owners who can use the keys to update their local
database, in which the updated ciphertexts are related to the
user’s public key.

Considering scalability and search efficiency, Alice and Bob
should dynamically and securely share search indexes with a
temporary sharing key. We further observe the followings:
• For dynamic sharing, it is impractical to preset any sharing

keys beforehand for each dynamic request of search indexes.
• For securely sharing, the sharing process should not cause

serious leakages on the previously updated search index, which
is not shared, or the later updated search index.
• For the efficiency of search and index sharing, the

search complexity after sharing should rely on the number
of keywords.

2) Our Contributions: Inspired by the primitives of DSSE,
we propose a novel scheme called Keyword Search Shareable
Encryption (KS2E) to achieve our goals. KS2E is applied to
construct the outsourced encrypted database with shareable
search indexes authorized by sharing tokens. The owner and

user temporarily negotiate the sharing tokens to “snapshot”
search indexes. The “snapshot” is achieved by a specific
structure among encrypted search indexes, and the internal
state generates this structure. In this approach, the sharing
token represents the search indexes to be shared in the current
internal state, and Server can retrieve replicas by shared
search indexes with a search token. The main contributions
are summarized as follows:
• We define the KS2E scheme. KS2E has functions of

searching and sharing indexes, and it differs from other
models in the sharing process or the solo search index table.
We analyze potential threats and security risks accordingly
by redefined leakage functions and semantic security from
the indistinguishability between real and ideal games, i.e.,
simulation-based security.
• To instantiate KS2E, we construct an instance called

Branch. Branch uses cryptographic hash functions and secure
Pseudo Random Functions (PRFs) to generate search indexes,
sharing tokens, and search tokens. Branch generates a
bi-directional structured search index to achieve sub-linear
efficiency in the search processes. We prove that Branch has
adaptive security under our security model.
• We code Branch in Python and simulate it in the

inter-cloud data replication circumstances with the leverage of
real-world datasets to perform efficiency analysis. We com-
pare Branch with the heuristic KS2E instance based on a
DSSE instance Diana [3], an MKSE instance constructed from
Perfect Hash Table [6], and a MUSE instance Q-µSE [11].
We thoroughly evaluate time overheads on actual sharing
performance. Branch achieves sub-linear efficiency according
to its sharing and search performances. As shown in Tab. I,
the bi-directional index brings KS2E significant advantages in
search time complexity as compared to MUSE and MKSE.

3) Organization: Section II introduces the related work on
Searchable Symmetric Encryption (SSE) schemes. Section III
introduces the KS2E model. Section IV proposes KS2E’s
instance called Branch. Section V presents our evaluation
results. Section VI concludes this paper.

II. RELATED WORKS

The first SSE scheme [16] proposes a secure system that
designs search tokens to retrieve ciphertexts. Inspired by that,
researchers have delivered massive works on designing secure
and fast SSE schemes in the single-user setting, which are
applicable to many real-world applications [17], [18]. Other
works investigate how to securely share the search capability
in the context of SSE. None of the prior SSE schemes has
considered the followings: (1) data owner and data users may
probably have different setups, initializing respective private
search keys; (2) encrypted database could have replications,
and search is required over those replicas.

A. Dynamic Searchable Symmetric Encryption (DSSE)

DSSE [1], [19], [20], as compared to traditional SSE,
provides the addition and deletion of search indexes via update
queries. In 2017, Bost et al. [3], [21] proposed the forward
and backward privacy notions for DSSE. Forward privacy
forbids implying new add contents to current search results,
while backward privacy is used to securely exclude previous

Authorized licensed use limited to: TU Delft Library. Downloaded on October 09,2023 at 08:14:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: KS2E FOR FAST AND SECURE DATA REPLICATION 5539

TABLE I
COMPARISON OF PREVIOUS REPRESENTATIVE WORKS AND OUR WORKS.as REPRESENTS ALL SHARING KEYS.aw REPRESENTS ALL

KEYWORD/IDENTIFIER PAIRS (w, id) ABOUT w. |DIFF| REPRESENTS THE SIZE OF THE DIFFERENCE QUEUE. n(Iw) AND n(Iid) REPRESENTS THE
NUMBER OF KEYWORD w AND FILE id ITERATORS, RESPECTIVELY. FQ AND BQ REPRESENT THE MUSE’S FORWARD AND BACKWARD

PRIVACY, RESPECTIVELY. FB AND BB REPRESENT THE KS2E’S FORWARD AND BACKWARD PRIVACY, RESPECTIVELY

del content from search [3], [22], [23]. The definition acts as
an essential security requirement in practical applications, such
as non-interactive communication [24], small client storage
[25], and efficient search [26]. Recently, several works have
extended the security definitions to particular contexts, such
as Robustness [27], multi-user [11], and document collec-
tions [28]. In this work, we refer to the forward and backward
privacy as basic security notions of KS2E, capturing the
leakage from the addition and deletion of search indexes.

B. Multi-User Searchable Encryption (MUSE)
Curtmola et al. [12] first proposed a multi-user SSE (MUSE)

scheme where an arbitrary group of users can submit search
queries for the owner’s database. Following that work, many
researchers have designed various variants covering secu-
rity [29], [30], efficiency [31], non-interactive [32], and sharing
revocation [13]. Recently, Chamani et al. [11] developed a
new concept called Multi-user Dynamic Searchable Symmet-
ric Encryption (DMUSE). They considered the leakage of
the sharing upon the forward and backward privacy in the
multi-user setting and proposed an OMAP-base µSE instance
and a queue-base µSE instance.

Assigning sharing keys to users beforehand (by data owners)
easily limits the dynamic search delegation. For example, the
number of users needs to be pre-fixed [11], [13]. Besides,
existing schemes supporting search sharing may consume
more search complexity while multiple scheme instances are
needed. Users leverage the sharing keys of all owners to
compute the search tokens and search for a keyword in each
MUSE instance. In KS2E, we enable users to leverage private
search keys to retrieve the shared data replication in their
databases so that we do not have to limit the number of users
in advance. We also ensure search efficiency regardless of the
number of owners.

C. Multi-Key Searchable Encryption (MKSE)

Popa and Zeldovich [5], [33] introduced the definition
of MKSE. It enables users to search keywords over data
encrypted with different keys. The first MKSE scheme [5]
is based on elliptic curves with bi-linear mappings, but
it is vulnerable to Leakage-Abuse attacks [34]. Later,
Hamlin et al. [6] revisited the concept and explicitly defined
a setting for MKSE where users who store the encrypted
documents on a remote server can selectively share documents
with each other. They proposed the indistinguishability-based
security notions and two concrete constructions from a perfect
hash function and an indistinguishability obfuscation, respec-
tively. Recently, some works [35], [36] proposed alternative
formulations to verify users’ privileges.

In MKSE (e.g., [6]), we observe that a sharing key must
be established for each encrypted file so as to delegate a
search successfully. The search token can not directly match
the search index, as it first needs to be computed with the
sharing key. In KS2E, the token is directly performed on
search indexes, which results in much higher efficiency (see
Section V).

III. KEYWORD SEARCH SHAREABLE ENCRYPTION

In this section, we introduce the definitions and the generic
construction of KS2E for sharing search indexes during data
replication. We also define the security model with forward
and backward privacy.

A. Problem Statement
We consider two parties:
• Clients: They initialize the system by a setup with security

parameters and outsource the encrypted databases to a Server.
A client can have two roles separately - owner and user. As an
owner (Owner), it can send queries to update search indexes,
delegate the sharing token to a user (User), and issue search
queries to Server. User can receive the sharing token from
Owner and send sharing requests and search queries to Server.
• Server: Server (which could be one or more server

devices) manages the encrypted databases outsourced by
clients. It further handles the requests to setup and update
the databases, converts search sharing, and launches secure
search over encrypted data. Upon receiving an update query,
Server adds or deletes a search index from the corresponding
database. Server also participates in sharing the index from
Owner to User. It can use a search token to match the indexes
to return the corresponding search results.

B. Scheme Definitions
Definition 1 (The KS2E Scheme): A KS2E scheme consists

of the following protocols:
• Setup(λ): This protocol is run between Owner and Server

or User and Server for initialization by inputting the security
parameter λ ∈ N. When it is run between Owner and Server,
it probabilistically outputs an internal state σ , master secret
key Kσ ∈ K stored by Owner, and an encrypted database
EDBσ outsourced on Server. In another case, it probabilisti-
cally outputs an internal state σ ′, master secret key Kσ ′ ∈ K
stored by User, and an encrypted database EDBσ ′ outsourced
on Server.
• Update(Kσ , σ, (w, id, op);EDBσ): This protocol is run

between Owner and Server to update the search index in
the encrypted database. Owner inputs Kσ , internal state σ ,
and a tuple of the keyword w, file address id, operation

Authorized licensed use limited to: TU Delft Library. Downloaded on October 09,2023 at 08:14:18 UTC from IEEE Xplore. Restrictions apply.

5540 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

op ∈ {add, del}. Server inputs the encrypted database EDBσ .
At the end of this protocol, it adds (add) or deletes (del) the
search index about the pair (w, id) in EDBσ .
• Search(Kσ , σ,w;EDBσ): This protocol is run between

Owner and Server or User and Server to search the index.
When it is run between Owner and Server, Owner inputs Kσ ,
σ , and a specific keyword w. Server inputs the EDBσ . At the
end of this protocol, Owner gets the search result S or ⊥
(null output). In another case, User inputs Kσ ′ , σ ′, and a
specific keyword w. Server inputs the EDBσ ′ . At the end of
this protocol, User gets the search result S′ or ⊥.
• Sharetoken(Kσ , σ, id): This protocol is run between

Owner and User to generate the sharing token Pid which can
access a specific set of search indexes. It takes as input the Kσ ,
internal state σ , and the shared file id from Owner. Finally,
it outputs Pid to User.
• Share(Pid , σ ′, Kσ ′;EDBσ ′ , EDBσ): This protocol is run

between User and Server for sharing search indexes. User
inputs sharing token Pid , internal state σ ′, and the Kσ ′ . Server
inputs the databases EDBσ ′ and EDBσ . At the end of this
protocol, EDBσ ′ stores the shared search indexes.

Correctness: Except with negligible probability, the K S2 E
scheme is correct if the Search protocol returns correct results
for the searched keyword and if the Share protocol shares
correct search indexes for the accessed Pid . For formalism,
we ignore the case where Owner attempts to add a file with an
existing identifier or delete/edit with an identifier not present
in EDB.

C. The Generic Construction of KS2E Scheme
Fig. 2 illustrates our generic construction that includes four

functions:
• Setup: Owner and User can separately run the protocol

Setup with the security parameter λ. At the end, Owner stores
a master secret key Kσ and the internal state σ locally, and
outsources the encrypted database EDBσ to Server. Similarly,
User stores a master secret key Kσ ′ and the internal state σ ′

locally, and sends the EDBσ ′ to Server.
• Index Updating: This function directly uses the pro-

tocol Update between Owner and Server to update search
indexes. Let the file id be associated with a set of keywords
{w1, w2, . . . wn} and Cw,id denote the encrypted search index.
The two parties can run the protocol Update to update indexes
{Cwi ,id |i ∈ [1, n]} in EDBσ .
• Sharing: Owner shares search indexes with User. Firstly,

Owner runs the protocol Sharetoken to generate the sharing
token Pid associated with the search indexes for User, where
Pid can be securely received (via a key encapsulation [37]).
Secondly, User and Server run the protocol Share to generate
the search indexes {C ′wi ,id |i ∈ [1, n]}. At last, the User’s search
indexes are stored in EDBσ ′ .
• Search: Owner and User can run the protocol Search

to retrieve matched indexes, respectively. When Owner and
Server run the protocol Search, Owner chooses a keyword
wi ∈ {w1, w2, . . . wn} and sends the search token Twi to
Server. Server makes result S from the matched indexes in
{Cwi ,id |i ∈ [1, n]} and sends it back to Owner. We note that
User can perform a similar Search with Server.

We consider that all clients are provided search capability
at the initialization; User is allowed to obtain the shared index

specified in the sharing stage by Owner. Unlike existing works,
our construction does not require any sharing token in the
search stage; instead, we reflect the sharing directly into the
search index, leading to an efficient search process.

D. Security Model
According to the fact that the server is always considered as

honest-but-curious, Server should know the query content and
the outsourced encrypted databases as little as possible. More
precisely, the adversary tracks the queries from Owner and
User, views the full transcripts of queries on Server, knows
who initiates these transcripts, and wants to learn anything
beyond some explicit leakages.

We typically capture the security model from the indis-
tinguishability between Real and Ideal Game formulation
[3], [38]. In the real game, the adversary runs all operations
originally and observes all transcripts from her view. In the
ideal game, the adversary runs all operations constructed from
the set of simulator S with the leakage function L and gets
all simulated transcripts from her view. Finally, the adversary
decides on which game is running and distinguishes the real
and ideal game.

Definition 2 (Adaptive Security of KS2E): Assume a KS2E
scheme is L-adaptively secure iff for all sufficiently large
security parameters λ ∈ N and PPT adversary A, there is
a set of efficient simulators S with a set of leakage functions
L that has:

|P
[
RealKS2E

A (λ) = 1
]
− P

[
IdealKS2E

A,S,L (λ) = 1
]
| = negl (λ)

where the game RealKS2E
A (λ) and the game IdealKS2E

A,S,L(λ) are
defined as below:
• Game RealKS2E

A (λ): In this game, the adversary triggers
Owner and User to run real protocols. Firstly, the adversary
triggers the protocol Setup and gets two encrypted databases
EDBσ , EDBσ ′ . Secondly, with the parameters of her choice,
she adaptively triggers Update, Search, Share, Sharetoken,
and then she gets the real transcript (q1, q2, . . . qn) from the
view of Server. Finally, she outputs a bit b decided from the
real transcript (EDBσ , EDBσ ′ , q1, . . . qn).
• Game IdealKS2E

A,S,L(λ): In this game, all of the real
protocols are replaced by the set of simulators S. The
adversary first triggers the simulator Ssetup and gets two
simulated databases EDBSσ , EDBS

σ ′
. Secondly, with the param-

eters of her choice, she adaptively triggers Supdate, Ssearch,
Sshare, Ssharetoken, and then she gets the simulated tran-
script (qS1 , qS2 , . . . qSn) from the view of Server. Finally,
she outputs a bit b decided from the simulated transcript
(EDBSσ , EDBS

σ ′
, qS1 , qS2 , . . . qSn).

E. Leakage Function
In this section, we borrow and define some basic leakage

functions. Without the construction from data-oblivious mem-
ory, search pattern leakage sp(w) is a common leakage in
most DSSE schemes [3]. Let u denote a timestamp. Let Q
denote a set of all queries issued up to now. sp(w) = {u :
(u, w) ∈ Q} leaks which search queries are related to the
same keyword w. We borrow this leakage function to capture
the search pattern leakage in KS2E.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 09,2023 at 08:14:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: KS2E FOR FAST AND SECURE DATA REPLICATION 5541

Fig. 2. The generic KS2E construction.

Inspired by [21], we also use the update history UpHist(w)

in KS2E. UpHist(w) outputs the list of all updates on keyword
w. Moreover, the adversary also knows which database is
updated. Let O denote the Update queries issued on the
database from Owner. Let U denote the Update queries
associated with the sharing requests from User. In our
notion, the types of elements in the list UpHist(w) include
(O, u, w, id, op) and (U, u, w, id, op).

We define the replication pattern r p(id) of each replication
in the sharing process. Inspired by search patterns [12], the
adversary observes the memory accessed on the Owner’s
database during the sharing process. The adversary can find
out which sharing tokens access the same memory address and
speculate that these sharing tokens share the same file id.

r p(id) reveals the repetition of which id generates a repli-
cated index and is defined as r p(id) = {u : (u, id) ∈ Q}

F. Forward and Backward Privacy
Forward and backward privacy is important security defi-

nitions when the SSE scheme has addition and deletion [3].
Especially, Zhang et al. [39] prove that adaptive file injection
attack is powerful on encrypted databases without forward
privacy. Meanwhile, search queries leak the deleted entries
after the search protocol without backward privacy. We analyze
the leakage from each protocol to determine forward and
backward privacy in KS2E.

1) Forward Privacy: As KS2E holds forward privacy, the
adversary should not use the previous transcript to imply the
newly added content before executing the protocol Search or
Share. More precisely, the source of the disclosure is the
protocol Update and Share. If Owner and User want to
replicate the id , the sharing token needs to access previous
indexes about the id . Besides, if Owner and User want to
search the index, the protocol Search needs to access the
matched index by the keyword w. Hence, the leakage from
Update can not disclose the content about w and id . Besides,
the Share protocol should not use previous sharing tokens to
imply the content of newly added indexes.

To capture the forward privacy in KS2E, we introduce the
functions TimeST(id) and UpSHist(id). TimeST(id) captures
the timestamps when Owner generates the sharing token about
id . With the input id , TimeST(id) returns the timestamp set
of sharing tokens Pid .

TimeST (id) = {u| (u, Pid) ∈ Q}

UpSHist(id) captures the leakage of replicating the
encrypted search indexes from Server. With the input id,

UpSHist(id) returns the set of the timestamps from Update
queries. The timestamps should not be larger than the maxi-
mum of TimeST(id).

UpSHist (id) =
{
u|

(
O, u, w, id, op

)
∈ Q

and u ≤ max [TimeST (id)]}

Combining our analysis of the protocols of Update and
Share, we have the definitions of forward privacy in KS2E.

Definition 3 (Forward Privacy): An L-adaptively-secure
KS2E scheme has forward privacy iff its Update, Share
leakage functions LU pt , LShr can be written as:

LU pt (w, id, op) = L′ (op)

LShr (id) = L′′ (UpSHist (id))

where L′, L′′ are state-less functions.
Recall that Bost et al. [3] introduced the forward and back-

ward privacy for DSSE. As for the forward privacy, KS2E
further considers the leakage in the sharing stage. This leakage
reveals the timestamp of the Owner’s update operations before
the last sharing on a file id. The adversary can not use the
previous timestamp information to infer the content of the new
update operation, and thus we can achieve the forward privacy.

2) Backward Privacy: As KS2E holds backward privacy,
the adversary should not use new transcripts to imply previous
content after executing Search. In the protocol Share, the
search index (in the Owner’s database) is only re-encrypted
and is further restored in the User’s database. The Share does
not leak deleted indexes about id . Besides, transcripts from
the protocol Search should not reveal the deleted file address
id . Considering the independence of search index tables on all
databases, we require that Search can not disclose the content
of id at most.

To capture backward privacy in KS2E, we introduce
the functions TimeDBS(w) and DelHistS(w). Let uadd

denote the timestamp of an addition Update query. Let
udel denote the timestamp of a deletion Update query.
TimeDBS(w) is the list of all id matching w, excluding the
deleted ones, together with the timestamps of when they were
inserted in all databases.

TimeDBS (w) =
{(

u, O, id
)
|

(
O, u, w, add, id

)
∈ Q

and ∀ u′,
(
O, u′, w, del, id

)
/∈ Q

}
∪ {(u, U, id) | (U, u, w, add, id) ∈ Q

and ∀ u′,
(
U, u′, w, del, id

)
/∈ Q

and u ≤ max [TimeST (id)]}

Authorized licensed use limited to: TU Delft Library. Downloaded on October 09,2023 at 08:14:18 UTC from IEEE Xplore. Restrictions apply.

5542 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

DelHistS(w) captures the leakage of the relation among addi-
tion and deletion about the same (w, id) in all databases.
With the input w, DelHistS(w) returns the set of addition
and deletion timestamp tuples. These timestamps reveal the
correspondence between add and del queries about w in all
databases.

DelHistS (w)

=

{(
uadd , udel

)
| ∃ id s.t.

(
U, uadd , w, add, id

)
∈ Q

and
(
U, udel , w, del, id

)
∈ Q

and uadd
≤ max [TimeST (id)]

and udel
≤ max [TimeST (id)]

}
∪

{(
uadd , udel

)
|∃ id s.t.

(
O, uadd , w, add, id

)
∈ Q

and
(
O, udel , w, del, id

)
∈ Q

}
From these functions and our analysis, we define the back-

ward privacy of the KS2E scheme.
Definition 4 (Backward Privacy): An L-adaptively-secure

KS2E scheme has backward privacy if its Update, Search
leakage functions LU pt , LSrch can be written as:

LU pt (w, id, op) = L′ (op)

LSrch (w) = L′′′ (TimeDBS (w) , DelHistS (w))

where L′, L′′′ are state-less functions.
The backward privacy is inspired by the Type-III backward

privacy [3]. The search leakage on the Owner’s database is
included in the original Type-III backward privacy. The search
leakage on the User’s database is also included in the Type-III
backward privacy, although the User’s search is limited to
the shared search indexes. After combining the two parts, the
leakage does not speculate the preservation of the Type-III
backward privacy.

Similarly, DMUSE [11] gives the forward and backward
privacy definitions for multi-user sharing. The leakages of
DMUSE are captured when multiple users use the Owner’s
search indexes. DMUSE tries to incorporate the leakage under
static MUSE [13] into considering the forward and backward
privacy in its work. In our model, Users use their keys to
search their databases’ index. The privacy definitions of KS2E
inherit from traditional DSSE but also minimize the leakage
incurred by the sharing stage.

G. Heuristic K S2 E From DSSE
Through careful investigations, we find a heuristic instance

of KS2E by using multiple DSSE instances. Specifically,
Owner can prepare two DSSE instances. One instance is to
search the keywords and retrieve the file’s id . To securely
share the search index, the other instance is to search the
shared file’s id, retrieve all keywords, and securely deliver
this retrieval to User. Finally, User updates the information
transferred by Owner to his DSSE instance.

This heuristic instance suffers from some efficiency defects.
It requires many search tokens and sharing tokens from dif-
ferent keys, increasing the time overheads of matching search
indexes in the database. Moreover, Owner should be online
to update the two DSSE instances at the same time, handle

TABLE II
NOTATIONS

many sharing requests, and transfer sharing information. These
cause considerable local computational resources to handle
User’s request. We say that the heuristic instance can maintain
security as a DSSE, but it is not practical and efficient.

IV. INSTANCE CONSTRUCTION

This section introduces our approach to constructing the
instance of KS2E. To construct our KS2E instance, we intro-
duce our notation, preliminary, and bi-directional index. Fol-
lowing the KS2E generic construction, we show the detailed
workflow of Branch. Finally, we analyze the correctness,
security, and performance.

A. Notation and Preliminary
1) Notation: Let λ ∈ N be the security parameter. Symbol

r
$
← R means randomly choosing r from the spaceR. Symbol

a||b means the concatenation between a and b. Symbol
{0, 1}λ means a λ-bit length string. Symbol {0, 1}∗ means an
arbitrary-bit length string. Symbol H means a cryptographic
hash function. Symbol F means a secure Pseudo Random
Function (PRF). The frequently used notations are given in
Tab. II.

2) Symmetric Encryption: Given a security parameter λ ∈

N, message space M = {0, 1}∗, ciphertext space C = {0, 1}∗,
and the key space KSE = {0, 1}∗, a symmetric encryption
scheme consists of two algorithm (E,D) and runs under the
following syntax:
• E(k, m): Input a symmetric key k ∈ KSE and a message

m ∈M, output a ciphertext c ∈ C.
• D(k, c): Input a symmetric key k ∈ KSE and a ciphertext

c ∈ C, recover a message m ∈M.
For correctness, with each message m ∈M and secret key

k ∈ KSE , the equation c ← E(k, m) should always make
sense, and m ← D(k, c) can always recover the message
m from c using the secret key k. In the security definitions,
a popular requirement of symmetric encryption is the semantic
security under chosen plaintext attack (SS-CPA).

Authorized licensed use limited to: TU Delft Library. Downloaded on October 09,2023 at 08:14:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: KS2E FOR FAST AND SECURE DATA REPLICATION 5543

Fig. 3. Relation between tokens and encrypted search indexes.

Fig. 4. Logical bi-directional index structure for the example sequence.

B. Bi-Directional Index

The bi-directional index is a structure constructed from
encrypted search indexes. A popular method in constructing
DSSE is to reveal the following index from the calculation
between tokens and the current matched index. Following this
idea, we construct iterations from the last matched encrypted
search index using the tokens of Share or Search.

Fig. 3 shows the relation between tokens and encrypted
search indexes. The index Cw,id needs to generate from two
types of internal state LastID, LastW. LastID is a map storing
the latest id updated with w. LastW is a map storing the
latest w updated with id. In this approach, the search token
can match the current Cw,id and utilize previous LastID
state information to find the previous index Cw,id ′ . Simi-
larly, the sharing token can match the current Cw,id and
utilize previous LastW state information to find the previous
index Cw′,id .

Fig. 4 shows a logical bi-directional index table after
adding the example sequence: (w2, id1), (w1, id2), (w2, id3),
(w3, id1), (w2, id2), (w3, id3). We can observe that each
unique pair (w, id) pointing to the horizontal has the
same id, and the pair pointing to the vertical has the
same w.

Advantage: The bi-directional index avoids performance
degradation. This structure enables the same private key to
perform search and sharing operations. The generation of
sharing and search tokens only needs the internal states about
the chain tail’s information. Compared with MUSE [11], [13]
and MKSE [6], [36], we find that the bi-directional index
enables Users to merge several search indexes collected from
multiple owners into one index. Batching into one approach is
naturally more practical and efficient when there are multiple
owners that share files simultaneously.

C. The Workflow of Branch Instance

We use functions defined in the KS2E construction to
perform search index sharing from Owner to User. More
precisely, we take inputs in the example sequence of Fig. 4 as
update queries of Owner and let Owner share search indexes

about id1 with User. At the Search, we let User and Server
run the protocol Search with the keyword w2 and retrieve the
search result.

Protocol 1 Branch: Setup
Setup(λ) : // the example between Owner and Server, otherwise Gen. Kσ ′ , lastIDσ ′ ,
lastWσ ′ , EDBσ ′

1: Initialize H : {0, 1}λ × {0, 1}λ → {0, 1}2λ

2: Initialize F : {0, 1}λ × {0, 1}∗ → {0, 1}λ

3: Initialize SE: {E,D}
4: Gen. Kσ : Kσ,1

$
← {0, 1}λ, Kσ,2

$
← {0, 1}λ

5: Gen. empty maps lastIDσ , lastWσ as the internal state σ

6: Gen. encrypted database EDBσ ← MAP

1) Setup: Owner and User separately run the protocol
Setup. Owner gets the master secret key Kσ and the maps
lastIDσ , lastWσ as internal state σ . User gets the master secret
key K ′σ and the maps lastIDσ ′ , lastWσ ′ as internal state σ ′.
Owner sends EDBσ to Server, and User sends EDBσ ′ to
Server. The lastID maps the latest added w to id , and the
lastW maps the latest added id to w. These maps capture the
endpoint in the bi-directional index structure.

Protocol 2 Branch: Update
Update(Kσ , σ, (w, id, add);EDBσ) :

Owner:
1: w′ ← lastWσ [id],id ′ ← lastIDσ [w]

2: L ← F(Kσ,1, w||id), Rw
$
← {0, 1}λ, Rid

$
← {0, 1}λ //location and two random

numbers for pointers
3: kw ← F(Kσ,2, w), kid ← F(Kσ,2, id)

4: Cw ← E(kw , id), Cid ← E(kid , w)

5: if id ′ is ⊥ then
6: Iw ← H(F(Kσ,2, w||id), Rw)

⊕
⊥||⊥

7: else
8: L ′ ← F(Kσ,1, w||id ′), J ′w ← F(Kσ,2, w||id ′)
9: Iw ← H(F(Kσ,2, w||id), Rw)

⊕
(L ′||J ′w)

10: end if
11: if w′ is ⊥ then
12: Iid ← H(F(Kσ,2, id||w), Rid)

⊕
⊥||⊥

13: else
14: L ′ ← F(Kσ,1, w′||id), J ′id ← F(Kσ,2, id||w′)
15: Iid ← H(F(Kσ,2, id||w), Rid)

⊕
(L ′||J ′id)

16: end if
17: Cw,id ← (L , Iw , Rw , Cw , Iid , Rid , Cid)

18: Update lastWσ [id] ← w, lastIDσ [w] ← id
19: Send Cw,id

Server:
20: Parse Cw,id as (L , Iw , Rw , Cw , Iid , Rid , Cid)

21: EDBσ [L] ← (Iw , Rw , Cw , Iid , Rid , Cid)

2) Index Updating: Owner and Server run the protocol
Update with the example sequence, and Server stores these
indexes in EDBσ with a logical bi-directional index structure
like the left part of Fig. 5. Owner uses his internal state
lastIDσ , lastWσ to find the latest w′ added on id and the
latest id ′ added on w (step 1). He generates L as the identifier
of the search index in EDBσ and generates random Rw, Rid
to make randomness to the previous index pointer (step 2).
He generates symmetric encryption keys kw, kid and encrypts
the id , w to the Cw, Cid as the retrieval of this search index
(steps 3-4).

To construct the vertical index chain for search tokens,
Owner checks the latest id ′ whether it is ⊥ or not. Then he
creates a vertical chain head like the Iw in nodes Lw1,id2 ,
Lw2,id1 , Lw3,id1 or makes the Iw point at the vertical chain
tail by encrypting the latest L ′||J ′w (steps 5-10). To construct
the horizontal index chain for sharing tokens, Owner checks
whether the latest keyword w′ is ⊥ or not. Then he creates a

Authorized licensed use limited to: TU Delft Library. Downloaded on October 09,2023 at 08:14:18 UTC from IEEE Xplore. Restrictions apply.

5544 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 5. The encrypted search indexes on Server.

horizontal chain head like the Iid in nodes Lw1,id2 , Lw2,id3 ,

Lw2,id1 or makes the Iid point at the horizontal chain tail
by encrypting the latest L ′||J ′id (steps 11-16). Finally, Owner
sends this index Cw,id , and Server store it in EDBσ .

Protocol 3 Branch: Sharetoken
Sharetoken(Kσ , σ, id) :

Owner:
1: w← lastWσ [id]
2: if w is ⊥ then
3: return ⊥
4: end if
5: L ← F(Kσ,1, w||id), Jid ← F(Kσ,2, id||w)

6: kid ← F(Kσ,2, id)

7: Send Pid ← (L , Jid , id, kid) to User

Protocol 4 Branch: Share
Share(Pid , σ ′, Kσ ′ ;EDBσ ′ , EDBσ) :

User: // the first-round interaction
1: Decapsulate and parse Pid = (L , Jid , id, kid)

2: Send Did ← (L , Jid)

Server:
3: S← ∅, read the uploaded EDBσ

4: while L is not ⊥ do
5: Choose (Iid , Rid , Cid) from EDBσ [L]
6: (L ′||J ′id)← H(Jid , Rid)

⊕
Iid //get the previous location that has the same id

7: S← S ∪ Cid
8: Update L ← L ′, Jid ← J ′id
9: end while

10: Return S
User: // the second-round interaction

11: S′ ← ∅
12: for each symmetric ciphertext s in S do
13: w← D(kid , s),id ′ ← lastIDσ ′ [w]

14: Cw ← E(F(Kσ ′,2, w), id)

15: L ← F(Kσ ′,1, w||id),Rw
$
← {0, 1}λ

16: if id ′ is ⊥ then
17: Iw ← H(F(Kσ ′,2, w||id), Rw)

⊕
⊥||⊥

18: else
19: L ′ ← F(Kσ ′,1, w||id ′), J ′w ← F(Kσ ′,2, w||id ′)
20: Iw ← H(F(Kσ ′,2, w||id), Rw)

⊕
(L ′||J ′w)

21: end if
22: Update lastIDσ ′ [w] ← id
23: Update S′ ← S′ ∪ (L , Iw , Rw , Cw)

24: end for
25: Send S′

Server:
26: for each ciphertext s′ in S′ do
27: parse s′ as (L , Iw , Rw , Cw), EDBσ ′ [L] ← (Iw , Rw , Cw)

28: end for

3) Sharing: First, Owner runs Sharetoken to generate the
sharing token Pid and sends it to User. He checks the internal
state LastWσ to find the latest keyword w about id or returns
when the keyword w is ⊥ (steps 1-4). He generates L and
Jid , which can identify the horizontal chain tail about id, and
he sends the sharing token Pid to User (steps 5-7).

After that, User and Server run Share. User sends the
partial token of Pid to Server in the first round of interaction
(step 2). Server iteratively matches search indexes in the EDBσ

of Owner by the identifier L (steps 4-9). Server executes
XOR to restore the previous L ′||J ′id (step 6). After finding
all encrypted keywords Cid on the file id, Server returns the
encrypted keywords set S to User.

In the second round of interaction, User decrypts each
Cid ∈ S and gets the keyword w. Then he checks his
internal state lastIDσ ′ [w] to get the latest id ′ about this
keyword (step 13). He generates symmetric ciphertext Cw

for retrieving the id on Search (step 14). He generates L
as the identifier of this search index (step 15). He checks
id ′ whether it is ⊥ or not, and then he creates a vertical
chain head Iw or makes the Iw point at the chain tail (steps
16-21). Finally, User generates the set of search indexes S′,
and Server stores it in EDBσ ′ . In our example sequence, the
shared search indexes in EDBσ ′ are shown like the right part in
Fig. 5.

Protocol 5 Branch: Search
Search(Kσ ′ , σ

′, w;EDBσ ′) : // the search example between User and Server, otherwise
input Kσ , σ , EDBσ for Owner

User:
1: id ← lastIDσ ′ [w]

2: if id is ⊥ then
3: return ⊥
4: end if
5: L ← F(Kσ ′,1, w||id), Jw ← F(Kσ ′,2, w||id)

6: Send Tw = (L , Jw) to the Server
Server:

7: Parse Tw as (L , Jw)

8: S← ∅
9: while L is not ⊥ do

10: Choose (Iw , Rw , Cw) from EDBσ ′ [L] // get the previous location that has the
same w

11: (L ′||J ′w)← H(Jw , Rw)
⊕

Iw
12: S← S ∪ Cw

13: Update L ← L ′, Jw ← J ′w
14: end while
15: Return S

4) Search: User and Server run the protocol Search to
retrieve the file address by the keyword w2. User checks
lastIDσ ′ [w] to get the latest id then sends the search token
Tw (step 5). Server uses this search token to restore the last
step L ′||J ′w iteratively until the identifier L is ⊥ (steps 9-14).
Finally, Server makes a set S of matched symmetric ciphertexts
Cw from accessed indexes and returns this search result. To
retrieve the actual file, User can extract the file id and send it
to Server who is then able to retrieve the file.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 09,2023 at 08:14:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: KS2E FOR FAST AND SECURE DATA REPLICATION 5545

D. Instance Analysis
1) Correctness: According to the correctness in Def. 1,

the correctness of Branch can be reduced to the collision
resistance of tokens in the protocol Sharetoken and Search
[21]. To prove the correctness of Branch, we further reduce
the probability of finding the tokens’ collision to that of
solving the Birthday problem [40]. Let µ denote the maximum
number of inputs to the PRF F . The collision probability is

PColl = 1− e
−µ2

2λ+1 , which should be negligible in practice. For
example, when using the SHA256 hash function in Branch
and choosing λ = 256 and µ = 1020, the PColl is 4.32 ·
10−38. Hence, the probability is small enough to achieve
collision resistance. Accordingly, the correctness is proved.
In Appendix B, we present the calculation of the collision
probability in detail.

2) Security: Branch securely generates the search indexes,
search tokens, and sharing tokens, guaranteed by the cryp-
tographic hash function and the secure PRF. Based on the
security parameters used in the protocol Setup, external
adversaries are prevented from violently cracking ciphertexts.
For forward and backward privacy, Owner always uses the
master secret key Kσ and secure PRF to generate new
tokens when adding new (w, id). After receiving a new
sharing request generated from the same id, Server only
knows the new keyword count on specific search indexes.
We use this to restrict the previous tokens from matching
the newly added index, and thus we have the following
theorem.

Theorem 1 (Adaptive Security of KS2E-Branch): Let PRF
F with a specific key be modeled as the random oracle HF ,
and let cryptographic hash function H be modeled as the
random oracle H. We define LB = (LU pt

B ,LShr
B ,LSrch

B) as:

LU pt
B (w, id, op) = ∅

LShr
B (id) = r p (id) , UpSHist (id)

LSrch
B (w) = sp (w) , UpHist (w)

Branch is LB-adaptively-secure.
In our proof of instance Branch, we use a game hop method

to replace the real output of the hash function and PRF step
by step. The cryptographic hash function H is modeled as a
random oracle H. In the real game, the initial game is identical
to the instance Branch. First, we replace F with the random
oracle HF and replace Symmetric Encryption ciphertexts with
randomly chosen strings. Next, we replace all strings generated
from random oracles in the protocol Update with randomly
chosen strings. In this step, we program the random oracles for
the input to simulate the original hash functions in Search,
Sharetoken, and Share. Finally, we make the game only use
the pattern and the history to generate tokens. In this condition,
the game only needs the output of leakage functions. In other
words, we have a simulator.

In Appendix A, we give formal proof for our instance with
an indistinguishable advantage.

3) Complexity: We analyze the complexity of our instance
Branch. In the function Setup, Branch initializes the crypto-
graphic hash function H , master secret key Kσ , internal state
lastIDσ , lastWσ , PRF F , and encrypted database EDBσ in
constant time. In the protocol Update, Branch generates the
search index Cw,id in constant time using the cryptographic

hash function H and PRF F . A one-way interaction exists
between Owner and Server for the EDBσ . In the protocol
Search, the PRF F is used to make the search token Tw within
constant time, and the search token has a constant length.
During the one interaction, Server needs O(n(Iw)) time to
find all indexes matching this search token, where n(Iw)

denotes the count of Iw in the current encrypted database.
In the protocol Sharetoken, Owner uses the constant time to
generate the constant length sharing token Pid . In the protocol
Share, User has two round interactions with Server. In the
first-round interaction, User needs constant time to compute
Did , and Server needs O(n(Iid)) time to retrieve ciphertexts
where n(Iid) denotes the count of Iid in the current encrypted
database. In the second-round interaction, User needs constant
time to generate each index, and Server takes constant time to
add each index in EDBσ ′ .

4) Deletion: Although Branch can only store the add index,
we can fix it using a “copy” of Branch instance [3]. We can
use an instance to record the search index containing the
add operation and another instance for the del. After Owner
or User sends the same content search queries to the two
instances, the actual result can be implied by comparing the
results of the two instances locally.

After creating two instances, the server can know the
type of instance [3], enabling it to know when the dele-
tion occurred during the update stage. Therefore, this
multi-instance approach can provide forward privacy with
weak backward privacy. To overcome this leakage during the
update stage, we can deploy branch instances separately on
the non-collusive servers, preventing the server from knowing
the type of instances.

It is challenging to construct efficient KS2E instances
supporting both add and delete operations. Previous works
usually added a file deletion content id||del to the EDB
in the update protocol [22], [26], which is indistinguishable
from the file addition content. We tried adding a search index
deletion content but faced a situation where we could not
use the same private key to perform searching and sharing.
Therefore, we implemented Branch with the bi-directional
index to make the index efficiently searchable and shareable.
Another possible solution is to use Puncturable Encryption [3],
[23], [24], allowing the server to decrypt the non-deleted
content. However, the puncture key should be renewed after
each search and require rebuilding the bi-directional index
structure.

V. EVALUATION OF INTER-CLOUD CONTEXT

In this section, we select the Inter-cloud data replication
context to test the performance of Branch. We specify Server
as Cloud A and B to hold EDBσ and EDBσ ′ . First, we describe
several popular datasets for testing our instance’s performance.
Then, we show our test platform with cryptographic tools.
Next, we introduce our evaluation setup for each aspect of
KS2E. Finally, we observe and analyze our evaluation results.

A. Dataset
1) Enron Email Dataset:1 We choose this popular dataset to

create an EDB [39], [41]. Enron email dataset stores the data

1Enron email dataset: online at https://www.cs.cmu.edu/ enron/

Authorized licensed use limited to: TU Delft Library. Downloaded on October 09,2023 at 08:14:18 UTC from IEEE Xplore. Restrictions apply.

5546 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 6. The occurrence of files.

Fig. 7. The occurrence of keywords.

converted from Enron corporation emails into text files. Our
test applies 128,103 documents in the ‘all-documents’ folder
as the data source. We remove the HTML format code to
eliminate the effects caused by stop-words. Then we use the
Python NLTK package to remove stop-words like punctuations
and other unnecessary texts in these text files. After that,
we use Porterstemmer [42] to extract keywords from the text
files. The size of extracted keyword space is 638,070, and the
total number of (w, id) pairs is 18,309,166.

2) Lucene:2 We choose the Lucene email dataset for testing
on a similar scale dataset with another frequency distribution.
Lucene email dataset is a java-user mailing list from the
Lucene project. It stores the email sent by the developer
of this project and is divided into each author. Our test
samples this email data in its mailing list from Sept. 2001 to
May 2020. After removing stop-words and extracting from
Porterstemmer, we get the Lucene email dataset. It has 110,008
documents corresponding to a keyword space of 354,708
keywords, and the total number of (w, id) pairs is 14,935,640.

3) Wikipediadump: 3 In order to test the performance of
Branch in a larger scale data, we use the sample from
Wikipediadump to create a large dataset. The Wikipediad-
ump is an image from the content of Wikipedia. Our test
downloaded the dump on Sept. 20, 2021, and sampled the
first 2,000,000 dumped data without non-text files. Before
extracting keywords, we use Wikiextractor [43] to remove the
HTML format code and get the sliced Json structure data. Then
we use the Python NLTK package [44] to ‘tokenize’ these
data and remove stop-words. After this extraction, the size of
Wikipediadump has 1,983,819 valid documents corresponding
to a 6,441,361 keyword space, and the total number of (w, id)

pairs is 272,897,980.
Fig. 6 shows the occurrence of files in each dataset. It rep-

resents the number of files that meet a certain number of
keywords. As we can see, all distributions of datasets are
similar to the log-normal distribution. Most files contain less
than 300 keywords. When the number of keywords is less than
100, many files have few words in the Wikipediadump dataset.

2Lucene: online at https://lists.apache.org/list.html?dev@lucene.apache.org
3Wikipediadump: online at https://dumps.wikimedia.org/

TABLE III
TEST ENVIRONMENT

Besides, we observe that the presence of words in common
use affects the log-normal distribution of the Lucene dataset.

Fig. 7 shows the occurrence of keywords in each dataset.
It represents the number of the same keywords in certain files.
As we can see, all datasets follow the rule that the number of
the same keywords decreases with the increment in the number
of files.

B. Test Platform

Tab. III shows our test environment to simulate our test con-
text. To build Owner, User, Cloud A, and Cloud B, we choose
VMware Workstation and assign CPU cores/memory on each
side. We allocate 16 cores and 64GB of memory for each
Cloud. MongoDB [45] is a popular NoSQL database with
high performance on query responses. We choose MongoDB
to store the encrypted data, which fits the storage structure of
the key-value pair.

When coding the instance Branch, we use SHA512 from
OpenSSL [46] to construct the cryptographic hash function
H , and we use the HMAC function from OpenSSL to con-
struct the secure PRF F . The SHA256 parameter initializes
the HMAC function. We use the Python object model to
encapsulate this part of the OpenSSL code.

When coding the connection of databases, we use the Mon-
goDB database in single-node mode to store search indexes,
and we use the PYmongo package to connect the database on
each side. In accessing the database, we use data slicing and
thread parallelism to reduce the additional time overhead of
accessing the database content. In order to make interactions
between Cloud A and B, we use the Python socket package
to transfer the encrypted data under ASCII encoding by LAN.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 09,2023 at 08:14:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: KS2E FOR FAST AND SECURE DATA REPLICATION 5547

Fig. 8. Comparison of updating time overheads between Branch and the heuristic KS2E instance in LAN.

C. Evaluation Setup
Inspired by the previous evaluation setup in DSSE and the

functionality of sharing search indexes, we confirm that the
time expenses of operations represent the primary performance
of each scheme. We record the expansion of plaintext and
ciphertext databases and design experiments to test the time
expenses of sharing and searching.

1) Updating Time Overhead in Branch: In the test of
encryption time overhead, we use the protocol Update of
Branch to encrypt entries of each dataset. In detail, we let
Owner read and update all plaintexts and then write ciphertexts
into Cloud A database in ciphertext collections. We record the
entire updating time overhead three times and take the average
overhead on each dataset. After that, we get the average
updating time overhead from the percentage of encrypted data
in the whole dataset.

2) Sharing Time Overhead in Branch: To test the sharing
time overhead of Branch, we use the protocols Sharetoken
and Share to share all indexes from Cloud A to B. Then
we record the average sharing time overhead of User and
Cloud B in the protocol Share, respectively. During this
test, Owner generates the sharing tokens of each id and
sends them to User. After receiving them, User executes
the protocol Share with Cloud B. We sample the shar-
ing time overhead of documents with different numbers
of keywords by the number of matching keywords in the
document.

3) Search Time Overhead in Branch: We test the search
time overhead from User and Cloud B running the protocol
Search. During this test, User sends search tokens to Cloud
B. Cloud B queries the database using the search token and
returns search results. We search the top 30 keywords ordered
by the highest frequency on the three datasets and sample the
average search time overhead on each keyword.

4) Compare With the Heuristic KS2E Instance: We con-
struct a heuristic KS2E instance from the DSSE instance
Diana. Recall that Diana is a forward private scheme which
is applied to the forward and backward secure DSSE [3], [22],
[23], [24]. It uses the Constrained Pseudo Random Function
(CPRF) to guarantee forward privacy. We instantiate Diana
based on the tree-based GGM PRF [47], [48]. Then we use
our datasets to test the heuristic KS2E and compare it with
Branch.

5) Compare With MUSE and MKSE: To evaluate the
performance of searching for files shared by multiple Own-
ers, we measure the time overheads of database generation,
sharing, and keyword searching using MKSE and MUSE
under LAN and WAN. We employ multiple Owners and

TABLE IV
COMPARISON OF STORAGE OVERHEAD BETWEEN

BRANCH AND THE HEURISTIC KS2E

outsource encrypted databases to Cloud A to adapt the setting.
We compare the sub-linear search instance PKC18 [6], which
uses the Perfect Hash Function, with MKSE. We choose the
queue-based µSE instance (Q-uSE) in [11] for comparison.
Both instances focus on efficient database generation, sharing,
and search. The PKC18 instance uses the DataKeyGen algo-
rithms for each Owner and the QueryKeyGen for one User.
The queue-based µSE instances are separately initialized for
multiple Owners, and each Owner can Enroll the identity of
one User. We uniformly sample 2,000 files from our Enron
email dataset to generate an appropriate dataset. The MUSE
and MKSE instances are coded in Python, and they use the
same construction of the secure PRF.

D. Comparison With the Heuristic K S2 E Instance

Fig. 8 shows the updating time overhead of Branch and
the heuristic KS2E on each dataset. They roughly share a
constant time overhead for updating a search index in a
database, while they have updating overheads of about 22.5 µs
and 15.3 µs per entry, respectively. Branch does spend more
time in constructing the bi-directional index structure among
searchable ciphertexts. In the updating stage, we see that
Branch incurs more cost on calling the hash function than
the heuristic KS2E.

Tab. IV shows the storage overhead of Branch and the
heuristic KS2E. Branch consumes more memory to store the
internal state for search and sharing than the heuristic KS2E.
Besides, the EDB storage cost by Branch is about 4.3 times
that of the heuristic KS2E. We note that Branch requires more
storage cost to maintain the bi-directional index structure.

Fig. 9 shows the entire sharing time cost. The costs
of Branch on Enron, Lucene, and Wikipedia are 614.87s,
563.81s, and 1.73 ×104 s, respectively. Branch’s cost increases
by 28.0 times between Enron and Wikipedia datasets and
30.7 times between Lucene and Wikipedia datasets. The
overheads of the heuristic are at least nine times larger. We see
that the bi-directional index accelerates the retrieval in the
data-collection slice of MongoDB and speeds up the index
sharing.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 09,2023 at 08:14:18 UTC from IEEE Xplore. Restrictions apply.

5548 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 9. Comparison of sharing time overheads between Branch and the heuristic KS2E instance in LAN.

Fig. 10. Comparison of search performance between Branch and the heuristic KS2E instance in LAN.

Fig. 11. Sharing performance on User in LAN.

Fig. 10 shows the search time overhead of Branch and the
heuristic KS2E on each dataset. From these search times of
Branch, we observe that the search time overhead of each
index is gradually increasing with the gradual reduction of key-
word frequency. The frequency of the 30th keyword decreases
by 0.37, 0.38, and 0.45 times that of the first keyword. At the
same time, the keyword frequency significantly affects the
search time on each dataset. The search time overheads of the
1st frequency keyword in Branch is separately 1.98× 10−6s,
2.31 × 10−6s, 2.99 × 10−6s, and that of the 30th frequency
keyword is separately 2.27×10−6s, 2.45×10−6s, 4.15×10−6s.
The search performance of Branch is nearly 4.3 times faster
than that of the heuristic KS2E in our test.

E. The Sharing Performance of Branch
Fig. 11 shows the sharing time overhead of User on each

dataset in detail. These graphs show the average cost of sharing
an index according to the number of matches from one Share.
From Fig. 11a, 11b, 11c, we observe that the sharing time
presents a constant level. The average overhead of Fig. 11a,
11b, 11c, is separately 1.40 × 10−5s, 1.43 × 10−5s, 1.44 ×
10−5s, and the variance is separately 9.86 × 10−14, 2.30 ×
10−13, 2.39 × 10−13. Therefore, we confirm that the sharing

time overhead on User is linear with the matching number of
keywords in one Share.

Fig. 12 shows the sharing time overhead of Cloud B
on each dataset in detail. Similarly, these graphs show the
average cost of sharing an index according to the number
of matches from one Share. We observe that each entry’s
average sharing time overhead decreases significantly with the
increment of matching keywords. Fig. 12a, 12b, 12c show that
the sharing time overhead drops to 3.44× 10−6, 1.37× 10−6,
and 3.05×10−6, respectively. Besides, the time overhead tends
to be nearly constant on all datasets when the number of
matching keywords exceeds 1,000. Therefore, we confirm that
the sharing time overhead on Cloud B is sub-linear with the
matching number of keywords in one Share.

F. Comparison With the Instances of MUSE and MKSE
Fig. 13 shows the comparison results of KS2E, MUSE,

and MKSE instances in the setting of multiple Owners under
LAN. We see that KS2E is comparable to MKSE and MUSE
on the time overheads of database generation and sharing.
By Fig. 13a, we confirm that the database generation over-
heads are constant and they are not significantly affected by
the number of Owners. In Fig. 13a, the overheads of Branch,

Authorized licensed use limited to: TU Delft Library. Downloaded on October 09,2023 at 08:14:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: KS2E FOR FAST AND SECURE DATA REPLICATION 5549

Fig. 12. Sharing performance on Cloud B in LAN.

Fig. 13. Comparison of performance between the instances of KS2E, MUSE, and MKSE in LAN.

Fig. 14. Comparison of performance between the instances of KS2E, MUSE, and MKSE in WAN (average 23ms delay).

Q-µSE, and PKC18 generating the databases (with 2,000 files)
are about 4.96s, 0.82s, and 1.14s, respectively.

From Fig. 13b, we see that the total overheads of KS2E,
MUSE, and MKSE instances are also constant which is not
restricted by the number of Owners. In Fig. 13b, the sharing
time overheads of Branch, Q-µSE, and PKC18 are about
4.33s, 2.95s, and 2.51s, respectively.

It should be noted that Fig. 13c shows our advantages
over MUSE and MKSE in terms of search time overheads.
Fig. 13c presents the total search overheads for searching all
keywords from the database (with 2,000 files). The cost of
Branch is much lower than that of Q-µSE and PKC18. Fig. 13c
illustrates that the increasing number of Owners does harm
the performance of MKSE and MUSE. We say that the KS2E
instance benefits from the bi-directional index to search the
shared files efficiently.

Fig. 14 shows the comparison results for the KS2E, MUSE,
and MKSE instances in the context of multiple Owners under
WAN with an average delay of 23ms. The instances also incur
constant costs here. But it is clear that the gaps among them in
Fig. 14a and 14b are smaller than those in Fig. 13. In Fig. 14c,
the overhead of Branch is nearly 730.46s, while the costs of
Q-µSE and PKC18 increase from 6,757.23s and 1,386.12s to

48,030.73s and 32,152.72s, respectively. We see that Branch
still brings efficiency in the search.

VI. CONCLUSION

In this paper, we propose the concept of KS2E. By analyz-
ing previous Searchable Encryption with sharing problems,
we conclude that the forward and backward privacy and
bi-directional index structure are the keys to our challenge.
We propose the forward and backward privacy definitions of
KS2E and construct the instance Branch. From our security
analysis and evaluation, we confirm that Branch can efficiently
search and share search indexes while providing forward and
backward privacy.

Although Branch provides all functions under the defined
security model, the deletion operation still requires multiple
instances consuming extra local users’ computational costs in
the sharing stage. We will aim to construct non-interactive
KS2E constructions with more efficient deletion.

APPENDIX A

Theorem 1 (Adaptive Security of KS2E-Branch): Let PRF
F with a specific key be modeled as the random oracle HF ,

Authorized licensed use limited to: TU Delft Library. Downloaded on October 09,2023 at 08:14:18 UTC from IEEE Xplore. Restrictions apply.

5550 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Game 3 G3 Description

Setup (λ) :

1: Generate empty maps EDBσ , EDBσ ′ as encrypted database
2: Generate two timestamps u ← 0, u′ ← 0

Update (σ, (w, id, add) ;EDBσ) :

Owner:
1: u ← u + 1
2:

(
L , Iw , Rw , Cw , Iid , Rid , Cid

) $
← {0, 1}λ × {0, 1}2λ

× {0, 1}λ × Cw × {0, 1}2λ
×

{0, 1}λ × Cid

3: Jw
$
← {0, 1}λ, Jid

$
← {0, 1}λ

4: If Kid[id] is ⊥, then kid
$
← {0, 1}λ and set Kid[id] ← kid , else kid ←Kid[id]

5: Set Dec[kid , Cid] ← w

6: Program H1
F s.t. H1

F (w||id) = L
7: Program H2

F s.t. H2
F (w||id) = Jw ,H2

F (id||w) = Jid
8: Insert

(
u, Jid , Cw,id

)
to UptIDHist[id]

9: Cw,id ←
(
L , Iw , Rw , Cw , Iid , Rid , Cid

)
10: Send Cw,id

The view of Server:
1: Parse Cw,id as

(
L , Iw , Rw , Cw , Iid , Rid , Cid

)
2: EDBσ [L]←

(
Iw , Rw , Cw , Iid , Rid , Cid

)
Search

(
σ ′, w

)
:

User:
1: Read

(
(u1, J 1

w , C1
w,id), . . . (u j , J j

w , C j
w,id)

)
from UpWHist′[w]

2: for i = j to 1 do
3: Parse C i

w,id as (L , I i
w , Ri

w , C i
w)

4: if H
(

J i
w , Ri

w

)
̸= ⊥ ∧H

(
J i
w , Ri

w

)
̸= I i

w

⊕ (
Li−1
||J i−1

w

)
then

5: set Break
6: else Program H s.t. H

(
J i
w , Ri

w

)
= I i

w

⊕ (
Li−1
||J i−1

w

)
7: end if
8: end for
9: Send search token Tw ←

(
L j , J j

w

)
to Server

The view of Server:
1: S← ∅
2: while L is not ⊥ do
3: Choose (Iw , Rw , Cw) from EDBσ ′ [L]
4:

(
L ′||J ′w

)
←H (Jw , Rw)

⊕
Iw

5: S← S ∪ Cw

6: Update L ← L ′, Jw ← J ′w
7: end while
8: Return S

Sharetoken (σ, id) :

Owner:
1:

(
(u1, J 1

id , C1
w,id), . . . (u j , J j

id , C j
w,id)

)
← UptIDHist[id]

2: Insert u to TimeST[id]
3: for i = j to 1 do
4: Parse C i

w,id as
(

Li , I i
w , Ri

w , C i
w , I i

id , Ri
id , C i

id

)
5: if H

(
J i
id , Ri

id

)
̸= ⊥ ∧H

(
J i
id , Ri

id

)
̸= I i

id
⊕ (

Li−1
||J i−1

id

)
then

6: set Break
7: else Program H s.t. H

(
J i
id , Ri

id

)
= I i

id
⊕ (

Li−1
||J i−1

id

)
8: end if
9: end for

10: Read kid ← Kid[id]
11: Return

(
L j , J j

id , id, kid

)
Share

(
Pid , σ ;EDBσ , EDBσ ′

)
:

User:
1: Parse Pid =

(
L , Jid , id, kid

)
2: Send Did ←

(
L , Jid

)
The view of Server:

1: S← ∅
2: while L is not ⊥ do
3: Choose

(
Iid , Rid , Cid

)
from EDBσ [L]

4:
(

L ′||J ′id

)
←H

(
Jid , Rid

) ⊕
Iid

5: S← S ∪ Cid
6: Update L ← L ′, Jid ← J ′id
7: end while
8: Return S

User:
1: S′ ← ∅
2: for each symmetric ciphertext Cid in S do
3: Read w←Dec[kid , Cid]
4: u′ ← max[TimeST[id]]
5: (L , Iw , Rw , Cw)

$
← {0, 1}λ × {0, 1}2λ

× {0, 1}λ × Cw

6: Jw
$
← {0, 1}λ

7: Program H1′
F s.t. H1′

F (w||id) = L

8: Program H2′
F s.t. H2′

F (w||id) = Jw
9: Cw,id ← (L , Iw , Rw , Cw), and insert Cw,id to S′

10: Insert
(
u′, Jw , Cw,id

)
to UpWHist′[w]

11: end for
12: Send S′

The view of Server:
1: for each keyword ciphertext Cw,id in S′ do
2: parse Cw,id as (L , Iw , Rw , Cw)

3: EDBσ ′ [L]← (Iw , Rw , Cw)

4: end for

and let cryptographic hash function H be modeled as the
random oracle H. We define LB = (LU pt

B ,LShr
B ,LSrch

B) as:

LU pt
B (w, id, op) = ∅

LShr
B (id) = r p (id) , UpSHist (id)

LSrch
B (w) = sp (w) , UpHist (w)

Branch is LB-adaptively-secure.
Proof: We analyze the indistinguishability between the

instance Branch and simulator SBranch , and we use the game
hop method to analyze indistinguishability.

Game G0: This game is identical with the real scheme
Branch so that:

P
[
RealKS2E−Branch

A,S,L (λ) = 1
]
= P [G0 = 1]

Game G1: In this game, we replace the PRF F used in
G0 with a random oracle HF . The adversarial distinguishing
advantage between G0 and G1 is exactly the distinguishability
between PRF F and HF . The adversary constructs a reduction
B1 making at most call on PRF F with a specific key, then
he can decide whether to call F or get a random string from
HF . In this condition, we have:

P [G0 = 1]− P [G1 = 1] ≤ Adv
pr f
F,B1

(λ)

Game G2: In this game, we replace the symmetric cipher-
texts Cw, Cid with a random string from the space Cw, Cid .
We can see that the distinguishability between game G1 and
game G2 is from the symmetric ciphertexts Cw, Cid . The
adversary constructs a reduction B2 making at most call on
CPA secure symmetric encryption (SE-CPA), then he can
decide whether to call random string or symmetric ciphertexts.
In this condition, we have:

P [G1 = 1]− P [G2 = 1] ≤ AdvSE−C P A
E,B2

(λ)

Game G3: In this game, we replace Iw, Iid with random
string, then we use random oracle H to replace the cryp-
tographic hash function H , which is programmed to hold
the correctness of search and sharing. In this game, table
UptIDHist[id] records the history of the id when updating
the search index. Table UpWHist′[w] records the history of
the w when re-encrypting search indexes. From this game,
we can see that the distinguishability between game G2 and
game G3 is from the cryptographic hash function value Iw, Iid .
To break the program on oracle H, the adversary constructs a
reduction B3 from a distinguisher A which inserts N (w, id)

pairs in encrypted database. B3 firstly guesses which (w∗, id∗)
pair will be set to Break for the first time among the N pairs.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 09,2023 at 08:14:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: KS2E FOR FAST AND SECURE DATA REPLICATION 5551

For (w∗, id∗), reduction B3 will call its oracle H2∗
F to evaluate

the same J ∗w or J ∗id at q times and try to make a Break on H.
If we assume the random Rw, Rid are uniformly random, the
probability of H called on (J ∗w, Rw) and (J ∗id , Rid) is 2·q ·2−λ

so that:

Pr [set Break] ≤ Adv
pr f
F,B3

(λ)+
2q
2λ

As guessing the pair (w∗, id∗) has N loss in the advantage
of the reduction B3, we have:

P [G2 = 1]− P [G3 = 1] ≤ N · Adv
pr f
F,B3

(λ)+
2Nq
2λ

The Simulator: We slightly replace the w, id used in
G3 with the min pattern sp(w) and r p(id) to hold Search
and Share, and we can observe that UptIDHist[id] leaks the
UpSHist(id) to recover the previous search index by Did .
Besides, the UpWHist′[w] reveals the max[TimeST[id]] and
historical entries left in the current database. When search
query finds a record based on keyword w, the last sharing
timestamp of id is also revealed. In this condition, we can
note UpWHist′[w] as UpHist(w), and we have:

P [G3 = 1]− P
[
IdealKS2E−Branch

A,S,L (λ) = 1
]
= 0

Conclusion: By combining all contributions from all games,
there exists the adversary such that:

|P[RealKS2E−Branch
A (λ) = 1] − P[IdealKS2E−Branch

A,S,L (λ) = 1]| ≤
Adv

pr f
F,B1

(λ)+ AdvSE−C P A
E,B2

(λ)+ N · Adv
pr f
F,B3

(λ)+
2Nq
2λ

□

APPENDIX B
Claim 1 (The correctness of KS2E-Branch): Based on the

birthday problem, the Branch instance can make the collision

resistance by making the 1 − e
−µ2

2λ+1 negligible, where µ

represents the maximum number of inputs to the PRF F .
Proof: Based on the birthday problem, we see that the

probability of all µ inputs occur collision after hashing is:

PColl = 1− 1 ·
(

1−
1
2λ

)
. . .

(
1−

µ− 1
2λ

)
Base on the Taylor expansion for ex , we have the following
equation when x is around 0:

ex
= 1+ x +

x2

2
+

x3

6
+

x4

24
+ . . . ≈ 1+ x

Following this Taylor expansion, we can approximately obtain:

PColl ≈ 1− e−
1

2λ · e−
2

2λ . . . e−
µ−1
2λ = 1− e−

µ(µ−1)

2·2λ

For simplicity, we can approximately obtain the collision
probability when µ is small relative to 2λ:

PColl = 1− e
−µ2

2λ+1

□

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
valuable suggestions that helped to improve the article greatly.

REFERENCES

[1] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proc. ACM Conf. Comput. Commun. Secur.,
Oct. 2012, pp. 965–976.

[2] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
encryption with small leakage,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2014, pp. 72–75.

[3] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward pri-
vate searchable encryption from constrained cryptographic primitives,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 1465–1482.

[4] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Advances in Cryptology—
EUROCRYPT. Berlin, Germany: Springer, May 2004, pp. 506–522.

[5] R. A. Popa and N. Zeldovich, “Multi-key searchable encryption,” IACR
Cryptol. ePrint Arch., vol. 2013, p. 508, Aug. 2013.

[6] A. Hamlin, A. Shelat, M. Weiss, and D. Wichs, “Multi-key search-
able encryption, revisited,” in Public-Key Cryptography—PKC. Cham,
Switzerland: Springer, Mar. 2018, pp. 95–124.

[7] D. G. Amalarathinam and J. M. Priya, “Survey on data security in
multi-cloud environment,” Int. J. Pure Appl. Math., vol. 118, no. 6,
pp. 323–334, 2018.

[8] T. Shi, H. Ma, G. Chen, and S. Hartmann, “Cost-effective web
application replication and deployment in multi-cloud environment,”
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 8, pp. 1982–1995,
Aug. 2022.

[9] R. Potharaju et al., “Hyperspace: The indexing subsystem of Azure
synapse,” Proc. VLDB Endowment, vol. 14, no. 12, pp. 3043–3055,
Jul. 2021.

[10] L. Chen, W.-K. Lee, C.-C. Chang, K.-K.-R. Choo, and N. Zhang,
“Blockchain based searchable encryption for electronic health record
sharing,” Future Gener. Comput. Syst., vol. 95, pp. 420–429, Jun. 2019.

[11] J. G. Chamani, Y. Wang, D. Papadopoulos, M. Zhang, and R. Jalili,
“Multi-user dynamic searchable symmetric encryption with corrupted
participants,” IEEE Trans. Dependable Secure Comput., vol. 20, no. 1,
pp. 114–130, Jan. 2023.

[12] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable sym-
metric encryption: Improved definitions and efficient constructions,” in
Proc. 13th ACM Conf. Comput. Commun. Secur., Oct. 2006, pp. 79–88.

[13] S. Patel, G. Persiano, and K. Yeo, “Symmetric searchable encryption
with sharing and unsharing,” in Proc. Eur. Symp. Res. Comput. Secur.,
2018, pp. 207–227.

[14] B. Cui, Z. Liu, and L. Wang, “Key-aggregate searchable encryption
(KASE) for group data sharing via cloud storage,” IEEE Trans. Comput.,
vol. 65, no. 8, pp. 2374–2385, Aug. 2016.

[15] J. Wang and S. S. M. Chow, “Omnes pro uno: Practical multi-
writer encrypted database,” in Proc. USENIX Secur. Symp., 2022,
pp. 2371–2388.

[16] D. Xiaoding Song, D. Wagner, and A. Perrig, “Practical techniques
for searches on encrypted data,” in Proc. IEEE Symp. Secur. Privacy,
May 2000, pp. 44–55.

[17] G. Chen, T.-H. Lai, M. K. Reiter, and Y. Zhang, “Differentially private
access patterns for searchable symmetric encryption,” in Proc. IEEE
INFOCOM Conf. Comput. Commun., Apr. 2018, pp. 810–818.

[18] L. Xu, X. Yuan, C. Wang, Q. Wang, and C. Xu, “Hardening database
padding for searchable encryption,” in Proc. IEEE INFOCOM Conf.
Comput. Commun., Apr. 2019, pp. 2503–2511.

[19] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably
secure searchable encryption,” ACM Comput. Surv., vol. 47, no. 2,
pp. 1–51, Jan. 2015.

[20] B. Fuller et al., “Sok: Cryptographically protected database search,” in
Proc. IEEE Symp. Security Privacy, May 2017, pp. 172–191.

[21] R. Bost, “
∑

oϕoς : Forward secure searchable encryption,” in Proc. ACM
CCS, 2016, pp. 1143–1154.

[22] J. G. Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili, “New
constructions for forward and backward private symmetric searchable
encryption,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2018, pp. 1038–1055.

[23] S.-F. Sun et al., “Practical backward-secure searchable encryption from
symmetric puncturable encryption,” in Proc. ACM SIGSAC Conf. Com-
put. Commun. Secur., Oct. 2018, pp. 763–780.

[24] S.-F. Sun et al., “Practical non-interactive searchable encryption with
forward and backward privacy,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2021, pp. 1–18.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 09,2023 at 08:14:18 UTC from IEEE Xplore. Restrictions apply.

5552 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

[25] I. Demertzis, J. G. Chamani, D. Papadopoulos, and C. Papamanthou,
“Dynamic searchable encryption with small client storage,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2020, pp. 1–18.

[26] T. Chen, P. Xu, W. Wang, Y. Zheng, W. Susilo, and H. Jin, “Bestie: Very
practical searchable encryption with forward and backward security,” in
Computer Security—ESORICS. Cham, Switzerland: Springer, Oct. 2021,
pp. 3–23.

[27] P. Xu et al., “ROSE: Robust searchable encryption with forward
and backward security,” IEEE Trans. Inf. Forensics Security, vol. 17,
pp. 1115–1130, 2022.

[28] K. He, J. Chen, Q. Zhou, R. Du, and Y. Xiang, “Secure dynamic
searchable symmetric encryption with constant client storage cost,” IEEE
Trans. Inf. Forensics Security, vol. 16, pp. 1538–1549, 2021.

[29] J. Alderman, K. M. Martin, and S. L. Renwick, “Multi-level access
in searchable symmetric encryption,” in Proc. Int. Conf. Financial
Cryptogr. Data Secur., 2017, pp. 35–52.

[30] Y. Wang and D. Papadopoulos, “Multi-user collusion-resistant search-
able encryption with optimal search time,” in Proc. ACM Asia Conf.
Comput. Commun. Secur., May 2021, pp. 252–264.

[31] A. Kiayias, O. Oksuz, A. Russell, Q. Tang, and B. Wang, “Effi-
cient encrypted keyword search for multi-user data sharing,” in Com-
puter Security—ESORICS. Cham, Switzerland: Springer, Sep. 2016,
pp. 173–195.

[32] S.-F. Sun, J. K. Liu, A. Sakzad, R. Steinfeld, and T. H. Yuen, “An effi-
cient non-interactive multi-client searchable encryption with support for
Boolean queries,” in Computer Security—ESORICS. Cham, Switzerland:
Springer, Sep. 2016, pp. 154–172.

[33] R. A. Popa et al., “Building web applications on top of encrypted data
using mylar,” in Proc. NSDI, 2014, pp. 157–172.

[34] P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart, and V. Shmatikov,
“Breaking web applications built on top of encrypted data,” in Proc.
ACM CCS, 2016, pp. 1353–1364

[35] Y. Su, J. Wang, Y. Wang, and M. Miao, “Efficient verifiable multi-
key searchable encryption in cloud computing,” IEEE Access, vol. 7,
pp. 141352–141362, 2019.

[36] C. Hahn, H. Yoon, and J. Hur, “Multi-key similar data search on
encrypted storage with secure pay-per-query,” IEEE Trans. Inf. Forensics
Security, vol. 18, pp. 1169–1181, 2023.

[37] W. Wang, P. Xu, L. T. Yang, and J. Chen, “Cloud-assisted key distribu-
tion in batch for secure real-time mobile services,” IEEE Trans. Services
Comput., vol. 11, no. 5, pp. 850–863, Sep. 2018.

[38] D. Cash et al., “Dynamic searchable encryption in very-large databases:
Data structures and implementation,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2014, pp. 23–26.

[39] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong
to us: The power of file-injection attacks on searchable encryption,” in
Proc. USENIX Secur. Symp., 2016, pp. 707–720.

[40] I. Mironov, “Hash functions: Theory, attacks, and applications,”
Microsoft Res. Silicon Valley Campus, Mountain View, CA,
USA, Nov. 2005. [Online]. Available: https://www.microsoft.com/en-
us/research/wp-content/uploads/2005/11/hash_survey.pdf

[41] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim, “Forward
secure dynamic searchable symmetric encryption with efficient updates,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 1449–1463.

[42] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,
pp. 130–137, Mar. 1980.

[43] G. Attardi. (2016). Wikipedia Extractor. [Online]. Available:
http://medialab.di.unipi.it/wiki/Wikipedia_Extractor

[44] N. Project. (2016). Natural Language Toolkit. [Online]. Available:
http://www.nltk.org

[45] K. Banker, D. Garrett, P. Bakkum, and S. Verch, MongoDB in Action:
Covers MongoDB Version 3.0. New York, NY, USA: Simon and Schus-
ter, 2016.

[46] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith, “Modular
verification of software components in C,” IEEE Trans. Softw. Eng.,
vol. 30, no. 6, pp. 388–402, Jun. 2004.

[47] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random
functions,” J. ACM, vol. 33, no. 4, pp. 792–807, Aug. 1986.

[48] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias,
“Delegatable pseudorandom functions and applications,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2013, pp. 669–684.

Wei Wang (Member, IEEE) received the B.E. and
Ph.D. degrees in electronic and communication engi-
neering from the Huazhong University of Science
and Technology, Wuhan, China, in 2006 and 2011,
respectively. She is currently an Associate Professor
with the Cyber-Physical-Social Systems Laboratory,
Huazhong University of Science and Technology.
She has authored 30 papers in international jour-
nals and conferences. Her current research interests
include cryptography and data privacy.

Dongli Liu received the B.E. degree in infor-
mation security from the Huazhong University of
Science and Technology, Wuhan, China, in 2018,
where he is currently pursuing the Ph.D. degree in
cyberspace security with the School of Computer
Science and Technology. His current research inter-
ests include cryptography, particularly encryption,
encrypted database, and security protocols.

Peng Xu (Member, IEEE) received the Ph.D. degree
in computer science from the Huazhong Univer-
sity of Science and Technology, Wuhan, China,
in 2010. He was a Post-Doctoral Researcher with
the Huazhong University of Science and Technology
from 2010 to 2013 and an Associate Research Fel-
low with the University of Wollongong, Australia,
from 2018 to 2019. He is currently a Full Professor
with the Huazhong University of Science and Tech-
nology. He was a PI in ten grants, including four
NSF projects. He has authored 50 research articles

and three books and holds 20 patents. His current research interests include
cryptography.

Laurence Tianruo Yang (Fellow, IEEE) received
the B.E. degree in computer science and technol-
ogy and the B.Sc. degree in applied physics from
Tsinghua University, Beijing, China, in 1992, and
the Ph.D. degree in computer science from the Uni-
versity of Victoria, Victoria, BC, Canada, in 2006.
He is currently a Professor with the School of Com-
puter Science and Technology, Huazhong University
of Science and Technology, China; the School of
Computer Science and Technology, Hainan Uni-
versity, China; and the Department of Computer

Science, St. Francis Xavier University, Canada. His research has been
supported by the National Sciences and Engineering Research Council,
Canada, and the Canada Foundation for Innovation. His current research
interests include parallel and distributed computing, embedded and ubiqui-
tous/pervasive computing, and big data.

Kaitai Liang (Member, IEEE) received the Ph.D.
degree in computer science from the Department of
Computer Science, City University of Hong Kong,
Hong Kong, in 2014. He is currently an Assistant
Professor with the Faculty of Electrical Engineering,
Mathematics and Computer Science, Delft Univer-
sity of Technology, Delft, The Netherlands. His cur-
rent research interests include applied cryptography
and information security, particularly encryption,
blockchain, postquantum crypto, privacy-enhancing
technology, and security in cloud computing.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 09,2023 at 08:14:18 UTC from IEEE Xplore. Restrictions apply.

